ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.490
Committed: Thu Jun 20 22:44:59 2019 UTC (4 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.489: +59 -37 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.490 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.469 # if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52 root 1.373 # endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121     # ifndef EV_USE_KQUEUE
122 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 root 1.127 # endif
124 root 1.343 # else
125     # undef EV_USE_KQUEUE
126     # define EV_USE_KQUEUE 0
127 root 1.60 # endif
128 root 1.127
129 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
130     # ifndef EV_USE_PORT
131 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_PORT
135     # define EV_USE_PORT 0
136 root 1.118 # endif
137    
138 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139     # ifndef EV_USE_INOTIFY
140 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
141 root 1.152 # endif
142 root 1.343 # else
143     # undef EV_USE_INOTIFY
144     # define EV_USE_INOTIFY 0
145 root 1.152 # endif
146    
147 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148     # ifndef EV_USE_SIGNALFD
149 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 root 1.303 # endif
151 root 1.343 # else
152     # undef EV_USE_SIGNALFD
153     # define EV_USE_SIGNALFD 0
154 root 1.303 # endif
155    
156 root 1.343 # if HAVE_EVENTFD
157     # ifndef EV_USE_EVENTFD
158 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
159 root 1.220 # endif
160 root 1.343 # else
161     # undef EV_USE_EVENTFD
162     # define EV_USE_EVENTFD 0
163 root 1.220 # endif
164 root 1.250
165 root 1.29 #endif
166 root 1.17
167 root 1.483 /* OS X, in its infinite idiocy, actually HARDCODES
168     * a limit of 1024 into their select. Where people have brains,
169     * OS X engineers apparently have a vacuum. Or maybe they were
170     * ordered to have a vacuum, or they do anything for money.
171     * This might help. Or not.
172     * Note that this must be defined early, as other include files
173     * will rely on this define as well.
174     */
175     #define _DARWIN_UNLIMITED_SELECT 1
176    
177 root 1.1 #include <stdlib.h>
178 root 1.319 #include <string.h>
179 root 1.7 #include <fcntl.h>
180 root 1.16 #include <stddef.h>
181 root 1.1
182     #include <stdio.h>
183    
184 root 1.4 #include <assert.h>
185 root 1.1 #include <errno.h>
186 root 1.22 #include <sys/types.h>
187 root 1.71 #include <time.h>
188 root 1.326 #include <limits.h>
189 root 1.71
190 root 1.72 #include <signal.h>
191 root 1.71
192 root 1.152 #ifdef EV_H
193     # include EV_H
194     #else
195     # include "ev.h"
196     #endif
197    
198 root 1.410 #if EV_NO_THREADS
199     # undef EV_NO_SMP
200     # define EV_NO_SMP 1
201     # undef ECB_NO_THREADS
202     # define ECB_NO_THREADS 1
203     #endif
204     #if EV_NO_SMP
205     # undef EV_NO_SMP
206     # define ECB_NO_SMP 1
207     #endif
208    
209 root 1.103 #ifndef _WIN32
210 root 1.71 # include <sys/time.h>
211 root 1.45 # include <sys/wait.h>
212 root 1.140 # include <unistd.h>
213 root 1.103 #else
214 root 1.256 # include <io.h>
215 root 1.103 # define WIN32_LEAN_AND_MEAN
216 root 1.431 # include <winsock2.h>
217 root 1.103 # include <windows.h>
218     # ifndef EV_SELECT_IS_WINSOCKET
219     # define EV_SELECT_IS_WINSOCKET 1
220     # endif
221 root 1.331 # undef EV_AVOID_STDIO
222 root 1.45 #endif
223 root 1.103
224 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
225 root 1.40
226 root 1.305 /* try to deduce the maximum number of signals on this platform */
227 root 1.416 #if defined EV_NSIG
228 root 1.305 /* use what's provided */
229 root 1.416 #elif defined NSIG
230 root 1.305 # define EV_NSIG (NSIG)
231 root 1.416 #elif defined _NSIG
232 root 1.305 # define EV_NSIG (_NSIG)
233 root 1.416 #elif defined SIGMAX
234 root 1.305 # define EV_NSIG (SIGMAX+1)
235 root 1.416 #elif defined SIG_MAX
236 root 1.305 # define EV_NSIG (SIG_MAX+1)
237 root 1.416 #elif defined _SIG_MAX
238 root 1.305 # define EV_NSIG (_SIG_MAX+1)
239 root 1.416 #elif defined MAXSIG
240 root 1.305 # define EV_NSIG (MAXSIG+1)
241 root 1.416 #elif defined MAX_SIG
242 root 1.305 # define EV_NSIG (MAX_SIG+1)
243 root 1.416 #elif defined SIGARRAYSIZE
244 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
245 root 1.416 #elif defined _sys_nsig
246 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
247     #else
248 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
249 root 1.305 #endif
250    
251 root 1.373 #ifndef EV_USE_FLOOR
252     # define EV_USE_FLOOR 0
253     #endif
254    
255 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
256 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
257 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258 root 1.274 # else
259     # define EV_USE_CLOCK_SYSCALL 0
260     # endif
261     #endif
262    
263 root 1.470 #if !(_POSIX_TIMERS > 0)
264     # ifndef EV_USE_MONOTONIC
265     # define EV_USE_MONOTONIC 0
266     # endif
267     # ifndef EV_USE_REALTIME
268     # define EV_USE_REALTIME 0
269     # endif
270     #endif
271    
272 root 1.29 #ifndef EV_USE_MONOTONIC
273 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
274 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
275 root 1.253 # else
276     # define EV_USE_MONOTONIC 0
277     # endif
278 root 1.37 #endif
279    
280 root 1.118 #ifndef EV_USE_REALTIME
281 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
282 root 1.118 #endif
283    
284 root 1.193 #ifndef EV_USE_NANOSLEEP
285 root 1.253 # if _POSIX_C_SOURCE >= 199309L
286 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
287 root 1.253 # else
288     # define EV_USE_NANOSLEEP 0
289     # endif
290 root 1.193 #endif
291    
292 root 1.29 #ifndef EV_USE_SELECT
293 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
294 root 1.10 #endif
295    
296 root 1.59 #ifndef EV_USE_POLL
297 root 1.104 # ifdef _WIN32
298     # define EV_USE_POLL 0
299     # else
300 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
301 root 1.104 # endif
302 root 1.41 #endif
303    
304 root 1.29 #ifndef EV_USE_EPOLL
305 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
306 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
307 root 1.220 # else
308     # define EV_USE_EPOLL 0
309     # endif
310 root 1.10 #endif
311    
312 root 1.44 #ifndef EV_USE_KQUEUE
313     # define EV_USE_KQUEUE 0
314     #endif
315    
316 root 1.118 #ifndef EV_USE_PORT
317     # define EV_USE_PORT 0
318 root 1.40 #endif
319    
320 root 1.490 #ifndef EV_USE_LINUXAIO
321     # define EV_USE_LINUXAIO 0
322     #endif
323    
324 root 1.152 #ifndef EV_USE_INOTIFY
325 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
326 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
327 root 1.220 # else
328     # define EV_USE_INOTIFY 0
329     # endif
330 root 1.152 #endif
331    
332 root 1.149 #ifndef EV_PID_HASHSIZE
333 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
334 root 1.149 #endif
335    
336 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
337 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
338 root 1.152 #endif
339    
340 root 1.220 #ifndef EV_USE_EVENTFD
341     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
342 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
343 root 1.220 # else
344     # define EV_USE_EVENTFD 0
345     # endif
346     #endif
347    
348 root 1.303 #ifndef EV_USE_SIGNALFD
349 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
350 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
351 root 1.303 # else
352     # define EV_USE_SIGNALFD 0
353     # endif
354     #endif
355    
356 root 1.249 #if 0 /* debugging */
357 root 1.250 # define EV_VERIFY 3
358 root 1.249 # define EV_USE_4HEAP 1
359     # define EV_HEAP_CACHE_AT 1
360     #endif
361    
362 root 1.250 #ifndef EV_VERIFY
363 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
364 root 1.250 #endif
365    
366 root 1.243 #ifndef EV_USE_4HEAP
367 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
368 root 1.243 #endif
369    
370     #ifndef EV_HEAP_CACHE_AT
371 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
372 root 1.243 #endif
373    
374 root 1.481 #ifdef __ANDROID__
375 root 1.452 /* supposedly, android doesn't typedef fd_mask */
376     # undef EV_USE_SELECT
377     # define EV_USE_SELECT 0
378     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
379     # undef EV_USE_CLOCK_SYSCALL
380     # define EV_USE_CLOCK_SYSCALL 0
381     #endif
382    
383     /* aix's poll.h seems to cause lots of trouble */
384     #ifdef _AIX
385     /* AIX has a completely broken poll.h header */
386     # undef EV_USE_POLL
387     # define EV_USE_POLL 0
388     #endif
389    
390 root 1.490 #if EV_USE_LINUXAIO
391     # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
392     #endif
393    
394 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
395     /* which makes programs even slower. might work on other unices, too. */
396     #if EV_USE_CLOCK_SYSCALL
397 root 1.423 # include <sys/syscall.h>
398 root 1.291 # ifdef SYS_clock_gettime
399     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
400     # undef EV_USE_MONOTONIC
401     # define EV_USE_MONOTONIC 1
402     # else
403     # undef EV_USE_CLOCK_SYSCALL
404     # define EV_USE_CLOCK_SYSCALL 0
405     # endif
406     #endif
407    
408 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
409 root 1.40
410     #ifndef CLOCK_MONOTONIC
411     # undef EV_USE_MONOTONIC
412     # define EV_USE_MONOTONIC 0
413     #endif
414    
415 root 1.31 #ifndef CLOCK_REALTIME
416 root 1.40 # undef EV_USE_REALTIME
417 root 1.31 # define EV_USE_REALTIME 0
418     #endif
419 root 1.40
420 root 1.152 #if !EV_STAT_ENABLE
421 root 1.185 # undef EV_USE_INOTIFY
422 root 1.152 # define EV_USE_INOTIFY 0
423     #endif
424    
425 root 1.193 #if !EV_USE_NANOSLEEP
426 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
427 root 1.416 # if !defined _WIN32 && !defined __hpux
428 root 1.193 # include <sys/select.h>
429     # endif
430     #endif
431    
432 root 1.152 #if EV_USE_INOTIFY
433 root 1.273 # include <sys/statfs.h>
434 root 1.152 # include <sys/inotify.h>
435 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
436     # ifndef IN_DONT_FOLLOW
437     # undef EV_USE_INOTIFY
438     # define EV_USE_INOTIFY 0
439     # endif
440 root 1.152 #endif
441    
442 root 1.220 #if EV_USE_EVENTFD
443     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444 root 1.221 # include <stdint.h>
445 root 1.303 # ifndef EFD_NONBLOCK
446     # define EFD_NONBLOCK O_NONBLOCK
447     # endif
448     # ifndef EFD_CLOEXEC
449 root 1.311 # ifdef O_CLOEXEC
450     # define EFD_CLOEXEC O_CLOEXEC
451     # else
452     # define EFD_CLOEXEC 02000000
453     # endif
454 root 1.303 # endif
455 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
456 root 1.220 #endif
457    
458 root 1.303 #if EV_USE_SIGNALFD
459 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
460     # include <stdint.h>
461     # ifndef SFD_NONBLOCK
462     # define SFD_NONBLOCK O_NONBLOCK
463     # endif
464     # ifndef SFD_CLOEXEC
465     # ifdef O_CLOEXEC
466     # define SFD_CLOEXEC O_CLOEXEC
467     # else
468     # define SFD_CLOEXEC 02000000
469     # endif
470     # endif
471 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
472 root 1.314
473     struct signalfd_siginfo
474     {
475     uint32_t ssi_signo;
476     char pad[128 - sizeof (uint32_t)];
477     };
478 root 1.303 #endif
479    
480 root 1.40 /**/
481 root 1.1
482 root 1.250 #if EV_VERIFY >= 3
483 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
484 root 1.248 #else
485     # define EV_FREQUENT_CHECK do { } while (0)
486     #endif
487    
488 root 1.176 /*
489 root 1.373 * This is used to work around floating point rounding problems.
490 root 1.177 * This value is good at least till the year 4000.
491 root 1.176 */
492 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
493     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
494 root 1.176
495 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
496 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
497 root 1.1
498 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
499 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
500 root 1.347
501 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
502     /* ECB.H BEGIN */
503     /*
504     * libecb - http://software.schmorp.de/pkg/libecb
505     *
506 root 1.474 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
507 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
508     * All rights reserved.
509     *
510     * Redistribution and use in source and binary forms, with or without modifica-
511     * tion, are permitted provided that the following conditions are met:
512     *
513     * 1. Redistributions of source code must retain the above copyright notice,
514     * this list of conditions and the following disclaimer.
515     *
516     * 2. Redistributions in binary form must reproduce the above copyright
517     * notice, this list of conditions and the following disclaimer in the
518     * documentation and/or other materials provided with the distribution.
519     *
520     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
521     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
522     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
523     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
524     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
525     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
526     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
527     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
528     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
529     * OF THE POSSIBILITY OF SUCH DAMAGE.
530 root 1.467 *
531     * Alternatively, the contents of this file may be used under the terms of
532     * the GNU General Public License ("GPL") version 2 or any later version,
533     * in which case the provisions of the GPL are applicable instead of
534     * the above. If you wish to allow the use of your version of this file
535     * only under the terms of the GPL and not to allow others to use your
536     * version of this file under the BSD license, indicate your decision
537     * by deleting the provisions above and replace them with the notice
538     * and other provisions required by the GPL. If you do not delete the
539     * provisions above, a recipient may use your version of this file under
540     * either the BSD or the GPL.
541 root 1.391 */
542    
543     #ifndef ECB_H
544     #define ECB_H
545    
546 root 1.437 /* 16 bits major, 16 bits minor */
547 root 1.479 #define ECB_VERSION 0x00010005
548 root 1.437
549 root 1.391 #ifdef _WIN32
550     typedef signed char int8_t;
551     typedef unsigned char uint8_t;
552     typedef signed short int16_t;
553     typedef unsigned short uint16_t;
554     typedef signed int int32_t;
555     typedef unsigned int uint32_t;
556     #if __GNUC__
557     typedef signed long long int64_t;
558     typedef unsigned long long uint64_t;
559     #else /* _MSC_VER || __BORLANDC__ */
560     typedef signed __int64 int64_t;
561     typedef unsigned __int64 uint64_t;
562     #endif
563 root 1.437 #ifdef _WIN64
564     #define ECB_PTRSIZE 8
565     typedef uint64_t uintptr_t;
566     typedef int64_t intptr_t;
567     #else
568     #define ECB_PTRSIZE 4
569     typedef uint32_t uintptr_t;
570     typedef int32_t intptr_t;
571     #endif
572 root 1.391 #else
573     #include <inttypes.h>
574 root 1.479 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
575 root 1.437 #define ECB_PTRSIZE 8
576     #else
577     #define ECB_PTRSIZE 4
578     #endif
579 root 1.391 #endif
580 root 1.379
581 sf-exg 1.475 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
582     #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
583    
584 root 1.454 /* work around x32 idiocy by defining proper macros */
585 sf-exg 1.475 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
586 root 1.458 #if _ILP32
587 root 1.454 #define ECB_AMD64_X32 1
588     #else
589     #define ECB_AMD64 1
590     #endif
591     #endif
592    
593 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
594     * what their idiot authors think are the "more important" extensions,
595 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
596 root 1.379 * or so.
597     * we try to detect these and simply assume they are not gcc - if they have
598     * an issue with that they should have done it right in the first place.
599     */
600 root 1.474 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
601     #define ECB_GCC_VERSION(major,minor) 0
602     #else
603     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
604     #endif
605    
606     #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
607    
608     #if __clang__ && defined __has_builtin
609     #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
610     #else
611     #define ECB_CLANG_BUILTIN(x) 0
612     #endif
613    
614     #if __clang__ && defined __has_extension
615     #define ECB_CLANG_EXTENSION(x) __has_extension (x)
616     #else
617     #define ECB_CLANG_EXTENSION(x) 0
618 root 1.379 #endif
619    
620 root 1.437 #define ECB_CPP (__cplusplus+0)
621     #define ECB_CPP11 (__cplusplus >= 201103L)
622 root 1.488 #define ECB_CPP14 (__cplusplus >= 201402L)
623     #define ECB_CPP17 (__cplusplus >= 201703L)
624 root 1.437
625 root 1.450 #if ECB_CPP
626 root 1.464 #define ECB_C 0
627     #define ECB_STDC_VERSION 0
628     #else
629     #define ECB_C 1
630     #define ECB_STDC_VERSION __STDC_VERSION__
631     #endif
632    
633     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
634     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
635 root 1.488 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
636 root 1.464
637     #if ECB_CPP
638 root 1.450 #define ECB_EXTERN_C extern "C"
639     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
640     #define ECB_EXTERN_C_END }
641     #else
642     #define ECB_EXTERN_C extern
643     #define ECB_EXTERN_C_BEG
644     #define ECB_EXTERN_C_END
645     #endif
646    
647 root 1.391 /*****************************************************************************/
648    
649     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
650     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
651    
652 root 1.410 #if ECB_NO_THREADS
653 root 1.439 #define ECB_NO_SMP 1
654 root 1.410 #endif
655    
656 root 1.437 #if ECB_NO_SMP
657 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
658 root 1.40 #endif
659    
660 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
661     #if __xlC__ && ECB_CPP
662     #include <builtins.h>
663     #endif
664    
665 root 1.479 #if 1400 <= _MSC_VER
666     #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
667     #endif
668    
669 root 1.383 #ifndef ECB_MEMORY_FENCE
670 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
671 root 1.404 #if __i386 || __i386__
672 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
673 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
674 root 1.488 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
675 sf-exg 1.475 #elif ECB_GCC_AMD64
676 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
677     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
678 root 1.488 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
679 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
680 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
681 root 1.479 #elif defined __ARM_ARCH_2__ \
682     || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
683     || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
684     || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
685     || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
686     || defined __ARM_ARCH_5TEJ__
687     /* should not need any, unless running old code on newer cpu - arm doesn't support that */
688 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
689 root 1.479 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
690     || defined __ARM_ARCH_6T2__
691 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
692 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
693 root 1.479 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
694 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
695 root 1.464 #elif __aarch64__
696     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
697 root 1.477 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
698 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
699     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
700     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
701 root 1.417 #elif defined __s390__ || defined __s390x__
702 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
703 root 1.417 #elif defined __mips__
704 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
705 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
706     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
707 root 1.419 #elif defined __alpha__
708 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
709     #elif defined __hppa__
710     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
711     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
712     #elif defined __ia64__
713     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
714 root 1.457 #elif defined __m68k__
715     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
716     #elif defined __m88k__
717     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
718     #elif defined __sh__
719     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
720 root 1.383 #endif
721     #endif
722     #endif
723    
724     #ifndef ECB_MEMORY_FENCE
725 root 1.437 #if ECB_GCC_VERSION(4,7)
726 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
727 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
728 root 1.464 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
729     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
730 root 1.450
731 root 1.474 #elif ECB_CLANG_EXTENSION(c_atomic)
732     /* see comment below (stdatomic.h) about the C11 memory model. */
733     #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
734     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
735     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
736 root 1.450
737 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
738 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
739 root 1.462 #elif _MSC_VER >= 1500 /* VC++ 2008 */
740     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
741     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
742     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
743     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
744     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
745 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
746     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
747     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
748     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
749     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
750 root 1.417 #elif defined _WIN32
751 root 1.388 #include <WinNT.h>
752 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
753 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
754     #include <mbarrier.h>
755     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
756     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
757     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
758 root 1.413 #elif __xlC__
759 root 1.414 #define ECB_MEMORY_FENCE __sync ()
760 root 1.383 #endif
761     #endif
762    
763     #ifndef ECB_MEMORY_FENCE
764 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
765     /* we assume that these memory fences work on all variables/all memory accesses, */
766     /* not just C11 atomics and atomic accesses */
767     #include <stdatomic.h>
768 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
769     /* any fence other than seq_cst, which isn't very efficient for us. */
770     /* Why that is, we don't know - either the C11 memory model is quite useless */
771     /* for most usages, or gcc and clang have a bug */
772     /* I *currently* lean towards the latter, and inefficiently implement */
773     /* all three of ecb's fences as a seq_cst fence */
774 root 1.464 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
775     /* for all __atomic_thread_fence's except seq_cst */
776 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
777     #endif
778     #endif
779    
780     #ifndef ECB_MEMORY_FENCE
781 root 1.392 #if !ECB_AVOID_PTHREADS
782     /*
783     * if you get undefined symbol references to pthread_mutex_lock,
784     * or failure to find pthread.h, then you should implement
785     * the ECB_MEMORY_FENCE operations for your cpu/compiler
786     * OR provide pthread.h and link against the posix thread library
787     * of your system.
