ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.501
Committed: Mon Jul 1 21:47:42 2019 UTC (4 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.500: +103 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.490 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.469 # if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52 root 1.373 # endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.491 # if HAVE_LINUX_AIO_ABI_H
121     # ifndef EV_USE_LINUXAIO
122     # define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123     # endif
124     # else
125     # undef EV_USE_LINUXAIO
126     # define EV_USE_LINUXAIO 0
127     # endif
128    
129 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130     # ifndef EV_USE_KQUEUE
131 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_KQUEUE
135     # define EV_USE_KQUEUE 0
136 root 1.60 # endif
137 root 1.127
138 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
139     # ifndef EV_USE_PORT
140 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
141 root 1.127 # endif
142 root 1.343 # else
143     # undef EV_USE_PORT
144     # define EV_USE_PORT 0
145 root 1.118 # endif
146    
147 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148     # ifndef EV_USE_INOTIFY
149 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
150 root 1.152 # endif
151 root 1.343 # else
152     # undef EV_USE_INOTIFY
153     # define EV_USE_INOTIFY 0
154 root 1.152 # endif
155    
156 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157     # ifndef EV_USE_SIGNALFD
158 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
159 root 1.303 # endif
160 root 1.343 # else
161     # undef EV_USE_SIGNALFD
162     # define EV_USE_SIGNALFD 0
163 root 1.303 # endif
164    
165 root 1.343 # if HAVE_EVENTFD
166     # ifndef EV_USE_EVENTFD
167 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
168 root 1.220 # endif
169 root 1.343 # else
170     # undef EV_USE_EVENTFD
171     # define EV_USE_EVENTFD 0
172 root 1.220 # endif
173 root 1.250
174 root 1.29 #endif
175 root 1.17
176 root 1.483 /* OS X, in its infinite idiocy, actually HARDCODES
177     * a limit of 1024 into their select. Where people have brains,
178     * OS X engineers apparently have a vacuum. Or maybe they were
179     * ordered to have a vacuum, or they do anything for money.
180     * This might help. Or not.
181     * Note that this must be defined early, as other include files
182     * will rely on this define as well.
183     */
184     #define _DARWIN_UNLIMITED_SELECT 1
185    
186 root 1.1 #include <stdlib.h>
187 root 1.319 #include <string.h>
188 root 1.7 #include <fcntl.h>
189 root 1.16 #include <stddef.h>
190 root 1.1
191     #include <stdio.h>
192    
193 root 1.4 #include <assert.h>
194 root 1.1 #include <errno.h>
195 root 1.22 #include <sys/types.h>
196 root 1.71 #include <time.h>
197 root 1.326 #include <limits.h>
198 root 1.71
199 root 1.72 #include <signal.h>
200 root 1.71
201 root 1.152 #ifdef EV_H
202     # include EV_H
203     #else
204     # include "ev.h"
205     #endif
206    
207 root 1.410 #if EV_NO_THREADS
208     # undef EV_NO_SMP
209     # define EV_NO_SMP 1
210     # undef ECB_NO_THREADS
211     # define ECB_NO_THREADS 1
212     #endif
213     #if EV_NO_SMP
214     # undef EV_NO_SMP
215     # define ECB_NO_SMP 1
216     #endif
217    
218 root 1.103 #ifndef _WIN32
219 root 1.71 # include <sys/time.h>
220 root 1.45 # include <sys/wait.h>
221 root 1.140 # include <unistd.h>
222 root 1.103 #else
223 root 1.256 # include <io.h>
224 root 1.103 # define WIN32_LEAN_AND_MEAN
225 root 1.431 # include <winsock2.h>
226 root 1.103 # include <windows.h>
227     # ifndef EV_SELECT_IS_WINSOCKET
228     # define EV_SELECT_IS_WINSOCKET 1
229     # endif
230 root 1.331 # undef EV_AVOID_STDIO
231 root 1.45 #endif
232 root 1.103
233 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
234 root 1.40
235 root 1.305 /* try to deduce the maximum number of signals on this platform */
236 root 1.416 #if defined EV_NSIG
237 root 1.305 /* use what's provided */
238 root 1.416 #elif defined NSIG
239 root 1.305 # define EV_NSIG (NSIG)
240 root 1.416 #elif defined _NSIG
241 root 1.305 # define EV_NSIG (_NSIG)
242 root 1.416 #elif defined SIGMAX
243 root 1.305 # define EV_NSIG (SIGMAX+1)
244 root 1.416 #elif defined SIG_MAX
245 root 1.305 # define EV_NSIG (SIG_MAX+1)
246 root 1.416 #elif defined _SIG_MAX
