ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.500
Committed: Mon Jul 1 20:47:37 2019 UTC (4 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.499: +104 -108 lines
Log Message:
ecbify

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.490 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.469 # if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52 root 1.373 # endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.491 # if HAVE_LINUX_AIO_ABI_H
121     # ifndef EV_USE_LINUXAIO
122     # define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123     # endif
124     # else
125     # undef EV_USE_LINUXAIO
126     # define EV_USE_LINUXAIO 0
127     # endif
128    
129 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130     # ifndef EV_USE_KQUEUE
131 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_KQUEUE
135     # define EV_USE_KQUEUE 0
136 root 1.60 # endif
137 root 1.127
138 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
139     # ifndef EV_USE_PORT
140 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
141 root 1.127 # endif
142 root 1.343 # else
143     # undef EV_USE_PORT
144     # define EV_USE_PORT 0
145 root 1.118 # endif
146    
147 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148     # ifndef EV_USE_INOTIFY
149 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
150 root 1.152 # endif
151 root 1.343 # else
152     # undef EV_USE_INOTIFY
153     # define EV_USE_INOTIFY 0
154 root 1.152 # endif
155    
156 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157     # ifndef EV_USE_SIGNALFD
158 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
159 root 1.303 # endif
160 root 1.343 # else
161     # undef EV_USE_SIGNALFD
162     # define EV_USE_SIGNALFD 0
163 root 1.303 # endif
164    
165 root 1.343 # if HAVE_EVENTFD
166     # ifndef EV_USE_EVENTFD
167 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
168 root 1.220 # endif
169 root 1.343 # else
170     # undef EV_USE_EVENTFD
171     # define EV_USE_EVENTFD 0
172 root 1.220 # endif
173 root 1.250
174 root 1.29 #endif
175 root 1.17
176 root 1.483 /* OS X, in its infinite idiocy, actually HARDCODES
177     * a limit of 1024 into their select. Where people have brains,
178     * OS X engineers apparently have a vacuum. Or maybe they were
179     * ordered to have a vacuum, or they do anything for money.
180     * This might help. Or not.
181     * Note that this must be defined early, as other include files
182     * will rely on this define as well.
183     */
184     #define _DARWIN_UNLIMITED_SELECT 1
185    
186 root 1.1 #include <stdlib.h>
187 root 1.319 #include <string.h>
188 root 1.7 #include <fcntl.h>
189 root 1.16 #include <stddef.h>
190 root 1.1
191     #include <stdio.h>
192    
193 root 1.4 #include <assert.h>
194 root 1.1 #include <errno.h>
195 root 1.22 #include <sys/types.h>
196 root 1.71 #include <time.h>
197 root 1.326 #include <limits.h>
198 root 1.71
199 root 1.72 #include <signal.h>
200 root 1.71
201 root 1.152 #ifdef EV_H
202     # include EV_H
203     #else
204     # include "ev.h"
205     #endif
206    
207 root 1.410 #if EV_NO_THREADS
208     # undef EV_NO_SMP
209     # define EV_NO_SMP 1
210     # undef ECB_NO_THREADS
211     # define ECB_NO_THREADS 1
212     #endif
213     #if EV_NO_SMP
214     # undef EV_NO_SMP
215     # define ECB_NO_SMP 1
216     #endif
217    
218 root 1.103 #ifndef _WIN32
219 root 1.71 # include <sys/time.h>
220 root 1.45 # include <sys/wait.h>
221 root 1.140 # include <unistd.h>
222 root 1.103 #else
223 root 1.256 # include <io.h>
224 root 1.103 # define WIN32_LEAN_AND_MEAN
225 root 1.431 # include <winsock2.h>
226 root 1.103 # include <windows.h>
227     # ifndef EV_SELECT_IS_WINSOCKET
228     # define EV_SELECT_IS_WINSOCKET 1
229     # endif
230 root 1.331 # undef EV_AVOID_STDIO
231 root 1.45 #endif
232 root 1.103
233 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
234 root 1.40
235 root 1.305 /* try to deduce the maximum number of signals on this platform */
236 root 1.416 #if defined EV_NSIG
237 root 1.305 /* use what's provided */
238 root 1.416 #elif defined NSIG
239 root 1.305 # define EV_NSIG (NSIG)
240 root 1.416 #elif defined _NSIG
241 root 1.305 # define EV_NSIG (_NSIG)
242 root 1.416 #elif defined SIGMAX
243 root 1.305 # define EV_NSIG (SIGMAX+1)
244 root 1.416 #elif defined SIG_MAX
245 root 1.305 # define EV_NSIG (SIG_MAX+1)
246 root 1.416 #elif defined _SIG_MAX
247 root 1.305 # define EV_NSIG (_SIG_MAX+1)
248 root 1.416 #elif defined MAXSIG
249 root 1.305 # define EV_NSIG (MAXSIG+1)
250 root 1.416 #elif defined MAX_SIG
251 root 1.305 # define EV_NSIG (MAX_SIG+1)
252 root 1.416 #elif defined SIGARRAYSIZE
253 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254 root 1.416 #elif defined _sys_nsig
255 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256     #else
257 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
258 root 1.305 #endif
259    
260 root 1.373 #ifndef EV_USE_FLOOR
261     # define EV_USE_FLOOR 0
262     #endif
263    
264 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
265 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267 root 1.274 # else
268     # define EV_USE_CLOCK_SYSCALL 0
269     # endif
270     #endif
271    
272 root 1.470 #if !(_POSIX_TIMERS > 0)
273     # ifndef EV_USE_MONOTONIC
274     # define EV_USE_MONOTONIC 0
275     # endif
276     # ifndef EV_USE_REALTIME
277     # define EV_USE_REALTIME 0
278     # endif
279     #endif
280    
281 root 1.29 #ifndef EV_USE_MONOTONIC
282 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
284 root 1.253 # else
285     # define EV_USE_MONOTONIC 0
286     # endif
287 root 1.37 #endif
288    
289 root 1.118 #ifndef EV_USE_REALTIME
290 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291 root 1.118 #endif
292    
293 root 1.193 #ifndef EV_USE_NANOSLEEP
294 root 1.253 # if _POSIX_C_SOURCE >= 199309L
295 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
296 root 1.253 # else
297     # define EV_USE_NANOSLEEP 0
298     # endif
299 root 1.193 #endif
300    
301 root 1.29 #ifndef EV_USE_SELECT
302 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
303 root 1.10 #endif
304    
305 root 1.59 #ifndef EV_USE_POLL
306 root 1.104 # ifdef _WIN32
307     # define EV_USE_POLL 0
308     # else
309 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
310 root 1.104 # endif
311 root 1.41 #endif
312    
313 root 1.29 #ifndef EV_USE_EPOLL
314 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
316 root 1.220 # else
317     # define EV_USE_EPOLL 0
318     # endif
319 root 1.10 #endif
320    
321 root 1.44 #ifndef EV_USE_KQUEUE
322     # define EV_USE_KQUEUE 0
323     #endif
324    
325 root 1.118 #ifndef EV_USE_PORT
326     # define EV_USE_PORT 0
327 root 1.40 #endif
328    
329 root 1.490 #ifndef EV_USE_LINUXAIO
330 root 1.492 # if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331     # define EV_USE_LINUXAIO 1
332     # else
333     # define EV_USE_LINUXAIO 0
334     # endif
335 root 1.490 #endif
336    
337 root 1.152 #ifndef EV_USE_INOTIFY
338 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
339 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
340 root 1.220 # else
341     # define EV_USE_INOTIFY 0
342     # endif
343 root 1.152 #endif
344    
345 root 1.149 #ifndef EV_PID_HASHSIZE
346 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
347 root 1.149 #endif
348    
349 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
350 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
351 root 1.152 #endif
352    
353 root 1.220 #ifndef EV_USE_EVENTFD
354     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
355 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
356 root 1.220 # else
357     # define EV_USE_EVENTFD 0
358     # endif
359     #endif
360    
361 root 1.303 #ifndef EV_USE_SIGNALFD
362 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
364 root 1.303 # else
365     # define EV_USE_SIGNALFD 0
366     # endif
367     #endif
368    
369 root 1.249 #if 0 /* debugging */
370 root 1.250 # define EV_VERIFY 3
371 root 1.249 # define EV_USE_4HEAP 1
372     # define EV_HEAP_CACHE_AT 1
373     #endif
374    
375 root 1.250 #ifndef EV_VERIFY
376 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
377 root 1.250 #endif
378    
379 root 1.243 #ifndef EV_USE_4HEAP
380 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
381 root 1.243 #endif
382    
383     #ifndef EV_HEAP_CACHE_AT
384 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
385 root 1.243 #endif
386    
387 root 1.481 #ifdef __ANDROID__
388 root 1.452 /* supposedly, android doesn't typedef fd_mask */
389     # undef EV_USE_SELECT
390     # define EV_USE_SELECT 0
391     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
392     # undef EV_USE_CLOCK_SYSCALL
393     # define EV_USE_CLOCK_SYSCALL 0
394     #endif
395    
396     /* aix's poll.h seems to cause lots of trouble */
397     #ifdef _AIX
398     /* AIX has a completely broken poll.h header */
399     # undef EV_USE_POLL
400     # define EV_USE_POLL 0
401     #endif
402    
403 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404     /* which makes programs even slower. might work on other unices, too. */
405     #if EV_USE_CLOCK_SYSCALL
406 root 1.423 # include <sys/syscall.h>
407 root 1.291 # ifdef SYS_clock_gettime
408     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409     # undef EV_USE_MONOTONIC
410     # define EV_USE_MONOTONIC 1
411     # else
412     # undef EV_USE_CLOCK_SYSCALL
413     # define EV_USE_CLOCK_SYSCALL 0
414     # endif
415     #endif
416    
417 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
418 root 1.40
419     #ifndef CLOCK_MONOTONIC
420     # undef EV_USE_MONOTONIC
421     # define EV_USE_MONOTONIC 0
422     #endif
423    
424 root 1.31 #ifndef CLOCK_REALTIME
425 root 1.40 # undef EV_USE_REALTIME
426 root 1.31 # define EV_USE_REALTIME 0
427     #endif
428 root 1.40
429 root 1.152 #if !EV_STAT_ENABLE
430 root 1.185 # undef EV_USE_INOTIFY
431 root 1.152 # define EV_USE_INOTIFY 0
432     #endif
433    
434 root 1.193 #if !EV_USE_NANOSLEEP
435 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
436 root 1.416 # if !defined _WIN32 && !defined __hpux
437 root 1.193 # include <sys/select.h>
438     # endif
439     #endif
440    
441 root 1.491 #if EV_USE_LINUXAIO
442     # include <sys/syscall.h>
443 root 1.495 # if !SYS_io_getevents || !EV_USE_EPOLL /* ev_linxaio uses ev_poll.c:ev_epoll_create */
444 root 1.491 # undef EV_USE_LINUXAIO
445     # define EV_USE_LINUXAIO 0
446     # endif
447     #endif
448    
449 root 1.152 #if EV_USE_INOTIFY
450 root 1.273 # include <sys/statfs.h>
451 root 1.152 # include <sys/inotify.h>
452 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
453     # ifndef IN_DONT_FOLLOW
454     # undef EV_USE_INOTIFY
455     # define EV_USE_INOTIFY 0
456     # endif
457 root 1.152 #endif
458    
459 root 1.220 #if EV_USE_EVENTFD
460     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
461 root 1.221 # include <stdint.h>
462 root 1.303 # ifndef EFD_NONBLOCK
463     # define EFD_NONBLOCK O_NONBLOCK
464     # endif
465     # ifndef EFD_CLOEXEC
466 root 1.311 # ifdef O_CLOEXEC
467     # define EFD_CLOEXEC O_CLOEXEC
468     # else
469     # define EFD_CLOEXEC 02000000
470     # endif
471 root 1.303 # endif
472 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473 root 1.220 #endif
474    
475 root 1.303 #if EV_USE_SIGNALFD
476 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477     # include <stdint.h>
478     # ifndef SFD_NONBLOCK
479     # define SFD_NONBLOCK O_NONBLOCK
480     # endif
481     # ifndef SFD_CLOEXEC
482     # ifdef O_CLOEXEC
483     # define SFD_CLOEXEC O_CLOEXEC
484     # else
485     # define SFD_CLOEXEC 02000000
486     # endif
487     # endif
488 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489 root 1.314
490     struct signalfd_siginfo
491     {
492     uint32_t ssi_signo;
493     char pad[128 - sizeof (uint32_t)];
494     };
495 root 1.303 #endif
496    
497 root 1.40 /**/
498 root 1.1
499 root 1.250 #if EV_VERIFY >= 3
500 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
501 root 1.248 #else
502     # define EV_FREQUENT_CHECK do { } while (0)
503     #endif
504    
505 root 1.176 /*
506 root 1.373 * This is used to work around floating point rounding problems.
507 root 1.177 * This value is good at least till the year 4000.
508 root 1.176 */
509 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
511 root 1.176
512 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
513 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
514 root 1.1
515 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
517 root 1.347
518 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
519     /* ECB.H BEGIN */
520     /*
521     * libecb - http://software.schmorp.de/pkg/libecb
522     *
523 root 1.474 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
525     * All rights reserved.
526     *
527     * Redistribution and use in source and binary forms, with or without modifica-
528     * tion, are permitted provided that the following conditions are met:
529     *
530     * 1. Redistributions of source code must retain the above copyright notice,
531     * this list of conditions and the following disclaimer.
532     *
533     * 2. Redistributions in binary form must reproduce the above copyright
534     * notice, this list of conditions and the following disclaimer in the
535     * documentation and/or other materials provided with the distribution.
536     *
537     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546     * OF THE POSSIBILITY OF SUCH DAMAGE.
547 root 1.467 *
548     * Alternatively, the contents of this file may be used under the terms of
549     * the GNU General Public License ("GPL") version 2 or any later version,
550     * in which case the provisions of the GPL are applicable instead of
551     * the above. If you wish to allow the use of your version of this file
552     * only under the terms of the GPL and not to allow others to use your
553     * version of this file under the BSD license, indicate your decision
554     * by deleting the provisions above and replace them with the notice
555     * and other provisions required by the GPL. If you do not delete the
556     * provisions above, a recipient may use your version of this file under
557     * either the BSD or the GPL.
558 root 1.391 */
559    
560     #ifndef ECB_H
561     #define ECB_H
562    
563 root 1.437 /* 16 bits major, 16 bits minor */
564 root 1.496 #define ECB_VERSION 0x00010006
565 root 1.437
566 root 1.391 #ifdef _WIN32
567     typedef signed char int8_t;
568     typedef unsigned char uint8_t;
569     typedef signed short int16_t;
570     typedef unsigned short uint16_t;
571     typedef signed int int32_t;
572     typedef unsigned int uint32_t;
573     #if __GNUC__
574     typedef signed long long int64_t;
575     typedef unsigned long long uint64_t;
576     #else /* _MSC_VER || __BORLANDC__ */
577     typedef signed __int64 int64_t;
578     typedef unsigned __int64 uint64_t;
579     #endif
580 root 1.437 #ifdef _WIN64
581     #define ECB_PTRSIZE 8
582     typedef uint64_t uintptr_t;
583     typedef int64_t intptr_t;
584     #else
585     #define ECB_PTRSIZE 4
586     typedef uint32_t uintptr_t;
587     typedef int32_t intptr_t;
588     #endif
589 root 1.391 #else
590     #include <inttypes.h>
591 root 1.479 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
592 root 1.437 #define ECB_PTRSIZE 8
593     #else
594     #define ECB_PTRSIZE 4
595     #endif
596 root 1.391 #endif
597 root 1.379
598 sf-exg 1.475 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
599     #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
600    
601 root 1.454 /* work around x32 idiocy by defining proper macros */
602 sf-exg 1.475 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
603 root 1.458 #if _ILP32
604 root 1.454 #define ECB_AMD64_X32 1
605     #else
606     #define ECB_AMD64 1
607     #endif
608     #endif
609    
610 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
611     * what their idiot authors think are the "more important" extensions,
612 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
613 root 1.379 * or so.
614     * we try to detect these and simply assume they are not gcc - if they have
615     * an issue with that they should have done it right in the first place.
616     */
617 root 1.474 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618     #define ECB_GCC_VERSION(major,minor) 0
619     #else
620     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621     #endif
622    
623     #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
624    
625     #if __clang__ && defined __has_builtin
626     #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
627     #else
628     #define ECB_CLANG_BUILTIN(x) 0
629     #endif
630    
631     #if __clang__ && defined __has_extension
632     #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633     #else
634     #define ECB_CLANG_EXTENSION(x) 0
635 root 1.379 #endif
636    
637 root 1.437 #define ECB_CPP (__cplusplus+0)
638     #define ECB_CPP11 (__cplusplus >= 201103L)
639 root 1.488 #define ECB_CPP14 (__cplusplus >= 201402L)
640     #define ECB_CPP17 (__cplusplus >= 201703L)
641 root 1.437
642 root 1.450 #if ECB_CPP
643 root 1.464 #define ECB_C 0
644     #define ECB_STDC_VERSION 0
645     #else
646     #define ECB_C 1
647     #define ECB_STDC_VERSION __STDC_VERSION__
648     #endif
649    
650     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652 root 1.488 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653 root 1.464
654     #if ECB_CPP
655 root 1.450 #define ECB_EXTERN_C extern "C"
656     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657     #define ECB_EXTERN_C_END }
658     #else
659     #define ECB_EXTERN_C extern
660     #define ECB_EXTERN_C_BEG
661     #define ECB_EXTERN_C_END
662     #endif
663    
664 root 1.391 /*****************************************************************************/
665    
666     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668    
669 root 1.410 #if ECB_NO_THREADS
670 root 1.439 #define ECB_NO_SMP 1
671 root 1.410 #endif
672    
673 root 1.437 #if ECB_NO_SMP
674 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
675 root 1.40 #endif
676    
677 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678     #if __xlC__ && ECB_CPP
679     #include <builtins.h>
680     #endif
681    
682 root 1.479 #if 1400 <= _MSC_VER
683     #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684     #endif
685    
686 root 1.383 #ifndef ECB_MEMORY_FENCE
687 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 root 1.496 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
689 root 1.404 #if __i386 || __i386__
690 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
691 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
692 root 1.488 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
693 sf-exg 1.475 #elif ECB_GCC_AMD64
694 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
695     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
696 root 1.488 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
697 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
698 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
699 root 1.479 #elif defined __ARM_ARCH_2__ \
700     || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
701     || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
702     || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
703     || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
704     || defined __ARM_ARCH_5TEJ__
705     /* should not need any, unless running old code on newer cpu - arm doesn't support that */
706 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
707 root 1.479 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
708     || defined __ARM_ARCH_6T2__
709 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
710 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
711 root 1.479 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
712 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
713 root 1.464 #elif __aarch64__
714     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
715 root 1.477 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
716 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
717     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
718     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
719 root 1.417 #elif defined __s390__ || defined __s390x__
720 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
721 root 1.417 #elif defined __mips__
722 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
723 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
724     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
725 root 1.419 #elif defined __alpha__
726 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
727     #elif defined __hppa__
728     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
729     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
730     #elif defined __ia64__
731     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
732 root 1.457 #elif defined __m68k__
733     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
734     #elif defined __m88k__
735     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
736     #elif defined __sh__
737     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
738 root 1.383 #endif
739     #endif
740     #endif
741    
742     #ifndef ECB_MEMORY_FENCE
743 root 1.437 #if ECB_GCC_VERSION(4,7)
744 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
745 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
746 root 1.464 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
747     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
748 root 1.496 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
749 root 1.450
750 root 1.474 #elif ECB_CLANG_EXTENSION(c_atomic)
751     /* see comment below (stdatomic.h) about the C11 memory model. */
752     #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
753     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
754     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
755 root 1.496 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
756 root 1.450
757 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
758 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
759 root 1.462 #elif _MSC_VER >= 1500 /* VC++ 2008 */
760     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
761     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
762     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
763     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
764     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
765 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
766     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
767     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
768     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
769     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
770 root 1.417 #elif defined _WIN32
771 root 1.388 #include <WinNT.h>
772 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
773 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
774     #include <mbarrier.h>
775 root 1.496 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
776     #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
777     #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
778     #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
779 root 1.413 #elif __xlC__
780 root 1.414 #define ECB_MEMORY_FENCE __sync ()
781 root 1.383 #endif
782     #endif
783    
784     #ifndef ECB_MEMORY_FENCE
785 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
786     /* we assume that these memory fences work on all variables/all memory accesses, */
787     /* not just C11 atomics and atomic accesses */
788     #include <stdatomic.h>
789     #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
790 root 1.496 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
791     #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
792 root 1.437 #endif
793     #endif
794    
795     #ifndef ECB_MEMORY_FENCE
796 root 1.392 #if !ECB_AVOID_PTHREADS
797     /*
798     * if you get undefined symbol references to pthread_mutex_lock,
799     * or failure to find pthread.h, then you should implement
800     * the ECB_MEMORY_FENCE operations for your cpu/compiler
801     * OR provide pthread.h and link against the posix thread library
802     * of your system.