788     */
789     #include <pthread.h>
790     #define ECB_NEEDS_PTHREADS 1
791     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
792    
793     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
794     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
795     #endif
796     #endif
797 root 1.383
798 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
799 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
800 root 1.392 #endif
801    
802 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
803 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
804     #endif
805    
806 root 1.391 /*****************************************************************************/
807    
808 root 1.474 #if ECB_CPP
809 root 1.391 #define ecb_inline static inline
810     #elif ECB_GCC_VERSION(2,5)
811     #define ecb_inline static __inline__
812     #elif ECB_C99
813     #define ecb_inline static inline
814     #else
815     #define ecb_inline static
816     #endif
817    
818     #if ECB_GCC_VERSION(3,3)
819     #define ecb_restrict __restrict__
820     #elif ECB_C99
821     #define ecb_restrict restrict
822     #else
823     #define ecb_restrict
824     #endif
825    
826     typedef int ecb_bool;
827    
828     #define ECB_CONCAT_(a, b) a ## b
829     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
830     #define ECB_STRINGIFY_(a) # a
831     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
832 sf-exg 1.475 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
833 root 1.391
834     #define ecb_function_ ecb_inline
835    
836 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
837     #define ecb_attribute(attrlist) __attribute__ (attrlist)
838 root 1.379 #else
839     #define ecb_attribute(attrlist)
840 root 1.474 #endif
841 root 1.464
842 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
843     #define ecb_is_constant(expr) __builtin_constant_p (expr)
844     #else
845 root 1.464 /* possible C11 impl for integral types
846     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
847     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
848    
849 root 1.379 #define ecb_is_constant(expr) 0
850 root 1.474 #endif
851    
852     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
853     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
854     #else
855 root 1.379 #define ecb_expect(expr,value) (expr)
856 root 1.474 #endif
857    
858     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
859     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
860     #else
861 root 1.379 #define ecb_prefetch(addr,rw,locality)
862     #endif
863    
864 root 1.391 /* no emulation for ecb_decltype */
865 root 1.474 #if ECB_CPP11
866     // older implementations might have problems with decltype(x)::type, work around it
867     template<class T> struct ecb_decltype_t { typedef T type; };
868     #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
869     #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
870     #define ecb_decltype(x) __typeof__ (x)
871 root 1.391 #endif
872    
873 root 1.468 #if _MSC_VER >= 1300
874 root 1.474 #define ecb_deprecated __declspec (deprecated)
875 root 1.468 #else
876     #define ecb_deprecated ecb_attribute ((__deprecated__))
877     #endif
878    
879 root 1.476 #if _MSC_VER >= 1500
880 sf-exg 1.475 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
881     #elif ECB_GCC_VERSION(4,5)
882     #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
883     #else
884     #define ecb_deprecated_message(msg) ecb_deprecated
885     #endif
886    
887     #if _MSC_VER >= 1400
888     #define ecb_noinline __declspec (noinline)
889     #else
890     #define ecb_noinline ecb_attribute ((__noinline__))
891     #endif
892    
893 root 1.379 #define ecb_unused ecb_attribute ((__unused__))
894     #define ecb_const ecb_attribute ((__const__))
895     #define ecb_pure ecb_attribute ((__pure__))
896    
897 root 1.474 #if ECB_C11 || __IBMC_NORETURN
898 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
899 root 1.437 #define ecb_noreturn _Noreturn
900 sf-exg 1.475 #elif ECB_CPP11
901     #define ecb_noreturn [[noreturn]]
902     #elif _MSC_VER >= 1200
903     /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
904     #define ecb_noreturn __declspec (noreturn)
905 root 1.437 #else
906     #define ecb_noreturn ecb_attribute ((__noreturn__))
907     #endif
908    
909 root 1.379 #if ECB_GCC_VERSION(4,3)
910     #define ecb_artificial ecb_attribute ((__artificial__))
911     #define ecb_hot ecb_attribute ((__hot__))
912     #define ecb_cold ecb_attribute ((__cold__))
913     #else
914     #define ecb_artificial
915     #define ecb_hot
916     #define ecb_cold
917     #endif
918    
919     /* put around conditional expressions if you are very sure that the */
920     /* expression is mostly true or mostly false. note that these return */
921     /* booleans, not the expression. */
922     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
923     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
924 root 1.391 /* for compatibility to the rest of the world */
925     #define ecb_likely(expr) ecb_expect_true (expr)
926     #define ecb_unlikely(expr) ecb_expect_false (expr)
927    
928     /* count trailing zero bits and count # of one bits */
929 root 1.474 #if ECB_GCC_VERSION(3,4) \
930     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
931     && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
932     && ECB_CLANG_BUILTIN(__builtin_popcount))
933 root 1.391 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
934     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
935     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
936     #define ecb_ctz32(x) __builtin_ctz (x)
937     #define ecb_ctz64(x) __builtin_ctzll (x)
938     #define ecb_popcount32(x) __builtin_popcount (x)
939     /* no popcountll */
940     #else
941 root 1.474 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
942     ecb_function_ ecb_const int
943 root 1.391 ecb_ctz32 (uint32_t x)
944     {
945 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
946     unsigned long r;
947     _BitScanForward (&r, x);
948     return (int)r;
949     #else
950 root 1.391 int r = 0;
951    
952     x &= ~x + 1; /* this isolates the lowest bit */
953    
954     #if ECB_branchless_on_i386
955     r += !!(x & 0xaaaaaaaa) << 0;
956     r += !!(x & 0xcccccccc) << 1;
957     r += !!(x & 0xf0f0f0f0) << 2;
958     r += !!(x & 0xff00ff00) << 3;
959     r += !!(x & 0xffff0000) << 4;
960     #else
961     if (x & 0xaaaaaaaa) r += 1;
962     if (x & 0xcccccccc) r += 2;
963     if (x & 0xf0f0f0f0) r += 4;
964     if (x & 0xff00ff00) r += 8;
965     if (x & 0xffff0000) r += 16;
966     #endif
967    
968     return r;
969 root 1.479 #endif
970 root 1.391 }
971    
972 root 1.474 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
973     ecb_function_ ecb_const int
974 root 1.391 ecb_ctz64 (uint64_t x)
975     {
976 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
977     unsigned long r;
978     _BitScanForward64 (&r, x);
979     return (int)r;
980     #else
981     int shift = x & 0xffffffff ? 0 : 32;
982 root 1.391 return ecb_ctz32 (x >> shift) + shift;
983 root 1.479 #endif
984 root 1.391 }
985    
986 root 1.474 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
987     ecb_function_ ecb_const int
988 root 1.391 ecb_popcount32 (uint32_t x)
989     {
990     x -= (x >> 1) & 0x55555555;
991     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
992     x = ((x >> 4) + x) & 0x0f0f0f0f;
993     x *= 0x01010101;
994    
995     return x >> 24;
996     }
997    
998 root 1.474 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
999     ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1000 root 1.391 {
1001 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1002     unsigned long r;
1003     _BitScanReverse (&r, x);
1004     return (int)r;
1005     #else
1006 root 1.391 int r = 0;
1007    
1008     if (x >> 16) { x >>= 16; r += 16; }
1009     if (x >> 8) { x >>= 8; r += 8; }
1010     if (x >> 4) { x >>= 4; r += 4; }
1011     if (x >> 2) { x >>= 2; r += 2; }
1012     if (x >> 1) { r += 1; }
1013    
1014     return r;
1015 root 1.479 #endif
1016 root 1.391 }
1017    
1018 root 1.474 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1019     ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1020 root 1.391 {
1021 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1022     unsigned long r;
1023     _BitScanReverse64 (&r, x);
1024     return (int)r;
1025     #else
1026 root 1.391 int r = 0;
1027    
1028     if (x >> 32) { x >>= 32; r += 32; }
1029    
1030     return r + ecb_ld32 (x);
1031 root 1.479 #endif
1032 root 1.391 }
1033     #endif
1034    
1035 root 1.474 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1036     ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1037     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1038     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1039 root 1.437
1040 root 1.474 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1041     ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1042 root 1.403 {
1043     return ( (x * 0x0802U & 0x22110U)
1044 root 1.474 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1045 root 1.403 }
1046    
1047 root 1.474 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1048     ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1049 root 1.403 {
1050     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1051     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1052     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1053     x = ( x >> 8 ) | ( x << 8);
1054    
1055     return x;
1056     }
1057    
1058 root 1.474 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1059     ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1060 root 1.403 {
1061     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1062     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1063     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1064     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1065     x = ( x >> 16 ) | ( x << 16);
1066    
1067     return x;
1068     }
1069    
1070 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1071     /* so for this version we are lazy */
1072 root 1.474 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1073     ecb_function_ ecb_const int
1074 root 1.391 ecb_popcount64 (uint64_t x)
1075     {
1076     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1077     }
1078    
1079 root 1.474 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1080     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1081     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1082     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1083     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1084     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1085     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1086     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1087    
1088     ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1089     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1090     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1091     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1092     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1093     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1094     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1095     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1096 root 1.391
1097 root 1.474 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1098 root 1.476 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1099     #define ecb_bswap16(x) __builtin_bswap16 (x)
1100     #else
1101 root 1.391 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1102 root 1.476 #endif
1103 root 1.391 #define ecb_bswap32(x) __builtin_bswap32 (x)
1104     #define ecb_bswap64(x) __builtin_bswap64 (x)
1105 root 1.476 #elif _MSC_VER
1106     #include <stdlib.h>
1107     #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1108     #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1109     #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1110 root 1.391 #else
1111 root 1.474 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1112     ecb_function_ ecb_const uint16_t
1113 root 1.391 ecb_bswap16 (uint16_t x)
1114     {
1115     return ecb_rotl16 (x, 8);
1116     }
1117    
1118 root 1.474 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1119     ecb_function_ ecb_const uint32_t
1120 root 1.391 ecb_bswap32 (uint32_t x)
1121     {
1122     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1123     }
1124    
1125 root 1.474 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1126     ecb_function_ ecb_const uint64_t
1127 root 1.391 ecb_bswap64 (uint64_t x)
1128     {
1129     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1130     }
1131     #endif
1132    
1133 root 1.474 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1134 root 1.391 #define ecb_unreachable() __builtin_unreachable ()
1135     #else
1136     /* this seems to work fine, but gcc always emits a warning for it :/ */
1137 root 1.474 ecb_inline ecb_noreturn void ecb_unreachable (void);
1138     ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1139 root 1.391 #endif
1140    
1141     /* try to tell the compiler that some condition is definitely true */
1142 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1143 root 1.391
1144 root 1.479 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1145     ecb_inline ecb_const uint32_t
1146 root 1.391 ecb_byteorder_helper (void)
1147     {
1148 root 1.450 /* the union code still generates code under pressure in gcc, */
1149     /* but less than using pointers, and always seems to */
1150     /* successfully return a constant. */
1151     /* the reason why we have this horrible preprocessor mess */
1152     /* is to avoid it in all cases, at least on common architectures */
1153     /* or when using a recent enough gcc version (>= 4.6) */
1154 root 1.479 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1155     || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1156     #define ECB_LITTLE_ENDIAN 1
1157     return 0x44332211;
1158     #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1159     || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1160     #define ECB_BIG_ENDIAN 1
1161     return 0x11223344;
1162 root 1.450 #else
1163     union
1164     {
1165 root 1.479 uint8_t c[4];
1166     uint32_t u;
1167     } u = { 0x11, 0x22, 0x33, 0x44 };
1168     return u.u;
1169 root 1.450 #endif
1170 root 1.391 }
1171    
1172 root 1.474 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1173 root 1.479 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1174 root 1.474 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1175 root 1.479 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1176 root 1.391
1177     #if ECB_GCC_VERSION(3,0) || ECB_C99
1178     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1179     #else
1180     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1181     #endif
1182    
1183 root 1.474 #if ECB_CPP
1184 root 1.398 template<typename T>
1185     static inline T ecb_div_rd (T val, T div)
1186     {
1187     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1188     }
1189     template<typename T>
1190     static inline T ecb_div_ru (T val, T div)
1191     {
1192     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1193     }
1194     #else
1195     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1196     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1197     #endif
1198    
1199 root 1.391 #if ecb_cplusplus_does_not_suck
1200     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1201     template<typename T, int N>
1202     static inline int ecb_array_length (const T (&arr)[N])
1203     {
1204     return N;
1205     }
1206     #else
1207     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1208     #endif
1209    
1210 root 1.479 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1211     ecb_function_ ecb_const uint32_t
1212     ecb_binary16_to_binary32 (uint32_t x)
1213     {
1214     unsigned int s = (x & 0x8000) << (31 - 15);
1215     int e = (x >> 10) & 0x001f;
1216     unsigned int m = x & 0x03ff;
1217    
1218     if (ecb_expect_false (e == 31))
1219     /* infinity or NaN */
1220     e = 255 - (127 - 15);
1221     else if (ecb_expect_false (!e))
1222     {
1223     if (ecb_expect_true (!m))
1224     /* zero, handled by code below by forcing e to 0 */
1225     e = 0 - (127 - 15);
1226     else
1227     {
1228     /* subnormal, renormalise */
1229     unsigned int s = 10 - ecb_ld32 (m);
1230    
1231     m = (m << s) & 0x3ff; /* mask implicit bit */
1232     e -= s - 1;
1233     }
1234     }
1235    
1236     /* e and m now are normalised, or zero, (or inf or nan) */
1237     e += 127 - 15;
1238    
1239     return s | (e << 23) | (m << (23 - 10));
1240     }
1241    
1242     ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1243     ecb_function_ ecb_const uint16_t
1244     ecb_binary32_to_binary16 (uint32_t x)
1245     {
1246     unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1247     unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1248     unsigned int m = x & 0x007fffff;
1249    
1250     x &= 0x7fffffff;
1251    
1252     /* if it's within range of binary16 normals, use fast path */
1253     if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1254     {
1255     /* mantissa round-to-even */
1256     m += 0x00000fff + ((m >> (23 - 10)) & 1);
1257    
1258     /* handle overflow */
1259     if (ecb_expect_false (m >= 0x00800000))
1260     {
1261     m >>= 1;
1262     e += 1;
1263     }
1264    
1265     return s | (e << 10) | (m >> (23 - 10));
1266     }
1267    
1268     /* handle large numbers and infinity */
1269     if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1270     return s | 0x7c00;
1271    
1272     /* handle zero, subnormals and small numbers */
1273     if (ecb_expect_true (x < 0x38800000))
1274     {
1275     /* zero */
1276     if (ecb_expect_true (!x))
1277     return s;
1278    
1279     /* handle subnormals */
1280    
1281     /* too small, will be zero */
1282     if (e < (14 - 24)) /* might not be sharp, but is good enough */
1283     return s;
1284    
1285     m |= 0x00800000; /* make implicit bit explicit */
1286    
1287     /* very tricky - we need to round to the nearest e (+10) bit value */
1288     {
1289     unsigned int bits = 14 - e;
1290     unsigned int half = (1 << (bits - 1)) - 1;
1291     unsigned int even = (m >> bits) & 1;
1292    
1293     /* if this overflows, we will end up with a normalised number */
1294     m = (m + half + even) >> bits;
1295     }
1296    
1297     return s | m;
1298     }
1299    
1300     /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1301     m >>= 13;
1302    
1303     return s | 0x7c00 | m | !m;
1304     }
1305    
1306 root 1.450 /*******************************************************************************/
1307     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1308    
1309     /* basically, everything uses "ieee pure-endian" floating point numbers */
1310     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1311     #if 0 \
1312     || __i386 || __i386__ \
1313 sf-exg 1.475 || ECB_GCC_AMD64 \
1314 root 1.450 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1315     || defined __s390__ || defined __s390x__ \
1316     || defined __mips__ \
1317     || defined __alpha__ \
1318     || defined __hppa__ \
1319     || defined __ia64__ \
1320 root 1.457 || defined __m68k__ \
1321     || defined __m88k__ \
1322     || defined __sh__ \
1323 sf-exg 1.475 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1324 root 1.465 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1325 root 1.466 || defined __aarch64__
1326 root 1.450 #define ECB_STDFP 1
1327     #include <string.h> /* for memcpy */
1328     #else
1329     #define ECB_STDFP 0
1330     #endif
1331    
1332     #ifndef ECB_NO_LIBM
1333    
1334 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1335    
1336 root 1.462 /* only the oldest of old doesn't have this one. solaris. */
1337     #ifdef INFINITY
1338     #define ECB_INFINITY INFINITY
1339     #else
1340     #define ECB_INFINITY HUGE_VAL
1341     #endif
1342    
1343     #ifdef NAN
1344 root 1.458 #define ECB_NAN NAN
1345     #else
1346 root 1.462 #define ECB_NAN ECB_INFINITY
1347 root 1.458 #endif
1348    
1349 root 1.474 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1350     #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1351 root 1.476 #define ecb_frexpf(x,e) frexpf ((x), (e))
1352 root 1.474 #else
1353 root 1.476 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1354     #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1355 root 1.474 #endif
1356    
1357 root 1.450 /* convert a float to ieee single/binary32 */
1358 root 1.474 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1359     ecb_function_ ecb_const uint32_t
1360 root 1.450 ecb_float_to_binary32 (float x)
1361     {
1362     uint32_t r;
1363    
1364     #if ECB_STDFP
1365     memcpy (&r, &x, 4);
1366     #else
1367     /* slow emulation, works for anything but -0 */
1368     uint32_t m;
1369     int e;
1370    
1371     if (x == 0e0f ) return 0x00000000U;
1372     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1373     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1374     if (x != x ) return 0x7fbfffffU;
1375    
1376 root 1.476 m = ecb_frexpf (x, &e) * 0x1000000U;
1377 root 1.450
1378     r = m & 0x80000000U;
1379    
1380     if (r)
1381     m = -m;
1382    
1383     if (e <= -126)
1384     {
1385     m &= 0xffffffU;
1386     m >>= (-125 - e);
1387     e = -126;
1388     }
1389    
1390     r |= (e + 126) << 23;
1391     r |= m & 0x7fffffU;
1392     #endif
1393    
1394     return r;
1395     }
1396    
1397     /* converts an ieee single/binary32 to a float */
1398 root 1.474 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1399     ecb_function_ ecb_const float
1400 root 1.450 ecb_binary32_to_float (uint32_t x)
1401     {
1402     float r;
1403    
1404     #if ECB_STDFP
1405     memcpy (&r, &x, 4);
1406     #else
1407     /* emulation, only works for normals and subnormals and +0 */
1408     int neg = x >> 31;
1409     int e = (x >> 23) & 0xffU;
1410    
1411     x &= 0x7fffffU;
1412    
1413     if (e)
1414     x |= 0x800000U;
1415     else
1416     e = 1;
1417    
1418     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1419 root 1.474 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1420 root 1.450
1421     r = neg ? -r : r;
1422     #endif
1423    
1424     return r;
1425     }
1426    
1427     /* convert a double to ieee double/binary64 */
1428 root 1.474 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1429     ecb_function_ ecb_const uint64_t
1430 root 1.450 ecb_double_to_binary64 (double x)
1431     {
1432     uint64_t r;
1433    
1434     #if ECB_STDFP
1435     memcpy (&r, &x, 8);
1436     #else
1437     /* slow emulation, works for anything but -0 */
1438     uint64_t m;
1439     int e;
1440    
1441     if (x == 0e0 ) return 0x0000000000000000U;
1442     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1443     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1444     if (x != x ) return 0X7ff7ffffffffffffU;
1445    
1446     m = frexp (x, &e) * 0x20000000000000U;
1447    
1448     r = m & 0x8000000000000000;;
1449    
1450     if (r)
1451     m = -m;
1452    
1453     if (e <= -1022)
1454     {
1455     m &= 0x1fffffffffffffU;
1456     m >>= (-1021 - e);
1457     e = -1022;
1458     }
1459    
1460     r |= ((uint64_t)(e + 1022)) << 52;
1461     r |= m & 0xfffffffffffffU;
1462     #endif
1463    
1464     return r;
1465     }
1466    
1467     /* converts an ieee double/binary64 to a double */
1468 root 1.474 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1469     ecb_function_ ecb_const double
1470 root 1.450 ecb_binary64_to_double (uint64_t x)
1471     {
1472     double r;
1473    
1474     #if ECB_STDFP
1475     memcpy (&r, &x, 8);
1476     #else
1477     /* emulation, only works for normals and subnormals and +0 */
1478     int neg = x >> 63;
1479     int e = (x >> 52) & 0x7ffU;
1480    
1481     x &= 0xfffffffffffffU;
1482    
1483     if (e)
1484     x |= 0x10000000000000U;
1485     else
1486     e = 1;
1487    
1488     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1489     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1490    
1491     r = neg ? -r : r;
1492     #endif
1493    
1494     return r;
1495     }
1496    
1497 root 1.479 /* convert a float to ieee half/binary16 */
1498     ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1499     ecb_function_ ecb_const uint16_t
1500     ecb_float_to_binary16 (float x)
1501     {
1502     return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1503     }
1504    
1505     /* convert an ieee half/binary16 to float */
1506     ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1507     ecb_function_ ecb_const float
1508     ecb_binary16_to_float (uint16_t x)
1509     {
1510     return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1511     }
1512    
1513 root 1.450 #endif
1514    
1515 root 1.391 #endif
1516    
1517     /* ECB.H END */
1518 root 1.379
1519 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1520 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1521 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1522     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1523 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1524 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1525     * which will then provide the memory fences.
