ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.495
Committed: Mon Jun 24 21:27:57 2019 UTC (4 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.494: +5 -5 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.490 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.469 # if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52 root 1.373 # endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.491 # if HAVE_LINUX_AIO_ABI_H
121     # ifndef EV_USE_LINUXAIO
122     # define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123     # endif
124     # else
125     # undef EV_USE_LINUXAIO
126     # define EV_USE_LINUXAIO 0
127     # endif
128    
129 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130     # ifndef EV_USE_KQUEUE
131 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_KQUEUE
135     # define EV_USE_KQUEUE 0
136 root 1.60 # endif
137 root 1.127
138 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
139     # ifndef EV_USE_PORT
140 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
141 root 1.127 # endif
142 root 1.343 # else
143     # undef EV_USE_PORT
144     # define EV_USE_PORT 0
145 root 1.118 # endif
146    
147 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148     # ifndef EV_USE_INOTIFY
149 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
150 root 1.152 # endif
151 root 1.343 # else
152     # undef EV_USE_INOTIFY
153     # define EV_USE_INOTIFY 0
154 root 1.152 # endif
155    
156 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157     # ifndef EV_USE_SIGNALFD
158 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
159 root 1.303 # endif
160 root 1.343 # else
161     # undef EV_USE_SIGNALFD
162     # define EV_USE_SIGNALFD 0
163 root 1.303 # endif
164    
165 root 1.343 # if HAVE_EVENTFD
166     # ifndef EV_USE_EVENTFD
167 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
168 root 1.220 # endif
169 root 1.343 # else
170     # undef EV_USE_EVENTFD
171     # define EV_USE_EVENTFD 0
172 root 1.220 # endif
173 root 1.250
174 root 1.29 #endif
175 root 1.17
176 root 1.483 /* OS X, in its infinite idiocy, actually HARDCODES
177     * a limit of 1024 into their select. Where people have brains,
178     * OS X engineers apparently have a vacuum. Or maybe they were
179     * ordered to have a vacuum, or they do anything for money.
180     * This might help. Or not.
181     * Note that this must be defined early, as other include files
182     * will rely on this define as well.
183     */
184     #define _DARWIN_UNLIMITED_SELECT 1
185    
186 root 1.1 #include <stdlib.h>
187 root 1.319 #include <string.h>
188 root 1.7 #include <fcntl.h>
189 root 1.16 #include <stddef.h>
190 root 1.1
191     #include <stdio.h>
192    
193 root 1.4 #include <assert.h>
194 root 1.1 #include <errno.h>
195 root 1.22 #include <sys/types.h>
196 root 1.71 #include <time.h>
197 root 1.326 #include <limits.h>
198 root 1.71
199 root 1.72 #include <signal.h>
200 root 1.71
201 root 1.152 #ifdef EV_H
202     # include EV_H
203     #else
204     # include "ev.h"
205     #endif
206    
207 root 1.410 #if EV_NO_THREADS
208     # undef EV_NO_SMP
209     # define EV_NO_SMP 1
210     # undef ECB_NO_THREADS
211     # define ECB_NO_THREADS 1
212     #endif
213     #if EV_NO_SMP
214     # undef EV_NO_SMP
215     # define ECB_NO_SMP 1
216     #endif
217    
218 root 1.103 #ifndef _WIN32
219 root 1.71 # include <sys/time.h>
220 root 1.45 # include <sys/wait.h>
221 root 1.140 # include <unistd.h>
222 root 1.103 #else
223 root 1.256 # include <io.h>
224 root 1.103 # define WIN32_LEAN_AND_MEAN
225 root 1.431 # include <winsock2.h>
226 root 1.103 # include <windows.h>
227     # ifndef EV_SELECT_IS_WINSOCKET
228     # define EV_SELECT_IS_WINSOCKET 1
229     # endif
230 root 1.331 # undef EV_AVOID_STDIO
231 root 1.45 #endif
232 root 1.103
233 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
234 root 1.40
235 root 1.305 /* try to deduce the maximum number of signals on this platform */
236 root 1.416 #if defined EV_NSIG
237 root 1.305 /* use what's provided */
238 root 1.416 #elif defined NSIG
239 root 1.305 # define EV_NSIG (NSIG)
240 root 1.416 #elif defined _NSIG
241 root 1.305 # define EV_NSIG (_NSIG)
242 root 1.416 #elif defined SIGMAX
243 root 1.305 # define EV_NSIG (SIGMAX+1)
244 root 1.416 #elif defined SIG_MAX
245 root 1.305 # define EV_NSIG (SIG_MAX+1)
246 root 1.416 #elif defined _SIG_MAX
247 root 1.305 # define EV_NSIG (_SIG_MAX+1)
248 root 1.416 #elif defined MAXSIG
249 root 1.305 # define EV_NSIG (MAXSIG+1)
250 root 1.416 #elif defined MAX_SIG
251 root 1.305 # define EV_NSIG (MAX_SIG+1)
252 root 1.416 #elif defined SIGARRAYSIZE
253 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254 root 1.416 #elif defined _sys_nsig
255 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256     #else
257 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
258 root 1.305 #endif
259    
260 root 1.373 #ifndef EV_USE_FLOOR
261     # define EV_USE_FLOOR 0
262     #endif
263    
264 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
265 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267 root 1.274 # else
268     # define EV_USE_CLOCK_SYSCALL 0
269     # endif
270     #endif
271    
272 root 1.470 #if !(_POSIX_TIMERS > 0)
273     # ifndef EV_USE_MONOTONIC
274     # define EV_USE_MONOTONIC 0
275     # endif
276     # ifndef EV_USE_REALTIME
277     # define EV_USE_REALTIME 0
278     # endif
279     #endif
280    
281 root 1.29 #ifndef EV_USE_MONOTONIC
282 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
284 root 1.253 # else
285     # define EV_USE_MONOTONIC 0
286     # endif
287 root 1.37 #endif
288    
289 root 1.118 #ifndef EV_USE_REALTIME
290 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291 root 1.118 #endif
292    
293 root 1.193 #ifndef EV_USE_NANOSLEEP
294 root 1.253 # if _POSIX_C_SOURCE >= 199309L
295 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
296 root 1.253 # else
297     # define EV_USE_NANOSLEEP 0
298     # endif
299 root 1.193 #endif
300    
301 root 1.29 #ifndef EV_USE_SELECT
302 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
303 root 1.10 #endif
304    
305 root 1.59 #ifndef EV_USE_POLL
306 root 1.104 # ifdef _WIN32
307     # define EV_USE_POLL 0
308     # else
309 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
310 root 1.104 # endif
311 root 1.41 #endif
312    
313 root 1.29 #ifndef EV_USE_EPOLL
314 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
316 root 1.220 # else
317     # define EV_USE_EPOLL 0
318     # endif
319 root 1.10 #endif
320    
321 root 1.44 #ifndef EV_USE_KQUEUE
322     # define EV_USE_KQUEUE 0
323     #endif
324    
325 root 1.118 #ifndef EV_USE_PORT
326     # define EV_USE_PORT 0
327 root 1.40 #endif
328    
329 root 1.490 #ifndef EV_USE_LINUXAIO
330 root 1.492 # if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331     # define EV_USE_LINUXAIO 1
332     # else
333     # define EV_USE_LINUXAIO 0
334     # endif
335 root 1.490 #endif
336    
337 root 1.152 #ifndef EV_USE_INOTIFY
338 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
339 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
340 root 1.220 # else
341     # define EV_USE_INOTIFY 0
342     # endif
343 root 1.152 #endif
344    
345 root 1.149 #ifndef EV_PID_HASHSIZE
346 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
347 root 1.149 #endif
348    
349 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
350 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
351 root 1.152 #endif
352    
353 root 1.220 #ifndef EV_USE_EVENTFD
354     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
355 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
356 root 1.220 # else
357     # define EV_USE_EVENTFD 0
358     # endif
359     #endif
360    
361 root 1.303 #ifndef EV_USE_SIGNALFD
362 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
364 root 1.303 # else
365     # define EV_USE_SIGNALFD 0
366     # endif
367     #endif
368    
369 root 1.249 #if 0 /* debugging */
370 root 1.250 # define EV_VERIFY 3
371 root 1.249 # define EV_USE_4HEAP 1
372     # define EV_HEAP_CACHE_AT 1
373     #endif
374    
375 root 1.250 #ifndef EV_VERIFY
376 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
377 root 1.250 #endif
378    
379 root 1.243 #ifndef EV_USE_4HEAP
380 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
381 root 1.243 #endif
382    
383     #ifndef EV_HEAP_CACHE_AT
384 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
385 root 1.243 #endif
386    
387 root 1.481 #ifdef __ANDROID__
388 root 1.452 /* supposedly, android doesn't typedef fd_mask */
389     # undef EV_USE_SELECT
390     # define EV_USE_SELECT 0
391     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
392     # undef EV_USE_CLOCK_SYSCALL
393     # define EV_USE_CLOCK_SYSCALL 0
394     #endif
395    
396     /* aix's poll.h seems to cause lots of trouble */
397     #ifdef _AIX
398     /* AIX has a completely broken poll.h header */
399     # undef EV_USE_POLL
400     # define EV_USE_POLL 0
401     #endif
402    
403 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404     /* which makes programs even slower. might work on other unices, too. */
405     #if EV_USE_CLOCK_SYSCALL
406 root 1.423 # include <sys/syscall.h>
407 root 1.291 # ifdef SYS_clock_gettime
408     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409     # undef EV_USE_MONOTONIC
410     # define EV_USE_MONOTONIC 1
411     # else
412     # undef EV_USE_CLOCK_SYSCALL
413     # define EV_USE_CLOCK_SYSCALL 0
414     # endif
415     #endif
416    
417 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
418 root 1.40
419     #ifndef CLOCK_MONOTONIC
420     # undef EV_USE_MONOTONIC
421     # define EV_USE_MONOTONIC 0
422     #endif
423    
424 root 1.31 #ifndef CLOCK_REALTIME
425 root 1.40 # undef EV_USE_REALTIME
426 root 1.31 # define EV_USE_REALTIME 0
427     #endif
428 root 1.40
429 root 1.152 #if !EV_STAT_ENABLE
430 root 1.185 # undef EV_USE_INOTIFY
431 root 1.152 # define EV_USE_INOTIFY 0
432     #endif
433    
434 root 1.193 #if !EV_USE_NANOSLEEP
435 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
436 root 1.416 # if !defined _WIN32 && !defined __hpux
437 root 1.193 # include <sys/select.h>
438     # endif
439     #endif
440    
441 root 1.491 #if EV_USE_LINUXAIO
442     # include <sys/syscall.h>
443 root 1.495 # if !SYS_io_getevents || !EV_USE_EPOLL /* ev_linxaio uses ev_poll.c:ev_epoll_create */
444 root 1.491 # undef EV_USE_LINUXAIO
445     # define EV_USE_LINUXAIO 0
446     # endif
447     #endif
448    
449 root 1.152 #if EV_USE_INOTIFY
450 root 1.273 # include <sys/statfs.h>
451 root 1.152 # include <sys/inotify.h>
452 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
453     # ifndef IN_DONT_FOLLOW
454     # undef EV_USE_INOTIFY
455     # define EV_USE_INOTIFY 0
456     # endif
457 root 1.152 #endif
458    
459 root 1.220 #if EV_USE_EVENTFD
460     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
461 root 1.221 # include <stdint.h>
462 root 1.303 # ifndef EFD_NONBLOCK
463     # define EFD_NONBLOCK O_NONBLOCK
464     # endif
465     # ifndef EFD_CLOEXEC
466 root 1.311 # ifdef O_CLOEXEC
467     # define EFD_CLOEXEC O_CLOEXEC
468     # else
469     # define EFD_CLOEXEC 02000000
470     # endif
471 root 1.303 # endif
472 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473 root 1.220 #endif
474    
475 root 1.303 #if EV_USE_SIGNALFD
476 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477     # include <stdint.h>
478     # ifndef SFD_NONBLOCK
479     # define SFD_NONBLOCK O_NONBLOCK
480     # endif
481     # ifndef SFD_CLOEXEC
482     # ifdef O_CLOEXEC
483     # define SFD_CLOEXEC O_CLOEXEC
484     # else
485     # define SFD_CLOEXEC 02000000
486     # endif
487     # endif
488 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489 root 1.314
490     struct signalfd_siginfo
491     {
492     uint32_t ssi_signo;
493     char pad[128 - sizeof (uint32_t)];
494     };
495 root 1.303 #endif
496    
497 root 1.40 /**/
498 root 1.1
499 root 1.250 #if EV_VERIFY >= 3
500 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
501 root 1.248 #else
502     # define EV_FREQUENT_CHECK do { } while (0)
503     #endif
504    
505 root 1.176 /*
506 root 1.373 * This is used to work around floating point rounding problems.
507 root 1.177 * This value is good at least till the year 4000.
508 root 1.176 */
509 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
511 root 1.176
512 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
513 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
514 root 1.1
515 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
517 root 1.347
518 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
519     /* ECB.H BEGIN */
520     /*
521     * libecb - http://software.schmorp.de/pkg/libecb
522     *
523 root 1.474 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
525     * All rights reserved.
526     *
527     * Redistribution and use in source and binary forms, with or without modifica-
528     * tion, are permitted provided that the following conditions are met:
529     *
530     * 1. Redistributions of source code must retain the above copyright notice,
531     * this list of conditions and the following disclaimer.
532     *
533     * 2. Redistributions in binary form must reproduce the above copyright
534     * notice, this list of conditions and the following disclaimer in the
535     * documentation and/or other materials provided with the distribution.
536     *
537     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546     * OF THE POSSIBILITY OF SUCH DAMAGE.
547 root 1.467 *
548     * Alternatively, the contents of this file may be used under the terms of
549     * the GNU General Public License ("GPL") version 2 or any later version,
550     * in which case the provisions of the GPL are applicable instead of
551     * the above. If you wish to allow the use of your version of this file
552     * only under the terms of the GPL and not to allow others to use your
553     * version of this file under the BSD license, indicate your decision
554     * by deleting the provisions above and replace them with the notice
555     * and other provisions required by the GPL. If you do not delete the
556     * provisions above, a recipient may use your version of this file under
557     * either the BSD or the GPL.
558 root 1.391 */
559    
560     #ifndef ECB_H
561     #define ECB_H
562    
563 root 1.437 /* 16 bits major, 16 bits minor */
564 root 1.479 #define ECB_VERSION 0x00010005
565 root 1.437
566 root 1.391 #ifdef _WIN32
567     typedef signed char int8_t;
568     typedef unsigned char uint8_t;
569     typedef signed short int16_t;
570     typedef unsigned short uint16_t;
571     typedef signed int int32_t;
572     typedef unsigned int uint32_t;
573     #if __GNUC__
574     typedef signed long long int64_t;
575     typedef unsigned long long uint64_t;
576     #else /* _MSC_VER || __BORLANDC__ */
577     typedef signed __int64 int64_t;
578     typedef unsigned __int64 uint64_t;
579     #endif
580 root 1.437 #ifdef _WIN64
581     #define ECB_PTRSIZE 8
582     typedef uint64_t uintptr_t;
583     typedef int64_t intptr_t;
584     #else
585     #define ECB_PTRSIZE 4
586     typedef uint32_t uintptr_t;
587     typedef int32_t intptr_t;
588     #endif
589 root 1.391 #else
590     #include <inttypes.h>
591 root 1.479 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
592 root 1.437 #define ECB_PTRSIZE 8
593     #else
594     #define ECB_PTRSIZE 4
595     #endif
596 root 1.391 #endif
597 root 1.379
598 sf-exg 1.475 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
599     #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
600    
601 root 1.454 /* work around x32 idiocy by defining proper macros */
602 sf-exg 1.475 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
603 root 1.458 #if _ILP32
604 root 1.454 #define ECB_AMD64_X32 1
605     #else
606     #define ECB_AMD64 1
607     #endif
608     #endif
609    
610 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
611     * what their idiot authors think are the "more important" extensions,
612 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
613 root 1.379 * or so.
614     * we try to detect these and simply assume they are not gcc - if they have
615     * an issue with that they should have done it right in the first place.
616     */
617 root 1.474 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618     #define ECB_GCC_VERSION(major,minor) 0
619     #else
620     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621     #endif
622    
623     #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
624    
625     #if __clang__ && defined __has_builtin
626     #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
627     #else
628     #define ECB_CLANG_BUILTIN(x) 0
629     #endif
630    
631     #if __clang__ && defined __has_extension
632     #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633     #else
634     #define ECB_CLANG_EXTENSION(x) 0
635 root 1.379 #endif
636    
637 root 1.437 #define ECB_CPP (__cplusplus+0)
638     #define ECB_CPP11 (__cplusplus >= 201103L)
639 root 1.488 #define ECB_CPP14 (__cplusplus >= 201402L)
640     #define ECB_CPP17 (__cplusplus >= 201703L)
641 root 1.437
642 root 1.450 #if ECB_CPP
643 root 1.464 #define ECB_C 0
644     #define ECB_STDC_VERSION 0
645     #else
646     #define ECB_C 1
647     #define ECB_STDC_VERSION __STDC_VERSION__
648     #endif
649    
650     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652 root 1.488 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653 root 1.464
654     #if ECB_CPP
655 root 1.450 #define ECB_EXTERN_C extern "C"
656     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657     #define ECB_EXTERN_C_END }
658     #else
659     #define ECB_EXTERN_C extern
660     #define ECB_EXTERN_C_BEG
661     #define ECB_EXTERN_C_END
662     #endif
663    
664 root 1.391 /*****************************************************************************/
665    
666     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668    
669 root 1.410 #if ECB_NO_THREADS
670 root 1.439 #define ECB_NO_SMP 1
671 root 1.410 #endif
672    
673 root 1.437 #if ECB_NO_SMP
674 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
675 root 1.40 #endif
676    
677 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678     #if __xlC__ && ECB_CPP
679     #include <builtins.h>
680     #endif
681    
682 root 1.479 #if 1400 <= _MSC_VER
683     #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684     #endif
685    
686 root 1.383 #ifndef ECB_MEMORY_FENCE
687 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 root 1.404 #if __i386 || __i386__
689 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
690 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
691 root 1.488 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
692 sf-exg 1.475 #elif ECB_GCC_AMD64
693 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
694     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
695 root 1.488 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
696 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
697 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
698 root 1.479 #elif defined __ARM_ARCH_2__ \
699     || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
700     || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
701     || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
702     || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
703     || defined __ARM_ARCH_5TEJ__
704     /* should not need any, unless running old code on newer cpu - arm doesn't support that */
705 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
706 root 1.479 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
707     || defined __ARM_ARCH_6T2__
708 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
709 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
710 root 1.479 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
711 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
712 root 1.464 #elif __aarch64__
713     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
714 root 1.477 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
715 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
716     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
717     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
718 root 1.417 #elif defined __s390__ || defined __s390x__
719 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
720 root 1.417 #elif defined __mips__
721 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
722 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
723     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
724 root 1.419 #elif defined __alpha__
725 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
726     #elif defined __hppa__
727     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
728     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
729     #elif defined __ia64__
730     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
731 root 1.457 #elif defined __m68k__
732     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
733     #elif defined __m88k__
734     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
735     #elif defined __sh__
736     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
737 root 1.383 #endif
738     #endif
739     #endif
740    
741     #ifndef ECB_MEMORY_FENCE
742 root 1.437 #if ECB_GCC_VERSION(4,7)
743 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
744 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
745 root 1.464 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
746     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
747 root 1.450
748 root 1.474 #elif ECB_CLANG_EXTENSION(c_atomic)
749     /* see comment below (stdatomic.h) about the C11 memory model. */
750     #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
751     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
752     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
753 root 1.450
754 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
755 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
756 root 1.462 #elif _MSC_VER >= 1500 /* VC++ 2008 */
757     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
758     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
759     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
760     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
761     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
762 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
763     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
764     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
765     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
766     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
767 root 1.417 #elif defined _WIN32
768 root 1.388 #include <WinNT.h>
769 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
770 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
771     #include <mbarrier.h>
772     #define ECB_MEMORY_FENCE __machine_rw_barrier ()
773     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
774     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
775 root 1.413 #elif __xlC__
776 root 1.414 #define ECB_MEMORY_FENCE __sync ()
777 root 1.383 #endif
778     #endif
779    
780     #ifndef ECB_MEMORY_FENCE
781 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
782     /* we assume that these memory fences work on all variables/all memory accesses, */
783     /* not just C11 atomics and atomic accesses */
784     #include <stdatomic.h>
785 root 1.442 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
786     /* any fence other than seq_cst, which isn't very efficient for us. */
787     /* Why that is, we don't know - either the C11 memory model is quite useless */
788     /* for most usages, or gcc and clang have a bug */
789     /* I *currently* lean towards the latter, and inefficiently implement */
790     /* all three of ecb's fences as a seq_cst fence */
791 root 1.464 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
792     /* for all __atomic_thread_fence's except seq_cst */
793 root 1.437 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
794     #endif
795     #endif
796    
797     #ifndef ECB_MEMORY_FENCE
798 root 1.392 #if !ECB_AVOID_PTHREADS
799     /*
800     * if you get undefined symbol references to pthread_mutex_lock,
801     * or failure to find pthread.h, then you should implement
802     * the ECB_MEMORY_FENCE operations for your cpu/compiler
803     * OR provide pthread.h and link against the posix thread library
804     * of your system.