247 root 1.305 # define EV_NSIG (_SIG_MAX+1)
248 root 1.416 #elif defined MAXSIG
249 root 1.305 # define EV_NSIG (MAXSIG+1)
250 root 1.416 #elif defined MAX_SIG
251 root 1.305 # define EV_NSIG (MAX_SIG+1)
252 root 1.416 #elif defined SIGARRAYSIZE
253 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254 root 1.416 #elif defined _sys_nsig
255 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256     #else
257 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
258 root 1.305 #endif
259    
260 root 1.373 #ifndef EV_USE_FLOOR
261     # define EV_USE_FLOOR 0
262     #endif
263    
264 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
265 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267 root 1.274 # else
268     # define EV_USE_CLOCK_SYSCALL 0
269     # endif
270     #endif
271    
272 root 1.470 #if !(_POSIX_TIMERS > 0)
273     # ifndef EV_USE_MONOTONIC
274     # define EV_USE_MONOTONIC 0
275     # endif
276     # ifndef EV_USE_REALTIME
277     # define EV_USE_REALTIME 0
278     # endif
279     #endif
280    
281 root 1.29 #ifndef EV_USE_MONOTONIC
282 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
284 root 1.253 # else
285     # define EV_USE_MONOTONIC 0
286     # endif
287 root 1.37 #endif
288    
289 root 1.118 #ifndef EV_USE_REALTIME
290 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291 root 1.118 #endif
292    
293 root 1.193 #ifndef EV_USE_NANOSLEEP
294 root 1.253 # if _POSIX_C_SOURCE >= 199309L
295 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
296 root 1.253 # else
297     # define EV_USE_NANOSLEEP 0
298     # endif
299 root 1.193 #endif
300    
301 root 1.29 #ifndef EV_USE_SELECT
302 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
303 root 1.10 #endif
304    
305 root 1.59 #ifndef EV_USE_POLL
306 root 1.104 # ifdef _WIN32
307     # define EV_USE_POLL 0
308     # else
309 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
310 root 1.104 # endif
311 root 1.41 #endif
312    
313 root 1.29 #ifndef EV_USE_EPOLL
314 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
316 root 1.220 # else
317     # define EV_USE_EPOLL 0
318     # endif
319 root 1.10 #endif
320    
321 root 1.44 #ifndef EV_USE_KQUEUE
322     # define EV_USE_KQUEUE 0
323     #endif
324    
325 root 1.118 #ifndef EV_USE_PORT
326     # define EV_USE_PORT 0
327 root 1.40 #endif
328    
329 root 1.490 #ifndef EV_USE_LINUXAIO
330 root 1.492 # if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331     # define EV_USE_LINUXAIO 1
332     # else
333     # define EV_USE_LINUXAIO 0
334     # endif
335 root 1.490 #endif
336    
337 root 1.501 #ifndef EV_USE_IOURING
338     # if __linux
339     # define EV_USE_IOURING 0
340     # else
341     # define EV_USE_IOURING 0
342     # endif
343     #endif
344    
345 root 1.152 #ifndef EV_USE_INOTIFY
346 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
347 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
348 root 1.220 # else
349     # define EV_USE_INOTIFY 0
350     # endif
351 root 1.152 #endif
352    
353 root 1.149 #ifndef EV_PID_HASHSIZE
354 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
355 root 1.149 #endif
356    
357 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
358 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
359 root 1.152 #endif
360    
361 root 1.220 #ifndef EV_USE_EVENTFD
362     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
364 root 1.220 # else
365     # define EV_USE_EVENTFD 0
366     # endif
367     #endif
368    
369 root 1.303 #ifndef EV_USE_SIGNALFD
370 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
371 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
372 root 1.303 # else
373     # define EV_USE_SIGNALFD 0
374     # endif
375     #endif
376    
377 root 1.249 #if 0 /* debugging */
378 root 1.250 # define EV_VERIFY 3
379 root 1.249 # define EV_USE_4HEAP 1
380     # define EV_HEAP_CACHE_AT 1
381     #endif
382    
383 root 1.250 #ifndef EV_VERIFY
384 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
385 root 1.250 #endif
386    
387 root 1.243 #ifndef EV_USE_4HEAP
388 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
389 root 1.243 #endif
390    
391     #ifndef EV_HEAP_CACHE_AT
392 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
393 root 1.243 #endif
394    
395 root 1.481 #ifdef __ANDROID__
396 root 1.452 /* supposedly, android doesn't typedef fd_mask */