1526     */
1527     # error "memory fences not defined for your architecture, please report"
1528     #endif
1529    
1530     #ifndef ECB_MEMORY_FENCE
1531     # define ECB_MEMORY_FENCE do { } while (0)
1532     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1533     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1534 root 1.392 #endif
1535    
1536 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1537     #define expect_true(cond) ecb_expect_true (cond)
1538     #define noinline ecb_noinline
1539    
1540     #define inline_size ecb_inline
1541 root 1.169
1542 root 1.338 #if EV_FEATURE_CODE
1543 root 1.379 # define inline_speed ecb_inline
1544 root 1.338 #else
1545 root 1.480 # define inline_speed noinline static
1546 root 1.169 #endif
1547 root 1.40
1548 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1549    
1550     #if EV_MINPRI == EV_MAXPRI
1551     # define ABSPRI(w) (((W)w), 0)
1552     #else
1553     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1554     #endif
1555 root 1.42
1556 root 1.490 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1557 root 1.103
1558 root 1.136 typedef ev_watcher *W;
1559     typedef ev_watcher_list *WL;
1560     typedef ev_watcher_time *WT;
1561 root 1.10
1562 root 1.229 #define ev_active(w) ((W)(w))->active
1563 root 1.228 #define ev_at(w) ((WT)(w))->at
1564    
1565 root 1.279 #if EV_USE_REALTIME
1566 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1567 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1568 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1569     #endif
1570    
1571     #if EV_USE_MONOTONIC
1572 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1573 root 1.198 #endif
1574 root 1.54
1575 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1576     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1577     #endif
1578     #ifndef EV_WIN32_HANDLE_TO_FD
1579 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1580 root 1.313 #endif
1581     #ifndef EV_WIN32_CLOSE_FD
1582     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1583     #endif
1584    
1585 root 1.103 #ifdef _WIN32
1586 root 1.98 # include "ev_win32.c"
1587     #endif
1588 root 1.67
1589 root 1.53 /*****************************************************************************/
1590 root 1.1
1591 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1592    
1593     #if EV_USE_FLOOR
1594     # include <math.h>
1595     # define ev_floor(v) floor (v)
1596     #else
1597    
1598     #include <float.h>
1599    
1600     /* a floor() replacement function, should be independent of ev_tstamp type */
1601 root 1.480 noinline
1602     static ev_tstamp
1603 root 1.373 ev_floor (ev_tstamp v)
1604     {
1605     /* the choice of shift factor is not terribly important */
1606     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1607     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1608     #else
1609     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1610     #endif
1611    
1612     /* argument too large for an unsigned long? */
1613     if (expect_false (v >= shift))
1614     {
1615     ev_tstamp f;
1616    
1617     if (v == v - 1.)
1618     return v; /* very large number */
1619    
1620     f = shift * ev_floor (v * (1. / shift));
1621     return f + ev_floor (v - f);
1622     }
1623    
1624     /* special treatment for negative args? */
1625     if (expect_false (v < 0.))
1626     {
1627     ev_tstamp f = -ev_floor (-v);
1628    
1629     return f - (f == v ? 0 : 1);
1630     }
1631    
1632     /* fits into an unsigned long */
1633     return (unsigned long)v;
1634     }
1635    
1636     #endif
1637    
1638     /*****************************************************************************/
1639    
1640 root 1.356 #ifdef __linux
1641     # include <sys/utsname.h>
1642     #endif
1643    
1644 root 1.480 noinline ecb_cold
1645     static unsigned int
1646 root 1.355 ev_linux_version (void)
1647     {
1648     #ifdef __linux
1649 root 1.359 unsigned int v = 0;
1650 root 1.355 struct utsname buf;
1651     int i;
1652     char *p = buf.release;
1653    
1654     if (uname (&buf))
1655     return 0;
1656    
1657     for (i = 3+1; --i; )
1658     {
1659     unsigned int c = 0;
1660    
1661     for (;;)
1662     {
1663     if (*p >= '0' && *p <= '9')
1664     c = c * 10 + *p++ - '0';
1665     else
1666     {
1667     p += *p == '.';
1668     break;
1669     }
1670     }
1671    
1672     v = (v << 8) | c;
1673     }
1674    
1675     return v;
1676     #else
1677     return 0;
1678     #endif
1679     }
1680    
1681     /*****************************************************************************/
1682    
1683 root 1.331 #if EV_AVOID_STDIO
1684 root 1.480 noinline ecb_cold
1685     static void
1686 root 1.331 ev_printerr (const char *msg)
1687     {
1688     write (STDERR_FILENO, msg, strlen (msg));
1689     }
1690     #endif
1691    
1692 root 1.486 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1693 root 1.69
1694 root 1.480 ecb_cold
1695     void
1696 root 1.486 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1697 root 1.69 {
1698     syserr_cb = cb;
1699     }
1700    
1701 root 1.480 noinline ecb_cold
1702     static void
1703 root 1.269 ev_syserr (const char *msg)
1704 root 1.69 {
1705 root 1.70 if (!msg)
1706     msg = "(libev) system error";
1707    
1708 root 1.69 if (syserr_cb)
1709 root 1.70 syserr_cb (msg);
1710 root 1.69 else
1711     {
1712 root 1.330 #if EV_AVOID_STDIO
1713 root 1.331 ev_printerr (msg);
1714     ev_printerr (": ");
1715 root 1.365 ev_printerr (strerror (errno));
1716 root 1.331 ev_printerr ("\n");
1717 root 1.330 #else
1718 root 1.70 perror (msg);
1719 root 1.330 #endif
1720 root 1.69 abort ();
1721     }
1722     }
1723    
1724 root 1.224 static void *
1725 root 1.486 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1726 root 1.224 {
1727     /* some systems, notably openbsd and darwin, fail to properly
1728 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1729 root 1.224 * the single unix specification, so work around them here.
1730 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1731     * despite documenting it otherwise.
1732 root 1.224 */
1733 root 1.333
1734 root 1.224 if (size)
1735     return realloc (ptr, size);
1736    
1737     free (ptr);
1738     return 0;
1739     }
1740    
1741 root 1.486 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1742 root 1.69
1743 root 1.480 ecb_cold
1744     void
1745 root 1.486 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1746 root 1.69 {
1747     alloc = cb;
1748     }
1749    
1750 root 1.150 inline_speed void *
1751 root 1.155 ev_realloc (void *ptr, long size)
1752 root 1.69 {
1753 root 1.224 ptr = alloc (ptr, size);
1754 root 1.69
1755     if (!ptr && size)
1756     {
1757 root 1.330 #if EV_AVOID_STDIO
1758 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1759 root 1.330 #else
1760 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1761 root 1.330 #endif
1762 root 1.69 abort ();
1763     }
1764    
1765     return ptr;
1766     }
1767    
1768     #define ev_malloc(size) ev_realloc (0, (size))
1769     #define ev_free(ptr) ev_realloc ((ptr), 0)
1770    
1771     /*****************************************************************************/
1772    
1773 root 1.298 /* set in reify when reification needed */
1774     #define EV_ANFD_REIFY 1
1775    
1776 root 1.288 /* file descriptor info structure */
1777 root 1.53 typedef struct
1778     {
1779 root 1.68 WL head;
1780 root 1.288 unsigned char events; /* the events watched for */
1781 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1782 root 1.490 unsigned char emask; /* some backends store the actual kernel mask in here */
1783 root 1.269 unsigned char unused;
1784     #if EV_USE_EPOLL
1785 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1786 root 1.269 #endif
1787 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1788 root 1.103 SOCKET handle;
1789     #endif
1790 root 1.357 #if EV_USE_IOCP
1791     OVERLAPPED or, ow;
1792     #endif
1793 root 1.53 } ANFD;
1794 root 1.1
1795 root 1.288 /* stores the pending event set for a given watcher */
1796 root 1.53 typedef struct
1797     {
1798     W w;
1799 root 1.288 int events; /* the pending event set for the given watcher */
1800 root 1.53 } ANPENDING;
1801 root 1.51
1802 root 1.155 #if EV_USE_INOTIFY
1803 root 1.241 /* hash table entry per inotify-id */
1804 root 1.152 typedef struct
1805     {
1806     WL head;
1807 root 1.155 } ANFS;
1808 root 1.152 #endif
1809    
1810 root 1.241 /* Heap Entry */
1811     #if EV_HEAP_CACHE_AT
1812 root 1.288 /* a heap element */
1813 root 1.241 typedef struct {
1814 root 1.243 ev_tstamp at;
1815 root 1.241 WT w;
1816     } ANHE;
1817    
1818 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1819     #define ANHE_at(he) (he).at /* access cached at, read-only */
1820     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1821 root 1.241 #else
1822 root 1.288 /* a heap element */
1823 root 1.241 typedef WT ANHE;
1824    
1825 root 1.248 #define ANHE_w(he) (he)
1826     #define ANHE_at(he) (he)->at
1827     #define ANHE_at_cache(he)
1828 root 1.241 #endif
1829    
1830 root 1.55 #if EV_MULTIPLICITY
1831 root 1.54
1832 root 1.80 struct ev_loop
1833     {
1834 root 1.86 ev_tstamp ev_rt_now;
1835 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1836 root 1.80 #define VAR(name,decl) decl;
1837     #include "ev_vars.h"
1838     #undef VAR
1839     };
1840     #include "ev_wrap.h"
1841    
1842 root 1.116 static struct ev_loop default_loop_struct;
1843 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1844 root 1.54
1845 root 1.53 #else
1846 root 1.54
1847 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1848 root 1.80 #define VAR(name,decl) static decl;
1849     #include "ev_vars.h"
1850     #undef VAR
1851    
1852 root 1.116 static int ev_default_loop_ptr;
1853 root 1.54
1854 root 1.51 #endif
1855 root 1.1
1856 root 1.338 #if EV_FEATURE_API
1857 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1858     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1859 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1860     #else
1861 root 1.298 # define EV_RELEASE_CB (void)0
1862     # define EV_ACQUIRE_CB (void)0
1863 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1864     #endif
1865    
1866 root 1.353 #define EVBREAK_RECURSE 0x80
1867 root 1.298
1868 root 1.8 /*****************************************************************************/
1869    
1870 root 1.292 #ifndef EV_HAVE_EV_TIME
1871 root 1.141 ev_tstamp
1872 root 1.486 ev_time (void) EV_NOEXCEPT
1873 root 1.1 {
1874 root 1.29 #if EV_USE_REALTIME
1875 root 1.279 if (expect_true (have_realtime))
1876     {
1877     struct timespec ts;
1878     clock_gettime (CLOCK_REALTIME, &ts);
1879     return ts.tv_sec + ts.tv_nsec * 1e-9;
1880     }
1881     #endif
1882    
1883 root 1.1 struct timeval tv;
1884     gettimeofday (&tv, 0);
1885     return tv.tv_sec + tv.tv_usec * 1e-6;
1886     }
1887 root 1.292 #endif
1888 root 1.1
1889 root 1.284 inline_size ev_tstamp
1890 root 1.1 get_clock (void)
1891     {
1892 root 1.29 #if EV_USE_MONOTONIC
1893 root 1.40 if (expect_true (have_monotonic))
1894 root 1.1 {
1895     struct timespec ts;
1896     clock_gettime (CLOCK_MONOTONIC, &ts);
1897     return ts.tv_sec + ts.tv_nsec * 1e-9;
1898     }
1899     #endif
1900    
1901     return ev_time ();
1902     }
1903    
1904 root 1.85 #if EV_MULTIPLICITY
1905 root 1.51 ev_tstamp
1906 root 1.486 ev_now (EV_P) EV_NOEXCEPT
1907 root 1.51 {
1908 root 1.85 return ev_rt_now;
1909 root 1.51 }
1910 root 1.85 #endif
1911 root 1.51
1912 root 1.193 void
1913 root 1.486 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1914 root 1.193 {
1915     if (delay > 0.)