805     */
806     #include <pthread.h>
807     #define ECB_NEEDS_PTHREADS 1
808     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
809    
810     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
811     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
812     #endif
813     #endif
814 root 1.383
815 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
816 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
817 root 1.392 #endif
818    
819 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
820 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
821     #endif
822    
823 root 1.391 /*****************************************************************************/
824    
825 root 1.474 #if ECB_CPP
826 root 1.391 #define ecb_inline static inline
827     #elif ECB_GCC_VERSION(2,5)
828     #define ecb_inline static __inline__
829     #elif ECB_C99
830     #define ecb_inline static inline
831     #else
832     #define ecb_inline static
833     #endif
834    
835     #if ECB_GCC_VERSION(3,3)
836     #define ecb_restrict __restrict__
837     #elif ECB_C99
838     #define ecb_restrict restrict
839     #else
840     #define ecb_restrict
841     #endif
842    
843     typedef int ecb_bool;
844    
845     #define ECB_CONCAT_(a, b) a ## b
846     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
847     #define ECB_STRINGIFY_(a) # a
848     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
849 sf-exg 1.475 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
850 root 1.391
851     #define ecb_function_ ecb_inline
852    
853 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
854     #define ecb_attribute(attrlist) __attribute__ (attrlist)
855 root 1.379 #else
856     #define ecb_attribute(attrlist)
857 root 1.474 #endif
858 root 1.464
859 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
860     #define ecb_is_constant(expr) __builtin_constant_p (expr)
861     #else
862 root 1.464 /* possible C11 impl for integral types
863     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
864     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
865    
866 root 1.379 #define ecb_is_constant(expr) 0
867 root 1.474 #endif
868    
869     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
870     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
871     #else
872 root 1.379 #define ecb_expect(expr,value) (expr)
873 root 1.474 #endif
874    
875     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
876     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
877     #else
878 root 1.379 #define ecb_prefetch(addr,rw,locality)
879     #endif
880    
881 root 1.391 /* no emulation for ecb_decltype */
882 root 1.474 #if ECB_CPP11
883     // older implementations might have problems with decltype(x)::type, work around it
884     template<class T> struct ecb_decltype_t { typedef T type; };
885     #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
886     #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
887     #define ecb_decltype(x) __typeof__ (x)
888 root 1.391 #endif
889    
890 root 1.468 #if _MSC_VER >= 1300
891 root 1.474 #define ecb_deprecated __declspec (deprecated)
892 root 1.468 #else
893     #define ecb_deprecated ecb_attribute ((__deprecated__))
894     #endif
895    
896 root 1.476 #if _MSC_VER >= 1500
897 sf-exg 1.475 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
898     #elif ECB_GCC_VERSION(4,5)
899     #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
900     #else
901     #define ecb_deprecated_message(msg) ecb_deprecated
902     #endif
903    
904     #if _MSC_VER >= 1400
905     #define ecb_noinline __declspec (noinline)
906     #else
907     #define ecb_noinline ecb_attribute ((__noinline__))
908     #endif
909    
910 root 1.379 #define ecb_unused ecb_attribute ((__unused__))
911     #define ecb_const ecb_attribute ((__const__))
912     #define ecb_pure ecb_attribute ((__pure__))
913    
914 root 1.474 #if ECB_C11 || __IBMC_NORETURN
915 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
916 root 1.437 #define ecb_noreturn _Noreturn
917 sf-exg 1.475 #elif ECB_CPP11
918     #define ecb_noreturn [[noreturn]]
919     #elif _MSC_VER >= 1200
920     /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
921     #define ecb_noreturn __declspec (noreturn)
922 root 1.437 #else
923     #define ecb_noreturn ecb_attribute ((__noreturn__))
924     #endif
925    
926 root 1.379 #if ECB_GCC_VERSION(4,3)
927     #define ecb_artificial ecb_attribute ((__artificial__))
928     #define ecb_hot ecb_attribute ((__hot__))
929     #define ecb_cold ecb_attribute ((__cold__))
930     #else
931     #define ecb_artificial
932     #define ecb_hot
933     #define ecb_cold
934     #endif
935    
936     /* put around conditional expressions if you are very sure that the */
937     /* expression is mostly true or mostly false. note that these return */
938     /* booleans, not the expression. */
939     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
940     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
941 root 1.391 /* for compatibility to the rest of the world */
942     #define ecb_likely(expr) ecb_expect_true (expr)
943     #define ecb_unlikely(expr) ecb_expect_false (expr)
944    
945     /* count trailing zero bits and count # of one bits */
946 root 1.474 #if ECB_GCC_VERSION(3,4) \
947     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
948     && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
949     && ECB_CLANG_BUILTIN(__builtin_popcount))
950 root 1.391 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
951     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
952     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
953     #define ecb_ctz32(x) __builtin_ctz (x)
954     #define ecb_ctz64(x) __builtin_ctzll (x)
955     #define ecb_popcount32(x) __builtin_popcount (x)
956     /* no popcountll */
957     #else
958 root 1.474 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
959     ecb_function_ ecb_const int
960 root 1.391 ecb_ctz32 (uint32_t x)
961     {
962 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
963     unsigned long r;
964     _BitScanForward (&r, x);
965     return (int)r;
966     #else
967 root 1.391 int r = 0;
968    
969     x &= ~x + 1; /* this isolates the lowest bit */
970    
971     #if ECB_branchless_on_i386
972     r += !!(x & 0xaaaaaaaa) << 0;
973     r += !!(x & 0xcccccccc) << 1;
974     r += !!(x & 0xf0f0f0f0) << 2;
975     r += !!(x & 0xff00ff00) << 3;
976     r += !!(x & 0xffff0000) << 4;
977     #else
978     if (x & 0xaaaaaaaa) r += 1;
979     if (x & 0xcccccccc) r += 2;
980     if (x & 0xf0f0f0f0) r += 4;
981     if (x & 0xff00ff00) r += 8;
982     if (x & 0xffff0000) r += 16;
983     #endif
984    
985     return r;
986 root 1.479 #endif
987 root 1.391 }
988    
989 root 1.474 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
990     ecb_function_ ecb_const int
991 root 1.391 ecb_ctz64 (uint64_t x)
992     {
993 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
994     unsigned long r;
995     _BitScanForward64 (&r, x);
996     return (int)r;
997     #else
998     int shift = x & 0xffffffff ? 0 : 32;
999 root 1.391 return ecb_ctz32 (x >> shift) + shift;
1000 root 1.479 #endif
1001 root 1.391 }
1002    
1003 root 1.474 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1004     ecb_function_ ecb_const int
1005 root 1.391 ecb_popcount32 (uint32_t x)
1006     {
1007     x -= (x >> 1) & 0x55555555;
1008     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1009     x = ((x >> 4) + x) & 0x0f0f0f0f;
1010     x *= 0x01010101;
1011    
1012     return x >> 24;
1013     }
1014    
1015 root 1.474 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1016     ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1017 root 1.391 {
1018 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1019     unsigned long r;
1020     _BitScanReverse (&r, x);
1021     return (int)r;
1022     #else
1023 root 1.391 int r = 0;
1024    
1025     if (x >> 16) { x >>= 16; r += 16; }
1026     if (x >> 8) { x >>= 8; r += 8; }
1027     if (x >> 4) { x >>= 4; r += 4; }
1028     if (x >> 2) { x >>= 2; r += 2; }
1029     if (x >> 1) { r += 1; }
1030    
1031     return r;
1032 root 1.479 #endif
1033 root 1.391 }
1034    
1035 root 1.474 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1036     ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1037 root 1.391 {
1038 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1039     unsigned long r;
1040     _BitScanReverse64 (&r, x);
1041     return (int)r;
1042     #else
1043 root 1.391 int r = 0;
1044    
1045     if (x >> 32) { x >>= 32; r += 32; }
1046    
1047     return r + ecb_ld32 (x);
1048 root 1.479 #endif
1049 root 1.391 }
1050     #endif
1051    
1052 root 1.474 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1053     ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1054     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1055     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1056 root 1.437
1057 root 1.474 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1058     ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1059 root 1.403 {
1060     return ( (x * 0x0802U & 0x22110U)
1061 root 1.474 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1062 root 1.403 }
1063    
1064 root 1.474 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1065     ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1066 root 1.403 {
1067     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1068     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1069     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1070     x = ( x >> 8 ) | ( x << 8);
1071    
1072     return x;
1073     }
1074    
1075 root 1.474 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1076     ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1077 root 1.403 {
1078     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1079     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1080     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1081     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1082     x = ( x >> 16 ) | ( x << 16);
1083    
1084     return x;
1085     }
1086    
1087 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1088     /* so for this version we are lazy */
1089 root 1.474 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1090     ecb_function_ ecb_const int
1091 root 1.391 ecb_popcount64 (uint64_t x)
1092     {
1093     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1094     }
1095    
1096 root 1.474 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1097     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1098     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1099     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1100     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1101     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1102     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1103     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1104    
1105     ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1106     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1107     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1108     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1109     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1110     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1111     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1112     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1113 root 1.391
1114 root 1.474 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1115 root 1.476 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1116     #define ecb_bswap16(x) __builtin_bswap16 (x)
1117     #else
1118 root 1.391 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1119 root 1.476 #endif
1120 root 1.391 #define ecb_bswap32(x) __builtin_bswap32 (x)
1121     #define ecb_bswap64(x) __builtin_bswap64 (x)
1122 root 1.476 #elif _MSC_VER
1123     #include <stdlib.h>
1124     #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1125     #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1126     #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1127 root 1.391 #else
1128 root 1.474 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1129     ecb_function_ ecb_const uint16_t
1130 root 1.391 ecb_bswap16 (uint16_t x)
1131     {
1132     return ecb_rotl16 (x, 8);
1133     }
1134    
1135 root 1.474 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1136     ecb_function_ ecb_const uint32_t
1137 root 1.391 ecb_bswap32 (uint32_t x)
1138     {
1139     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1140     }
1141    
1142 root 1.474 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1143     ecb_function_ ecb_const uint64_t
1144 root 1.391 ecb_bswap64 (uint64_t x)
1145     {
1146     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1147     }
1148     #endif
1149    
1150 root 1.474 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1151 root 1.391 #define ecb_unreachable() __builtin_unreachable ()
1152     #else
1153     /* this seems to work fine, but gcc always emits a warning for it :/ */
1154 root 1.474 ecb_inline ecb_noreturn void ecb_unreachable (void);
1155     ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1156 root 1.391 #endif
1157    
1158     /* try to tell the compiler that some condition is definitely true */
1159 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1160 root 1.391
1161 root 1.479 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1162     ecb_inline ecb_const uint32_t
1163 root 1.391 ecb_byteorder_helper (void)
1164     {
1165 root 1.450 /* the union code still generates code under pressure in gcc, */
1166     /* but less than using pointers, and always seems to */
1167     /* successfully return a constant. */
1168     /* the reason why we have this horrible preprocessor mess */
1169     /* is to avoid it in all cases, at least on common architectures */
1170     /* or when using a recent enough gcc version (>= 4.6) */
1171 root 1.479 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1172     || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1173     #define ECB_LITTLE_ENDIAN 1
1174     return 0x44332211;
1175     #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1176     || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1177     #define ECB_BIG_ENDIAN 1
1178     return 0x11223344;
1179 root 1.450 #else
1180     union
1181     {
1182 root 1.479 uint8_t c[4];
1183     uint32_t u;
1184     } u = { 0x11, 0x22, 0x33, 0x44 };
1185     return u.u;
1186 root 1.450 #endif
1187 root 1.391 }
1188    
1189 root 1.474 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1190 root 1.479 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1191 root 1.474 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1192 root 1.479 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1193 root 1.391
1194     #if ECB_GCC_VERSION(3,0) || ECB_C99
1195     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1196     #else
1197     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1198     #endif
1199    
1200 root 1.474 #if ECB_CPP
1201 root 1.398 template<typename T>
1202     static inline T ecb_div_rd (T val, T div)
1203     {
1204     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1205     }
1206     template<typename T>
1207     static inline T ecb_div_ru (T val, T div)
1208     {
1209     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1210     }
1211     #else
1212     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1213     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1214     #endif
1215    
1216 root 1.391 #if ecb_cplusplus_does_not_suck
1217     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1218     template<typename T, int N>
1219     static inline int ecb_array_length (const T (&arr)[N])
1220     {
1221     return N;
1222     }
1223     #else
1224     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1225     #endif
1226    
1227 root 1.479 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1228     ecb_function_ ecb_const uint32_t
1229     ecb_binary16_to_binary32 (uint32_t x)
1230     {
1231     unsigned int s = (x & 0x8000) << (31 - 15);
1232     int e = (x >> 10) & 0x001f;
1233     unsigned int m = x & 0x03ff;
1234    
1235     if (ecb_expect_false (e == 31))
1236     /* infinity or NaN */
1237     e = 255 - (127 - 15);
1238     else if (ecb_expect_false (!e))
1239     {
1240     if (ecb_expect_true (!m))
1241     /* zero, handled by code below by forcing e to 0 */
1242     e = 0 - (127 - 15);
1243     else
1244     {
1245     /* subnormal, renormalise */
1246     unsigned int s = 10 - ecb_ld32 (m);
1247    
1248     m = (m << s) & 0x3ff; /* mask implicit bit */
1249     e -= s - 1;
1250     }
1251     }
1252    
1253     /* e and m now are normalised, or zero, (or inf or nan) */
1254     e += 127 - 15;
1255    
1256     return s | (e << 23) | (m << (23 - 10));
1257     }
1258    
1259     ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1260     ecb_function_ ecb_const uint16_t
1261     ecb_binary32_to_binary16 (uint32_t x)
1262     {
1263     unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1264     unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1265     unsigned int m = x & 0x007fffff;
1266    
1267     x &= 0x7fffffff;
1268    
1269     /* if it's within range of binary16 normals, use fast path */
1270     if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1271     {
1272     /* mantissa round-to-even */
1273     m += 0x00000fff + ((m >> (23 - 10)) & 1);
1274    
1275     /* handle overflow */
1276     if (ecb_expect_false (m >= 0x00800000))
1277     {
1278     m >>= 1;
1279     e += 1;
1280     }
1281    
1282     return s | (e << 10) | (m >> (23 - 10));
1283     }
1284    
1285     /* handle large numbers and infinity */
1286     if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1287     return s | 0x7c00;
1288    
1289     /* handle zero, subnormals and small numbers */
1290     if (ecb_expect_true (x < 0x38800000))
1291     {
1292     /* zero */
1293     if (ecb_expect_true (!x))
1294     return s;
1295    
1296     /* handle subnormals */
1297    
1298     /* too small, will be zero */
1299     if (e < (14 - 24)) /* might not be sharp, but is good enough */
1300     return s;
1301    
1302     m |= 0x00800000; /* make implicit bit explicit */
1303    
1304     /* very tricky - we need to round to the nearest e (+10) bit value */
1305     {
1306     unsigned int bits = 14 - e;
1307     unsigned int half = (1 << (bits - 1)) - 1;
1308     unsigned int even = (m >> bits) & 1;
1309    
1310     /* if this overflows, we will end up with a normalised number */
1311     m = (m + half + even) >> bits;
1312     }
1313    
1314     return s | m;
1315     }
1316    
1317     /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1318     m >>= 13;
1319    
1320     return s | 0x7c00 | m | !m;
1321     }
1322    
1323 root 1.450 /*******************************************************************************/
1324     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1325    
1326     /* basically, everything uses "ieee pure-endian" floating point numbers */
1327     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1328     #if 0 \
1329     || __i386 || __i386__ \
1330 sf-exg 1.475 || ECB_GCC_AMD64 \
1331 root 1.450 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1332     || defined __s390__ || defined __s390x__ \
1333     || defined __mips__ \
1334     || defined __alpha__ \
1335     || defined __hppa__ \
1336     || defined __ia64__ \
1337 root 1.457 || defined __m68k__ \
1338     || defined __m88k__ \
1339     || defined __sh__ \
1340 sf-exg 1.475 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1341 root 1.465 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1342 root 1.466 || defined __aarch64__
1343 root 1.450 #define ECB_STDFP 1
1344     #include <string.h> /* for memcpy */
1345     #else
1346     #define ECB_STDFP 0
1347     #endif
1348    
1349     #ifndef ECB_NO_LIBM
1350    
1351 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1352    
1353 root 1.462 /* only the oldest of old doesn't have this one. solaris. */
1354     #ifdef INFINITY
1355     #define ECB_INFINITY INFINITY
1356     #else
1357     #define ECB_INFINITY HUGE_VAL
1358     #endif
1359    
1360     #ifdef NAN
1361 root 1.458 #define ECB_NAN NAN
1362     #else
1363 root 1.462 #define ECB_NAN ECB_INFINITY
1364 root 1.458 #endif
1365    
1366 root 1.474 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1367     #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1368 root 1.476 #define ecb_frexpf(x,e) frexpf ((x), (e))
1369 root 1.474 #else
1370 root 1.476 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1371     #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1372 root 1.474 #endif
1373    
1374 root 1.450 /* convert a float to ieee single/binary32 */
1375 root 1.474 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1376     ecb_function_ ecb_const uint32_t
1377 root 1.450 ecb_float_to_binary32 (float x)
1378     {
1379     uint32_t r;
1380    
1381     #if ECB_STDFP
1382     memcpy (&r, &x, 4);
1383     #else
1384     /* slow emulation, works for anything but -0 */
1385     uint32_t m;
1386     int e;
1387    
1388     if (x == 0e0f ) return 0x00000000U;
1389     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1390     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1391     if (x != x ) return 0x7fbfffffU;
1392    
1393 root 1.476 m = ecb_frexpf (x, &e) * 0x1000000U;
1394 root 1.450
1395     r = m & 0x80000000U;
1396    
1397     if (r)
1398     m = -m;
1399    
1400     if (e <= -126)
1401     {
1402     m &= 0xffffffU;
1403     m >>= (-125 - e);
1404     e = -126;
1405     }
1406    
1407     r |= (e + 126) << 23;
1408     r |= m & 0x7fffffU;
1409     #endif
1410    
1411     return r;
1412     }
1413    
1414     /* converts an ieee single/binary32 to a float */
1415 root 1.474 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1416     ecb_function_ ecb_const float
1417 root 1.450 ecb_binary32_to_float (uint32_t x)
1418     {
1419     float r;
1420    
1421     #if ECB_STDFP
1422     memcpy (&r, &x, 4);
1423     #else
1424     /* emulation, only works for normals and subnormals and +0 */
1425     int neg = x >> 31;
1426     int e = (x >> 23) & 0xffU;
1427    
1428     x &= 0x7fffffU;
1429    
1430     if (e)
1431     x |= 0x800000U;
1432     else
1433     e = 1;
1434    
1435     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1436 root 1.474 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1437 root 1.450
1438     r = neg ? -r : r;
1439     #endif
1440    
1441     return r;
1442     }
1443    
1444     /* convert a double to ieee double/binary64 */
1445 root 1.474 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1446     ecb_function_ ecb_const uint64_t
1447 root 1.450 ecb_double_to_binary64 (double x)
1448     {
1449     uint64_t r;
1450    
1451     #if ECB_STDFP
1452     memcpy (&r, &x, 8);
1453     #else
1454     /* slow emulation, works for anything but -0 */
1455     uint64_t m;
1456     int e;
1457    
1458     if (x == 0e0 ) return 0x0000000000000000U;
1459     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1460     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1461     if (x != x ) return 0X7ff7ffffffffffffU;
1462    
1463     m = frexp (x, &e) * 0x20000000000000U;
1464    
1465     r = m & 0x8000000000000000;;
1466    
1467     if (r)
1468     m = -m;
1469    
1470     if (e <= -1022)
1471     {
1472     m &= 0x1fffffffffffffU;
1473     m >>= (-1021 - e);
1474     e = -1022;
1475     }
1476    
1477     r |= ((uint64_t)(e + 1022)) << 52;
1478     r |= m & 0xfffffffffffffU;
1479     #endif
1480    
1481     return r;
1482     }
1483    
1484     /* converts an ieee double/binary64 to a double */
1485 root 1.474 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1486     ecb_function_ ecb_const double
1487 root 1.450 ecb_binary64_to_double (uint64_t x)
1488     {
1489     double r;
1490    
1491     #if ECB_STDFP
1492     memcpy (&r, &x, 8);
1493     #else
1494     /* emulation, only works for normals and subnormals and +0 */
1495     int neg = x >> 63;
1496     int e = (x >> 52) & 0x7ffU;
1497    
1498     x &= 0xfffffffffffffU;
1499    
1500     if (e)
1501     x |= 0x10000000000000U;
1502     else
1503     e = 1;
1504    
1505     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1506     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1507    
1508     r = neg ? -r : r;
1509     #endif
1510    
1511     return r;
1512     }
1513    
1514 root 1.479 /* convert a float to ieee half/binary16 */
1515     ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1516     ecb_function_ ecb_const uint16_t
1517     ecb_float_to_binary16 (float x)
1518     {
1519     return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1520     }
1521    
1522     /* convert an ieee half/binary16 to float */
1523     ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1524     ecb_function_ ecb_const float
1525     ecb_binary16_to_float (uint16_t x)
1526     {
1527     return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1528     }
1529    
1530 root 1.450 #endif
1531    
1532 root 1.391 #endif
1533    
1534     /* ECB.H END */
1535 root 1.379
1536 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1537 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1538 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1539     * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1540 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1541 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1542     * which will then provide the memory fences.
