ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.491
Committed: Thu Jun 20 23:14:53 2019 UTC (4 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.490: +20 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.490 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.469 # if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52 root 1.373 # endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.491 # if HAVE_LINUX_AIO_ABI_H
121     # ifndef EV_USE_LINUXAIO
122     # define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123     # endif
124     # else
125     # undef EV_USE_LINUXAIO
126     # define EV_USE_LINUXAIO 0
127     # endif
128    
129 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130     # ifndef EV_USE_KQUEUE
131 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_KQUEUE
135     # define EV_USE_KQUEUE 0
136 root 1.60 # endif
137 root 1.127
138 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
139     # ifndef EV_USE_PORT
140 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
141 root 1.127 # endif
142 root 1.343 # else
143     # undef EV_USE_PORT
144     # define EV_USE_PORT 0
145 root 1.118 # endif
146    
147 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148     # ifndef EV_USE_INOTIFY
149 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
150 root 1.152 # endif
151 root 1.343 # else
152     # undef EV_USE_INOTIFY
153     # define EV_USE_INOTIFY 0
154 root 1.152 # endif
155    
156 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157     # ifndef EV_USE_SIGNALFD
158 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
159 root 1.303 # endif
160 root 1.343 # else
161     # undef EV_USE_SIGNALFD
162     # define EV_USE_SIGNALFD 0
163 root 1.303 # endif
164    
165 root 1.343 # if HAVE_EVENTFD
166     # ifndef EV_USE_EVENTFD
167 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
168 root 1.220 # endif
169 root 1.343 # else
170     # undef EV_USE_EVENTFD
171     # define EV_USE_EVENTFD 0
172 root 1.220 # endif
173 root 1.250
174 root 1.29 #endif
175 root 1.17
176 root 1.483 /* OS X, in its infinite idiocy, actually HARDCODES
177     * a limit of 1024 into their select. Where people have brains,
178     * OS X engineers apparently have a vacuum. Or maybe they were
179     * ordered to have a vacuum, or they do anything for money.
180     * This might help. Or not.
181     * Note that this must be defined early, as other include files
182     * will rely on this define as well.
183     */
184     #define _DARWIN_UNLIMITED_SELECT 1
185    
186 root 1.1 #include <stdlib.h>
187 root 1.319 #include <string.h>
188 root 1.7 #include <fcntl.h>
189 root 1.16 #include <stddef.h>
190 root 1.1
191     #include <stdio.h>
192    
193 root 1.4 #include <assert.h>
194 root 1.1 #include <errno.h>
195 root 1.22 #include <sys/types.h>
196 root 1.71 #include <time.h>
197 root 1.326 #include <limits.h>
198 root 1.71
199 root 1.72 #include <signal.h>
200 root 1.71
201 root 1.152 #ifdef EV_H
202     # include EV_H
203     #else
204     # include "ev.h"
205     #endif
206    
207 root 1.410 #if EV_NO_THREADS
208     # undef EV_NO_SMP
209     # define EV_NO_SMP 1
210     # undef ECB_NO_THREADS
211     # define ECB_NO_THREADS 1
212     #endif
213     #if EV_NO_SMP
214     # undef EV_NO_SMP
215     # define ECB_NO_SMP 1
216     #endif
217    
218 root 1.103 #ifndef _WIN32
219 root 1.71 # include <sys/time.h>
220 root 1.45 # include <sys/wait.h>
221 root 1.140 # include <unistd.h>
222 root 1.103 #else
223 root 1.256 # include <io.h>
224 root 1.103 # define WIN32_LEAN_AND_MEAN
225 root 1.431 # include <winsock2.h>
226 root 1.103 # include <windows.h>
227     # ifndef EV_SELECT_IS_WINSOCKET
228     # define EV_SELECT_IS_WINSOCKET 1
229     # endif
230 root 1.331 # undef EV_AVOID_STDIO
231 root 1.45 #endif
232 root 1.103
233 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
234 root 1.40
235 root 1.305 /* try to deduce the maximum number of signals on this platform */
236 root 1.416 #if defined EV_NSIG
237 root 1.305 /* use what's provided */
238 root 1.416 #elif defined NSIG
239 root 1.305 # define EV_NSIG (NSIG)
240 root 1.416 #elif defined _NSIG
241 root 1.305 # define EV_NSIG (_NSIG)
242 root 1.416 #elif defined SIGMAX
243 root 1.305 # define EV_NSIG (SIGMAX+1)
244 root 1.416 #elif defined SIG_MAX
245 root 1.305 # define EV_NSIG (SIG_MAX+1)
246 root 1.416 #elif defined _SIG_MAX
247 root 1.305 # define EV_NSIG (_SIG_MAX+1)
248 root 1.416 #elif defined MAXSIG
249 root 1.305 # define EV_NSIG (MAXSIG+1)
250 root 1.416 #elif defined MAX_SIG
251 root 1.305 # define EV_NSIG (MAX_SIG+1)
252 root 1.416 #elif defined SIGARRAYSIZE
253 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254 root 1.416 #elif defined _sys_nsig
255 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256     #else
257 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
258 root 1.305 #endif
259    
260 root 1.373 #ifndef EV_USE_FLOOR
261     # define EV_USE_FLOOR 0
262     #endif
263    
264 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
265 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267 root 1.274 # else
268     # define EV_USE_CLOCK_SYSCALL 0
269     # endif
270     #endif
271    
272 root 1.470 #if !(_POSIX_TIMERS > 0)
273     # ifndef EV_USE_MONOTONIC
274     # define EV_USE_MONOTONIC 0
275     # endif
276     # ifndef EV_USE_REALTIME
277     # define EV_USE_REALTIME 0
278     # endif
279     #endif
280    
281 root 1.29 #ifndef EV_USE_MONOTONIC
282 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
284 root 1.253 # else
285     # define EV_USE_MONOTONIC 0
286     # endif
287 root 1.37 #endif
288    
289 root 1.118 #ifndef EV_USE_REALTIME
290 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291 root 1.118 #endif
292    
293 root 1.193 #ifndef EV_USE_NANOSLEEP
294 root 1.253 # if _POSIX_C_SOURCE >= 199309L
295 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
296 root 1.253 # else
297     # define EV_USE_NANOSLEEP 0
298     # endif
299 root 1.193 #endif
300    
301 root 1.29 #ifndef EV_USE_SELECT
302 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
303 root 1.10 #endif
304    
305 root 1.59 #ifndef EV_USE_POLL
306 root 1.104 # ifdef _WIN32
307     # define EV_USE_POLL 0
308     # else
309 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
310 root 1.104 # endif
311 root 1.41 #endif
312    
313 root 1.29 #ifndef EV_USE_EPOLL
314 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
316 root 1.220 # else
317     # define EV_USE_EPOLL 0
318     # endif
319 root 1.10 #endif
320    
321 root 1.44 #ifndef EV_USE_KQUEUE
322     # define EV_USE_KQUEUE 0
323     #endif
324    
325 root 1.118 #ifndef EV_USE_PORT
326     # define EV_USE_PORT 0
327 root 1.40 #endif
328    
329 root 1.490 #ifndef EV_USE_LINUXAIO
330     # define EV_USE_LINUXAIO 0
331     #endif
332    
333 root 1.152 #ifndef EV_USE_INOTIFY
334 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
335 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
336 root 1.220 # else
337     # define EV_USE_INOTIFY 0
338     # endif
339 root 1.152 #endif
340    
341 root 1.149 #ifndef EV_PID_HASHSIZE
342 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
343 root 1.149 #endif
344    
345 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
346 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
347 root 1.152 #endif
348    
349 root 1.220 #ifndef EV_USE_EVENTFD
350     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
351 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
352 root 1.220 # else
353     # define EV_USE_EVENTFD 0
354     # endif
355     #endif
356    
357 root 1.303 #ifndef EV_USE_SIGNALFD
358 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
359 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
360 root 1.303 # else
361     # define EV_USE_SIGNALFD 0
362     # endif
363     #endif
364    
365 root 1.249 #if 0 /* debugging */
366 root 1.250 # define EV_VERIFY 3
367 root 1.249 # define EV_USE_4HEAP 1
368     # define EV_HEAP_CACHE_AT 1
369     #endif
370    
371 root 1.250 #ifndef EV_VERIFY
372 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
373 root 1.250 #endif
374    
375 root 1.243 #ifndef EV_USE_4HEAP
376 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
377 root 1.243 #endif
378    
379     #ifndef EV_HEAP_CACHE_AT
380 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
381 root 1.243 #endif
382    
383 root 1.481 #ifdef __ANDROID__
384 root 1.452 /* supposedly, android doesn't typedef fd_mask */
385     # undef EV_USE_SELECT
386     # define EV_USE_SELECT 0
387     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
388     # undef EV_USE_CLOCK_SYSCALL
389     # define EV_USE_CLOCK_SYSCALL 0
390     #endif
391    
392     /* aix's poll.h seems to cause lots of trouble */
393     #ifdef _AIX
394     /* AIX has a completely broken poll.h header */
395     # undef EV_USE_POLL
396     # define EV_USE_POLL 0
397     #endif
398    
399 root 1.490 #if EV_USE_LINUXAIO
400     # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
401     #endif
402    
403 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404     /* which makes programs even slower. might work on other unices, too. */
405     #if EV_USE_CLOCK_SYSCALL
406 root 1.423 # include <sys/syscall.h>
407 root 1.291 # ifdef SYS_clock_gettime
408     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409     # undef EV_USE_MONOTONIC
410     # define EV_USE_MONOTONIC 1
411     # else
412     # undef EV_USE_CLOCK_SYSCALL
413     # define EV_USE_CLOCK_SYSCALL 0
414     # endif
415     #endif
416    
417 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
418 root 1.40
419     #ifndef CLOCK_MONOTONIC
420     # undef EV_USE_MONOTONIC
421     # define EV_USE_MONOTONIC 0
422     #endif
423    
424 root 1.31 #ifndef CLOCK_REALTIME
425 root 1.40 # undef EV_USE_REALTIME
426 root 1.31 # define EV_USE_REALTIME 0
427     #endif
428 root 1.40
429 root 1.152 #if !EV_STAT_ENABLE
430 root 1.185 # undef EV_USE_INOTIFY
431 root 1.152 # define EV_USE_INOTIFY 0
432     #endif
433    
434 root 1.193 #if !EV_USE_NANOSLEEP
435 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
436 root 1.416 # if !defined _WIN32 && !defined __hpux
437 root 1.193 # include <sys/select.h>
438     # endif
439     #endif
440    
441 root 1.491 #if EV_USE_LINUXAIO
442     # include <sys/syscall.h>
443     # if !SYS_io_getevents
444     # undef EV_USE_LINUXAIO
445     # define EV_USE_LINUXAIO 0
446     # endif
447     #endif
448    
449 root 1.152 #if EV_USE_INOTIFY
450 root 1.273 # include <sys/statfs.h>
451 root 1.152 # include <sys/inotify.h>
452 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
453     # ifndef IN_DONT_FOLLOW
454     # undef EV_USE_INOTIFY
455     # define EV_USE_INOTIFY 0
456     # endif
457 root 1.152 #endif
458    
459 root 1.220 #if EV_USE_EVENTFD
460     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
461 root 1.221 # include <stdint.h>
462 root 1.303 # ifndef EFD_NONBLOCK
463     # define EFD_NONBLOCK O_NONBLOCK
464     # endif
465     # ifndef EFD_CLOEXEC
466 root 1.311 # ifdef O_CLOEXEC
467     # define EFD_CLOEXEC O_CLOEXEC
468     # else
469     # define EFD_CLOEXEC 02000000
470     # endif
471 root 1.303 # endif
472 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473 root 1.220 #endif
474    
475 root 1.303 #if EV_USE_SIGNALFD
476 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477     # include <stdint.h>
478     # ifndef SFD_NONBLOCK
479     # define SFD_NONBLOCK O_NONBLOCK
480     # endif
481     # ifndef SFD_CLOEXEC
482     # ifdef O_CLOEXEC
483     # define SFD_CLOEXEC O_CLOEXEC
484     # else
485     # define SFD_CLOEXEC 02000000
486     # endif
487     # endif
488 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489 root 1.314
490     struct signalfd_siginfo
491     {
492     uint32_t ssi_signo;
493     char pad[128 - sizeof (uint32_t)];
494     };
495 root 1.303 #endif
496    
497 root 1.40 /**/
498 root 1.1
499 root 1.250 #if EV_VERIFY >= 3
500 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
501 root 1.248 #else
502     # define EV_FREQUENT_CHECK do { } while (0)
503     #endif
504    
505 root 1.176 /*
506 root 1.373 * This is used to work around floating point rounding problems.
507 root 1.177 * This value is good at least till the year 4000.
508 root 1.176 */
509 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
511 root 1.176
512 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
513 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
514 root 1.1
515 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
517 root 1.347
518 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
519     /* ECB.H BEGIN */
520     /*
521     * libecb - http://software.schmorp.de/pkg/libecb
522     *
523 root 1.474 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
525     * All rights reserved.
526     *
527     * Redistribution and use in source and binary forms, with or without modifica-
528     * tion, are permitted provided that the following conditions are met:
529     *
530     * 1. Redistributions of source code must retain the above copyright notice,
531     * this list of conditions and the following disclaimer.
532     *
533     * 2. Redistributions in binary form must reproduce the above copyright
534     * notice, this list of conditions and the following disclaimer in the
535     * documentation and/or other materials provided with the distribution.
536     *
537     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546     * OF THE POSSIBILITY OF SUCH DAMAGE.
547 root 1.467 *
548     * Alternatively, the contents of this file may be used under the terms of
549     * the GNU General Public License ("GPL") version 2 or any later version,
550     * in which case the provisions of the GPL are applicable instead of
551     * the above. If you wish to allow the use of your version of this file
552     * only under the terms of the GPL and not to allow others to use your
553     * version of this file under the BSD license, indicate your decision
554     * by deleting the provisions above and replace them with the notice
555     * and other provisions required by the GPL. If you do not delete the
556     * provisions above, a recipient may use your version of this file under
557     * either the BSD or the GPL.
558 root 1.391 */
559    
560     #ifndef ECB_H
561     #define ECB_H
562    
563 root 1.437 /* 16 bits major, 16 bits minor */
564 root 1.479 #define ECB_VERSION 0x00010005
565 root 1.437
566 root 1.391 #ifdef _WIN32
567     typedef signed char int8_t;
568     typedef unsigned char uint8_t;
569     typedef signed short int16_t;
570     typedef unsigned short uint16_t;
571     typedef signed int int32_t;
572     typedef unsigned int uint32_t;
573     #if __GNUC__
574     typedef signed long long int64_t;
575     typedef unsigned long long uint64_t;
576     #else /* _MSC_VER || __BORLANDC__ */
577     typedef signed __int64 int64_t;
578     typedef unsigned __int64 uint64_t;
579     #endif
580 root 1.437 #ifdef _WIN64
581     #define ECB_PTRSIZE 8
582     typedef uint64_t uintptr_t;
583     typedef int64_t intptr_t;
584     #else
585     #define ECB_PTRSIZE 4
586     typedef uint32_t uintptr_t;
587     typedef int32_t intptr_t;
588     #endif
589 root 1.391 #else
590     #include <inttypes.h>
591 root 1.479 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
592 root 1.437 #define ECB_PTRSIZE 8
593     #else
594     #define ECB_PTRSIZE 4
595     #endif
596 root 1.391 #endif
597 root 1.379
598 sf-exg 1.475 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
599     #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
600    
601 root 1.454 /* work around x32 idiocy by defining proper macros */
602 sf-exg 1.475 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
603 root 1.458 #if _ILP32
604 root 1.454 #define ECB_AMD64_X32 1
605     #else
606     #define ECB_AMD64 1
607     #endif
608     #endif
609    
610 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
611     * what their idiot authors think are the "more important" extensions,
612 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
613 root 1.379 * or so.
614     * we try to detect these and simply assume they are not gcc - if they have
615     * an issue with that they should have done it right in the first place.
616     */
617 root 1.474 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618     #define ECB_GCC_VERSION(major,minor) 0
619     #else
620     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621     #endif
622    
623     #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
624    
625     #if __clang__ && defined __has_builtin
626     #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
627     #else
628     #define ECB_CLANG_BUILTIN(x) 0
629     #endif
630    
631     #if __clang__ && defined __has_extension
632     #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633     #else
634     #define ECB_CLANG_EXTENSION(x) 0
635 root 1.379 #endif
636    
637 root 1.437 #define ECB_CPP (__cplusplus+0)
638     #define ECB_CPP11 (__cplusplus >= 201103L)
639 root 1.488 #define ECB_CPP14 (__cplusplus >= 201402L)
640     #define ECB_CPP17 (__cplusplus >= 201703L)
641 root 1.437
642 root 1.450 #if ECB_CPP
643 root 1.464 #define ECB_C 0
644     #define ECB_STDC_VERSION 0
645     #else
646     #define ECB_C 1
647     #define ECB_STDC_VERSION __STDC_VERSION__
648     #endif
649    
650     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652 root 1.488 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653 root 1.464
654     #if ECB_CPP
655 root 1.450 #define ECB_EXTERN_C extern "C"
656     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657     #define ECB_EXTERN_C_END }
658     #else
659     #define ECB_EXTERN_C extern
660     #define ECB_EXTERN_C_BEG
661     #define ECB_EXTERN_C_END
662     #endif
663    
664 root 1.391 /*****************************************************************************/
665    
666     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668    
669 root 1.410 #if ECB_NO_THREADS
670 root 1.439 #define ECB_NO_SMP 1
671 root 1.410 #endif
672    
673 root 1.437 #if ECB_NO_SMP
674 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
675 root 1.40 #endif
676    
677 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678     #if __xlC__ && ECB_CPP
679     #include <builtins.h>
680     #endif
681    
682 root 1.479 #if 1400 <= _MSC_VER
683     #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684     #endif
685    
686 root 1.383 #ifndef ECB_MEMORY_FENCE
687 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 root 1.404 #if __i386 || __i386__
689 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
690 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
691 root 1.488 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
692 sf-exg 1.475 #elif ECB_GCC_AMD64
693 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
694     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
695 root 1.488 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
696 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
697 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
698 root 1.479 #elif defined __ARM_ARCH_2__ \
699     || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
700     || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
701     || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
702     || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
703     || defined __ARM_ARCH_5TEJ__
704     /* should not need any, unless running old code on newer cpu - arm doesn't support that */
705 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
706 root 1.479 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
707     || defined __ARM_ARCH_6T2__
708 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
709 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
710 root 1.479 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
711 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
712 root 1.464 #elif __aarch64__
713     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
714 root 1.477 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
715 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
716     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
717     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
718 root 1.417 #elif defined __s390__ || defined __s390x__
719 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
720 root 1.417 #elif defined __mips__
721 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
722 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
723     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
724 root 1.419 #elif defined __alpha__
725 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
726     #elif defined __hppa__
727     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
728     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
729     #elif defined __ia64__
730     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
731 root 1.457 #elif defined __m68k__
732     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
733     #elif defined __m88k__
734     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
735     #elif defined __sh__
736     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
737 root 1.383 #endif
738     #endif
739     #endif
740    
741     #ifndef ECB_MEMORY_FENCE
742 root 1.437 #if ECB_GCC_VERSION(4,7)
743 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
744 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
745 root 1.464 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
746     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
747 root 1.450
748 root 1.474 #elif ECB_CLANG_EXTENSION(c_atomic)
749     /* see comment below (stdatomic.h) about the C11 memory model. */
750     #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
751     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
752     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
753 root 1.450
754 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
755 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
756 root 1.462 #elif _MSC_VER >= 1500 /* VC++ 2008 */
757     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
758     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
759     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
760     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
761     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
762 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
763     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
764     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
765     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
766     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
767 root 1.417 #elif defined _WIN32
768 root 1.388 #include <WinNT.h>
769 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
770 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
771     #include <mbarrier.h>
772     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
773     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
774     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
775 root 1.413 #elif __xlC__
776 root 1.414 #define ECB_MEMORY_FENCE __sync ()
777 root 1.383 #endif
778     #endif
779    
780     #ifndef ECB_MEMORY_FENCE
781 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
782     /* we assume that these memory fences work on all variables/all memory accesses, */
783     /* not just C11 atomics and atomic accesses */
784     #include <stdatomic.h>
785 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
786     /* any fence other than seq_cst, which isn't very efficient for us. */
787     /* Why that is, we don't know - either the C11 memory model is quite useless */
788     /* for most usages, or gcc and clang have a bug */
789     /* I *currently* lean towards the latter, and inefficiently implement */
790     /* all three of ecb's fences as a seq_cst fence */
791 root 1.464 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
792     /* for all __atomic_thread_fence's except seq_cst */
793 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
794     #endif
795     #endif
796    
797     #ifndef ECB_MEMORY_FENCE
798 root 1.392 #if !ECB_AVOID_PTHREADS
799     /*
800     * if you get undefined symbol references to pthread_mutex_lock,
801     * or failure to find pthread.h, then you should implement
802     * the ECB_MEMORY_FENCE operations for your cpu/compiler
803     * OR provide pthread.h and link against the posix thread library
804     * of your system.