1916     {
1917     #if EV_USE_NANOSLEEP
1918     struct timespec ts;
1919    
1920 root 1.348 EV_TS_SET (ts, delay);
1921 root 1.193 nanosleep (&ts, 0);
1922 root 1.416 #elif defined _WIN32
1923 root 1.482 /* maybe this should round up, as ms is very low resolution */
1924     /* compared to select (µs) or nanosleep (ns) */
1925 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1926 root 1.193 #else
1927     struct timeval tv;
1928    
1929 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1930 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1931 root 1.257 /* by older ones */
1932 sf-exg 1.349 EV_TV_SET (tv, delay);
1933 root 1.193 select (0, 0, 0, 0, &tv);
1934     #endif
1935     }
1936     }
1937    
1938     /*****************************************************************************/
1939    
1940 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1941 root 1.232
1942 root 1.288 /* find a suitable new size for the given array, */
1943 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1944 root 1.284 inline_size int
1945 root 1.163 array_nextsize (int elem, int cur, int cnt)
1946     {
1947     int ncur = cur + 1;
1948    
1949     do
1950     ncur <<= 1;
1951     while (cnt > ncur);
1952    
1953 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1954 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1955 root 1.163 {
1956     ncur *= elem;
1957 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1958 root 1.163 ncur = ncur - sizeof (void *) * 4;
1959     ncur /= elem;
1960     }
1961    
1962     return ncur;
1963     }
1964    
1965 root 1.480 noinline ecb_cold
1966     static void *
1967 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1968     {
1969     *cur = array_nextsize (elem, *cur, cnt);
1970     return ev_realloc (base, elem * *cur);
1971     }
1972 root 1.29
1973 root 1.490 #define array_needsize_noinit(base,count)
1974    
1975     #define array_needsize_zerofill(base,count) \
1976 root 1.265 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1977    
1978 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1979 root 1.163 if (expect_false ((cnt) > (cur))) \
1980 root 1.69 { \
1981 root 1.480 ecb_unused int ocur_ = (cur); \
1982 root 1.163 (base) = (type *)array_realloc \
1983     (sizeof (type), (base), &(cur), (cnt)); \
1984     init ((base) + (ocur_), (cur) - ocur_); \
1985 root 1.1 }
1986    
1987 root 1.163 #if 0
1988 root 1.74 #define array_slim(type,stem) \
1989 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1990     { \
1991     stem ## max = array_roundsize (stem ## cnt >> 1); \
1992 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1993 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1994     }
1995 root 1.163 #endif
1996 root 1.67
1997 root 1.65 #define array_free(stem, idx) \
1998 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1999 root 1.65
2000 root 1.8 /*****************************************************************************/
2001    
2002 root 1.288 /* dummy callback for pending events */
2003 root 1.480 noinline
2004     static void
2005 root 1.288 pendingcb (EV_P_ ev_prepare *w, int revents)
2006     {
2007     }
2008    
2009 root 1.480 noinline
2010     void
2011 root 1.486 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2012 root 1.1 {
2013 root 1.78 W w_ = (W)w;
2014 root 1.171 int pri = ABSPRI (w_);
2015 root 1.78
2016 root 1.123 if (expect_false (w_->pending))
2017 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
2018     else
2019 root 1.32 {
2020 root 1.171 w_->pending = ++pendingcnt [pri];
2021 root 1.490 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2022 root 1.171 pendings [pri][w_->pending - 1].w = w_;
2023     pendings [pri][w_->pending - 1].events = revents;
2024 root 1.32 }
2025 root 1.425
2026     pendingpri = NUMPRI - 1;
2027 root 1.1 }
2028    
2029 root 1.284 inline_speed void
2030     feed_reverse (EV_P_ W w)
2031     {
2032 root 1.490 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2033 root 1.284 rfeeds [rfeedcnt++] = w;
2034     }
2035    
2036     inline_size void
2037     feed_reverse_done (EV_P_ int revents)
2038     {
2039     do
2040     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2041     while (rfeedcnt);
2042     }
2043    
2044     inline_speed void
2045 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
2046 root 1.27 {
2047     int i;
2048    
2049     for (i = 0; i < eventcnt; ++i)
2050 root 1.78 ev_feed_event (EV_A_ events [i], type);
2051 root 1.27 }
2052    
2053 root 1.141 /*****************************************************************************/
2054    
2055 root 1.284 inline_speed void
2056 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
2057 root 1.1 {
2058     ANFD *anfd = anfds + fd;
2059 root 1.136 ev_io *w;
2060 root 1.1
2061 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2062 root 1.1 {
2063 root 1.79 int ev = w->events & revents;
2064 root 1.1
2065     if (ev)
2066 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
2067 root 1.1 }
2068     }
2069    
2070 root 1.298 /* do not submit kernel events for fds that have reify set */
2071     /* because that means they changed while we were polling for new events */
2072     inline_speed void
2073     fd_event (EV_P_ int fd, int revents)
2074     {
2075     ANFD *anfd = anfds + fd;
2076    
2077     if (expect_true (!anfd->reify))
2078 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2079 root 1.298 }
2080    
2081 root 1.79 void
2082 root 1.486 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2083 root 1.79 {
2084 root 1.168 if (fd >= 0 && fd < anfdmax)
2085 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2086 root 1.79 }
2087    
2088 root 1.288 /* make sure the external fd watch events are in-sync */
2089     /* with the kernel/libev internal state */
2090 root 1.284 inline_size void
2091 root 1.51 fd_reify (EV_P)
2092 root 1.9 {
2093     int i;
2094    
2095 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2096     for (i = 0; i < fdchangecnt; ++i)
2097     {
2098     int fd = fdchanges [i];
2099     ANFD *anfd = anfds + fd;
2100    
2101 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
2102 root 1.371 {
2103     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2104    
2105     if (handle != anfd->handle)
2106     {
2107     unsigned long arg;
2108    
2109     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2110    
2111     /* handle changed, but fd didn't - we need to do it in two steps */
2112     backend_modify (EV_A_ fd, anfd->events, 0);
2113     anfd->events = 0;
2114     anfd->handle = handle;
2115     }
2116     }
2117     }
2118     #endif
2119    
2120 root 1.27 for (i = 0; i < fdchangecnt; ++i)
2121     {
2122     int fd = fdchanges [i];
2123     ANFD *anfd = anfds + fd;
2124 root 1.136 ev_io *w;
2125 root 1.27
2126 root 1.350 unsigned char o_events = anfd->events;
2127     unsigned char o_reify = anfd->reify;
2128 root 1.27
2129 root 1.350 anfd->reify = 0;
2130 root 1.27
2131 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2132     {
2133     anfd->events = 0;
2134 root 1.184
2135 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2136     anfd->events |= (unsigned char)w->events;
2137 root 1.27
2138 root 1.351 if (o_events != anfd->events)
2139 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
2140     }
2141    
2142     if (o_reify & EV__IOFDSET)
2143     backend_modify (EV_A_ fd, o_events, anfd->events);
2144 root 1.27 }
2145    
2146     fdchangecnt = 0;
2147     }
2148    
2149 root 1.288 /* something about the given fd changed */
2150 root 1.480 inline_size
2151     void
2152 root 1.183 fd_change (EV_P_ int fd, int flags)
2153 root 1.27 {
2154 root 1.183 unsigned char reify = anfds [fd].reify;
2155 root 1.184 anfds [fd].reify |= flags;
2156 root 1.27
2157 root 1.183 if (expect_true (!reify))
2158     {
2159     ++fdchangecnt;
2160 root 1.490 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2161 root 1.183 fdchanges [fdchangecnt - 1] = fd;
2162     }
2163 root 1.9 }
2164    
2165 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2166 root 1.480 inline_speed ecb_cold void
2167 root 1.51 fd_kill (EV_P_ int fd)
2168 root 1.41 {
2169 root 1.136 ev_io *w;
2170 root 1.41
2171 root 1.136 while ((w = (ev_io *)anfds [fd].head))
2172 root 1.41 {
2173 root 1.51 ev_io_stop (EV_A_ w);
2174 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2175 root 1.41 }
2176     }
2177    
2178 root 1.336 /* check whether the given fd is actually valid, for error recovery */
2179 root 1.480 inline_size ecb_cold int
2180 root 1.71 fd_valid (int fd)
2181     {
2182 root 1.103 #ifdef _WIN32
2183 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2184 root 1.71 #else
2185     return fcntl (fd, F_GETFD) != -1;
2186     #endif
2187     }
2188    
2189 root 1.19 /* called on EBADF to verify fds */
2190 root 1.480 noinline ecb_cold
2191     static void
2192 root 1.51 fd_ebadf (EV_P)
2193 root 1.19 {
2194     int fd;
2195    
2196     for (fd = 0; fd < anfdmax; ++fd)
2197 root 1.27 if (anfds [fd].events)
2198 root 1.254 if (!fd_valid (fd) && errno == EBADF)
2199 root 1.51 fd_kill (EV_A_ fd);
2200 root 1.41 }
2201    
2202     /* called on ENOMEM in select/poll to kill some fds and retry */
2203 root 1.480 noinline ecb_cold
2204     static void
2205 root 1.51 fd_enomem (EV_P)
2206 root 1.41 {
2207 root 1.62 int fd;
2208 root 1.41
2209 root 1.62 for (fd = anfdmax; fd--; )
2210 root 1.41 if (anfds [fd].events)
2211     {
2212 root 1.51 fd_kill (EV_A_ fd);
2213 root 1.307 break;
2214 root 1.41 }
2215 root 1.19 }
2216    
2217 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
2218 root 1.480 noinline
2219     static void
2220 root 1.56 fd_rearm_all (EV_P)
2221     {
2222     int fd;
2223    
2224     for (fd = 0; fd < anfdmax; ++fd)
2225     if (anfds [fd].events)
2226     {
2227     anfds [fd].events = 0;
2228 root 1.268 anfds [fd].emask = 0;
2229 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2230 root 1.56 }
2231     }
2232    
2233 root 1.336 /* used to prepare libev internal fd's */
2234     /* this is not fork-safe */
2235     inline_speed void
2236     fd_intern (int fd)
2237     {
2238     #ifdef _WIN32
2239     unsigned long arg = 1;
2240     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2241     #else
2242     fcntl (fd, F_SETFD, FD_CLOEXEC);
2243     fcntl (fd, F_SETFL, O_NONBLOCK);
2244     #endif
2245     }
2246    
2247 root 1.8 /*****************************************************************************/
2248    
2249 root 1.235 /*
2250 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
2251 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2252     * the branching factor of the d-tree.
2253     */
2254    
2255     /*
2256 root 1.235 * at the moment we allow libev the luxury of two heaps,
2257     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2258     * which is more cache-efficient.
2259     * the difference is about 5% with 50000+ watchers.
2260     */
2261 root 1.241 #if EV_USE_4HEAP
2262 root 1.235
2263 root 1.237 #define DHEAP 4
2264     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2265 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2266 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
2267 root 1.235
2268     /* away from the root */
2269 root 1.284 inline_speed void
2270 root 1.241 downheap (ANHE *heap, int N, int k)
2271 root 1.235 {
2272 root 1.241 ANHE he = heap [k];
2273     ANHE *E = heap + N + HEAP0;
2274 root 1.235
2275     for (;;)
2276     {
2277     ev_tstamp minat;
2278 root 1.241 ANHE *minpos;
2279 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2280 root 1.235
2281 root 1.248 /* find minimum child */
2282 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
2283 root 1.235 {
2284 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2285     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2286     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2287     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2288 root 1.235 }
2289 root 1.240 else if (pos < E)
2290 root 1.235 {
2291 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2292     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2293     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2294     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2295 root 1.235 }
2296 root 1.240 else
2297     break;
2298 root 1.235
2299 root 1.241 if (ANHE_at (he) <= minat)
2300 root 1.235 break;
2301    
2302 root 1.247 heap [k] = *minpos;
2303 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2304 root 1.235
2305     k = minpos - heap;
2306     }
2307    
2308 root 1.247 heap [k] = he;
2309 root 1.241 ev_active (ANHE_w (he)) = k;
2310 root 1.235 }
2311    
2312 root 1.248 #else /* 4HEAP */
2313 root 1.235
2314     #define HEAP0 1
2315 root 1.247 #define HPARENT(k) ((k) >> 1)
2316 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2317 root 1.235
2318 root 1.248 /* away from the root */
2319 root 1.284 inline_speed void
2320 root 1.248 downheap (ANHE *heap, int N, int k)
2321 root 1.1 {
2322 root 1.241 ANHE he = heap [k];
2323 root 1.1
2324 root 1.228 for (;;)
2325 root 1.1 {
2326 root 1.248 int c = k << 1;
2327 root 1.179
2328 root 1.309 if (c >= N + HEAP0)
2329 root 1.179 break;
2330    
2331 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2332     ? 1 : 0;
2333    
2334     if (ANHE_at (he) <= ANHE_at (heap [c]))
2335     break;
2336    
2337     heap [k] = heap [c];
2338 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2339 root 1.248
2340     k = c;
2341 root 1.1 }
2342    
2343 root 1.243 heap [k] = he;
2344 root 1.248 ev_active (ANHE_w (he)) = k;
2345 root 1.1 }
2346 root 1.248 #endif
2347 root 1.1
2348 root 1.248 /* towards the root */
2349 root 1.284 inline_speed void
2350 root 1.248 upheap (ANHE *heap, int k)
2351 root 1.1 {
2352 root 1.241 ANHE he = heap [k];
2353 root 1.1
2354 root 1.179 for (;;)
2355 root 1.1 {
2356 root 1.248 int p = HPARENT (k);
2357 root 1.179
2358 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2359 root 1.179 break;
2360 root 1.1
2361 root 1.248 heap [k] = heap [p];
2362 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2363 root 1.248 k = p;
2364 root 1.1 }
2365    
2366 root 1.241 heap [k] = he;
2367     ev_active (ANHE_w (he)) = k;
2368 root 1.1 }
2369    
2370 root 1.288 /* move an element suitably so it is in a correct place */
2371 root 1.284 inline_size void
2372 root 1.241 adjustheap (ANHE *heap, int N, int k)
2373 root 1.84 {
2374 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2375 root 1.247 upheap (heap, k);
2376     else
2377     downheap (heap, N, k);
2378 root 1.84 }
2379    
2380 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2381 root 1.284 inline_size void
2382 root 1.248 reheap (ANHE *heap, int N)
2383     {
2384     int i;
2385 root 1.251
2386 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2387     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2388     for (i = 0; i < N; ++i)
2389     upheap (heap, i + HEAP0);
2390     }
2391    
2392 root 1.8 /*****************************************************************************/
2393    
2394 root 1.288 /* associate signal watchers to a signal signal */
2395 root 1.7 typedef struct
2396     {
2397 root 1.307 EV_ATOMIC_T pending;
2398 root 1.306 #if EV_MULTIPLICITY
2399     EV_P;
2400     #endif
2401 root 1.68 WL head;
2402 root 1.7 } ANSIG;
2403    
2404 root 1.306 static ANSIG signals [EV_NSIG - 1];
2405 root 1.7
2406 root 1.207 /*****************************************************************************/
2407    
2408 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2409 root 1.207
2410 root 1.480 noinline ecb_cold
2411     static void
2412 root 1.207 evpipe_init (EV_P)
2413     {
2414 root 1.288 if (!ev_is_active (&pipe_w))
2415 root 1.207 {
2416 root 1.448 int fds [2];
2417    
2418 root 1.336 # if EV_USE_EVENTFD
2419 root 1.448 fds [0] = -1;
2420     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2421     if (fds [1] < 0 && errno == EINVAL)
2422     fds [1] = eventfd (0, 0);
2423    
2424     if (fds [1] < 0)
2425     # endif
2426     {
2427     while (pipe (fds))
2428     ev_syserr ("(libev) error creating signal/async pipe");
2429    
2430     fd_intern (fds [0]);
2431 root 1.220 }
2432 root 1.448
2433     evpipe [0] = fds [0];
2434    
2435     if (evpipe [1] < 0)
2436     evpipe [1] = fds [1]; /* first call, set write fd */
2437 root 1.220 else
2438     {
2439 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2440     /* so that evpipe_write can always rely on its value. */
2441     /* this branch does not do anything sensible on windows, */
2442     /* so must not be executed on windows */
2443 root 1.207
2444 root 1.448 dup2 (fds [1], evpipe [1]);
2445     close (fds [1]);
2446 root 1.220 }
2447 root 1.207
2448 root 1.455 fd_intern (evpipe [1]);
2449    
2450 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2451 root 1.288 ev_io_start (EV_A_ &pipe_w);
2452 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2453 root 1.207 }
2454     }
2455    
2456 root 1.380 inline_speed void
2457 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2458 root 1.207 {
2459 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2460    
2461 root 1.383 if (expect_true (*flag))
2462 root 1.387 return;
2463 root 1.383
2464     *flag = 1;
2465 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2466 root 1.383
2467     pipe_write_skipped = 1;
2468 root 1.378
2469 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2470 root 1.214
2471 root 1.383 if (pipe_write_wanted)
2472     {
2473     int old_errno;
2474 root 1.378
2475 root 1.436 pipe_write_skipped = 0;
2476     ECB_MEMORY_FENCE_RELEASE;
2477 root 1.220
2478 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2479 root 1.380
2480 root 1.220 #if EV_USE_EVENTFD
2481 root 1.448 if (evpipe [0] < 0)
2482 root 1.383 {
2483     uint64_t counter = 1;
2484 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2485 root 1.383 }
2486     else
2487 root 1.220 #endif
2488 root 1.383 {
2489 root 1.427 #ifdef _WIN32
2490     WSABUF buf;
2491     DWORD sent;
2492 root 1.485 buf.buf = (char *)&buf;
2493 root 1.427 buf.len = 1;
2494     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2495     #else
2496 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2497 root 1.427 #endif
2498 root 1.383 }
2499 root 1.214
2500 root 1.383 errno = old_errno;
2501 root 1.207 }
2502     }
2503    
2504 root 1.288 /* called whenever the libev signal pipe */
2505     /* got some events (signal, async) */
2506 root 1.207 static void
2507     pipecb (EV_P_ ev_io *iow, int revents)
2508     {
2509 root 1.307 int i;
2510    
2511 root 1.378 if (revents & EV_READ)
2512     {
2513 root 1.220 #if EV_USE_EVENTFD
2514 root 1.448 if (evpipe [0] < 0)
2515 root 1.378 {
2516     uint64_t counter;
2517 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2518 root 1.378 }
2519     else
2520 root 1.220 #endif
2521 root 1.378 {
2522 root 1.427 char dummy[4];
2523     #ifdef _WIN32
2524     WSABUF buf;
2525     DWORD recvd;
2526 root 1.432 DWORD flags = 0;
2527 root 1.427 buf.buf = dummy;
2528     buf.len = sizeof (dummy);
2529 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2530 root 1.427 #else
2531     read (evpipe [0], &dummy, sizeof (dummy));
2532     #endif
2533 root 1.378 }
2534 root 1.220 }
2535 root 1.207
2536 root 1.378 pipe_write_skipped = 0;
2537    
2538 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2539    
2540 root 1.369 #if EV_SIGNAL_ENABLE
2541 root 1.307 if (sig_pending)
2542 root 1.372 {
2543 root 1.307 sig_pending = 0;
2544 root 1.207
2545 root 1.436 ECB_MEMORY_FENCE;
2546 root 1.424
2547 root 1.307 for (i = EV_NSIG - 1; i--; )
2548     if (expect_false (signals [i].pending))
2549     ev_feed_signal_event (EV_A_ i + 1);
2550 root 1.207 }
2551 root 1.369 #endif