1543     */
1544     # error "memory fences not defined for your architecture, please report"
1545     #endif
1546    
1547     #ifndef ECB_MEMORY_FENCE
1548     # define ECB_MEMORY_FENCE do { } while (0)
1549     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1550     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1551 root 1.392 #endif
1552    
1553 root 1.379 #define expect_false(cond) ecb_expect_false (cond)
1554     #define expect_true(cond) ecb_expect_true (cond)
1555     #define noinline ecb_noinline
1556    
1557     #define inline_size ecb_inline
1558 root 1.169
1559 root 1.338 #if EV_FEATURE_CODE
1560 root 1.379 # define inline_speed ecb_inline
1561 root 1.338 #else
1562 root 1.480 # define inline_speed noinline static
1563 root 1.169 #endif
1564 root 1.40
1565 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1566    
1567     #if EV_MINPRI == EV_MAXPRI
1568     # define ABSPRI(w) (((W)w), 0)
1569     #else
1570     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1571     #endif
1572 root 1.42
1573 root 1.490 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1574 root 1.103
1575 root 1.136 typedef ev_watcher *W;
1576     typedef ev_watcher_list *WL;
1577     typedef ev_watcher_time *WT;
1578 root 1.10
1579 root 1.229 #define ev_active(w) ((W)(w))->active
1580 root 1.228 #define ev_at(w) ((WT)(w))->at
1581    
1582 root 1.279 #if EV_USE_REALTIME
1583 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1584 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1585 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1586     #endif
1587    
1588     #if EV_USE_MONOTONIC
1589 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1590 root 1.198 #endif
1591 root 1.54
1592 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1593     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1594     #endif
1595     #ifndef EV_WIN32_HANDLE_TO_FD
1596 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1597 root 1.313 #endif
1598     #ifndef EV_WIN32_CLOSE_FD
1599     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1600     #endif
1601    
1602 root 1.103 #ifdef _WIN32
1603 root 1.98 # include "ev_win32.c"
1604     #endif
1605 root 1.67
1606 root 1.53 /*****************************************************************************/
1607 root 1.1
1608 root 1.493 #if EV_USE_LINUXAIO
1609     # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1610     #endif
1611    
1612 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1613    
1614     #if EV_USE_FLOOR
1615     # include <math.h>
1616     # define ev_floor(v) floor (v)
1617     #else
1618    
1619     #include <float.h>
1620    
1621     /* a floor() replacement function, should be independent of ev_tstamp type */
1622 root 1.480 noinline
1623     static ev_tstamp
1624 root 1.373 ev_floor (ev_tstamp v)
1625     {
1626     /* the choice of shift factor is not terribly important */
1627     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1628     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1629     #else
1630     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1631     #endif
1632    
1633     /* argument too large for an unsigned long? */
1634     if (expect_false (v >= shift))
1635     {
1636     ev_tstamp f;
1637    
1638     if (v == v - 1.)
1639     return v; /* very large number */
1640    
1641     f = shift * ev_floor (v * (1. / shift));
1642     return f + ev_floor (v - f);
1643     }
1644    
1645     /* special treatment for negative args? */
1646     if (expect_false (v < 0.))
1647     {
1648     ev_tstamp f = -ev_floor (-v);
1649    
1650     return f - (f == v ? 0 : 1);
1651     }
1652    
1653     /* fits into an unsigned long */
1654     return (unsigned long)v;
1655     }
1656    
1657     #endif
1658    
1659     /*****************************************************************************/
1660    
1661 root 1.356 #ifdef __linux
1662     # include <sys/utsname.h>
1663     #endif
1664    
1665 root 1.480 noinline ecb_cold
1666     static unsigned int
1667 root 1.355 ev_linux_version (void)
1668     {
1669     #ifdef __linux
1670 root 1.359 unsigned int v = 0;
1671 root 1.355 struct utsname buf;
1672     int i;
1673     char *p = buf.release;
1674    
1675     if (uname (&buf))
1676     return 0;
1677    
1678     for (i = 3+1; --i; )
1679     {
1680     unsigned int c = 0;
1681    
1682     for (;;)
1683     {
1684     if (*p >= '0' && *p <= '9')
1685     c = c * 10 + *p++ - '0';
1686     else
1687     {
1688     p += *p == '.';
1689     break;
1690     }
1691     }
1692    
1693     v = (v << 8) | c;
1694     }
1695    
1696     return v;
1697     #else
1698     return 0;
1699     #endif
1700     }
1701    
1702     /*****************************************************************************/
1703    
1704 root 1.331 #if EV_AVOID_STDIO
1705 root 1.480 noinline ecb_cold
1706     static void
1707 root 1.331 ev_printerr (const char *msg)
1708     {
1709     write (STDERR_FILENO, msg, strlen (msg));
1710     }
1711     #endif
1712    
1713 root 1.486 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1714 root 1.69
1715 root 1.480 ecb_cold
1716     void
1717 root 1.486 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1718 root 1.69 {
1719     syserr_cb = cb;
1720     }
1721    
1722 root 1.480 noinline ecb_cold
1723     static void
1724 root 1.269 ev_syserr (const char *msg)
1725 root 1.69 {
1726 root 1.70 if (!msg)
1727     msg = "(libev) system error";
1728    
1729 root 1.69 if (syserr_cb)
1730 root 1.70 syserr_cb (msg);
1731 root 1.69 else
1732     {
1733 root 1.330 #if EV_AVOID_STDIO
1734 root 1.331 ev_printerr (msg);
1735     ev_printerr (": ");
1736 root 1.365 ev_printerr (strerror (errno));
1737 root 1.331 ev_printerr ("\n");
1738 root 1.330 #else
1739 root 1.70 perror (msg);
1740 root 1.330 #endif
1741 root 1.69 abort ();
1742     }
1743     }
1744    
1745 root 1.224 static void *
1746 root 1.486 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1747 root 1.224 {
1748     /* some systems, notably openbsd and darwin, fail to properly
1749 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1750 root 1.224 * the single unix specification, so work around them here.
1751 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1752     * despite documenting it otherwise.
1753 root 1.224 */
1754 root 1.333
1755 root 1.224 if (size)
1756     return realloc (ptr, size);
1757    
1758     free (ptr);
1759     return 0;
1760     }
1761    
1762 root 1.486 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1763 root 1.69
1764 root 1.480 ecb_cold
1765     void
1766 root 1.486 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1767 root 1.69 {
1768     alloc = cb;
1769     }
1770    
1771 root 1.150 inline_speed void *
1772 root 1.155 ev_realloc (void *ptr, long size)
1773 root 1.69 {
1774 root 1.224 ptr = alloc (ptr, size);
1775 root 1.69
1776     if (!ptr && size)
1777     {
1778 root 1.330 #if EV_AVOID_STDIO
1779 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1780 root 1.330 #else
1781 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1782 root 1.330 #endif
1783 root 1.69 abort ();
1784     }
1785    
1786     return ptr;
1787     }
1788    
1789     #define ev_malloc(size) ev_realloc (0, (size))
1790     #define ev_free(ptr) ev_realloc ((ptr), 0)
1791    
1792     /*****************************************************************************/
1793    
1794 root 1.298 /* set in reify when reification needed */
1795     #define EV_ANFD_REIFY 1
1796    
1797 root 1.288 /* file descriptor info structure */
1798 root 1.53 typedef struct
1799     {
1800 root 1.68 WL head;
1801 root 1.288 unsigned char events; /* the events watched for */
1802 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1803 root 1.490 unsigned char emask; /* some backends store the actual kernel mask in here */
1804 root 1.269 unsigned char unused;
1805     #if EV_USE_EPOLL
1806 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1807 root 1.269 #endif
1808 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1809 root 1.103 SOCKET handle;
1810     #endif
1811 root 1.357 #if EV_USE_IOCP
1812     OVERLAPPED or, ow;
1813     #endif
1814 root 1.53 } ANFD;
1815 root 1.1
1816 root 1.288 /* stores the pending event set for a given watcher */
1817 root 1.53 typedef struct
1818     {
1819     W w;
1820 root 1.288 int events; /* the pending event set for the given watcher */
1821 root 1.53 } ANPENDING;
1822 root 1.51
1823 root 1.155 #if EV_USE_INOTIFY
1824 root 1.241 /* hash table entry per inotify-id */
1825 root 1.152 typedef struct
1826     {
1827     WL head;
1828 root 1.155 } ANFS;
1829 root 1.152 #endif
1830    
1831 root 1.241 /* Heap Entry */
1832     #if EV_HEAP_CACHE_AT
1833 root 1.288 /* a heap element */
1834 root 1.241 typedef struct {
1835 root 1.243 ev_tstamp at;
1836 root 1.241 WT w;
1837     } ANHE;
1838    
1839 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1840     #define ANHE_at(he) (he).at /* access cached at, read-only */
1841     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1842 root 1.241 #else
1843 root 1.288 /* a heap element */
1844 root 1.241 typedef WT ANHE;
1845    
1846 root 1.248 #define ANHE_w(he) (he)
1847     #define ANHE_at(he) (he)->at
1848     #define ANHE_at_cache(he)
1849 root 1.241 #endif
1850    
1851 root 1.55 #if EV_MULTIPLICITY
1852 root 1.54
1853 root 1.80 struct ev_loop
1854     {
1855 root 1.86 ev_tstamp ev_rt_now;
1856 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1857 root 1.80 #define VAR(name,decl) decl;
1858     #include "ev_vars.h"
1859     #undef VAR
1860     };
1861     #include "ev_wrap.h"
1862    
1863 root 1.116 static struct ev_loop default_loop_struct;
1864 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1865 root 1.54
1866 root 1.53 #else
1867 root 1.54
1868 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1869 root 1.80 #define VAR(name,decl) static decl;
1870     #include "ev_vars.h"
1871     #undef VAR
1872    
1873 root 1.116 static int ev_default_loop_ptr;
1874 root 1.54
1875 root 1.51 #endif
1876 root 1.1
1877 root 1.338 #if EV_FEATURE_API
1878 root 1.298 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1879     # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1880 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1881     #else
1882 root 1.298 # define EV_RELEASE_CB (void)0
1883     # define EV_ACQUIRE_CB (void)0
1884 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1885     #endif
1886    
1887 root 1.353 #define EVBREAK_RECURSE 0x80
1888 root 1.298
1889 root 1.8 /*****************************************************************************/
1890    
1891 root 1.292 #ifndef EV_HAVE_EV_TIME
1892 root 1.141 ev_tstamp
1893 root 1.486 ev_time (void) EV_NOEXCEPT
1894 root 1.1 {
1895 root 1.29 #if EV_USE_REALTIME
1896 root 1.279 if (expect_true (have_realtime))
1897     {
1898     struct timespec ts;
1899     clock_gettime (CLOCK_REALTIME, &ts);
1900     return ts.tv_sec + ts.tv_nsec * 1e-9;
1901     }
1902     #endif
1903    
1904 root 1.1 struct timeval tv;
1905     gettimeofday (&tv, 0);
1906     return tv.tv_sec + tv.tv_usec * 1e-6;
1907     }
1908 root 1.292 #endif
1909 root 1.1
1910 root 1.284 inline_size ev_tstamp
1911 root 1.1 get_clock (void)
1912     {
1913 root 1.29 #if EV_USE_MONOTONIC
1914 root 1.40 if (expect_true (have_monotonic))
1915 root 1.1 {
1916     struct timespec ts;
1917     clock_gettime (CLOCK_MONOTONIC, &ts);
1918     return ts.tv_sec + ts.tv_nsec * 1e-9;
1919     }
1920     #endif
1921    
1922     return ev_time ();
1923     }
1924    
1925 root 1.85 #if EV_MULTIPLICITY
1926 root 1.51 ev_tstamp
1927 root 1.486 ev_now (EV_P) EV_NOEXCEPT
1928 root 1.51 {
1929 root 1.85 return ev_rt_now;
1930 root 1.51 }
1931 root 1.85 #endif
1932 root 1.51
1933 root 1.193 void
1934 root 1.486 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1935 root 1.193 {
1936     if (delay > 0.)