803     */
804     #include <pthread.h>
805     #define ECB_NEEDS_PTHREADS 1
806     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
807    
808     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
809     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
810     #endif
811     #endif
812 root 1.383
813 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
814 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
815 root 1.392 #endif
816    
817 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
818 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
819     #endif
820    
821 root 1.496 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
822     #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
823     #endif
824    
825 root 1.391 /*****************************************************************************/
826    
827 root 1.474 #if ECB_CPP
828 root 1.391 #define ecb_inline static inline
829     #elif ECB_GCC_VERSION(2,5)
830     #define ecb_inline static __inline__
831     #elif ECB_C99
832     #define ecb_inline static inline
833     #else
834     #define ecb_inline static
835     #endif
836    
837     #if ECB_GCC_VERSION(3,3)
838     #define ecb_restrict __restrict__
839     #elif ECB_C99
840     #define ecb_restrict restrict
841     #else
842     #define ecb_restrict
843     #endif
844    
845     typedef int ecb_bool;
846    
847     #define ECB_CONCAT_(a, b) a ## b
848     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
849     #define ECB_STRINGIFY_(a) # a
850     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
851 sf-exg 1.475 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
852 root 1.391
853     #define ecb_function_ ecb_inline
854    
855 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
856     #define ecb_attribute(attrlist) __attribute__ (attrlist)
857 root 1.379 #else
858     #define ecb_attribute(attrlist)
859 root 1.474 #endif
860 root 1.464
861 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
862     #define ecb_is_constant(expr) __builtin_constant_p (expr)
863     #else
864 root 1.464 /* possible C11 impl for integral types
865     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
866     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
867    
868 root 1.379 #define ecb_is_constant(expr) 0
869 root 1.474 #endif
870    
871     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
872     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
873     #else
874 root 1.379 #define ecb_expect(expr,value) (expr)
875 root 1.474 #endif
876    
877     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
878     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
879     #else
880 root 1.379 #define ecb_prefetch(addr,rw,locality)
881     #endif
882    
883 root 1.391 /* no emulation for ecb_decltype */
884 root 1.474 #if ECB_CPP11
885     // older implementations might have problems with decltype(x)::type, work around it
886     template<class T> struct ecb_decltype_t { typedef T type; };
887     #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
888     #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
889     #define ecb_decltype(x) __typeof__ (x)
890 root 1.391 #endif
891    
892 root 1.468 #if _MSC_VER >= 1300
893 root 1.474 #define ecb_deprecated __declspec (deprecated)
894 root 1.468 #else
895     #define ecb_deprecated ecb_attribute ((__deprecated__))
896     #endif
897    
898 root 1.476 #if _MSC_VER >= 1500
899 sf-exg 1.475 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
900     #elif ECB_GCC_VERSION(4,5)
901     #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
902     #else
903     #define ecb_deprecated_message(msg) ecb_deprecated
904     #endif
905    
906     #if _MSC_VER >= 1400
907     #define ecb_noinline __declspec (noinline)
908     #else
909     #define ecb_noinline ecb_attribute ((__noinline__))
910     #endif
911    
912 root 1.379 #define ecb_unused ecb_attribute ((__unused__))
913     #define ecb_const ecb_attribute ((__const__))
914     #define ecb_pure ecb_attribute ((__pure__))
915    
916 root 1.474 #if ECB_C11 || __IBMC_NORETURN
917 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
918 root 1.437 #define ecb_noreturn _Noreturn
919 sf-exg 1.475 #elif ECB_CPP11
920     #define ecb_noreturn [[noreturn]]
921     #elif _MSC_VER >= 1200
922     /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
923     #define ecb_noreturn __declspec (noreturn)
924 root 1.437 #else
925     #define ecb_noreturn ecb_attribute ((__noreturn__))
926     #endif
927    
928 root 1.379 #if ECB_GCC_VERSION(4,3)
929     #define ecb_artificial ecb_attribute ((__artificial__))
930     #define ecb_hot ecb_attribute ((__hot__))
931     #define ecb_cold ecb_attribute ((__cold__))
932     #else
933     #define ecb_artificial
934     #define ecb_hot
935     #define ecb_cold
936     #endif
937    
938     /* put around conditional expressions if you are very sure that the */
939     /* expression is mostly true or mostly false. note that these return */
940     /* booleans, not the expression. */
941     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
942     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
943 root 1.391 /* for compatibility to the rest of the world */
944     #define ecb_likely(expr) ecb_expect_true (expr)
945     #define ecb_unlikely(expr) ecb_expect_false (expr)
946    
947     /* count trailing zero bits and count # of one bits */
948 root 1.474 #if ECB_GCC_VERSION(3,4) \
949     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
950     && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
951     && ECB_CLANG_BUILTIN(__builtin_popcount))
952 root 1.391 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
953     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
954     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
955     #define ecb_ctz32(x) __builtin_ctz (x)
956     #define ecb_ctz64(x) __builtin_ctzll (x)
957     #define ecb_popcount32(x) __builtin_popcount (x)
958     /* no popcountll */
959     #else
960 root 1.474 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
961     ecb_function_ ecb_const int
962 root 1.391 ecb_ctz32 (uint32_t x)
963     {
964 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
965     unsigned long r;
966     _BitScanForward (&r, x);
967     return (int)r;
968     #else
969 root 1.391 int r = 0;
970    
971     x &= ~x + 1; /* this isolates the lowest bit */
972    
973     #if ECB_branchless_on_i386
974     r += !!(x & 0xaaaaaaaa) << 0;
975     r += !!(x & 0xcccccccc) << 1;
976     r += !!(x & 0xf0f0f0f0) << 2;
977     r += !!(x & 0xff00ff00) << 3;
978     r += !!(x & 0xffff0000) << 4;
979     #else
980     if (x & 0xaaaaaaaa) r += 1;
981     if (x & 0xcccccccc) r += 2;
982     if (x & 0xf0f0f0f0) r += 4;
983     if (x & 0xff00ff00) r += 8;
984     if (x & 0xffff0000) r += 16;
985     #endif
986    
987     return r;
988 root 1.479 #endif
989 root 1.391 }
990    
991 root 1.474 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
992     ecb_function_ ecb_const int
993 root 1.391 ecb_ctz64 (uint64_t x)
994     {
995 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
996     unsigned long r;
997     _BitScanForward64 (&r, x);
998     return (int)r;
999     #else
1000     int shift = x & 0xffffffff ? 0 : 32;
1001 root 1.391 return ecb_ctz32 (x >> shift) + shift;
1002 root 1.479 #endif
1003 root 1.391 }
1004    
1005 root 1.474 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1006     ecb_function_ ecb_const int
1007 root 1.391 ecb_popcount32 (uint32_t x)
1008     {
1009     x -= (x >> 1) & 0x55555555;
1010     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1011     x = ((x >> 4) + x) & 0x0f0f0f0f;
1012     x *= 0x01010101;
1013    
1014     return x >> 24;
1015     }
1016    
1017 root 1.474 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1018     ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1019 root 1.391 {
1020 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1021     unsigned long r;
1022     _BitScanReverse (&r, x);
1023     return (int)r;
1024     #else
1025 root 1.391 int r = 0;
1026    
1027     if (x >> 16) { x >>= 16; r += 16; }
1028     if (x >> 8) { x >>= 8; r += 8; }
1029     if (x >> 4) { x >>= 4; r += 4; }
1030     if (x >> 2) { x >>= 2; r += 2; }
1031     if (x >> 1) { r += 1; }
1032    
1033     return r;
1034 root 1.479 #endif
1035 root 1.391 }
1036    
1037 root 1.474 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1038     ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1039 root 1.391 {
1040 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1041     unsigned long r;
1042     _BitScanReverse64 (&r, x);
1043     return (int)r;
1044     #else
1045 root 1.391 int r = 0;
1046    
1047     if (x >> 32) { x >>= 32; r += 32; }
1048    
1049     return r + ecb_ld32 (x);
1050 root 1.479 #endif
1051 root 1.391 }
1052     #endif
1053    
1054 root 1.474 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1055     ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1056     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1057     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1058 root 1.437
1059 root 1.474 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1060     ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1061 root 1.403 {
1062     return ( (x * 0x0802U & 0x22110U)
1063 root 1.474 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1064 root 1.403 }
1065    
1066 root 1.474 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1067     ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1068 root 1.403 {
1069     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1070     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1071     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1072     x = ( x >> 8 ) | ( x << 8);
1073    
1074     return x;
1075     }
1076    
1077 root 1.474 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1078     ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1079 root 1.403 {
1080     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1081     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1082     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1083     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1084     x = ( x >> 16 ) | ( x << 16);
1085    
1086     return x;
1087     }
1088    
1089 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1090     /* so for this version we are lazy */
1091 root 1.474 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1092     ecb_function_ ecb_const int
1093 root 1.391 ecb_popcount64 (uint64_t x)
1094     {
1095     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1096     }
1097    
1098 root 1.474 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1099     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1100     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1101     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1102     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1103     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1104     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1105     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1106    
1107     ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1108     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1109     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1110     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1111     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1112     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1113     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1114     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1115 root 1.391
1116 root 1.474 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1117 root 1.476 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1118     #define ecb_bswap16(x) __builtin_bswap16 (x)
1119     #else
1120 root 1.391 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1121 root 1.476 #endif
1122 root 1.391 #define ecb_bswap32(x) __builtin_bswap32 (x)
1123     #define ecb_bswap64(x) __builtin_bswap64 (x)
1124 root 1.476 #elif _MSC_VER
1125     #include <stdlib.h>
1126     #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1127     #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1128     #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1129 root 1.391 #else
1130 root 1.474 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1131     ecb_function_ ecb_const uint16_t
1132 root 1.391 ecb_bswap16 (uint16_t x)
1133     {
1134     return ecb_rotl16 (x, 8);
1135     }
1136    
1137 root 1.474 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1138     ecb_function_ ecb_const uint32_t
1139 root 1.391 ecb_bswap32 (uint32_t x)
1140     {
1141     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1142     }
1143    
1144 root 1.474 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1145     ecb_function_ ecb_const uint64_t
1146 root 1.391 ecb_bswap64 (uint64_t x)
1147     {
1148     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1149     }
1150     #endif
1151    
1152 root 1.474 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1153 root 1.391 #define ecb_unreachable() __builtin_unreachable ()
1154     #else
1155     /* this seems to work fine, but gcc always emits a warning for it :/ */
1156 root 1.474 ecb_inline ecb_noreturn void ecb_unreachable (void);
1157     ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1158 root 1.391 #endif
1159    
1160     /* try to tell the compiler that some condition is definitely true */
1161 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1162 root 1.391
1163 root 1.479 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1164     ecb_inline ecb_const uint32_t
1165 root 1.391 ecb_byteorder_helper (void)
1166     {
1167 root 1.450 /* the union code still generates code under pressure in gcc, */
1168     /* but less than using pointers, and always seems to */
1169     /* successfully return a constant. */
1170     /* the reason why we have this horrible preprocessor mess */
1171     /* is to avoid it in all cases, at least on common architectures */
1172     /* or when using a recent enough gcc version (>= 4.6) */
1173 root 1.479 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1174     || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1175     #define ECB_LITTLE_ENDIAN 1
1176     return 0x44332211;
1177     #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1178     || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1179     #define ECB_BIG_ENDIAN 1
1180     return 0x11223344;
1181 root 1.450 #else
1182     union
1183     {
1184 root 1.479 uint8_t c[4];
1185     uint32_t u;
1186     } u = { 0x11, 0x22, 0x33, 0x44 };
1187     return u.u;
1188 root 1.450 #endif
1189 root 1.391 }
1190    
1191 root 1.474 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1192 root 1.479 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1193 root 1.474 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1194 root 1.479 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1195 root 1.391
1196     #if ECB_GCC_VERSION(3,0) || ECB_C99
1197     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1198     #else
1199     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1200     #endif
1201    
1202 root 1.474 #if ECB_CPP
1203 root 1.398 template<typename T>
1204     static inline T ecb_div_rd (T val, T div)
1205     {
1206     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1207     }
1208     template<typename T>
1209     static inline T ecb_div_ru (T val, T div)
1210     {
1211     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1212     }
1213     #else
1214     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1215     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1216     #endif
1217    
1218 root 1.391 #if ecb_cplusplus_does_not_suck
1219     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1220     template<typename T, int N>
1221     static inline int ecb_array_length (const T (&arr)[N])
1222     {
1223     return N;
1224     }
1225     #else
1226     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1227     #endif
1228    
1229 root 1.479 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1230     ecb_function_ ecb_const uint32_t
1231     ecb_binary16_to_binary32 (uint32_t x)
1232     {
1233     unsigned int s = (x & 0x8000) << (31 - 15);
1234     int e = (x >> 10) & 0x001f;
1235     unsigned int m = x & 0x03ff;
1236    
1237     if (ecb_expect_false (e == 31))
1238     /* infinity or NaN */
1239     e = 255 - (127 - 15);
1240     else if (ecb_expect_false (!e))
1241     {
1242     if (ecb_expect_true (!m))
1243     /* zero, handled by code below by forcing e to 0 */
1244     e = 0 - (127 - 15);
1245     else
1246     {
1247     /* subnormal, renormalise */
1248     unsigned int s = 10 - ecb_ld32 (m);
1249    
1250     m = (m << s) & 0x3ff; /* mask implicit bit */
1251     e -= s - 1;
1252     }
1253     }
1254    
1255     /* e and m now are normalised, or zero, (or inf or nan) */
1256     e += 127 - 15;
1257    
1258     return s | (e << 23) | (m << (23 - 10));
1259     }
1260    
1261     ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1262     ecb_function_ ecb_const uint16_t
1263     ecb_binary32_to_binary16 (uint32_t x)
1264     {
1265     unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1266     unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1267     unsigned int m = x & 0x007fffff;
1268    
1269     x &= 0x7fffffff;
1270    
1271     /* if it's within range of binary16 normals, use fast path */
1272     if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1273     {
1274     /* mantissa round-to-even */
1275     m += 0x00000fff + ((m >> (23 - 10)) & 1);
1276    
1277     /* handle overflow */
1278     if (ecb_expect_false (m >= 0x00800000))
1279     {
1280     m >>= 1;
1281     e += 1;
1282     }
1283    
1284     return s | (e << 10) | (m >> (23 - 10));
1285     }
1286    
1287     /* handle large numbers and infinity */
1288     if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1289     return s | 0x7c00;
1290    
1291     /* handle zero, subnormals and small numbers */
1292     if (ecb_expect_true (x < 0x38800000))
1293     {
1294     /* zero */
1295     if (ecb_expect_true (!x))
1296     return s;
1297    
1298     /* handle subnormals */
1299    
1300     /* too small, will be zero */
1301     if (e < (14 - 24)) /* might not be sharp, but is good enough */
1302     return s;
1303    
1304     m |= 0x00800000; /* make implicit bit explicit */
1305    
1306     /* very tricky - we need to round to the nearest e (+10) bit value */
1307     {
1308     unsigned int bits = 14 - e;
1309     unsigned int half = (1 << (bits - 1)) - 1;
1310     unsigned int even = (m >> bits) & 1;
1311    
1312     /* if this overflows, we will end up with a normalised number */
1313     m = (m + half + even) >> bits;
1314     }
1315    
1316     return s | m;
1317     }
1318    
1319     /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1320     m >>= 13;
1321    
1322     return s | 0x7c00 | m | !m;
1323     }
1324    
1325 root 1.450 /*******************************************************************************/
1326     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1327    
1328     /* basically, everything uses "ieee pure-endian" floating point numbers */
1329     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1330     #if 0 \
1331     || __i386 || __i386__ \
1332 sf-exg 1.475 || ECB_GCC_AMD64 \
1333 root 1.450 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1334     || defined __s390__ || defined __s390x__ \
1335     || defined __mips__ \
1336     || defined __alpha__ \
1337     || defined __hppa__ \
1338     || defined __ia64__ \
1339 root 1.457 || defined __m68k__ \
1340     || defined __m88k__ \
1341     || defined __sh__ \
1342 sf-exg 1.475 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1343 root 1.465 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1344 root 1.466 || defined __aarch64__
1345 root 1.450 #define ECB_STDFP 1
1346     #include <string.h> /* for memcpy */
1347     #else
1348     #define ECB_STDFP 0
1349     #endif
1350    
1351     #ifndef ECB_NO_LIBM
1352    
1353 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1354    
1355 root 1.462 /* only the oldest of old doesn't have this one. solaris. */
1356     #ifdef INFINITY
1357     #define ECB_INFINITY INFINITY
1358     #else
1359     #define ECB_INFINITY HUGE_VAL
1360     #endif
1361    
1362     #ifdef NAN
1363 root 1.458 #define ECB_NAN NAN
1364     #else
1365 root 1.462 #define ECB_NAN ECB_INFINITY
1366 root 1.458 #endif
1367    
1368 root 1.474 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1369     #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1370 root 1.476 #define ecb_frexpf(x,e) frexpf ((x), (e))
1371 root 1.474 #else
1372 root 1.476 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1373     #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1374 root 1.474 #endif
1375    
1376 root 1.450 /* convert a float to ieee single/binary32 */
1377 root 1.474 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1378     ecb_function_ ecb_const uint32_t
1379 root 1.450 ecb_float_to_binary32 (float x)
1380     {
1381     uint32_t r;
1382    
1383     #if ECB_STDFP
1384     memcpy (&r, &x, 4);
1385     #else
1386     /* slow emulation, works for anything but -0 */
1387     uint32_t m;
1388     int e;
1389    
1390     if (x == 0e0f ) return 0x00000000U;
1391     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1392     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1393     if (x != x ) return 0x7fbfffffU;
1394    
1395 root 1.476 m = ecb_frexpf (x, &e) * 0x1000000U;
1396 root 1.450
1397     r = m & 0x80000000U;
1398    
1399     if (r)
1400     m = -m;
1401    
1402     if (e <= -126)
1403     {
1404     m &= 0xffffffU;
1405     m >>= (-125 - e);
1406     e = -126;
1407     }
1408    
1409     r |= (e + 126) << 23;
1410     r |= m & 0x7fffffU;
1411     #endif
1412    
1413     return r;
1414     }
1415    
1416     /* converts an ieee single/binary32 to a float */
1417 root 1.474 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1418     ecb_function_ ecb_const float
1419 root 1.450 ecb_binary32_to_float (uint32_t x)
1420     {
1421     float r;
1422    
1423     #if ECB_STDFP
1424     memcpy (&r, &x, 4);
1425     #else
1426     /* emulation, only works for normals and subnormals and +0 */
1427     int neg = x >> 31;
1428     int e = (x >> 23) & 0xffU;
1429    
1430     x &= 0x7fffffU;
1431    
1432     if (e)
1433     x |= 0x800000U;
1434     else
1435     e = 1;
1436    
1437     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1438 root 1.474 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1439 root 1.450
1440     r = neg ? -r : r;
1441     #endif
1442    
1443     return r;
1444     }
1445    
1446     /* convert a double to ieee double/binary64 */
1447 root 1.474 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1448     ecb_function_ ecb_const uint64_t
1449 root 1.450 ecb_double_to_binary64 (double x)
1450     {
1451     uint64_t r;
1452    
1453     #if ECB_STDFP
1454     memcpy (&r, &x, 8);
1455     #else
1456     /* slow emulation, works for anything but -0 */
1457     uint64_t m;
1458     int e;
1459    
1460     if (x == 0e0 ) return 0x0000000000000000U;
1461     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1462     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1463     if (x != x ) return 0X7ff7ffffffffffffU;
1464    
1465     m = frexp (x, &e) * 0x20000000000000U;
1466    
1467     r = m & 0x8000000000000000;;
1468    
1469     if (r)
1470     m = -m;
1471    
1472     if (e <= -1022)
1473     {
1474     m &= 0x1fffffffffffffU;
1475     m >>= (-1021 - e);
1476     e = -1022;
1477     }
1478    
1479     r |= ((uint64_t)(e + 1022)) << 52;
1480     r |= m & 0xfffffffffffffU;
1481     #endif
1482    
1483     return r;
1484     }
1485    
1486     /* converts an ieee double/binary64 to a double */
1487 root 1.474 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1488     ecb_function_ ecb_const double
1489 root 1.450 ecb_binary64_to_double (uint64_t x)
1490     {
1491     double r;
1492    
1493     #if ECB_STDFP
1494     memcpy (&r, &x, 8);
1495     #else
1496     /* emulation, only works for normals and subnormals and +0 */
1497     int neg = x >> 63;
1498     int e = (x >> 52) & 0x7ffU;
1499    
1500     x &= 0xfffffffffffffU;
1501    
1502     if (e)
1503     x |= 0x10000000000000U;
1504     else
1505     e = 1;
1506    
1507     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1508     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1509    
1510     r = neg ? -r : r;
1511     #endif
1512    
1513     return r;
1514     }
1515    
1516 root 1.479 /* convert a float to ieee half/binary16 */
1517     ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1518     ecb_function_ ecb_const uint16_t
1519     ecb_float_to_binary16 (float x)
1520     {
1521     return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1522     }
1523    
1524     /* convert an ieee half/binary16 to float */
1525     ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1526     ecb_function_ ecb_const float
1527     ecb_binary16_to_float (uint16_t x)
1528     {
1529     return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1530     }
1531    
1532 root 1.450 #endif
1533    
1534 root 1.391 #endif
1535    
1536     /* ECB.H END */
1537 root 1.379
1538 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1539 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1540 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1541 root 1.500 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1542 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1543 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1544     * which will then provide the memory fences.