2552 root 1.207
2553 root 1.209 #if EV_ASYNC_ENABLE
2554 root 1.307 if (async_pending)
2555 root 1.207 {
2556 root 1.307 async_pending = 0;
2557 root 1.207
2558 root 1.436 ECB_MEMORY_FENCE;
2559 root 1.424
2560 root 1.207 for (i = asynccnt; i--; )
2561     if (asyncs [i]->sent)
2562     {
2563     asyncs [i]->sent = 0;
2564 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2565 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2566     }
2567     }
2568 root 1.209 #endif
2569 root 1.207 }
2570    
2571     /*****************************************************************************/
2572    
2573 root 1.366 void
2574 root 1.486 ev_feed_signal (int signum) EV_NOEXCEPT
2575 root 1.7 {
2576 root 1.207 #if EV_MULTIPLICITY
2577 root 1.453 EV_P;
2578 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2579 root 1.453 EV_A = signals [signum - 1].loop;
2580 root 1.366
2581     if (!EV_A)
2582     return;
2583 root 1.207 #endif
2584    
2585 root 1.366 signals [signum - 1].pending = 1;
2586     evpipe_write (EV_A_ &sig_pending);
2587     }
2588    
2589     static void
2590     ev_sighandler (int signum)
2591     {
2592 root 1.322 #ifdef _WIN32
2593 root 1.218 signal (signum, ev_sighandler);
2594 root 1.67 #endif
2595    
2596 root 1.366 ev_feed_signal (signum);
2597 root 1.7 }
2598    
2599 root 1.480 noinline
2600     void
2601 root 1.486 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2602 root 1.79 {
2603 root 1.80 WL w;
2604    
2605 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2606 root 1.307 return;
2607    
2608     --signum;
2609    
2610 root 1.79 #if EV_MULTIPLICITY
2611 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2612     /* or, likely more useful, feeding a signal nobody is waiting for */
2613 root 1.79
2614 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2615 root 1.306 return;
2616 root 1.307 #endif
2617 root 1.306
2618 root 1.307 signals [signum].pending = 0;
2619 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2620 root 1.79
2621     for (w = signals [signum].head; w; w = w->next)
2622     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2623     }
2624    
2625 root 1.303 #if EV_USE_SIGNALFD
2626     static void
2627     sigfdcb (EV_P_ ev_io *iow, int revents)
2628     {
2629 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2630 root 1.303
2631     for (;;)
2632     {
2633     ssize_t res = read (sigfd, si, sizeof (si));
2634    
2635     /* not ISO-C, as res might be -1, but works with SuS */
2636     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2637     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2638    
2639     if (res < (ssize_t)sizeof (si))
2640     break;
2641     }
2642     }
2643     #endif
2644    
2645 root 1.336 #endif
2646    
2647 root 1.8 /*****************************************************************************/
2648    
2649 root 1.336 #if EV_CHILD_ENABLE
2650 root 1.182 static WL childs [EV_PID_HASHSIZE];
2651 root 1.71
2652 root 1.136 static ev_signal childev;
2653 root 1.59
2654 root 1.206 #ifndef WIFCONTINUED
2655     # define WIFCONTINUED(status) 0
2656     #endif
2657    
2658 root 1.288 /* handle a single child status event */
2659 root 1.284 inline_speed void
2660 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2661 root 1.47 {
2662 root 1.136 ev_child *w;
2663 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2664 root 1.47
2665 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2666 root 1.206 {
2667     if ((w->pid == pid || !w->pid)
2668     && (!traced || (w->flags & 1)))
2669     {
2670 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2671 root 1.206 w->rpid = pid;
2672     w->rstatus = status;
2673     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2674     }
2675     }
2676 root 1.47 }
2677    
2678 root 1.142 #ifndef WCONTINUED
2679     # define WCONTINUED 0
2680     #endif
2681    
2682 root 1.288 /* called on sigchld etc., calls waitpid */
2683 root 1.47 static void
2684 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2685 root 1.22 {
2686     int pid, status;
2687    
2688 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2689     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2690     if (!WCONTINUED
2691     || errno != EINVAL
2692     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2693     return;
2694    
2695 root 1.216 /* make sure we are called again until all children have been reaped */
2696 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2697     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2698 root 1.47
2699 root 1.216 child_reap (EV_A_ pid, pid, status);
2700 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2701 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2702 root 1.22 }
2703    
2704 root 1.45 #endif
2705    
2706 root 1.22 /*****************************************************************************/
2707    
2708 root 1.357 #if EV_USE_IOCP
2709     # include "ev_iocp.c"
2710     #endif
2711 root 1.118 #if EV_USE_PORT
2712     # include "ev_port.c"
2713     #endif
2714 root 1.44 #if EV_USE_KQUEUE
2715     # include "ev_kqueue.c"
2716     #endif
2717 root 1.490 #if EV_USE_LINUXAIO
2718     # include "ev_linuxaio.c"
2719     #endif
2720 root 1.29 #if EV_USE_EPOLL
2721 root 1.1 # include "ev_epoll.c"
2722     #endif
2723 root 1.59 #if EV_USE_POLL
2724 root 1.41 # include "ev_poll.c"
2725     #endif
2726 root 1.29 #if EV_USE_SELECT
2727 root 1.1 # include "ev_select.c"
2728     #endif
2729    
2730 root 1.480 ecb_cold int
2731 root 1.486 ev_version_major (void) EV_NOEXCEPT
2732 root 1.24 {
2733     return EV_VERSION_MAJOR;
2734     }
2735    
2736 root 1.480 ecb_cold int
2737 root 1.486 ev_version_minor (void) EV_NOEXCEPT
2738 root 1.24 {
2739     return EV_VERSION_MINOR;
2740     }
2741    
2742 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2743 root 1.480 inline_size ecb_cold int
2744 root 1.51 enable_secure (void)
2745 root 1.41 {
2746 root 1.103 #ifdef _WIN32
2747 root 1.49 return 0;
2748     #else
2749 root 1.41 return getuid () != geteuid ()
2750     || getgid () != getegid ();
2751 root 1.49 #endif
2752 root 1.41 }
2753    
2754 root 1.480 ecb_cold
2755     unsigned int
2756 root 1.486 ev_supported_backends (void) EV_NOEXCEPT
2757 root 1.129 {
2758 root 1.130 unsigned int flags = 0;
2759 root 1.129
2760 root 1.490 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2761     if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2762     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2763     if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2764     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2765     if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2766 root 1.129
2767     return flags;
2768     }
2769    
2770 root 1.480 ecb_cold
2771     unsigned int
2772 root 1.486 ev_recommended_backends (void) EV_NOEXCEPT
2773 root 1.1 {
2774 root 1.131 unsigned int flags = ev_supported_backends ();
2775 root 1.129
2776     #ifndef __NetBSD__
2777     /* kqueue is borked on everything but netbsd apparently */
2778     /* it usually doesn't work correctly on anything but sockets and pipes */
2779     flags &= ~EVBACKEND_KQUEUE;
2780     #endif
2781     #ifdef __APPLE__
2782 root 1.278 /* only select works correctly on that "unix-certified" platform */
2783     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2784     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2785 root 1.129 #endif
2786 root 1.342 #ifdef __FreeBSD__
2787     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2788     #endif
2789 root 1.129
2790     return flags;
2791 root 1.51 }
2792    
2793 root 1.480 ecb_cold
2794     unsigned int
2795 root 1.486 ev_embeddable_backends (void) EV_NOEXCEPT
2796 root 1.134 {
2797 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2798    
2799 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2800 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2801     flags &= ~EVBACKEND_EPOLL;
2802 root 1.196
2803     return flags;
2804 root 1.134 }
2805    
2806     unsigned int
2807 root 1.486 ev_backend (EV_P) EV_NOEXCEPT
2808 root 1.130 {
2809     return backend;
2810     }
2811    
2812 root 1.338 #if EV_FEATURE_API
2813 root 1.162 unsigned int
2814 root 1.486 ev_iteration (EV_P) EV_NOEXCEPT
2815 root 1.162 {
2816     return loop_count;
2817     }
2818    
2819 root 1.294 unsigned int
2820 root 1.486 ev_depth (EV_P) EV_NOEXCEPT
2821 root 1.294 {
2822     return loop_depth;
2823     }
2824    
2825 root 1.193 void
2826 root 1.486 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2827 root 1.193 {
2828     io_blocktime = interval;
2829     }
2830    
2831     void
2832 root 1.486 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2833 root 1.193 {
2834     timeout_blocktime = interval;
2835     }
2836    
2837 root 1.297 void
2838 root 1.486 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2839 root 1.297 {
2840     userdata = data;
2841     }
2842    
2843     void *
2844 root 1.486 ev_userdata (EV_P) EV_NOEXCEPT
2845 root 1.297 {
2846     return userdata;
2847     }
2848    
2849 root 1.379 void
2850 root 1.486 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2851 root 1.297 {
2852     invoke_cb = invoke_pending_cb;
2853     }
2854    
2855 root 1.379 void
2856 root 1.486 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2857 root 1.297 {
2858 root 1.298 release_cb = release;
2859     acquire_cb = acquire;
2860 root 1.297 }
2861     #endif
2862    
2863 root 1.288 /* initialise a loop structure, must be zero-initialised */
2864 root 1.480 noinline ecb_cold
2865     static void
2866 root 1.486 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
2867 root 1.51 {
2868 root 1.130 if (!backend)
2869 root 1.23 {
2870 root 1.366 origflags = flags;
2871    
2872 root 1.279 #if EV_USE_REALTIME
2873     if (!have_realtime)
2874     {
2875     struct timespec ts;
2876    
2877     if (!clock_gettime (CLOCK_REALTIME, &ts))
2878     have_realtime = 1;
2879     }
2880     #endif
2881    
2882 root 1.29 #if EV_USE_MONOTONIC
2883 root 1.279 if (!have_monotonic)
2884     {
2885     struct timespec ts;
2886    
2887     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2888     have_monotonic = 1;
2889     }
2890 root 1.1 #endif
2891    
2892 root 1.306 /* pid check not overridable via env */
2893     #ifndef _WIN32
2894     if (flags & EVFLAG_FORKCHECK)
2895     curpid = getpid ();
2896     #endif
2897    
2898     if (!(flags & EVFLAG_NOENV)
2899     && !enable_secure ()
2900     && getenv ("LIBEV_FLAGS"))
2901     flags = atoi (getenv ("LIBEV_FLAGS"));
2902    
2903 root 1.378 ev_rt_now = ev_time ();
2904     mn_now = get_clock ();
2905     now_floor = mn_now;
2906     rtmn_diff = ev_rt_now - mn_now;
2907 root 1.338 #if EV_FEATURE_API
2908 root 1.378 invoke_cb = ev_invoke_pending;
2909 root 1.297 #endif
2910 root 1.1
2911 root 1.378 io_blocktime = 0.;
2912     timeout_blocktime = 0.;
2913     backend = 0;
2914     backend_fd = -1;
2915     sig_pending = 0;
2916 root 1.307 #if EV_ASYNC_ENABLE
2917 root 1.378 async_pending = 0;
2918 root 1.307 #endif
2919 root 1.378 pipe_write_skipped = 0;
2920     pipe_write_wanted = 0;
2921 root 1.448 evpipe [0] = -1;
2922     evpipe [1] = -1;
2923 root 1.209 #if EV_USE_INOTIFY
2924 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2925 root 1.209 #endif
2926 root 1.303 #if EV_USE_SIGNALFD
2927 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2928 root 1.303 #endif
2929 root 1.193
2930 root 1.366 if (!(flags & EVBACKEND_MASK))
2931 root 1.129 flags |= ev_recommended_backends ();
2932 root 1.41
2933 root 1.357 #if EV_USE_IOCP
2934 root 1.490 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2935 root 1.357 #endif
2936 root 1.118 #if EV_USE_PORT
2937 root 1.490 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2938 root 1.118 #endif
2939 root 1.44 #if EV_USE_KQUEUE
2940 root 1.490 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2941     #endif
2942     #if EV_USE_LINUXAIO
2943     if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
2944 root 1.44 #endif
2945 root 1.29 #if EV_USE_EPOLL
2946 root 1.490 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2947 root 1.41 #endif
2948 root 1.59 #if EV_USE_POLL
2949 root 1.490 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2950 root 1.1 #endif
2951 root 1.29 #if EV_USE_SELECT
2952 root 1.490 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
2953 root 1.1 #endif
2954 root 1.70
2955 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2956    
2957 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2958 root 1.288 ev_init (&pipe_w, pipecb);
2959     ev_set_priority (&pipe_w, EV_MAXPRI);
2960 root 1.336 #endif
2961 root 1.56 }
2962     }
2963    
2964 root 1.288 /* free up a loop structure */
2965 root 1.480 ecb_cold
2966     void
2967 root 1.422 ev_loop_destroy (EV_P)
2968 root 1.56 {
2969 root 1.65 int i;
2970    
2971 root 1.364 #if EV_MULTIPLICITY
2972 root 1.363 /* mimic free (0) */
2973     if (!EV_A)
2974     return;
2975 root 1.364 #endif
2976 root 1.363
2977 root 1.361 #if EV_CLEANUP_ENABLE
2978     /* queue cleanup watchers (and execute them) */
2979     if (expect_false (cleanupcnt))
2980     {
2981     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2982     EV_INVOKE_PENDING;
2983     }
2984     #endif
2985    
2986 root 1.359 #if EV_CHILD_ENABLE
2987 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2988 root 1.359 {
2989     ev_ref (EV_A); /* child watcher */
2990     ev_signal_stop (EV_A_ &childev);
2991     }
2992     #endif
2993    
2994 root 1.288 if (ev_is_active (&pipe_w))
2995 root 1.207 {
2996 root 1.303 /*ev_ref (EV_A);*/
2997     /*ev_io_stop (EV_A_ &pipe_w);*/
2998 root 1.207
2999 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3000     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3001 root 1.207 }
3002    
3003 root 1.303 #if EV_USE_SIGNALFD
3004     if (ev_is_active (&sigfd_w))
3005 root 1.317 close (sigfd);
3006 root 1.303 #endif
3007    
3008 root 1.152 #if EV_USE_INOTIFY
3009     if (fs_fd >= 0)
3010     close (fs_fd);
3011     #endif
3012    
3013     if (backend_fd >= 0)
3014     close (backend_fd);
3015    
3016 root 1.357 #if EV_USE_IOCP
3017 root 1.490 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3018 root 1.357 #endif
3019 root 1.118 #if EV_USE_PORT
3020 root 1.490 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3021 root 1.118 #endif
3022 root 1.56 #if EV_USE_KQUEUE
3023 root 1.490 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3024     #endif
3025     #if EV_USE_LINUXAIO
3026     if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3027 root 1.56 #endif
3028     #if EV_USE_EPOLL
3029 root 1.490 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3030 root 1.56 #endif
3031 root 1.59 #if EV_USE_POLL
3032 root 1.490 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3033 root 1.56 #endif
3034     #if EV_USE_SELECT
3035 root 1.490 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3036 root 1.56 #endif
3037 root 1.1
3038 root 1.65 for (i = NUMPRI; i--; )
3039 root 1.164 {
3040     array_free (pending, [i]);
3041     #if EV_IDLE_ENABLE
3042     array_free (idle, [i]);
3043     #endif
3044     }
3045 root 1.65
3046 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
3047 root 1.186
3048 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
3049 root 1.284 array_free (rfeed, EMPTY);
3050 root 1.164 array_free (fdchange, EMPTY);
3051     array_free (timer, EMPTY);
3052 root 1.140 #if EV_PERIODIC_ENABLE
3053 root 1.164 array_free (periodic, EMPTY);
3054 root 1.93 #endif
3055 root 1.187 #if EV_FORK_ENABLE
3056     array_free (fork, EMPTY);
3057     #endif
3058 root 1.360 #if EV_CLEANUP_ENABLE
3059     array_free (cleanup, EMPTY);
3060     #endif
3061 root 1.164 array_free (prepare, EMPTY);
3062     array_free (check, EMPTY);
3063 root 1.209 #if EV_ASYNC_ENABLE
3064     array_free (async, EMPTY);
3065     #endif
3066 root 1.65
3067 root 1.130 backend = 0;
3068 root 1.359
3069     #if EV_MULTIPLICITY
3070     if (ev_is_default_loop (EV_A))
3071     #endif
3072     ev_default_loop_ptr = 0;
3073     #if EV_MULTIPLICITY
3074     else
3075     ev_free (EV_A);
3076     #endif
3077 root 1.56 }
3078 root 1.22
3079 root 1.226 #if EV_USE_INOTIFY
3080 root 1.284 inline_size void infy_fork (EV_P);
3081 root 1.226 #endif
3082 root 1.154
3083 root 1.284 inline_size void
3084 root 1.56 loop_fork (EV_P)
3085     {
3086 root 1.118 #if EV_USE_PORT
3087 root 1.490 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3088 root 1.56 #endif
3089     #if EV_USE_KQUEUE
3090 root 1.490 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3091     #endif
3092     #if EV_USE_LINUXAIO
3093     if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3094 root 1.45 #endif
3095 root 1.118 #if EV_USE_EPOLL
3096 root 1.490 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3097 root 1.118 #endif
3098 root 1.154 #if EV_USE_INOTIFY
3099     infy_fork (EV_A);
3100     #endif
3101 root 1.70
3102 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3103 root 1.478 if (ev_is_active (&pipe_w) && postfork != 2)
3104 root 1.70 {
3105 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3106 root 1.70
3107     ev_ref (EV_A);
3108 root 1.288 ev_io_stop (EV_A_ &pipe_w);
3109 root 1.220
3110     if (evpipe [0] >= 0)
3111 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
3112 root 1.207
3113     evpipe_init (EV_A);
3114 root 1.443 /* iterate over everything, in case we missed something before */
3115     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3116 root 1.448 }
3117 root 1.337 #endif
3118 root 1.70
3119     postfork = 0;
3120 root 1.1 }
3121    
3122 root 1.55 #if EV_MULTIPLICITY
3123 root 1.250
3124 root 1.480 ecb_cold
3125     struct ev_loop *
3126 root 1.486 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3127 root 1.54 {
3128 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3129 root 1.69
3130 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
3131 root 1.108 loop_init (EV_A_ flags);
3132 root 1.56
3133 root 1.130 if (ev_backend (EV_A))
3134 root 1.306 return EV_A;
3135 root 1.54
3136 root 1.359 ev_free (EV_A);
3137 root 1.55 return 0;
3138 root 1.54 }
3139    
3140 root 1.297 #endif /* multiplicity */
3141 root 1.248
3142     #if EV_VERIFY
3143 root 1.480 noinline ecb_cold
3144     static void
3145 root 1.251 verify_watcher (EV_P_ W w)
3146     {
3147 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3148 root 1.251
3149     if (w->pending)
3150 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3151 root 1.251 }
3152    
3153 root 1.480 noinline ecb_cold
3154     static void
3155 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
3156     {
3157     int i;
3158    
3159     for (i = HEAP0; i < N + HEAP0; ++i)
3160     {
3161 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3162     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3163     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3164 root 1.251
3165     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3166     }
3167     }
3168    
3169 root 1.480 noinline ecb_cold
3170     static void
3171 root 1.251 array_verify (EV_P_ W *ws, int cnt)
3172 root 1.248 {
3173     while (cnt--)
3174 root 1.251 {
3175 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3176 root 1.251 verify_watcher (EV_A_ ws [cnt]);
3177     }
3178 root 1.248 }
3179 root 1.250 #endif
3180 root 1.248
3181 root 1.338 #if EV_FEATURE_API
3182 root 1.379 void ecb_cold
3183 root 1.486 ev_verify (EV_P) EV_NOEXCEPT
3184 root 1.248 {
3185 root 1.250 #if EV_VERIFY
3186 root 1.429 int i;
3187 root 1.426 WL w, w2;
3188 root 1.251
3189     assert (activecnt >= -1);
3190    
3191     assert (fdchangemax >= fdchangecnt);
3192     for (i = 0; i < fdchangecnt; ++i)
3193 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3194 root 1.251