1937     {
1938     #if EV_USE_NANOSLEEP
1939     struct timespec ts;
1940    
1941 root 1.348 EV_TS_SET (ts, delay);
1942 root 1.193 nanosleep (&ts, 0);
1943 root 1.416 #elif defined _WIN32
1944 root 1.482 /* maybe this should round up, as ms is very low resolution */
1945     /* compared to select (µs) or nanosleep (ns) */
1946 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1947 root 1.193 #else
1948     struct timeval tv;
1949    
1950 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1951 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1952 root 1.257 /* by older ones */
1953 sf-exg 1.349 EV_TV_SET (tv, delay);
1954 root 1.193 select (0, 0, 0, 0, &tv);
1955     #endif
1956     }
1957     }
1958    
1959     /*****************************************************************************/
1960    
1961 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1962 root 1.232
1963 root 1.288 /* find a suitable new size for the given array, */
1964 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1965 root 1.284 inline_size int
1966 root 1.163 array_nextsize (int elem, int cur, int cnt)
1967     {
1968     int ncur = cur + 1;
1969    
1970     do
1971     ncur <<= 1;
1972     while (cnt > ncur);
1973    
1974 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1975 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1976 root 1.163 {
1977     ncur *= elem;
1978 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1979 root 1.163 ncur = ncur - sizeof (void *) * 4;
1980     ncur /= elem;
1981     }
1982    
1983     return ncur;
1984     }
1985    
1986 root 1.480 noinline ecb_cold
1987     static void *
1988 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1989     {
1990     *cur = array_nextsize (elem, *cur, cnt);
1991     return ev_realloc (base, elem * *cur);
1992     }
1993 root 1.29
1994 root 1.495 #define array_needsize_noinit(base,offset,count)
1995 root 1.490
1996 root 1.495 #define array_needsize_zerofill(base,offset,count) \
1997     memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
1998 root 1.265
1999 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
2000 root 1.163 if (expect_false ((cnt) > (cur))) \
2001 root 1.69 { \
2002 root 1.480 ecb_unused int ocur_ = (cur); \
2003 root 1.163 (base) = (type *)array_realloc \
2004     (sizeof (type), (base), &(cur), (cnt)); \
2005 root 1.495 init ((base), ocur_, ((cur) - ocur_)); \
2006 root 1.1 }
2007    
2008 root 1.163 #if 0
2009 root 1.74 #define array_slim(type,stem) \
2010 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2011     { \
2012     stem ## max = array_roundsize (stem ## cnt >> 1); \
2013 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2014 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2015     }
2016 root 1.163 #endif
2017 root 1.67
2018 root 1.65 #define array_free(stem, idx) \
2019 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2020 root 1.65
2021 root 1.8 /*****************************************************************************/
2022    
2023 root 1.288 /* dummy callback for pending events */
2024 root 1.480 noinline
2025     static void
2026 root 1.288 pendingcb (EV_P_ ev_prepare *w, int revents)
2027     {
2028     }
2029    
2030 root 1.480 noinline
2031     void
2032 root 1.486 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2033 root 1.1 {
2034 root 1.78 W w_ = (W)w;
2035 root 1.171 int pri = ABSPRI (w_);
2036 root 1.78
2037 root 1.123 if (expect_false (w_->pending))
2038 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
2039     else
2040 root 1.32 {
2041 root 1.171 w_->pending = ++pendingcnt [pri];
2042 root 1.490 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2043 root 1.171 pendings [pri][w_->pending - 1].w = w_;
2044     pendings [pri][w_->pending - 1].events = revents;
2045 root 1.32 }
2046 root 1.425
2047     pendingpri = NUMPRI - 1;
2048 root 1.1 }
2049    
2050 root 1.284 inline_speed void
2051     feed_reverse (EV_P_ W w)
2052     {
2053 root 1.490 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2054 root 1.284 rfeeds [rfeedcnt++] = w;
2055     }
2056    
2057     inline_size void
2058     feed_reverse_done (EV_P_ int revents)
2059     {
2060     do
2061     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2062     while (rfeedcnt);
2063     }
2064    
2065     inline_speed void
2066 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
2067 root 1.27 {
2068     int i;
2069    
2070     for (i = 0; i < eventcnt; ++i)
2071 root 1.78 ev_feed_event (EV_A_ events [i], type);
2072 root 1.27 }
2073    
2074 root 1.141 /*****************************************************************************/
2075    
2076 root 1.284 inline_speed void
2077 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
2078 root 1.1 {
2079     ANFD *anfd = anfds + fd;
2080 root 1.136 ev_io *w;
2081 root 1.1
2082 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2083 root 1.1 {
2084 root 1.79 int ev = w->events & revents;
2085 root 1.1
2086     if (ev)
2087 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
2088 root 1.1 }
2089     }
2090    
2091 root 1.298 /* do not submit kernel events for fds that have reify set */
2092     /* because that means they changed while we were polling for new events */
2093     inline_speed void
2094     fd_event (EV_P_ int fd, int revents)
2095     {
2096     ANFD *anfd = anfds + fd;
2097    
2098     if (expect_true (!anfd->reify))
2099 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2100 root 1.298 }
2101    
2102 root 1.79 void
2103 root 1.486 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2104 root 1.79 {
2105 root 1.168 if (fd >= 0 && fd < anfdmax)
2106 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2107 root 1.79 }
2108    
2109 root 1.288 /* make sure the external fd watch events are in-sync */
2110     /* with the kernel/libev internal state */
2111 root 1.284 inline_size void
2112 root 1.51 fd_reify (EV_P)
2113 root 1.9 {
2114     int i;
2115    
2116 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2117     for (i = 0; i < fdchangecnt; ++i)
2118     {
2119     int fd = fdchanges [i];
2120     ANFD *anfd = anfds + fd;
2121    
2122 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
2123 root 1.371 {
2124     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2125    
2126     if (handle != anfd->handle)
2127     {
2128     unsigned long arg;
2129    
2130     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2131    
2132     /* handle changed, but fd didn't - we need to do it in two steps */
2133     backend_modify (EV_A_ fd, anfd->events, 0);
2134     anfd->events = 0;
2135     anfd->handle = handle;
2136     }
2137     }
2138     }
2139     #endif
2140    
2141 root 1.27 for (i = 0; i < fdchangecnt; ++i)
2142     {
2143     int fd = fdchanges [i];
2144     ANFD *anfd = anfds + fd;
2145 root 1.136 ev_io *w;
2146 root 1.27
2147 root 1.350 unsigned char o_events = anfd->events;
2148     unsigned char o_reify = anfd->reify;
2149 root 1.27
2150 root 1.350 anfd->reify = 0;
2151 root 1.27
2152 root 1.350 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2153     {
2154     anfd->events = 0;
2155 root 1.184
2156 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2157     anfd->events |= (unsigned char)w->events;
2158 root 1.27
2159 root 1.351 if (o_events != anfd->events)
2160 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
2161     }
2162    
2163     if (o_reify & EV__IOFDSET)
2164     backend_modify (EV_A_ fd, o_events, anfd->events);
2165 root 1.27 }
2166    
2167     fdchangecnt = 0;
2168     }
2169    
2170 root 1.288 /* something about the given fd changed */
2171 root 1.480 inline_size
2172     void
2173 root 1.183 fd_change (EV_P_ int fd, int flags)
2174 root 1.27 {
2175 root 1.183 unsigned char reify = anfds [fd].reify;
2176 root 1.184 anfds [fd].reify |= flags;
2177 root 1.27
2178 root 1.183 if (expect_true (!reify))
2179     {
2180     ++fdchangecnt;
2181 root 1.490 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2182 root 1.183 fdchanges [fdchangecnt - 1] = fd;
2183     }
2184 root 1.9 }
2185    
2186 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2187 root 1.480 inline_speed ecb_cold void
2188 root 1.51 fd_kill (EV_P_ int fd)
2189 root 1.41 {
2190 root 1.136 ev_io *w;
2191 root 1.41
2192 root 1.136 while ((w = (ev_io *)anfds [fd].head))
2193 root 1.41 {
2194 root 1.51 ev_io_stop (EV_A_ w);
2195 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2196 root 1.41 }
2197     }
2198    
2199 root 1.336 /* check whether the given fd is actually valid, for error recovery */
2200 root 1.480 inline_size ecb_cold int
2201 root 1.71 fd_valid (int fd)
2202     {
2203 root 1.103 #ifdef _WIN32
2204 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2205 root 1.71 #else
2206     return fcntl (fd, F_GETFD) != -1;
2207     #endif
2208     }
2209    
2210 root 1.19 /* called on EBADF to verify fds */
2211 root 1.480 noinline ecb_cold
2212     static void
2213 root 1.51 fd_ebadf (EV_P)
2214 root 1.19 {
2215     int fd;
2216    
2217     for (fd = 0; fd < anfdmax; ++fd)
2218 root 1.27 if (anfds [fd].events)
2219 root 1.254 if (!fd_valid (fd) && errno == EBADF)
2220 root 1.51 fd_kill (EV_A_ fd);
2221 root 1.41 }
2222    
2223     /* called on ENOMEM in select/poll to kill some fds and retry */
2224 root 1.480 noinline ecb_cold
2225     static void
2226 root 1.51 fd_enomem (EV_P)
2227 root 1.41 {
2228 root 1.62 int fd;
2229 root 1.41
2230 root 1.62 for (fd = anfdmax; fd--; )
2231 root 1.41 if (anfds [fd].events)
2232     {
2233 root 1.51 fd_kill (EV_A_ fd);
2234 root 1.307 break;
2235 root 1.41 }
2236 root 1.19 }
2237    
2238 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
2239 root 1.480 noinline
2240     static void
2241 root 1.56 fd_rearm_all (EV_P)
2242     {
2243     int fd;
2244    
2245     for (fd = 0; fd < anfdmax; ++fd)
2246     if (anfds [fd].events)
2247     {
2248     anfds [fd].events = 0;
2249 root 1.268 anfds [fd].emask = 0;
2250 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2251 root 1.56 }
2252     }
2253    
2254 root 1.336 /* used to prepare libev internal fd's */
2255     /* this is not fork-safe */
2256     inline_speed void
2257     fd_intern (int fd)
2258     {
2259     #ifdef _WIN32
2260     unsigned long arg = 1;
2261     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2262     #else
2263     fcntl (fd, F_SETFD, FD_CLOEXEC);
2264     fcntl (fd, F_SETFL, O_NONBLOCK);
2265     #endif
2266     }
2267    
2268 root 1.8 /*****************************************************************************/
2269    
2270 root 1.235 /*
2271 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
2272 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2273     * the branching factor of the d-tree.
2274     */
2275    
2276     /*
2277 root 1.235 * at the moment we allow libev the luxury of two heaps,
2278     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2279     * which is more cache-efficient.
2280     * the difference is about 5% with 50000+ watchers.
2281     */
2282 root 1.241 #if EV_USE_4HEAP
2283 root 1.235
2284 root 1.237 #define DHEAP 4
2285     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2286 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2287 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
2288 root 1.235
2289     /* away from the root */
2290 root 1.284 inline_speed void
2291 root 1.241 downheap (ANHE *heap, int N, int k)
2292 root 1.235 {
2293 root 1.241 ANHE he = heap [k];
2294     ANHE *E = heap + N + HEAP0;
2295 root 1.235
2296     for (;;)
2297     {
2298     ev_tstamp minat;
2299 root 1.241 ANHE *minpos;
2300 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2301 root 1.235
2302 root 1.248 /* find minimum child */
2303 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
2304 root 1.235 {
2305 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2306     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2307     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2308     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2309 root 1.235 }
2310 root 1.240 else if (pos < E)
2311 root 1.235 {
2312 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2313     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2314     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2315     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2316 root 1.235 }
2317 root 1.240 else
2318     break;
2319 root 1.235
2320 root 1.241 if (ANHE_at (he) <= minat)
2321 root 1.235 break;
2322    
2323 root 1.247 heap [k] = *minpos;
2324 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2325 root 1.235
2326     k = minpos - heap;
2327     }
2328    
2329 root 1.247 heap [k] = he;
2330 root 1.241 ev_active (ANHE_w (he)) = k;
2331 root 1.235 }
2332    
2333 root 1.248 #else /* 4HEAP */
2334 root 1.235
2335     #define HEAP0 1
2336 root 1.247 #define HPARENT(k) ((k) >> 1)
2337 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2338 root 1.235
2339 root 1.248 /* away from the root */
2340 root 1.284 inline_speed void
2341 root 1.248 downheap (ANHE *heap, int N, int k)
2342 root 1.1 {
2343 root 1.241 ANHE he = heap [k];
2344 root 1.1
2345 root 1.228 for (;;)
2346 root 1.1 {
2347 root 1.248 int c = k << 1;
2348 root 1.179
2349 root 1.309 if (c >= N + HEAP0)
2350 root 1.179 break;
2351    
2352 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2353     ? 1 : 0;
2354    
2355     if (ANHE_at (he) <= ANHE_at (heap [c]))
2356     break;
2357    
2358     heap [k] = heap [c];
2359 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2360 root 1.248
2361     k = c;
2362 root 1.1 }
2363    
2364 root 1.243 heap [k] = he;
2365 root 1.248 ev_active (ANHE_w (he)) = k;
2366 root 1.1 }
2367 root 1.248 #endif
2368 root 1.1
2369 root 1.248 /* towards the root */
2370 root 1.284 inline_speed void
2371 root 1.248 upheap (ANHE *heap, int k)
2372 root 1.1 {
2373 root 1.241 ANHE he = heap [k];
2374 root 1.1
2375 root 1.179 for (;;)
2376 root 1.1 {
2377 root 1.248 int p = HPARENT (k);
2378 root 1.179
2379 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2380 root 1.179 break;
2381 root 1.1
2382 root 1.248 heap [k] = heap [p];
2383 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2384 root 1.248 k = p;
2385 root 1.1 }
2386    
2387 root 1.241 heap [k] = he;
2388     ev_active (ANHE_w (he)) = k;
2389 root 1.1 }
2390    
2391 root 1.288 /* move an element suitably so it is in a correct place */
2392 root 1.284 inline_size void
2393 root 1.241 adjustheap (ANHE *heap, int N, int k)
2394 root 1.84 {
2395 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2396 root 1.247 upheap (heap, k);
2397     else
2398     downheap (heap, N, k);
2399 root 1.84 }
2400    
2401 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2402 root 1.284 inline_size void
2403 root 1.248 reheap (ANHE *heap, int N)
2404     {
2405     int i;
2406 root 1.251
2407 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2408     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2409     for (i = 0; i < N; ++i)
2410     upheap (heap, i + HEAP0);
2411     }
2412    
2413 root 1.8 /*****************************************************************************/
2414    
2415 root 1.288 /* associate signal watchers to a signal signal */
2416 root 1.7 typedef struct
2417     {
2418 root 1.307 EV_ATOMIC_T pending;
2419 root 1.306 #if EV_MULTIPLICITY
2420     EV_P;
2421     #endif
2422 root 1.68 WL head;
2423 root 1.7 } ANSIG;
2424    
2425 root 1.306 static ANSIG signals [EV_NSIG - 1];
2426 root 1.7
2427 root 1.207 /*****************************************************************************/
2428    
2429 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2430 root 1.207
2431 root 1.480 noinline ecb_cold
2432     static void
2433 root 1.207 evpipe_init (EV_P)
2434     {
2435 root 1.288 if (!ev_is_active (&pipe_w))
2436 root 1.207 {
2437 root 1.448 int fds [2];
2438    
2439 root 1.336 # if EV_USE_EVENTFD
2440 root 1.448 fds [0] = -1;
2441     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2442     if (fds [1] < 0 && errno == EINVAL)
2443     fds [1] = eventfd (0, 0);
2444    
2445     if (fds [1] < 0)
2446     # endif
2447     {
2448     while (pipe (fds))
2449     ev_syserr ("(libev) error creating signal/async pipe");
2450    
2451     fd_intern (fds [0]);
2452 root 1.220 }
2453 root 1.448
2454     evpipe [0] = fds [0];
2455    
2456     if (evpipe [1] < 0)
2457     evpipe [1] = fds [1]; /* first call, set write fd */
2458 root 1.220 else
2459     {
2460 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2461     /* so that evpipe_write can always rely on its value. */
2462     /* this branch does not do anything sensible on windows, */
2463     /* so must not be executed on windows */
2464 root 1.207
2465 root 1.448 dup2 (fds [1], evpipe [1]);
2466     close (fds [1]);
2467 root 1.220 }
2468 root 1.207
2469 root 1.455 fd_intern (evpipe [1]);
2470    
2471 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2472 root 1.288 ev_io_start (EV_A_ &pipe_w);
2473 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2474 root 1.207 }
2475     }
2476    
2477 root 1.380 inline_speed void
2478 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2479 root 1.207 {
2480 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2481    
2482 root 1.383 if (expect_true (*flag))
2483 root 1.387 return;
2484 root 1.383
2485     *flag = 1;
2486 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2487 root 1.383
2488     pipe_write_skipped = 1;
2489 root 1.378
2490 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2491 root 1.214
2492 root 1.383 if (pipe_write_wanted)
2493     {
2494     int old_errno;
2495 root 1.378
2496 root 1.436 pipe_write_skipped = 0;
2497     ECB_MEMORY_FENCE_RELEASE;
2498 root 1.220
2499 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2500 root 1.380
2501 root 1.220 #if EV_USE_EVENTFD
2502 root 1.448 if (evpipe [0] < 0)
2503 root 1.383 {
2504     uint64_t counter = 1;
2505 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2506 root 1.383 }
2507     else
2508 root 1.220 #endif
2509 root 1.383 {
2510 root 1.427 #ifdef _WIN32
2511     WSABUF buf;
2512     DWORD sent;
2513 root 1.485 buf.buf = (char *)&buf;
2514 root 1.427 buf.len = 1;
2515     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2516     #else
2517 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2518 root 1.427 #endif
2519 root 1.383 }
2520 root 1.214
2521 root 1.383 errno = old_errno;
2522 root 1.207 }
2523     }
2524    
2525 root 1.288 /* called whenever the libev signal pipe */