1545     */
1546     # error "memory fences not defined for your architecture, please report"
1547     #endif
1548    
1549     #ifndef ECB_MEMORY_FENCE
1550     # define ECB_MEMORY_FENCE do { } while (0)
1551     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1552     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1553 root 1.392 #endif
1554    
1555 root 1.379 #define inline_size ecb_inline
1556 root 1.169
1557 root 1.338 #if EV_FEATURE_CODE
1558 root 1.379 # define inline_speed ecb_inline
1559 root 1.338 #else
1560 root 1.500 # define inline_speed ecb_noinline static
1561 root 1.169 #endif
1562 root 1.40
1563 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1564    
1565     #if EV_MINPRI == EV_MAXPRI
1566     # define ABSPRI(w) (((W)w), 0)
1567     #else
1568     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1569     #endif
1570 root 1.42
1571 root 1.490 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1572 root 1.103
1573 root 1.136 typedef ev_watcher *W;
1574     typedef ev_watcher_list *WL;
1575     typedef ev_watcher_time *WT;
1576 root 1.10
1577 root 1.229 #define ev_active(w) ((W)(w))->active
1578 root 1.228 #define ev_at(w) ((WT)(w))->at
1579    
1580 root 1.279 #if EV_USE_REALTIME
1581 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1582 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1583 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1584     #endif
1585    
1586     #if EV_USE_MONOTONIC
1587 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1588 root 1.198 #endif
1589 root 1.54
1590 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1591     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1592     #endif
1593     #ifndef EV_WIN32_HANDLE_TO_FD
1594 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1595 root 1.313 #endif
1596     #ifndef EV_WIN32_CLOSE_FD
1597     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1598     #endif
1599    
1600 root 1.103 #ifdef _WIN32
1601 root 1.98 # include "ev_win32.c"
1602     #endif
1603 root 1.67
1604 root 1.53 /*****************************************************************************/
1605 root 1.1
1606 root 1.493 #if EV_USE_LINUXAIO
1607     # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1608     #endif
1609    
1610 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1611    
1612     #if EV_USE_FLOOR
1613     # include <math.h>
1614     # define ev_floor(v) floor (v)
1615     #else
1616    
1617     #include <float.h>
1618    
1619     /* a floor() replacement function, should be independent of ev_tstamp type */
1620 root 1.500 ecb_noinline
1621 root 1.480 static ev_tstamp
1622 root 1.373 ev_floor (ev_tstamp v)
1623     {
1624     /* the choice of shift factor is not terribly important */
1625     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1626     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1627     #else
1628     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1629     #endif
1630    
1631     /* argument too large for an unsigned long? */
1632 root 1.500 if (ecb_expect_false (v >= shift))
1633 root 1.373 {
1634     ev_tstamp f;
1635    
1636     if (v == v - 1.)
1637     return v; /* very large number */
1638    
1639     f = shift * ev_floor (v * (1. / shift));
1640     return f + ev_floor (v - f);
1641     }
1642    
1643     /* special treatment for negative args? */
1644 root 1.500 if (ecb_expect_false (v < 0.))
1645 root 1.373 {
1646     ev_tstamp f = -ev_floor (-v);
1647    
1648     return f - (f == v ? 0 : 1);
1649     }
1650    
1651     /* fits into an unsigned long */
1652     return (unsigned long)v;
1653     }
1654    
1655     #endif
1656    
1657     /*****************************************************************************/
1658    
1659 root 1.356 #ifdef __linux
1660     # include <sys/utsname.h>
1661     #endif
1662    
1663 root 1.500 ecb_noinline ecb_cold
1664 root 1.480 static unsigned int
1665 root 1.355 ev_linux_version (void)
1666     {
1667     #ifdef __linux
1668 root 1.359 unsigned int v = 0;
1669 root 1.355 struct utsname buf;
1670     int i;
1671     char *p = buf.release;
1672    
1673     if (uname (&buf))
1674     return 0;
1675    
1676     for (i = 3+1; --i; )
1677     {
1678     unsigned int c = 0;
1679    
1680     for (;;)
1681     {
1682     if (*p >= '0' && *p <= '9')
1683     c = c * 10 + *p++ - '0';
1684     else
1685     {
1686     p += *p == '.';
1687     break;
1688     }
1689     }
1690    
1691     v = (v << 8) | c;
1692     }
1693    
1694     return v;
1695     #else
1696     return 0;
1697     #endif
1698     }
1699    
1700     /*****************************************************************************/
1701    
1702 root 1.331 #if EV_AVOID_STDIO
1703 root 1.500 ecb_noinline ecb_cold
1704 root 1.480 static void
1705 root 1.331 ev_printerr (const char *msg)
1706     {
1707     write (STDERR_FILENO, msg, strlen (msg));
1708     }
1709     #endif
1710    
1711 root 1.486 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1712 root 1.69
1713 root 1.480 ecb_cold
1714     void
1715 root 1.486 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1716 root 1.69 {
1717     syserr_cb = cb;
1718     }
1719    
1720 root 1.500 ecb_noinline ecb_cold
1721 root 1.480 static void
1722 root 1.269 ev_syserr (const char *msg)
1723 root 1.69 {
1724 root 1.70 if (!msg)
1725     msg = "(libev) system error";
1726    
1727 root 1.69 if (syserr_cb)
1728 root 1.70 syserr_cb (msg);
1729 root 1.69 else
1730     {
1731 root 1.330 #if EV_AVOID_STDIO
1732 root 1.331 ev_printerr (msg);
1733     ev_printerr (": ");
1734 root 1.365 ev_printerr (strerror (errno));
1735 root 1.331 ev_printerr ("\n");
1736 root 1.330 #else
1737 root 1.70 perror (msg);
1738 root 1.330 #endif
1739 root 1.69 abort ();
1740     }
1741     }
1742    
1743 root 1.224 static void *
1744 root 1.486 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1745 root 1.224 {
1746     /* some systems, notably openbsd and darwin, fail to properly
1747 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1748 root 1.224 * the single unix specification, so work around them here.
1749 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1750     * despite documenting it otherwise.
1751 root 1.224 */
1752 root 1.333
1753 root 1.224 if (size)
1754     return realloc (ptr, size);
1755    
1756     free (ptr);
1757     return 0;
1758     }
1759    
1760 root 1.486 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1761 root 1.69
1762 root 1.480 ecb_cold
1763     void
1764 root 1.486 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1765 root 1.69 {
1766     alloc = cb;
1767     }
1768    
1769 root 1.150 inline_speed void *
1770 root 1.155 ev_realloc (void *ptr, long size)
1771 root 1.69 {
1772 root 1.224 ptr = alloc (ptr, size);
1773 root 1.69
1774     if (!ptr && size)
1775     {
1776 root 1.330 #if EV_AVOID_STDIO
1777 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1778 root 1.330 #else
1779 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1780 root 1.330 #endif
1781 root 1.69 abort ();
1782     }
1783    
1784     return ptr;
1785     }
1786    
1787     #define ev_malloc(size) ev_realloc (0, (size))
1788     #define ev_free(ptr) ev_realloc ((ptr), 0)
1789    
1790     /*****************************************************************************/
1791    
1792 root 1.298 /* set in reify when reification needed */
1793     #define EV_ANFD_REIFY 1
1794    
1795 root 1.288 /* file descriptor info structure */
1796 root 1.53 typedef struct
1797     {
1798 root 1.68 WL head;
1799 root 1.288 unsigned char events; /* the events watched for */
1800 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1801 root 1.490 unsigned char emask; /* some backends store the actual kernel mask in here */
1802 root 1.269 unsigned char unused;
1803     #if EV_USE_EPOLL
1804 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1805 root 1.269 #endif
1806 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1807 root 1.103 SOCKET handle;
1808     #endif
1809 root 1.357 #if EV_USE_IOCP
1810     OVERLAPPED or, ow;
1811     #endif
1812 root 1.53 } ANFD;
1813 root 1.1
1814 root 1.288 /* stores the pending event set for a given watcher */
1815 root 1.53 typedef struct
1816     {
1817     W w;
1818 root 1.288 int events; /* the pending event set for the given watcher */
1819 root 1.53 } ANPENDING;
1820 root 1.51
1821 root 1.155 #if EV_USE_INOTIFY
1822 root 1.241 /* hash table entry per inotify-id */
1823 root 1.152 typedef struct
1824     {
1825     WL head;
1826 root 1.155 } ANFS;
1827 root 1.152 #endif
1828    
1829 root 1.241 /* Heap Entry */
1830     #if EV_HEAP_CACHE_AT
1831 root 1.288 /* a heap element */
1832 root 1.241 typedef struct {
1833 root 1.243 ev_tstamp at;
1834 root 1.241 WT w;
1835     } ANHE;
1836    
1837 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1838     #define ANHE_at(he) (he).at /* access cached at, read-only */
1839     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1840 root 1.241 #else
1841 root 1.288 /* a heap element */
1842 root 1.241 typedef WT ANHE;
1843    
1844 root 1.248 #define ANHE_w(he) (he)
1845     #define ANHE_at(he) (he)->at
1846     #define ANHE_at_cache(he)
1847 root 1.241 #endif
1848    
1849 root 1.55 #if EV_MULTIPLICITY
1850 root 1.54
1851 root 1.80 struct ev_loop
1852     {
1853 root 1.86 ev_tstamp ev_rt_now;
1854 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1855 root 1.80 #define VAR(name,decl) decl;
1856     #include "ev_vars.h"
1857     #undef VAR
1858     };
1859     #include "ev_wrap.h"
1860    
1861 root 1.116 static struct ev_loop default_loop_struct;
1862 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1863 root 1.54
1864 root 1.53 #else
1865 root 1.54
1866 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1867 root 1.80 #define VAR(name,decl) static decl;
1868     #include "ev_vars.h"
1869     #undef VAR
1870    
1871 root 1.116 static int ev_default_loop_ptr;
1872 root 1.54
1873 root 1.51 #endif
1874 root 1.1
1875 root 1.338 #if EV_FEATURE_API
1876 root 1.500 # define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
1877     # define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
1878 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1879     #else
1880 root 1.298 # define EV_RELEASE_CB (void)0
1881     # define EV_ACQUIRE_CB (void)0
1882 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1883     #endif
1884    
1885 root 1.353 #define EVBREAK_RECURSE 0x80
1886 root 1.298
1887 root 1.8 /*****************************************************************************/
1888    
1889 root 1.292 #ifndef EV_HAVE_EV_TIME
1890 root 1.141 ev_tstamp
1891 root 1.486 ev_time (void) EV_NOEXCEPT
1892 root 1.1 {
1893 root 1.29 #if EV_USE_REALTIME
1894 root 1.500 if (ecb_expect_true (have_realtime))
1895 root 1.279 {
1896     struct timespec ts;
1897     clock_gettime (CLOCK_REALTIME, &ts);
1898     return ts.tv_sec + ts.tv_nsec * 1e-9;
1899     }
1900     #endif
1901    
1902 root 1.1 struct timeval tv;
1903     gettimeofday (&tv, 0);
1904     return tv.tv_sec + tv.tv_usec * 1e-6;
1905     }
1906 root 1.292 #endif
1907 root 1.1
1908 root 1.284 inline_size ev_tstamp
1909 root 1.1 get_clock (void)
1910     {
1911 root 1.29 #if EV_USE_MONOTONIC
1912 root 1.500 if (ecb_expect_true (have_monotonic))
1913 root 1.1 {
1914     struct timespec ts;
1915     clock_gettime (CLOCK_MONOTONIC, &ts);
1916     return ts.tv_sec + ts.tv_nsec * 1e-9;
1917     }
1918     #endif
1919    
1920     return ev_time ();
1921     }
1922    
1923 root 1.85 #if EV_MULTIPLICITY
1924 root 1.51 ev_tstamp
1925 root 1.486 ev_now (EV_P) EV_NOEXCEPT
1926 root 1.51 {
1927 root 1.85 return ev_rt_now;
1928 root 1.51 }
1929 root 1.85 #endif
1930 root 1.51
1931 root 1.193 void
1932 root 1.486 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1933 root 1.193 {
1934     if (delay > 0.)