3195     assert (anfdmax >= 0);
3196 root 1.429 for (i = 0; i < anfdmax; ++i)
3197     {
3198     int j = 0;
3199    
3200     for (w = w2 = anfds [i].head; w; w = w->next)
3201     {
3202     verify_watcher (EV_A_ (W)w);
3203 root 1.426
3204 root 1.429 if (j++ & 1)
3205     {
3206     assert (("libev: io watcher list contains a loop", w != w2));
3207     w2 = w2->next;
3208     }
3209 root 1.426
3210 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3211     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3212     }
3213     }
3214 root 1.251
3215     assert (timermax >= timercnt);
3216     verify_heap (EV_A_ timers, timercnt);
3217 root 1.248
3218     #if EV_PERIODIC_ENABLE
3219 root 1.251 assert (periodicmax >= periodiccnt);
3220     verify_heap (EV_A_ periodics, periodiccnt);
3221 root 1.248 #endif
3222    
3223 root 1.251 for (i = NUMPRI; i--; )
3224     {
3225     assert (pendingmax [i] >= pendingcnt [i]);
3226 root 1.248 #if EV_IDLE_ENABLE
3227 root 1.252 assert (idleall >= 0);
3228 root 1.251 assert (idlemax [i] >= idlecnt [i]);
3229     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3230 root 1.248 #endif
3231 root 1.251 }
3232    
3233 root 1.248 #if EV_FORK_ENABLE
3234 root 1.251 assert (forkmax >= forkcnt);
3235     array_verify (EV_A_ (W *)forks, forkcnt);
3236 root 1.248 #endif
3237 root 1.251
3238 root 1.360 #if EV_CLEANUP_ENABLE
3239     assert (cleanupmax >= cleanupcnt);
3240     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3241     #endif
3242    
3243 root 1.250 #if EV_ASYNC_ENABLE
3244 root 1.251 assert (asyncmax >= asynccnt);
3245     array_verify (EV_A_ (W *)asyncs, asynccnt);
3246 root 1.250 #endif
3247 root 1.251
3248 root 1.337 #if EV_PREPARE_ENABLE
3249 root 1.251 assert (preparemax >= preparecnt);
3250     array_verify (EV_A_ (W *)prepares, preparecnt);
3251 root 1.337 #endif
3252 root 1.251
3253 root 1.337 #if EV_CHECK_ENABLE
3254 root 1.251 assert (checkmax >= checkcnt);
3255     array_verify (EV_A_ (W *)checks, checkcnt);
3256 root 1.337 #endif
3257 root 1.251
3258     # if 0
3259 root 1.336 #if EV_CHILD_ENABLE
3260 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3261 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3262 root 1.336 #endif
3263 root 1.251 # endif
3264 root 1.248 #endif
3265     }
3266 root 1.297 #endif
3267 root 1.56
3268     #if EV_MULTIPLICITY
3269 root 1.480 ecb_cold
3270     struct ev_loop *
3271 root 1.54 #else
3272     int
3273 root 1.358 #endif
3274 root 1.486 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3275 root 1.54 {
3276 root 1.116 if (!ev_default_loop_ptr)
3277 root 1.56 {
3278     #if EV_MULTIPLICITY
3279 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
3280 root 1.56 #else
3281 ayin 1.117 ev_default_loop_ptr = 1;
3282 root 1.54 #endif
3283    
3284 root 1.110 loop_init (EV_A_ flags);
3285 root 1.56
3286 root 1.130 if (ev_backend (EV_A))
3287 root 1.56 {
3288 root 1.336 #if EV_CHILD_ENABLE
3289 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
3290     ev_set_priority (&childev, EV_MAXPRI);
3291     ev_signal_start (EV_A_ &childev);
3292     ev_unref (EV_A); /* child watcher should not keep loop alive */
3293     #endif
3294     }
3295     else
3296 root 1.116 ev_default_loop_ptr = 0;
3297 root 1.56 }
3298 root 1.8
3299 root 1.116 return ev_default_loop_ptr;
3300 root 1.1 }
3301    
3302 root 1.24 void
3303 root 1.486 ev_loop_fork (EV_P) EV_NOEXCEPT
3304 root 1.1 {
3305 root 1.440 postfork = 1;
3306 root 1.1 }
3307    
3308 root 1.8 /*****************************************************************************/
3309    
3310 root 1.168 void
3311     ev_invoke (EV_P_ void *w, int revents)
3312     {
3313     EV_CB_INVOKE ((W)w, revents);
3314     }
3315    
3316 root 1.300 unsigned int
3317 root 1.486 ev_pending_count (EV_P) EV_NOEXCEPT
3318 root 1.300 {
3319     int pri;
3320     unsigned int count = 0;
3321    
3322     for (pri = NUMPRI; pri--; )
3323     count += pendingcnt [pri];
3324    
3325     return count;
3326     }
3327    
3328 root 1.480 noinline
3329     void
3330 root 1.296 ev_invoke_pending (EV_P)
3331 root 1.1 {
3332 root 1.445 pendingpri = NUMPRI;
3333    
3334 root 1.484 do
3335 root 1.445 {
3336     --pendingpri;
3337    
3338 root 1.484 /* pendingpri possibly gets modified in the inner loop */
3339 root 1.445 while (pendingcnt [pendingpri])
3340     {
3341     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3342 root 1.1
3343 root 1.445 p->w->pending = 0;
3344     EV_CB_INVOKE (p->w, p->events);
3345     EV_FREQUENT_CHECK;
3346     }
3347     }
3348 root 1.484 while (pendingpri);
3349 root 1.1 }
3350    
3351 root 1.234 #if EV_IDLE_ENABLE
3352 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3353     /* only when higher priorities are idle" logic */
3354 root 1.284 inline_size void
3355 root 1.234 idle_reify (EV_P)
3356     {
3357     if (expect_false (idleall))
3358     {
3359     int pri;
3360    
3361     for (pri = NUMPRI; pri--; )
3362     {
3363     if (pendingcnt [pri])
3364     break;
3365    
3366     if (idlecnt [pri])
3367     {
3368     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3369     break;
3370     }
3371     }
3372     }
3373     }
3374     #endif
3375    
3376 root 1.288 /* make timers pending */
3377 root 1.284 inline_size void
3378 root 1.51 timers_reify (EV_P)
3379 root 1.1 {
3380 root 1.248 EV_FREQUENT_CHECK;
3381    
3382 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3383 root 1.1 {
3384 root 1.284 do
3385     {
3386     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3387 root 1.1
3388 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3389    
3390     /* first reschedule or stop timer */
3391     if (w->repeat)
3392     {
3393     ev_at (w) += w->repeat;
3394     if (ev_at (w) < mn_now)
3395     ev_at (w) = mn_now;
3396 root 1.61
3397 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3398 root 1.90
3399 root 1.284 ANHE_at_cache (timers [HEAP0]);
3400     downheap (timers, timercnt, HEAP0);
3401     }
3402     else
3403     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3404 root 1.243
3405 root 1.284 EV_FREQUENT_CHECK;
3406     feed_reverse (EV_A_ (W)w);
3407 root 1.12 }
3408 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3409 root 1.30
3410 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3411 root 1.12 }
3412     }
3413 root 1.4
3414 root 1.140 #if EV_PERIODIC_ENABLE
3415 root 1.370
3416 root 1.480 noinline
3417     static void
3418 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3419     {
3420 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3421     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3422    
3423     /* the above almost always errs on the low side */
3424     while (at <= ev_rt_now)
3425     {
3426     ev_tstamp nat = at + w->interval;
3427    
3428     /* when resolution fails us, we use ev_rt_now */
3429     if (expect_false (nat == at))
3430     {
3431     at = ev_rt_now;
3432     break;
3433     }
3434    
3435     at = nat;
3436     }
3437    
3438     ev_at (w) = at;
3439 root 1.370 }
3440    
3441 root 1.288 /* make periodics pending */
3442 root 1.284 inline_size void
3443 root 1.51 periodics_reify (EV_P)
3444 root 1.12 {
3445 root 1.248 EV_FREQUENT_CHECK;
3446 root 1.250
3447 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3448 root 1.12 {
3449 root 1.284 do
3450     {
3451     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3452 root 1.1
3453 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3454 root 1.61
3455 root 1.284 /* first reschedule or stop timer */
3456     if (w->reschedule_cb)
3457     {
3458     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3459 root 1.243
3460 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3461 root 1.243
3462 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3463     downheap (periodics, periodiccnt, HEAP0);
3464     }
3465     else if (w->interval)
3466 root 1.246 {
3467 root 1.370 periodic_recalc (EV_A_ w);
3468 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3469     downheap (periodics, periodiccnt, HEAP0);
3470 root 1.246 }
3471 root 1.284 else
3472     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3473 root 1.243
3474 root 1.284 EV_FREQUENT_CHECK;
3475     feed_reverse (EV_A_ (W)w);
3476 root 1.1 }
3477 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3478 root 1.12
3479 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3480 root 1.12 }
3481     }
3482    
3483 root 1.288 /* simply recalculate all periodics */
3484 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3485 root 1.480 noinline ecb_cold
3486     static void
3487 root 1.54 periodics_reschedule (EV_P)
3488 root 1.12 {
3489     int i;
3490    
3491 root 1.13 /* adjust periodics after time jump */
3492 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3493 root 1.12 {
3494 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3495 root 1.12
3496 root 1.77 if (w->reschedule_cb)
3497 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3498 root 1.77 else if (w->interval)
3499 root 1.370 periodic_recalc (EV_A_ w);
3500 root 1.242
3501 root 1.248 ANHE_at_cache (periodics [i]);
3502 root 1.77 }
3503 root 1.12
3504 root 1.248 reheap (periodics, periodiccnt);
3505 root 1.1 }
3506 root 1.93 #endif
3507 root 1.1
3508 root 1.288 /* adjust all timers by a given offset */
3509 root 1.480 noinline ecb_cold
3510     static void
3511 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3512     {
3513     int i;
3514    
3515     for (i = 0; i < timercnt; ++i)
3516     {
3517     ANHE *he = timers + i + HEAP0;
3518     ANHE_w (*he)->at += adjust;
3519     ANHE_at_cache (*he);
3520     }
3521     }
3522    
3523 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3524 root 1.324 /* also detect if there was a timejump, and act accordingly */
3525 root 1.284 inline_speed void
3526 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3527 root 1.4 {
3528 root 1.40 #if EV_USE_MONOTONIC
3529     if (expect_true (have_monotonic))
3530     {
3531 root 1.289 int i;
3532 root 1.178 ev_tstamp odiff = rtmn_diff;
3533    
3534     mn_now = get_clock ();
3535    
3536     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3537     /* interpolate in the meantime */
3538     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3539 root 1.40 {
3540 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3541     return;
3542     }
3543    
3544     now_floor = mn_now;
3545     ev_rt_now = ev_time ();
3546 root 1.4
3547 root 1.178 /* loop a few times, before making important decisions.
3548     * on the choice of "4": one iteration isn't enough,
3549     * in case we get preempted during the calls to
3550     * ev_time and get_clock. a second call is almost guaranteed
3551     * to succeed in that case, though. and looping a few more times
3552     * doesn't hurt either as we only do this on time-jumps or
3553     * in the unlikely event of having been preempted here.
3554     */
3555     for (i = 4; --i; )
3556     {
3557 root 1.373 ev_tstamp diff;
3558 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3559 root 1.4
3560 root 1.373 diff = odiff - rtmn_diff;
3561    
3562     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3563 root 1.178 return; /* all is well */
3564 root 1.4
3565 root 1.178 ev_rt_now = ev_time ();
3566     mn_now = get_clock ();
3567     now_floor = mn_now;
3568     }
3569 root 1.4
3570 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3571     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3572 root 1.140 # if EV_PERIODIC_ENABLE
3573 root 1.178 periodics_reschedule (EV_A);
3574 root 1.93 # endif
3575 root 1.4 }
3576     else
3577 root 1.40 #endif
3578 root 1.4 {
3579 root 1.85 ev_rt_now = ev_time ();
3580 root 1.40
3581 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3582 root 1.13 {
3583 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3584     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3585 root 1.140 #if EV_PERIODIC_ENABLE
3586 root 1.54 periodics_reschedule (EV_A);
3587 root 1.93 #endif
3588 root 1.13 }
3589 root 1.4
3590 root 1.85 mn_now = ev_rt_now;
3591 root 1.4 }
3592     }
3593    
3594 root 1.418 int
3595 root 1.353 ev_run (EV_P_ int flags)
3596 root 1.1 {
3597 root 1.338 #if EV_FEATURE_API
3598 root 1.294 ++loop_depth;
3599 root 1.297 #endif
3600 root 1.294
3601 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3602 root 1.298
3603 root 1.353 loop_done = EVBREAK_CANCEL;
3604 root 1.1
3605 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3606 root 1.158
3607 root 1.161 do
3608 root 1.9 {
3609 root 1.250 #if EV_VERIFY >= 2
3610 root 1.340 ev_verify (EV_A);
3611 root 1.250 #endif
3612    
3613 root 1.158 #ifndef _WIN32
3614     if (expect_false (curpid)) /* penalise the forking check even more */
3615     if (expect_false (getpid () != curpid))
3616     {
3617     curpid = getpid ();
3618     postfork = 1;
3619     }
3620     #endif
3621    
3622 root 1.157 #if EV_FORK_ENABLE
3623     /* we might have forked, so queue fork handlers */
3624     if (expect_false (postfork))
3625     if (forkcnt)
3626     {
3627     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3628 root 1.297 EV_INVOKE_PENDING;
3629 root 1.157 }
3630     #endif
3631 root 1.147
3632 root 1.337 #if EV_PREPARE_ENABLE
3633 root 1.170 /* queue prepare watchers (and execute them) */
3634 root 1.40 if (expect_false (preparecnt))
3635 root 1.20 {
3636 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3637 root 1.297 EV_INVOKE_PENDING;
3638 root 1.20 }
3639 root 1.337 #endif
3640 root 1.9
3641 root 1.298 if (expect_false (loop_done))
3642     break;
3643    
3644 root 1.70 /* we might have forked, so reify kernel state if necessary */
3645     if (expect_false (postfork))
3646     loop_fork (EV_A);
3647    
3648 root 1.1 /* update fd-related kernel structures */
3649 root 1.51 fd_reify (EV_A);
3650 root 1.1
3651     /* calculate blocking time */
3652 root 1.135 {
3653 root 1.193 ev_tstamp waittime = 0.;
3654     ev_tstamp sleeptime = 0.;
3655 root 1.12
3656 root 1.353 /* remember old timestamp for io_blocktime calculation */
3657     ev_tstamp prev_mn_now = mn_now;
3658 root 1.293
3659 root 1.353 /* update time to cancel out callback processing overhead */
3660     time_update (EV_A_ 1e100);
3661 root 1.135
3662 root 1.378 /* from now on, we want a pipe-wake-up */
3663     pipe_write_wanted = 1;
3664    
3665 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3666 root 1.383
3667 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3668 root 1.353 {
3669 root 1.287 waittime = MAX_BLOCKTIME;
3670    
3671 root 1.135 if (timercnt)
3672     {
3673 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3674 root 1.193 if (waittime > to) waittime = to;
3675 root 1.135 }
3676 root 1.4
3677 root 1.140 #if EV_PERIODIC_ENABLE
3678 root 1.135 if (periodiccnt)
3679     {
3680 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3681 root 1.193 if (waittime > to) waittime = to;
3682 root 1.135 }
3683 root 1.93 #endif
3684 root 1.4
3685 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3686 root 1.193 if (expect_false (waittime < timeout_blocktime))
3687     waittime = timeout_blocktime;
3688    
3689 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3690     /* to pass a minimum nonzero value to the backend */
3691     if (expect_false (waittime < backend_mintime))
3692     waittime = backend_mintime;
3693    
3694 root 1.293 /* extra check because io_blocktime is commonly 0 */
3695     if (expect_false (io_blocktime))
3696     {
3697     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3698 root 1.193
3699 root 1.376 if (sleeptime > waittime - backend_mintime)
3700     sleeptime = waittime - backend_mintime;
3701 root 1.193
3702 root 1.293 if (expect_true (sleeptime > 0.))
3703     {
3704     ev_sleep (sleeptime);
3705     waittime -= sleeptime;
3706     }
3707 root 1.193 }
3708 root 1.135 }
3709 root 1.1
3710 root 1.338 #if EV_FEATURE_API
3711 root 1.162 ++loop_count;
3712 root 1.297 #endif
3713 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3714 root 1.193 backend_poll (EV_A_ waittime);
3715 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3716 root 1.178
3717 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3718 root 1.378
3719 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3720 root 1.378 if (pipe_write_skipped)
3721     {
3722     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3723     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3724     }
3725    
3726    
3727 root 1.178 /* update ev_rt_now, do magic */
3728 root 1.193 time_update (EV_A_ waittime + sleeptime);
3729 root 1.135 }
3730 root 1.1
3731 root 1.9 /* queue pending timers and reschedule them */
3732 root 1.51 timers_reify (EV_A); /* relative timers called last */
3733 root 1.140 #if EV_PERIODIC_ENABLE
3734 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3735 root 1.93 #endif
3736 root 1.1
3737 root 1.164 #if EV_IDLE_ENABLE
3738 root 1.137 /* queue idle watchers unless other events are pending */
3739 root 1.164 idle_reify (EV_A);
3740     #endif
3741 root 1.9
3742 root 1.337 #if EV_CHECK_ENABLE
3743 root 1.20 /* queue check watchers, to be executed first */
3744 root 1.123 if (expect_false (checkcnt))
3745 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3746 root 1.337 #endif
3747 root 1.9
3748 root 1.297 EV_INVOKE_PENDING;
3749 root 1.1 }
3750 root 1.219 while (expect_true (
3751     activecnt
3752     && !loop_done
3753 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3754 root 1.219 ));
3755 root 1.13
3756 root 1.353 if (loop_done == EVBREAK_ONE)
3757     loop_done = EVBREAK_CANCEL;
3758 root 1.294
3759 root 1.338 #if EV_FEATURE_API
3760 root 1.294 --loop_depth;
3761 root 1.297 #endif
3762 root 1.418
3763     return activecnt;
3764 root 1.51 }
3765    
3766     void
3767 root 1.486 ev_break (EV_P_ int how) EV_NOEXCEPT
3768 root 1.51 {
3769     loop_done = how;
3770 root 1.1 }
3771    
3772 root 1.285 void
3773 root 1.486 ev_ref (EV_P) EV_NOEXCEPT
3774 root 1.285 {
3775     ++activecnt;
3776     }
3777    
3778     void
3779 root 1.486 ev_unref (EV_P) EV_NOEXCEPT
3780 root 1.285 {
3781     --activecnt;
3782     }
3783    
3784     void
3785 root 1.486 ev_now_update (EV_P) EV_NOEXCEPT
3786 root 1.285 {
3787     time_update (EV_A_ 1e100);
3788     }
3789    
3790     void
3791 root 1.486 ev_suspend (EV_P) EV_NOEXCEPT
3792 root 1.285 {
3793     ev_now_update (EV_A);
3794     }
3795    
3796     void
3797 root 1.486 ev_resume (EV_P) EV_NOEXCEPT
3798 root 1.285 {
3799     ev_tstamp mn_prev = mn_now;
3800    
3801     ev_now_update (EV_A);
3802     timers_reschedule (EV_A_ mn_now - mn_prev);
3803 root 1.286 #if EV_PERIODIC_ENABLE
3804 root 1.288 /* TODO: really do this? */
3805 root 1.285 periodics_reschedule (EV_A);
3806 root 1.286 #endif
3807 root 1.285 }
3808    
3809 root 1.8 /*****************************************************************************/
3810 root 1.288 /* singly-linked list management, used when the expected list length is short */
3811 root 1.8
3812 root 1.284 inline_size void
3813 root 1.10 wlist_add (WL *head, WL elem)
3814 root 1.1 {
3815     elem->next = *head;
3816     *head = elem;
3817     }
3818    
3819 root 1.284 inline_size void
3820 root 1.10 wlist_del (WL *head, WL elem)
3821 root 1.1 {
3822     while (*head)
3823     {
3824 root 1.307 if (expect_true (*head == elem))
3825 root 1.1 {
3826     *head = elem->next;
3827 root 1.307 break;
3828 root 1.1 }
3829    
3830     head = &(*head)->next;
3831     }
3832     }
3833    
3834 root 1.288 /* internal, faster, version of ev_clear_pending */
3835 root 1.284 inline_speed void
3836 root 1.166 clear_pending (EV_P_ W w)
3837 root 1.16 {
3838     if (w->pending)
3839     {
3840 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3841 root 1.16 w->pending = 0;
3842     }