2526     /* got some events (signal, async) */
2527 root 1.207 static void
2528     pipecb (EV_P_ ev_io *iow, int revents)
2529     {
2530 root 1.307 int i;
2531    
2532 root 1.378 if (revents & EV_READ)
2533     {
2534 root 1.220 #if EV_USE_EVENTFD
2535 root 1.448 if (evpipe [0] < 0)
2536 root 1.378 {
2537     uint64_t counter;
2538 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2539 root 1.378 }
2540     else
2541 root 1.220 #endif
2542 root 1.378 {
2543 root 1.427 char dummy[4];
2544     #ifdef _WIN32
2545     WSABUF buf;
2546     DWORD recvd;
2547 root 1.432 DWORD flags = 0;
2548 root 1.427 buf.buf = dummy;
2549     buf.len = sizeof (dummy);
2550 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2551 root 1.427 #else
2552     read (evpipe [0], &dummy, sizeof (dummy));
2553     #endif
2554 root 1.378 }
2555 root 1.220 }
2556 root 1.207
2557 root 1.378 pipe_write_skipped = 0;
2558    
2559 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2560    
2561 root 1.369 #if EV_SIGNAL_ENABLE
2562 root 1.307 if (sig_pending)
2563 root 1.372 {
2564 root 1.307 sig_pending = 0;
2565 root 1.207
2566 root 1.436 ECB_MEMORY_FENCE;
2567 root 1.424
2568 root 1.307 for (i = EV_NSIG - 1; i--; )
2569     if (expect_false (signals [i].pending))
2570     ev_feed_signal_event (EV_A_ i + 1);
2571 root 1.207 }
2572 root 1.369 #endif
2573 root 1.207
2574 root 1.209 #if EV_ASYNC_ENABLE
2575 root 1.307 if (async_pending)
2576 root 1.207 {
2577 root 1.307 async_pending = 0;
2578 root 1.207
2579 root 1.436 ECB_MEMORY_FENCE;
2580 root 1.424
2581 root 1.207 for (i = asynccnt; i--; )
2582     if (asyncs [i]->sent)
2583     {
2584     asyncs [i]->sent = 0;
2585 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2586 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2587     }
2588     }
2589 root 1.209 #endif
2590 root 1.207 }
2591    
2592     /*****************************************************************************/
2593    
2594 root 1.366 void
2595 root 1.486 ev_feed_signal (int signum) EV_NOEXCEPT
2596 root 1.7 {
2597 root 1.207 #if EV_MULTIPLICITY
2598 root 1.453 EV_P;
2599 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2600 root 1.453 EV_A = signals [signum - 1].loop;
2601 root 1.366
2602     if (!EV_A)
2603     return;
2604 root 1.207 #endif
2605    
2606 root 1.366 signals [signum - 1].pending = 1;
2607     evpipe_write (EV_A_ &sig_pending);
2608     }
2609    
2610     static void
2611     ev_sighandler (int signum)
2612     {
2613 root 1.322 #ifdef _WIN32
2614 root 1.218 signal (signum, ev_sighandler);
2615 root 1.67 #endif
2616    
2617 root 1.366 ev_feed_signal (signum);
2618 root 1.7 }
2619    
2620 root 1.480 noinline
2621     void
2622 root 1.486 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2623 root 1.79 {
2624 root 1.80 WL w;
2625    
2626 root 1.446 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2627 root 1.307 return;
2628    
2629     --signum;
2630    
2631 root 1.79 #if EV_MULTIPLICITY
2632 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2633     /* or, likely more useful, feeding a signal nobody is waiting for */
2634 root 1.79
2635 root 1.307 if (expect_false (signals [signum].loop != EV_A))
2636 root 1.306 return;
2637 root 1.307 #endif
2638 root 1.306
2639 root 1.307 signals [signum].pending = 0;
2640 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2641 root 1.79
2642     for (w = signals [signum].head; w; w = w->next)
2643     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2644     }
2645    
2646 root 1.303 #if EV_USE_SIGNALFD
2647     static void
2648     sigfdcb (EV_P_ ev_io *iow, int revents)
2649     {
2650 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2651 root 1.303
2652     for (;;)
2653     {
2654     ssize_t res = read (sigfd, si, sizeof (si));
2655    
2656     /* not ISO-C, as res might be -1, but works with SuS */
2657     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2658     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2659    
2660     if (res < (ssize_t)sizeof (si))
2661     break;
2662     }
2663     }
2664     #endif
2665    
2666 root 1.336 #endif
2667    
2668 root 1.8 /*****************************************************************************/
2669    
2670 root 1.336 #if EV_CHILD_ENABLE
2671 root 1.182 static WL childs [EV_PID_HASHSIZE];
2672 root 1.71
2673 root 1.136 static ev_signal childev;
2674 root 1.59
2675 root 1.206 #ifndef WIFCONTINUED
2676     # define WIFCONTINUED(status) 0
2677     #endif
2678    
2679 root 1.288 /* handle a single child status event */
2680 root 1.284 inline_speed void
2681 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2682 root 1.47 {
2683 root 1.136 ev_child *w;
2684 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2685 root 1.47
2686 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2687 root 1.206 {
2688     if ((w->pid == pid || !w->pid)
2689     && (!traced || (w->flags & 1)))
2690     {
2691 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2692 root 1.206 w->rpid = pid;
2693     w->rstatus = status;
2694     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2695     }
2696     }
2697 root 1.47 }
2698    
2699 root 1.142 #ifndef WCONTINUED
2700     # define WCONTINUED 0
2701     #endif
2702    
2703 root 1.288 /* called on sigchld etc., calls waitpid */
2704 root 1.47 static void
2705 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2706 root 1.22 {
2707     int pid, status;
2708    
2709 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2710     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2711     if (!WCONTINUED
2712     || errno != EINVAL
2713     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2714     return;
2715    
2716 root 1.216 /* make sure we are called again until all children have been reaped */
2717 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2718     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2719 root 1.47
2720 root 1.216 child_reap (EV_A_ pid, pid, status);
2721 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2722 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2723 root 1.22 }
2724    
2725 root 1.45 #endif
2726    
2727 root 1.22 /*****************************************************************************/
2728    
2729 root 1.357 #if EV_USE_IOCP
2730     # include "ev_iocp.c"
2731     #endif
2732 root 1.118 #if EV_USE_PORT
2733     # include "ev_port.c"
2734     #endif
2735 root 1.44 #if EV_USE_KQUEUE
2736     # include "ev_kqueue.c"
2737     #endif
2738 root 1.493 #if EV_USE_EPOLL
2739     # include "ev_epoll.c"
2740     #endif
2741 root 1.490 #if EV_USE_LINUXAIO
2742     # include "ev_linuxaio.c"
2743     #endif
2744 root 1.59 #if EV_USE_POLL
2745 root 1.41 # include "ev_poll.c"
2746     #endif
2747 root 1.29 #if EV_USE_SELECT
2748 root 1.1 # include "ev_select.c"
2749     #endif
2750    
2751 root 1.480 ecb_cold int
2752 root 1.486 ev_version_major (void) EV_NOEXCEPT
2753 root 1.24 {
2754     return EV_VERSION_MAJOR;
2755     }
2756    
2757 root 1.480 ecb_cold int
2758 root 1.486 ev_version_minor (void) EV_NOEXCEPT
2759 root 1.24 {
2760     return EV_VERSION_MINOR;
2761     }
2762    
2763 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2764 root 1.480 inline_size ecb_cold int
2765 root 1.51 enable_secure (void)
2766 root 1.41 {
2767 root 1.103 #ifdef _WIN32
2768 root 1.49 return 0;
2769     #else
2770 root 1.41 return getuid () != geteuid ()
2771     || getgid () != getegid ();
2772 root 1.49 #endif
2773 root 1.41 }
2774    
2775 root 1.480 ecb_cold
2776     unsigned int
2777 root 1.486 ev_supported_backends (void) EV_NOEXCEPT
2778 root 1.129 {
2779 root 1.130 unsigned int flags = 0;
2780 root 1.129
2781 root 1.490 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2782     if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2783     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2784     if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2785     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2786     if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2787 root 1.129
2788     return flags;
2789     }
2790    
2791 root 1.480 ecb_cold
2792     unsigned int
2793 root 1.486 ev_recommended_backends (void) EV_NOEXCEPT
2794 root 1.1 {
2795 root 1.131 unsigned int flags = ev_supported_backends ();
2796 root 1.129
2797     #ifndef __NetBSD__
2798     /* kqueue is borked on everything but netbsd apparently */
2799     /* it usually doesn't work correctly on anything but sockets and pipes */
2800     flags &= ~EVBACKEND_KQUEUE;
2801     #endif
2802     #ifdef __APPLE__
2803 root 1.278 /* only select works correctly on that "unix-certified" platform */
2804     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2805     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2806 root 1.129 #endif
2807 root 1.342 #ifdef __FreeBSD__
2808     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2809     #endif
2810 root 1.129
2811 root 1.491 /* TODO: linuxaio is very experimental */
2812 root 1.494 #if !EV_RECOMMEND_LINUXAIO
2813 root 1.491 flags &= ~EVBACKEND_LINUXAIO;
2814 root 1.494 #endif
2815 root 1.491
2816 root 1.129 return flags;
2817 root 1.51 }
2818    
2819 root 1.480 ecb_cold
2820     unsigned int
2821 root 1.486 ev_embeddable_backends (void) EV_NOEXCEPT
2822 root 1.134 {
2823 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2824    
2825 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2826 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2827     flags &= ~EVBACKEND_EPOLL;
2828 root 1.196
2829     return flags;
2830 root 1.134 }
2831    
2832     unsigned int
2833 root 1.486 ev_backend (EV_P) EV_NOEXCEPT
2834 root 1.130 {
2835     return backend;
2836     }
2837    
2838 root 1.338 #if EV_FEATURE_API
2839 root 1.162 unsigned int
2840 root 1.486 ev_iteration (EV_P) EV_NOEXCEPT
2841 root 1.162 {
2842     return loop_count;
2843     }
2844    
2845 root 1.294 unsigned int
2846 root 1.486 ev_depth (EV_P) EV_NOEXCEPT
2847 root 1.294 {
2848     return loop_depth;
2849     }
2850    
2851 root 1.193 void
2852 root 1.486 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2853 root 1.193 {
2854     io_blocktime = interval;
2855     }
2856    
2857     void
2858 root 1.486 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2859 root 1.193 {
2860     timeout_blocktime = interval;
2861     }
2862    
2863 root 1.297 void
2864 root 1.486 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2865 root 1.297 {
2866     userdata = data;
2867     }
2868    
2869     void *
2870 root 1.486 ev_userdata (EV_P) EV_NOEXCEPT
2871 root 1.297 {
2872     return userdata;
2873     }
2874    
2875 root 1.379 void
2876 root 1.486 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2877 root 1.297 {
2878     invoke_cb = invoke_pending_cb;
2879     }
2880    
2881 root 1.379 void
2882 root 1.486 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2883 root 1.297 {
2884 root 1.298 release_cb = release;
2885     acquire_cb = acquire;
2886 root 1.297 }
2887     #endif
2888    
2889 root 1.288 /* initialise a loop structure, must be zero-initialised */
2890 root 1.480 noinline ecb_cold
2891     static void
2892 root 1.486 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
2893 root 1.51 {
2894 root 1.130 if (!backend)
2895 root 1.23 {
2896 root 1.366 origflags = flags;
2897    
2898 root 1.279 #if EV_USE_REALTIME
2899     if (!have_realtime)
2900     {
2901     struct timespec ts;
2902    
2903     if (!clock_gettime (CLOCK_REALTIME, &ts))
2904     have_realtime = 1;
2905     }
2906     #endif
2907    
2908 root 1.29 #if EV_USE_MONOTONIC
2909 root 1.279 if (!have_monotonic)
2910     {
2911     struct timespec ts;
2912    
2913     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2914     have_monotonic = 1;
2915     }
2916 root 1.1 #endif
2917    
2918 root 1.306 /* pid check not overridable via env */
2919     #ifndef _WIN32
2920     if (flags & EVFLAG_FORKCHECK)
2921     curpid = getpid ();
2922     #endif
2923    
2924     if (!(flags & EVFLAG_NOENV)
2925     && !enable_secure ()
2926     && getenv ("LIBEV_FLAGS"))
2927     flags = atoi (getenv ("LIBEV_FLAGS"));
2928    
2929 root 1.378 ev_rt_now = ev_time ();
2930     mn_now = get_clock ();
2931     now_floor = mn_now;
2932     rtmn_diff = ev_rt_now - mn_now;
2933 root 1.338 #if EV_FEATURE_API
2934 root 1.378 invoke_cb = ev_invoke_pending;
2935 root 1.297 #endif
2936 root 1.1
2937 root 1.378 io_blocktime = 0.;
2938     timeout_blocktime = 0.;
2939     backend = 0;
2940     backend_fd = -1;
2941     sig_pending = 0;
2942 root 1.307 #if EV_ASYNC_ENABLE
2943 root 1.378 async_pending = 0;
2944 root 1.307 #endif
2945 root 1.378 pipe_write_skipped = 0;
2946     pipe_write_wanted = 0;
2947 root 1.448 evpipe [0] = -1;
2948     evpipe [1] = -1;
2949 root 1.209 #if EV_USE_INOTIFY
2950 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2951 root 1.209 #endif
2952 root 1.303 #if EV_USE_SIGNALFD
2953 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2954 root 1.303 #endif
2955 root 1.193
2956 root 1.366 if (!(flags & EVBACKEND_MASK))
2957 root 1.129 flags |= ev_recommended_backends ();
2958 root 1.41
2959 root 1.357 #if EV_USE_IOCP
2960 root 1.490 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2961 root 1.357 #endif
2962 root 1.118 #if EV_USE_PORT
2963 root 1.490 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2964 root 1.118 #endif
2965 root 1.44 #if EV_USE_KQUEUE
2966 root 1.490 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2967     #endif
2968     #if EV_USE_LINUXAIO
2969     if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
2970 root 1.44 #endif
2971 root 1.29 #if EV_USE_EPOLL
2972 root 1.490 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2973 root 1.41 #endif
2974 root 1.59 #if EV_USE_POLL
2975 root 1.490 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2976 root 1.1 #endif
2977 root 1.29 #if EV_USE_SELECT
2978 root 1.490 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
2979 root 1.1 #endif
2980 root 1.70
2981 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2982    
2983 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2984 root 1.288 ev_init (&pipe_w, pipecb);
2985     ev_set_priority (&pipe_w, EV_MAXPRI);
2986 root 1.336 #endif
2987 root 1.56 }
2988     }
2989    
2990 root 1.288 /* free up a loop structure */
2991 root 1.480 ecb_cold
2992     void
2993 root 1.422 ev_loop_destroy (EV_P)
2994 root 1.56 {
2995 root 1.65 int i;
2996    
2997 root 1.364 #if EV_MULTIPLICITY
2998 root 1.363 /* mimic free (0) */
2999     if (!EV_A)
3000     return;
3001 root 1.364 #endif
3002 root 1.363
3003 root 1.361 #if EV_CLEANUP_ENABLE
3004     /* queue cleanup watchers (and execute them) */
3005     if (expect_false (cleanupcnt))
3006     {
3007     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3008     EV_INVOKE_PENDING;
3009     }
3010     #endif
3011    
3012 root 1.359 #if EV_CHILD_ENABLE
3013 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3014 root 1.359 {
3015     ev_ref (EV_A); /* child watcher */
3016     ev_signal_stop (EV_A_ &childev);
3017     }
3018     #endif
3019    
3020 root 1.288 if (ev_is_active (&pipe_w))
3021 root 1.207 {
3022 root 1.303 /*ev_ref (EV_A);*/
3023     /*ev_io_stop (EV_A_ &pipe_w);*/
3024 root 1.207
3025 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3026     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3027 root 1.207 }
3028    
3029 root 1.303 #if EV_USE_SIGNALFD
3030     if (ev_is_active (&sigfd_w))
3031 root 1.317 close (sigfd);
3032 root 1.303 #endif
3033    
3034 root 1.152 #if EV_USE_INOTIFY
3035     if (fs_fd >= 0)
3036     close (fs_fd);
3037     #endif
3038    
3039     if (backend_fd >= 0)
3040     close (backend_fd);
3041    
3042 root 1.357 #if EV_USE_IOCP
3043 root 1.490 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3044 root 1.357 #endif
3045 root 1.118 #if EV_USE_PORT
3046 root 1.490 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3047 root 1.118 #endif
3048 root 1.56 #if EV_USE_KQUEUE
3049 root 1.490 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3050     #endif
3051     #if EV_USE_LINUXAIO
3052     if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3053 root 1.56 #endif
3054     #if EV_USE_EPOLL
3055 root 1.490 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3056 root 1.56 #endif
3057 root 1.59 #if EV_USE_POLL
3058 root 1.490 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3059 root 1.56 #endif
3060     #if EV_USE_SELECT
3061 root 1.490 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3062 root 1.56 #endif
3063 root 1.1
3064 root 1.65 for (i = NUMPRI; i--; )
3065 root 1.164 {
3066     array_free (pending, [i]);
3067     #if EV_IDLE_ENABLE
3068     array_free (idle, [i]);
3069     #endif
3070     }
3071 root 1.65
3072 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
3073 root 1.186
3074 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
3075 root 1.284 array_free (rfeed, EMPTY);
3076 root 1.164 array_free (fdchange, EMPTY);
3077     array_free (timer, EMPTY);
3078 root 1.140 #if EV_PERIODIC_ENABLE
3079 root 1.164 array_free (periodic, EMPTY);
3080 root 1.93 #endif
3081 root 1.187 #if EV_FORK_ENABLE
3082     array_free (fork, EMPTY);
3083     #endif
3084 root 1.360 #if EV_CLEANUP_ENABLE
3085     array_free (cleanup, EMPTY);
3086     #endif
3087 root 1.164 array_free (prepare, EMPTY);
3088     array_free (check, EMPTY);
3089 root 1.209 #if EV_ASYNC_ENABLE
3090     array_free (async, EMPTY);
3091     #endif
3092 root 1.65
3093 root 1.130 backend = 0;
3094 root 1.359
3095     #if EV_MULTIPLICITY
3096     if (ev_is_default_loop (EV_A))
3097     #endif
3098     ev_default_loop_ptr = 0;
3099     #if EV_MULTIPLICITY
3100     else
3101     ev_free (EV_A);
3102     #endif
3103 root 1.56 }
3104 root 1.22
3105 root 1.226 #if EV_USE_INOTIFY
3106 root 1.284 inline_size void infy_fork (EV_P);
3107 root 1.226 #endif
3108 root 1.154
3109 root 1.284 inline_size void
3110 root 1.56 loop_fork (EV_P)
3111     {
3112 root 1.118 #if EV_USE_PORT
3113 root 1.490 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3114 root 1.56 #endif
3115     #if EV_USE_KQUEUE
3116 root 1.490 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3117     #endif
3118     #if EV_USE_LINUXAIO
3119     if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3120 root 1.45 #endif
3121 root 1.118 #if EV_USE_EPOLL
3122 root 1.490 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3123 root 1.118 #endif
3124 root 1.154 #if EV_USE_INOTIFY
3125     infy_fork (EV_A);
3126     #endif
3127 root 1.70