397     # undef EV_USE_SELECT
398     # define EV_USE_SELECT 0
399     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
400     # undef EV_USE_CLOCK_SYSCALL
401     # define EV_USE_CLOCK_SYSCALL 0
402     #endif
403    
404     /* aix's poll.h seems to cause lots of trouble */
405     #ifdef _AIX
406     /* AIX has a completely broken poll.h header */
407     # undef EV_USE_POLL
408     # define EV_USE_POLL 0
409     #endif
410    
411 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
412     /* which makes programs even slower. might work on other unices, too. */
413     #if EV_USE_CLOCK_SYSCALL
414 root 1.423 # include <sys/syscall.h>
415 root 1.291 # ifdef SYS_clock_gettime
416     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
417     # undef EV_USE_MONOTONIC
418     # define EV_USE_MONOTONIC 1
419 root 1.501 # define EV_NEED_SYSCALL 1
420 root 1.291 # else
421     # undef EV_USE_CLOCK_SYSCALL
422     # define EV_USE_CLOCK_SYSCALL 0
423     # endif
424     #endif
425    
426 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
427 root 1.40
428     #ifndef CLOCK_MONOTONIC
429     # undef EV_USE_MONOTONIC
430     # define EV_USE_MONOTONIC 0
431     #endif
432    
433 root 1.31 #ifndef CLOCK_REALTIME
434 root 1.40 # undef EV_USE_REALTIME
435 root 1.31 # define EV_USE_REALTIME 0
436     #endif
437 root 1.40
438 root 1.152 #if !EV_STAT_ENABLE
439 root 1.185 # undef EV_USE_INOTIFY
440 root 1.152 # define EV_USE_INOTIFY 0
441     #endif
442    
443 root 1.193 #if !EV_USE_NANOSLEEP
444 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
445 root 1.416 # if !defined _WIN32 && !defined __hpux
446 root 1.193 # include <sys/select.h>
447     # endif
448     #endif
449    
450 root 1.491 #if EV_USE_LINUXAIO
451     # include <sys/syscall.h>
452 root 1.495 # if !SYS_io_getevents || !EV_USE_EPOLL /* ev_linxaio uses ev_poll.c:ev_epoll_create */
453 root 1.491 # undef EV_USE_LINUXAIO
454     # define EV_USE_LINUXAIO 0
455 root 1.501 # else
456     # define EV_NEED_SYSCALL 1
457     # endif
458     #endif
459    
460     #if EV_USE_IOURING
461     # include <sys/syscall.h>
462     # if !__alpha && !SYS_io_uring_setup
463     # define SYS_io_uring_setup 425
464     # define SYS_io_uring_enter 426
465     # define SYS_io_uring_wregister 427
466     # endif
467     # if SYS_io_uring_setup
468     # define EV_NEED_SYSCALL 1
469     # else
470     # undef EV_USE_IOURING
471     # define EV_USE_IOURING 0
472 root 1.491 # endif
473     #endif
474    
475 root 1.152 #if EV_USE_INOTIFY
476 root 1.273 # include <sys/statfs.h>
477 root 1.152 # include <sys/inotify.h>
478 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
479     # ifndef IN_DONT_FOLLOW
480     # undef EV_USE_INOTIFY
481     # define EV_USE_INOTIFY 0
482     # endif
483 root 1.152 #endif
484    
485 root 1.220 #if EV_USE_EVENTFD
486     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
487 root 1.221 # include <stdint.h>
488 root 1.303 # ifndef EFD_NONBLOCK
489     # define EFD_NONBLOCK O_NONBLOCK
490     # endif
491     # ifndef EFD_CLOEXEC
492 root 1.311 # ifdef O_CLOEXEC
493     # define EFD_CLOEXEC O_CLOEXEC
494     # else
495     # define EFD_CLOEXEC 02000000
496     # endif
497 root 1.303 # endif
498 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
499 root 1.220 #endif
500    
501 root 1.303 #if EV_USE_SIGNALFD
502 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
503     # include <stdint.h>
504     # ifndef SFD_NONBLOCK
505     # define SFD_NONBLOCK O_NONBLOCK
506     # endif
507     # ifndef SFD_CLOEXEC
508     # ifdef O_CLOEXEC
509     # define SFD_CLOEXEC O_CLOEXEC
510     # else
511     # define SFD_CLOEXEC 02000000
512     # endif
513     # endif
514 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
515 root 1.314
516     struct signalfd_siginfo
517     {
518     uint32_t ssi_signo;
519     char pad[128 - sizeof (uint32_t)];
520     };
521 root 1.303 #endif
522    
523 root 1.501 /*****************************************************************************/
524    
525     #if EV_NEED_SYSCALL
526    
527     #include <sys/syscall.h>
528    
529     /*
530     * define some syscall wrappers for common architectures
531     * this is mostly for nice looks during debugging, not performance.
532     * our syscalls return < 0, not == -1, on error. which is good
533     * enough for linux aio.