1935     {
1936     #if EV_USE_NANOSLEEP
1937     struct timespec ts;
1938    
1939 root 1.348 EV_TS_SET (ts, delay);
1940 root 1.193 nanosleep (&ts, 0);
1941 root 1.416 #elif defined _WIN32
1942 root 1.482 /* maybe this should round up, as ms is very low resolution */
1943     /* compared to select (µs) or nanosleep (ns) */
1944 root 1.217 Sleep ((unsigned long)(delay * 1e3));
1945 root 1.193 #else
1946     struct timeval tv;
1947    
1948 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1949 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
1950 root 1.257 /* by older ones */
1951 sf-exg 1.349 EV_TV_SET (tv, delay);
1952 root 1.193 select (0, 0, 0, 0, &tv);
1953     #endif
1954     }
1955     }
1956    
1957     /*****************************************************************************/
1958    
1959 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1960 root 1.232
1961 root 1.288 /* find a suitable new size for the given array, */
1962 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
1963 root 1.284 inline_size int
1964 root 1.163 array_nextsize (int elem, int cur, int cnt)
1965     {
1966     int ncur = cur + 1;
1967    
1968     do
1969     ncur <<= 1;
1970     while (cnt > ncur);
1971    
1972 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1973 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1974 root 1.163 {
1975     ncur *= elem;
1976 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1977 root 1.163 ncur = ncur - sizeof (void *) * 4;
1978     ncur /= elem;
1979     }
1980    
1981     return ncur;
1982     }
1983    
1984 root 1.500 ecb_noinline ecb_cold
1985 root 1.480 static void *
1986 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
1987     {
1988     *cur = array_nextsize (elem, *cur, cnt);
1989     return ev_realloc (base, elem * *cur);
1990     }
1991 root 1.29
1992 root 1.495 #define array_needsize_noinit(base,offset,count)
1993 root 1.490
1994 root 1.495 #define array_needsize_zerofill(base,offset,count) \
1995     memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
1996 root 1.265
1997 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
1998 root 1.500 if (ecb_expect_false ((cnt) > (cur))) \
1999 root 1.69 { \
2000 root 1.480 ecb_unused int ocur_ = (cur); \
2001 root 1.163 (base) = (type *)array_realloc \
2002     (sizeof (type), (base), &(cur), (cnt)); \
2003 root 1.495 init ((base), ocur_, ((cur) - ocur_)); \
2004 root 1.1 }
2005    
2006 root 1.163 #if 0
2007 root 1.74 #define array_slim(type,stem) \
2008 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2009     { \
2010     stem ## max = array_roundsize (stem ## cnt >> 1); \
2011 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2012 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2013     }
2014 root 1.163 #endif
2015 root 1.67
2016 root 1.65 #define array_free(stem, idx) \
2017 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2018 root 1.65
2019 root 1.8 /*****************************************************************************/
2020    
2021 root 1.288 /* dummy callback for pending events */
2022 root 1.500 ecb_noinline
2023 root 1.480 static void
2024 root 1.288 pendingcb (EV_P_ ev_prepare *w, int revents)
2025     {
2026     }
2027    
2028 root 1.500 ecb_noinline
2029 root 1.480 void
2030 root 1.486 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2031 root 1.1 {
2032 root 1.78 W w_ = (W)w;
2033 root 1.171 int pri = ABSPRI (w_);
2034 root 1.78
2035 root 1.500 if (ecb_expect_false (w_->pending))
2036 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
2037     else
2038 root 1.32 {
2039 root 1.171 w_->pending = ++pendingcnt [pri];
2040 root 1.490 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2041 root 1.171 pendings [pri][w_->pending - 1].w = w_;
2042     pendings [pri][w_->pending - 1].events = revents;
2043 root 1.32 }
2044 root 1.425
2045     pendingpri = NUMPRI - 1;
2046 root 1.1 }
2047    
2048 root 1.284 inline_speed void
2049     feed_reverse (EV_P_ W w)
2050     {
2051 root 1.490 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2052 root 1.284 rfeeds [rfeedcnt++] = w;
2053     }
2054    
2055     inline_size void
2056     feed_reverse_done (EV_P_ int revents)
2057     {
2058     do
2059     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2060     while (rfeedcnt);
2061     }
2062    
2063     inline_speed void
2064 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
2065 root 1.27 {
2066     int i;
2067    
2068     for (i = 0; i < eventcnt; ++i)
2069 root 1.78 ev_feed_event (EV_A_ events [i], type);
2070 root 1.27 }
2071    
2072 root 1.141 /*****************************************************************************/
2073    
2074 root 1.284 inline_speed void
2075 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
2076 root 1.1 {
2077     ANFD *anfd = anfds + fd;
2078 root 1.136 ev_io *w;
2079 root 1.1
2080 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2081 root 1.1 {
2082 root 1.79 int ev = w->events & revents;
2083 root 1.1
2084     if (ev)
2085 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
2086 root 1.1 }
2087     }
2088    
2089 root 1.298 /* do not submit kernel events for fds that have reify set */
2090     /* because that means they changed while we were polling for new events */
2091     inline_speed void
2092     fd_event (EV_P_ int fd, int revents)
2093     {
2094     ANFD *anfd = anfds + fd;
2095    
2096 root 1.500 if (ecb_expect_true (!anfd->reify))
2097 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2098 root 1.298 }
2099    
2100 root 1.79 void
2101 root 1.486 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2102 root 1.79 {
2103 root 1.168 if (fd >= 0 && fd < anfdmax)
2104 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2105 root 1.79 }
2106    
2107 root 1.288 /* make sure the external fd watch events are in-sync */
2108     /* with the kernel/libev internal state */
2109 root 1.284 inline_size void
2110 root 1.51 fd_reify (EV_P)
2111 root 1.9 {
2112     int i;
2113    
2114 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2115     for (i = 0; i < fdchangecnt; ++i)
2116     {
2117     int fd = fdchanges [i];
2118     ANFD *anfd = anfds + fd;
2119    
2120 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
2121 root 1.371 {
2122     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2123    
2124     if (handle != anfd->handle)
2125     {
2126     unsigned long arg;
2127    
2128     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2129    
2130     /* handle changed, but fd didn't - we need to do it in two steps */
2131     backend_modify (EV_A_ fd, anfd->events, 0);
2132     anfd->events = 0;
2133     anfd->handle = handle;
2134     }
2135     }
2136     }
2137     #endif
2138    
2139 root 1.27 for (i = 0; i < fdchangecnt; ++i)
2140     {
2141     int fd = fdchanges [i];
2142     ANFD *anfd = anfds + fd;
2143 root 1.136 ev_io *w;
2144 root 1.27
2145 root 1.350 unsigned char o_events = anfd->events;
2146     unsigned char o_reify = anfd->reify;
2147 root 1.27
2148 root 1.497 anfd->reify = 0;
2149 root 1.27
2150 root 1.500 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2151 root 1.350 {
2152     anfd->events = 0;
2153 root 1.184
2154 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2155     anfd->events |= (unsigned char)w->events;
2156 root 1.27
2157 root 1.351 if (o_events != anfd->events)
2158 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
2159     }
2160    
2161     if (o_reify & EV__IOFDSET)
2162     backend_modify (EV_A_ fd, o_events, anfd->events);
2163 root 1.27 }
2164    
2165     fdchangecnt = 0;
2166     }
2167    
2168 root 1.288 /* something about the given fd changed */
2169 root 1.480 inline_size
2170     void
2171 root 1.183 fd_change (EV_P_ int fd, int flags)
2172 root 1.27 {
2173 root 1.183 unsigned char reify = anfds [fd].reify;
2174 root 1.184 anfds [fd].reify |= flags;
2175 root 1.27
2176 root 1.500 if (ecb_expect_true (!reify))
2177 root 1.183 {
2178     ++fdchangecnt;
2179 root 1.490 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2180 root 1.183 fdchanges [fdchangecnt - 1] = fd;
2181     }
2182 root 1.9 }
2183    
2184 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2185 root 1.480 inline_speed ecb_cold void
2186 root 1.51 fd_kill (EV_P_ int fd)
2187 root 1.41 {
2188 root 1.136 ev_io *w;
2189 root 1.41
2190 root 1.136 while ((w = (ev_io *)anfds [fd].head))
2191 root 1.41 {
2192 root 1.51 ev_io_stop (EV_A_ w);
2193 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2194 root 1.41 }
2195     }
2196    
2197 root 1.336 /* check whether the given fd is actually valid, for error recovery */
2198 root 1.480 inline_size ecb_cold int
2199 root 1.71 fd_valid (int fd)
2200     {
2201 root 1.103 #ifdef _WIN32
2202 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2203 root 1.71 #else
2204     return fcntl (fd, F_GETFD) != -1;
2205     #endif
2206     }
2207    
2208 root 1.19 /* called on EBADF to verify fds */
2209 root 1.500 ecb_noinline ecb_cold
2210 root 1.480 static void
2211 root 1.51 fd_ebadf (EV_P)
2212 root 1.19 {
2213     int fd;
2214    
2215     for (fd = 0; fd < anfdmax; ++fd)
2216 root 1.27 if (anfds [fd].events)
2217 root 1.254 if (!fd_valid (fd) && errno == EBADF)
2218 root 1.51 fd_kill (EV_A_ fd);
2219 root 1.41 }
2220    
2221     /* called on ENOMEM in select/poll to kill some fds and retry */
2222 root 1.500 ecb_noinline ecb_cold
2223 root 1.480 static void
2224 root 1.51 fd_enomem (EV_P)
2225 root 1.41 {
2226 root 1.62 int fd;
2227 root 1.41
2228 root 1.62 for (fd = anfdmax; fd--; )
2229 root 1.41 if (anfds [fd].events)
2230     {
2231 root 1.51 fd_kill (EV_A_ fd);
2232 root 1.307 break;
2233 root 1.41 }
2234 root 1.19 }
2235    
2236 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
2237 root 1.500 ecb_noinline
2238 root 1.480 static void
2239 root 1.56 fd_rearm_all (EV_P)
2240     {
2241     int fd;
2242    
2243     for (fd = 0; fd < anfdmax; ++fd)
2244     if (anfds [fd].events)
2245     {
2246     anfds [fd].events = 0;
2247 root 1.268 anfds [fd].emask = 0;
2248 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2249 root 1.56 }
2250     }
2251    
2252 root 1.336 /* used to prepare libev internal fd's */
2253     /* this is not fork-safe */
2254     inline_speed void
2255     fd_intern (int fd)
2256     {
2257     #ifdef _WIN32
2258     unsigned long arg = 1;
2259     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2260     #else
2261     fcntl (fd, F_SETFD, FD_CLOEXEC);
2262     fcntl (fd, F_SETFL, O_NONBLOCK);
2263     #endif
2264     }
2265    
2266 root 1.8 /*****************************************************************************/
2267    
2268 root 1.235 /*
2269 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
2270 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2271     * the branching factor of the d-tree.
2272     */
2273    
2274     /*
2275 root 1.235 * at the moment we allow libev the luxury of two heaps,
2276     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2277     * which is more cache-efficient.
2278     * the difference is about 5% with 50000+ watchers.
2279     */
2280 root 1.241 #if EV_USE_4HEAP
2281 root 1.235
2282 root 1.237 #define DHEAP 4
2283     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2284 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2285 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
2286 root 1.235
2287     /* away from the root */
2288 root 1.284 inline_speed void
2289 root 1.241 downheap (ANHE *heap, int N, int k)
2290 root 1.235 {
2291 root 1.241 ANHE he = heap [k];
2292     ANHE *E = heap + N + HEAP0;
2293 root 1.235
2294     for (;;)
2295     {
2296     ev_tstamp minat;
2297 root 1.241 ANHE *minpos;
2298 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2299 root 1.235
2300 root 1.248 /* find minimum child */
2301 root 1.500 if (ecb_expect_true (pos + DHEAP - 1 < E))
2302 root 1.235 {
2303 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2304     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2305     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2306     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2307 root 1.235 }
2308 root 1.240 else if (pos < E)
2309 root 1.235 {
2310 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2311     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2312     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2313     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2314 root 1.235 }
2315 root 1.240 else
2316     break;
2317 root 1.235
2318 root 1.241 if (ANHE_at (he) <= minat)
2319 root 1.235 break;
2320    
2321 root 1.247 heap [k] = *minpos;
2322 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2323 root 1.235
2324     k = minpos - heap;
2325     }
2326    
2327 root 1.247 heap [k] = he;
2328 root 1.241 ev_active (ANHE_w (he)) = k;
2329 root 1.235 }
2330    
2331 root 1.248 #else /* 4HEAP */
2332 root 1.235
2333     #define HEAP0 1
2334 root 1.247 #define HPARENT(k) ((k) >> 1)
2335 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2336 root 1.235
2337 root 1.248 /* away from the root */
2338 root 1.284 inline_speed void
2339 root 1.248 downheap (ANHE *heap, int N, int k)
2340 root 1.1 {
2341 root 1.241 ANHE he = heap [k];
2342 root 1.1
2343 root 1.228 for (;;)
2344 root 1.1 {
2345 root 1.248 int c = k << 1;
2346 root 1.179
2347 root 1.309 if (c >= N + HEAP0)
2348 root 1.179 break;
2349    
2350 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2351     ? 1 : 0;
2352    
2353     if (ANHE_at (he) <= ANHE_at (heap [c]))
2354     break;
2355    
2356     heap [k] = heap [c];
2357 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2358 root 1.248
2359     k = c;
2360 root 1.1 }
2361    
2362 root 1.243 heap [k] = he;
2363 root 1.248 ev_active (ANHE_w (he)) = k;
2364 root 1.1 }
2365 root 1.248 #endif
2366 root 1.1
2367 root 1.248 /* towards the root */
2368 root 1.284 inline_speed void
2369 root 1.248 upheap (ANHE *heap, int k)
2370 root 1.1 {
2371 root 1.241 ANHE he = heap [k];
2372 root 1.1
2373 root 1.179 for (;;)
2374 root 1.1 {
2375 root 1.248 int p = HPARENT (k);
2376 root 1.179
2377 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2378 root 1.179 break;
2379 root 1.1
2380 root 1.248 heap [k] = heap [p];
2381 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2382 root 1.248 k = p;
2383 root 1.1 }
2384    
2385 root 1.241 heap [k] = he;
2386     ev_active (ANHE_w (he)) = k;
2387 root 1.1 }
2388    
2389 root 1.288 /* move an element suitably so it is in a correct place */
2390 root 1.284 inline_size void
2391 root 1.241 adjustheap (ANHE *heap, int N, int k)
2392 root 1.84 {
2393 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2394 root 1.247 upheap (heap, k);
2395     else
2396     downheap (heap, N, k);
2397 root 1.84 }
2398    
2399 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2400 root 1.284 inline_size void
2401 root 1.248 reheap (ANHE *heap, int N)
2402     {
2403     int i;
2404 root 1.251
2405 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2406     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2407     for (i = 0; i < N; ++i)
2408     upheap (heap, i + HEAP0);
2409     }
2410    
2411 root 1.8 /*****************************************************************************/
2412    
2413 root 1.288 /* associate signal watchers to a signal signal */
2414 root 1.7 typedef struct
2415     {
2416 root 1.307 EV_ATOMIC_T pending;
2417 root 1.306 #if EV_MULTIPLICITY
2418     EV_P;
2419     #endif
2420 root 1.68 WL head;
2421 root 1.7 } ANSIG;
2422    
2423 root 1.306 static ANSIG signals [EV_NSIG - 1];
2424 root 1.7
2425 root 1.207 /*****************************************************************************/
2426    
2427 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2428 root 1.207
2429 root 1.500 ecb_noinline ecb_cold
2430 root 1.480 static void
2431 root 1.207 evpipe_init (EV_P)
2432     {
2433 root 1.288 if (!ev_is_active (&pipe_w))
2434 root 1.207 {
2435 root 1.448 int fds [2];
2436    
2437 root 1.336 # if EV_USE_EVENTFD
2438 root 1.448 fds [0] = -1;
2439     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2440     if (fds [1] < 0 && errno == EINVAL)
2441     fds [1] = eventfd (0, 0);
2442    
2443     if (fds [1] < 0)
2444     # endif
2445     {
2446     while (pipe (fds))
2447     ev_syserr ("(libev) error creating signal/async pipe");
2448    
2449     fd_intern (fds [0]);
2450 root 1.220 }
2451 root 1.448
2452     evpipe [0] = fds [0];
2453    
2454     if (evpipe [1] < 0)
2455     evpipe [1] = fds [1]; /* first call, set write fd */
2456 root 1.220 else
2457     {
2458 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2459     /* so that evpipe_write can always rely on its value. */
2460     /* this branch does not do anything sensible on windows, */
2461     /* so must not be executed on windows */
2462 root 1.207
2463 root 1.448 dup2 (fds [1], evpipe [1]);
2464     close (fds [1]);
2465 root 1.220 }
2466 root 1.207
2467 root 1.455 fd_intern (evpipe [1]);
2468    
2469 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2470 root 1.288 ev_io_start (EV_A_ &pipe_w);
2471 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2472 root 1.207 }
2473     }
2474    
2475 root 1.380 inline_speed void
2476 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2477 root 1.207 {
2478 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2479    
2480 root 1.500 if (ecb_expect_true (*flag))
2481 root 1.387 return;
2482 root 1.383
2483     *flag = 1;
2484 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2485 root 1.383
2486     pipe_write_skipped = 1;
2487 root 1.378
2488 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2489 root 1.214
2490 root 1.383 if (pipe_write_wanted)
2491     {
2492     int old_errno;
2493 root 1.378
2494 root 1.436 pipe_write_skipped = 0;
2495     ECB_MEMORY_FENCE_RELEASE;
2496 root 1.220
2497 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2498 root 1.380
2499 root 1.220 #if EV_USE_EVENTFD
2500 root 1.448 if (evpipe [0] < 0)
2501 root 1.383 {
2502     uint64_t counter = 1;
2503 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2504 root 1.383 }
2505     else
2506 root 1.220 #endif
2507 root 1.383 {
2508 root 1.427 #ifdef _WIN32
2509     WSABUF buf;
2510     DWORD sent;
2511 root 1.485 buf.buf = (char *)&buf;
2512 root 1.427 buf.len = 1;
2513     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2514     #else
2515 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2516 root 1.427 #endif
2517 root 1.383 }
2518 root 1.214
2519 root 1.383 errno = old_errno;
2520 root 1.207 }
2521     }
2522    
2523 root 1.288 /* called whenever the libev signal pipe */
2524     /* got some events (signal, async) */