805     */
806     #include <pthread.h>
807     #define ECB_NEEDS_PTHREADS 1
808     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
809    
810     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
811     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
812     #endif
813     #endif
814 root 1.383
815 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
816 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
817 root 1.392 #endif
818    
819 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
820 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
821     #endif
822    
823 root 1.391 /*****************************************************************************/
824    
825 root 1.474 #if ECB_CPP
826 root 1.391 #define ecb_inline static inline
827     #elif ECB_GCC_VERSION(2,5)
828     #define ecb_inline static __inline__
829     #elif ECB_C99
830     #define ecb_inline static inline
831     #else
832     #define ecb_inline static
833     #endif
834    
835     #if ECB_GCC_VERSION(3,3)
836     #define ecb_restrict __restrict__
837     #elif ECB_C99
838     #define ecb_restrict restrict
839     #else
840     #define ecb_restrict
841     #endif
842    
843     typedef int ecb_bool;
844    
845     #define ECB_CONCAT_(a, b) a ## b
846     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
847     #define ECB_STRINGIFY_(a) # a
848     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
849 sf-exg 1.475 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
850 root 1.391
851     #define ecb_function_ ecb_inline
852    
853 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
854     #define ecb_attribute(attrlist) __attribute__ (attrlist)
855 root 1.379 #else
856     #define ecb_attribute(attrlist)
857 root 1.474 #endif
858 root 1.464
859 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
860     #define ecb_is_constant(expr) __builtin_constant_p (expr)
861     #else
862 root 1.464 /* possible C11 impl for integral types
863     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
864     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
865    
866 root 1.379 #define ecb_is_constant(expr) 0
867 root 1.474 #endif
868    
869     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
870     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
871     #else
872 root 1.379 #define ecb_expect(expr,value) (expr)
873 root 1.474 #endif
874    
875     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
876     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
877     #else
878 root 1.379 #define ecb_prefetch(addr,rw,locality)
879     #endif
880    
881 root 1.391 /* no emulation for ecb_decltype */
882 root 1.474 #if ECB_CPP11
883     // older implementations might have problems with decltype(x)::type, work around it
884     template<class T> struct ecb_decltype_t { typedef T type; };
885     #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
886     #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
887     #define ecb_decltype(x) __typeof__ (x)
888 root 1.391 #endif
889    
890 root 1.468 #if _MSC_VER >= 1300
891 root 1.474 #define ecb_deprecated __declspec (deprecated)
892 root 1.468 #else
893     #define ecb_deprecated ecb_attribute ((__deprecated__))
894     #endif
895    
896 root 1.476 #if _MSC_VER >= 1500
897 sf-exg 1.475 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
898     #elif ECB_GCC_VERSION(4,5)
899     #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
900     #else
901     #define ecb_deprecated_message(msg) ecb_deprecated
902     #endif
903    
904     #if _MSC_VER >= 1400
905     #define ecb_noinline __declspec (noinline)
906     #else
907     #define ecb_noinline ecb_attribute ((__noinline__))
908     #endif
909    
910 root 1.379 #define ecb_unused ecb_attribute ((__unused__))
911     #define ecb_const ecb_attribute ((__const__))
912     #define ecb_pure ecb_attribute ((__pure__))
913    
914 root 1.474 #if ECB_C11 || __IBMC_NORETURN
915 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
916 root 1.437 #define ecb_noreturn _Noreturn
917 sf-exg 1.475 #elif ECB_CPP11
918     #define ecb_noreturn [[noreturn]]
919     #elif _MSC_VER >= 1200
920     /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
921     #define ecb_noreturn __declspec (noreturn)
922 root 1.437 #else
923     #define ecb_noreturn ecb_attribute ((__noreturn__))
924     #endif
925    
926 root 1.379 #if ECB_GCC_VERSION(4,3)
927     #define ecb_artificial ecb_attribute ((__artificial__))
928     #define ecb_hot ecb_attribute ((__hot__))
929     #define ecb_cold ecb_attribute ((__cold__))
930     #else
931     #define ecb_artificial
932     #define ecb_hot
933     #define ecb_cold
934     #endif
935    
936     /* put around conditional expressions if you are very sure that the */
937     /* expression is mostly true or mostly false. note that these return */
938     /* booleans, not the expression. */
939     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
940     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
941 root 1.391 /* for compatibility to the rest of the world */
942     #define ecb_likely(expr) ecb_expect_true (expr)
943     #define ecb_unlikely(expr) ecb_expect_false (expr)
944    
945     /* count trailing zero bits and count # of one bits */
946 root 1.474 #if ECB_GCC_VERSION(3,4) \
947     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
948     && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
949     && ECB_CLANG_BUILTIN(__builtin_popcount))
950 root 1.391 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
951     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
952     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
953     #define ecb_ctz32(x) __builtin_ctz (x)
954     #define ecb_ctz64(x) __builtin_ctzll (x)
955     #define ecb_popcount32(x) __builtin_popcount (x)
956     /* no popcountll */
957     #else
958 root 1.474 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
959     ecb_function_ ecb_const int
960 root 1.391 ecb_ctz32 (uint32_t x)
961     {
962 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
963     unsigned long r;
964     _BitScanForward (&r, x);
965     return (int)r;
966     #else
967 root 1.391 int r = 0;
968    
969     x &= ~x + 1; /* this isolates the lowest bit */
970    
971     #if ECB_branchless_on_i386
972     r += !!(x & 0xaaaaaaaa) << 0;
973     r += !!(x & 0xcccccccc) << 1;
974     r += !!(x & 0xf0f0f0f0) << 2;
975     r += !!(x & 0xff00ff00) << 3;
976     r += !!(x & 0xffff0000) << 4;
977     #else
978     if (x & 0xaaaaaaaa) r += 1;
979     if (x & 0xcccccccc) r += 2;
980     if (x & 0xf0f0f0f0) r += 4;
981     if (x & 0xff00ff00) r += 8;
982     if (x & 0xffff0000) r += 16;
983     #endif
984    
985     return r;
986 root 1.479 #endif
987 root 1.391 }
988    
989 root 1.474 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
990     ecb_function_ ecb_const int
991 root 1.391 ecb_ctz64 (uint64_t x)
992     {
993 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
994     unsigned long r;
995     _BitScanForward64 (&r, x);
996     return (int)r;
997     #else
998     int shift = x & 0xffffffff ? 0 : 32;
999 root 1.391 return ecb_ctz32 (x >> shift) + shift;
1000 root 1.479 #endif
1001 root 1.391 }
1002    
1003 root 1.474 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1004     ecb_function_ ecb_const int
1005 root 1.391 ecb_popcount32 (uint32_t x)
1006     {
1007     x -= (x >> 1) & 0x55555555;
1008     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1009     x = ((x >> 4) + x) & 0x0f0f0f0f;
1010     x *= 0x01010101;
1011    
1012     return x >> 24;
1013     }
1014    
1015 root 1.474 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1016     ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1017 root 1.391 {
1018 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1019     unsigned long r;
1020     _BitScanReverse (&r, x);
1021     return (int)r;
1022     #else
1023 root 1.391 int r = 0;
1024    
1025     if (x >> 16) { x >>= 16; r += 16; }
1026     if (x >> 8) { x >>= 8; r += 8; }
1027     if (x >> 4) { x >>= 4; r += 4; }
1028     if (x >> 2) { x >>= 2; r += 2; }
1029     if (x >> 1) { r += 1; }
1030    
1031     return r;
1032 root 1.479 #endif
1033 root 1.391 }
1034    
1035 root 1.474 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1036     ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1037 root 1.391 {
1038 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1039     unsigned long r;
1040     _BitScanReverse64 (&r, x);
1041     return (int)r;
1042     #else
1043 root 1.391 int r = 0;
1044    
1045     if (x >> 32) { x >>= 32; r += 32; }
1046    
1047     return r + ecb_ld32 (x);
1048 root 1.479 #endif
1049 root 1.391 }
1050     #endif
1051    
1052 root 1.474 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1053     ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1054     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1055     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1056 root 1.437
1057 root 1.474 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1058     ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1059 root 1.403 {
1060     return ( (x * 0x0802U & 0x22110U)
1061 root 1.474 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1062 root 1.403 }
1063    
1064 root 1.474 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1065     ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1066 root 1.403 {
1067     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1068     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1069     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1070     x = ( x >> 8 ) | ( x << 8);
1071    
1072     return x;
1073     }
1074    
1075 root 1.474 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1076     ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1077 root 1.403 {
1078     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1079     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1080     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1081     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1082     x = ( x >> 16 ) | ( x << 16);
1083    
1084     return x;
1085     }
1086    
1087 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1088     /* so for this version we are lazy */
1089 root 1.474 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1090     ecb_function_ ecb_const int
1091 root 1.391 ecb_popcount64 (uint64_t x)
1092     {
1093     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1094     }
1095    
1096 root 1.474 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1097     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1098     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1099     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1100     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1101     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1102     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1103     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1104    
1105     ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1106     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1107     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1108     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1109     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1110     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1111     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1112     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1113 root 1.391
1114 root 1.474 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1115 root 1.476 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1116     #define ecb_bswap16(x) __builtin_bswap16 (x)
1117     #else
1118 root 1.391 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1119 root 1.476 #endif
1120 root 1.391 #define ecb_bswap32(x) __builtin_bswap32 (x)
1121     #define ecb_bswap64(x) __builtin_bswap64 (x)
1122 root 1.476 #elif _MSC_VER
1123     #include <stdlib.h>
1124     #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1125     #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1126     #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1127 root 1.391 #else
1128 root 1.474 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1129     ecb_function_ ecb_const uint16_t
1130 root 1.391 ecb_bswap16 (uint16_t x)
1131     {
1132     return ecb_rotl16 (x, 8);
1133     }
1134    
1135 root 1.474 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1136     ecb_function_ ecb_const uint32_t
1137 root 1.391 ecb_bswap32 (uint32_t x)
1138     {
1139     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1140     }
1141    
1142 root 1.474 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1143     ecb_function_ ecb_const uint64_t
1144 root 1.391 ecb_bswap64 (uint64_t x)
1145     {
1146     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1147     }
1148     #endif
1149    
1150 root 1.474 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1151 root 1.391 #define ecb_unreachable() __builtin_unreachable ()
1152     #else
1153     /* this seems to work fine, but gcc always emits a warning for it :/ */
1154 root 1.474 ecb_inline ecb_noreturn void ecb_unreachable (void);
1155     ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1156 root 1.391 #endif
1157    
1158     /* try to tell the compiler that some condition is definitely true */
1159 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1160 root 1.391
1161 root 1.479 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1162     ecb_inline ecb_const uint32_t
1163 root 1.391 ecb_byteorder_helper (void)
1164     {
1165 root 1.450 /* the union code still generates code under pressure in gcc, */
1166     /* but less than using pointers, and always seems to */
1167     /* successfully return a constant. */
1168     /* the reason why we have this horrible preprocessor mess */
1169     /* is to avoid it in all cases, at least on common architectures */
1170     /* or when using a recent enough gcc version (>= 4.6) */
1171 root 1.479 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1172     || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1173     #define ECB_LITTLE_ENDIAN 1
1174     return 0x44332211;
1175     #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1176     || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1177     #define ECB_BIG_ENDIAN 1
1178     return 0x11223344;
1179 root 1.450 #else
1180     union
1181     {
1182 root 1.479 uint8_t c[4];
1183     uint32_t u;
1184     } u = { 0x11, 0x22, 0x33, 0x44 };
1185     return u.u;
1186 root 1.450 #endif
1187 root 1.391 }
1188    
1189 root 1.474 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1190 root 1.479 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1191 root 1.474 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1192 root 1.479 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1193 root 1.391
1194     #if ECB_GCC_VERSION(3,0) || ECB_C99
1195     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1196     #else
1197     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1198     #endif
1199    
1200 root 1.474 #if ECB_CPP
1201 root 1.398 template<typename T>
1202     static inline T ecb_div_rd (T val, T div)
1203     {
1204     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1205     }
1206     template<typename T>
1207     static inline T ecb_div_ru (T val, T div)
1208     {
1209     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1210     }
1211     #else
1212     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1213     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1214     #endif
1215    
1216 root 1.391 #if ecb_cplusplus_does_not_suck
1217     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1218     template<typename T, int N>
1219     static inline int ecb_array_length (const T (&arr)[N])
1220     {
1221     return N;
1222     }
1223     #else
1224     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1225     #endif
1226    
1227 root 1.479 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1228     ecb_function_ ecb_const uint32_t
1229     ecb_binary16_to_binary32 (uint32_t x)
1230     {
1231     unsigned int s = (x & 0x8000) << (31 - 15);
1232     int e = (x >> 10) & 0x001f;
1233     unsigned int m = x & 0x03ff;
1234    
1235     if (ecb_expect_false (e == 31))
1236     /* infinity or NaN */
1237     e = 255 - (127 - 15);
1238     else if (ecb_expect_false (!e))
1239     {
1240     if (ecb_expect_true (!m))
1241     /* zero, handled by code below by forcing e to 0 */
1242     e = 0 - (127 - 15);
1243     else
1244     {
1245     /* subnormal, renormalise */
1246     unsigned int s = 10 - ecb_ld32 (m);
1247    
1248     m = (m << s) & 0x3ff; /* mask implicit bit */
1249     e -= s - 1;
1250     }
1251     }
1252    
1253     /* e and m now are normalised, or zero, (or inf or nan) */
1254     e += 127 - 15;
1255    
1256     return s | (e << 23) | (m << (23 - 10));
1257     }
1258    
1259     ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1260     ecb_function_ ecb_const uint16_t
1261     ecb_binary32_to_binary16 (uint32_t x)
1262     {
1263     unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1264     unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1265     unsigned int m = x & 0x007fffff;
1266    
1267     x &= 0x7fffffff;
1268    
1269     /* if it's within range of binary16 normals, use fast path */
1270     if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1271     {
1272     /* mantissa round-to-even */
1273     m += 0x00000fff + ((m >> (23 - 10)) & 1);
1274    
1275     /* handle overflow */
1276     if (ecb_expect_false (m >= 0x00800000))
1277     {
1278     m >>= 1;
1279     e += 1;
1280     }
1281    
1282     return s | (e << 10) | (m >> (23 - 10));
1283     }
1284    
1285     /* handle large numbers and infinity */
1286     if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1287     return s | 0x7c00;
1288    
1289     /* handle zero, subnormals and small numbers */
1290     if (ecb_expect_true (x < 0x38800000))
1291     {
1292     /* zero */
1293     if (ecb_expect_true (!x))
1294     return s;
1295    
1296     /* handle subnormals */
1297    
1298     /* too small, will be zero */
1299     if (e < (14 - 24)) /* might not be sharp, but is good enough */
1300     return s;
1301    
1302     m |= 0x00800000; /* make implicit bit explicit */
1303    
1304     /* very tricky - we need to round to the nearest e (+10) bit value */
1305     {
1306     unsigned int bits = 14 - e;
1307     unsigned int half = (1 << (bits - 1)) - 1;
1308     unsigned int even = (m >> bits) & 1;
1309    
1310     /* if this overflows, we will end up with a normalised number */
1311     m = (m + half + even) >> bits;
1312     }
1313    
1314     return s | m;
1315     }
1316    
1317     /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1318     m >>= 13;
1319    
1320     return s | 0x7c00 | m | !m;
1321     }
1322    
1323 root 1.450 /*******************************************************************************/
1324     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1325    
1326     /* basically, everything uses "ieee pure-endian" floating point numbers */
1327     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1328     #if 0 \
1329     || __i386 || __i386__ \
1330 sf-exg 1.475 || ECB_GCC_AMD64 \
1331 root 1.450 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1332     || defined __s390__ || defined __s390x__ \
1333     || defined __mips__ \
1334     || defined __alpha__ \
1335     || defined __hppa__ \
1336     || defined __ia64__ \
1337 root 1.457 || defined __m68k__ \
1338     || defined __m88k__ \
1339     || defined __sh__ \
1340 sf-exg 1.475 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1341 root 1.465 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1342 root 1.466 || defined __aarch64__
1343 root 1.450 #define ECB_STDFP 1
1344     #include <string.h> /* for memcpy */
1345     #else
1346     #define ECB_STDFP 0
1347     #endif
1348    
1349     #ifndef ECB_NO_LIBM
1350    
1351 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1352    
1353 root 1.462 /* only the oldest of old doesn't have this one. solaris. */
1354     #ifdef INFINITY
1355     #define ECB_INFINITY INFINITY
1356     #else
1357     #define ECB_INFINITY HUGE_VAL
1358     #endif
1359    
1360     #ifdef NAN
1361 root 1.458 #define ECB_NAN NAN
1362     #else
1363 root 1.462 #define ECB_NAN ECB_INFINITY
1364 root 1.458 #endif
1365    
1366 root 1.474 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1367     #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1368 root 1.476 #define ecb_frexpf(x,e) frexpf ((x), (e))
1369 root 1.474 #else
1370 root 1.476 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1371     #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1372 root 1.474 #endif
1373    
1374 root 1.450 /* convert a float to ieee single/binary32 */
1375 root 1.474 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1376     ecb_function_ ecb_const uint32_t
1377 root 1.450 ecb_float_to_binary32 (float x)
1378     {
1379     uint32_t r;
1380    
1381     #if ECB_STDFP
1382     memcpy (&r, &x, 4);
1383     #else
1384     /* slow emulation, works for anything but -0 */
1385     uint32_t m;
1386     int e;
1387    
1388     if (x == 0e0f ) return 0x00000000U;
1389     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1390     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1391     if (x != x ) return 0x7fbfffffU;
1392    
1393 root 1.476 m = ecb_frexpf (x, &e) * 0x1000000U;
1394 root 1.450
1395     r = m & 0x80000000U;
1396    
1397     if (r)
1398     m = -m;
1399    
1400     if (e <= -126)
1401     {
1402     m &= 0xffffffU;
1403     m >>= (-125 - e);
1404     e = -126;
1405     }
1406    
1407     r |= (e + 126) << 23;
1408     r |= m & 0x7fffffU;
1409     #endif
1410    
1411     return r;
1412     }
1413    
1414     /* converts an ieee single/binary32 to a float */
1415 root 1.474 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1416     ecb_function_ ecb_const float
1417 root 1.450 ecb_binary32_to_float (uint32_t x)
1418     {
1419     float r;
1420    
1421     #if ECB_STDFP
1422     memcpy (&r, &x, 4);
1423     #else
1424     /* emulation, only works for normals and subnormals and +0 */
1425     int neg = x >> 31;
1426     int e = (x >> 23) & 0xffU;
1427    
1428     x &= 0x7fffffU;
1429    
1430     if (e)
1431     x |= 0x800000U;
1432     else
1433     e = 1;
1434    
1435     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1436 root 1.474 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1437 root 1.450
1438     r = neg ? -r : r;
1439     #endif
1440    
1441     return r;
1442     }
1443    
1444     /* convert a double to ieee double/binary64 */
1445 root 1.474 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1446     ecb_function_ ecb_const uint64_t
1447 root 1.450 ecb_double_to_binary64 (double x)
1448     {
1449     uint64_t r;
1450    
1451     #if ECB_STDFP
1452     memcpy (&r, &x, 8);
1453     #else
1454     /* slow emulation, works for anything but -0 */
1455     uint64_t m;
1456     int e;
1457    
1458     if (x == 0e0 ) return 0x0000000000000000U;
1459     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1460     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1461     if (x != x ) return 0X7ff7ffffffffffffU;
1462    
1463     m = frexp (x, &e) * 0x20000000000000U;
1464    
1465     r = m & 0x8000000000000000;;
1466    
1467     if (r)
1468     m = -m;
1469    
1470     if (e <= -1022)
1471     {
1472     m &= 0x1fffffffffffffU;
1473     m >>= (-1021 - e);
1474     e = -1022;
1475     }
1476    
1477     r |= ((uint64_t)(e + 1022)) << 52;
1478     r |= m & 0xfffffffffffffU;
1479     #endif
1480    
1481     return r;
1482     }
1483    
1484     /* converts an ieee double/binary64 to a double */
1485 root 1.474 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1486     ecb_function_ ecb_const double
1487 root 1.450 ecb_binary64_to_double (uint64_t x)
1488     {
1489     double r;
1490    
1491     #if ECB_STDFP
1492     memcpy (&r, &x, 8);
1493     #else
1494     /* emulation, only works for normals and subnormals and +0 */
1495     int neg = x >> 63;
1496     int e = (x >> 52) & 0x7ffU;
1497    
1498     x &= 0xfffffffffffffU;
1499    
1500     if (e)
1501     x |= 0x10000000000000U;
1502     else
1503     e = 1;
1504    
1505     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1506     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1507    
1508     r = neg ? -r : r;
1509     #endif
1510    
1511     return r;
1512     }
1513    
1514 root 1.479 /* convert a float to ieee half/binary16 */
1515     ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1516     ecb_function_ ecb_const uint16_t
1517     ecb_float_to_binary16 (float x)
1518     {
1519     return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1520     }
1521    
1522     /* convert an ieee half/binary16 to float */
1523     ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1524     ecb_function_ ecb_const float
1525     ecb_binary16_to_float (uint16_t x)
1526     {
1527     return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1528     }
1529    
1530 root 1.450 #endif
1531    
1532 root 1.391 #endif
1533    
1534     /* ECB.H END */
1535 root 1.379
1536 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1537 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1538 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1539     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1540 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1541 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1542     * which will then provide the memory fences.