3843     }
3844    
3845 root 1.167 int
3846 root 1.486 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3847 root 1.166 {
3848     W w_ = (W)w;
3849     int pending = w_->pending;
3850    
3851 root 1.172 if (expect_true (pending))
3852     {
3853     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3854 root 1.288 p->w = (W)&pending_w;
3855 root 1.172 w_->pending = 0;
3856     return p->events;
3857     }
3858     else
3859 root 1.167 return 0;
3860 root 1.166 }
3861    
3862 root 1.284 inline_size void
3863 root 1.164 pri_adjust (EV_P_ W w)
3864     {
3865 root 1.295 int pri = ev_priority (w);
3866 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3867     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3868 root 1.295 ev_set_priority (w, pri);
3869 root 1.164 }
3870    
3871 root 1.284 inline_speed void
3872 root 1.51 ev_start (EV_P_ W w, int active)
3873 root 1.1 {
3874 root 1.164 pri_adjust (EV_A_ w);
3875 root 1.1 w->active = active;
3876 root 1.51 ev_ref (EV_A);
3877 root 1.1 }
3878    
3879 root 1.284 inline_size void
3880 root 1.51 ev_stop (EV_P_ W w)
3881 root 1.1 {
3882 root 1.51 ev_unref (EV_A);
3883 root 1.1 w->active = 0;
3884     }
3885    
3886 root 1.8 /*****************************************************************************/
3887    
3888 root 1.480 noinline
3889     void
3890 root 1.486 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
3891 root 1.1 {
3892 root 1.37 int fd = w->fd;
3893    
3894 root 1.123 if (expect_false (ev_is_active (w)))
3895 root 1.1 return;
3896    
3897 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3898 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3899 root 1.33
3900 root 1.248 EV_FREQUENT_CHECK;
3901    
3902 root 1.51 ev_start (EV_A_ (W)w, 1);
3903 root 1.490 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
3904 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3905 root 1.1
3906 root 1.426 /* common bug, apparently */
3907     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3908    
3909 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3910 root 1.281 w->events &= ~EV__IOFDSET;
3911 root 1.248
3912     EV_FREQUENT_CHECK;
3913 root 1.1 }
3914    
3915 root 1.480 noinline
3916     void
3917 root 1.486 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
3918 root 1.1 {
3919 root 1.166 clear_pending (EV_A_ (W)w);
3920 root 1.123 if (expect_false (!ev_is_active (w)))
3921 root 1.1 return;
3922    
3923 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3924 root 1.89
3925 root 1.248 EV_FREQUENT_CHECK;
3926    
3927 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3928 root 1.51 ev_stop (EV_A_ (W)w);
3929 root 1.1
3930 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3931 root 1.248
3932     EV_FREQUENT_CHECK;
3933 root 1.1 }
3934    
3935 root 1.480 noinline
3936     void
3937 root 1.486 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
3938 root 1.1 {
3939 root 1.123 if (expect_false (ev_is_active (w)))
3940 root 1.1 return;
3941    
3942 root 1.228 ev_at (w) += mn_now;
3943 root 1.12
3944 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3945 root 1.13
3946 root 1.248 EV_FREQUENT_CHECK;
3947    
3948     ++timercnt;
3949     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3950 root 1.490 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
3951 root 1.241 ANHE_w (timers [ev_active (w)]) = (WT)w;
3952 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3953 root 1.235 upheap (timers, ev_active (w));
3954 root 1.62
3955 root 1.248 EV_FREQUENT_CHECK;
3956    
3957 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3958 root 1.12 }
3959    
3960 root 1.480 noinline
3961     void
3962 root 1.486 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
3963 root 1.12 {
3964 root 1.166 clear_pending (EV_A_ (W)w);
3965 root 1.123 if (expect_false (!ev_is_active (w)))
3966 root 1.12 return;
3967    
3968 root 1.248 EV_FREQUENT_CHECK;
3969    
3970 root 1.230 {
3971     int active = ev_active (w);
3972 root 1.62
3973 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3974 root 1.151
3975 root 1.248 --timercnt;
3976    
3977     if (expect_true (active < timercnt + HEAP0))
3978 root 1.151 {
3979 root 1.248 timers [active] = timers [timercnt + HEAP0];
3980 root 1.181 adjustheap (timers, timercnt, active);
3981 root 1.151 }
3982 root 1.248 }
3983 root 1.228
3984     ev_at (w) -= mn_now;
3985 root 1.14
3986 root 1.51 ev_stop (EV_A_ (W)w);
3987 root 1.328
3988     EV_FREQUENT_CHECK;
3989 root 1.12 }
3990 root 1.4
3991 root 1.480 noinline
3992     void
3993 root 1.486 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
3994 root 1.14 {
3995 root 1.248 EV_FREQUENT_CHECK;
3996    
3997 root 1.407 clear_pending (EV_A_ (W)w);
3998 root 1.406
3999 root 1.14 if (ev_is_active (w))
4000     {
4001     if (w->repeat)
4002 root 1.99 {
4003 root 1.228 ev_at (w) = mn_now + w->repeat;
4004 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
4005 root 1.230 adjustheap (timers, timercnt, ev_active (w));
4006 root 1.99 }
4007 root 1.14 else
4008 root 1.51 ev_timer_stop (EV_A_ w);
4009 root 1.14 }
4010     else if (w->repeat)
4011 root 1.112 {
4012 root 1.229 ev_at (w) = w->repeat;
4013 root 1.112 ev_timer_start (EV_A_ w);
4014     }
4015 root 1.248
4016     EV_FREQUENT_CHECK;
4017 root 1.14 }
4018    
4019 root 1.301 ev_tstamp
4020 root 1.486 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4021 root 1.301 {
4022     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4023     }
4024    
4025 root 1.140 #if EV_PERIODIC_ENABLE
4026 root 1.480 noinline
4027     void
4028 root 1.486 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4029 root 1.12 {
4030 root 1.123 if (expect_false (ev_is_active (w)))
4031 root 1.12 return;
4032 root 1.1
4033 root 1.77 if (w->reschedule_cb)
4034 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4035 root 1.77 else if (w->interval)
4036     {
4037 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4038 root 1.370 periodic_recalc (EV_A_ w);
4039 root 1.77 }
4040 root 1.173 else
4041 root 1.228 ev_at (w) = w->offset;
4042 root 1.12
4043 root 1.248 EV_FREQUENT_CHECK;
4044    
4045     ++periodiccnt;
4046     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4047 root 1.490 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4048 root 1.241 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4049 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
4050 root 1.235 upheap (periodics, ev_active (w));
4051 root 1.62
4052 root 1.248 EV_FREQUENT_CHECK;
4053    
4054 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4055 root 1.1 }
4056    
4057 root 1.480 noinline
4058     void
4059 root 1.486 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4060 root 1.1 {
4061 root 1.166 clear_pending (EV_A_ (W)w);
4062 root 1.123 if (expect_false (!ev_is_active (w)))
4063 root 1.1 return;
4064    
4065 root 1.248 EV_FREQUENT_CHECK;
4066    
4067 root 1.230 {
4068     int active = ev_active (w);
4069 root 1.62
4070 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4071 root 1.151
4072 root 1.248 --periodiccnt;
4073    
4074     if (expect_true (active < periodiccnt + HEAP0))
4075 root 1.151 {
4076 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
4077 root 1.181 adjustheap (periodics, periodiccnt, active);
4078 root 1.151 }
4079 root 1.248 }
4080 root 1.228
4081 root 1.328 ev_stop (EV_A_ (W)w);
4082    
4083 root 1.248 EV_FREQUENT_CHECK;
4084 root 1.1 }
4085    
4086 root 1.480 noinline
4087     void
4088 root 1.486 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4089 root 1.77 {
4090 root 1.84 /* TODO: use adjustheap and recalculation */
4091 root 1.77 ev_periodic_stop (EV_A_ w);
4092     ev_periodic_start (EV_A_ w);
4093     }
4094 root 1.93 #endif
4095 root 1.77
4096 root 1.56 #ifndef SA_RESTART
4097     # define SA_RESTART 0
4098     #endif
4099    
4100 root 1.336 #if EV_SIGNAL_ENABLE
4101    
4102 root 1.480 noinline
4103     void
4104 root 1.486 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4105 root 1.56 {
4106 root 1.123 if (expect_false (ev_is_active (w)))
4107 root 1.56 return;
4108    
4109 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4110    
4111     #if EV_MULTIPLICITY
4112 root 1.308 assert (("libev: a signal must not be attached to two different loops",
4113 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4114    
4115     signals [w->signum - 1].loop = EV_A;
4116 root 1.449 ECB_MEMORY_FENCE_RELEASE;
4117 root 1.306 #endif
4118 root 1.56
4119 root 1.303 EV_FREQUENT_CHECK;
4120    
4121     #if EV_USE_SIGNALFD
4122     if (sigfd == -2)
4123     {
4124     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4125     if (sigfd < 0 && errno == EINVAL)
4126     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4127    
4128     if (sigfd >= 0)
4129     {
4130     fd_intern (sigfd); /* doing it twice will not hurt */
4131    
4132     sigemptyset (&sigfd_set);
4133    
4134     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4135     ev_set_priority (&sigfd_w, EV_MAXPRI);
4136     ev_io_start (EV_A_ &sigfd_w);
4137     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4138     }
4139     }
4140    
4141     if (sigfd >= 0)
4142     {
4143     /* TODO: check .head */
4144     sigaddset (&sigfd_set, w->signum);
4145     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4146 root 1.207
4147 root 1.303 signalfd (sigfd, &sigfd_set, 0);
4148     }
4149 root 1.180 #endif
4150    
4151 root 1.56 ev_start (EV_A_ (W)w, 1);
4152 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
4153 root 1.56
4154 root 1.63 if (!((WL)w)->next)
4155 root 1.304 # if EV_USE_SIGNALFD
4156 root 1.306 if (sigfd < 0) /*TODO*/
4157 root 1.304 # endif
4158 root 1.306 {
4159 root 1.322 # ifdef _WIN32
4160 root 1.317 evpipe_init (EV_A);
4161    
4162 root 1.306 signal (w->signum, ev_sighandler);
4163     # else
4164     struct sigaction sa;
4165    
4166     evpipe_init (EV_A);
4167    
4168     sa.sa_handler = ev_sighandler;
4169     sigfillset (&sa.sa_mask);
4170     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4171     sigaction (w->signum, &sa, 0);
4172    
4173 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
4174     {
4175     sigemptyset (&sa.sa_mask);
4176     sigaddset (&sa.sa_mask, w->signum);
4177     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4178     }
4179 root 1.67 #endif
4180 root 1.306 }
4181 root 1.248
4182     EV_FREQUENT_CHECK;
4183 root 1.56 }
4184    
4185 root 1.480 noinline
4186     void
4187 root 1.486 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4188 root 1.56 {
4189 root 1.166 clear_pending (EV_A_ (W)w);
4190 root 1.123 if (expect_false (!ev_is_active (w)))
4191 root 1.56 return;
4192    
4193 root 1.248 EV_FREQUENT_CHECK;
4194    
4195 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
4196 root 1.56 ev_stop (EV_A_ (W)w);
4197    
4198     if (!signals [w->signum - 1].head)
4199 root 1.306 {
4200 root 1.307 #if EV_MULTIPLICITY
4201 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
4202 root 1.307 #endif
4203     #if EV_USE_SIGNALFD
4204 root 1.306 if (sigfd >= 0)
4205     {
4206 root 1.321 sigset_t ss;
4207    
4208     sigemptyset (&ss);
4209     sigaddset (&ss, w->signum);
4210 root 1.306 sigdelset (&sigfd_set, w->signum);
4211 root 1.321
4212 root 1.306 signalfd (sigfd, &sigfd_set, 0);
4213 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
4214 root 1.306 }
4215     else
4216 root 1.307 #endif
4217 root 1.306 signal (w->signum, SIG_DFL);
4218     }
4219 root 1.248
4220     EV_FREQUENT_CHECK;
4221 root 1.56 }
4222    
4223 root 1.336 #endif
4224    
4225     #if EV_CHILD_ENABLE
4226    
4227 root 1.28 void
4228 root 1.486 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4229 root 1.22 {
4230 root 1.56 #if EV_MULTIPLICITY
4231 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4232 root 1.56 #endif
4233 root 1.123 if (expect_false (ev_is_active (w)))
4234 root 1.22 return;
4235    
4236 root 1.248 EV_FREQUENT_CHECK;
4237    
4238 root 1.51 ev_start (EV_A_ (W)w, 1);
4239 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4240 root 1.248
4241     EV_FREQUENT_CHECK;
4242 root 1.22 }
4243    
4244 root 1.28 void
4245 root 1.486 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4246 root 1.22 {
4247 root 1.166 clear_pending (EV_A_ (W)w);
4248 root 1.123 if (expect_false (!ev_is_active (w)))
4249 root 1.22 return;
4250    
4251 root 1.248 EV_FREQUENT_CHECK;
4252    
4253 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4254 root 1.51 ev_stop (EV_A_ (W)w);
4255 root 1.248
4256     EV_FREQUENT_CHECK;
4257 root 1.22 }
4258    
4259 root 1.336 #endif
4260    
4261 root 1.140 #if EV_STAT_ENABLE
4262    
4263     # ifdef _WIN32
4264 root 1.146 # undef lstat
4265     # define lstat(a,b) _stati64 (a,b)
4266 root 1.140 # endif
4267    
4268 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
4269     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4270     #define MIN_STAT_INTERVAL 0.1074891
4271 root 1.143
4272 root 1.480 noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4273 root 1.152
4274     #if EV_USE_INOTIFY
4275 root 1.326
4276     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4277     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4278 root 1.152
4279 root 1.480 noinline
4280     static void
4281 root 1.152 infy_add (EV_P_ ev_stat *w)
4282     {
4283 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
4284     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4285     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4286     | IN_DONT_FOLLOW | IN_MASK_ADD);
4287 root 1.152
4288 root 1.318 if (w->wd >= 0)
4289 root 1.152 {
4290 root 1.318 struct statfs sfs;
4291    
4292     /* now local changes will be tracked by inotify, but remote changes won't */
4293     /* unless the filesystem is known to be local, we therefore still poll */
4294     /* also do poll on <2.6.25, but with normal frequency */
4295    
4296     if (!fs_2625)
4297     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4298     else if (!statfs (w->path, &sfs)
4299     && (sfs.f_type == 0x1373 /* devfs */
4300 root 1.451 || sfs.f_type == 0x4006 /* fat */
4301     || sfs.f_type == 0x4d44 /* msdos */
4302 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
4303 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
4304     || sfs.f_type == 0x858458f6 /* ramfs */
4305     || sfs.f_type == 0x5346544e /* ntfs */
4306 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
4307 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
4308 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
4309 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
4310 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
4311     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4312     else
4313     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4314     }
4315     else
4316     {
4317     /* can't use inotify, continue to stat */
4318 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4319 root 1.152
4320 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
4321 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4322 root 1.233 /* but an efficiency issue only */
4323 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4324 root 1.152 {
4325 root 1.153 char path [4096];
4326 root 1.152 strcpy (path, w->path);
4327    
4328     do
4329     {
4330     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4331     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4332    
4333     char *pend = strrchr (path, '/');
4334    
4335 root 1.275 if (!pend || pend == path)
4336     break;
4337 root 1.152
4338     *pend = 0;
4339 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4340 root 1.372 }
4341 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4342     }
4343     }
4344 root 1.275
4345     if (w->wd >= 0)
4346 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4347 root 1.152
4348 root 1.318 /* now re-arm timer, if required */
4349     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4350     ev_timer_again (EV_A_ &w->timer);
4351     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4352 root 1.152 }
4353    
4354 root 1.480 noinline
4355     static void
4356 root 1.152 infy_del (EV_P_ ev_stat *w)
4357     {
4358     int slot;
4359     int wd = w->wd;
4360    
4361     if (wd < 0)
4362     return;
4363    
4364     w->wd = -2;
4365 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4366 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4367    
4368     /* remove this watcher, if others are watching it, they will rearm */
4369     inotify_rm_watch (fs_fd, wd);
4370     }
4371    
4372 root 1.480 noinline
4373     static void
4374 root 1.152 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4375     {
4376     if (slot < 0)
4377 root 1.264 /* overflow, need to check for all hash slots */
4378 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4379 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4380     else
4381     {
4382     WL w_;
4383    
4384 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4385 root 1.152 {
4386     ev_stat *w = (ev_stat *)w_;
4387     w_ = w_->next; /* lets us remove this watcher and all before it */
4388    
4389     if (w->wd == wd || wd == -1)
4390     {
4391     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4392     {
4393 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4394 root 1.152 w->wd = -1;
4395     infy_add (EV_A_ w); /* re-add, no matter what */
4396     }
4397    
4398 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4399 root 1.152 }
4400     }
4401     }
4402     }
4403    
4404     static void
4405     infy_cb (EV_P_ ev_io *w, int revents)
4406     {
4407     char buf [EV_INOTIFY_BUFSIZE];
4408     int ofs;
4409     int len = read (fs_fd, buf, sizeof (buf));
4410    
4411 root 1.326 for (ofs = 0; ofs < len; )
4412     {
4413     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4414     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4415     ofs += sizeof (struct inotify_event) + ev->len;
4416     }
4417 root 1.152 }
4418    
4419 root 1.480 inline_size ecb_cold
4420     void
4421 root 1.330 ev_check_2625 (EV_P)
4422     {
4423     /* kernels < 2.6.25 are borked
4424     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4425     */
4426     if (ev_linux_version () < 0x020619)
4427 root 1.273 return;
4428 root 1.264
4429 root 1.273 fs_2625 = 1;
4430     }
4431 root 1.264
4432 root 1.315 inline_size int
4433     infy_newfd (void)
4434     {
4435 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4436 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4437     if (fd >= 0)
4438     return fd;
4439     #endif
4440     return inotify_init ();
4441     }
4442    
4443 root 1.284 inline_size void
4444 root 1.273 infy_init (EV_P)
4445     {
4446     if (fs_fd != -2)
4447     return;
4448 root 1.264
4449 root 1.273 fs_fd = -1;
4450 root 1.264
4451 root 1.330 ev_check_2625 (EV_A);
4452 root 1.264
4453 root 1.315 fs_fd = infy_newfd ();
4454 root 1.152
4455     if (fs_fd >= 0)
4456     {
4457 root 1.315 fd_intern (fs_fd);
4458 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4459     ev_set_priority (&fs_w, EV_MAXPRI);
4460     ev_io_start (EV_A_ &fs_w);
4461 root 1.317 ev_unref (EV_A);
4462 root 1.152 }
4463     }
4464    
4465 root 1.284 inline_size void
4466 root 1.154 infy_fork (EV_P)
4467     {
4468     int slot;
4469    
4470     if (fs_fd < 0)
4471     return;
4472    
4473 root 1.317 ev_ref (EV_A);
4474 root 1.315 ev_io_stop (EV_A_ &fs_w);
4475 root 1.154 close (fs_fd);
4476 root 1.315 fs_fd = infy_newfd ();
4477    
4478     if (fs_fd >= 0)
4479     {
4480     fd_intern (fs_fd);
4481     ev_io_set (&fs_w, fs_fd, EV_READ);
4482     ev_io_start (EV_A_ &fs_w);
4483 root 1.317 ev_unref (EV_A);
4484 root 1.315 }
4485 root 1.154