3128 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3129 root 1.478 if (ev_is_active (&pipe_w) && postfork != 2)
3130 root 1.70 {
3131 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3132 root 1.70
3133     ev_ref (EV_A);
3134 root 1.288 ev_io_stop (EV_A_ &pipe_w);
3135 root 1.220
3136     if (evpipe [0] >= 0)
3137 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
3138 root 1.207
3139     evpipe_init (EV_A);
3140 root 1.443 /* iterate over everything, in case we missed something before */
3141     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3142 root 1.448 }
3143 root 1.337 #endif
3144 root 1.70
3145     postfork = 0;
3146 root 1.1 }
3147    
3148 root 1.55 #if EV_MULTIPLICITY
3149 root 1.250
3150 root 1.480 ecb_cold
3151     struct ev_loop *
3152 root 1.486 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3153 root 1.54 {
3154 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3155 root 1.69
3156 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
3157 root 1.108 loop_init (EV_A_ flags);
3158 root 1.56
3159 root 1.130 if (ev_backend (EV_A))
3160 root 1.306 return EV_A;
3161 root 1.54
3162 root 1.359 ev_free (EV_A);
3163 root 1.55 return 0;
3164 root 1.54 }
3165    
3166 root 1.297 #endif /* multiplicity */
3167 root 1.248
3168     #if EV_VERIFY
3169 root 1.480 noinline ecb_cold
3170     static void
3171 root 1.251 verify_watcher (EV_P_ W w)
3172     {
3173 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3174 root 1.251
3175     if (w->pending)
3176 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3177 root 1.251 }
3178    
3179 root 1.480 noinline ecb_cold
3180     static void
3181 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
3182     {
3183     int i;
3184    
3185     for (i = HEAP0; i < N + HEAP0; ++i)
3186     {
3187 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3188     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3189     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3190 root 1.251
3191     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3192     }
3193     }
3194    
3195 root 1.480 noinline ecb_cold
3196     static void
3197 root 1.251 array_verify (EV_P_ W *ws, int cnt)
3198 root 1.248 {
3199     while (cnt--)
3200 root 1.251 {
3201 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3202 root 1.251 verify_watcher (EV_A_ ws [cnt]);
3203     }
3204 root 1.248 }
3205 root 1.250 #endif
3206 root 1.248
3207 root 1.338 #if EV_FEATURE_API
3208 root 1.379 void ecb_cold
3209 root 1.486 ev_verify (EV_P) EV_NOEXCEPT
3210 root 1.248 {
3211 root 1.250 #if EV_VERIFY
3212 root 1.429 int i;
3213 root 1.426 WL w, w2;
3214 root 1.251
3215     assert (activecnt >= -1);
3216    
3217     assert (fdchangemax >= fdchangecnt);
3218     for (i = 0; i < fdchangecnt; ++i)
3219 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3220 root 1.251
3221     assert (anfdmax >= 0);
3222 root 1.429 for (i = 0; i < anfdmax; ++i)
3223     {
3224     int j = 0;
3225    
3226     for (w = w2 = anfds [i].head; w; w = w->next)
3227     {
3228     verify_watcher (EV_A_ (W)w);
3229 root 1.426
3230 root 1.429 if (j++ & 1)
3231     {
3232     assert (("libev: io watcher list contains a loop", w != w2));
3233     w2 = w2->next;
3234     }
3235 root 1.426
3236 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3237     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3238     }
3239     }
3240 root 1.251
3241     assert (timermax >= timercnt);
3242     verify_heap (EV_A_ timers, timercnt);
3243 root 1.248
3244     #if EV_PERIODIC_ENABLE
3245 root 1.251 assert (periodicmax >= periodiccnt);
3246     verify_heap (EV_A_ periodics, periodiccnt);
3247 root 1.248 #endif
3248    
3249 root 1.251 for (i = NUMPRI; i--; )
3250     {
3251     assert (pendingmax [i] >= pendingcnt [i]);
3252 root 1.248 #if EV_IDLE_ENABLE
3253 root 1.252 assert (idleall >= 0);
3254 root 1.251 assert (idlemax [i] >= idlecnt [i]);
3255     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3256 root 1.248 #endif
3257 root 1.251 }
3258    
3259 root 1.248 #if EV_FORK_ENABLE
3260 root 1.251 assert (forkmax >= forkcnt);
3261     array_verify (EV_A_ (W *)forks, forkcnt);
3262 root 1.248 #endif
3263 root 1.251
3264 root 1.360 #if EV_CLEANUP_ENABLE
3265     assert (cleanupmax >= cleanupcnt);
3266     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3267     #endif
3268    
3269 root 1.250 #if EV_ASYNC_ENABLE
3270 root 1.251 assert (asyncmax >= asynccnt);
3271     array_verify (EV_A_ (W *)asyncs, asynccnt);
3272 root 1.250 #endif
3273 root 1.251
3274 root 1.337 #if EV_PREPARE_ENABLE
3275 root 1.251 assert (preparemax >= preparecnt);
3276     array_verify (EV_A_ (W *)prepares, preparecnt);
3277 root 1.337 #endif
3278 root 1.251
3279 root 1.337 #if EV_CHECK_ENABLE
3280 root 1.251 assert (checkmax >= checkcnt);
3281     array_verify (EV_A_ (W *)checks, checkcnt);
3282 root 1.337 #endif
3283 root 1.251
3284     # if 0
3285 root 1.336 #if EV_CHILD_ENABLE
3286 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3287 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3288 root 1.336 #endif
3289 root 1.251 # endif
3290 root 1.248 #endif
3291     }
3292 root 1.297 #endif
3293 root 1.56
3294     #if EV_MULTIPLICITY
3295 root 1.480 ecb_cold
3296     struct ev_loop *
3297 root 1.54 #else
3298     int
3299 root 1.358 #endif
3300 root 1.486 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3301 root 1.54 {
3302 root 1.116 if (!ev_default_loop_ptr)
3303 root 1.56 {
3304     #if EV_MULTIPLICITY
3305 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
3306 root 1.56 #else
3307 ayin 1.117 ev_default_loop_ptr = 1;
3308 root 1.54 #endif
3309    
3310 root 1.110 loop_init (EV_A_ flags);
3311 root 1.56
3312 root 1.130 if (ev_backend (EV_A))
3313 root 1.56 {
3314 root 1.336 #if EV_CHILD_ENABLE
3315 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
3316     ev_set_priority (&childev, EV_MAXPRI);
3317     ev_signal_start (EV_A_ &childev);
3318     ev_unref (EV_A); /* child watcher should not keep loop alive */
3319     #endif
3320     }
3321     else
3322 root 1.116 ev_default_loop_ptr = 0;
3323 root 1.56 }
3324 root 1.8
3325 root 1.116 return ev_default_loop_ptr;
3326 root 1.1 }
3327    
3328 root 1.24 void
3329 root 1.486 ev_loop_fork (EV_P) EV_NOEXCEPT
3330 root 1.1 {
3331 root 1.440 postfork = 1;
3332 root 1.1 }
3333    
3334 root 1.8 /*****************************************************************************/
3335    
3336 root 1.168 void
3337     ev_invoke (EV_P_ void *w, int revents)
3338     {
3339     EV_CB_INVOKE ((W)w, revents);
3340     }
3341    
3342 root 1.300 unsigned int
3343 root 1.486 ev_pending_count (EV_P) EV_NOEXCEPT
3344 root 1.300 {
3345     int pri;
3346     unsigned int count = 0;
3347    
3348     for (pri = NUMPRI; pri--; )
3349     count += pendingcnt [pri];
3350    
3351     return count;
3352     }
3353    
3354 root 1.480 noinline
3355     void
3356 root 1.296 ev_invoke_pending (EV_P)
3357 root 1.1 {
3358 root 1.445 pendingpri = NUMPRI;
3359    
3360 root 1.484 do
3361 root 1.445 {
3362     --pendingpri;
3363    
3364 root 1.484 /* pendingpri possibly gets modified in the inner loop */
3365 root 1.445 while (pendingcnt [pendingpri])
3366     {
3367     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3368 root 1.1
3369 root 1.445 p->w->pending = 0;
3370     EV_CB_INVOKE (p->w, p->events);
3371     EV_FREQUENT_CHECK;
3372     }
3373     }
3374 root 1.484 while (pendingpri);
3375 root 1.1 }
3376    
3377 root 1.234 #if EV_IDLE_ENABLE
3378 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3379     /* only when higher priorities are idle" logic */
3380 root 1.284 inline_size void
3381 root 1.234 idle_reify (EV_P)
3382     {
3383     if (expect_false (idleall))
3384     {
3385     int pri;
3386    
3387     for (pri = NUMPRI; pri--; )
3388     {
3389     if (pendingcnt [pri])
3390     break;
3391    
3392     if (idlecnt [pri])
3393     {
3394     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3395     break;
3396     }
3397     }
3398     }
3399     }
3400     #endif
3401    
3402 root 1.288 /* make timers pending */
3403 root 1.284 inline_size void
3404 root 1.51 timers_reify (EV_P)
3405 root 1.1 {
3406 root 1.248 EV_FREQUENT_CHECK;
3407    
3408 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3409 root 1.1 {
3410 root 1.284 do
3411     {
3412     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3413 root 1.1
3414 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3415    
3416     /* first reschedule or stop timer */
3417     if (w->repeat)
3418     {
3419     ev_at (w) += w->repeat;
3420     if (ev_at (w) < mn_now)
3421     ev_at (w) = mn_now;
3422 root 1.61
3423 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3424 root 1.90
3425 root 1.284 ANHE_at_cache (timers [HEAP0]);
3426     downheap (timers, timercnt, HEAP0);
3427     }
3428     else
3429     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3430 root 1.243
3431 root 1.284 EV_FREQUENT_CHECK;
3432     feed_reverse (EV_A_ (W)w);
3433 root 1.12 }
3434 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3435 root 1.30
3436 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3437 root 1.12 }
3438     }
3439 root 1.4
3440 root 1.140 #if EV_PERIODIC_ENABLE
3441 root 1.370
3442 root 1.480 noinline
3443     static void
3444 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3445     {
3446 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3447     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3448    
3449     /* the above almost always errs on the low side */
3450     while (at <= ev_rt_now)
3451     {
3452     ev_tstamp nat = at + w->interval;
3453    
3454     /* when resolution fails us, we use ev_rt_now */
3455     if (expect_false (nat == at))
3456     {
3457     at = ev_rt_now;
3458     break;
3459     }
3460    
3461     at = nat;
3462     }
3463    
3464     ev_at (w) = at;
3465 root 1.370 }
3466    
3467 root 1.288 /* make periodics pending */
3468 root 1.284 inline_size void
3469 root 1.51 periodics_reify (EV_P)
3470 root 1.12 {
3471 root 1.248 EV_FREQUENT_CHECK;
3472 root 1.250
3473 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3474 root 1.12 {
3475 root 1.284 do
3476     {
3477     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3478 root 1.1
3479 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3480 root 1.61
3481 root 1.284 /* first reschedule or stop timer */
3482     if (w->reschedule_cb)
3483     {
3484     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3485 root 1.243
3486 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3487 root 1.243
3488 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3489     downheap (periodics, periodiccnt, HEAP0);
3490     }
3491     else if (w->interval)
3492 root 1.246 {
3493 root 1.370 periodic_recalc (EV_A_ w);
3494 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3495     downheap (periodics, periodiccnt, HEAP0);
3496 root 1.246 }
3497 root 1.284 else
3498     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3499 root 1.243
3500 root 1.284 EV_FREQUENT_CHECK;
3501     feed_reverse (EV_A_ (W)w);
3502 root 1.1 }
3503 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3504 root 1.12
3505 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3506 root 1.12 }
3507     }
3508    
3509 root 1.288 /* simply recalculate all periodics */
3510 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3511 root 1.480 noinline ecb_cold
3512     static void
3513 root 1.54 periodics_reschedule (EV_P)
3514 root 1.12 {
3515     int i;
3516    
3517 root 1.13 /* adjust periodics after time jump */
3518 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3519 root 1.12 {
3520 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3521 root 1.12
3522 root 1.77 if (w->reschedule_cb)
3523 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3524 root 1.77 else if (w->interval)
3525 root 1.370 periodic_recalc (EV_A_ w);
3526 root 1.242
3527 root 1.248 ANHE_at_cache (periodics [i]);
3528 root 1.77 }
3529 root 1.12
3530 root 1.248 reheap (periodics, periodiccnt);
3531 root 1.1 }
3532 root 1.93 #endif
3533 root 1.1
3534 root 1.288 /* adjust all timers by a given offset */
3535 root 1.480 noinline ecb_cold
3536     static void
3537 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3538     {
3539     int i;
3540    
3541     for (i = 0; i < timercnt; ++i)
3542     {
3543     ANHE *he = timers + i + HEAP0;
3544     ANHE_w (*he)->at += adjust;
3545     ANHE_at_cache (*he);
3546     }
3547     }
3548    
3549 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3550 root 1.324 /* also detect if there was a timejump, and act accordingly */
3551 root 1.284 inline_speed void
3552 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3553 root 1.4 {
3554 root 1.40 #if EV_USE_MONOTONIC
3555     if (expect_true (have_monotonic))
3556     {
3557 root 1.289 int i;
3558 root 1.178 ev_tstamp odiff = rtmn_diff;
3559    
3560     mn_now = get_clock ();
3561    
3562     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3563     /* interpolate in the meantime */
3564     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3565 root 1.40 {
3566 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3567     return;
3568     }
3569    
3570     now_floor = mn_now;
3571     ev_rt_now = ev_time ();
3572 root 1.4
3573 root 1.178 /* loop a few times, before making important decisions.
3574     * on the choice of "4": one iteration isn't enough,
3575     * in case we get preempted during the calls to
3576     * ev_time and get_clock. a second call is almost guaranteed
3577     * to succeed in that case, though. and looping a few more times
3578     * doesn't hurt either as we only do this on time-jumps or
3579     * in the unlikely event of having been preempted here.
3580     */
3581     for (i = 4; --i; )
3582     {
3583 root 1.373 ev_tstamp diff;
3584 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3585 root 1.4
3586 root 1.373 diff = odiff - rtmn_diff;
3587    
3588     if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3589 root 1.178 return; /* all is well */
3590 root 1.4
3591 root 1.178 ev_rt_now = ev_time ();
3592     mn_now = get_clock ();
3593     now_floor = mn_now;
3594     }
3595 root 1.4
3596 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3597     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3598 root 1.140 # if EV_PERIODIC_ENABLE
3599 root 1.178 periodics_reschedule (EV_A);
3600 root 1.93 # endif
3601 root 1.4 }
3602     else
3603 root 1.40 #endif
3604 root 1.4 {
3605 root 1.85 ev_rt_now = ev_time ();
3606 root 1.40
3607 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3608 root 1.13 {
3609 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3610     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3611 root 1.140 #if EV_PERIODIC_ENABLE
3612 root 1.54 periodics_reschedule (EV_A);
3613 root 1.93 #endif
3614 root 1.13 }
3615 root 1.4
3616 root 1.85 mn_now = ev_rt_now;
3617 root 1.4 }
3618     }
3619    
3620 root 1.418 int
3621 root 1.353 ev_run (EV_P_ int flags)
3622 root 1.1 {
3623 root 1.338 #if EV_FEATURE_API
3624 root 1.294 ++loop_depth;
3625 root 1.297 #endif
3626 root 1.294
3627 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3628 root 1.298
3629 root 1.353 loop_done = EVBREAK_CANCEL;
3630 root 1.1
3631 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3632 root 1.158
3633 root 1.161 do
3634 root 1.9 {
3635 root 1.250 #if EV_VERIFY >= 2
3636 root 1.340 ev_verify (EV_A);
3637 root 1.250 #endif
3638    
3639 root 1.158 #ifndef _WIN32
3640     if (expect_false (curpid)) /* penalise the forking check even more */
3641     if (expect_false (getpid () != curpid))
3642     {
3643     curpid = getpid ();
3644     postfork = 1;
3645     }
3646     #endif
3647    
3648 root 1.157 #if EV_FORK_ENABLE
3649     /* we might have forked, so queue fork handlers */
3650     if (expect_false (postfork))
3651     if (forkcnt)
3652     {
3653     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3654 root 1.297 EV_INVOKE_PENDING;
3655 root 1.157 }
3656     #endif
3657 root 1.147
3658 root 1.337 #if EV_PREPARE_ENABLE
3659 root 1.170 /* queue prepare watchers (and execute them) */
3660 root 1.40 if (expect_false (preparecnt))
3661 root 1.20 {
3662 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3663 root 1.297 EV_INVOKE_PENDING;
3664 root 1.20 }
3665 root 1.337 #endif
3666 root 1.9
3667 root 1.298 if (expect_false (loop_done))
3668     break;
3669    
3670 root 1.70 /* we might have forked, so reify kernel state if necessary */
3671     if (expect_false (postfork))
3672     loop_fork (EV_A);
3673    
3674 root 1.1 /* update fd-related kernel structures */
3675 root 1.51 fd_reify (EV_A);
3676 root 1.1
3677     /* calculate blocking time */
3678 root 1.135 {
3679 root 1.193 ev_tstamp waittime = 0.;
3680     ev_tstamp sleeptime = 0.;
3681 root 1.12
3682 root 1.353 /* remember old timestamp for io_blocktime calculation */
3683     ev_tstamp prev_mn_now = mn_now;
3684 root 1.293
3685 root 1.353 /* update time to cancel out callback processing overhead */
3686     time_update (EV_A_ 1e100);
3687 root 1.135
3688 root 1.378 /* from now on, we want a pipe-wake-up */
3689     pipe_write_wanted = 1;
3690    
3691 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3692 root 1.383
3693 root 1.378 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3694 root 1.353 {
3695 root 1.287 waittime = MAX_BLOCKTIME;
3696    
3697 root 1.135 if (timercnt)
3698     {
3699 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3700 root 1.193 if (waittime > to) waittime = to;
3701 root 1.135 }
3702 root 1.4
3703 root 1.140 #if EV_PERIODIC_ENABLE
3704 root 1.135 if (periodiccnt)
3705     {
3706 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3707 root 1.193 if (waittime > to) waittime = to;
3708 root 1.135 }
3709 root 1.93 #endif
3710 root 1.4
3711 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3712 root 1.193 if (expect_false (waittime < timeout_blocktime))
3713     waittime = timeout_blocktime;
3714    
3715 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3716     /* to pass a minimum nonzero value to the backend */
3717     if (expect_false (waittime < backend_mintime))
3718     waittime = backend_mintime;
3719    
3720 root 1.293 /* extra check because io_blocktime is commonly 0 */
3721     if (expect_false (io_blocktime))
3722     {
3723     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3724 root 1.193
3725 root 1.376 if (sleeptime > waittime - backend_mintime)
3726     sleeptime = waittime - backend_mintime;
3727 root 1.193
3728 root 1.293 if (expect_true (sleeptime > 0.))