1543     */
1544     # error "memory fences not defined for your architecture, please report"
1545     #endif
1546    
1547     #ifndef ECB_MEMORY_FENCE
1548     # define ECB_MEMORY_FENCE do { } while (0)
1549     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1550     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1551 root 1.392 #endif
1552    
1553 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1554     #define expect_true(cond) ecb_expect_true (cond)
1555     #define noinline ecb_noinline
1556    
1557     #define inline_size ecb_inline
1558 root 1.169
1559 root 1.338 #if EV_FEATURE_CODE
1560 root 1.379 # define inline_speed ecb_inline
1561 root 1.338 #else
1562 root 1.480 # define inline_speed noinline static
1563 root 1.169 #endif
1564 root 1.40
1565 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1566    
1567     #if EV_MINPRI == EV_MAXPRI
1568     # define ABSPRI(w) (((W)w), 0)
1569     #else
1570     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1571     #endif
1572 root 1.42
1573 root 1.490 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1574 root 1.103
1575 root 1.136 typedef ev_watcher *W;
1576     typedef ev_watcher_list *WL;
1577     typedef ev_watcher_time *WT;
1578 root 1.10
1579 root 1.229 #define ev_active(w) ((W)(w))->active
1580 root 1.228 #define ev_at(w) ((WT)(w))->at
1581    
1582 root 1.279 #if EV_USE_REALTIME
1583 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1584 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1585 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1586     #endif
1587    
1588     #if EV_USE_MONOTONIC
1589 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1590 root 1.198 #endif
1591 root 1.54
1592 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1593     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1594     #endif
1595     #ifndef EV_WIN32_HANDLE_TO_FD
1596 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1597 root 1.313 #endif
1598     #ifndef EV_WIN32_CLOSE_FD
1599     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1600     #endif
1601    
1602 root 1.103 #ifdef _WIN32
1603 root 1.98 # include "ev_win32.c"
1604     #endif
1605 root 1.67
1606 root 1.53 /*****************************************************************************/
1607 root 1.1
1608 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1609    
1610     #if EV_USE_FLOOR
1611     # include <math.h>
1612     # define ev_floor(v) floor (v)
1613     #else
1614    
1615     #include <float.h>
1616    
1617     /* a floor() replacement function, should be independent of ev_tstamp type */
1618 root 1.480 noinline
1619     static ev_tstamp
1620 root 1.373 ev_floor (ev_tstamp v)
1621     {
1622     /* the choice of shift factor is not terribly important */
1623     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1624     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1625     #else
1626     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1627     #endif
1628    
1629     /* argument too large for an unsigned long? */
1630     if (expect_false (v >= shift))
1631     {
1632     ev_tstamp f;
1633    
1634     if (v == v - 1.)
1635     return v; /* very large number */
1636    
1637     f = shift * ev_floor (v * (1. / shift));
1638     return f + ev_floor (v - f);
1639     }
1640    
1641     /* special treatment for negative args? */
1642     if (expect_false (v < 0.))
1643     {
1644     ev_tstamp f = -ev_floor (-v);
1645    
1646     return f - (f == v ? 0 : 1);
1647     }
1648    
1649     /* fits into an unsigned long */
1650     return (unsigned long)v;
1651     }
1652    
1653     #endif
1654    
1655     /*****************************************************************************/
1656    
1657 root 1.356 #ifdef __linux
1658     # include <sys/utsname.h>
1659     #endif
1660    
1661 root 1.480 noinline ecb_cold
1662     static unsigned int
1663 root 1.355 ev_linux_version (void)
1664     {
1665     #ifdef __linux
1666 root 1.359 unsigned int v = 0;
1667 root 1.355 struct utsname buf;
1668     int i;
1669     char *p = buf.release;
1670    
1671     if (uname (&buf))
1672     return 0;
1673    
1674     for (i = 3+1; --i; )
1675     {
1676     unsigned int c = 0;
1677    
1678     for (;;)
1679     {
1680     if (*p >= '0' && *p <= '9')
1681     c = c * 10 + *p++ - '0';
1682     else
1683     {
1684     p += *p == '.';
1685     break;
1686     }
1687     }
1688    
1689     v = (v << 8) | c;
1690     }
1691    
1692     return v;
1693     #else
1694     return 0;
1695     #endif
1696     }
1697    
1698     /*****************************************************************************/
1699    
1700 root 1.331 #if EV_AVOID_STDIO
1701 root 1.480 noinline ecb_cold
1702     static void
1703 root 1.331 ev_printerr (const char *msg)
1704     {
1705     write (STDERR_FILENO, msg, strlen (msg));
1706     }
1707     #endif
1708    
1709 root 1.486 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1710 root 1.69
1711 root 1.480 ecb_cold
1712     void
1713 root 1.486 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1714 root 1.69 {
1715     syserr_cb = cb;
1716     }
1717    
1718 root 1.480 noinline ecb_cold
1719     static void
1720 root 1.269 ev_syserr (const char *msg)
1721 root 1.69 {
1722 root 1.70 if (!msg)
1723     msg = "(libev) system error";
1724    
1725 root 1.69 if (syserr_cb)
1726 root 1.70 syserr_cb (msg);
1727 root 1.69 else
1728     {
1729 root 1.330 #if EV_AVOID_STDIO
1730 root 1.331 ev_printerr (msg);
1731     ev_printerr (": ");
1732 root 1.365 ev_printerr (strerror (errno));
1733 root 1.331 ev_printerr ("\n");
1734 root 1.330 #else
1735 root 1.70 perror (msg);
1736 root 1.330 #endif
1737 root 1.69 abort ();
1738     }
1739     }
1740    
1741 root 1.224 static void *
1742 root 1.486 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1743 root 1.224 {
1744     /* some systems, notably openbsd and darwin, fail to properly
1745 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1746 root 1.224 * the single unix specification, so work around them here.
1747 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1748     * despite documenting it otherwise.
1749 root 1.224 */
1750 root 1.333
1751 root 1.224 if (size)
1752     return realloc (ptr, size);
1753    
1754     free (ptr);
1755     return 0;
1756     }
1757    
1758 root 1.486 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1759 root 1.69
1760 root 1.480 ecb_cold
1761     void
1762 root 1.486 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1763 root 1.69 {
1764     alloc = cb;
1765     }
1766    
1767 root 1.150 inline_speed void *
1768 root 1.155 ev_realloc (void *ptr, long size)
1769 root 1.69 {
1770 root 1.224 ptr = alloc (ptr, size);
1771 root 1.69
1772     if (!ptr && size)
1773     {
1774 root 1.330 #if EV_AVOID_STDIO
1775 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1776 root 1.330 #else
1777 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1778 root 1.330 #endif
1779 root 1.69 abort ();
1780     }
1781    
1782     return ptr;
1783     }
1784    
1785     #define ev_malloc(size) ev_realloc (0, (size))
1786     #define ev_free(ptr) ev_realloc ((ptr), 0)
1787    
1788     /*****************************************************************************/
1789    
1790 root 1.298 /* set in reify when reification needed */
1791     #define EV_ANFD_REIFY 1
1792    
1793 root 1.288 /* file descriptor info structure */
1794 root 1.53 typedef struct
1795     {
1796 root 1.68 WL head;
1797 root 1.288 unsigned char events; /* the events watched for */
1798 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1799 root 1.490 unsigned char emask; /* some backends store the actual kernel mask in here */
1800 root 1.269 unsigned char unused;
1801     #if EV_USE_EPOLL
1802 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1803 root 1.269 #endif
1804 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1805 root 1.103 SOCKET handle;
1806     #endif
1807 root 1.357 #if EV_USE_IOCP
1808     OVERLAPPED or, ow;
1809     #endif
1810 root 1.53 } ANFD;
1811 root 1.1
1812 root 1.288 /* stores the pending event set for a given watcher */
1813 root 1.53 typedef struct
1814     {
1815     W w;
1816 root 1.288 int events; /* the pending event set for the given watcher */
1817 root 1.53 } ANPENDING;
1818 root 1.51
1819 root 1.155 #if EV_USE_INOTIFY
1820 root 1.241 /* hash table entry per inotify-id */
1821 root 1.152 typedef struct
1822     {
1823     WL head;
1824 root 1.155 } ANFS;
1825 root 1.152 #endif
1826    
1827 root 1.241 /* Heap Entry */
1828     #if EV_HEAP_CACHE_AT
1829 root 1.288 /* a heap element */
1830 root 1.241 typedef struct {
1831 root 1.243 ev_tstamp at;
1832 root 1.241 WT w;
1833     } ANHE;
1834    
1835 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1836     #define ANHE_at(he) (he).at /* access cached at, read-only */
1837     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1838 root 1.241 #else
1839 root 1.288 /* a heap element */
1840 root 1.241 typedef WT ANHE;
1841    
1842 root 1.248 #define ANHE_w(he) (he)
1843     #define ANHE_at(he) (he)->at
1844     #define ANHE_at_cache(he)
1845 root 1.241 #endif
1846    
1847 root 1.55 #if EV_MULTIPLICITY
1848 root 1.54
1849 root 1.80 struct ev_loop
1850     {
1851 root 1.86 ev_tstamp ev_rt_now;
1852 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1853 root 1.80 #define VAR(name,decl) decl;
1854     #include "ev_vars.h"
1855     #undef VAR
1856     };
1857     #include "ev_wrap.h"
1858    
1859 root 1.116 static struct ev_loop default_loop_struct;
1860 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1861 root 1.54
1862 root 1.53 #else
1863 root 1.54
1864 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1865 root 1.80 #define VAR(name,decl) static decl;
1866     #include "ev_vars.h"
1867     #undef VAR
1868    
1869 root 1.116 static int ev_default_loop_ptr;
1870 root 1.54
1871 root 1.51 #endif
1872 root 1.1
1873 root 1.338 #if EV_FEATURE_API
1874 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1875     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1876 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1877     #else
1878 root 1.298 # define EV_RELEASE_CB (void)0
1879     # define EV_ACQUIRE_CB (void)0
1880 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1881     #endif
1882    
1883 root 1.353 #define EVBREAK_RECURSE 0x80
1884 root 1.298
1885 root 1.8 /*****************************************************************************/
1886    
1887 root 1.292 #ifndef EV_HAVE_EV_TIME
1888 root 1.141 ev_tstamp
1889 root 1.486 ev_time (void) EV_NOEXCEPT
1890 root 1.1 {
1891 root 1.29 #if EV_USE_REALTIME
1892 root 1.279 if (expect_true (have_realtime))
1893     {
1894     struct timespec ts;
1895     clock_gettime (CLOCK_REALTIME, &ts);
1896     return ts.tv_sec + ts.tv_nsec * 1e-9;
1897     }
1898     #endif
1899    
1900 root 1.1 struct timeval tv;
1901     gettimeofday (&tv, 0);
1902     return tv.tv_sec + tv.tv_usec * 1e-6;
1903     }
1904 root 1.292 #endif
1905 root 1.1
1906 root 1.284 inline_size ev_tstamp
1907 root 1.1 get_clock (void)
1908     {
1909 root 1.29 #if EV_USE_MONOTONIC
1910 root 1.40 if (expect_true (have_monotonic))
1911 root 1.1 {
1912     struct timespec ts;
1913     clock_gettime (CLOCK_MONOTONIC, &ts);
1914     return ts.tv_sec + ts.tv_nsec * 1e-9;
1915     }
1916     #endif
1917    
1918     return ev_time ();
1919     }
1920    
1921 root 1.85 #if EV_MULTIPLICITY
1922 root 1.51 ev_tstamp
1923 root 1.486 ev_now (EV_P) EV_NOEXCEPT
1924 root 1.51 {
1925 root 1.85 return ev_rt_now;
1926 root 1.51 }
1927 root 1.85 #endif
1928 root 1.51
1929 root 1.193 void
1930 root 1.486 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1931 root 1.193 {
1932     if (delay > 0.)