534     * TODO: arm is also common nowadays, maybe even mips and x86
535     * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
536     */
537     #if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
538     /* the costly errno access probably kills this for size optimisation */
539    
540     #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5) \
541     ({ \
542     long res; \
543     register unsigned long r5 __asm__ ("r8" ); \
544     register unsigned long r4 __asm__ ("r10"); \
545     register unsigned long r3 __asm__ ("rdx"); \
546     register unsigned long r2 __asm__ ("rsi"); \
547     register unsigned long r1 __asm__ ("rdi"); \
548     if (narg >= 5) r5 = (unsigned long)(arg5); \
549     if (narg >= 4) r4 = (unsigned long)(arg4); \
550     if (narg >= 3) r3 = (unsigned long)(arg3); \
551     if (narg >= 2) r2 = (unsigned long)(arg2); \
552     if (narg >= 1) r1 = (unsigned long)(arg1); \
553     __asm__ __volatile__ ( \
554     "syscall\n\t" \
555     : "=a" (res) \
556     : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
557     : "cc", "r11", "cx", "memory"); \
558     errno = -res; \
559     res; \
560     })
561    
562     #endif
563    
564     #ifdef ev_syscall
565     #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0
566     #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0)
567     #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0)
568     #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0)
569     #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0)
570     #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5)
571     #else
572     #define ev_syscall0(nr) syscall (nr)
573     #define ev_syscall1(nr,arg1) syscall (nr, arg1)
574     #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
575     #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
576     #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
577     #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
578     #endif
579    
580     #endif
581    
582     /*****************************************************************************/
583 root 1.1
584 root 1.250 #if EV_VERIFY >= 3
585 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
586 root 1.248 #else
587     # define EV_FREQUENT_CHECK do { } while (0)
588     #endif
589    
590 root 1.176 /*
591 root 1.373 * This is used to work around floating point rounding problems.
592 root 1.177 * This value is good at least till the year 4000.
593 root 1.176 */
594 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
595     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
596 root 1.176
597 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
598 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
599 root 1.1
600 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
601 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
602 root 1.347
603 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
604     /* ECB.H BEGIN */
605     /*
606     * libecb - http://software.schmorp.de/pkg/libecb
607     *
608 root 1.474 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
609 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
610     * All rights reserved.
611     *
612     * Redistribution and use in source and binary forms, with or without modifica-
613     * tion, are permitted provided that the following conditions are met:
614     *
615     * 1. Redistributions of source code must retain the above copyright notice,
616     * this list of conditions and the following disclaimer.
617     *
618     * 2. Redistributions in binary form must reproduce the above copyright
619     * notice, this list of conditions and the following disclaimer in the
620     * documentation and/or other materials provided with the distribution.
621     *
622     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
623     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
624     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
625     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
626     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
627     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
628     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
629     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
630     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
631     * OF THE POSSIBILITY OF SUCH DAMAGE.
632 root 1.467 *
633     * Alternatively, the contents of this file may be used under the terms of
634     * the GNU General Public License ("GPL") version 2 or any later version,
635     * in which case the provisions of the GPL are applicable instead of
636     * the above. If you wish to allow the use of your version of this file
637     * only under the terms of the GPL and not to allow others to use your
638     * version of this file under the BSD license, indicate your decision
639     * by deleting the provisions above and replace them with the notice
640     * and other provisions required by the GPL. If you do not delete the
641     * provisions above, a recipient may use your version of this file under
642     * either the BSD or the GPL.
643 root 1.391 */
644    
645     #ifndef ECB_H
646     #define ECB_H
647    
648 root 1.437 /* 16 bits major, 16 bits minor */
649 root 1.496 #define ECB_VERSION 0x00010006
650 root 1.437
651 root 1.391 #ifdef _WIN32
652     typedef signed char int8_t;
653     typedef unsigned char uint8_t;
654     typedef signed short int16_t;
655     typedef unsigned short uint16_t;
656     typedef signed int int32_t;
657     typedef unsigned int uint32_t;
658     #if __GNUC__
659     typedef signed long long int64_t;
660     typedef unsigned long long uint64_t;
661     #else /* _MSC_VER || __BORLANDC__ */
662     typedef signed __int64 int64_t;
663     typedef unsigned __int64 uint64_t;
664     #endif
665 root 1.437 #ifdef _WIN64
666     #define ECB_PTRSIZE 8
667     typedef uint64_t uintptr_t;
668     typedef int64_t intptr_t;
669     #else
670     #define ECB_PTRSIZE 4
671     typedef uint32_t uintptr_t;
672     typedef int32_t intptr_t;
673     #endif
674 root 1.391 #else
675     #include <inttypes.h>
676 root 1.479 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
677 root 1.437 #define ECB_PTRSIZE 8
678     #else
679     #define ECB_PTRSIZE 4
680     #endif
681 root 1.391 #endif
682 root 1.379
683 sf-exg 1.475 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
684     #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
685    
686 root 1.454 /* work around x32 idiocy by defining proper macros */
687 sf-exg 1.475 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
688 root 1.458 #if _ILP32
689 root 1.454 #define ECB_AMD64_X32 1
690     #else
691     #define ECB_AMD64 1
692     #endif
693     #endif
694    
695 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
696     * what their idiot authors think are the "more important" extensions,
697 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
698 root 1.379 * or so.
699     * we try to detect these and simply assume they are not gcc - if they have
700     * an issue with that they should have done it right in the first place.