2525 root 1.207 static void
2526     pipecb (EV_P_ ev_io *iow, int revents)
2527     {
2528 root 1.307 int i;
2529    
2530 root 1.378 if (revents & EV_READ)
2531     {
2532 root 1.220 #if EV_USE_EVENTFD
2533 root 1.448 if (evpipe [0] < 0)
2534 root 1.378 {
2535     uint64_t counter;
2536 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2537 root 1.378 }
2538     else
2539 root 1.220 #endif
2540 root 1.378 {
2541 root 1.427 char dummy[4];
2542     #ifdef _WIN32
2543     WSABUF buf;
2544     DWORD recvd;
2545 root 1.432 DWORD flags = 0;
2546 root 1.427 buf.buf = dummy;
2547     buf.len = sizeof (dummy);
2548 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2549 root 1.427 #else
2550     read (evpipe [0], &dummy, sizeof (dummy));
2551     #endif
2552 root 1.378 }
2553 root 1.220 }
2554 root 1.207
2555 root 1.378 pipe_write_skipped = 0;
2556    
2557 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2558    
2559 root 1.369 #if EV_SIGNAL_ENABLE
2560 root 1.307 if (sig_pending)
2561 root 1.372 {
2562 root 1.307 sig_pending = 0;
2563 root 1.207
2564 root 1.436 ECB_MEMORY_FENCE;
2565 root 1.424
2566 root 1.307 for (i = EV_NSIG - 1; i--; )
2567 root 1.500 if (ecb_expect_false (signals [i].pending))
2568 root 1.307 ev_feed_signal_event (EV_A_ i + 1);
2569 root 1.207 }
2570 root 1.369 #endif
2571 root 1.207
2572 root 1.209 #if EV_ASYNC_ENABLE
2573 root 1.307 if (async_pending)
2574 root 1.207 {
2575 root 1.307 async_pending = 0;
2576 root 1.207
2577 root 1.436 ECB_MEMORY_FENCE;
2578 root 1.424
2579 root 1.207 for (i = asynccnt; i--; )
2580     if (asyncs [i]->sent)
2581     {
2582     asyncs [i]->sent = 0;
2583 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2584 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2585     }
2586     }
2587 root 1.209 #endif
2588 root 1.207 }
2589    
2590     /*****************************************************************************/
2591    
2592 root 1.366 void
2593 root 1.486 ev_feed_signal (int signum) EV_NOEXCEPT
2594 root 1.7 {
2595 root 1.207 #if EV_MULTIPLICITY
2596 root 1.453 EV_P;
2597 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2598 root 1.453 EV_A = signals [signum - 1].loop;
2599 root 1.366
2600     if (!EV_A)
2601     return;
2602 root 1.207 #endif
2603    
2604 root 1.366 signals [signum - 1].pending = 1;
2605     evpipe_write (EV_A_ &sig_pending);
2606     }
2607    
2608     static void
2609     ev_sighandler (int signum)
2610     {
2611 root 1.322 #ifdef _WIN32
2612 root 1.218 signal (signum, ev_sighandler);
2613 root 1.67 #endif
2614    
2615 root 1.366 ev_feed_signal (signum);
2616 root 1.7 }
2617    
2618 root 1.500 ecb_noinline
2619 root 1.480 void
2620 root 1.486 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2621 root 1.79 {
2622 root 1.80 WL w;
2623    
2624 root 1.500 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2625 root 1.307 return;
2626    
2627     --signum;
2628    
2629 root 1.79 #if EV_MULTIPLICITY
2630 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2631     /* or, likely more useful, feeding a signal nobody is waiting for */
2632 root 1.79
2633 root 1.500 if (ecb_expect_false (signals [signum].loop != EV_A))
2634 root 1.306 return;
2635 root 1.307 #endif
2636 root 1.306
2637 root 1.307 signals [signum].pending = 0;
2638 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2639 root 1.79
2640     for (w = signals [signum].head; w; w = w->next)
2641     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2642     }
2643    
2644 root 1.303 #if EV_USE_SIGNALFD
2645     static void
2646     sigfdcb (EV_P_ ev_io *iow, int revents)
2647     {
2648 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2649 root 1.303
2650     for (;;)
2651     {
2652     ssize_t res = read (sigfd, si, sizeof (si));
2653    
2654     /* not ISO-C, as res might be -1, but works with SuS */
2655     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2656     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2657    
2658     if (res < (ssize_t)sizeof (si))
2659     break;
2660     }
2661     }
2662     #endif
2663    
2664 root 1.336 #endif
2665    
2666 root 1.8 /*****************************************************************************/
2667    
2668 root 1.336 #if EV_CHILD_ENABLE
2669 root 1.182 static WL childs [EV_PID_HASHSIZE];
2670 root 1.71
2671 root 1.136 static ev_signal childev;
2672 root 1.59
2673 root 1.206 #ifndef WIFCONTINUED
2674     # define WIFCONTINUED(status) 0
2675     #endif
2676    
2677 root 1.288 /* handle a single child status event */
2678 root 1.284 inline_speed void
2679 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2680 root 1.47 {
2681 root 1.136 ev_child *w;
2682 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2683 root 1.47
2684 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2685 root 1.206 {
2686     if ((w->pid == pid || !w->pid)
2687     && (!traced || (w->flags & 1)))
2688     {
2689 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2690 root 1.206 w->rpid = pid;
2691     w->rstatus = status;
2692     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2693     }
2694     }
2695 root 1.47 }
2696    
2697 root 1.142 #ifndef WCONTINUED
2698     # define WCONTINUED 0
2699     #endif
2700    
2701 root 1.288 /* called on sigchld etc., calls waitpid */
2702 root 1.47 static void
2703 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2704 root 1.22 {
2705     int pid, status;
2706    
2707 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2708     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2709     if (!WCONTINUED
2710     || errno != EINVAL
2711     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2712     return;
2713    
2714 root 1.216 /* make sure we are called again until all children have been reaped */
2715 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2716     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2717 root 1.47
2718 root 1.216 child_reap (EV_A_ pid, pid, status);
2719 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2720 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2721 root 1.22 }
2722    
2723 root 1.45 #endif
2724    
2725 root 1.22 /*****************************************************************************/
2726    
2727 root 1.357 #if EV_USE_IOCP
2728     # include "ev_iocp.c"
2729     #endif
2730 root 1.118 #if EV_USE_PORT
2731     # include "ev_port.c"
2732     #endif
2733 root 1.44 #if EV_USE_KQUEUE
2734     # include "ev_kqueue.c"
2735     #endif
2736 root 1.493 #if EV_USE_EPOLL
2737     # include "ev_epoll.c"
2738     #endif
2739 root 1.490 #if EV_USE_LINUXAIO
2740     # include "ev_linuxaio.c"
2741     #endif
2742 root 1.59 #if EV_USE_POLL
2743 root 1.41 # include "ev_poll.c"
2744     #endif
2745 root 1.29 #if EV_USE_SELECT
2746 root 1.1 # include "ev_select.c"
2747     #endif
2748    
2749 root 1.480 ecb_cold int
2750 root 1.486 ev_version_major (void) EV_NOEXCEPT
2751 root 1.24 {
2752     return EV_VERSION_MAJOR;
2753     }
2754    
2755 root 1.480 ecb_cold int
2756 root 1.486 ev_version_minor (void) EV_NOEXCEPT
2757 root 1.24 {
2758     return EV_VERSION_MINOR;
2759     }
2760    
2761 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2762 root 1.480 inline_size ecb_cold int
2763 root 1.51 enable_secure (void)
2764 root 1.41 {
2765 root 1.103 #ifdef _WIN32
2766 root 1.49 return 0;
2767     #else
2768 root 1.41 return getuid () != geteuid ()
2769     || getgid () != getegid ();
2770 root 1.49 #endif
2771 root 1.41 }
2772    
2773 root 1.480 ecb_cold
2774     unsigned int
2775 root 1.486 ev_supported_backends (void) EV_NOEXCEPT
2776 root 1.129 {
2777 root 1.130 unsigned int flags = 0;
2778 root 1.129
2779 root 1.490 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2780     if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2781     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2782     if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2783     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2784     if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2785 root 1.129
2786     return flags;
2787     }
2788    
2789 root 1.480 ecb_cold
2790     unsigned int
2791 root 1.486 ev_recommended_backends (void) EV_NOEXCEPT
2792 root 1.1 {
2793 root 1.131 unsigned int flags = ev_supported_backends ();
2794 root 1.129
2795     #ifndef __NetBSD__
2796     /* kqueue is borked on everything but netbsd apparently */
2797     /* it usually doesn't work correctly on anything but sockets and pipes */
2798     flags &= ~EVBACKEND_KQUEUE;
2799     #endif
2800     #ifdef __APPLE__
2801 root 1.278 /* only select works correctly on that "unix-certified" platform */
2802     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2803     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2804 root 1.129 #endif
2805 root 1.342 #ifdef __FreeBSD__
2806     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2807     #endif
2808 root 1.129
2809 root 1.491 /* TODO: linuxaio is very experimental */
2810 root 1.494 #if !EV_RECOMMEND_LINUXAIO
2811 root 1.491 flags &= ~EVBACKEND_LINUXAIO;
2812 root 1.494 #endif
2813 root 1.491
2814 root 1.129 return flags;
2815 root 1.51 }
2816    
2817 root 1.480 ecb_cold
2818     unsigned int
2819 root 1.486 ev_embeddable_backends (void) EV_NOEXCEPT
2820 root 1.134 {
2821 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2822    
2823 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2824 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2825     flags &= ~EVBACKEND_EPOLL;
2826 root 1.196
2827     return flags;
2828 root 1.134 }
2829    
2830     unsigned int
2831 root 1.486 ev_backend (EV_P) EV_NOEXCEPT
2832 root 1.130 {
2833     return backend;
2834     }
2835    
2836 root 1.338 #if EV_FEATURE_API
2837 root 1.162 unsigned int
2838 root 1.486 ev_iteration (EV_P) EV_NOEXCEPT
2839 root 1.162 {
2840     return loop_count;
2841     }
2842    
2843 root 1.294 unsigned int
2844 root 1.486 ev_depth (EV_P) EV_NOEXCEPT
2845 root 1.294 {
2846     return loop_depth;
2847     }
2848    
2849 root 1.193 void
2850 root 1.486 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2851 root 1.193 {
2852     io_blocktime = interval;
2853     }
2854    
2855     void
2856 root 1.486 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2857 root 1.193 {
2858     timeout_blocktime = interval;
2859     }
2860    
2861 root 1.297 void
2862 root 1.486 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2863 root 1.297 {
2864     userdata = data;
2865     }
2866    
2867     void *
2868 root 1.486 ev_userdata (EV_P) EV_NOEXCEPT
2869 root 1.297 {
2870     return userdata;
2871     }
2872    
2873 root 1.379 void
2874 root 1.486 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2875 root 1.297 {
2876     invoke_cb = invoke_pending_cb;
2877     }
2878    
2879 root 1.379 void
2880 root 1.486 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2881 root 1.297 {
2882 root 1.298 release_cb = release;
2883     acquire_cb = acquire;
2884 root 1.297 }
2885     #endif
2886    
2887 root 1.288 /* initialise a loop structure, must be zero-initialised */
2888 root 1.500 ecb_noinline ecb_cold
2889 root 1.480 static void
2890 root 1.486 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
2891 root 1.51 {
2892 root 1.130 if (!backend)
2893 root 1.23 {
2894 root 1.366 origflags = flags;
2895    
2896 root 1.279 #if EV_USE_REALTIME
2897     if (!have_realtime)
2898     {
2899     struct timespec ts;
2900    
2901     if (!clock_gettime (CLOCK_REALTIME, &ts))
2902     have_realtime = 1;
2903     }
2904     #endif
2905    
2906 root 1.29 #if EV_USE_MONOTONIC
2907 root 1.279 if (!have_monotonic)
2908     {
2909     struct timespec ts;
2910    
2911     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2912     have_monotonic = 1;
2913     }
2914 root 1.1 #endif
2915    
2916 root 1.306 /* pid check not overridable via env */
2917     #ifndef _WIN32
2918     if (flags & EVFLAG_FORKCHECK)
2919     curpid = getpid ();
2920     #endif
2921    
2922     if (!(flags & EVFLAG_NOENV)
2923     && !enable_secure ()
2924     && getenv ("LIBEV_FLAGS"))
2925     flags = atoi (getenv ("LIBEV_FLAGS"));
2926    
2927 root 1.378 ev_rt_now = ev_time ();
2928     mn_now = get_clock ();
2929     now_floor = mn_now;
2930     rtmn_diff = ev_rt_now - mn_now;
2931 root 1.338 #if EV_FEATURE_API
2932 root 1.378 invoke_cb = ev_invoke_pending;
2933 root 1.297 #endif
2934 root 1.1
2935 root 1.378 io_blocktime = 0.;
2936     timeout_blocktime = 0.;
2937     backend = 0;
2938     backend_fd = -1;
2939     sig_pending = 0;
2940 root 1.307 #if EV_ASYNC_ENABLE
2941 root 1.378 async_pending = 0;
2942 root 1.307 #endif
2943 root 1.378 pipe_write_skipped = 0;
2944     pipe_write_wanted = 0;
2945 root 1.448 evpipe [0] = -1;
2946     evpipe [1] = -1;
2947 root 1.209 #if EV_USE_INOTIFY
2948 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2949 root 1.209 #endif
2950 root 1.303 #if EV_USE_SIGNALFD
2951 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2952 root 1.303 #endif
2953 root 1.193
2954 root 1.366 if (!(flags & EVBACKEND_MASK))
2955 root 1.129 flags |= ev_recommended_backends ();
2956 root 1.41
2957 root 1.357 #if EV_USE_IOCP
2958 root 1.490 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2959 root 1.357 #endif
2960 root 1.118 #if EV_USE_PORT
2961 root 1.490 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2962 root 1.118 #endif
2963 root 1.44 #if EV_USE_KQUEUE
2964 root 1.490 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2965     #endif
2966     #if EV_USE_LINUXAIO
2967     if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
2968 root 1.44 #endif
2969 root 1.29 #if EV_USE_EPOLL
2970 root 1.490 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2971 root 1.41 #endif
2972 root 1.59 #if EV_USE_POLL
2973 root 1.490 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2974 root 1.1 #endif
2975 root 1.29 #if EV_USE_SELECT
2976 root 1.490 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
2977 root 1.1 #endif
2978 root 1.70
2979 root 1.288 ev_prepare_init (&pending_w, pendingcb);
2980    
2981 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2982 root 1.288 ev_init (&pipe_w, pipecb);
2983     ev_set_priority (&pipe_w, EV_MAXPRI);
2984 root 1.336 #endif
2985 root 1.56 }
2986     }
2987    
2988 root 1.288 /* free up a loop structure */
2989 root 1.480 ecb_cold
2990     void
2991 root 1.422 ev_loop_destroy (EV_P)
2992 root 1.56 {
2993 root 1.65 int i;
2994    
2995 root 1.364 #if EV_MULTIPLICITY
2996 root 1.363 /* mimic free (0) */
2997     if (!EV_A)
2998     return;
2999 root 1.364 #endif
3000 root 1.363
3001 root 1.361 #if EV_CLEANUP_ENABLE
3002     /* queue cleanup watchers (and execute them) */
3003 root 1.500 if (ecb_expect_false (cleanupcnt))
3004 root 1.361 {
3005     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3006     EV_INVOKE_PENDING;
3007     }
3008     #endif
3009    
3010 root 1.359 #if EV_CHILD_ENABLE
3011 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3012 root 1.359 {
3013     ev_ref (EV_A); /* child watcher */
3014     ev_signal_stop (EV_A_ &childev);
3015     }
3016     #endif
3017    
3018 root 1.288 if (ev_is_active (&pipe_w))
3019 root 1.207 {
3020 root 1.303 /*ev_ref (EV_A);*/
3021     /*ev_io_stop (EV_A_ &pipe_w);*/
3022 root 1.207
3023 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3024     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3025 root 1.207 }
3026    
3027 root 1.303 #if EV_USE_SIGNALFD
3028     if (ev_is_active (&sigfd_w))
3029 root 1.317 close (sigfd);
3030 root 1.303 #endif
3031    
3032 root 1.152 #if EV_USE_INOTIFY
3033     if (fs_fd >= 0)
3034     close (fs_fd);
3035     #endif
3036    
3037     if (backend_fd >= 0)
3038     close (backend_fd);
3039    
3040 root 1.357 #if EV_USE_IOCP
3041 root 1.490 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3042 root 1.357 #endif
3043 root 1.118 #if EV_USE_PORT
3044 root 1.490 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3045 root 1.118 #endif
3046 root 1.56 #if EV_USE_KQUEUE
3047 root 1.490 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3048     #endif
3049     #if EV_USE_LINUXAIO
3050     if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3051 root 1.56 #endif
3052     #if EV_USE_EPOLL
3053 root 1.490 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3054 root 1.56 #endif
3055 root 1.59 #if EV_USE_POLL
3056 root 1.490 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3057 root 1.56 #endif
3058     #if EV_USE_SELECT
3059 root 1.490 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3060 root 1.56 #endif
3061 root 1.1
3062 root 1.65 for (i = NUMPRI; i--; )
3063 root 1.164 {
3064     array_free (pending, [i]);
3065     #if EV_IDLE_ENABLE
3066     array_free (idle, [i]);
3067     #endif
3068     }
3069 root 1.65
3070 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
3071 root 1.186
3072 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
3073 root 1.284 array_free (rfeed, EMPTY);
3074 root 1.164 array_free (fdchange, EMPTY);
3075     array_free (timer, EMPTY);
3076 root 1.140 #if EV_PERIODIC_ENABLE
3077 root 1.164 array_free (periodic, EMPTY);
3078 root 1.93 #endif
3079 root 1.187 #if EV_FORK_ENABLE
3080     array_free (fork, EMPTY);
3081     #endif
3082 root 1.360 #if EV_CLEANUP_ENABLE
3083     array_free (cleanup, EMPTY);
3084     #endif
3085 root 1.164 array_free (prepare, EMPTY);
3086     array_free (check, EMPTY);
3087 root 1.209 #if EV_ASYNC_ENABLE
3088     array_free (async, EMPTY);
3089     #endif
3090 root 1.65
3091 root 1.130 backend = 0;
3092 root 1.359
3093     #if EV_MULTIPLICITY
3094     if (ev_is_default_loop (EV_A))
3095     #endif
3096     ev_default_loop_ptr = 0;
3097     #if EV_MULTIPLICITY
3098     else
3099     ev_free (EV_A);
3100     #endif
3101 root 1.56 }
3102 root 1.22
3103 root 1.226 #if EV_USE_INOTIFY
3104 root 1.284 inline_size void infy_fork (EV_P);
3105 root 1.226 #endif
3106 root 1.154
3107 root 1.284 inline_size void
3108 root 1.56 loop_fork (EV_P)
3109     {
3110 root 1.118 #if EV_USE_PORT
3111 root 1.490 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3112 root 1.56 #endif
3113     #if EV_USE_KQUEUE
3114 root 1.490 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3115     #endif
3116     #if EV_USE_LINUXAIO
3117     if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3118 root 1.45 #endif
3119 root 1.118 #if EV_USE_EPOLL
3120 root 1.490 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3121 root 1.118 #endif
3122 root 1.154 #if EV_USE_INOTIFY
3123     infy_fork (EV_A);
3124     #endif
3125 root 1.70
3126 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3127 root 1.478 if (ev_is_active (&pipe_w) && postfork != 2)
3128 root 1.70 {
3129 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3130 root 1.70