1933     {
1934     #if EV_USE_NANOSLEEP
1935     struct timespec ts;
1936    
1937 root 1.348 EV_TS_SET (ts, delay);
1938 root 1.193 nanosleep (&ts, 0);
1939 root 1.416 #elif defined _WIN32
1940 root 1.482 /* maybe this should round up, as ms is very low resolution */
1941     /* compared to select (µs) or nanosleep (ns) */
1942 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1943 root 1.193 #else
1944     struct timeval tv;
1945    
1946 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1947 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1948 root 1.257 /* by older ones */
1949 sf-exg 1.349 EV_TV_SET (tv, delay);
1950 root 1.193 select (0, 0, 0, 0, &tv);
1951     #endif
1952     }
1953     }
1954    
1955     /*****************************************************************************/
1956    
1957 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1958 root 1.232
1959 root 1.288 /* find a suitable new size for the given array, */
1960 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1961 root 1.284 inline_size int
1962 root 1.163 array_nextsize (int elem, int cur, int cnt)
1963     {
1964     int ncur = cur + 1;
1965    
1966     do
1967     ncur <<= 1;
1968     while (cnt > ncur);
1969    
1970 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1971 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1972 root 1.163 {
1973     ncur *= elem;
1974 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1975 root 1.163 ncur = ncur - sizeof (void *) * 4;
1976     ncur /= elem;
1977     }
1978    
1979     return ncur;
1980     }
1981    
1982 root 1.480 noinline ecb_cold
1983     static void *
1984 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1985     {
1986     *cur = array_nextsize (elem, *cur, cnt);
1987     return ev_realloc (base, elem * *cur);
1988     }
1989 root 1.29
1990 root 1.490 #define array_needsize_noinit(base,count)
1991    
1992     #define array_needsize_zerofill(base,count) \
1993 root 1.265 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1994    
1995 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1996 root 1.163 if (expect_false ((cnt) > (cur))) \
1997 root 1.69 { \
1998 root 1.480 ecb_unused int ocur_ = (cur); \
1999 root 1.163 (base) = (type *)array_realloc \
2000     (sizeof (type), (base), &(cur), (cnt)); \
2001     init ((base) + (ocur_), (cur) - ocur_); \
2002 root 1.1 }
2003    
2004 root 1.163 #if 0
2005 root 1.74 #define array_slim(type,stem) \
2006 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2007     { \
2008     stem ## max = array_roundsize (stem ## cnt >> 1); \
2009 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2010 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2011     }
2012 root 1.163 #endif
2013 root 1.67
2014 root 1.65 #define array_free(stem, idx) \
2015 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2016 root 1.65
2017 root 1.8 /*****************************************************************************/
2018    
2019 root 1.288 /* dummy callback for pending events */
2020 root 1.480 noinline
2021     static void
2022 root 1.288 pendingcb (EV_P_ ev_prepare *w, int revents)
2023     {
2024     }
2025    
2026 root 1.480 noinline
2027     void
2028 root 1.486 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2029 root 1.1 {
2030 root 1.78 W w_ = (W)w;
2031 root 1.171 int pri = ABSPRI (w_);
2032 root 1.78
2033 root 1.123 if (expect_false (w_->pending))
2034 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
2035     else
2036 root 1.32 {
2037 root 1.171 w_->pending = ++pendingcnt [pri];
2038 root 1.490 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2039 root 1.171 pendings [pri][w_->pending - 1].w = w_;
2040     pendings [pri][w_->pending - 1].events = revents;
2041 root 1.32 }
2042 root 1.425
2043     pendingpri = NUMPRI - 1;
2044 root 1.1 }
2045    
2046 root 1.284 inline_speed void
2047     feed_reverse (EV_P_ W w)
2048     {
2049 root 1.490 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2050 root 1.284 rfeeds [rfeedcnt++] = w;
2051     }
2052    
2053     inline_size void
2054     feed_reverse_done (EV_P_ int revents)
2055     {
2056     do
2057     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2058     while (rfeedcnt);
2059     }
2060    
2061     inline_speed void
2062 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
2063 root 1.27 {
2064     int i;
2065    
2066     for (i = 0; i < eventcnt; ++i)
2067 root 1.78 ev_feed_event (EV_A_ events [i], type);
2068 root 1.27 }
2069    
2070 root 1.141 /*****************************************************************************/
2071    
2072 root 1.284 inline_speed void
2073 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
2074 root 1.1 {
2075     ANFD *anfd = anfds + fd;
2076 root 1.136 ev_io *w;
2077 root 1.1
2078 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2079 root 1.1 {
2080 root 1.79 int ev = w->events & revents;
2081 root 1.1
2082     if (ev)
2083 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
2084 root 1.1 }
2085     }
2086    
2087 root 1.298 /* do not submit kernel events for fds that have reify set */
2088     /* because that means they changed while we were polling for new events */
2089     inline_speed void
2090     fd_event (EV_P_ int fd, int revents)
2091     {
2092     ANFD *anfd = anfds + fd;
2093    
2094     if (expect_true (!anfd->reify))
2095 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2096 root 1.298 }
2097    
2098 root 1.79 void
2099 root 1.486 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2100 root 1.79 {
2101 root 1.168 if (fd >= 0 && fd < anfdmax)
2102 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2103 root 1.79 }
2104    
2105 root 1.288 /* make sure the external fd watch events are in-sync */
2106     /* with the kernel/libev internal state */
2107 root 1.284 inline_size void
2108 root 1.51 fd_reify (EV_P)
2109 root 1.9 {
2110     int i;
2111    
2112 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2113     for (i = 0; i < fdchangecnt; ++i)
2114     {
2115     int fd = fdchanges [i];
2116     ANFD *anfd = anfds + fd;
2117    
2118 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
2119 root 1.371 {
2120     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2121    
2122     if (handle != anfd->handle)
2123     {
2124     unsigned long arg;
2125    
2126     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2127    
2128     /* handle changed, but fd didn't - we need to do it in two steps */
2129     backend_modify (EV_A_ fd, anfd->events, 0);
2130     anfd->events = 0;
2131     anfd->handle = handle;
2132     }
2133     }
2134     }
2135     #endif
2136    
2137 root 1.27 for (i = 0; i < fdchangecnt; ++i)
2138     {
2139     int fd = fdchanges [i];
2140     ANFD *anfd = anfds + fd;
2141 root 1.136 ev_io *w;
2142 root 1.27
2143 root 1.350 unsigned char o_events = anfd->events;
2144     unsigned char o_reify = anfd->reify;
2145 root 1.27
2146 root 1.350 anfd->reify = 0;
2147 root 1.27
2148 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2149     {
2150     anfd->events = 0;
2151 root 1.184
2152 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2153     anfd->events |= (unsigned char)w->events;
2154 root 1.27
2155 root 1.351 if (o_events != anfd->events)
2156 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
2157     }
2158    
2159     if (o_reify & EV__IOFDSET)
2160     backend_modify (EV_A_ fd, o_events, anfd->events);
2161 root 1.27 }
2162    
2163     fdchangecnt = 0;
2164     }
2165    
2166 root 1.288 /* something about the given fd changed */
2167 root 1.480 inline_size
2168     void
2169 root 1.183 fd_change (EV_P_ int fd, int flags)
2170 root 1.27 {
2171 root 1.183 unsigned char reify = anfds [fd].reify;
2172 root 1.184 anfds [fd].reify |= flags;
2173 root 1.27
2174 root 1.183 if (expect_true (!reify))
2175     {
2176     ++fdchangecnt;
2177 root 1.490 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2178 root 1.183 fdchanges [fdchangecnt - 1] = fd;
2179     }
2180 root 1.9 }
2181    
2182 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2183 root 1.480 inline_speed ecb_cold void
2184 root 1.51 fd_kill (EV_P_ int fd)
2185 root 1.41 {
2186 root 1.136 ev_io *w;
2187 root 1.41
2188 root 1.136 while ((w = (ev_io *)anfds [fd].head))
2189 root 1.41 {
2190 root 1.51 ev_io_stop (EV_A_ w);
2191 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2192 root 1.41 }
2193     }
2194    
2195 root 1.336 /* check whether the given fd is actually valid, for error recovery */
2196 root 1.480 inline_size ecb_cold int
2197 root 1.71 fd_valid (int fd)
2198     {
2199 root 1.103 #ifdef _WIN32
2200 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2201 root 1.71 #else
2202     return fcntl (fd, F_GETFD) != -1;
2203     #endif
2204     }
2205    
2206 root 1.19 /* called on EBADF to verify fds */
2207 root 1.480 noinline ecb_cold
2208     static void
2209 root 1.51 fd_ebadf (EV_P)
2210 root 1.19 {
2211     int fd;
2212    
2213     for (fd = 0; fd < anfdmax; ++fd)
2214 root 1.27 if (anfds [fd].events)
2215 root 1.254 if (!fd_valid (fd) && errno == EBADF)
2216 root 1.51 fd_kill (EV_A_ fd);
2217 root 1.41 }
2218    
2219     /* called on ENOMEM in select/poll to kill some fds and retry */
2220 root 1.480 noinline ecb_cold
2221     static void
2222 root 1.51 fd_enomem (EV_P)
2223 root 1.41 {
2224 root 1.62 int fd;
2225 root 1.41
2226 root 1.62 for (fd = anfdmax; fd--; )
2227 root 1.41 if (anfds [fd].events)
2228     {
2229 root 1.51 fd_kill (EV_A_ fd);
2230 root 1.307 break;
2231 root 1.41 }
2232 root 1.19 }
2233    
2234 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
2235 root 1.480 noinline
2236     static void
2237 root 1.56 fd_rearm_all (EV_P)
2238     {
2239     int fd;
2240    
2241     for (fd = 0; fd < anfdmax; ++fd)
2242     if (anfds [fd].events)
2243     {
2244     anfds [fd].events = 0;
2245 root 1.268 anfds [fd].emask = 0;
2246 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2247 root 1.56 }
2248     }
2249    
2250 root 1.336 /* used to prepare libev internal fd's */
2251     /* this is not fork-safe */
2252     inline_speed void
2253     fd_intern (int fd)
2254     {
2255     #ifdef _WIN32
2256     unsigned long arg = 1;
2257     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2258     #else
2259     fcntl (fd, F_SETFD, FD_CLOEXEC);
2260     fcntl (fd, F_SETFL, O_NONBLOCK);
2261     #endif
2262     }
2263    
2264 root 1.8 /*****************************************************************************/
2265    
2266 root 1.235 /*
2267 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
2268 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2269     * the branching factor of the d-tree.
2270     */
2271    
2272     /*
2273 root 1.235 * at the moment we allow libev the luxury of two heaps,
2274     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2275     * which is more cache-efficient.
2276     * the difference is about 5% with 50000+ watchers.
2277     */
2278 root 1.241 #if EV_USE_4HEAP
2279 root 1.235
2280 root 1.237 #define DHEAP 4
2281     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2282 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2283 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
2284 root 1.235
2285     /* away from the root */
2286 root 1.284 inline_speed void
2287 root 1.241 downheap (ANHE *heap, int N, int k)
2288 root 1.235 {
2289 root 1.241 ANHE he = heap [k];
2290     ANHE *E = heap + N + HEAP0;
2291 root 1.235
2292     for (;;)
2293     {
2294     ev_tstamp minat;
2295 root 1.241 ANHE *minpos;
2296 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2297 root 1.235
2298 root 1.248 /* find minimum child */
2299 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
2300 root 1.235 {
2301 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2302     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2303     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2304     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2305 root 1.235 }
2306 root 1.240 else if (pos < E)
2307 root 1.235 {
2308 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2309     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2310     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2311     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2312 root 1.235 }
2313 root 1.240 else
2314     break;
2315 root 1.235
2316 root 1.241 if (ANHE_at (he) <= minat)
2317 root 1.235 break;
2318    
2319 root 1.247 heap [k] = *minpos;
2320 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2321 root 1.235
2322     k = minpos - heap;
2323     }
2324    
2325 root 1.247 heap [k] = he;
2326 root 1.241 ev_active (ANHE_w (he)) = k;
2327 root 1.235 }
2328    
2329 root 1.248 #else /* 4HEAP */
2330 root 1.235
2331     #define HEAP0 1
2332 root 1.247 #define HPARENT(k) ((k) >> 1)
2333 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2334 root 1.235
2335 root 1.248 /* away from the root */
2336 root 1.284 inline_speed void
2337 root 1.248 downheap (ANHE *heap, int N, int k)
2338 root 1.1 {
2339 root 1.241 ANHE he = heap [k];
2340 root 1.1
2341 root 1.228 for (;;)
2342 root 1.1 {
2343 root 1.248 int c = k << 1;
2344 root 1.179
2345 root 1.309 if (c >= N + HEAP0)
2346 root 1.179 break;
2347    
2348 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2349     ? 1 : 0;
2350    
2351     if (ANHE_at (he) <= ANHE_at (heap [c]))
2352     break;
2353    
2354     heap [k] = heap [c];
2355 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2356 root 1.248
2357     k = c;
2358 root 1.1 }
2359    
2360 root 1.243 heap [k] = he;
2361 root 1.248 ev_active (ANHE_w (he)) = k;
2362 root 1.1 }
2363 root 1.248 #endif
2364 root 1.1
2365 root 1.248 /* towards the root */
2366 root 1.284 inline_speed void
2367 root 1.248 upheap (ANHE *heap, int k)
2368 root 1.1 {
2369 root 1.241 ANHE he = heap [k];
2370 root 1.1
2371 root 1.179 for (;;)
2372 root 1.1 {
2373 root 1.248 int p = HPARENT (k);
2374 root 1.179
2375 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2376 root 1.179 break;
2377 root 1.1
2378 root 1.248 heap [k] = heap [p];
2379 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2380 root 1.248 k = p;
2381 root 1.1 }
2382    
2383 root 1.241 heap [k] = he;
2384     ev_active (ANHE_w (he)) = k;
2385 root 1.1 }
2386    
2387 root 1.288 /* move an element suitably so it is in a correct place */
2388 root 1.284 inline_size void
2389 root 1.241 adjustheap (ANHE *heap, int N, int k)
2390 root 1.84 {
2391 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2392 root 1.247 upheap (heap, k);
2393     else
2394     downheap (heap, N, k);
2395 root 1.84 }
2396    
2397 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2398 root 1.284 inline_size void
2399 root 1.248 reheap (ANHE *heap, int N)
2400     {
2401     int i;
2402 root 1.251
2403 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2404     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2405     for (i = 0; i < N; ++i)
2406     upheap (heap, i + HEAP0);
2407     }
2408    
2409 root 1.8 /*****************************************************************************/
2410    
2411 root 1.288 /* associate signal watchers to a signal signal */
2412 root 1.7 typedef struct
2413     {
2414 root 1.307 EV_ATOMIC_T pending;
2415 root 1.306 #if EV_MULTIPLICITY
2416     EV_P;
2417     #endif
2418 root 1.68 WL head;
2419 root 1.7 } ANSIG;
2420    
2421 root 1.306 static ANSIG signals [EV_NSIG - 1];
2422 root 1.7
2423 root 1.207 /*****************************************************************************/
2424    
2425 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2426 root 1.207
2427 root 1.480 noinline ecb_cold
2428     static void
2429 root 1.207 evpipe_init (EV_P)
2430     {
2431 root 1.288 if (!ev_is_active (&pipe_w))
2432 root 1.207 {
2433 root 1.448 int fds [2];
2434    
2435 root 1.336 # if EV_USE_EVENTFD
2436 root 1.448 fds [0] = -1;
2437     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2438     if (fds [1] < 0 && errno == EINVAL)
2439     fds [1] = eventfd (0, 0);
2440    
2441     if (fds [1] < 0)
2442     # endif
2443     {
2444     while (pipe (fds))
2445     ev_syserr ("(libev) error creating signal/async pipe");
2446    
2447     fd_intern (fds [0]);
2448 root 1.220 }
2449 root 1.448
2450     evpipe [0] = fds [0];
2451    
2452     if (evpipe [1] < 0)
2453     evpipe [1] = fds [1]; /* first call, set write fd */
2454 root 1.220 else
2455     {
2456 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2457     /* so that evpipe_write can always rely on its value. */
2458     /* this branch does not do anything sensible on windows, */
2459     /* so must not be executed on windows */
2460 root 1.207
2461 root 1.448 dup2 (fds [1], evpipe [1]);
2462     close (fds [1]);
2463 root 1.220 }
2464 root 1.207
2465 root 1.455 fd_intern (evpipe [1]);
2466    
2467 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2468 root 1.288 ev_io_start (EV_A_ &pipe_w);
2469 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2470 root 1.207 }
2471     }
2472    
2473 root 1.380 inline_speed void
2474 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2475 root 1.207 {
2476 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2477    
2478 root 1.383 if (expect_true (*flag))
2479 root 1.387 return;
2480 root 1.383
2481     *flag = 1;
2482 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2483 root 1.383
2484     pipe_write_skipped = 1;
2485 root 1.378
2486 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2487 root 1.214
2488 root 1.383 if (pipe_write_wanted)
2489     {
2490     int old_errno;
2491 root 1.378
2492 root 1.436 pipe_write_skipped = 0;
2493     ECB_MEMORY_FENCE_RELEASE;
2494 root 1.220
2495 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2496 root 1.380
2497 root 1.220 #if EV_USE_EVENTFD
2498 root 1.448 if (evpipe [0] < 0)
2499 root 1.383 {
2500     uint64_t counter = 1;
2501 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2502 root 1.383 }
2503     else
2504 root 1.220 #endif
2505 root 1.383 {
2506 root 1.427 #ifdef _WIN32
2507     WSABUF buf;
2508     DWORD sent;
2509 root 1.485 buf.buf = (char *)&buf;
2510 root 1.427 buf.len = 1;
2511     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2512     #else
2513 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2514 root 1.427 #endif
2515 root 1.383 }
2516 root 1.214
2517 root 1.383 errno = old_errno;
2518 root 1.207 }
2519     }
2520    
2521 root 1.288 /* called whenever the libev signal pipe */
2522     /* got some events (signal, async) */
2523 root 1.207 static void
2524     pipecb (EV_P_ ev_io *iow, int revents)
2525     {
2526 root 1.307 int i;
2527    
2528 root 1.378 if (revents & EV_READ)
2529     {
2530 root 1.220 #if EV_USE_EVENTFD
2531 root 1.448 if (evpipe [0] < 0)
2532 root 1.378 {
2533     uint64_t counter;
2534 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2535 root 1.378 }
2536     else
2537 root 1.220 #endif
2538 root 1.378 {
2539 root 1.427 char dummy[4];
2540     #ifdef _WIN32
2541     WSABUF buf;
2542     DWORD recvd;
2543 root 1.432 DWORD flags = 0;
2544 root 1.427 buf.buf = dummy;
2545     buf.len = sizeof (dummy);
2546 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2547 root 1.427 #else
2548     read (evpipe [0], &dummy, sizeof (dummy));
2549     #endif
2550 root 1.378 }
2551 root 1.220 }
2552 root 1.207
2553 root 1.378 pipe_write_skipped = 0;
2554    
2555 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2556    
2557 root 1.369 #if EV_SIGNAL_ENABLE
2558 root 1.307 if (sig_pending)
2559 root 1.372 {
2560 root 1.307 sig_pending = 0;
2561 root 1.207
2562 root 1.436 ECB_MEMORY_FENCE;
2563 root 1.424
2564 root 1.307 for (i = EV_NSIG - 1; i--; )
2565     if (expect_false (signals [i].pending))
2566     ev_feed_signal_event (EV_A_ i + 1);
2567 root 1.207 }
2568 root 1.369 #endif
2569 root 1.207