701     */
702 root 1.474 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
703     #define ECB_GCC_VERSION(major,minor) 0
704     #else
705     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
706     #endif
707    
708     #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
709    
710     #if __clang__ && defined __has_builtin
711     #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
712     #else
713     #define ECB_CLANG_BUILTIN(x) 0
714     #endif
715    
716     #if __clang__ && defined __has_extension
717     #define ECB_CLANG_EXTENSION(x) __has_extension (x)
718     #else
719     #define ECB_CLANG_EXTENSION(x) 0
720 root 1.379 #endif
721    
722 root 1.437 #define ECB_CPP (__cplusplus+0)
723     #define ECB_CPP11 (__cplusplus >= 201103L)
724 root 1.488 #define ECB_CPP14 (__cplusplus >= 201402L)
725     #define ECB_CPP17 (__cplusplus >= 201703L)
726 root 1.437
727 root 1.450 #if ECB_CPP
728 root 1.464 #define ECB_C 0
729     #define ECB_STDC_VERSION 0
730     #else
731     #define ECB_C 1
732     #define ECB_STDC_VERSION __STDC_VERSION__
733     #endif
734    
735     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
736     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
737 root 1.488 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
738 root 1.464
739     #if ECB_CPP
740 root 1.450 #define ECB_EXTERN_C extern "C"
741     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
742     #define ECB_EXTERN_C_END }
743     #else
744     #define ECB_EXTERN_C extern
745     #define ECB_EXTERN_C_BEG
746     #define ECB_EXTERN_C_END
747     #endif
748    
749 root 1.391 /*****************************************************************************/
750    
751     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
752     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
753    
754 root 1.410 #if ECB_NO_THREADS
755 root 1.439 #define ECB_NO_SMP 1
756 root 1.410 #endif
757    
758 root 1.437 #if ECB_NO_SMP
759 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
760 root 1.40 #endif
761    
762 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
763     #if __xlC__ && ECB_CPP
764     #include <builtins.h>
765     #endif
766    
767 root 1.479 #if 1400 <= _MSC_VER
768     #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
769     #endif
770    
771 root 1.383 #ifndef ECB_MEMORY_FENCE
772 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
773 root 1.496 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
774 root 1.404 #if __i386 || __i386__
775 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
776 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
777 root 1.488 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
778 sf-exg 1.475 #elif ECB_GCC_AMD64
779 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
780     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
781 root 1.488 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
782 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
783 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
784 root 1.479 #elif defined __ARM_ARCH_2__ \
785     || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
786     || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
787     || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
788     || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
789     || defined __ARM_ARCH_5TEJ__
790     /* should not need any, unless running old code on newer cpu - arm doesn't support that */
791 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
792 root 1.479 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
793     || defined __ARM_ARCH_6T2__
794 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
795 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
796 root 1.479 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
797 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
798 root 1.464 #elif __aarch64__
799     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
800 root 1.477 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
801 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
802     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
803     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
804 root 1.417 #elif defined __s390__ || defined __s390x__
805 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
806 root 1.417 #elif defined __mips__
807 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
808 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
809     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
810 root 1.419 #elif defined __alpha__
811 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
812     #elif defined __hppa__
813     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
814     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
815     #elif defined __ia64__
816     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
817 root 1.457 #elif defined __m68k__
818     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
819     #elif defined __m88k__
820     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
821     #elif defined __sh__
822     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
823 root 1.383 #endif
824     #endif
825     #endif
826    
827     #ifndef ECB_MEMORY_FENCE
828 root 1.437 #if ECB_GCC_VERSION(4,7)
829 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
830 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
831 root 1.464 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
832     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
833 root 1.496 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
834 root 1.450
835 root 1.474 #elif ECB_CLANG_EXTENSION(c_atomic)
836     /* see comment below (stdatomic.h) about the C11 memory model. */
837     #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
838     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
839     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
840 root 1.496 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
841 root 1.450
842 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
843 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
844 root 1.462 #elif _MSC_VER >= 1500 /* VC++ 2008 */
845     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
846     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
847     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
848     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
849     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
850 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
851     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
852     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
853     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
854     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
855 root 1.417 #elif defined _WIN32
856 root 1.388 #include <WinNT.h>
857 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
858 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
859     #include <mbarrier.h>
860 root 1.496 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
861     #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
862     #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
863     #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
864 root 1.413 #elif __xlC__
865 root 1.414 #define ECB_MEMORY_FENCE __sync ()
866 root 1.383 #endif
867     #endif
868    
869     #ifndef ECB_MEMORY_FENCE
870 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
871     /* we assume that these memory fences work on all variables/all memory accesses, */
872     /* not just C11 atomics and atomic accesses */
873     #include <stdatomic.h>
874     #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
875 root 1.496 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
876     #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
877 root 1.437 #endif
878     #endif
879    
880     #ifndef ECB_MEMORY_FENCE
881 root 1.392 #if !ECB_AVOID_PTHREADS
882     /*
883     * if you get undefined symbol references to pthread_mutex_lock,
884     * or failure to find pthread.h, then you should implement
885     * the ECB_MEMORY_FENCE operations for your cpu/compiler
886     * OR provide pthread.h and link against the posix thread library
887     * of your system.