3131     ev_ref (EV_A);
3132 root 1.288 ev_io_stop (EV_A_ &pipe_w);
3133 root 1.220
3134     if (evpipe [0] >= 0)
3135 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
3136 root 1.207
3137     evpipe_init (EV_A);
3138 root 1.443 /* iterate over everything, in case we missed something before */
3139     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3140 root 1.448 }
3141 root 1.337 #endif
3142 root 1.70
3143     postfork = 0;
3144 root 1.1 }
3145    
3146 root 1.55 #if EV_MULTIPLICITY
3147 root 1.250
3148 root 1.480 ecb_cold
3149     struct ev_loop *
3150 root 1.486 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3151 root 1.54 {
3152 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3153 root 1.69
3154 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
3155 root 1.108 loop_init (EV_A_ flags);
3156 root 1.56
3157 root 1.130 if (ev_backend (EV_A))
3158 root 1.306 return EV_A;
3159 root 1.54
3160 root 1.359 ev_free (EV_A);
3161 root 1.55 return 0;
3162 root 1.54 }
3163    
3164 root 1.297 #endif /* multiplicity */
3165 root 1.248
3166     #if EV_VERIFY
3167 root 1.500 ecb_noinline ecb_cold
3168 root 1.480 static void
3169 root 1.251 verify_watcher (EV_P_ W w)
3170     {
3171 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3172 root 1.251
3173     if (w->pending)
3174 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3175 root 1.251 }
3176    
3177 root 1.500 ecb_noinline ecb_cold
3178 root 1.480 static void
3179 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
3180     {
3181     int i;
3182    
3183     for (i = HEAP0; i < N + HEAP0; ++i)
3184     {
3185 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3186     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3187     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3188 root 1.251
3189     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3190     }
3191     }
3192    
3193 root 1.500 ecb_noinline ecb_cold
3194 root 1.480 static void
3195 root 1.251 array_verify (EV_P_ W *ws, int cnt)
3196 root 1.248 {
3197     while (cnt--)
3198 root 1.251 {
3199 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3200 root 1.251 verify_watcher (EV_A_ ws [cnt]);
3201     }
3202 root 1.248 }
3203 root 1.250 #endif
3204 root 1.248
3205 root 1.338 #if EV_FEATURE_API
3206 root 1.379 void ecb_cold
3207 root 1.486 ev_verify (EV_P) EV_NOEXCEPT
3208 root 1.248 {
3209 root 1.250 #if EV_VERIFY
3210 root 1.429 int i;
3211 root 1.426 WL w, w2;
3212 root 1.251
3213     assert (activecnt >= -1);
3214    
3215     assert (fdchangemax >= fdchangecnt);
3216     for (i = 0; i < fdchangecnt; ++i)
3217 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3218 root 1.251
3219     assert (anfdmax >= 0);
3220 root 1.429 for (i = 0; i < anfdmax; ++i)
3221     {
3222     int j = 0;
3223    
3224     for (w = w2 = anfds [i].head; w; w = w->next)
3225     {
3226     verify_watcher (EV_A_ (W)w);
3227 root 1.426
3228 root 1.429 if (j++ & 1)
3229     {
3230     assert (("libev: io watcher list contains a loop", w != w2));
3231     w2 = w2->next;
3232     }
3233 root 1.426
3234 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3235     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3236     }
3237     }
3238 root 1.251
3239     assert (timermax >= timercnt);
3240     verify_heap (EV_A_ timers, timercnt);
3241 root 1.248
3242     #if EV_PERIODIC_ENABLE
3243 root 1.251 assert (periodicmax >= periodiccnt);
3244     verify_heap (EV_A_ periodics, periodiccnt);
3245 root 1.248 #endif
3246    
3247 root 1.251 for (i = NUMPRI; i--; )
3248     {
3249     assert (pendingmax [i] >= pendingcnt [i]);
3250 root 1.248 #if EV_IDLE_ENABLE
3251 root 1.252 assert (idleall >= 0);
3252 root 1.251 assert (idlemax [i] >= idlecnt [i]);
3253     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3254 root 1.248 #endif
3255 root 1.251 }
3256    
3257 root 1.248 #if EV_FORK_ENABLE
3258 root 1.251 assert (forkmax >= forkcnt);
3259     array_verify (EV_A_ (W *)forks, forkcnt);
3260 root 1.248 #endif
3261 root 1.251
3262 root 1.360 #if EV_CLEANUP_ENABLE
3263     assert (cleanupmax >= cleanupcnt);
3264     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3265     #endif
3266    
3267 root 1.250 #if EV_ASYNC_ENABLE
3268 root 1.251 assert (asyncmax >= asynccnt);
3269     array_verify (EV_A_ (W *)asyncs, asynccnt);
3270 root 1.250 #endif
3271 root 1.251
3272 root 1.337 #if EV_PREPARE_ENABLE
3273 root 1.251 assert (preparemax >= preparecnt);
3274     array_verify (EV_A_ (W *)prepares, preparecnt);
3275 root 1.337 #endif
3276 root 1.251
3277 root 1.337 #if EV_CHECK_ENABLE
3278 root 1.251 assert (checkmax >= checkcnt);
3279     array_verify (EV_A_ (W *)checks, checkcnt);
3280 root 1.337 #endif
3281 root 1.251
3282     # if 0
3283 root 1.336 #if EV_CHILD_ENABLE
3284 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3285 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3286 root 1.336 #endif
3287 root 1.251 # endif
3288 root 1.248 #endif
3289     }
3290 root 1.297 #endif
3291 root 1.56
3292     #if EV_MULTIPLICITY
3293 root 1.480 ecb_cold
3294     struct ev_loop *
3295 root 1.54 #else
3296     int
3297 root 1.358 #endif
3298 root 1.486 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3299 root 1.54 {
3300 root 1.116 if (!ev_default_loop_ptr)
3301 root 1.56 {
3302     #if EV_MULTIPLICITY
3303 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
3304 root 1.56 #else
3305 ayin 1.117 ev_default_loop_ptr = 1;
3306 root 1.54 #endif
3307    
3308 root 1.110 loop_init (EV_A_ flags);
3309 root 1.56
3310 root 1.130 if (ev_backend (EV_A))
3311 root 1.56 {
3312 root 1.336 #if EV_CHILD_ENABLE
3313 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
3314     ev_set_priority (&childev, EV_MAXPRI);
3315     ev_signal_start (EV_A_ &childev);
3316     ev_unref (EV_A); /* child watcher should not keep loop alive */
3317     #endif
3318     }
3319     else
3320 root 1.116 ev_default_loop_ptr = 0;
3321 root 1.56 }
3322 root 1.8
3323 root 1.116 return ev_default_loop_ptr;
3324 root 1.1 }
3325    
3326 root 1.24 void
3327 root 1.486 ev_loop_fork (EV_P) EV_NOEXCEPT
3328 root 1.1 {
3329 root 1.440 postfork = 1;
3330 root 1.1 }
3331    
3332 root 1.8 /*****************************************************************************/
3333    
3334 root 1.168 void
3335     ev_invoke (EV_P_ void *w, int revents)
3336     {
3337     EV_CB_INVOKE ((W)w, revents);
3338     }
3339    
3340 root 1.300 unsigned int
3341 root 1.486 ev_pending_count (EV_P) EV_NOEXCEPT
3342 root 1.300 {
3343     int pri;
3344     unsigned int count = 0;
3345    
3346     for (pri = NUMPRI; pri--; )
3347     count += pendingcnt [pri];
3348    
3349     return count;
3350     }
3351    
3352 root 1.500 ecb_noinline
3353 root 1.480 void
3354 root 1.296 ev_invoke_pending (EV_P)
3355 root 1.1 {
3356 root 1.445 pendingpri = NUMPRI;
3357    
3358 root 1.484 do
3359 root 1.445 {
3360     --pendingpri;
3361    
3362 root 1.484 /* pendingpri possibly gets modified in the inner loop */
3363 root 1.445 while (pendingcnt [pendingpri])
3364     {
3365     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3366 root 1.1
3367 root 1.445 p->w->pending = 0;
3368     EV_CB_INVOKE (p->w, p->events);
3369     EV_FREQUENT_CHECK;
3370     }
3371     }
3372 root 1.484 while (pendingpri);
3373 root 1.1 }
3374    
3375 root 1.234 #if EV_IDLE_ENABLE
3376 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3377     /* only when higher priorities are idle" logic */
3378 root 1.284 inline_size void
3379 root 1.234 idle_reify (EV_P)
3380     {
3381 root 1.500 if (ecb_expect_false (idleall))
3382 root 1.234 {
3383     int pri;
3384    
3385     for (pri = NUMPRI; pri--; )
3386     {
3387     if (pendingcnt [pri])
3388     break;
3389    
3390     if (idlecnt [pri])
3391     {
3392     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3393     break;
3394     }
3395     }
3396     }
3397     }
3398     #endif
3399    
3400 root 1.288 /* make timers pending */
3401 root 1.284 inline_size void
3402 root 1.51 timers_reify (EV_P)
3403 root 1.1 {
3404 root 1.248 EV_FREQUENT_CHECK;
3405    
3406 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3407 root 1.1 {
3408 root 1.284 do
3409     {
3410     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3411 root 1.1
3412 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3413    
3414     /* first reschedule or stop timer */
3415     if (w->repeat)
3416     {
3417     ev_at (w) += w->repeat;
3418     if (ev_at (w) < mn_now)
3419     ev_at (w) = mn_now;
3420 root 1.61
3421 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3422 root 1.90
3423 root 1.284 ANHE_at_cache (timers [HEAP0]);
3424     downheap (timers, timercnt, HEAP0);
3425     }
3426     else
3427     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3428 root 1.243
3429 root 1.284 EV_FREQUENT_CHECK;
3430     feed_reverse (EV_A_ (W)w);
3431 root 1.12 }
3432 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3433 root 1.30
3434 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3435 root 1.12 }
3436     }
3437 root 1.4
3438 root 1.140 #if EV_PERIODIC_ENABLE
3439 root 1.370
3440 root 1.500 ecb_noinline
3441 root 1.480 static void
3442 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3443     {
3444 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3445     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3446    
3447     /* the above almost always errs on the low side */
3448     while (at <= ev_rt_now)
3449     {
3450     ev_tstamp nat = at + w->interval;
3451    
3452     /* when resolution fails us, we use ev_rt_now */
3453 root 1.500 if (ecb_expect_false (nat == at))
3454 root 1.373 {
3455     at = ev_rt_now;
3456     break;
3457     }
3458    
3459     at = nat;
3460     }
3461    
3462     ev_at (w) = at;
3463 root 1.370 }
3464    
3465 root 1.288 /* make periodics pending */
3466 root 1.284 inline_size void
3467 root 1.51 periodics_reify (EV_P)
3468 root 1.12 {
3469 root 1.248 EV_FREQUENT_CHECK;
3470 root 1.250
3471 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3472 root 1.12 {
3473 root 1.284 do
3474     {
3475     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3476 root 1.1
3477 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3478 root 1.61
3479 root 1.284 /* first reschedule or stop timer */
3480     if (w->reschedule_cb)
3481     {
3482     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3483 root 1.243
3484 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3485 root 1.243
3486 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3487     downheap (periodics, periodiccnt, HEAP0);
3488     }
3489     else if (w->interval)
3490 root 1.246 {
3491 root 1.370 periodic_recalc (EV_A_ w);
3492 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3493     downheap (periodics, periodiccnt, HEAP0);
3494 root 1.246 }
3495 root 1.284 else
3496     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3497 root 1.243
3498 root 1.284 EV_FREQUENT_CHECK;
3499     feed_reverse (EV_A_ (W)w);
3500 root 1.1 }
3501 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3502 root 1.12
3503 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3504 root 1.12 }
3505     }
3506    
3507 root 1.288 /* simply recalculate all periodics */
3508 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3509 root 1.500 ecb_noinline ecb_cold
3510 root 1.480 static void
3511 root 1.54 periodics_reschedule (EV_P)
3512 root 1.12 {
3513     int i;
3514    
3515 root 1.13 /* adjust periodics after time jump */
3516 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3517 root 1.12 {
3518 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3519 root 1.12
3520 root 1.77 if (w->reschedule_cb)
3521 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3522 root 1.77 else if (w->interval)
3523 root 1.370 periodic_recalc (EV_A_ w);
3524 root 1.242
3525 root 1.248 ANHE_at_cache (periodics [i]);
3526 root 1.77 }
3527 root 1.12
3528 root 1.248 reheap (periodics, periodiccnt);
3529 root 1.1 }
3530 root 1.93 #endif
3531 root 1.1
3532 root 1.288 /* adjust all timers by a given offset */
3533 root 1.500 ecb_noinline ecb_cold
3534 root 1.480 static void
3535 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3536     {
3537     int i;
3538    
3539     for (i = 0; i < timercnt; ++i)
3540     {
3541     ANHE *he = timers + i + HEAP0;
3542     ANHE_w (*he)->at += adjust;
3543     ANHE_at_cache (*he);
3544     }
3545     }
3546    
3547 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3548 root 1.324 /* also detect if there was a timejump, and act accordingly */
3549 root 1.284 inline_speed void
3550 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3551 root 1.4 {
3552 root 1.40 #if EV_USE_MONOTONIC
3553 root 1.500 if (ecb_expect_true (have_monotonic))
3554 root 1.40 {
3555 root 1.289 int i;
3556 root 1.178 ev_tstamp odiff = rtmn_diff;
3557    
3558     mn_now = get_clock ();
3559    
3560     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3561     /* interpolate in the meantime */
3562 root 1.500 if (ecb_expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3563 root 1.40 {
3564 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3565     return;
3566     }
3567    
3568     now_floor = mn_now;
3569     ev_rt_now = ev_time ();
3570 root 1.4
3571 root 1.178 /* loop a few times, before making important decisions.
3572     * on the choice of "4": one iteration isn't enough,
3573     * in case we get preempted during the calls to
3574     * ev_time and get_clock. a second call is almost guaranteed
3575     * to succeed in that case, though. and looping a few more times
3576     * doesn't hurt either as we only do this on time-jumps or
3577     * in the unlikely event of having been preempted here.
3578     */
3579     for (i = 4; --i; )
3580     {
3581 root 1.373 ev_tstamp diff;
3582 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3583 root 1.4
3584 root 1.373 diff = odiff - rtmn_diff;
3585    
3586 root 1.500 if (ecb_expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3587 root 1.178 return; /* all is well */
3588 root 1.4
3589 root 1.178 ev_rt_now = ev_time ();
3590     mn_now = get_clock ();
3591     now_floor = mn_now;
3592     }
3593 root 1.4
3594 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3595     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3596 root 1.140 # if EV_PERIODIC_ENABLE
3597 root 1.178 periodics_reschedule (EV_A);
3598 root 1.93 # endif
3599 root 1.4 }
3600     else
3601 root 1.40 #endif
3602 root 1.4 {
3603 root 1.85 ev_rt_now = ev_time ();
3604 root 1.40
3605 root 1.500 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3606 root 1.13 {
3607 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3608     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3609 root 1.140 #if EV_PERIODIC_ENABLE
3610 root 1.54 periodics_reschedule (EV_A);
3611 root 1.93 #endif
3612 root 1.13 }
3613 root 1.4
3614 root 1.85 mn_now = ev_rt_now;
3615 root 1.4 }
3616     }
3617    
3618 root 1.418 int
3619 root 1.353 ev_run (EV_P_ int flags)
3620 root 1.1 {
3621 root 1.338 #if EV_FEATURE_API
3622 root 1.294 ++loop_depth;
3623 root 1.297 #endif
3624 root 1.294
3625 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3626 root 1.298
3627 root 1.353 loop_done = EVBREAK_CANCEL;
3628 root 1.1
3629 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3630 root 1.158
3631 root 1.161 do
3632 root 1.9 {
3633 root 1.250 #if EV_VERIFY >= 2
3634 root 1.340 ev_verify (EV_A);
3635 root 1.250 #endif
3636    
3637 root 1.158 #ifndef _WIN32
3638 root 1.500 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
3639     if (ecb_expect_false (getpid () != curpid))
3640 root 1.158 {
3641     curpid = getpid ();
3642     postfork = 1;
3643     }
3644     #endif
3645    
3646 root 1.157 #if EV_FORK_ENABLE
3647     /* we might have forked, so queue fork handlers */
3648 root 1.500 if (ecb_expect_false (postfork))
3649 root 1.157 if (forkcnt)
3650     {
3651     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3652 root 1.297 EV_INVOKE_PENDING;
3653 root 1.157 }
3654     #endif
3655 root 1.147
3656 root 1.337 #if EV_PREPARE_ENABLE
3657 root 1.170 /* queue prepare watchers (and execute them) */
3658 root 1.500 if (ecb_expect_false (preparecnt))
3659 root 1.20 {
3660 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3661 root 1.297 EV_INVOKE_PENDING;
3662 root 1.20 }
3663 root 1.337 #endif
3664 root 1.9
3665 root 1.500 if (ecb_expect_false (loop_done))
3666 root 1.298 break;
3667    
3668 root 1.70 /* we might have forked, so reify kernel state if necessary */
3669 root 1.500 if (ecb_expect_false (postfork))
3670 root 1.70 loop_fork (EV_A);
3671    
3672 root 1.1 /* update fd-related kernel structures */
3673 root 1.51 fd_reify (EV_A);
3674 root 1.1
3675     /* calculate blocking time */
3676 root 1.135 {
3677 root 1.193 ev_tstamp waittime = 0.;
3678     ev_tstamp sleeptime = 0.;
3679 root 1.12
3680 root 1.353 /* remember old timestamp for io_blocktime calculation */
3681     ev_tstamp prev_mn_now = mn_now;
3682 root 1.293
3683 root 1.353 /* update time to cancel out callback processing overhead */
3684     time_update (EV_A_ 1e100);
3685 root 1.135
3686 root 1.378 /* from now on, we want a pipe-wake-up */
3687     pipe_write_wanted = 1;
3688    
3689 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3690 root 1.383
3691 root 1.500 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3692 root 1.353 {
3693 root 1.287 waittime = MAX_BLOCKTIME;
3694    
3695 root 1.135 if (timercnt)
3696     {
3697 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3698 root 1.193 if (waittime > to) waittime = to;
3699 root 1.135 }
3700 root 1.4
3701 root 1.140 #if EV_PERIODIC_ENABLE
3702 root 1.135 if (periodiccnt)
3703     {
3704 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3705 root 1.193 if (waittime > to) waittime = to;
3706 root 1.135 }
3707 root 1.93 #endif
3708 root 1.4
3709 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3710 root 1.500 if (ecb_expect_false (waittime < timeout_blocktime))
3711 root 1.193 waittime = timeout_blocktime;
3712    
3713 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3714     /* to pass a minimum nonzero value to the backend */
3715 root 1.500 if (ecb_expect_false (waittime < backend_mintime))
3716 root 1.377 waittime = backend_mintime;
3717    
3718 root 1.293 /* extra check because io_blocktime is commonly 0 */
3719 root 1.500 if (ecb_expect_false (io_blocktime))
3720 root 1.293 {
3721     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3722 root 1.193
3723 root 1.376 if (sleeptime > waittime - backend_mintime)
3724     sleeptime = waittime - backend_mintime;
3725 root 1.193
3726 root 1.500 if (ecb_expect_true (sleeptime > 0.))