3729     {
3730     ev_sleep (sleeptime);
3731     waittime -= sleeptime;
3732     }
3733 root 1.193 }
3734 root 1.135 }
3735 root 1.1
3736 root 1.338 #if EV_FEATURE_API
3737 root 1.162 ++loop_count;
3738 root 1.297 #endif
3739 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3740 root 1.193 backend_poll (EV_A_ waittime);
3741 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3742 root 1.178
3743 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3744 root 1.378
3745 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3746 root 1.378 if (pipe_write_skipped)
3747     {
3748     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3749     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3750     }
3751    
3752    
3753 root 1.178 /* update ev_rt_now, do magic */
3754 root 1.193 time_update (EV_A_ waittime + sleeptime);
3755 root 1.135 }
3756 root 1.1
3757 root 1.9 /* queue pending timers and reschedule them */
3758 root 1.51 timers_reify (EV_A); /* relative timers called last */
3759 root 1.140 #if EV_PERIODIC_ENABLE
3760 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3761 root 1.93 #endif
3762 root 1.1
3763 root 1.164 #if EV_IDLE_ENABLE
3764 root 1.137 /* queue idle watchers unless other events are pending */
3765 root 1.164 idle_reify (EV_A);
3766     #endif
3767 root 1.9
3768 root 1.337 #if EV_CHECK_ENABLE
3769 root 1.20 /* queue check watchers, to be executed first */
3770 root 1.123 if (expect_false (checkcnt))
3771 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3772 root 1.337 #endif
3773 root 1.9
3774 root 1.297 EV_INVOKE_PENDING;
3775 root 1.1 }
3776 root 1.219 while (expect_true (
3777     activecnt
3778     && !loop_done
3779 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3780 root 1.219 ));
3781 root 1.13
3782 root 1.353 if (loop_done == EVBREAK_ONE)
3783     loop_done = EVBREAK_CANCEL;
3784 root 1.294
3785 root 1.338 #if EV_FEATURE_API
3786 root 1.294 --loop_depth;
3787 root 1.297 #endif
3788 root 1.418
3789     return activecnt;
3790 root 1.51 }
3791    
3792     void
3793 root 1.486 ev_break (EV_P_ int how) EV_NOEXCEPT
3794 root 1.51 {
3795     loop_done = how;
3796 root 1.1 }
3797    
3798 root 1.285 void
3799 root 1.486 ev_ref (EV_P) EV_NOEXCEPT
3800 root 1.285 {
3801     ++activecnt;
3802     }
3803    
3804     void
3805 root 1.486 ev_unref (EV_P) EV_NOEXCEPT
3806 root 1.285 {
3807     --activecnt;
3808     }
3809    
3810     void
3811 root 1.486 ev_now_update (EV_P) EV_NOEXCEPT
3812 root 1.285 {
3813     time_update (EV_A_ 1e100);
3814     }
3815    
3816     void
3817 root 1.486 ev_suspend (EV_P) EV_NOEXCEPT
3818 root 1.285 {
3819     ev_now_update (EV_A);
3820     }
3821    
3822     void
3823 root 1.486 ev_resume (EV_P) EV_NOEXCEPT
3824 root 1.285 {
3825     ev_tstamp mn_prev = mn_now;
3826    
3827     ev_now_update (EV_A);
3828     timers_reschedule (EV_A_ mn_now - mn_prev);
3829 root 1.286 #if EV_PERIODIC_ENABLE
3830 root 1.288 /* TODO: really do this? */
3831 root 1.285 periodics_reschedule (EV_A);
3832 root 1.286 #endif
3833 root 1.285 }
3834    
3835 root 1.8 /*****************************************************************************/
3836 root 1.288 /* singly-linked list management, used when the expected list length is short */
3837 root 1.8
3838 root 1.284 inline_size void
3839 root 1.10 wlist_add (WL *head, WL elem)
3840 root 1.1 {
3841     elem->next = *head;
3842     *head = elem;
3843     }
3844    
3845 root 1.284 inline_size void
3846 root 1.10 wlist_del (WL *head, WL elem)
3847 root 1.1 {
3848     while (*head)
3849     {
3850 root 1.307 if (expect_true (*head == elem))
3851 root 1.1 {
3852     *head = elem->next;
3853 root 1.307 break;
3854 root 1.1 }
3855    
3856     head = &(*head)->next;
3857     }
3858     }
3859    
3860 root 1.288 /* internal, faster, version of ev_clear_pending */
3861 root 1.284 inline_speed void
3862 root 1.166 clear_pending (EV_P_ W w)
3863 root 1.16 {
3864     if (w->pending)
3865     {
3866 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3867 root 1.16 w->pending = 0;
3868     }
3869     }
3870    
3871 root 1.167 int
3872 root 1.486 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3873 root 1.166 {
3874     W w_ = (W)w;
3875     int pending = w_->pending;
3876    
3877 root 1.172 if (expect_true (pending))
3878     {
3879     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3880 root 1.288 p->w = (W)&pending_w;
3881 root 1.172 w_->pending = 0;
3882     return p->events;
3883     }
3884     else
3885 root 1.167 return 0;
3886 root 1.166 }
3887    
3888 root 1.284 inline_size void
3889 root 1.164 pri_adjust (EV_P_ W w)
3890     {
3891 root 1.295 int pri = ev_priority (w);
3892 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3893     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3894 root 1.295 ev_set_priority (w, pri);
3895 root 1.164 }
3896    
3897 root 1.284 inline_speed void
3898 root 1.51 ev_start (EV_P_ W w, int active)
3899 root 1.1 {
3900 root 1.164 pri_adjust (EV_A_ w);
3901 root 1.1 w->active = active;
3902 root 1.51 ev_ref (EV_A);
3903 root 1.1 }
3904    
3905 root 1.284 inline_size void
3906 root 1.51 ev_stop (EV_P_ W w)
3907 root 1.1 {
3908 root 1.51 ev_unref (EV_A);
3909 root 1.1 w->active = 0;
3910     }
3911    
3912 root 1.8 /*****************************************************************************/
3913    
3914 root 1.480 noinline
3915     void
3916 root 1.486 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
3917 root 1.1 {
3918 root 1.37 int fd = w->fd;
3919    
3920 root 1.123 if (expect_false (ev_is_active (w)))
3921 root 1.1 return;
3922    
3923 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3924 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3925 root 1.33
3926 root 1.248 EV_FREQUENT_CHECK;
3927    
3928 root 1.51 ev_start (EV_A_ (W)w, 1);
3929 root 1.490 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
3930 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3931 root 1.1
3932 root 1.426 /* common bug, apparently */
3933     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3934    
3935 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3936 root 1.281 w->events &= ~EV__IOFDSET;
3937 root 1.248
3938     EV_FREQUENT_CHECK;
3939 root 1.1 }
3940    
3941 root 1.480 noinline
3942     void
3943 root 1.486 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
3944 root 1.1 {
3945 root 1.166 clear_pending (EV_A_ (W)w);
3946 root 1.123 if (expect_false (!ev_is_active (w)))
3947 root 1.1 return;
3948    
3949 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3950 root 1.89
3951 root 1.248 EV_FREQUENT_CHECK;
3952    
3953 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3954 root 1.51 ev_stop (EV_A_ (W)w);
3955 root 1.1
3956 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3957 root 1.248
3958     EV_FREQUENT_CHECK;
3959 root 1.1 }
3960    
3961 root 1.480 noinline
3962     void
3963 root 1.486 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
3964 root 1.1 {
3965 root 1.123 if (expect_false (ev_is_active (w)))
3966 root 1.1 return;
3967    
3968 root 1.228 ev_at (w) += mn_now;
3969 root 1.12
3970 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3971 root 1.13
3972 root 1.248 EV_FREQUENT_CHECK;
3973    
3974     ++timercnt;
3975     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3976 root 1.490 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
3977 root 1.241 ANHE_w (timers [ev_active (w)]) = (WT)w;
3978 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3979 root 1.235 upheap (timers, ev_active (w));
3980 root 1.62
3981 root 1.248 EV_FREQUENT_CHECK;
3982    
3983 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3984 root 1.12 }
3985    
3986 root 1.480 noinline
3987     void
3988 root 1.486 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
3989 root 1.12 {
3990 root 1.166 clear_pending (EV_A_ (W)w);
3991 root 1.123 if (expect_false (!ev_is_active (w)))
3992 root 1.12 return;
3993    
3994 root 1.248 EV_FREQUENT_CHECK;
3995    
3996 root 1.230 {
3997     int active = ev_active (w);
3998 root 1.62
3999 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4000 root 1.151
4001 root 1.248 --timercnt;
4002    
4003     if (expect_true (active < timercnt + HEAP0))
4004 root 1.151 {
4005 root 1.248 timers [active] = timers [timercnt + HEAP0];
4006 root 1.181 adjustheap (timers, timercnt, active);
4007 root 1.151 }
4008 root 1.248 }
4009 root 1.228
4010     ev_at (w) -= mn_now;
4011 root 1.14
4012 root 1.51 ev_stop (EV_A_ (W)w);
4013 root 1.328
4014     EV_FREQUENT_CHECK;
4015 root 1.12 }
4016 root 1.4
4017 root 1.480 noinline
4018     void
4019 root 1.486 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4020 root 1.14 {
4021 root 1.248 EV_FREQUENT_CHECK;
4022    
4023 root 1.407 clear_pending (EV_A_ (W)w);
4024 root 1.406
4025 root 1.14 if (ev_is_active (w))
4026     {
4027     if (w->repeat)
4028 root 1.99 {
4029 root 1.228 ev_at (w) = mn_now + w->repeat;
4030 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
4031 root 1.230 adjustheap (timers, timercnt, ev_active (w));
4032 root 1.99 }
4033 root 1.14 else
4034 root 1.51 ev_timer_stop (EV_A_ w);
4035 root 1.14 }
4036     else if (w->repeat)
4037 root 1.112 {
4038 root 1.229 ev_at (w) = w->repeat;
4039 root 1.112 ev_timer_start (EV_A_ w);
4040     }
4041 root 1.248
4042     EV_FREQUENT_CHECK;
4043 root 1.14 }
4044    
4045 root 1.301 ev_tstamp
4046 root 1.486 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4047 root 1.301 {
4048     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4049     }
4050    
4051 root 1.140 #if EV_PERIODIC_ENABLE
4052 root 1.480 noinline
4053     void
4054 root 1.486 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4055 root 1.12 {
4056 root 1.123 if (expect_false (ev_is_active (w)))
4057 root 1.12 return;
4058 root 1.1
4059 root 1.77 if (w->reschedule_cb)
4060 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4061 root 1.77 else if (w->interval)
4062     {
4063 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4064 root 1.370 periodic_recalc (EV_A_ w);
4065 root 1.77 }
4066 root 1.173 else
4067 root 1.228 ev_at (w) = w->offset;
4068 root 1.12
4069 root 1.248 EV_FREQUENT_CHECK;
4070    
4071     ++periodiccnt;
4072     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4073 root 1.490 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4074 root 1.241 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4075 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
4076 root 1.235 upheap (periodics, ev_active (w));
4077 root 1.62
4078 root 1.248 EV_FREQUENT_CHECK;
4079    
4080 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4081 root 1.1 }
4082    
4083 root 1.480 noinline
4084     void
4085 root 1.486 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4086 root 1.1 {
4087 root 1.166 clear_pending (EV_A_ (W)w);
4088 root 1.123 if (expect_false (!ev_is_active (w)))
4089 root 1.1 return;
4090    
4091 root 1.248 EV_FREQUENT_CHECK;
4092    
4093 root 1.230 {
4094     int active = ev_active (w);
4095 root 1.62
4096 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4097 root 1.151
4098 root 1.248 --periodiccnt;
4099    
4100     if (expect_true (active < periodiccnt + HEAP0))
4101 root 1.151 {
4102 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
4103 root 1.181 adjustheap (periodics, periodiccnt, active);
4104 root 1.151 }
4105 root 1.248 }
4106 root 1.228
4107 root 1.328 ev_stop (EV_A_ (W)w);
4108    
4109 root 1.248 EV_FREQUENT_CHECK;
4110 root 1.1 }
4111    
4112 root 1.480 noinline
4113     void
4114 root 1.486 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4115 root 1.77 {
4116 root 1.84 /* TODO: use adjustheap and recalculation */
4117 root 1.77 ev_periodic_stop (EV_A_ w);
4118     ev_periodic_start (EV_A_ w);
4119     }
4120 root 1.93 #endif
4121 root 1.77
4122 root 1.56 #ifndef SA_RESTART
4123     # define SA_RESTART 0
4124     #endif
4125    
4126 root 1.336 #if EV_SIGNAL_ENABLE
4127    
4128 root 1.480 noinline
4129     void
4130 root 1.486 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4131 root 1.56 {
4132 root 1.123 if (expect_false (ev_is_active (w)))
4133 root 1.56 return;
4134    
4135 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4136    
4137     #if EV_MULTIPLICITY
4138 root 1.308 assert (("libev: a signal must not be attached to two different loops",
4139 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4140    
4141     signals [w->signum - 1].loop = EV_A;
4142 root 1.449 ECB_MEMORY_FENCE_RELEASE;
4143 root 1.306 #endif
4144 root 1.56
4145 root 1.303 EV_FREQUENT_CHECK;
4146    
4147     #if EV_USE_SIGNALFD
4148     if (sigfd == -2)
4149     {
4150     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4151     if (sigfd < 0 && errno == EINVAL)
4152     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4153    
4154     if (sigfd >= 0)
4155     {
4156     fd_intern (sigfd); /* doing it twice will not hurt */
4157    
4158     sigemptyset (&sigfd_set);
4159    
4160     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4161     ev_set_priority (&sigfd_w, EV_MAXPRI);
4162     ev_io_start (EV_A_ &sigfd_w);
4163     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4164     }
4165     }
4166    
4167     if (sigfd >= 0)
4168     {
4169     /* TODO: check .head */
4170     sigaddset (&sigfd_set, w->signum);
4171     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4172 root 1.207
4173 root 1.303 signalfd (sigfd, &sigfd_set, 0);
4174     }
4175 root 1.180 #endif
4176    
4177 root 1.56 ev_start (EV_A_ (W)w, 1);
4178 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
4179 root 1.56
4180 root 1.63 if (!((WL)w)->next)
4181 root 1.304 # if EV_USE_SIGNALFD
4182 root 1.306 if (sigfd < 0) /*TODO*/
4183 root 1.304 # endif
4184 root 1.306 {
4185 root 1.322 # ifdef _WIN32
4186 root 1.317 evpipe_init (EV_A);
4187    
4188 root 1.306 signal (w->signum, ev_sighandler);
4189     # else
4190     struct sigaction sa;
4191    
4192     evpipe_init (EV_A);
4193    
4194     sa.sa_handler = ev_sighandler;
4195     sigfillset (&sa.sa_mask);
4196     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4197     sigaction (w->signum, &sa, 0);
4198    
4199 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
4200     {
4201     sigemptyset (&sa.sa_mask);
4202     sigaddset (&sa.sa_mask, w->signum);
4203     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4204     }
4205 root 1.67 #endif
4206 root 1.306 }
4207 root 1.248
4208     EV_FREQUENT_CHECK;
4209 root 1.56 }
4210    
4211 root 1.480 noinline
4212     void
4213 root 1.486 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4214 root 1.56 {
4215 root 1.166 clear_pending (EV_A_ (W)w);
4216 root 1.123 if (expect_false (!ev_is_active (w)))
4217 root 1.56 return;
4218    
4219 root 1.248 EV_FREQUENT_CHECK;
4220    
4221 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
4222 root 1.56 ev_stop (EV_A_ (W)w);
4223    
4224     if (!signals [w->signum - 1].head)
4225 root 1.306 {
4226 root 1.307 #if EV_MULTIPLICITY
4227 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
4228 root 1.307 #endif
4229     #if EV_USE_SIGNALFD
4230 root 1.306 if (sigfd >= 0)
4231     {
4232 root 1.321 sigset_t ss;
4233    
4234     sigemptyset (&ss);
4235     sigaddset (&ss, w->signum);
4236 root 1.306 sigdelset (&sigfd_set, w->signum);
4237 root 1.321
4238 root 1.306 signalfd (sigfd, &sigfd_set, 0);
4239 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
4240 root 1.306 }
4241     else
4242 root 1.307 #endif
4243 root 1.306 signal (w->signum, SIG_DFL);
4244     }
4245 root 1.248
4246     EV_FREQUENT_CHECK;
4247 root 1.56 }
4248    
4249 root 1.336 #endif
4250    
4251     #if EV_CHILD_ENABLE
4252    
4253 root 1.28 void
4254 root 1.486 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4255 root 1.22 {
4256 root 1.56 #if EV_MULTIPLICITY
4257 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4258 root 1.56 #endif
4259 root 1.123 if (expect_false (ev_is_active (w)))
4260 root 1.22 return;
4261    
4262 root 1.248 EV_FREQUENT_CHECK;
4263    
4264 root 1.51 ev_start (EV_A_ (W)w, 1);
4265 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4266 root 1.248
4267     EV_FREQUENT_CHECK;
4268 root 1.22 }
4269    
4270 root 1.28 void
4271 root 1.486 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4272 root 1.22 {
4273 root 1.166 clear_pending (EV_A_ (W)w);
4274 root 1.123 if (expect_false (!ev_is_active (w)))
4275 root 1.22 return;
4276    
4277 root 1.248 EV_FREQUENT_CHECK;
4278    
4279 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4280 root 1.51 ev_stop (EV_A_ (W)w);
4281 root 1.248
4282     EV_FREQUENT_CHECK;
4283 root 1.22 }
4284    
4285 root 1.336 #endif
4286    
4287 root 1.140 #if EV_STAT_ENABLE
4288    
4289     # ifdef _WIN32
4290 root 1.146 # undef lstat
4291     # define lstat(a,b) _stati64 (a,b)
4292 root 1.140 # endif
4293    
4294 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
4295     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4296     #define MIN_STAT_INTERVAL 0.1074891
4297 root 1.143
4298 root 1.480 noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4299 root 1.152
4300     #if EV_USE_INOTIFY
4301 root 1.326
4302     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4303     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4304 root 1.152
4305 root 1.480 noinline
4306     static void
4307 root 1.152 infy_add (EV_P_ ev_stat *w)
4308     {
4309 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
4310     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4311     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4312     | IN_DONT_FOLLOW | IN_MASK_ADD);
4313 root 1.152
4314 root 1.318 if (w->wd >= 0)
4315 root 1.152 {
4316 root 1.318 struct statfs sfs;
4317    
4318     /* now local changes will be tracked by inotify, but remote changes won't */
4319     /* unless the filesystem is known to be local, we therefore still poll */
4320     /* also do poll on <2.6.25, but with normal frequency */
4321    
4322     if (!fs_2625)
4323     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4324     else if (!statfs (w->path, &sfs)
4325     && (sfs.f_type == 0x1373 /* devfs */
4326 root 1.451 || sfs.f_type == 0x4006 /* fat */
4327     || sfs.f_type == 0x4d44 /* msdos */
4328 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
4329 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
4330     || sfs.f_type == 0x858458f6 /* ramfs */
4331     || sfs.f_type == 0x5346544e /* ntfs */
4332 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
4333 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
4334 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
4335 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
4336 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
4337     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4338     else
4339     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4340     }
4341     else
4342     {
4343     /* can't use inotify, continue to stat */
4344 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4345 root 1.152
4346 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
4347 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4348 root 1.233 /* but an efficiency issue only */
4349 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4350 root 1.152 {
4351 root 1.153 char path [4096];
4352 root 1.152 strcpy (path, w->path);
4353    
4354     do
4355     {
4356     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4357     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4358    
4359     char *pend = strrchr (path, '/');
4360    
4361 root 1.275 if (!pend || pend == path)
4362     break;
4363 root 1.152
4364     *pend = 0;
4365 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4366 root 1.372 }
4367 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4368     }
4369     }
4370 root 1.275
4371     if (w->wd >= 0)
4372 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4373 root 1.152
4374 root 1.318 /* now re-arm timer, if required */
4375     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4376     ev_timer_again (EV_A_ &w->timer);
4377     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4378 root 1.152 }
4379    
4380 root 1.480 noinline
4381     static void
4382 root 1.152 infy_del (EV_P_ ev_stat *w)
4383     {
4384     int slot;
4385     int wd = w->wd;
4386    
4387     if (wd < 0)
4388     return;
4389    
4390     w->wd = -2;
4391 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4392 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4393    
4394     /* remove this watcher, if others are watching it, they will rearm */
4395     inotify_rm_watch (fs_fd, wd);
4396     }
4397    
4398 root 1.480 noinline
4399     static void
4400 root 1.152 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4401     {
4402     if (slot < 0)
4403 root 1.264 /* overflow, need to check for all hash slots */
4404 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4405 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4406     else
4407     {
4408     WL w_;
4409    
4410 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4411 root 1.152 {
4412     ev_stat *w = (ev_stat *)w_;
4413     w_ = w_->next; /* lets us remove this watcher and all before it */
4414    
4415     if (w->wd == wd || wd == -1)
4416     {
4417     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4418     {
4419 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4420 root 1.152 w->wd = -1;
4421     infy_add (EV_A_ w); /* re-add, no matter what */
4422     }
4423    
4424 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4425 root 1.152 }
4426     }
4427     }
4428     }
4429    
4430     static void
4431     infy_cb (EV_P_ ev_io *w, int revents)
4432     {
4433     char buf [EV_INOTIFY_BUFSIZE];
4434     int ofs;
4435     int len = read (fs_fd, buf, sizeof (buf));
4436    