888     */
889     #include <pthread.h>
890     #define ECB_NEEDS_PTHREADS 1
891     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
892    
893     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
894     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
895     #endif
896     #endif
897 root 1.383
898 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
899 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
900 root 1.392 #endif
901    
902 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
903 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
904     #endif
905    
906 root 1.496 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
907     #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
908     #endif
909    
910 root 1.391 /*****************************************************************************/
911    
912 root 1.474 #if ECB_CPP
913 root 1.391 #define ecb_inline static inline
914     #elif ECB_GCC_VERSION(2,5)
915     #define ecb_inline static __inline__
916     #elif ECB_C99
917     #define ecb_inline static inline
918     #else
919     #define ecb_inline static
920     #endif
921    
922     #if ECB_GCC_VERSION(3,3)
923     #define ecb_restrict __restrict__
924     #elif ECB_C99
925     #define ecb_restrict restrict
926     #else
927     #define ecb_restrict
928     #endif
929    
930     typedef int ecb_bool;
931    
932     #define ECB_CONCAT_(a, b) a ## b
933     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
934     #define ECB_STRINGIFY_(a) # a
935     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
936 sf-exg 1.475 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
937 root 1.391
938     #define ecb_function_ ecb_inline
939    
940 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
941     #define ecb_attribute(attrlist) __attribute__ (attrlist)
942 root 1.379 #else
943     #define ecb_attribute(attrlist)
944 root 1.474 #endif
945 root 1.464
946 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
947     #define ecb_is_constant(expr) __builtin_constant_p (expr)
948     #else
949 root 1.464 /* possible C11 impl for integral types
950     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
951     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
952    
953 root 1.379 #define ecb_is_constant(expr) 0
954 root 1.474 #endif
955    
956     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
957     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
958     #else
959 root 1.379 #define ecb_expect(expr,value) (expr)
960 root 1.474 #endif
961    
962     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
963     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
964     #else
965 root 1.379 #define ecb_prefetch(addr,rw,locality)
966     #endif
967    
968 root 1.391 /* no emulation for ecb_decltype */
969 root 1.474 #if ECB_CPP11
970     // older implementations might have problems with decltype(x)::type, work around it
971     template<class T> struct ecb_decltype_t { typedef T type; };
972     #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
973     #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
974     #define ecb_decltype(x) __typeof__ (x)
975 root 1.391 #endif
976    
977 root 1.468 #if _MSC_VER >= 1300
978 root 1.474 #define ecb_deprecated __declspec (deprecated)
979 root 1.468 #else
980     #define ecb_deprecated ecb_attribute ((__deprecated__))
981     #endif
982    
983 root 1.476 #if _MSC_VER >= 1500
984 sf-exg 1.475 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
985     #elif ECB_GCC_VERSION(4,5)
986     #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
987     #else
988     #define ecb_deprecated_message(msg) ecb_deprecated
989     #endif
990    
991     #if _MSC_VER >= 1400
992     #define ecb_noinline __declspec (noinline)
993     #else
994     #define ecb_noinline ecb_attribute ((__noinline__))
995     #endif
996    
997 root 1.379 #define ecb_unused ecb_attribute ((__unused__))
998     #define ecb_const ecb_attribute ((__const__))
999     #define ecb_pure ecb_attribute ((__pure__))
1000    
1001 root 1.474 #if ECB_C11 || __IBMC_NORETURN
1002 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1003 root 1.437 #define ecb_noreturn _Noreturn
1004 sf-exg 1.475 #elif ECB_CPP11
1005     #define ecb_noreturn [[noreturn]]
1006     #elif _MSC_VER >= 1200
1007     /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1008     #define ecb_noreturn __declspec (noreturn)
1009 root 1.437 #else
1010     #define ecb_noreturn ecb_attribute ((__noreturn__))
1011     #endif
1012    
1013 root 1.379 #if ECB_GCC_VERSION(4,3)
1014     #define ecb_artificial ecb_attribute ((__artificial__))
1015     #define ecb_hot ecb_attribute ((__hot__))
1016     #define ecb_cold ecb_attribute ((__cold__))
1017     #else
1018     #define ecb_artificial
1019     #define ecb_hot
1020     #define ecb_cold
1021     #endif
1022    
1023     /* put around conditional expressions if you are very sure that the */
1024     /* expression is mostly true or mostly false. note that these return */
1025     /* booleans, not the expression. */
1026     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1027     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1028 root 1.391 /* for compatibility to the rest of the world */
1029     #define ecb_likely(expr) ecb_expect_true (expr)
1030     #define ecb_unlikely(expr) ecb_expect_false (expr)
1031    
1032     /* count trailing zero bits and count # of one bits */
1033 root 1.474 #if ECB_GCC_VERSION(3,4) \
1034     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1035     && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1036     && ECB_CLANG_BUILTIN(__builtin_popcount))
1037 root 1.391 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1038     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1039     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1040     #define ecb_ctz32(x) __builtin_ctz (x)
1041     #define ecb_ctz64(x) __builtin_ctzll (x)
1042     #define ecb_popcount32(x) __builtin_popcount (x)
1043     /* no popcountll */
1044     #else