2570 root 1.209 #if EV_ASYNC_ENABLE
2571 root 1.307 if (async_pending)
2572 root 1.207 {
2573 root 1.307 async_pending = 0;
2574 root 1.207
2575 root 1.436 ECB_MEMORY_FENCE;
2576 root 1.424
2577 root 1.207 for (i = asynccnt; i--; )
2578     if (asyncs [i]->sent)
2579     {
2580     asyncs [i]->sent = 0;
2581 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2582 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2583     }
2584     }
2585 root 1.209 #endif
2586 root 1.207 }
2587    
2588     /*****************************************************************************/
2589    
2590 root 1.366 void
2591 root 1.486 ev_feed_signal (int signum) EV_NOEXCEPT
2592 root 1.7 {
2593 root 1.207 #if EV_MULTIPLICITY
2594 root 1.453 EV_P;
2595 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2596 root 1.453 EV_A = signals [signum - 1].loop;
2597 root 1.366
2598     if (!EV_A)
2599     return;
2600 root 1.207 #endif
2601    
2602 root 1.366 signals [signum - 1].pending = 1;
2603     evpipe_write (EV_A_ &sig_pending);
2604     }
2605    
2606     static void
2607     ev_sighandler (int signum)
2608     {
2609 root 1.322 #ifdef _WIN32
2610 root 1.218 signal (signum, ev_sighandler);
2611 root 1.67 #endif
2612    
2613 root 1.366 ev_feed_signal (signum);
2614 root 1.7 }
2615    
2616 root 1.480 noinline
2617     void
2618 root 1.486 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2619 root 1.79 {
2620 root 1.80 WL w;
2621    
2622 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2623 root 1.307 return;
2624    
2625     --signum;
2626    
2627 root 1.79 #if EV_MULTIPLICITY
2628 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2629     /* or, likely more useful, feeding a signal nobody is waiting for */
2630 root 1.79
2631 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2632 root 1.306 return;
2633 root 1.307 #endif
2634 root 1.306
2635 root 1.307 signals [signum].pending = 0;
2636 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2637 root 1.79
2638     for (w = signals [signum].head; w; w = w->next)
2639     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2640     }
2641    
2642 root 1.303 #if EV_USE_SIGNALFD
2643     static void
2644     sigfdcb (EV_P_ ev_io *iow, int revents)
2645     {
2646 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2647 root 1.303
2648     for (;;)
2649     {
2650     ssize_t res = read (sigfd, si, sizeof (si));
2651    
2652     /* not ISO-C, as res might be -1, but works with SuS */
2653     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2654     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2655    
2656     if (res < (ssize_t)sizeof (si))
2657     break;
2658     }
2659     }
2660     #endif
2661    
2662 root 1.336 #endif
2663    
2664 root 1.8 /*****************************************************************************/
2665    
2666 root 1.336 #if EV_CHILD_ENABLE
2667 root 1.182 static WL childs [EV_PID_HASHSIZE];
2668 root 1.71
2669 root 1.136 static ev_signal childev;
2670 root 1.59
2671 root 1.206 #ifndef WIFCONTINUED
2672     # define WIFCONTINUED(status) 0
2673     #endif
2674    
2675 root 1.288 /* handle a single child status event */
2676 root 1.284 inline_speed void
2677 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2678 root 1.47 {
2679 root 1.136 ev_child *w;
2680 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2681 root 1.47
2682 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2683 root 1.206 {
2684     if ((w->pid == pid || !w->pid)
2685     && (!traced || (w->flags & 1)))
2686     {
2687 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2688 root 1.206 w->rpid = pid;
2689     w->rstatus = status;
2690     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2691     }
2692     }
2693 root 1.47 }
2694    
2695 root 1.142 #ifndef WCONTINUED
2696     # define WCONTINUED 0
2697     #endif
2698    
2699 root 1.288 /* called on sigchld etc., calls waitpid */
2700 root 1.47 static void
2701 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2702 root 1.22 {
2703     int pid, status;
2704    
2705 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2706     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2707     if (!WCONTINUED
2708     || errno != EINVAL
2709     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2710     return;
2711    
2712 root 1.216 /* make sure we are called again until all children have been reaped */
2713 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2714     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2715 root 1.47
2716 root 1.216 child_reap (EV_A_ pid, pid, status);
2717 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2718 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2719 root 1.22 }
2720    
2721 root 1.45 #endif
2722    
2723 root 1.22 /*****************************************************************************/
2724    
2725 root 1.357 #if EV_USE_IOCP
2726     # include "ev_iocp.c"
2727     #endif
2728 root 1.118 #if EV_USE_PORT
2729     # include "ev_port.c"
2730     #endif
2731 root 1.44 #if EV_USE_KQUEUE
2732     # include "ev_kqueue.c"
2733     #endif
2734 root 1.490 #if EV_USE_LINUXAIO
2735     # include "ev_linuxaio.c"
2736     #endif
2737 root 1.29 #if EV_USE_EPOLL
2738 root 1.1 # include "ev_epoll.c"
2739     #endif
2740 root 1.59 #if EV_USE_POLL
2741 root 1.41 # include "ev_poll.c"
2742     #endif
2743 root 1.29 #if EV_USE_SELECT
2744 root 1.1 # include "ev_select.c"
2745     #endif
2746    
2747 root 1.480 ecb_cold int
2748 root 1.486 ev_version_major (void) EV_NOEXCEPT
2749 root 1.24 {
2750     return EV_VERSION_MAJOR;
2751     }
2752    
2753 root 1.480 ecb_cold int
2754 root 1.486 ev_version_minor (void) EV_NOEXCEPT
2755 root 1.24 {
2756     return EV_VERSION_MINOR;
2757     }
2758    
2759 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2760 root 1.480 inline_size ecb_cold int
2761 root 1.51 enable_secure (void)
2762 root 1.41 {
2763 root 1.103 #ifdef _WIN32
2764 root 1.49 return 0;
2765     #else
2766 root 1.41 return getuid () != geteuid ()
2767     || getgid () != getegid ();
2768 root 1.49 #endif
2769 root 1.41 }
2770    
2771 root 1.480 ecb_cold
2772     unsigned int
2773 root 1.486 ev_supported_backends (void) EV_NOEXCEPT
2774 root 1.129 {
2775 root 1.130 unsigned int flags = 0;
2776 root 1.129
2777 root 1.490 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2778     if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2779     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2780     if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2781     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2782     if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2783 root 1.129
2784     return flags;
2785     }
2786    
2787 root 1.480 ecb_cold
2788     unsigned int
2789 root 1.486 ev_recommended_backends (void) EV_NOEXCEPT
2790 root 1.1 {
2791 root 1.131 unsigned int flags = ev_supported_backends ();
2792 root 1.129
2793     #ifndef __NetBSD__
2794     /* kqueue is borked on everything but netbsd apparently */
2795     /* it usually doesn't work correctly on anything but sockets and pipes */
2796     flags &= ~EVBACKEND_KQUEUE;
2797     #endif
2798     #ifdef __APPLE__
2799 root 1.278 /* only select works correctly on that "unix-certified" platform */
2800     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2801     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2802 root 1.129 #endif
2803 root 1.342 #ifdef __FreeBSD__
2804     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2805     #endif
2806 root 1.129
2807 root 1.491 /* TODO: linuxaio is very experimental */
2808     flags &= ~EVBACKEND_LINUXAIO;
2809    
2810 root 1.129 return flags;
2811 root 1.51 }
2812    
2813 root 1.480 ecb_cold
2814     unsigned int
2815 root 1.486 ev_embeddable_backends (void) EV_NOEXCEPT
2816 root 1.134 {
2817 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2818    
2819 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2820 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2821     flags &= ~EVBACKEND_EPOLL;
2822 root 1.196
2823     return flags;
2824 root 1.134 }
2825    
2826     unsigned int
2827 root 1.486 ev_backend (EV_P) EV_NOEXCEPT
2828 root 1.130 {
2829     return backend;
2830     }
2831    
2832 root 1.338 #if EV_FEATURE_API
2833 root 1.162 unsigned int
2834 root 1.486 ev_iteration (EV_P) EV_NOEXCEPT
2835 root 1.162 {
2836     return loop_count;
2837     }
2838    
2839 root 1.294 unsigned int
2840 root 1.486 ev_depth (EV_P) EV_NOEXCEPT
2841 root 1.294 {
2842     return loop_depth;
2843     }
2844    
2845 root 1.193 void
2846 root 1.486 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2847 root 1.193 {
2848     io_blocktime = interval;
2849     }
2850    
2851     void
2852 root 1.486 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2853 root 1.193 {
2854     timeout_blocktime = interval;
2855     }
2856    
2857 root 1.297 void
2858 root 1.486 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2859 root 1.297 {
2860     userdata = data;
2861     }
2862    
2863     void *
2864 root 1.486 ev_userdata (EV_P) EV_NOEXCEPT
2865 root 1.297 {
2866     return userdata;
2867     }
2868    
2869 root 1.379 void
2870 root 1.486 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2871 root 1.297 {
2872     invoke_cb = invoke_pending_cb;
2873     }
2874    
2875 root 1.379 void
2876 root 1.486 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2877 root 1.297 {
2878 root 1.298 release_cb = release;
2879     acquire_cb = acquire;
2880 root 1.297 }
2881     #endif
2882    
2883 root 1.288 /* initialise a loop structure, must be zero-initialised */
2884 root 1.480 noinline ecb_cold
2885     static void
2886 root 1.486 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
2887 root 1.51 {
2888 root 1.130 if (!backend)
2889 root 1.23 {
2890 root 1.366 origflags = flags;
2891    
2892 root 1.279 #if EV_USE_REALTIME
2893     if (!have_realtime)
2894     {
2895     struct timespec ts;
2896    
2897     if (!clock_gettime (CLOCK_REALTIME, &ts))
2898     have_realtime = 1;
2899     }
2900     #endif
2901    
2902 root 1.29 #if EV_USE_MONOTONIC
2903 root 1.279 if (!have_monotonic)
2904     {
2905     struct timespec ts;
2906    
2907     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2908     have_monotonic = 1;
2909     }
2910 root 1.1 #endif
2911    
2912 root 1.306 /* pid check not overridable via env */
2913     #ifndef _WIN32
2914     if (flags & EVFLAG_FORKCHECK)
2915     curpid = getpid ();
2916     #endif
2917    
2918     if (!(flags & EVFLAG_NOENV)
2919     && !enable_secure ()
2920     && getenv ("LIBEV_FLAGS"))
2921     flags = atoi (getenv ("LIBEV_FLAGS"));
2922    
2923 root 1.378 ev_rt_now = ev_time ();
2924     mn_now = get_clock ();
2925     now_floor = mn_now;
2926     rtmn_diff = ev_rt_now - mn_now;
2927 root 1.338 #if EV_FEATURE_API
2928 root 1.378 invoke_cb = ev_invoke_pending;
2929 root 1.297 #endif
2930 root 1.1
2931 root 1.378 io_blocktime = 0.;
2932     timeout_blocktime = 0.;
2933     backend = 0;
2934     backend_fd = -1;
2935     sig_pending = 0;
2936 root 1.307 #if EV_ASYNC_ENABLE
2937 root 1.378 async_pending = 0;
2938 root 1.307 #endif
2939 root 1.378 pipe_write_skipped = 0;
2940     pipe_write_wanted = 0;
2941 root 1.448 evpipe [0] = -1;
2942     evpipe [1] = -1;
2943 root 1.209 #if EV_USE_INOTIFY
2944 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2945 root 1.209 #endif
2946 root 1.303 #if EV_USE_SIGNALFD
2947 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2948 root 1.303 #endif
2949 root 1.193
2950 root 1.366 if (!(flags & EVBACKEND_MASK))
2951 root 1.129 flags |= ev_recommended_backends ();
2952 root 1.41
2953 root 1.357 #if EV_USE_IOCP
2954 root 1.490 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2955 root 1.357 #endif
2956 root 1.118 #if EV_USE_PORT
2957 root 1.490 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2958 root 1.118 #endif
2959 root 1.44 #if EV_USE_KQUEUE
2960 root 1.490 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2961     #endif
2962     #if EV_USE_LINUXAIO
2963     if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
2964 root 1.44 #endif
2965 root 1.29 #if EV_USE_EPOLL
2966 root 1.490 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2967 root 1.41 #endif
2968 root 1.59 #if EV_USE_POLL
2969 root 1.490 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2970 root 1.1 #endif
2971 root 1.29 #if EV_USE_SELECT
2972 root 1.490 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
2973 root 1.1 #endif
2974 root 1.70
2975 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2976    
2977 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2978 root 1.288 ev_init (&pipe_w, pipecb);
2979     ev_set_priority (&pipe_w, EV_MAXPRI);
2980 root 1.336 #endif
2981 root 1.56 }
2982     }
2983    
2984 root 1.288 /* free up a loop structure */
2985 root 1.480 ecb_cold
2986     void
2987 root 1.422 ev_loop_destroy (EV_P)
2988 root 1.56 {
2989 root 1.65 int i;
2990    
2991 root 1.364 #if EV_MULTIPLICITY
2992 root 1.363 /* mimic free (0) */
2993     if (!EV_A)
2994     return;
2995 root 1.364 #endif
2996 root 1.363
2997 root 1.361 #if EV_CLEANUP_ENABLE
2998     /* queue cleanup watchers (and execute them) */
2999     if (expect_false (cleanupcnt))
3000     {
3001     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3002     EV_INVOKE_PENDING;
3003     }
3004     #endif
3005    
3006 root 1.359 #if EV_CHILD_ENABLE
3007 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3008 root 1.359 {
3009     ev_ref (EV_A); /* child watcher */
3010     ev_signal_stop (EV_A_ &childev);
3011     }
3012     #endif
3013    
3014 root 1.288 if (ev_is_active (&pipe_w))
3015 root 1.207 {
3016 root 1.303 /*ev_ref (EV_A);*/
3017     /*ev_io_stop (EV_A_ &pipe_w);*/
3018 root 1.207
3019 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3020     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3021 root 1.207 }
3022    
3023 root 1.303 #if EV_USE_SIGNALFD
3024     if (ev_is_active (&sigfd_w))
3025 root 1.317 close (sigfd);
3026 root 1.303 #endif
3027    
3028 root 1.152 #if EV_USE_INOTIFY
3029     if (fs_fd >= 0)
3030     close (fs_fd);
3031     #endif
3032    
3033     if (backend_fd >= 0)
3034     close (backend_fd);
3035    
3036 root 1.357 #if EV_USE_IOCP
3037 root 1.490 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3038 root 1.357 #endif
3039 root 1.118 #if EV_USE_PORT
3040 root 1.490 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3041 root 1.118 #endif
3042 root 1.56 #if EV_USE_KQUEUE
3043 root 1.490 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3044     #endif
3045     #if EV_USE_LINUXAIO
3046     if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3047 root 1.56 #endif
3048     #if EV_USE_EPOLL
3049 root 1.490 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3050 root 1.56 #endif
3051 root 1.59 #if EV_USE_POLL
3052 root 1.490 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3053 root 1.56 #endif
3054     #if EV_USE_SELECT
3055 root 1.490 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3056 root 1.56 #endif
3057 root 1.1
3058 root 1.65 for (i = NUMPRI; i--; )
3059 root 1.164 {
3060     array_free (pending, [i]);
3061     #if EV_IDLE_ENABLE
3062     array_free (idle, [i]);
3063     #endif
3064     }
3065 root 1.65
3066 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
3067 root 1.186
3068 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
3069 root 1.284 array_free (rfeed, EMPTY);
3070 root 1.164 array_free (fdchange, EMPTY);
3071     array_free (timer, EMPTY);
3072 root 1.140 #if EV_PERIODIC_ENABLE
3073 root 1.164 array_free (periodic, EMPTY);
3074 root 1.93 #endif
3075 root 1.187 #if EV_FORK_ENABLE
3076     array_free (fork, EMPTY);
3077     #endif
3078 root 1.360 #if EV_CLEANUP_ENABLE
3079     array_free (cleanup, EMPTY);
3080     #endif
3081 root 1.164 array_free (prepare, EMPTY);
3082     array_free (check, EMPTY);
3083 root 1.209 #if EV_ASYNC_ENABLE
3084     array_free (async, EMPTY);
3085     #endif
3086 root 1.65
3087 root 1.130 backend = 0;
3088 root 1.359
3089     #if EV_MULTIPLICITY
3090     if (ev_is_default_loop (EV_A))
3091     #endif
3092     ev_default_loop_ptr = 0;
3093     #if EV_MULTIPLICITY
3094     else
3095     ev_free (EV_A);
3096     #endif
3097 root 1.56 }
3098 root 1.22
3099 root 1.226 #if EV_USE_INOTIFY
3100 root 1.284 inline_size void infy_fork (EV_P);
3101 root 1.226 #endif
3102 root 1.154
3103 root 1.284 inline_size void
3104 root 1.56 loop_fork (EV_P)
3105     {
3106 root 1.118 #if EV_USE_PORT
3107 root 1.490 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3108 root 1.56 #endif
3109     #if EV_USE_KQUEUE
3110 root 1.490 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3111     #endif
3112     #if EV_USE_LINUXAIO
3113     if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3114 root 1.45 #endif
3115 root 1.118 #if EV_USE_EPOLL
3116 root 1.490 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3117 root 1.118 #endif
3118 root 1.154 #if EV_USE_INOTIFY
3119     infy_fork (EV_A);
3120     #endif
3121 root 1.70
3122 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3123 root 1.478 if (ev_is_active (&pipe_w) && postfork != 2)
3124 root 1.70 {
3125 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3126 root 1.70
3127     ev_ref (EV_A);
3128 root 1.288 ev_io_stop (EV_A_ &pipe_w);
3129 root 1.220
3130     if (evpipe [0] >= 0)
3131 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
3132 root 1.207
3133     evpipe_init (EV_A);
3134 root 1.443 /* iterate over everything, in case we missed something before */
3135     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3136 root 1.448 }
3137 root 1.337 #endif
3138 root 1.70
3139     postfork = 0;
3140 root 1.1 }
3141    
3142 root 1.55 #if EV_MULTIPLICITY
3143 root 1.250
3144 root 1.480 ecb_cold
3145     struct ev_loop *
3146 root 1.486 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3147 root 1.54 {
3148 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3149 root 1.69
3150 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
3151 root 1.108 loop_init (EV_A_ flags);
3152 root 1.56
3153 root 1.130 if (ev_backend (EV_A))
3154 root 1.306 return EV_A;
3155 root 1.54
3156 root 1.359 ev_free (EV_A);
3157 root 1.55 return 0;
3158 root 1.54 }
3159    
3160 root 1.297 #endif /* multiplicity */
3161 root 1.248
3162     #if EV_VERIFY
3163 root 1.480 noinline ecb_cold
3164     static void
3165 root 1.251 verify_watcher (EV_P_ W w)
3166     {
3167 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3168 root 1.251
3169     if (w->pending)
3170 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3171 root 1.251 }
3172    
3173 root 1.480 noinline ecb_cold
3174     static void
3175 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
3176     {
3177     int i;
3178    
3179     for (i = HEAP0; i < N + HEAP0; ++i)
3180     {
3181 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3182     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3183     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3184 root 1.251
3185     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3186     }
3187     }
3188    
3189 root 1.480 noinline ecb_cold
3190     static void
3191 root 1.251 array_verify (EV_P_ W *ws, int cnt)
3192 root 1.248 {
3193     while (cnt--)
3194 root 1.251 {
3195 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3196 root 1.251 verify_watcher (EV_A_ ws [cnt]);
3197     }
3198 root 1.248 }
3199 root 1.250 #endif
3200 root 1.248
3201 root 1.338 #if EV_FEATURE_API
3202 root 1.379 void ecb_cold
3203 root 1.486 ev_verify (EV_P) EV_NOEXCEPT
3204 root 1.248 {
3205 root 1.250 #if EV_VERIFY
3206 root 1.429 int i;
3207 root 1.426 WL w, w2;
3208 root 1.251
3209     assert (activecnt >= -1);
3210    
3211     assert (fdchangemax >= fdchangecnt);
3212     for (i = 0; i < fdchangecnt; ++i)