4437 root 1.326 for (ofs = 0; ofs < len; )
4438     {
4439     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4440     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4441     ofs += sizeof (struct inotify_event) + ev->len;
4442     }
4443 root 1.152 }
4444    
4445 root 1.480 inline_size ecb_cold
4446     void
4447 root 1.330 ev_check_2625 (EV_P)
4448     {
4449     /* kernels < 2.6.25 are borked
4450     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4451     */
4452     if (ev_linux_version () < 0x020619)
4453 root 1.273 return;
4454 root 1.264
4455 root 1.273 fs_2625 = 1;
4456     }
4457 root 1.264
4458 root 1.315 inline_size int
4459     infy_newfd (void)
4460     {
4461 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4462 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4463     if (fd >= 0)
4464     return fd;
4465     #endif
4466     return inotify_init ();
4467     }
4468    
4469 root 1.284 inline_size void
4470 root 1.273 infy_init (EV_P)
4471     {
4472     if (fs_fd != -2)
4473     return;
4474 root 1.264
4475 root 1.273 fs_fd = -1;
4476 root 1.264
4477 root 1.330 ev_check_2625 (EV_A);
4478 root 1.264
4479 root 1.315 fs_fd = infy_newfd ();
4480 root 1.152
4481     if (fs_fd >= 0)
4482     {
4483 root 1.315 fd_intern (fs_fd);
4484 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4485     ev_set_priority (&fs_w, EV_MAXPRI);
4486     ev_io_start (EV_A_ &fs_w);
4487 root 1.317 ev_unref (EV_A);
4488 root 1.152 }
4489     }
4490    
4491 root 1.284 inline_size void
4492 root 1.154 infy_fork (EV_P)
4493     {
4494     int slot;
4495    
4496     if (fs_fd < 0)
4497     return;
4498    
4499 root 1.317 ev_ref (EV_A);
4500 root 1.315 ev_io_stop (EV_A_ &fs_w);
4501 root 1.154 close (fs_fd);
4502 root 1.315 fs_fd = infy_newfd ();
4503    
4504     if (fs_fd >= 0)
4505     {
4506     fd_intern (fs_fd);
4507     ev_io_set (&fs_w, fs_fd, EV_READ);
4508     ev_io_start (EV_A_ &fs_w);
4509 root 1.317 ev_unref (EV_A);
4510 root 1.315 }
4511 root 1.154
4512 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4513 root 1.154 {
4514     WL w_ = fs_hash [slot].head;
4515     fs_hash [slot].head = 0;
4516    
4517     while (w_)
4518     {
4519     ev_stat *w = (ev_stat *)w_;
4520     w_ = w_->next; /* lets us add this watcher */
4521    
4522     w->wd = -1;
4523    
4524     if (fs_fd >= 0)
4525     infy_add (EV_A_ w); /* re-add, no matter what */
4526     else
4527 root 1.318 {
4528     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4529     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4530     ev_timer_again (EV_A_ &w->timer);
4531     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4532     }
4533 root 1.154 }
4534     }
4535     }
4536    
4537 root 1.152 #endif
4538    
4539 root 1.255 #ifdef _WIN32
4540     # define EV_LSTAT(p,b) _stati64 (p, b)
4541     #else
4542     # define EV_LSTAT(p,b) lstat (p, b)
4543     #endif
4544    
4545 root 1.140 void
4546 root 1.486 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4547 root 1.140 {
4548     if (lstat (w->path, &w->attr) < 0)
4549     w->attr.st_nlink = 0;
4550     else if (!w->attr.st_nlink)
4551     w->attr.st_nlink = 1;
4552     }
4553    
4554 root 1.480 noinline
4555     static void
4556 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4557     {
4558     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4559    
4560 root 1.320 ev_statdata prev = w->attr;
4561 root 1.140 ev_stat_stat (EV_A_ w);
4562    
4563 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4564     if (
4565 root 1.320 prev.st_dev != w->attr.st_dev
4566     || prev.st_ino != w->attr.st_ino
4567     || prev.st_mode != w->attr.st_mode
4568     || prev.st_nlink != w->attr.st_nlink
4569     || prev.st_uid != w->attr.st_uid
4570     || prev.st_gid != w->attr.st_gid
4571     || prev.st_rdev != w->attr.st_rdev
4572     || prev.st_size != w->attr.st_size
4573     || prev.st_atime != w->attr.st_atime
4574     || prev.st_mtime != w->attr.st_mtime
4575     || prev.st_ctime != w->attr.st_ctime
4576 root 1.156 ) {
4577 root 1.320 /* we only update w->prev on actual differences */
4578     /* in case we test more often than invoke the callback, */
4579     /* to ensure that prev is always different to attr */
4580     w->prev = prev;
4581    
4582 root 1.152 #if EV_USE_INOTIFY
4583 root 1.264 if (fs_fd >= 0)
4584     {
4585     infy_del (EV_A_ w);
4586     infy_add (EV_A_ w);
4587     ev_stat_stat (EV_A_ w); /* avoid race... */
4588     }
4589 root 1.152 #endif
4590    
4591     ev_feed_event (EV_A_ w, EV_STAT);
4592     }
4593 root 1.140 }
4594    
4595     void
4596 root 1.486 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4597 root 1.140 {
4598     if (expect_false (ev_is_active (w)))
4599     return;
4600    
4601     ev_stat_stat (EV_A_ w);
4602    
4603 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4604     w->interval = MIN_STAT_INTERVAL;
4605 root 1.143
4606 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4607 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4608 root 1.152
4609     #if EV_USE_INOTIFY
4610     infy_init (EV_A);
4611    
4612     if (fs_fd >= 0)
4613     infy_add (EV_A_ w);
4614     else
4615     #endif
4616 root 1.318 {
4617     ev_timer_again (EV_A_ &w->timer);
4618     ev_unref (EV_A);
4619     }
4620 root 1.140
4621     ev_start (EV_A_ (W)w, 1);
4622 root 1.248
4623     EV_FREQUENT_CHECK;
4624 root 1.140 }
4625    
4626     void
4627 root 1.486 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4628 root 1.140 {
4629 root 1.166 clear_pending (EV_A_ (W)w);
4630 root 1.140 if (expect_false (!ev_is_active (w)))
4631     return;
4632    
4633 root 1.248 EV_FREQUENT_CHECK;
4634    
4635 root 1.152 #if EV_USE_INOTIFY
4636     infy_del (EV_A_ w);
4637     #endif
4638 root 1.318
4639     if (ev_is_active (&w->timer))
4640     {
4641     ev_ref (EV_A);
4642     ev_timer_stop (EV_A_ &w->timer);
4643     }
4644 root 1.140
4645 root 1.134 ev_stop (EV_A_ (W)w);
4646 root 1.248
4647     EV_FREQUENT_CHECK;
4648 root 1.134 }
4649     #endif
4650    
4651 root 1.164 #if EV_IDLE_ENABLE
4652 root 1.144 void
4653 root 1.486 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4654 root 1.144 {
4655     if (expect_false (ev_is_active (w)))
4656     return;
4657    
4658 root 1.164 pri_adjust (EV_A_ (W)w);
4659    
4660 root 1.248 EV_FREQUENT_CHECK;
4661    
4662 root 1.164 {
4663     int active = ++idlecnt [ABSPRI (w)];
4664    
4665     ++idleall;
4666     ev_start (EV_A_ (W)w, active);
4667    
4668 root 1.490 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4669 root 1.164 idles [ABSPRI (w)][active - 1] = w;
4670     }
4671 root 1.248
4672     EV_FREQUENT_CHECK;
4673 root 1.144 }
4674    
4675     void
4676 root 1.486 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4677 root 1.144 {
4678 root 1.166 clear_pending (EV_A_ (W)w);
4679 root 1.144 if (expect_false (!ev_is_active (w)))
4680     return;
4681    
4682 root 1.248 EV_FREQUENT_CHECK;
4683    
4684 root 1.144 {
4685 root 1.230 int active = ev_active (w);
4686 root 1.164
4687     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4688 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4689 root 1.164
4690     ev_stop (EV_A_ (W)w);
4691     --idleall;
4692 root 1.144 }
4693 root 1.248
4694     EV_FREQUENT_CHECK;
4695 root 1.144 }
4696 root 1.164 #endif
4697 root 1.144
4698 root 1.337 #if EV_PREPARE_ENABLE
4699 root 1.144 void
4700 root 1.486 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4701 root 1.144 {
4702     if (expect_false (ev_is_active (w)))
4703     return;
4704    
4705 root 1.248 EV_FREQUENT_CHECK;
4706    
4707 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4708 root 1.490 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4709 root 1.144 prepares [preparecnt - 1] = w;
4710 root 1.248
4711     EV_FREQUENT_CHECK;
4712 root 1.144 }
4713    
4714     void
4715 root 1.486 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4716 root 1.144 {
4717 root 1.166 clear_pending (EV_A_ (W)w);
4718 root 1.144 if (expect_false (!ev_is_active (w)))
4719     return;
4720    
4721 root 1.248 EV_FREQUENT_CHECK;
4722    
4723 root 1.144 {
4724 root 1.230 int active = ev_active (w);
4725    
4726 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4727 root 1.230 ev_active (prepares [active - 1]) = active;
4728 root 1.144 }
4729    
4730     ev_stop (EV_A_ (W)w);
4731 root 1.248
4732     EV_FREQUENT_CHECK;
4733 root 1.144 }
4734 root 1.337 #endif
4735 root 1.144
4736 root 1.337 #if EV_CHECK_ENABLE
4737 root 1.144 void
4738 root 1.486 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4739 root 1.144 {
4740     if (expect_false (ev_is_active (w)))
4741     return;
4742    
4743 root 1.248 EV_FREQUENT_CHECK;
4744    
4745 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4746 root 1.490 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4747 root 1.144 checks [checkcnt - 1] = w;
4748 root 1.248
4749     EV_FREQUENT_CHECK;
4750 root 1.144 }
4751    
4752     void
4753 root 1.486 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4754 root 1.144 {
4755 root 1.166 clear_pending (EV_A_ (W)w);
4756 root 1.144 if (expect_false (!ev_is_active (w)))
4757     return;
4758    
4759 root 1.248 EV_FREQUENT_CHECK;
4760    
4761 root 1.144 {
4762 root 1.230 int active = ev_active (w);
4763    
4764 root 1.144 checks [active - 1] = checks [--checkcnt];
4765 root 1.230 ev_active (checks [active - 1]) = active;
4766 root 1.144 }
4767    
4768     ev_stop (EV_A_ (W)w);
4769 root 1.248
4770     EV_FREQUENT_CHECK;
4771 root 1.144 }
4772 root 1.337 #endif
4773 root 1.144
4774     #if EV_EMBED_ENABLE
4775 root 1.480 noinline
4776     void
4777 root 1.486 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4778 root 1.144 {
4779 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4780 root 1.144 }
4781    
4782     static void
4783 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4784 root 1.144 {
4785     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4786    
4787     if (ev_cb (w))
4788     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4789     else
4790 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4791 root 1.144 }
4792    
4793 root 1.189 static void
4794     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4795     {
4796     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4797    
4798 root 1.195 {
4799 root 1.306 EV_P = w->other;
4800 root 1.195
4801     while (fdchangecnt)
4802     {
4803     fd_reify (EV_A);
4804 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4805 root 1.195 }
4806     }
4807     }
4808    
4809 root 1.261 static void
4810     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4811     {
4812     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4813    
4814 root 1.277 ev_embed_stop (EV_A_ w);
4815    
4816 root 1.261 {
4817 root 1.306 EV_P = w->other;
4818 root 1.261
4819     ev_loop_fork (EV_A);
4820 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4821 root 1.261 }
4822 root 1.277
4823     ev_embed_start (EV_A_ w);
4824 root 1.261 }
4825    
4826 root 1.195 #if 0
4827     static void
4828     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4829     {
4830     ev_idle_stop (EV_A_ idle);
4831 root 1.189 }
4832 root 1.195 #endif
4833 root 1.189
4834 root 1.144 void
4835 root 1.486 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4836 root 1.144 {
4837     if (expect_false (ev_is_active (w)))
4838     return;
4839    
4840     {
4841 root 1.306 EV_P = w->other;
4842 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4843 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4844 root 1.144 }
4845    
4846 root 1.248 EV_FREQUENT_CHECK;
4847    
4848 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4849     ev_io_start (EV_A_ &w->io);
4850    
4851 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4852     ev_set_priority (&w->prepare, EV_MINPRI);
4853     ev_prepare_start (EV_A_ &w->prepare);
4854    
4855 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4856     ev_fork_start (EV_A_ &w->fork);
4857    
4858 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4859    
4860 root 1.144 ev_start (EV_A_ (W)w, 1);
4861 root 1.248
4862     EV_FREQUENT_CHECK;
4863 root 1.144 }
4864    
4865     void
4866 root 1.486 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4867 root 1.144 {
4868 root 1.166 clear_pending (EV_A_ (W)w);
4869 root 1.144 if (expect_false (!ev_is_active (w)))
4870     return;
4871    
4872 root 1.248 EV_FREQUENT_CHECK;
4873    
4874 root 1.261 ev_io_stop (EV_A_ &w->io);
4875 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4876 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4877 root 1.248
4878 root 1.328 ev_stop (EV_A_ (W)w);
4879    
4880 root 1.248 EV_FREQUENT_CHECK;
4881 root 1.144 }
4882     #endif
4883    
4884 root 1.147 #if EV_FORK_ENABLE
4885     void
4886 root 1.486 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4887 root 1.147 {
4888     if (expect_false (ev_is_active (w)))
4889     return;
4890    
4891 root 1.248 EV_FREQUENT_CHECK;
4892    
4893 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4894 root 1.490 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
4895 root 1.147 forks [forkcnt - 1] = w;
4896 root 1.248
4897     EV_FREQUENT_CHECK;
4898 root 1.147 }
4899    
4900     void
4901 root 1.486 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4902 root 1.147 {
4903 root 1.166 clear_pending (EV_A_ (W)w);
4904 root 1.147 if (expect_false (!ev_is_active (w)))
4905     return;
4906    
4907 root 1.248 EV_FREQUENT_CHECK;
4908    
4909 root 1.147 {
4910 root 1.230 int active = ev_active (w);
4911    
4912 root 1.147 forks [active - 1] = forks [--forkcnt];
4913 root 1.230 ev_active (forks [active - 1]) = active;
4914 root 1.147 }
4915    
4916     ev_stop (EV_A_ (W)w);
4917 root 1.248
4918     EV_FREQUENT_CHECK;
4919 root 1.147 }
4920     #endif
4921    
4922 root 1.360 #if EV_CLEANUP_ENABLE
4923     void
4924 root 1.486 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4925 root 1.360 {
4926     if (expect_false (ev_is_active (w)))
4927     return;
4928    
4929     EV_FREQUENT_CHECK;
4930    
4931     ev_start (EV_A_ (W)w, ++cleanupcnt);
4932 root 1.490 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4933 root 1.360 cleanups [cleanupcnt - 1] = w;
4934    
4935 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4936     ev_unref (EV_A);
4937 root 1.360 EV_FREQUENT_CHECK;
4938     }
4939    
4940     void
4941 root 1.486 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4942 root 1.360 {
4943     clear_pending (EV_A_ (W)w);
4944     if (expect_false (!ev_is_active (w)))
4945     return;
4946    
4947     EV_FREQUENT_CHECK;
4948 root 1.362 ev_ref (EV_A);
4949 root 1.360
4950     {
4951     int active = ev_active (w);
4952    
4953     cleanups [active - 1] = cleanups [--cleanupcnt];
4954     ev_active (cleanups [active - 1]) = active;
4955     }
4956    
4957     ev_stop (EV_A_ (W)w);
4958    
4959     EV_FREQUENT_CHECK;
4960     }
4961     #endif
4962    
4963 root 1.207 #if EV_ASYNC_ENABLE
4964     void
4965 root 1.486 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4966 root 1.207 {
4967     if (expect_false (ev_is_active (w)))
4968     return;
4969    
4970 root 1.352 w->sent = 0;
4971    
4972 root 1.207 evpipe_init (EV_A);
4973    
4974 root 1.248 EV_FREQUENT_CHECK;
4975    
4976 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4977 root 1.490 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4978 root 1.207 asyncs [asynccnt - 1] = w;
4979 root 1.248
4980     EV_FREQUENT_CHECK;
4981 root 1.207 }
4982    
4983     void
4984 root 1.486 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4985 root 1.207 {
4986     clear_pending (EV_A_ (W)w);
4987     if (expect_false (!ev_is_active (w)))
4988     return;
4989    
4990 root 1.248 EV_FREQUENT_CHECK;
4991    
4992 root 1.207 {
4993 root 1.230 int active = ev_active (w);
4994    
4995 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4996 root 1.230 ev_active (asyncs [active - 1]) = active;
4997 root 1.207 }
4998    
4999     ev_stop (EV_A_ (W)w);
5000 root 1.248
5001     EV_FREQUENT_CHECK;
5002 root 1.207 }
5003    
5004     void
5005 root 1.486 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5006 root 1.207 {
5007     w->sent = 1;
5008 root 1.307 evpipe_write (EV_A_ &async_pending);
5009 root 1.207 }
5010     #endif
5011    
5012 root 1.1 /*****************************************************************************/
5013 root 1.10
5014 root 1.16 struct ev_once
5015     {
5016 root 1.136 ev_io io;
5017     ev_timer to;
5018 root 1.16 void (*cb)(int revents, void *arg);
5019     void *arg;
5020     };
5021    
5022     static void
5023 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
5024 root 1.16 {
5025     void (*cb)(int revents, void *arg) = once->cb;
5026     void *arg = once->arg;
5027    
5028 root 1.259 ev_io_stop (EV_A_ &once->io);
5029 root 1.51 ev_timer_stop (EV_A_ &once->to);
5030 root 1.69 ev_free (once);
5031 root 1.16
5032     cb (revents, arg);
5033     }
5034    
5035     static void
5036 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
5037 root 1.16 {
5038 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5039    
5040     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5041 root 1.16 }
5042    
5043     static void
5044 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
5045 root 1.16 {
5046 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5047    
5048     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5049 root 1.16 }
5050    
5051     void
5052 root 1.486 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5053 root 1.16 {
5054 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5055 root 1.16
5056 root 1.123 once->cb = cb;
5057     once->arg = arg;
5058 root 1.16
5059 root 1.123 ev_init (&once->io, once_cb_io);
5060     if (fd >= 0)
5061     {
5062     ev_io_set (&once->io, fd, events);
5063     ev_io_start (EV_A_ &once->io);
5064     }
5065 root 1.16
5066 root 1.123 ev_init (&once->to, once_cb_to);
5067     if (timeout >= 0.)
5068     {
5069     ev_timer_set (&once->to, timeout, 0.);
5070     ev_timer_start (EV_A_ &once->to);
5071 root 1.16 }
5072     }
5073    
5074 root 1.282 /*****************************************************************************/
5075    
5076 root 1.288 #if EV_WALK_ENABLE
5077 root 1.480 ecb_cold
5078     void
5079 root 1.486 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5080 root 1.282 {
5081     int i, j;
5082     ev_watcher_list *wl, *wn;
5083    
5084     if (types & (EV_IO | EV_EMBED))
5085     for (i = 0; i < anfdmax; ++i)
5086     for (wl = anfds [i].head; wl; )
5087     {
5088     wn = wl->next;
5089    
5090     #if EV_EMBED_ENABLE
5091     if (ev_cb ((ev_io *)wl) == embed_io_cb)
5092     {
5093     if (types & EV_EMBED)
5094     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5095     }
5096     else
5097     #endif
5098     #if EV_USE_INOTIFY
5099     if (ev_cb ((ev_io *)wl) == infy_cb)
5100     ;
5101     else
5102     #endif
5103 root 1.288 if ((ev_io *)wl != &pipe_w)
5104 root 1.282 if (types & EV_IO)
5105     cb (EV_A_ EV_IO, wl);
5106    
5107     wl = wn;
5108     }
5109    
5110     if (types & (EV_TIMER | EV_STAT))
5111     for (i = timercnt + HEAP0; i-- > HEAP0; )
5112     #if EV_STAT_ENABLE
5113     /*TODO: timer is not always active*/
5114     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5115     {
5116     if (types & EV_STAT)
5117     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5118     }
5119     else
5120     #endif
5121     if (types & EV_TIMER)
5122     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5123    
5124     #if EV_PERIODIC_ENABLE
5125     if (types & EV_PERIODIC)
5126     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5127     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5128     #endif
5129    
5130     #if EV_IDLE_ENABLE
5131     if (types & EV_IDLE)
5132 root 1.390 for (j = NUMPRI; j--; )
5133 root 1.282 for (i = idlecnt [j]; i--; )
5134     cb (EV_A_ EV_IDLE, idles [j][i]);
5135     #endif
5136    
5137     #if EV_FORK_ENABLE
5138     if (types & EV_FORK)
5139     for (i = forkcnt; i--; )
5140     if (ev_cb (forks [i]) != embed_fork_cb)
5141     cb (EV_A_ EV_FORK, forks [i]);
5142     #endif
5143    
5144     #if EV_ASYNC_ENABLE
5145     if (types & EV_ASYNC)
5146     for (i = asynccnt; i--; )
5147     cb (EV_A_ EV_ASYNC, asyncs [i]);
5148     #endif
5149    
5150 root 1.337 #if EV_PREPARE_ENABLE
5151 root 1.282 if (types & EV_PREPARE)
5152     for (i = preparecnt; i--; )
5153 root 1.337 # if EV_EMBED_ENABLE
5154 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
5155 root 1.337 # endif
5156     cb (EV_A_ EV_PREPARE, prepares [i]);
5157 root 1.282 #endif
5158    
5159 root 1.337 #if EV_CHECK_ENABLE
5160 root 1.282 if (types & EV_CHECK)
5161     for (i = checkcnt; i--; )
5162     cb (EV_A_ EV_CHECK, checks [i]);
5163 root 1.337 #endif
5164 root 1.282
5165 root 1.337 #if EV_SIGNAL_ENABLE
5166 root 1.282 if (types & EV_SIGNAL)
5167 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
5168 root 1.282 for (wl = signals [i].head; wl; )
5169     {
5170     wn = wl->next;
5171     cb (EV_A_ EV_SIGNAL, wl);
5172     wl = wn;
5173     }
5174 root 1.337 #endif
5175 root 1.282
5176 root 1.337 #if EV_CHILD_ENABLE
5177 root 1.282 if (types & EV_CHILD)
5178 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
5179 root 1.282 for (wl = childs [i]; wl; )
5180     {
5181     wn = wl->next;
5182     cb (EV_A_ EV_CHILD, wl);
5183     wl = wn;
5184     }
5185 root 1.337 #endif
5186 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
5187     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5188     }
5189     #endif
5190    
5191 root 1.188 #if EV_MULTIPLICITY
5192     #include "ev_wrap.h"
5193     #endif
5194