1045 root 1.474 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1046     ecb_function_ ecb_const int
1047 root 1.391 ecb_ctz32 (uint32_t x)
1048     {
1049 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1050     unsigned long r;
1051     _BitScanForward (&r, x);
1052     return (int)r;
1053     #else
1054 root 1.391 int r = 0;
1055    
1056     x &= ~x + 1; /* this isolates the lowest bit */
1057    
1058     #if ECB_branchless_on_i386
1059     r += !!(x & 0xaaaaaaaa) << 0;
1060     r += !!(x & 0xcccccccc) << 1;
1061     r += !!(x & 0xf0f0f0f0) << 2;
1062     r += !!(x & 0xff00ff00) << 3;
1063     r += !!(x & 0xffff0000) << 4;
1064     #else
1065     if (x & 0xaaaaaaaa) r += 1;
1066     if (x & 0xcccccccc) r += 2;
1067     if (x & 0xf0f0f0f0) r += 4;
1068     if (x & 0xff00ff00) r += 8;
1069     if (x & 0xffff0000) r += 16;
1070     #endif
1071    
1072     return r;
1073 root 1.479 #endif
1074 root 1.391 }
1075    
1076 root 1.474 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1077     ecb_function_ ecb_const int
1078 root 1.391 ecb_ctz64 (uint64_t x)
1079     {
1080 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1081     unsigned long r;
1082     _BitScanForward64 (&r, x);
1083     return (int)r;
1084     #else
1085     int shift = x & 0xffffffff ? 0 : 32;
1086 root 1.391 return ecb_ctz32 (x >> shift) + shift;
1087 root 1.479 #endif
1088 root 1.391 }
1089    
1090 root 1.474 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1091     ecb_function_ ecb_const int
1092 root 1.391 ecb_popcount32 (uint32_t x)
1093     {
1094     x -= (x >> 1) & 0x55555555;
1095     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1096     x = ((x >> 4) + x) & 0x0f0f0f0f;
1097     x *= 0x01010101;
1098    
1099     return x >> 24;
1100     }
1101    
1102 root 1.474 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1103     ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1104 root 1.391 {
1105 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1106     unsigned long r;
1107     _BitScanReverse (&r, x);
1108     return (int)r;
1109     #else
1110 root 1.391 int r = 0;
1111    
1112     if (x >> 16) { x >>= 16; r += 16; }
1113     if (x >> 8) { x >>= 8; r += 8; }
1114     if (x >> 4) { x >>= 4; r += 4; }
1115     if (x >> 2) { x >>= 2; r += 2; }
1116     if (x >> 1) { r += 1; }
1117    
1118     return r;
1119 root 1.479 #endif
1120 root 1.391 }
1121    
1122 root 1.474 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1123     ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1124 root 1.391 {
1125 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1126     unsigned long r;
1127     _BitScanReverse64 (&r, x);
1128     return (int)r;
1129     #else
1130 root 1.391 int r = 0;
1131    
1132     if (x >> 32) { x >>= 32; r += 32; }
1133    
1134     return r + ecb_ld32 (x);
1135 root 1.479 #endif
1136 root 1.391 }
1137     #endif
1138    
1139 root 1.474 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1140     ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1141     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1142     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1143 root 1.437
1144 root 1.474 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1145     ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1146 root 1.403 {
1147     return ( (x * 0x0802U & 0x22110U)
1148 root 1.474 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1149 root 1.403 }
1150    
1151 root 1.474 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1152     ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1153 root 1.403 {
1154     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1155     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1156     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1157     x = ( x >> 8 ) | ( x << 8);
1158    
1159     return x;
1160     }
1161    
1162 root 1.474 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1163     ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1164 root 1.403 {
1165     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1166     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1167     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1168     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1169     x = ( x >> 16 ) | ( x << 16);
1170    
1171     return x;
1172     }
1173    
1174 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1175     /* so for this version we are lazy */
1176 root 1.474 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1177     ecb_function_ ecb_const int
1178 root 1.391 ecb_popcount64 (uint64_t x)
1179     {
1180     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1181     }
1182    
1183 root 1.474 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1184     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1185     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1186     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1187     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1188     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1189     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1190     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1191    
1192     ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1193     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1194     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1195     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1196     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1197     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1198     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1199     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1200 root 1.391
1201 root 1.474 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1202 root 1.476 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1203     #define ecb_bswap16(x) __builtin_bswap16 (x)
1204     #else
1205 root 1.391 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1206 root 1.476 #endif
1207 root 1.391 #define ecb_bswap32(x) __builtin_bswap32 (x)
1208     #define ecb_bswap64(x) __builtin_bswap64 (x)