3213 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3214 root 1.251
3215     assert (anfdmax >= 0);
3216 root 1.429 for (i = 0; i < anfdmax; ++i)
3217     {
3218     int j = 0;
3219    
3220     for (w = w2 = anfds [i].head; w; w = w->next)
3221     {
3222     verify_watcher (EV_A_ (W)w);
3223 root 1.426
3224 root 1.429 if (j++ & 1)
3225     {
3226     assert (("libev: io watcher list contains a loop", w != w2));
3227     w2 = w2->next;
3228     }
3229 root 1.426
3230 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3231     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3232     }
3233     }
3234 root 1.251
3235     assert (timermax >= timercnt);
3236     verify_heap (EV_A_ timers, timercnt);
3237 root 1.248
3238     #if EV_PERIODIC_ENABLE
3239 root 1.251 assert (periodicmax >= periodiccnt);
3240     verify_heap (EV_A_ periodics, periodiccnt);
3241 root 1.248 #endif
3242    
3243 root 1.251 for (i = NUMPRI; i--; )
3244     {
3245     assert (pendingmax [i] >= pendingcnt [i]);
3246 root 1.248 #if EV_IDLE_ENABLE
3247 root 1.252 assert (idleall >= 0);
3248 root 1.251 assert (idlemax [i] >= idlecnt [i]);
3249     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3250 root 1.248 #endif
3251 root 1.251 }
3252    
3253 root 1.248 #if EV_FORK_ENABLE
3254 root 1.251 assert (forkmax >= forkcnt);
3255     array_verify (EV_A_ (W *)forks, forkcnt);
3256 root 1.248 #endif
3257 root 1.251
3258 root 1.360 #if EV_CLEANUP_ENABLE
3259     assert (cleanupmax >= cleanupcnt);
3260     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3261     #endif
3262    
3263 root 1.250 #if EV_ASYNC_ENABLE
3264 root 1.251 assert (asyncmax >= asynccnt);
3265     array_verify (EV_A_ (W *)asyncs, asynccnt);
3266 root 1.250 #endif
3267 root 1.251
3268 root 1.337 #if EV_PREPARE_ENABLE
3269 root 1.251 assert (preparemax >= preparecnt);
3270     array_verify (EV_A_ (W *)prepares, preparecnt);
3271 root 1.337 #endif
3272 root 1.251
3273 root 1.337 #if EV_CHECK_ENABLE
3274 root 1.251 assert (checkmax >= checkcnt);
3275     array_verify (EV_A_ (W *)checks, checkcnt);
3276 root 1.337 #endif
3277 root 1.251
3278     # if 0
3279 root 1.336 #if EV_CHILD_ENABLE
3280 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3281 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3282 root 1.336 #endif
3283 root 1.251 # endif
3284 root 1.248 #endif
3285     }
3286 root 1.297 #endif
3287 root 1.56
3288     #if EV_MULTIPLICITY
3289 root 1.480 ecb_cold
3290     struct ev_loop *
3291 root 1.54 #else
3292     int
3293 root 1.358 #endif
3294 root 1.486 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3295 root 1.54 {
3296 root 1.116 if (!ev_default_loop_ptr)
3297 root 1.56 {
3298     #if EV_MULTIPLICITY
3299 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
3300 root 1.56 #else
3301 ayin 1.117 ev_default_loop_ptr = 1;
3302 root 1.54 #endif
3303    
3304 root 1.110 loop_init (EV_A_ flags);
3305 root 1.56
3306 root 1.130 if (ev_backend (EV_A))
3307 root 1.56 {
3308 root 1.336 #if EV_CHILD_ENABLE
3309 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
3310     ev_set_priority (&childev, EV_MAXPRI);
3311     ev_signal_start (EV_A_ &childev);
3312     ev_unref (EV_A); /* child watcher should not keep loop alive */
3313     #endif
3314     }
3315     else
3316 root 1.116 ev_default_loop_ptr = 0;
3317 root 1.56 }
3318 root 1.8
3319 root 1.116 return ev_default_loop_ptr;
3320 root 1.1 }
3321    
3322 root 1.24 void
3323 root 1.486 ev_loop_fork (EV_P) EV_NOEXCEPT
3324 root 1.1 {
3325 root 1.440 postfork = 1;
3326 root 1.1 }
3327    
3328 root 1.8 /*****************************************************************************/
3329    
3330 root 1.168 void
3331     ev_invoke (EV_P_ void *w, int revents)
3332     {
3333     EV_CB_INVOKE ((W)w, revents);
3334     }
3335    
3336 root 1.300 unsigned int
3337 root 1.486 ev_pending_count (EV_P) EV_NOEXCEPT
3338 root 1.300 {
3339     int pri;
3340     unsigned int count = 0;
3341    
3342     for (pri = NUMPRI; pri--; )
3343     count += pendingcnt [pri];
3344    
3345     return count;
3346     }
3347    
3348 root 1.480 noinline
3349     void
3350 root 1.296 ev_invoke_pending (EV_P)
3351 root 1.1 {
3352 root 1.445 pendingpri = NUMPRI;
3353    
3354 root 1.484 do
3355 root 1.445 {
3356     --pendingpri;
3357    
3358 root 1.484 /* pendingpri possibly gets modified in the inner loop */
3359 root 1.445 while (pendingcnt [pendingpri])
3360     {
3361     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3362 root 1.1
3363 root 1.445 p->w->pending = 0;
3364     EV_CB_INVOKE (p->w, p->events);
3365     EV_FREQUENT_CHECK;
3366     }
3367     }
3368 root 1.484 while (pendingpri);
3369 root 1.1 }
3370    
3371 root 1.234 #if EV_IDLE_ENABLE
3372 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3373     /* only when higher priorities are idle" logic */
3374 root 1.284 inline_size void
3375 root 1.234 idle_reify (EV_P)
3376     {
3377     if (expect_false (idleall))
3378     {
3379     int pri;
3380    
3381     for (pri = NUMPRI; pri--; )
3382     {
3383     if (pendingcnt [pri])
3384     break;
3385    
3386     if (idlecnt [pri])
3387     {
3388     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3389     break;
3390     }
3391     }
3392     }
3393     }
3394     #endif
3395    
3396 root 1.288 /* make timers pending */
3397 root 1.284 inline_size void
3398 root 1.51 timers_reify (EV_P)
3399 root 1.1 {
3400 root 1.248 EV_FREQUENT_CHECK;
3401    
3402 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3403 root 1.1 {
3404 root 1.284 do
3405     {
3406     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3407 root 1.1
3408 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3409    
3410     /* first reschedule or stop timer */
3411     if (w->repeat)
3412     {
3413     ev_at (w) += w->repeat;
3414     if (ev_at (w) < mn_now)
3415     ev_at (w) = mn_now;
3416 root 1.61
3417 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3418 root 1.90
3419 root 1.284 ANHE_at_cache (timers [HEAP0]);
3420     downheap (timers, timercnt, HEAP0);
3421     }
3422     else
3423     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3424 root 1.243
3425 root 1.284 EV_FREQUENT_CHECK;
3426     feed_reverse (EV_A_ (W)w);
3427 root 1.12 }
3428 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3429 root 1.30
3430 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3431 root 1.12 }
3432     }
3433 root 1.4
3434 root 1.140 #if EV_PERIODIC_ENABLE
3435 root 1.370
3436 root 1.480 noinline
3437     static void
3438 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3439     {
3440 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3441     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3442    
3443     /* the above almost always errs on the low side */
3444     while (at <= ev_rt_now)
3445     {
3446     ev_tstamp nat = at + w->interval;
3447    
3448     /* when resolution fails us, we use ev_rt_now */
3449     if (expect_false (nat == at))
3450     {
3451     at = ev_rt_now;
3452     break;
3453     }
3454    
3455     at = nat;
3456     }
3457    
3458     ev_at (w) = at;
3459 root 1.370 }
3460    
3461 root 1.288 /* make periodics pending */
3462 root 1.284 inline_size void
3463 root 1.51 periodics_reify (EV_P)
3464 root 1.12 {
3465 root 1.248 EV_FREQUENT_CHECK;
3466 root 1.250
3467 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3468 root 1.12 {
3469 root 1.284 do
3470     {
3471     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3472 root 1.1
3473 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3474 root 1.61
3475 root 1.284 /* first reschedule or stop timer */
3476     if (w->reschedule_cb)
3477     {
3478     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3479 root 1.243
3480 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3481 root 1.243
3482 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3483     downheap (periodics, periodiccnt, HEAP0);
3484     }
3485     else if (w->interval)
3486 root 1.246 {
3487 root 1.370 periodic_recalc (EV_A_ w);
3488 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3489     downheap (periodics, periodiccnt, HEAP0);
3490 root 1.246 }
3491 root 1.284 else
3492     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3493 root 1.243
3494 root 1.284 EV_FREQUENT_CHECK;
3495     feed_reverse (EV_A_ (W)w);
3496 root 1.1 }
3497 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3498 root 1.12
3499 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3500 root 1.12 }
3501     }
3502    
3503 root 1.288 /* simply recalculate all periodics */
3504 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3505 root 1.480 noinline ecb_cold
3506     static void
3507 root 1.54 periodics_reschedule (EV_P)
3508 root 1.12 {
3509     int i;
3510    
3511 root 1.13 /* adjust periodics after time jump */
3512 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3513 root 1.12 {
3514 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3515 root 1.12
3516 root 1.77 if (w->reschedule_cb)
3517 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3518 root 1.77 else if (w->interval)
3519 root 1.370 periodic_recalc (EV_A_ w);
3520 root 1.242
3521 root 1.248 ANHE_at_cache (periodics [i]);
3522 root 1.77 }
3523 root 1.12
3524 root 1.248 reheap (periodics, periodiccnt);
3525 root 1.1 }
3526 root 1.93 #endif
3527 root 1.1
3528 root 1.288 /* adjust all timers by a given offset */
3529 root 1.480 noinline ecb_cold
3530     static void
3531 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3532     {
3533     int i;
3534    
3535     for (i = 0; i < timercnt; ++i)
3536     {
3537     ANHE *he = timers + i + HEAP0;
3538     ANHE_w (*he)->at += adjust;
3539     ANHE_at_cache (*he);
3540     }
3541     }
3542    
3543 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3544 root 1.324 /* also detect if there was a timejump, and act accordingly */
3545 root 1.284 inline_speed void
3546 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3547 root 1.4 {
3548 root 1.40 #if EV_USE_MONOTONIC
3549     if (expect_true (have_monotonic))
3550     {
3551 root 1.289 int i;
3552 root 1.178 ev_tstamp odiff = rtmn_diff;
3553    
3554     mn_now = get_clock ();
3555    
3556     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3557     /* interpolate in the meantime */
3558     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3559 root 1.40 {
3560 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3561     return;
3562     }
3563    
3564     now_floor = mn_now;
3565     ev_rt_now = ev_time ();
3566 root 1.4
3567 root 1.178 /* loop a few times, before making important decisions.
3568     * on the choice of "4": one iteration isn't enough,
3569     * in case we get preempted during the calls to
3570     * ev_time and get_clock. a second call is almost guaranteed
3571     * to succeed in that case, though. and looping a few more times
3572     * doesn't hurt either as we only do this on time-jumps or
3573     * in the unlikely event of having been preempted here.
3574     */
3575     for (i = 4; --i; )
3576     {
3577 root 1.373 ev_tstamp diff;
3578 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3579 root 1.4
3580 root 1.373 diff = odiff - rtmn_diff;
3581    
3582     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3583 root 1.178 return; /* all is well */
3584 root 1.4
3585 root 1.178 ev_rt_now = ev_time ();
3586     mn_now = get_clock ();
3587     now_floor = mn_now;
3588     }
3589 root 1.4
3590 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3591     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3592 root 1.140 # if EV_PERIODIC_ENABLE
3593 root 1.178 periodics_reschedule (EV_A);
3594 root 1.93 # endif
3595 root 1.4 }
3596     else
3597 root 1.40 #endif
3598 root 1.4 {
3599 root 1.85 ev_rt_now = ev_time ();
3600 root 1.40
3601 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3602 root 1.13 {
3603 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3604     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3605 root 1.140 #if EV_PERIODIC_ENABLE
3606 root 1.54 periodics_reschedule (EV_A);
3607 root 1.93 #endif
3608 root 1.13 }
3609 root 1.4
3610 root 1.85 mn_now = ev_rt_now;
3611 root 1.4 }
3612     }
3613    
3614 root 1.418 int
3615 root 1.353 ev_run (EV_P_ int flags)
3616 root 1.1 {
3617 root 1.338 #if EV_FEATURE_API
3618 root 1.294 ++loop_depth;
3619 root 1.297 #endif
3620 root 1.294
3621 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3622 root 1.298
3623 root 1.353 loop_done = EVBREAK_CANCEL;
3624 root 1.1
3625 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3626 root 1.158
3627 root 1.161 do
3628 root 1.9 {
3629 root 1.250 #if EV_VERIFY >= 2
3630 root 1.340 ev_verify (EV_A);
3631 root 1.250 #endif
3632    
3633 root 1.158 #ifndef _WIN32
3634     if (expect_false (curpid)) /* penalise the forking check even more */
3635     if (expect_false (getpid () != curpid))
3636     {
3637     curpid = getpid ();
3638     postfork = 1;
3639     }
3640     #endif
3641    
3642 root 1.157 #if EV_FORK_ENABLE
3643     /* we might have forked, so queue fork handlers */
3644     if (expect_false (postfork))
3645     if (forkcnt)
3646     {
3647     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3648 root 1.297 EV_INVOKE_PENDING;
3649 root 1.157 }
3650     #endif
3651 root 1.147
3652 root 1.337 #if EV_PREPARE_ENABLE
3653 root 1.170 /* queue prepare watchers (and execute them) */
3654 root 1.40 if (expect_false (preparecnt))
3655 root 1.20 {
3656 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3657 root 1.297 EV_INVOKE_PENDING;
3658 root 1.20 }
3659 root 1.337 #endif
3660 root 1.9
3661 root 1.298 if (expect_false (loop_done))
3662     break;
3663    
3664 root 1.70 /* we might have forked, so reify kernel state if necessary */
3665     if (expect_false (postfork))
3666     loop_fork (EV_A);
3667    
3668 root 1.1 /* update fd-related kernel structures */
3669 root 1.51 fd_reify (EV_A);
3670 root 1.1
3671     /* calculate blocking time */
3672 root 1.135 {
3673 root 1.193 ev_tstamp waittime = 0.;
3674     ev_tstamp sleeptime = 0.;
3675 root 1.12
3676 root 1.353 /* remember old timestamp for io_blocktime calculation */
3677     ev_tstamp prev_mn_now = mn_now;
3678 root 1.293
3679 root 1.353 /* update time to cancel out callback processing overhead */
3680     time_update (EV_A_ 1e100);
3681 root 1.135
3682 root 1.378 /* from now on, we want a pipe-wake-up */
3683     pipe_write_wanted = 1;
3684    
3685 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3686 root 1.383
3687 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3688 root 1.353 {
3689 root 1.287 waittime = MAX_BLOCKTIME;
3690    
3691 root 1.135 if (timercnt)
3692     {
3693 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3694 root 1.193 if (waittime > to) waittime = to;
3695 root 1.135 }
3696 root 1.4
3697 root 1.140 #if EV_PERIODIC_ENABLE
3698 root 1.135 if (periodiccnt)
3699     {
3700 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3701 root 1.193 if (waittime > to) waittime = to;
3702 root 1.135 }
3703 root 1.93 #endif
3704 root 1.4
3705 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3706 root 1.193 if (expect_false (waittime < timeout_blocktime))
3707     waittime = timeout_blocktime;
3708    
3709 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3710     /* to pass a minimum nonzero value to the backend */
3711     if (expect_false (waittime < backend_mintime))
3712     waittime = backend_mintime;
3713    
3714 root 1.293 /* extra check because io_blocktime is commonly 0 */
3715     if (expect_false (io_blocktime))
3716     {
3717     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3718 root 1.193
3719 root 1.376 if (sleeptime > waittime - backend_mintime)
3720     sleeptime = waittime - backend_mintime;
3721 root 1.193
3722 root 1.293 if (expect_true (sleeptime > 0.))
3723     {
3724     ev_sleep (sleeptime);
3725     waittime -= sleeptime;
3726     }
3727 root 1.193 }
3728 root 1.135 }
3729 root 1.1
3730 root 1.338 #if EV_FEATURE_API
3731 root 1.162 ++loop_count;
3732 root 1.297 #endif
3733 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3734 root 1.193 backend_poll (EV_A_ waittime);
3735 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3736 root 1.178
3737 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3738 root 1.378
3739 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3740 root 1.378 if (pipe_write_skipped)
3741     {
3742     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3743     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3744     }
3745    
3746    
3747 root 1.178 /* update ev_rt_now, do magic */
3748 root 1.193 time_update (EV_A_ waittime + sleeptime);
3749 root 1.135 }
3750 root 1.1
3751 root 1.9 /* queue pending timers and reschedule them */
3752 root 1.51 timers_reify (EV_A); /* relative timers called last */
3753 root 1.140 #if EV_PERIODIC_ENABLE
3754 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3755 root 1.93 #endif
3756 root 1.1
3757 root 1.164 #if EV_IDLE_ENABLE
3758 root 1.137 /* queue idle watchers unless other events are pending */
3759 root 1.164 idle_reify (EV_A);
3760     #endif
3761 root 1.9
3762 root 1.337 #if EV_CHECK_ENABLE
3763 root 1.20 /* queue check watchers, to be executed first */
3764 root 1.123 if (expect_false (checkcnt))
3765 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3766 root 1.337 #endif
3767 root 1.9
3768 root 1.297 EV_INVOKE_PENDING;
3769 root 1.1 }
3770 root 1.219 while (expect_true (
3771     activecnt
3772     && !loop_done
3773 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3774 root 1.219 ));
3775 root 1.13
3776 root 1.353 if (loop_done == EVBREAK_ONE)
3777     loop_done = EVBREAK_CANCEL;
3778 root 1.294
3779 root 1.338 #if EV_FEATURE_API
3780 root 1.294 --loop_depth;
3781 root 1.297 #endif
3782 root 1.418
3783     return activecnt;
3784 root 1.51 }
3785    
3786     void
3787 root 1.486 ev_break (EV_P_ int how) EV_NOEXCEPT
3788 root 1.51 {
3789     loop_done = how;
3790 root 1.1 }
3791    
3792 root 1.285 void
3793 root 1.486 ev_ref (EV_P) EV_NOEXCEPT
3794 root 1.285 {
3795     ++activecnt;
3796     }
3797    
3798     void
3799 root 1.486 ev_unref (EV_P) EV_NOEXCEPT
3800 root 1.285 {
3801     --activecnt;
3802     }
3803    
3804     void
3805 root 1.486 ev_now_update (EV_P) EV_NOEXCEPT
3806 root 1.285 {
3807     time_update (EV_A_ 1e100);
3808     }
3809    
3810     void
3811 root 1.486 ev_suspend (EV_P) EV_NOEXCEPT
3812 root 1.285 {
3813     ev_now_update (EV_A);
3814     }
3815    
3816     void
3817 root 1.486 ev_resume (EV_P) EV_NOEXCEPT
3818 root 1.285 {
3819     ev_tstamp mn_prev = mn_now;
3820    
3821     ev_now_update (EV_A);
3822     timers_reschedule (EV_A_ mn_now - mn_prev);
3823 root 1.286 #if EV_PERIODIC_ENABLE
3824 root 1.288 /* TODO: really do this? */
3825 root 1.285 periodics_reschedule (EV_A);
3826 root 1.286 #endif
3827 root 1.285 }
3828    
3829 root 1.8 /*****************************************************************************/
3830 root 1.288 /* singly-linked list management, used when the expected list length is short */
3831 root 1.8
3832 root 1.284 inline_size void
3833 root 1.10 wlist_add (WL *head, WL elem)
3834 root 1.1 {
3835     elem->next = *head;
3836     *head = elem;
3837     }
3838    
3839 root 1.284 inline_size void
3840 root 1.10 wlist_del (WL *head, WL elem)
3841 root 1.1 {
3842     while (*head)
3843     {
3844 root 1.307 if (expect_true (*head == elem))
3845 root 1.1 {
3846     *head = elem->next;
3847 root 1.307 break;
3848 root 1.1 }
3849    
3850     head = &(*head)->next;
3851     }
3852     }
3853    
3854 root 1.288 /* internal, faster, version of ev_clear_pending */
3855 root 1.284 inline_speed void
3856 root 1.166 clear_pending (EV_P_ W w)
3857 root 1.16 {
3858     if (w->pending)
3859     {
3860 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3861 root 1.16 w->pending = 0;