4486 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4487 root 1.154 {
4488     WL w_ = fs_hash [slot].head;
4489     fs_hash [slot].head = 0;
4490    
4491     while (w_)
4492     {
4493     ev_stat *w = (ev_stat *)w_;
4494     w_ = w_->next; /* lets us add this watcher */
4495    
4496     w->wd = -1;
4497    
4498     if (fs_fd >= 0)
4499     infy_add (EV_A_ w); /* re-add, no matter what */
4500     else
4501 root 1.318 {
4502     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4503     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4504     ev_timer_again (EV_A_ &w->timer);
4505     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4506     }
4507 root 1.154 }
4508     }
4509     }
4510    
4511 root 1.152 #endif
4512    
4513 root 1.255 #ifdef _WIN32
4514     # define EV_LSTAT(p,b) _stati64 (p, b)
4515     #else
4516     # define EV_LSTAT(p,b) lstat (p, b)
4517     #endif
4518    
4519 root 1.140 void
4520 root 1.486 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4521 root 1.140 {
4522     if (lstat (w->path, &w->attr) < 0)
4523     w->attr.st_nlink = 0;
4524     else if (!w->attr.st_nlink)
4525     w->attr.st_nlink = 1;
4526     }
4527    
4528 root 1.480 noinline
4529     static void
4530 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4531     {
4532     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4533    
4534 root 1.320 ev_statdata prev = w->attr;
4535 root 1.140 ev_stat_stat (EV_A_ w);
4536    
4537 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4538     if (
4539 root 1.320 prev.st_dev != w->attr.st_dev
4540     || prev.st_ino != w->attr.st_ino
4541     || prev.st_mode != w->attr.st_mode
4542     || prev.st_nlink != w->attr.st_nlink
4543     || prev.st_uid != w->attr.st_uid
4544     || prev.st_gid != w->attr.st_gid
4545     || prev.st_rdev != w->attr.st_rdev
4546     || prev.st_size != w->attr.st_size
4547     || prev.st_atime != w->attr.st_atime
4548     || prev.st_mtime != w->attr.st_mtime
4549     || prev.st_ctime != w->attr.st_ctime
4550 root 1.156 ) {
4551 root 1.320 /* we only update w->prev on actual differences */
4552     /* in case we test more often than invoke the callback, */
4553     /* to ensure that prev is always different to attr */
4554     w->prev = prev;
4555    
4556 root 1.152 #if EV_USE_INOTIFY
4557 root 1.264 if (fs_fd >= 0)
4558     {
4559     infy_del (EV_A_ w);
4560     infy_add (EV_A_ w);
4561     ev_stat_stat (EV_A_ w); /* avoid race... */
4562     }
4563 root 1.152 #endif
4564    
4565     ev_feed_event (EV_A_ w, EV_STAT);
4566     }
4567 root 1.140 }
4568    
4569     void
4570 root 1.486 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4571 root 1.140 {
4572     if (expect_false (ev_is_active (w)))
4573     return;
4574    
4575     ev_stat_stat (EV_A_ w);
4576    
4577 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4578     w->interval = MIN_STAT_INTERVAL;
4579 root 1.143
4580 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4581 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4582 root 1.152
4583     #if EV_USE_INOTIFY
4584     infy_init (EV_A);
4585    
4586     if (fs_fd >= 0)
4587     infy_add (EV_A_ w);
4588     else
4589     #endif
4590 root 1.318 {
4591     ev_timer_again (EV_A_ &w->timer);
4592     ev_unref (EV_A);
4593     }
4594 root 1.140
4595     ev_start (EV_A_ (W)w, 1);
4596 root 1.248
4597     EV_FREQUENT_CHECK;
4598 root 1.140 }
4599    
4600     void
4601 root 1.486 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4602 root 1.140 {
4603 root 1.166 clear_pending (EV_A_ (W)w);
4604 root 1.140 if (expect_false (!ev_is_active (w)))
4605     return;
4606    
4607 root 1.248 EV_FREQUENT_CHECK;
4608    
4609 root 1.152 #if EV_USE_INOTIFY
4610     infy_del (EV_A_ w);
4611     #endif
4612 root 1.318
4613     if (ev_is_active (&w->timer))
4614     {
4615     ev_ref (EV_A);
4616     ev_timer_stop (EV_A_ &w->timer);
4617     }
4618 root 1.140
4619 root 1.134 ev_stop (EV_A_ (W)w);
4620 root 1.248
4621     EV_FREQUENT_CHECK;
4622 root 1.134 }
4623     #endif
4624    
4625 root 1.164 #if EV_IDLE_ENABLE
4626 root 1.144 void
4627 root 1.486 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4628 root 1.144 {
4629     if (expect_false (ev_is_active (w)))
4630     return;
4631    
4632 root 1.164 pri_adjust (EV_A_ (W)w);
4633    
4634 root 1.248 EV_FREQUENT_CHECK;
4635    
4636 root 1.164 {
4637     int active = ++idlecnt [ABSPRI (w)];
4638    
4639     ++idleall;
4640     ev_start (EV_A_ (W)w, active);
4641    
4642 root 1.490 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4643 root 1.164 idles [ABSPRI (w)][active - 1] = w;
4644     }
4645 root 1.248
4646     EV_FREQUENT_CHECK;
4647 root 1.144 }
4648    
4649     void
4650 root 1.486 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4651 root 1.144 {
4652 root 1.166 clear_pending (EV_A_ (W)w);
4653 root 1.144 if (expect_false (!ev_is_active (w)))
4654     return;
4655    
4656 root 1.248 EV_FREQUENT_CHECK;
4657    
4658 root 1.144 {
4659 root 1.230 int active = ev_active (w);
4660 root 1.164
4661     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4662 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4663 root 1.164
4664     ev_stop (EV_A_ (W)w);
4665     --idleall;
4666 root 1.144 }
4667 root 1.248
4668     EV_FREQUENT_CHECK;
4669 root 1.144 }
4670 root 1.164 #endif
4671 root 1.144
4672 root 1.337 #if EV_PREPARE_ENABLE
4673 root 1.144 void
4674 root 1.486 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4675 root 1.144 {
4676     if (expect_false (ev_is_active (w)))
4677     return;
4678    
4679 root 1.248 EV_FREQUENT_CHECK;
4680    
4681 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4682 root 1.490 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4683 root 1.144 prepares [preparecnt - 1] = w;
4684 root 1.248
4685     EV_FREQUENT_CHECK;
4686 root 1.144 }
4687    
4688     void
4689 root 1.486 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4690 root 1.144 {
4691 root 1.166 clear_pending (EV_A_ (W)w);
4692 root 1.144 if (expect_false (!ev_is_active (w)))
4693     return;
4694    
4695 root 1.248 EV_FREQUENT_CHECK;
4696    
4697 root 1.144 {
4698 root 1.230 int active = ev_active (w);
4699    
4700 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4701 root 1.230 ev_active (prepares [active - 1]) = active;
4702 root 1.144 }
4703    
4704     ev_stop (EV_A_ (W)w);
4705 root 1.248
4706     EV_FREQUENT_CHECK;
4707 root 1.144 }
4708 root 1.337 #endif
4709 root 1.144
4710 root 1.337 #if EV_CHECK_ENABLE
4711 root 1.144 void
4712 root 1.486 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4713 root 1.144 {
4714     if (expect_false (ev_is_active (w)))
4715     return;
4716    
4717 root 1.248 EV_FREQUENT_CHECK;
4718    
4719 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4720 root 1.490 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4721 root 1.144 checks [checkcnt - 1] = w;
4722 root 1.248
4723     EV_FREQUENT_CHECK;
4724 root 1.144 }
4725    
4726     void
4727 root 1.486 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4728 root 1.144 {
4729 root 1.166 clear_pending (EV_A_ (W)w);
4730 root 1.144 if (expect_false (!ev_is_active (w)))
4731     return;
4732    
4733 root 1.248 EV_FREQUENT_CHECK;
4734    
4735 root 1.144 {
4736 root 1.230 int active = ev_active (w);
4737    
4738 root 1.144 checks [active - 1] = checks [--checkcnt];
4739 root 1.230 ev_active (checks [active - 1]) = active;
4740 root 1.144 }
4741    
4742     ev_stop (EV_A_ (W)w);
4743 root 1.248
4744     EV_FREQUENT_CHECK;
4745 root 1.144 }
4746 root 1.337 #endif
4747 root 1.144
4748     #if EV_EMBED_ENABLE
4749 root 1.480 noinline
4750     void
4751 root 1.486 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4752 root 1.144 {
4753 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4754 root 1.144 }
4755    
4756     static void
4757 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4758 root 1.144 {
4759     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4760    
4761     if (ev_cb (w))
4762     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4763     else
4764 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4765 root 1.144 }
4766    
4767 root 1.189 static void
4768     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4769     {
4770     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4771    
4772 root 1.195 {
4773 root 1.306 EV_P = w->other;
4774 root 1.195
4775     while (fdchangecnt)
4776     {
4777     fd_reify (EV_A);
4778 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4779 root 1.195 }
4780     }
4781     }
4782    
4783 root 1.261 static void
4784     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4785     {
4786     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4787    
4788 root 1.277 ev_embed_stop (EV_A_ w);
4789    
4790 root 1.261 {
4791 root 1.306 EV_P = w->other;
4792 root 1.261
4793     ev_loop_fork (EV_A);
4794 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4795 root 1.261 }
4796 root 1.277
4797     ev_embed_start (EV_A_ w);
4798 root 1.261 }
4799    
4800 root 1.195 #if 0
4801     static void
4802     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4803     {
4804     ev_idle_stop (EV_A_ idle);
4805 root 1.189 }
4806 root 1.195 #endif
4807 root 1.189
4808 root 1.144 void
4809 root 1.486 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4810 root 1.144 {
4811     if (expect_false (ev_is_active (w)))
4812     return;
4813    
4814     {
4815 root 1.306 EV_P = w->other;
4816 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4817 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4818 root 1.144 }
4819    
4820 root 1.248 EV_FREQUENT_CHECK;
4821    
4822 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4823     ev_io_start (EV_A_ &w->io);
4824    
4825 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4826     ev_set_priority (&w->prepare, EV_MINPRI);
4827     ev_prepare_start (EV_A_ &w->prepare);
4828    
4829 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4830     ev_fork_start (EV_A_ &w->fork);
4831    
4832 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4833    
4834 root 1.144 ev_start (EV_A_ (W)w, 1);
4835 root 1.248
4836     EV_FREQUENT_CHECK;
4837 root 1.144 }
4838    
4839     void
4840 root 1.486 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4841 root 1.144 {
4842 root 1.166 clear_pending (EV_A_ (W)w);
4843 root 1.144 if (expect_false (!ev_is_active (w)))
4844     return;
4845    
4846 root 1.248 EV_FREQUENT_CHECK;
4847    
4848 root 1.261 ev_io_stop (EV_A_ &w->io);
4849 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4850 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4851 root 1.248
4852 root 1.328 ev_stop (EV_A_ (W)w);
4853    
4854 root 1.248 EV_FREQUENT_CHECK;
4855 root 1.144 }
4856     #endif
4857    
4858 root 1.147 #if EV_FORK_ENABLE
4859     void
4860 root 1.486 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4861 root 1.147 {
4862     if (expect_false (ev_is_active (w)))
4863     return;
4864    
4865 root 1.248 EV_FREQUENT_CHECK;
4866    
4867 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4868 root 1.490 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
4869 root 1.147 forks [forkcnt - 1] = w;
4870 root 1.248
4871     EV_FREQUENT_CHECK;
4872 root 1.147 }
4873    
4874     void
4875 root 1.486 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4876 root 1.147 {
4877 root 1.166 clear_pending (EV_A_ (W)w);
4878 root 1.147 if (expect_false (!ev_is_active (w)))
4879     return;
4880    
4881 root 1.248 EV_FREQUENT_CHECK;
4882    
4883 root 1.147 {
4884 root 1.230 int active = ev_active (w);
4885    
4886 root 1.147 forks [active - 1] = forks [--forkcnt];
4887 root 1.230 ev_active (forks [active - 1]) = active;
4888 root 1.147 }
4889    
4890     ev_stop (EV_A_ (W)w);
4891 root 1.248
4892     EV_FREQUENT_CHECK;
4893 root 1.147 }
4894     #endif
4895    
4896 root 1.360 #if EV_CLEANUP_ENABLE
4897     void
4898 root 1.486 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4899 root 1.360 {
4900     if (expect_false (ev_is_active (w)))
4901     return;
4902    
4903     EV_FREQUENT_CHECK;
4904    
4905     ev_start (EV_A_ (W)w, ++cleanupcnt);
4906 root 1.490 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4907 root 1.360 cleanups [cleanupcnt - 1] = w;
4908    
4909 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4910     ev_unref (EV_A);
4911 root 1.360 EV_FREQUENT_CHECK;
4912     }
4913    
4914     void
4915 root 1.486 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4916 root 1.360 {
4917     clear_pending (EV_A_ (W)w);
4918     if (expect_false (!ev_is_active (w)))
4919     return;
4920    
4921     EV_FREQUENT_CHECK;
4922 root 1.362 ev_ref (EV_A);
4923 root 1.360
4924     {
4925     int active = ev_active (w);
4926    
4927     cleanups [active - 1] = cleanups [--cleanupcnt];
4928     ev_active (cleanups [active - 1]) = active;
4929     }
4930    
4931     ev_stop (EV_A_ (W)w);
4932    
4933     EV_FREQUENT_CHECK;
4934     }
4935     #endif
4936    
4937 root 1.207 #if EV_ASYNC_ENABLE
4938     void
4939 root 1.486 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4940 root 1.207 {
4941     if (expect_false (ev_is_active (w)))
4942     return;
4943    
4944 root 1.352 w->sent = 0;
4945    
4946 root 1.207 evpipe_init (EV_A);
4947    
4948 root 1.248 EV_FREQUENT_CHECK;
4949    
4950 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4951 root 1.490 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4952 root 1.207 asyncs [asynccnt - 1] = w;
4953 root 1.248
4954     EV_FREQUENT_CHECK;
4955 root 1.207 }
4956    
4957     void
4958 root 1.486 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4959 root 1.207 {
4960     clear_pending (EV_A_ (W)w);
4961     if (expect_false (!ev_is_active (w)))
4962     return;
4963    
4964 root 1.248 EV_FREQUENT_CHECK;
4965    
4966 root 1.207 {
4967 root 1.230 int active = ev_active (w);
4968    
4969 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4970 root 1.230 ev_active (asyncs [active - 1]) = active;
4971 root 1.207 }
4972    
4973     ev_stop (EV_A_ (W)w);
4974 root 1.248
4975     EV_FREQUENT_CHECK;
4976 root 1.207 }
4977    
4978     void
4979 root 1.486 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
4980 root 1.207 {
4981     w->sent = 1;
4982 root 1.307 evpipe_write (EV_A_ &async_pending);
4983 root 1.207 }
4984     #endif
4985    
4986 root 1.1 /*****************************************************************************/
4987 root 1.10
4988 root 1.16 struct ev_once
4989     {
4990 root 1.136 ev_io io;
4991     ev_timer to;
4992 root 1.16 void (*cb)(int revents, void *arg);
4993     void *arg;
4994     };
4995    
4996     static void
4997 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
4998 root 1.16 {
4999     void (*cb)(int revents, void *arg) = once->cb;
5000     void *arg = once->arg;
5001    
5002 root 1.259 ev_io_stop (EV_A_ &once->io);
5003 root 1.51 ev_timer_stop (EV_A_ &once->to);
5004 root 1.69 ev_free (once);
5005 root 1.16
5006     cb (revents, arg);
5007     }
5008    
5009     static void
5010 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
5011 root 1.16 {
5012 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5013    
5014     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5015 root 1.16 }
5016    
5017     static void
5018 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
5019 root 1.16 {
5020 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5021    
5022     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5023 root 1.16 }
5024    
5025     void
5026 root 1.486 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5027 root 1.16 {
5028 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5029 root 1.16
5030 root 1.123 once->cb = cb;
5031     once->arg = arg;
5032 root 1.16
5033 root 1.123 ev_init (&once->io, once_cb_io);
5034     if (fd >= 0)
5035     {
5036     ev_io_set (&once->io, fd, events);
5037     ev_io_start (EV_A_ &once->io);
5038     }
5039 root 1.16
5040 root 1.123 ev_init (&once->to, once_cb_to);
5041     if (timeout >= 0.)
5042     {
5043     ev_timer_set (&once->to, timeout, 0.);
5044     ev_timer_start (EV_A_ &once->to);
5045 root 1.16 }
5046     }
5047    
5048 root 1.282 /*****************************************************************************/
5049    
5050 root 1.288 #if EV_WALK_ENABLE
5051 root 1.480 ecb_cold
5052     void
5053 root 1.486 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5054 root 1.282 {
5055     int i, j;
5056     ev_watcher_list *wl, *wn;
5057    
5058     if (types & (EV_IO | EV_EMBED))
5059     for (i = 0; i < anfdmax; ++i)
5060     for (wl = anfds [i].head; wl; )
5061     {
5062     wn = wl->next;
5063    
5064     #if EV_EMBED_ENABLE
5065     if (ev_cb ((ev_io *)wl) == embed_io_cb)
5066     {
5067     if (types & EV_EMBED)
5068     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5069     }
5070     else
5071     #endif
5072     #if EV_USE_INOTIFY
5073     if (ev_cb ((ev_io *)wl) == infy_cb)
5074     ;
5075     else
5076     #endif
5077 root 1.288 if ((ev_io *)wl != &pipe_w)
5078 root 1.282 if (types & EV_IO)
5079     cb (EV_A_ EV_IO, wl);
5080    
5081     wl = wn;
5082     }
5083    
5084     if (types & (EV_TIMER | EV_STAT))
5085     for (i = timercnt + HEAP0; i-- > HEAP0; )
5086     #if EV_STAT_ENABLE
5087     /*TODO: timer is not always active*/
5088     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5089     {
5090     if (types & EV_STAT)
5091     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5092     }
5093     else
5094     #endif
5095     if (types & EV_TIMER)
5096     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5097    
5098     #if EV_PERIODIC_ENABLE
5099     if (types & EV_PERIODIC)
5100     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5101     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5102     #endif
5103    
5104     #if EV_IDLE_ENABLE
5105     if (types & EV_IDLE)
5106 root 1.390 for (j = NUMPRI; j--; )
5107 root 1.282 for (i = idlecnt [j]; i--; )
5108     cb (EV_A_ EV_IDLE, idles [j][i]);
5109     #endif
5110    
5111     #if EV_FORK_ENABLE
5112     if (types & EV_FORK)
5113     for (i = forkcnt; i--; )
5114     if (ev_cb (forks [i]) != embed_fork_cb)
5115     cb (EV_A_ EV_FORK, forks [i]);
5116     #endif
5117    
5118     #if EV_ASYNC_ENABLE
5119     if (types & EV_ASYNC)
5120     for (i = asynccnt; i--; )
5121     cb (EV_A_ EV_ASYNC, asyncs [i]);
5122     #endif
5123    
5124 root 1.337 #if EV_PREPARE_ENABLE
5125 root 1.282 if (types & EV_PREPARE)
5126     for (i = preparecnt; i--; )
5127 root 1.337 # if EV_EMBED_ENABLE
5128 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
5129 root 1.337 # endif
5130     cb (EV_A_ EV_PREPARE, prepares [i]);
5131 root 1.282 #endif
5132    
5133 root 1.337 #if EV_CHECK_ENABLE
5134 root 1.282 if (types & EV_CHECK)
5135     for (i = checkcnt; i--; )
5136     cb (EV_A_ EV_CHECK, checks [i]);
5137 root 1.337 #endif
5138 root 1.282
5139 root 1.337 #if EV_SIGNAL_ENABLE
5140 root 1.282 if (types & EV_SIGNAL)
5141 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
5142 root 1.282 for (wl = signals [i].head; wl; )
5143     {
5144     wn = wl->next;
5145     cb (EV_A_ EV_SIGNAL, wl);
5146     wl = wn;
5147     }
5148 root 1.337 #endif
5149 root 1.282
5150 root 1.337 #if EV_CHILD_ENABLE
5151 root 1.282 if (types & EV_CHILD)
5152 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
5153 root 1.282 for (wl = childs [i]; wl; )
5154     {
5155     wn = wl->next;
5156     cb (EV_A_ EV_CHILD, wl);
5157     wl = wn;
5158     }
5159 root 1.337 #endif
5160 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
5161     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5162     }
5163     #endif
5164    
5165 root 1.188 #if EV_MULTIPLICITY
5166     #include "ev_wrap.h"
5167     #endif
5168