3727 root 1.293 {
3728     ev_sleep (sleeptime);
3729     waittime -= sleeptime;
3730     }
3731 root 1.193 }
3732 root 1.135 }
3733 root 1.1
3734 root 1.338 #if EV_FEATURE_API
3735 root 1.162 ++loop_count;
3736 root 1.297 #endif
3737 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3738 root 1.193 backend_poll (EV_A_ waittime);
3739 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3740 root 1.178
3741 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3742 root 1.378
3743 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3744 root 1.378 if (pipe_write_skipped)
3745     {
3746     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3747     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3748     }
3749    
3750 root 1.178 /* update ev_rt_now, do magic */
3751 root 1.193 time_update (EV_A_ waittime + sleeptime);
3752 root 1.135 }
3753 root 1.1
3754 root 1.9 /* queue pending timers and reschedule them */
3755 root 1.51 timers_reify (EV_A); /* relative timers called last */
3756 root 1.140 #if EV_PERIODIC_ENABLE
3757 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3758 root 1.93 #endif
3759 root 1.1
3760 root 1.164 #if EV_IDLE_ENABLE
3761 root 1.137 /* queue idle watchers unless other events are pending */
3762 root 1.164 idle_reify (EV_A);
3763     #endif
3764 root 1.9
3765 root 1.337 #if EV_CHECK_ENABLE
3766 root 1.20 /* queue check watchers, to be executed first */
3767 root 1.500 if (ecb_expect_false (checkcnt))
3768 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3769 root 1.337 #endif
3770 root 1.9
3771 root 1.297 EV_INVOKE_PENDING;
3772 root 1.1 }
3773 root 1.500 while (ecb_expect_true (
3774 root 1.219 activecnt
3775     && !loop_done
3776 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3777 root 1.219 ));
3778 root 1.13
3779 root 1.353 if (loop_done == EVBREAK_ONE)
3780     loop_done = EVBREAK_CANCEL;
3781 root 1.294
3782 root 1.338 #if EV_FEATURE_API
3783 root 1.294 --loop_depth;
3784 root 1.297 #endif
3785 root 1.418
3786     return activecnt;
3787 root 1.51 }
3788    
3789     void
3790 root 1.486 ev_break (EV_P_ int how) EV_NOEXCEPT
3791 root 1.51 {
3792     loop_done = how;
3793 root 1.1 }
3794    
3795 root 1.285 void
3796 root 1.486 ev_ref (EV_P) EV_NOEXCEPT
3797 root 1.285 {
3798     ++activecnt;
3799     }
3800    
3801     void
3802 root 1.486 ev_unref (EV_P) EV_NOEXCEPT
3803 root 1.285 {
3804     --activecnt;
3805     }
3806    
3807     void
3808 root 1.486 ev_now_update (EV_P) EV_NOEXCEPT
3809 root 1.285 {
3810     time_update (EV_A_ 1e100);
3811     }
3812    
3813     void
3814 root 1.486 ev_suspend (EV_P) EV_NOEXCEPT
3815 root 1.285 {
3816     ev_now_update (EV_A);
3817     }
3818    
3819     void
3820 root 1.486 ev_resume (EV_P) EV_NOEXCEPT
3821 root 1.285 {
3822     ev_tstamp mn_prev = mn_now;
3823    
3824     ev_now_update (EV_A);
3825     timers_reschedule (EV_A_ mn_now - mn_prev);
3826 root 1.286 #if EV_PERIODIC_ENABLE
3827 root 1.288 /* TODO: really do this? */
3828 root 1.285 periodics_reschedule (EV_A);
3829 root 1.286 #endif
3830 root 1.285 }
3831    
3832 root 1.8 /*****************************************************************************/
3833 root 1.288 /* singly-linked list management, used when the expected list length is short */
3834 root 1.8
3835 root 1.284 inline_size void
3836 root 1.10 wlist_add (WL *head, WL elem)
3837 root 1.1 {
3838     elem->next = *head;
3839     *head = elem;
3840     }
3841    
3842 root 1.284 inline_size void
3843 root 1.10 wlist_del (WL *head, WL elem)
3844 root 1.1 {
3845     while (*head)
3846     {
3847 root 1.500 if (ecb_expect_true (*head == elem))
3848 root 1.1 {
3849     *head = elem->next;
3850 root 1.307 break;
3851 root 1.1 }
3852    
3853     head = &(*head)->next;
3854     }
3855     }
3856    
3857 root 1.288 /* internal, faster, version of ev_clear_pending */
3858 root 1.284 inline_speed void
3859 root 1.166 clear_pending (EV_P_ W w)
3860 root 1.16 {
3861     if (w->pending)
3862     {
3863 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3864 root 1.16 w->pending = 0;
3865     }
3866     }
3867    
3868 root 1.167 int
3869 root 1.486 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3870 root 1.166 {
3871     W w_ = (W)w;
3872     int pending = w_->pending;
3873    
3874 root 1.500 if (ecb_expect_true (pending))
3875 root 1.172 {
3876     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3877 root 1.288 p->w = (W)&pending_w;
3878 root 1.172 w_->pending = 0;
3879     return p->events;
3880     }
3881     else
3882 root 1.167 return 0;
3883 root 1.166 }
3884    
3885 root 1.284 inline_size void
3886 root 1.164 pri_adjust (EV_P_ W w)
3887     {
3888 root 1.295 int pri = ev_priority (w);
3889 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3890     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3891 root 1.295 ev_set_priority (w, pri);
3892 root 1.164 }
3893    
3894 root 1.284 inline_speed void
3895 root 1.51 ev_start (EV_P_ W w, int active)
3896 root 1.1 {
3897 root 1.164 pri_adjust (EV_A_ w);
3898 root 1.1 w->active = active;
3899 root 1.51 ev_ref (EV_A);
3900 root 1.1 }
3901    
3902 root 1.284 inline_size void
3903 root 1.51 ev_stop (EV_P_ W w)
3904 root 1.1 {
3905 root 1.51 ev_unref (EV_A);
3906 root 1.1 w->active = 0;
3907     }
3908    
3909 root 1.8 /*****************************************************************************/
3910    
3911 root 1.500 ecb_noinline
3912 root 1.480 void
3913 root 1.486 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
3914 root 1.1 {
3915 root 1.37 int fd = w->fd;
3916    
3917 root 1.500 if (ecb_expect_false (ev_is_active (w)))
3918 root 1.1 return;
3919    
3920 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3921 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3922 root 1.33
3923 root 1.498 #if EV_VERIFY >= 2
3924     assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
3925     #endif
3926 root 1.248 EV_FREQUENT_CHECK;
3927    
3928 root 1.51 ev_start (EV_A_ (W)w, 1);
3929 root 1.490 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
3930 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
3931 root 1.1
3932 root 1.426 /* common bug, apparently */
3933     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3934    
3935 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3936 root 1.281 w->events &= ~EV__IOFDSET;
3937 root 1.248
3938     EV_FREQUENT_CHECK;
3939 root 1.1 }
3940    
3941 root 1.500 ecb_noinline
3942 root 1.480 void
3943 root 1.486 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
3944 root 1.1 {
3945 root 1.166 clear_pending (EV_A_ (W)w);
3946 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
3947 root 1.1 return;
3948    
3949 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3950 root 1.89
3951 root 1.498 #if EV_VERIFY >= 2
3952     assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
3953     #endif
3954 root 1.248 EV_FREQUENT_CHECK;
3955    
3956 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
3957 root 1.51 ev_stop (EV_A_ (W)w);
3958 root 1.1
3959 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3960 root 1.248
3961     EV_FREQUENT_CHECK;
3962 root 1.1 }
3963    
3964 root 1.500 ecb_noinline
3965 root 1.480 void
3966 root 1.486 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
3967 root 1.1 {
3968 root 1.500 if (ecb_expect_false (ev_is_active (w)))
3969 root 1.1 return;
3970    
3971 root 1.228 ev_at (w) += mn_now;
3972 root 1.12
3973 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3974 root 1.13
3975 root 1.248 EV_FREQUENT_CHECK;
3976    
3977     ++timercnt;
3978     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3979 root 1.490 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
3980 root 1.241 ANHE_w (timers [ev_active (w)]) = (WT)w;
3981 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
3982 root 1.235 upheap (timers, ev_active (w));
3983 root 1.62
3984 root 1.248 EV_FREQUENT_CHECK;
3985    
3986 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3987 root 1.12 }
3988    
3989 root 1.500 ecb_noinline
3990 root 1.480 void
3991 root 1.486 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
3992 root 1.12 {
3993 root 1.166 clear_pending (EV_A_ (W)w);
3994 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
3995 root 1.12 return;
3996    
3997 root 1.248 EV_FREQUENT_CHECK;
3998    
3999 root 1.230 {
4000     int active = ev_active (w);
4001 root 1.62
4002 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4003 root 1.151
4004 root 1.248 --timercnt;
4005    
4006 root 1.500 if (ecb_expect_true (active < timercnt + HEAP0))
4007 root 1.151 {
4008 root 1.248 timers [active] = timers [timercnt + HEAP0];
4009 root 1.181 adjustheap (timers, timercnt, active);
4010 root 1.151 }
4011 root 1.248 }
4012 root 1.228
4013     ev_at (w) -= mn_now;
4014 root 1.14
4015 root 1.51 ev_stop (EV_A_ (W)w);
4016 root 1.328
4017     EV_FREQUENT_CHECK;
4018 root 1.12 }
4019 root 1.4
4020 root 1.500 ecb_noinline
4021 root 1.480 void
4022 root 1.486 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4023 root 1.14 {
4024 root 1.248 EV_FREQUENT_CHECK;
4025    
4026 root 1.407 clear_pending (EV_A_ (W)w);
4027 root 1.406
4028 root 1.14 if (ev_is_active (w))
4029     {
4030     if (w->repeat)
4031 root 1.99 {
4032 root 1.228 ev_at (w) = mn_now + w->repeat;
4033 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
4034 root 1.230 adjustheap (timers, timercnt, ev_active (w));
4035 root 1.99 }
4036 root 1.14 else
4037 root 1.51 ev_timer_stop (EV_A_ w);
4038 root 1.14 }
4039     else if (w->repeat)
4040 root 1.112 {
4041 root 1.229 ev_at (w) = w->repeat;
4042 root 1.112 ev_timer_start (EV_A_ w);
4043     }
4044 root 1.248
4045     EV_FREQUENT_CHECK;
4046 root 1.14 }
4047    
4048 root 1.301 ev_tstamp
4049 root 1.486 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4050 root 1.301 {
4051     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4052     }
4053    
4054 root 1.140 #if EV_PERIODIC_ENABLE
4055 root 1.500 ecb_noinline
4056 root 1.480 void
4057 root 1.486 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4058 root 1.12 {
4059 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4060 root 1.12 return;
4061 root 1.1
4062 root 1.77 if (w->reschedule_cb)
4063 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4064 root 1.77 else if (w->interval)
4065     {
4066 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4067 root 1.370 periodic_recalc (EV_A_ w);
4068 root 1.77 }
4069 root 1.173 else
4070 root 1.228 ev_at (w) = w->offset;
4071 root 1.12
4072 root 1.248 EV_FREQUENT_CHECK;
4073    
4074     ++periodiccnt;
4075     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4076 root 1.490 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4077 root 1.241 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4078 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
4079 root 1.235 upheap (periodics, ev_active (w));
4080 root 1.62
4081 root 1.248 EV_FREQUENT_CHECK;
4082    
4083 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4084 root 1.1 }
4085    
4086 root 1.500 ecb_noinline
4087 root 1.480 void
4088 root 1.486 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4089 root 1.1 {
4090 root 1.166 clear_pending (EV_A_ (W)w);
4091 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4092 root 1.1 return;
4093    
4094 root 1.248 EV_FREQUENT_CHECK;
4095    
4096 root 1.230 {
4097     int active = ev_active (w);
4098 root 1.62
4099 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4100 root 1.151
4101 root 1.248 --periodiccnt;
4102    
4103 root 1.500 if (ecb_expect_true (active < periodiccnt + HEAP0))
4104 root 1.151 {
4105 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
4106 root 1.181 adjustheap (periodics, periodiccnt, active);
4107 root 1.151 }
4108 root 1.248 }
4109 root 1.228
4110 root 1.328 ev_stop (EV_A_ (W)w);
4111    
4112 root 1.248 EV_FREQUENT_CHECK;
4113 root 1.1 }
4114    
4115 root 1.500 ecb_noinline
4116 root 1.480 void
4117 root 1.486 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4118 root 1.77 {
4119 root 1.84 /* TODO: use adjustheap and recalculation */
4120 root 1.77 ev_periodic_stop (EV_A_ w);
4121     ev_periodic_start (EV_A_ w);
4122     }
4123 root 1.93 #endif
4124 root 1.77
4125 root 1.56 #ifndef SA_RESTART
4126     # define SA_RESTART 0
4127     #endif
4128    
4129 root 1.336 #if EV_SIGNAL_ENABLE
4130    
4131 root 1.500 ecb_noinline
4132 root 1.480 void
4133 root 1.486 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4134 root 1.56 {
4135 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4136 root 1.56 return;
4137    
4138 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4139    
4140     #if EV_MULTIPLICITY
4141 root 1.308 assert (("libev: a signal must not be attached to two different loops",
4142 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4143    
4144     signals [w->signum - 1].loop = EV_A;
4145 root 1.449 ECB_MEMORY_FENCE_RELEASE;
4146 root 1.306 #endif
4147 root 1.56
4148 root 1.303 EV_FREQUENT_CHECK;
4149    
4150     #if EV_USE_SIGNALFD
4151     if (sigfd == -2)
4152     {
4153     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4154     if (sigfd < 0 && errno == EINVAL)
4155     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4156    
4157     if (sigfd >= 0)
4158     {
4159     fd_intern (sigfd); /* doing it twice will not hurt */
4160    
4161     sigemptyset (&sigfd_set);
4162    
4163     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4164     ev_set_priority (&sigfd_w, EV_MAXPRI);
4165     ev_io_start (EV_A_ &sigfd_w);
4166     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4167     }
4168     }
4169    
4170     if (sigfd >= 0)
4171     {
4172     /* TODO: check .head */
4173     sigaddset (&sigfd_set, w->signum);
4174     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4175 root 1.207
4176 root 1.303 signalfd (sigfd, &sigfd_set, 0);
4177     }
4178 root 1.180 #endif
4179    
4180 root 1.56 ev_start (EV_A_ (W)w, 1);
4181 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
4182 root 1.56
4183 root 1.63 if (!((WL)w)->next)
4184 root 1.304 # if EV_USE_SIGNALFD
4185 root 1.306 if (sigfd < 0) /*TODO*/
4186 root 1.304 # endif
4187 root 1.306 {
4188 root 1.322 # ifdef _WIN32
4189 root 1.317 evpipe_init (EV_A);
4190    
4191 root 1.306 signal (w->signum, ev_sighandler);
4192     # else
4193     struct sigaction sa;
4194    
4195     evpipe_init (EV_A);
4196    
4197     sa.sa_handler = ev_sighandler;
4198     sigfillset (&sa.sa_mask);
4199     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4200     sigaction (w->signum, &sa, 0);
4201    
4202 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
4203     {
4204     sigemptyset (&sa.sa_mask);
4205     sigaddset (&sa.sa_mask, w->signum);
4206     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4207     }
4208 root 1.67 #endif
4209 root 1.306 }
4210 root 1.248
4211     EV_FREQUENT_CHECK;
4212 root 1.56 }
4213    
4214 root 1.500 ecb_noinline
4215 root 1.480 void
4216 root 1.486 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4217 root 1.56 {
4218 root 1.166 clear_pending (EV_A_ (W)w);
4219 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4220 root 1.56 return;
4221    
4222 root 1.248 EV_FREQUENT_CHECK;
4223    
4224 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
4225 root 1.56 ev_stop (EV_A_ (W)w);
4226    
4227     if (!signals [w->signum - 1].head)
4228 root 1.306 {
4229 root 1.307 #if EV_MULTIPLICITY
4230 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
4231 root 1.307 #endif
4232     #if EV_USE_SIGNALFD
4233 root 1.306 if (sigfd >= 0)
4234     {
4235 root 1.321 sigset_t ss;
4236    
4237     sigemptyset (&ss);
4238     sigaddset (&ss, w->signum);
4239 root 1.306 sigdelset (&sigfd_set, w->signum);
4240 root 1.321
4241 root 1.306 signalfd (sigfd, &sigfd_set, 0);
4242 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
4243 root 1.306 }
4244     else
4245 root 1.307 #endif
4246 root 1.306 signal (w->signum, SIG_DFL);
4247     }
4248 root 1.248
4249     EV_FREQUENT_CHECK;
4250 root 1.56 }
4251    
4252 root 1.336 #endif
4253    
4254     #if EV_CHILD_ENABLE
4255    
4256 root 1.28 void
4257 root 1.486 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4258 root 1.22 {
4259 root 1.56 #if EV_MULTIPLICITY
4260 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4261 root 1.56 #endif
4262 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4263 root 1.22 return;
4264    
4265 root 1.248 EV_FREQUENT_CHECK;
4266    
4267 root 1.51 ev_start (EV_A_ (W)w, 1);
4268 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4269 root 1.248
4270     EV_FREQUENT_CHECK;
4271 root 1.22 }
4272    
4273 root 1.28 void
4274 root 1.486 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4275 root 1.22 {
4276 root 1.166 clear_pending (EV_A_ (W)w);
4277 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4278 root 1.22 return;
4279    
4280 root 1.248 EV_FREQUENT_CHECK;
4281    
4282 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4283 root 1.51 ev_stop (EV_A_ (W)w);
4284 root 1.248
4285     EV_FREQUENT_CHECK;
4286 root 1.22 }
4287    
4288 root 1.336 #endif
4289    
4290 root 1.140 #if EV_STAT_ENABLE
4291    
4292     # ifdef _WIN32
4293 root 1.146 # undef lstat
4294     # define lstat(a,b) _stati64 (a,b)
4295 root 1.140 # endif
4296    
4297 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
4298     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4299     #define MIN_STAT_INTERVAL 0.1074891
4300 root 1.143
4301 root 1.500 ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4302 root 1.152
4303     #if EV_USE_INOTIFY
4304 root 1.326
4305     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4306     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4307 root 1.152
4308 root 1.500 ecb_noinline
4309 root 1.480 static void
4310 root 1.152 infy_add (EV_P_ ev_stat *w)
4311     {
4312 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
4313     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4314     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4315     | IN_DONT_FOLLOW | IN_MASK_ADD);
4316 root 1.152
4317 root 1.318 if (w->wd >= 0)
4318 root 1.152 {
4319 root 1.318 struct statfs sfs;
4320    
4321     /* now local changes will be tracked by inotify, but remote changes won't */
4322     /* unless the filesystem is known to be local, we therefore still poll */
4323     /* also do poll on <2.6.25, but with normal frequency */
4324    
4325     if (!fs_2625)
4326     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4327     else if (!statfs (w->path, &sfs)
4328     && (sfs.f_type == 0x1373 /* devfs */
4329 root 1.451 || sfs.f_type == 0x4006 /* fat */
4330     || sfs.f_type == 0x4d44 /* msdos */
4331 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
4332 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
4333     || sfs.f_type == 0x858458f6 /* ramfs */
4334     || sfs.f_type == 0x5346544e /* ntfs */
4335 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
4336 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
4337 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
4338 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
4339 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
4340     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4341     else
4342     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4343     }
4344     else
4345     {
4346     /* can't use inotify, continue to stat */
4347 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4348 root 1.152
4349 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
4350 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4351 root 1.233 /* but an efficiency issue only */
4352 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4353 root 1.152 {
4354 root 1.153 char path [4096];
4355 root 1.152 strcpy (path, w->path);
4356    
4357     do
4358     {
4359     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4360     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4361    
4362     char *pend = strrchr (path, '/');
4363    
4364 root 1.275 if (!pend || pend == path)
4365     break;
4366 root 1.152
4367     *pend = 0;
4368 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4369 root 1.372 }
4370 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4371     }
4372     }
4373 root 1.275
4374     if (w->wd >= 0)
4375 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4376 root 1.152
4377 root 1.318 /* now re-arm timer, if required */
4378     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4379     ev_timer_again (EV_A_ &w->timer);
4380     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4381 root 1.152 }
4382    
4383 root 1.500 ecb_noinline
4384 root 1.480 static void
4385 root 1.152 infy_del (EV_P_ ev_stat *w)
4386     {
4387     int slot;
4388     int wd = w->wd;
4389    
4390     if (wd < 0)
4391     return;
4392    
4393     w->wd = -2;
4394 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4395 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4396    
4397     /* remove this watcher, if others are watching it, they will rearm */
4398     inotify_rm_watch (fs_fd, wd);
4399     }
4400    
4401 root 1.500 ecb_noinline
4402 root 1.480 static void
4403 root 1.152 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4404     {
4405     if (slot < 0)
4406 root 1.264 /* overflow, need to check for all hash slots */
4407 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4408 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4409     else
4410     {
4411     WL w_;
4412    
4413 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4414 root 1.152 {
4415     ev_stat *w = (ev_stat *)w_;
4416     w_ = w_->next; /* lets us remove this watcher and all before it */
4417    
4418     if (w->wd == wd || wd == -1)
4419     {
4420     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4421     {
4422 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4423 root 1.152 w->wd = -1;
4424     infy_add (EV_A_ w); /* re-add, no matter what */
4425     }
4426    
4427 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4428 root 1.152 }
4429     }
4430     }
4431     }
4432    
4433     static void
4434     infy_cb (EV_P_ ev_io *w, int revents)
4435     {
4436     char buf [EV_INOTIFY_BUFSIZE];