3862     }
3863     }
3864    
3865 root 1.167 int
3866 root 1.486 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3867 root 1.166 {
3868     W w_ = (W)w;
3869     int pending = w_->pending;
3870    
3871 root 1.172 if (expect_true (pending))
3872     {
3873     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3874 root 1.288 p->w = (W)&pending_w;
3875 root 1.172 w_->pending = 0;
3876     return p->events;
3877     }
3878     else
3879 root 1.167 return 0;
3880 root 1.166 }
3881    
3882 root 1.284 inline_size void
3883 root 1.164 pri_adjust (EV_P_ W w)
3884     {
3885 root 1.295 int pri = ev_priority (w);
3886 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3887     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3888 root 1.295 ev_set_priority (w, pri);
3889 root 1.164 }
3890    
3891 root 1.284 inline_speed void
3892 root 1.51 ev_start (EV_P_ W w, int active)
3893 root 1.1 {
3894 root 1.164 pri_adjust (EV_A_ w);
3895 root 1.1 w->active = active;
3896 root 1.51 ev_ref (EV_A);
3897 root 1.1 }
3898    
3899 root 1.284 inline_size void
3900 root 1.51 ev_stop (EV_P_ W w)
3901 root 1.1 {
3902 root 1.51 ev_unref (EV_A);
3903 root 1.1 w->active = 0;
3904     }
3905    
3906 root 1.8 /*****************************************************************************/
3907    
3908 root 1.480 noinline
3909     void
3910 root 1.486 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
3911 root 1.1 {
3912 root 1.37 int fd = w->fd;
3913    
3914 root 1.123 if (expect_false (ev_is_active (w)))
3915 root 1.1 return;
3916    
3917 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3918 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3919 root 1.33
3920 root 1.248 EV_FREQUENT_CHECK;
3921    
3922 root 1.51 ev_start (EV_A_ (W)w, 1);
3923 root 1.490 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
3924 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3925 root 1.1
3926 root 1.426 /* common bug, apparently */
3927     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3928    
3929 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3930 root 1.281 w->events &= ~EV__IOFDSET;
3931 root 1.248
3932     EV_FREQUENT_CHECK;
3933 root 1.1 }
3934    
3935 root 1.480 noinline
3936     void
3937 root 1.486 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
3938 root 1.1 {
3939 root 1.166 clear_pending (EV_A_ (W)w);
3940 root 1.123 if (expect_false (!ev_is_active (w)))
3941 root 1.1 return;
3942    
3943 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3944 root 1.89
3945 root 1.248 EV_FREQUENT_CHECK;
3946    
3947 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3948 root 1.51 ev_stop (EV_A_ (W)w);
3949 root 1.1
3950 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3951 root 1.248
3952     EV_FREQUENT_CHECK;
3953 root 1.1 }
3954    
3955 root 1.480 noinline
3956     void
3957 root 1.486 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
3958 root 1.1 {
3959 root 1.123 if (expect_false (ev_is_active (w)))
3960 root 1.1 return;
3961    
3962 root 1.228 ev_at (w) += mn_now;
3963 root 1.12
3964 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3965 root 1.13
3966 root 1.248 EV_FREQUENT_CHECK;
3967    
3968     ++timercnt;
3969     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3970 root 1.490 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
3971 root 1.241 ANHE_w (timers [ev_active (w)]) = (WT)w;
3972 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3973 root 1.235 upheap (timers, ev_active (w));
3974 root 1.62
3975 root 1.248 EV_FREQUENT_CHECK;
3976    
3977 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3978 root 1.12 }
3979    
3980 root 1.480 noinline
3981     void
3982 root 1.486 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
3983 root 1.12 {
3984 root 1.166 clear_pending (EV_A_ (W)w);
3985 root 1.123 if (expect_false (!ev_is_active (w)))
3986 root 1.12 return;
3987    
3988 root 1.248 EV_FREQUENT_CHECK;
3989    
3990 root 1.230 {
3991     int active = ev_active (w);
3992 root 1.62
3993 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3994 root 1.151
3995 root 1.248 --timercnt;
3996    
3997     if (expect_true (active < timercnt + HEAP0))
3998 root 1.151 {
3999 root 1.248 timers [active] = timers [timercnt + HEAP0];
4000 root 1.181 adjustheap (timers, timercnt, active);
4001 root 1.151 }
4002 root 1.248 }
4003 root 1.228
4004     ev_at (w) -= mn_now;
4005 root 1.14
4006 root 1.51 ev_stop (EV_A_ (W)w);
4007 root 1.328
4008     EV_FREQUENT_CHECK;
4009 root 1.12 }
4010 root 1.4
4011 root 1.480 noinline
4012     void
4013 root 1.486 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4014 root 1.14 {
4015 root 1.248 EV_FREQUENT_CHECK;
4016    
4017 root 1.407 clear_pending (EV_A_ (W)w);
4018 root 1.406
4019 root 1.14 if (ev_is_active (w))
4020     {
4021     if (w->repeat)
4022 root 1.99 {
4023 root 1.228 ev_at (w) = mn_now + w->repeat;
4024 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
4025 root 1.230 adjustheap (timers, timercnt, ev_active (w));
4026 root 1.99 }
4027 root 1.14 else
4028 root 1.51 ev_timer_stop (EV_A_ w);
4029 root 1.14 }
4030     else if (w->repeat)
4031 root 1.112 {
4032 root 1.229 ev_at (w) = w->repeat;
4033 root 1.112 ev_timer_start (EV_A_ w);
4034     }
4035 root 1.248
4036     EV_FREQUENT_CHECK;
4037 root 1.14 }
4038    
4039 root 1.301 ev_tstamp
4040 root 1.486 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4041 root 1.301 {
4042     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4043     }
4044    
4045 root 1.140 #if EV_PERIODIC_ENABLE
4046 root 1.480 noinline
4047     void
4048 root 1.486 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4049 root 1.12 {
4050 root 1.123 if (expect_false (ev_is_active (w)))
4051 root 1.12 return;
4052 root 1.1
4053 root 1.77 if (w->reschedule_cb)
4054 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4055 root 1.77 else if (w->interval)
4056     {
4057 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4058 root 1.370 periodic_recalc (EV_A_ w);
4059 root 1.77 }
4060 root 1.173 else
4061 root 1.228 ev_at (w) = w->offset;
4062 root 1.12
4063 root 1.248 EV_FREQUENT_CHECK;
4064    
4065     ++periodiccnt;
4066     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4067 root 1.490 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4068 root 1.241 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4069 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
4070 root 1.235 upheap (periodics, ev_active (w));
4071 root 1.62
4072 root 1.248 EV_FREQUENT_CHECK;
4073    
4074 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4075 root 1.1 }
4076    
4077 root 1.480 noinline
4078     void
4079 root 1.486 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4080 root 1.1 {
4081 root 1.166 clear_pending (EV_A_ (W)w);
4082 root 1.123 if (expect_false (!ev_is_active (w)))
4083 root 1.1 return;
4084    
4085 root 1.248 EV_FREQUENT_CHECK;
4086    
4087 root 1.230 {
4088     int active = ev_active (w);
4089 root 1.62
4090 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4091 root 1.151
4092 root 1.248 --periodiccnt;
4093    
4094     if (expect_true (active < periodiccnt + HEAP0))
4095 root 1.151 {
4096 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
4097 root 1.181 adjustheap (periodics, periodiccnt, active);
4098 root 1.151 }
4099 root 1.248 }
4100 root 1.228
4101 root 1.328 ev_stop (EV_A_ (W)w);
4102    
4103 root 1.248 EV_FREQUENT_CHECK;
4104 root 1.1 }
4105    
4106 root 1.480 noinline
4107     void
4108 root 1.486 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4109 root 1.77 {
4110 root 1.84 /* TODO: use adjustheap and recalculation */
4111 root 1.77 ev_periodic_stop (EV_A_ w);
4112     ev_periodic_start (EV_A_ w);
4113     }
4114 root 1.93 #endif
4115 root 1.77
4116 root 1.56 #ifndef SA_RESTART
4117     # define SA_RESTART 0
4118     #endif
4119    
4120 root 1.336 #if EV_SIGNAL_ENABLE
4121    
4122 root 1.480 noinline
4123     void
4124 root 1.486 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4125 root 1.56 {
4126 root 1.123 if (expect_false (ev_is_active (w)))
4127 root 1.56 return;
4128    
4129 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4130    
4131     #if EV_MULTIPLICITY
4132 root 1.308 assert (("libev: a signal must not be attached to two different loops",
4133 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4134    
4135     signals [w->signum - 1].loop = EV_A;
4136 root 1.449 ECB_MEMORY_FENCE_RELEASE;
4137 root 1.306 #endif
4138 root 1.56
4139 root 1.303 EV_FREQUENT_CHECK;
4140    
4141     #if EV_USE_SIGNALFD
4142     if (sigfd == -2)
4143     {
4144     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4145     if (sigfd < 0 && errno == EINVAL)
4146     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4147    
4148     if (sigfd >= 0)
4149     {
4150     fd_intern (sigfd); /* doing it twice will not hurt */
4151    
4152     sigemptyset (&sigfd_set);
4153    
4154     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4155     ev_set_priority (&sigfd_w, EV_MAXPRI);
4156     ev_io_start (EV_A_ &sigfd_w);
4157     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4158     }
4159     }
4160    
4161     if (sigfd >= 0)
4162     {
4163     /* TODO: check .head */
4164     sigaddset (&sigfd_set, w->signum);
4165     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4166 root 1.207
4167 root 1.303 signalfd (sigfd, &sigfd_set, 0);
4168     }
4169 root 1.180 #endif
4170    
4171 root 1.56 ev_start (EV_A_ (W)w, 1);
4172 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
4173 root 1.56
4174 root 1.63 if (!((WL)w)->next)
4175 root 1.304 # if EV_USE_SIGNALFD
4176 root 1.306 if (sigfd < 0) /*TODO*/
4177 root 1.304 # endif
4178 root 1.306 {
4179 root 1.322 # ifdef _WIN32
4180 root 1.317 evpipe_init (EV_A);
4181    
4182 root 1.306 signal (w->signum, ev_sighandler);
4183     # else
4184     struct sigaction sa;
4185    
4186     evpipe_init (EV_A);
4187    
4188     sa.sa_handler = ev_sighandler;
4189     sigfillset (&sa.sa_mask);
4190     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4191     sigaction (w->signum, &sa, 0);
4192    
4193 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
4194     {
4195     sigemptyset (&sa.sa_mask);
4196     sigaddset (&sa.sa_mask, w->signum);
4197     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4198     }
4199 root 1.67 #endif
4200 root 1.306 }
4201 root 1.248
4202     EV_FREQUENT_CHECK;
4203 root 1.56 }
4204    
4205 root 1.480 noinline
4206     void
4207 root 1.486 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4208 root 1.56 {
4209 root 1.166 clear_pending (EV_A_ (W)w);
4210 root 1.123 if (expect_false (!ev_is_active (w)))
4211 root 1.56 return;
4212    
4213 root 1.248 EV_FREQUENT_CHECK;
4214    
4215 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
4216 root 1.56 ev_stop (EV_A_ (W)w);
4217    
4218     if (!signals [w->signum - 1].head)
4219 root 1.306 {
4220 root 1.307 #if EV_MULTIPLICITY
4221 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
4222 root 1.307 #endif
4223     #if EV_USE_SIGNALFD
4224 root 1.306 if (sigfd >= 0)
4225     {
4226 root 1.321 sigset_t ss;
4227    
4228     sigemptyset (&ss);
4229     sigaddset (&ss, w->signum);
4230 root 1.306 sigdelset (&sigfd_set, w->signum);
4231 root 1.321
4232 root 1.306 signalfd (sigfd, &sigfd_set, 0);
4233 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
4234 root 1.306 }
4235     else
4236 root 1.307 #endif
4237 root 1.306 signal (w->signum, SIG_DFL);
4238     }
4239 root 1.248
4240     EV_FREQUENT_CHECK;
4241 root 1.56 }
4242    
4243 root 1.336 #endif
4244    
4245     #if EV_CHILD_ENABLE
4246    
4247 root 1.28 void
4248 root 1.486 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4249 root 1.22 {
4250 root 1.56 #if EV_MULTIPLICITY
4251 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4252 root 1.56 #endif
4253 root 1.123 if (expect_false (ev_is_active (w)))
4254 root 1.22 return;
4255    
4256 root 1.248 EV_FREQUENT_CHECK;
4257    
4258 root 1.51 ev_start (EV_A_ (W)w, 1);
4259 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4260 root 1.248
4261     EV_FREQUENT_CHECK;
4262 root 1.22 }
4263    
4264 root 1.28 void
4265 root 1.486 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4266 root 1.22 {
4267 root 1.166 clear_pending (EV_A_ (W)w);
4268 root 1.123 if (expect_false (!ev_is_active (w)))
4269 root 1.22 return;
4270    
4271 root 1.248 EV_FREQUENT_CHECK;
4272    
4273 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4274 root 1.51 ev_stop (EV_A_ (W)w);
4275 root 1.248
4276     EV_FREQUENT_CHECK;
4277 root 1.22 }
4278    
4279 root 1.336 #endif
4280    
4281 root 1.140 #if EV_STAT_ENABLE
4282    
4283     # ifdef _WIN32
4284 root 1.146 # undef lstat
4285     # define lstat(a,b) _stati64 (a,b)
4286 root 1.140 # endif
4287    
4288 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
4289     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4290     #define MIN_STAT_INTERVAL 0.1074891
4291 root 1.143
4292 root 1.480 noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4293 root 1.152
4294     #if EV_USE_INOTIFY
4295 root 1.326
4296     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4297     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4298 root 1.152
4299 root 1.480 noinline
4300     static void
4301 root 1.152 infy_add (EV_P_ ev_stat *w)
4302     {
4303 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
4304     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4305     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4306     | IN_DONT_FOLLOW | IN_MASK_ADD);
4307 root 1.152
4308 root 1.318 if (w->wd >= 0)
4309 root 1.152 {
4310 root 1.318 struct statfs sfs;
4311    
4312     /* now local changes will be tracked by inotify, but remote changes won't */
4313     /* unless the filesystem is known to be local, we therefore still poll */
4314     /* also do poll on <2.6.25, but with normal frequency */
4315    
4316     if (!fs_2625)
4317     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4318     else if (!statfs (w->path, &sfs)
4319     && (sfs.f_type == 0x1373 /* devfs */
4320 root 1.451 || sfs.f_type == 0x4006 /* fat */
4321     || sfs.f_type == 0x4d44 /* msdos */
4322 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
4323 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
4324     || sfs.f_type == 0x858458f6 /* ramfs */
4325     || sfs.f_type == 0x5346544e /* ntfs */
4326 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
4327 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
4328 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
4329 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
4330 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
4331     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4332     else
4333     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4334     }
4335     else
4336     {
4337     /* can't use inotify, continue to stat */
4338 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4339 root 1.152
4340 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
4341 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4342 root 1.233 /* but an efficiency issue only */
4343 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4344 root 1.152 {
4345 root 1.153 char path [4096];
4346 root 1.152 strcpy (path, w->path);
4347    
4348     do
4349     {
4350     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4351     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4352    
4353     char *pend = strrchr (path, '/');
4354    
4355 root 1.275 if (!pend || pend == path)
4356     break;
4357 root 1.152
4358     *pend = 0;
4359 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4360 root 1.372 }
4361 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4362     }
4363     }
4364 root 1.275
4365     if (w->wd >= 0)
4366 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4367 root 1.152
4368 root 1.318 /* now re-arm timer, if required */
4369     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4370     ev_timer_again (EV_A_ &w->timer);
4371     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4372 root 1.152 }
4373    
4374 root 1.480 noinline
4375     static void
4376 root 1.152 infy_del (EV_P_ ev_stat *w)
4377     {
4378     int slot;
4379     int wd = w->wd;
4380    
4381     if (wd < 0)
4382     return;
4383    
4384     w->wd = -2;
4385 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4386 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4387    
4388     /* remove this watcher, if others are watching it, they will rearm */
4389     inotify_rm_watch (fs_fd, wd);
4390     }
4391    
4392 root 1.480 noinline
4393     static void
4394 root 1.152 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4395     {
4396     if (slot < 0)
4397 root 1.264 /* overflow, need to check for all hash slots */
4398 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4399 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4400     else
4401     {
4402     WL w_;
4403    
4404 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4405 root 1.152 {
4406     ev_stat *w = (ev_stat *)w_;
4407     w_ = w_->next; /* lets us remove this watcher and all before it */
4408    
4409     if (w->wd == wd || wd == -1)
4410     {
4411     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4412     {
4413 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4414 root 1.152 w->wd = -1;
4415     infy_add (EV_A_ w); /* re-add, no matter what */
4416     }
4417    
4418 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4419 root 1.152 }
4420     }
4421     }
4422     }
4423    
4424     static void
4425     infy_cb (EV_P_ ev_io *w, int revents)
4426     {
4427     char buf [EV_INOTIFY_BUFSIZE];
4428     int ofs;
4429     int len = read (fs_fd, buf, sizeof (buf));
4430    
4431 root 1.326 for (ofs = 0; ofs < len; )
4432     {
4433     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4434     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4435     ofs += sizeof (struct inotify_event) + ev->len;
4436     }
4437 root 1.152 }
4438    
4439 root 1.480 inline_size ecb_cold
4440     void
4441 root 1.330 ev_check_2625 (EV_P)
4442     {
4443     /* kernels < 2.6.25 are borked
4444     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4445     */
4446     if (ev_linux_version () < 0x020619)
4447 root 1.273 return;
4448 root 1.264
4449 root 1.273 fs_2625 = 1;
4450     }
4451 root 1.264
4452 root 1.315 inline_size int
4453     infy_newfd (void)
4454     {
4455 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4456 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4457     if (fd >= 0)
4458     return fd;
4459     #endif
4460     return inotify_init ();
4461     }
4462    
4463 root 1.284 inline_size void
4464 root 1.273 infy_init (EV_P)
4465     {
4466     if (fs_fd != -2)
4467     return;
4468 root 1.264
4469 root 1.273 fs_fd = -1;
4470 root 1.264
4471 root 1.330 ev_check_2625 (EV_A);
4472 root 1.264
4473 root 1.315 fs_fd = infy_newfd ();
4474 root 1.152
4475     if (fs_fd >= 0)
4476     {
4477 root 1.315 fd_intern (fs_fd);
4478 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4479     ev_set_priority (&fs_w, EV_MAXPRI);
4480     ev_io_start (EV_A_ &fs_w);
4481 root 1.317 ev_unref (EV_A);
4482 root 1.152 }
4483     }
4484    
4485 root 1.284 inline_size void
4486 root 1.154 infy_fork (EV_P)
4487     {
4488     int slot;
4489    
4490     if (fs_fd < 0)
4491     return;
4492    
4493 root 1.317 ev_ref (EV_A);
4494 root 1.315 ev_io_stop (EV_A_ &fs_w);
4495 root 1.154 close (fs_fd);
4496 root 1.315 fs_fd = infy_newfd ();
4497    
4498     if (fs_fd >= 0)
4499     {
4500     fd_intern (fs_fd);
4501     ev_io_set (&fs_w, fs_fd, EV_READ);
4502     ev_io_start (EV_A_ &fs_w);
4503 root 1.317 ev_unref (EV_A);
4504 root 1.315 }
4505 root 1.154