4437     int ofs;
4438     int len = read (fs_fd, buf, sizeof (buf));
4439    
4440 root 1.326 for (ofs = 0; ofs < len; )
4441     {
4442     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4443     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4444     ofs += sizeof (struct inotify_event) + ev->len;
4445     }
4446 root 1.152 }
4447    
4448 root 1.480 inline_size ecb_cold
4449     void
4450 root 1.330 ev_check_2625 (EV_P)
4451     {
4452     /* kernels < 2.6.25 are borked
4453     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4454     */
4455     if (ev_linux_version () < 0x020619)
4456 root 1.273 return;
4457 root 1.264
4458 root 1.273 fs_2625 = 1;
4459     }
4460 root 1.264
4461 root 1.315 inline_size int
4462     infy_newfd (void)
4463     {
4464 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4465 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4466     if (fd >= 0)
4467     return fd;
4468     #endif
4469     return inotify_init ();
4470     }
4471    
4472 root 1.284 inline_size void
4473 root 1.273 infy_init (EV_P)
4474     {
4475     if (fs_fd != -2)
4476     return;
4477 root 1.264
4478 root 1.273 fs_fd = -1;
4479 root 1.264
4480 root 1.330 ev_check_2625 (EV_A);
4481 root 1.264
4482 root 1.315 fs_fd = infy_newfd ();
4483 root 1.152
4484     if (fs_fd >= 0)
4485     {
4486 root 1.315 fd_intern (fs_fd);
4487 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4488     ev_set_priority (&fs_w, EV_MAXPRI);
4489     ev_io_start (EV_A_ &fs_w);
4490 root 1.317 ev_unref (EV_A);
4491 root 1.152 }
4492     }
4493    
4494 root 1.284 inline_size void
4495 root 1.154 infy_fork (EV_P)
4496     {
4497     int slot;
4498    
4499     if (fs_fd < 0)
4500     return;
4501    
4502 root 1.317 ev_ref (EV_A);
4503 root 1.315 ev_io_stop (EV_A_ &fs_w);
4504 root 1.154 close (fs_fd);
4505 root 1.315 fs_fd = infy_newfd ();
4506    
4507     if (fs_fd >= 0)
4508     {
4509     fd_intern (fs_fd);
4510     ev_io_set (&fs_w, fs_fd, EV_READ);
4511     ev_io_start (EV_A_ &fs_w);
4512 root 1.317 ev_unref (EV_A);
4513 root 1.315 }
4514 root 1.154
4515 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4516 root 1.154 {
4517     WL w_ = fs_hash [slot].head;
4518     fs_hash [slot].head = 0;
4519    
4520     while (w_)
4521     {
4522     ev_stat *w = (ev_stat *)w_;
4523     w_ = w_->next; /* lets us add this watcher */
4524    
4525     w->wd = -1;
4526    
4527     if (fs_fd >= 0)
4528     infy_add (EV_A_ w); /* re-add, no matter what */
4529     else
4530 root 1.318 {
4531     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4532     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4533     ev_timer_again (EV_A_ &w->timer);
4534     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4535     }
4536 root 1.154 }
4537     }
4538     }
4539    
4540 root 1.152 #endif
4541    
4542 root 1.255 #ifdef _WIN32
4543     # define EV_LSTAT(p,b) _stati64 (p, b)
4544     #else
4545     # define EV_LSTAT(p,b) lstat (p, b)
4546     #endif
4547    
4548 root 1.140 void
4549 root 1.486 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4550 root 1.140 {
4551     if (lstat (w->path, &w->attr) < 0)
4552     w->attr.st_nlink = 0;
4553     else if (!w->attr.st_nlink)
4554     w->attr.st_nlink = 1;
4555     }
4556    
4557 root 1.500 ecb_noinline
4558 root 1.480 static void
4559 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4560     {
4561     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4562    
4563 root 1.320 ev_statdata prev = w->attr;
4564 root 1.140 ev_stat_stat (EV_A_ w);
4565    
4566 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4567     if (
4568 root 1.320 prev.st_dev != w->attr.st_dev
4569     || prev.st_ino != w->attr.st_ino
4570     || prev.st_mode != w->attr.st_mode
4571     || prev.st_nlink != w->attr.st_nlink
4572     || prev.st_uid != w->attr.st_uid
4573     || prev.st_gid != w->attr.st_gid
4574     || prev.st_rdev != w->attr.st_rdev
4575     || prev.st_size != w->attr.st_size
4576     || prev.st_atime != w->attr.st_atime
4577     || prev.st_mtime != w->attr.st_mtime
4578     || prev.st_ctime != w->attr.st_ctime
4579 root 1.156 ) {
4580 root 1.320 /* we only update w->prev on actual differences */
4581     /* in case we test more often than invoke the callback, */
4582     /* to ensure that prev is always different to attr */
4583     w->prev = prev;
4584    
4585 root 1.152 #if EV_USE_INOTIFY
4586 root 1.264 if (fs_fd >= 0)
4587     {
4588     infy_del (EV_A_ w);
4589     infy_add (EV_A_ w);
4590     ev_stat_stat (EV_A_ w); /* avoid race... */
4591     }
4592 root 1.152 #endif
4593    
4594     ev_feed_event (EV_A_ w, EV_STAT);
4595     }
4596 root 1.140 }
4597    
4598     void
4599 root 1.486 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4600 root 1.140 {
4601 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4602 root 1.140 return;
4603    
4604     ev_stat_stat (EV_A_ w);
4605    
4606 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4607     w->interval = MIN_STAT_INTERVAL;
4608 root 1.143
4609 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4610 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4611 root 1.152
4612     #if EV_USE_INOTIFY
4613     infy_init (EV_A);
4614    
4615     if (fs_fd >= 0)
4616     infy_add (EV_A_ w);
4617     else
4618     #endif
4619 root 1.318 {
4620     ev_timer_again (EV_A_ &w->timer);
4621     ev_unref (EV_A);
4622     }
4623 root 1.140
4624     ev_start (EV_A_ (W)w, 1);
4625 root 1.248
4626     EV_FREQUENT_CHECK;
4627 root 1.140 }
4628    
4629     void
4630 root 1.486 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4631 root 1.140 {
4632 root 1.166 clear_pending (EV_A_ (W)w);
4633 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4634 root 1.140 return;
4635    
4636 root 1.248 EV_FREQUENT_CHECK;
4637    
4638 root 1.152 #if EV_USE_INOTIFY
4639     infy_del (EV_A_ w);
4640     #endif
4641 root 1.318
4642     if (ev_is_active (&w->timer))
4643     {
4644     ev_ref (EV_A);
4645     ev_timer_stop (EV_A_ &w->timer);
4646     }
4647 root 1.140
4648 root 1.134 ev_stop (EV_A_ (W)w);
4649 root 1.248
4650     EV_FREQUENT_CHECK;
4651 root 1.134 }
4652     #endif
4653    
4654 root 1.164 #if EV_IDLE_ENABLE
4655 root 1.144 void
4656 root 1.486 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4657 root 1.144 {
4658 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4659 root 1.144 return;
4660    
4661 root 1.164 pri_adjust (EV_A_ (W)w);
4662    
4663 root 1.248 EV_FREQUENT_CHECK;
4664    
4665 root 1.164 {
4666     int active = ++idlecnt [ABSPRI (w)];
4667    
4668     ++idleall;
4669     ev_start (EV_A_ (W)w, active);
4670    
4671 root 1.490 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4672 root 1.164 idles [ABSPRI (w)][active - 1] = w;
4673     }
4674 root 1.248
4675     EV_FREQUENT_CHECK;
4676 root 1.144 }
4677    
4678     void
4679 root 1.486 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4680 root 1.144 {
4681 root 1.166 clear_pending (EV_A_ (W)w);
4682 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4683 root 1.144 return;
4684    
4685 root 1.248 EV_FREQUENT_CHECK;
4686    
4687 root 1.144 {
4688 root 1.230 int active = ev_active (w);
4689 root 1.164
4690     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4691 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4692 root 1.164
4693     ev_stop (EV_A_ (W)w);
4694     --idleall;
4695 root 1.144 }
4696 root 1.248
4697     EV_FREQUENT_CHECK;
4698 root 1.144 }
4699 root 1.164 #endif
4700 root 1.144
4701 root 1.337 #if EV_PREPARE_ENABLE
4702 root 1.144 void
4703 root 1.486 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4704 root 1.144 {
4705 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4706 root 1.144 return;
4707    
4708 root 1.248 EV_FREQUENT_CHECK;
4709    
4710 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4711 root 1.490 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4712 root 1.144 prepares [preparecnt - 1] = w;
4713 root 1.248
4714     EV_FREQUENT_CHECK;
4715 root 1.144 }
4716    
4717     void
4718 root 1.486 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4719 root 1.144 {
4720 root 1.166 clear_pending (EV_A_ (W)w);
4721 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4722 root 1.144 return;
4723    
4724 root 1.248 EV_FREQUENT_CHECK;
4725    
4726 root 1.144 {
4727 root 1.230 int active = ev_active (w);
4728    
4729 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4730 root 1.230 ev_active (prepares [active - 1]) = active;
4731 root 1.144 }
4732    
4733     ev_stop (EV_A_ (W)w);
4734 root 1.248
4735     EV_FREQUENT_CHECK;
4736 root 1.144 }
4737 root 1.337 #endif
4738 root 1.144
4739 root 1.337 #if EV_CHECK_ENABLE
4740 root 1.144 void
4741 root 1.486 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4742 root 1.144 {
4743 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4744 root 1.144 return;
4745    
4746 root 1.248 EV_FREQUENT_CHECK;
4747    
4748 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4749 root 1.490 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4750 root 1.144 checks [checkcnt - 1] = w;
4751 root 1.248
4752     EV_FREQUENT_CHECK;
4753 root 1.144 }
4754    
4755     void
4756 root 1.486 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4757 root 1.144 {
4758 root 1.166 clear_pending (EV_A_ (W)w);
4759 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4760 root 1.144 return;
4761    
4762 root 1.248 EV_FREQUENT_CHECK;
4763    
4764 root 1.144 {
4765 root 1.230 int active = ev_active (w);
4766    
4767 root 1.144 checks [active - 1] = checks [--checkcnt];
4768 root 1.230 ev_active (checks [active - 1]) = active;
4769 root 1.144 }
4770    
4771     ev_stop (EV_A_ (W)w);
4772 root 1.248
4773     EV_FREQUENT_CHECK;
4774 root 1.144 }
4775 root 1.337 #endif
4776 root 1.144
4777     #if EV_EMBED_ENABLE
4778 root 1.500 ecb_noinline
4779 root 1.480 void
4780 root 1.486 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4781 root 1.144 {
4782 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4783 root 1.144 }
4784    
4785     static void
4786 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4787 root 1.144 {
4788     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4789    
4790     if (ev_cb (w))
4791     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4792     else
4793 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4794 root 1.144 }
4795    
4796 root 1.189 static void
4797     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4798     {
4799     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4800    
4801 root 1.195 {
4802 root 1.306 EV_P = w->other;
4803 root 1.195
4804     while (fdchangecnt)
4805     {
4806     fd_reify (EV_A);
4807 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4808 root 1.195 }
4809     }
4810     }
4811    
4812 root 1.261 static void
4813     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4814     {
4815     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4816    
4817 root 1.277 ev_embed_stop (EV_A_ w);
4818    
4819 root 1.261 {
4820 root 1.306 EV_P = w->other;
4821 root 1.261
4822     ev_loop_fork (EV_A);
4823 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4824 root 1.261 }
4825 root 1.277
4826     ev_embed_start (EV_A_ w);
4827 root 1.261 }
4828    
4829 root 1.195 #if 0
4830     static void
4831     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4832     {
4833     ev_idle_stop (EV_A_ idle);
4834 root 1.189 }
4835 root 1.195 #endif
4836 root 1.189
4837 root 1.144 void
4838 root 1.486 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4839 root 1.144 {
4840 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4841 root 1.144 return;
4842    
4843     {
4844 root 1.306 EV_P = w->other;
4845 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4846 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4847 root 1.144 }
4848    
4849 root 1.248 EV_FREQUENT_CHECK;
4850    
4851 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4852     ev_io_start (EV_A_ &w->io);
4853    
4854 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4855     ev_set_priority (&w->prepare, EV_MINPRI);
4856     ev_prepare_start (EV_A_ &w->prepare);
4857    
4858 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4859     ev_fork_start (EV_A_ &w->fork);
4860    
4861 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4862    
4863 root 1.144 ev_start (EV_A_ (W)w, 1);
4864 root 1.248
4865     EV_FREQUENT_CHECK;
4866 root 1.144 }
4867    
4868     void
4869 root 1.486 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4870 root 1.144 {
4871 root 1.166 clear_pending (EV_A_ (W)w);
4872 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4873 root 1.144 return;
4874    
4875 root 1.248 EV_FREQUENT_CHECK;
4876    
4877 root 1.261 ev_io_stop (EV_A_ &w->io);
4878 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4879 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4880 root 1.248
4881 root 1.328 ev_stop (EV_A_ (W)w);
4882    
4883 root 1.248 EV_FREQUENT_CHECK;
4884 root 1.144 }
4885     #endif
4886    
4887 root 1.147 #if EV_FORK_ENABLE
4888     void
4889 root 1.486 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4890 root 1.147 {
4891 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4892 root 1.147 return;
4893    
4894 root 1.248 EV_FREQUENT_CHECK;
4895    
4896 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4897 root 1.490 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
4898 root 1.147 forks [forkcnt - 1] = w;
4899 root 1.248
4900     EV_FREQUENT_CHECK;
4901 root 1.147 }
4902    
4903     void
4904 root 1.486 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4905 root 1.147 {
4906 root 1.166 clear_pending (EV_A_ (W)w);
4907 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4908 root 1.147 return;
4909    
4910 root 1.248 EV_FREQUENT_CHECK;
4911    
4912 root 1.147 {
4913 root 1.230 int active = ev_active (w);
4914    
4915 root 1.147 forks [active - 1] = forks [--forkcnt];
4916 root 1.230 ev_active (forks [active - 1]) = active;
4917 root 1.147 }
4918    
4919     ev_stop (EV_A_ (W)w);
4920 root 1.248
4921     EV_FREQUENT_CHECK;
4922 root 1.147 }
4923     #endif
4924    
4925 root 1.360 #if EV_CLEANUP_ENABLE
4926     void
4927 root 1.486 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4928 root 1.360 {
4929 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4930 root 1.360 return;
4931    
4932     EV_FREQUENT_CHECK;
4933    
4934     ev_start (EV_A_ (W)w, ++cleanupcnt);
4935 root 1.490 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4936 root 1.360 cleanups [cleanupcnt - 1] = w;
4937    
4938 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
4939     ev_unref (EV_A);
4940 root 1.360 EV_FREQUENT_CHECK;
4941     }
4942    
4943     void
4944 root 1.486 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4945 root 1.360 {
4946     clear_pending (EV_A_ (W)w);
4947 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4948 root 1.360 return;
4949    
4950     EV_FREQUENT_CHECK;
4951 root 1.362 ev_ref (EV_A);
4952 root 1.360
4953     {
4954     int active = ev_active (w);
4955    
4956     cleanups [active - 1] = cleanups [--cleanupcnt];
4957     ev_active (cleanups [active - 1]) = active;
4958     }
4959    
4960     ev_stop (EV_A_ (W)w);
4961    
4962     EV_FREQUENT_CHECK;
4963     }
4964     #endif
4965    
4966 root 1.207 #if EV_ASYNC_ENABLE
4967     void
4968 root 1.486 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4969 root 1.207 {
4970 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4971 root 1.207 return;
4972    
4973 root 1.352 w->sent = 0;
4974    
4975 root 1.207 evpipe_init (EV_A);
4976    
4977 root 1.248 EV_FREQUENT_CHECK;
4978    
4979 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
4980 root 1.490 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4981 root 1.207 asyncs [asynccnt - 1] = w;
4982 root 1.248
4983     EV_FREQUENT_CHECK;
4984 root 1.207 }
4985    
4986     void
4987 root 1.486 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4988 root 1.207 {
4989     clear_pending (EV_A_ (W)w);
4990 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4991 root 1.207 return;
4992    
4993 root 1.248 EV_FREQUENT_CHECK;
4994    
4995 root 1.207 {
4996 root 1.230 int active = ev_active (w);
4997    
4998 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
4999 root 1.230 ev_active (asyncs [active - 1]) = active;
5000 root 1.207 }
5001    
5002     ev_stop (EV_A_ (W)w);
5003 root 1.248
5004     EV_FREQUENT_CHECK;
5005 root 1.207 }
5006    
5007     void
5008 root 1.486 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5009 root 1.207 {
5010     w->sent = 1;
5011 root 1.307 evpipe_write (EV_A_ &async_pending);
5012 root 1.207 }
5013     #endif
5014    
5015 root 1.1 /*****************************************************************************/
5016 root 1.10
5017 root 1.16 struct ev_once
5018     {
5019 root 1.136 ev_io io;
5020     ev_timer to;
5021 root 1.16 void (*cb)(int revents, void *arg);
5022     void *arg;
5023     };
5024    
5025     static void
5026 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
5027 root 1.16 {
5028     void (*cb)(int revents, void *arg) = once->cb;
5029     void *arg = once->arg;
5030    
5031 root 1.259 ev_io_stop (EV_A_ &once->io);
5032 root 1.51 ev_timer_stop (EV_A_ &once->to);
5033 root 1.69 ev_free (once);
5034 root 1.16
5035     cb (revents, arg);
5036     }
5037    
5038     static void
5039 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
5040 root 1.16 {
5041 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5042    
5043     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5044 root 1.16 }
5045    
5046     static void
5047 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
5048 root 1.16 {
5049 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5050    
5051     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5052 root 1.16 }
5053    
5054     void
5055 root 1.486 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5056 root 1.16 {
5057 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5058 root 1.16
5059 root 1.123 once->cb = cb;
5060     once->arg = arg;
5061 root 1.16
5062 root 1.123 ev_init (&once->io, once_cb_io);
5063     if (fd >= 0)
5064     {
5065     ev_io_set (&once->io, fd, events);
5066     ev_io_start (EV_A_ &once->io);
5067     }
5068 root 1.16
5069 root 1.123 ev_init (&once->to, once_cb_to);
5070     if (timeout >= 0.)
5071     {
5072     ev_timer_set (&once->to, timeout, 0.);
5073     ev_timer_start (EV_A_ &once->to);
5074 root 1.16 }
5075     }
5076    
5077 root 1.282 /*****************************************************************************/
5078    
5079 root 1.288 #if EV_WALK_ENABLE
5080 root 1.480 ecb_cold
5081     void
5082 root 1.486 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5083 root 1.282 {
5084     int i, j;
5085     ev_watcher_list *wl, *wn;
5086    
5087     if (types & (EV_IO | EV_EMBED))
5088     for (i = 0; i < anfdmax; ++i)
5089     for (wl = anfds [i].head; wl; )
5090     {
5091     wn = wl->next;
5092    
5093     #if EV_EMBED_ENABLE
5094     if (ev_cb ((ev_io *)wl) == embed_io_cb)
5095     {
5096     if (types & EV_EMBED)
5097     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5098     }
5099     else
5100     #endif
5101     #if EV_USE_INOTIFY
5102     if (ev_cb ((ev_io *)wl) == infy_cb)
5103     ;
5104     else
5105     #endif
5106 root 1.288 if ((ev_io *)wl != &pipe_w)
5107 root 1.282 if (types & EV_IO)
5108     cb (EV_A_ EV_IO, wl);
5109    
5110     wl = wn;
5111     }
5112    
5113     if (types & (EV_TIMER | EV_STAT))
5114     for (i = timercnt + HEAP0; i-- > HEAP0; )
5115     #if EV_STAT_ENABLE
5116     /*TODO: timer is not always active*/
5117     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5118     {
5119     if (types & EV_STAT)
5120     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5121     }
5122     else
5123     #endif
5124     if (types & EV_TIMER)
5125     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5126    
5127     #if EV_PERIODIC_ENABLE
5128     if (types & EV_PERIODIC)
5129     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5130     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5131     #endif
5132    
5133     #if EV_IDLE_ENABLE
5134     if (types & EV_IDLE)
5135 root 1.390 for (j = NUMPRI; j--; )
5136 root 1.282 for (i = idlecnt [j]; i--; )
5137     cb (EV_A_ EV_IDLE, idles [j][i]);
5138     #endif
5139    
5140     #if EV_FORK_ENABLE
5141     if (types & EV_FORK)
5142     for (i = forkcnt; i--; )
5143     if (ev_cb (forks [i]) != embed_fork_cb)
5144     cb (EV_A_ EV_FORK, forks [i]);
5145     #endif
5146    
5147     #if EV_ASYNC_ENABLE
5148     if (types & EV_ASYNC)
5149     for (i = asynccnt; i--; )
5150     cb (EV_A_ EV_ASYNC, asyncs [i]);
5151     #endif
5152    
5153 root 1.337 #if EV_PREPARE_ENABLE
5154 root 1.282 if (types & EV_PREPARE)
5155     for (i = preparecnt; i--; )
5156 root 1.337 # if EV_EMBED_ENABLE
5157 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
5158 root 1.337 # endif
5159     cb (EV_A_ EV_PREPARE, prepares [i]);
5160 root 1.282 #endif
5161    
5162 root 1.337 #if EV_CHECK_ENABLE
5163 root 1.282 if (types & EV_CHECK)
5164     for (i = checkcnt; i--; )
5165     cb (EV_A_ EV_CHECK, checks [i]);
5166 root 1.337 #endif
5167 root 1.282
5168 root 1.337 #if EV_SIGNAL_ENABLE
5169 root 1.282 if (types & EV_SIGNAL)
5170 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
5171 root 1.282 for (wl = signals [i].head; wl; )
5172     {
5173     wn = wl->next;
5174     cb (EV_A_ EV_SIGNAL, wl);
5175     wl = wn;
5176     }
5177 root 1.337 #endif
5178 root 1.282
5179 root 1.337 #if EV_CHILD_ENABLE
5180 root 1.282 if (types & EV_CHILD)
5181 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
5182 root 1.282 for (wl = childs [i]; wl; )
5183     {
5184     wn = wl->next;
5185     cb (EV_A_ EV_CHILD, wl);
5186     wl = wn;
5187     }
5188 root 1.337 #endif
5189 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
5190     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5191     }
5192     #endif
5193    
5194 root 1.188 #if EV_MULTIPLICITY
5195     #include "ev_wrap.h"
5196     #endif
5197