4506 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4507 root 1.154 {
4508     WL w_ = fs_hash [slot].head;
4509     fs_hash [slot].head = 0;
4510    
4511     while (w_)
4512     {
4513     ev_stat *w = (ev_stat *)w_;
4514     w_ = w_->next; /* lets us add this watcher */
4515    
4516     w->wd = -1;
4517    
4518     if (fs_fd >= 0)
4519     infy_add (EV_A_ w); /* re-add, no matter what */
4520     else
4521 root 1.318 {
4522     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4523     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4524     ev_timer_again (EV_A_ &w->timer);
4525     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4526     }
4527 root 1.154 }
4528     }
4529     }
4530    
4531 root 1.152 #endif
4532    
4533 root 1.255 #ifdef _WIN32
4534     # define EV_LSTAT(p,b) _stati64 (p, b)
4535     #else
4536     # define EV_LSTAT(p,b) lstat (p, b)
4537     #endif
4538    
4539 root 1.140 void
4540 root 1.486 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4541 root 1.140 {
4542     if (lstat (w->path, &w->attr) < 0)
4543     w->attr.st_nlink = 0;
4544     else if (!w->attr.st_nlink)
4545     w->attr.st_nlink = 1;
4546     }
4547    
4548 root 1.480 noinline
4549     static void
4550 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4551     {
4552     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4553    
4554 root 1.320 ev_statdata prev = w->attr;
4555 root 1.140 ev_stat_stat (EV_A_ w);
4556    
4557 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4558     if (
4559 root 1.320 prev.st_dev != w->attr.st_dev
4560     || prev.st_ino != w->attr.st_ino
4561     || prev.st_mode != w->attr.st_mode
4562     || prev.st_nlink != w->attr.st_nlink
4563     || prev.st_uid != w->attr.st_uid
4564     || prev.st_gid != w->attr.st_gid
4565     || prev.st_rdev != w->attr.st_rdev
4566     || prev.st_size != w->attr.st_size
4567     || prev.st_atime != w->attr.st_atime
4568     || prev.st_mtime != w->attr.st_mtime
4569     || prev.st_ctime != w->attr.st_ctime
4570 root 1.156 ) {
4571 root 1.320 /* we only update w->prev on actual differences */
4572     /* in case we test more often than invoke the callback, */
4573     /* to ensure that prev is always different to attr */
4574     w->prev = prev;
4575    
4576 root 1.152 #if EV_USE_INOTIFY
4577 root 1.264 if (fs_fd >= 0)
4578     {
4579     infy_del (EV_A_ w);
4580     infy_add (EV_A_ w);
4581     ev_stat_stat (EV_A_ w); /* avoid race... */
4582     }
4583 root 1.152 #endif
4584    
4585     ev_feed_event (EV_A_ w, EV_STAT);
4586     }
4587 root 1.140 }
4588    
4589     void
4590 root 1.486 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4591 root 1.140 {
4592     if (expect_false (ev_is_active (w)))
4593     return;
4594    
4595     ev_stat_stat (EV_A_ w);
4596    
4597 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4598     w->interval = MIN_STAT_INTERVAL;
4599 root 1.143
4600 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4601 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4602 root 1.152
4603     #if EV_USE_INOTIFY
4604     infy_init (EV_A);
4605    
4606     if (fs_fd >= 0)
4607     infy_add (EV_A_ w);
4608     else
4609     #endif
4610 root 1.318 {
4611     ev_timer_again (EV_A_ &w->timer);
4612     ev_unref (EV_A);
4613     }
4614 root 1.140
4615     ev_start (EV_A_ (W)w, 1);
4616 root 1.248
4617     EV_FREQUENT_CHECK;
4618 root 1.140 }
4619    
4620     void
4621 root 1.486 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4622 root 1.140 {
4623 root 1.166 clear_pending (EV_A_ (W)w);
4624 root 1.140 if (expect_false (!ev_is_active (w)))
4625     return;
4626    
4627 root 1.248 EV_FREQUENT_CHECK;
4628    
4629 root 1.152 #if EV_USE_INOTIFY
4630     infy_del (EV_A_ w);
4631     #endif
4632 root 1.318
4633     if (ev_is_active (&w->timer))
4634     {
4635     ev_ref (EV_A);
4636     ev_timer_stop (EV_A_ &w->timer);
4637     }
4638 root 1.140
4639 root 1.134 ev_stop (EV_A_ (W)w);
4640 root 1.248
4641     EV_FREQUENT_CHECK;
4642 root 1.134 }
4643     #endif
4644    
4645 root 1.164 #if EV_IDLE_ENABLE
4646 root 1.144 void
4647 root 1.486 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4648 root 1.144 {
4649     if (expect_false (ev_is_active (w)))
4650     return;
4651    
4652 root 1.164 pri_adjust (EV_A_ (W)w);
4653    
4654 root 1.248 EV_FREQUENT_CHECK;
4655    
4656 root 1.164 {
4657     int active = ++idlecnt [ABSPRI (w)];
4658    
4659     ++idleall;
4660     ev_start (EV_A_ (W)w, active);
4661    
4662 root 1.490 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4663 root 1.164 idles [ABSPRI (w)][active - 1] = w;
4664     }
4665 root 1.248
4666     EV_FREQUENT_CHECK;
4667 root 1.144 }
4668    
4669     void
4670 root 1.486 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4671 root 1.144 {
4672 root 1.166 clear_pending (EV_A_ (W)w);
4673 root 1.144 if (expect_false (!ev_is_active (w)))
4674     return;
4675    
4676 root 1.248 EV_FREQUENT_CHECK;
4677    
4678 root 1.144 {
4679 root 1.230 int active = ev_active (w);
4680 root 1.164
4681     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4682 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4683 root 1.164
4684     ev_stop (EV_A_ (W)w);
4685     --idleall;
4686 root 1.144 }
4687 root 1.248
4688     EV_FREQUENT_CHECK;
4689 root 1.144 }
4690 root 1.164 #endif
4691 root 1.144
4692 root 1.337 #if EV_PREPARE_ENABLE
4693 root 1.144 void
4694 root 1.486 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4695 root 1.144 {
4696     if (expect_false (ev_is_active (w)))
4697     return;
4698    
4699 root 1.248 EV_FREQUENT_CHECK;
4700    
4701 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4702 root 1.490 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4703 root 1.144 prepares [preparecnt - 1] = w;
4704 root 1.248
4705     EV_FREQUENT_CHECK;
4706 root 1.144 }
4707    
4708     void
4709 root 1.486 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4710 root 1.144 {
4711 root 1.166 clear_pending (EV_A_ (W)w);
4712 root 1.144 if (expect_false (!ev_is_active (w)))
4713     return;
4714    
4715 root 1.248 EV_FREQUENT_CHECK;
4716    
4717 root 1.144 {
4718 root 1.230 int active = ev_active (w);
4719    
4720 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4721 root 1.230 ev_active (prepares [active - 1]) = active;
4722 root 1.144 }
4723    
4724     ev_stop (EV_A_ (W)w);
4725 root 1.248
4726     EV_FREQUENT_CHECK;
4727 root 1.144 }
4728 root 1.337 #endif
4729 root 1.144
4730 root 1.337 #if EV_CHECK_ENABLE
4731 root 1.144 void
4732 root 1.486 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4733 root 1.144 {
4734     if (expect_false (ev_is_active (w)))
4735     return;
4736    
4737 root 1.248 EV_FREQUENT_CHECK;
4738    
4739 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4740 root 1.490 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4741 root 1.144 checks [checkcnt - 1] = w;
4742 root 1.248
4743     EV_FREQUENT_CHECK;
4744 root 1.144 }
4745    
4746     void
4747 root 1.486 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4748 root 1.144 {
4749 root 1.166 clear_pending (EV_A_ (W)w);
4750 root 1.144 if (expect_false (!ev_is_active (w)))
4751     return;
4752    
4753 root 1.248 EV_FREQUENT_CHECK;
4754    
4755 root 1.144 {
4756 root 1.230 int active = ev_active (w);
4757    
4758 root 1.144 checks [active - 1] = checks [--checkcnt];
4759 root 1.230 ev_active (checks [active - 1]) = active;
4760 root 1.144 }
4761    
4762     ev_stop (EV_A_ (W)w);
4763 root 1.248
4764     EV_FREQUENT_CHECK;
4765 root 1.144 }
4766 root 1.337 #endif
4767 root 1.144
4768     #if EV_EMBED_ENABLE
4769 root 1.480 noinline
4770     void
4771 root 1.486 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4772 root 1.144 {
4773 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4774 root 1.144 }
4775    
4776     static void
4777 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4778 root 1.144 {
4779     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4780    
4781     if (ev_cb (w))
4782     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4783     else
4784 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4785 root 1.144 }
4786    
4787 root 1.189 static void
4788     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4789     {
4790     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4791    
4792 root 1.195 {
4793 root 1.306 EV_P = w->other;
4794 root 1.195
4795     while (fdchangecnt)
4796     {
4797     fd_reify (EV_A);
4798 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4799 root 1.195 }
4800     }
4801     }
4802    
4803 root 1.261 static void
4804     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4805     {
4806     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4807    
4808 root 1.277 ev_embed_stop (EV_A_ w);
4809    
4810 root 1.261 {
4811 root 1.306 EV_P = w->other;
4812 root 1.261
4813     ev_loop_fork (EV_A);
4814 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4815 root 1.261 }
4816 root 1.277
4817     ev_embed_start (EV_A_ w);
4818 root 1.261 }
4819    
4820 root 1.195 #if 0
4821     static void
4822     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4823     {
4824     ev_idle_stop (EV_A_ idle);
4825 root 1.189 }
4826 root 1.195 #endif
4827 root 1.189
4828 root 1.144 void
4829 root 1.486 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4830 root 1.144 {
4831     if (expect_false (ev_is_active (w)))
4832     return;
4833    
4834     {
4835 root 1.306 EV_P = w->other;
4836 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4837 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4838 root 1.144 }
4839    
4840 root 1.248 EV_FREQUENT_CHECK;
4841    
4842 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4843     ev_io_start (EV_A_ &w->io);
4844    
4845 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4846     ev_set_priority (&w->prepare, EV_MINPRI);
4847     ev_prepare_start (EV_A_ &w->prepare);
4848    
4849 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4850     ev_fork_start (EV_A_ &w->fork);
4851    
4852 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4853    
4854 root 1.144 ev_start (EV_A_ (W)w, 1);
4855 root 1.248
4856     EV_FREQUENT_CHECK;
4857 root 1.144 }
4858    
4859     void
4860 root 1.486 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4861 root 1.144 {
4862 root 1.166 clear_pending (EV_A_ (W)w);
4863 root 1.144 if (expect_false (!ev_is_active (w)))
4864     return;
4865    
4866 root 1.248 EV_FREQUENT_CHECK;
4867    
4868 root 1.261 ev_io_stop (EV_A_ &w->io);
4869 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4870 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4871 root 1.248
4872 root 1.328 ev_stop (EV_A_ (W)w);
4873    
4874 root 1.248 EV_FREQUENT_CHECK;
4875 root 1.144 }
4876     #endif
4877    
4878 root 1.147 #if EV_FORK_ENABLE
4879     void
4880 root 1.486 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4881 root 1.147 {
4882     if (expect_false (ev_is_active (w)))
4883     return;
4884    
4885 root 1.248 EV_FREQUENT_CHECK;
4886    
4887 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4888 root 1.490 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
4889 root 1.147 forks [forkcnt - 1] = w;
4890 root 1.248
4891     EV_FREQUENT_CHECK;
4892 root 1.147 }
4893    
4894     void
4895 root 1.486 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4896 root 1.147 {
4897 root 1.166 clear_pending (EV_A_ (W)w);
4898 root 1.147 if (expect_false (!ev_is_active (w)))
4899     return;
4900    
4901 root 1.248 EV_FREQUENT_CHECK;
4902    
4903 root 1.147 {
4904 root 1.230 int active = ev_active (w);
4905    
4906 root 1.147 forks [active - 1] = forks [--forkcnt];
4907 root 1.230 ev_active (forks [active - 1]) = active;
4908 root 1.147 }
4909    
4910     ev_stop (EV_A_ (W)w);
4911 root 1.248
4912     EV_FREQUENT_CHECK;
4913 root 1.147 }
4914     #endif
4915    
4916 root 1.360 #if EV_CLEANUP_ENABLE
4917     void
4918 root 1.486 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4919 root 1.360 {
4920     if (expect_false (ev_is_active (w)))
4921     return;
4922    
4923     EV_FREQUENT_CHECK;
4924    
4925     ev_start (EV_A_ (W)w, ++cleanupcnt);
4926 root 1.490 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4927 root 1.360 cleanups [cleanupcnt - 1] = w;
4928    
4929 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4930     ev_unref (EV_A);
4931 root 1.360 EV_FREQUENT_CHECK;
4932     }
4933    
4934     void
4935 root 1.486 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4936 root 1.360 {
4937     clear_pending (EV_A_ (W)w);
4938     if (expect_false (!ev_is_active (w)))
4939     return;
4940    
4941     EV_FREQUENT_CHECK;
4942 root 1.362 ev_ref (EV_A);
4943 root 1.360
4944     {
4945     int active = ev_active (w);
4946    
4947     cleanups [active - 1] = cleanups [--cleanupcnt];
4948     ev_active (cleanups [active - 1]) = active;
4949     }
4950    
4951     ev_stop (EV_A_ (W)w);
4952    
4953     EV_FREQUENT_CHECK;
4954     }
4955     #endif
4956    
4957 root 1.207 #if EV_ASYNC_ENABLE
4958     void
4959 root 1.486 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4960 root 1.207 {
4961     if (expect_false (ev_is_active (w)))
4962     return;
4963    
4964 root 1.352 w->sent = 0;
4965    
4966 root 1.207 evpipe_init (EV_A);
4967    
4968 root 1.248 EV_FREQUENT_CHECK;
4969    
4970 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4971 root 1.490 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4972 root 1.207 asyncs [asynccnt - 1] = w;
4973 root 1.248
4974     EV_FREQUENT_CHECK;
4975 root 1.207 }
4976    
4977     void
4978 root 1.486 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4979 root 1.207 {
4980     clear_pending (EV_A_ (W)w);
4981     if (expect_false (!ev_is_active (w)))
4982     return;
4983    
4984 root 1.248 EV_FREQUENT_CHECK;
4985    
4986 root 1.207 {
4987 root 1.230 int active = ev_active (w);
4988    
4989 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4990 root 1.230 ev_active (asyncs [active - 1]) = active;
4991 root 1.207 }
4992    
4993     ev_stop (EV_A_ (W)w);
4994 root 1.248
4995     EV_FREQUENT_CHECK;
4996 root 1.207 }
4997    
4998     void
4999 root 1.486 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5000 root 1.207 {
5001     w->sent = 1;
5002 root 1.307 evpipe_write (EV_A_ &async_pending);
5003 root 1.207 }
5004     #endif
5005    
5006 root 1.1 /*****************************************************************************/
5007 root 1.10
5008 root 1.16 struct ev_once
5009     {
5010 root 1.136 ev_io io;
5011     ev_timer to;
5012 root 1.16 void (*cb)(int revents, void *arg);
5013     void *arg;
5014     };
5015    
5016     static void
5017 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
5018 root 1.16 {
5019     void (*cb)(int revents, void *arg) = once->cb;
5020     void *arg = once->arg;
5021    
5022 root 1.259 ev_io_stop (EV_A_ &once->io);
5023 root 1.51 ev_timer_stop (EV_A_ &once->to);
5024 root 1.69 ev_free (once);
5025 root 1.16
5026     cb (revents, arg);
5027     }
5028    
5029     static void
5030 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
5031 root 1.16 {
5032 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5033    
5034     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5035 root 1.16 }
5036    
5037     static void
5038 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
5039 root 1.16 {
5040 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5041    
5042     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5043 root 1.16 }
5044    
5045     void
5046 root 1.486 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5047 root 1.16 {
5048 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5049 root 1.16
5050 root 1.123 once->cb = cb;
5051     once->arg = arg;
5052 root 1.16
5053 root 1.123 ev_init (&once->io, once_cb_io);
5054     if (fd >= 0)
5055     {
5056     ev_io_set (&once->io, fd, events);
5057     ev_io_start (EV_A_ &once->io);
5058     }
5059 root 1.16
5060 root 1.123 ev_init (&once->to, once_cb_to);
5061     if (timeout >= 0.)
5062     {
5063     ev_timer_set (&once->to, timeout, 0.);
5064     ev_timer_start (EV_A_ &once->to);
5065 root 1.16 }
5066     }
5067    
5068 root 1.282 /*****************************************************************************/
5069    
5070 root 1.288 #if EV_WALK_ENABLE
5071 root 1.480 ecb_cold
5072     void
5073 root 1.486 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5074 root 1.282 {
5075     int i, j;
5076     ev_watcher_list *wl, *wn;
5077    
5078     if (types & (EV_IO | EV_EMBED))
5079     for (i = 0; i < anfdmax; ++i)
5080     for (wl = anfds [i].head; wl; )
5081     {
5082     wn = wl->next;
5083    
5084     #if EV_EMBED_ENABLE
5085     if (ev_cb ((ev_io *)wl) == embed_io_cb)
5086     {
5087     if (types & EV_EMBED)
5088     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5089     }
5090     else
5091     #endif
5092     #if EV_USE_INOTIFY
5093     if (ev_cb ((ev_io *)wl) == infy_cb)
5094     ;
5095     else
5096     #endif
5097 root 1.288 if ((ev_io *)wl != &pipe_w)
5098 root 1.282 if (types & EV_IO)
5099     cb (EV_A_ EV_IO, wl);
5100    
5101     wl = wn;
5102     }
5103    
5104     if (types & (EV_TIMER | EV_STAT))
5105     for (i = timercnt + HEAP0; i-- > HEAP0; )
5106     #if EV_STAT_ENABLE
5107     /*TODO: timer is not always active*/
5108     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5109     {
5110     if (types & EV_STAT)
5111     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5112     }
5113     else
5114     #endif
5115     if (types & EV_TIMER)
5116     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5117    
5118     #if EV_PERIODIC_ENABLE
5119     if (types & EV_PERIODIC)
5120     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5121     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5122     #endif
5123    
5124     #if EV_IDLE_ENABLE
5125     if (types & EV_IDLE)
5126 root 1.390 for (j = NUMPRI; j--; )
5127 root 1.282 for (i = idlecnt [j]; i--; )
5128     cb (EV_A_ EV_IDLE, idles [j][i]);
5129     #endif
5130    
5131     #if EV_FORK_ENABLE
5132     if (types & EV_FORK)
5133     for (i = forkcnt; i--; )
5134     if (ev_cb (forks [i]) != embed_fork_cb)
5135     cb (EV_A_ EV_FORK, forks [i]);
5136     #endif
5137    
5138     #if EV_ASYNC_ENABLE
5139     if (types & EV_ASYNC)
5140     for (i = asynccnt; i--; )
5141     cb (EV_A_ EV_ASYNC, asyncs [i]);
5142     #endif
5143    
5144 root 1.337 #if EV_PREPARE_ENABLE
5145 root 1.282 if (types & EV_PREPARE)
5146     for (i = preparecnt; i--; )
5147 root 1.337 # if EV_EMBED_ENABLE
5148 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
5149 root 1.337 # endif
5150     cb (EV_A_ EV_PREPARE, prepares [i]);
5151 root 1.282 #endif
5152    
5153 root 1.337 #if EV_CHECK_ENABLE
5154 root 1.282 if (types & EV_CHECK)
5155     for (i = checkcnt; i--; )
5156     cb (EV_A_ EV_CHECK, checks [i]);
5157 root 1.337 #endif
5158 root 1.282
5159 root 1.337 #if EV_SIGNAL_ENABLE
5160 root 1.282 if (types & EV_SIGNAL)
5161 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
5162 root 1.282 for (wl = signals [i].head; wl; )
5163     {
5164     wn = wl->next;
5165     cb (EV_A_ EV_SIGNAL, wl);
5166     wl = wn;
5167     }
5168 root 1.337 #endif
5169 root 1.282
5170 root 1.337 #if EV_CHILD_ENABLE
5171 root 1.282 if (types & EV_CHILD)
5172 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
5173 root 1.282 for (wl = childs [i]; wl; )
5174     {
5175     wn = wl->next;
5176     cb (EV_A_ EV_CHILD, wl);
5177     wl = wn;
5178     }
5179 root 1.337 #endif
5180 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
5181     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5182     }
5183     #endif
5184    
5185 root 1.188 #if EV_MULTIPLICITY
5186     #include "ev_wrap.h"
5187     #endif
5188