1209 root 1.476 #elif _MSC_VER
1210     #include <stdlib.h>
1211     #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1212     #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1213     #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1214 root 1.391 #else
1215 root 1.474 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1216     ecb_function_ ecb_const uint16_t
1217 root 1.391 ecb_bswap16 (uint16_t x)
1218     {
1219     return ecb_rotl16 (x, 8);
1220     }
1221    
1222 root 1.474 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1223     ecb_function_ ecb_const uint32_t
1224 root 1.391 ecb_bswap32 (uint32_t x)
1225     {
1226     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1227     }
1228    
1229 root 1.474 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1230     ecb_function_ ecb_const uint64_t
1231 root 1.391 ecb_bswap64 (uint64_t x)
1232     {
1233     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1234     }
1235     #endif
1236    
1237 root 1.474 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1238 root 1.391 #define ecb_unreachable() __builtin_unreachable ()
1239     #else
1240     /* this seems to work fine, but gcc always emits a warning for it :/ */
1241 root 1.474 ecb_inline ecb_noreturn void ecb_unreachable (void);
1242     ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1243 root 1.391 #endif
1244    
1245     /* try to tell the compiler that some condition is definitely true */
1246 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1247 root 1.391
1248 root 1.479 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1249     ecb_inline ecb_const uint32_t
1250 root 1.391 ecb_byteorder_helper (void)
1251     {
1252 root 1.450 /* the union code still generates code under pressure in gcc, */
1253     /* but less than using pointers, and always seems to */
1254     /* successfully return a constant. */
1255     /* the reason why we have this horrible preprocessor mess */
1256     /* is to avoid it in all cases, at least on common architectures */
1257     /* or when using a recent enough gcc version (>= 4.6) */
1258 root 1.479 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1259     || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1260     #define ECB_LITTLE_ENDIAN 1
1261     return 0x44332211;
1262     #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1263     || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1264     #define ECB_BIG_ENDIAN 1
1265     return 0x11223344;
1266 root 1.450 #else
1267     union
1268     {
1269 root 1.479 uint8_t c[4];
1270     uint32_t u;
1271     } u = { 0x11, 0x22, 0x33, 0x44 };
1272     return u.u;
1273 root 1.450 #endif
1274 root 1.391 }
1275    
1276 root 1.474 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1277 root 1.479 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1278 root 1.474 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1279 root 1.479 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1280 root 1.391
1281     #if ECB_GCC_VERSION(3,0) || ECB_C99
1282     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1283     #else
1284     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1285     #endif
1286    
1287 root 1.474 #if ECB_CPP
1288 root 1.398 template<typename T>
1289     static inline T ecb_div_rd (T val, T div)
1290     {
1291     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1292     }
1293     template<typename T>
1294     static inline T ecb_div_ru (T val, T div)
1295     {
1296     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1297     }
1298     #else
1299     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1300     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1301     #endif
1302    
1303 root 1.391 #if ecb_cplusplus_does_not_suck
1304     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1305     template<typename T, int N>
1306     static inline int ecb_array_length (const T (&arr)[N])
1307     {
1308     return N;
1309     }
1310     #else
1311     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1312     #endif
1313    
1314 root 1.479 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1315     ecb_function_ ecb_const uint32_t
1316     ecb_binary16_to_binary32 (uint32_t x)
1317     {
1318     unsigned int s = (x & 0x8000) << (31 - 15);
1319     int e = (x >> 10) & 0x001f;
1320     unsigned int m = x & 0x03ff;
1321    
1322     if (ecb_expect_false (e == 31))
1323     /* infinity or NaN */
1324     e = 255 - (127 - 15);
1325     else if (ecb_expect_false (!e))
1326     {
1327     if (ecb_expect_true (!m))
1328     /* zero, handled by code below by forcing e to 0 */
1329     e = 0 - (127 - 15);
1330     else
1331     {
1332     /* subnormal, renormalise */
1333     unsigned int s = 10 - ecb_ld32 (m);
1334    
1335     m = (m << s) & 0x3ff; /* mask implicit bit */
1336     e -= s - 1;
1337     }
1338     }
1339    
1340     /* e and m now are normalised, or zero, (or inf or nan) */
1341     e += 127 - 15;
1342    
1343     return s | (e << 23) | (m << (23 - 10));
1344     }
1345    
1346     ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1347     ecb_function_ ecb_const uint16_t
1348     ecb_binary32_to_binary16 (uint32_t x)
1349     {
1350     unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1351     unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1352     unsigned int m = x & 0x007fffff;
1353    
1354     x &= 0x7fffffff;
1355    
1356     /* if it's within range of binary16 normals, use fast path */
1357     if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1358     {
1359     /* mantissa round-to-even */
1360     m += 0x00000fff + ((m >> (23 - 10)) & 1);
1361    
1362     /* handle overflow */
1363     if (ecb_expect_false (m >= 0x00800000))
1364     {
1365     m >>= 1;
1366     e += 1;
1367     }
1368    
1369     return s | (e << 10) | (m >> (23 - 10));
1370     }
1371    
1372     /* handle large numbers and infinity */
1373     if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1374     return s | 0x7c00;
1375    
1376     /* handle zero, subnormals and small numbers */
1377     if (ecb_expect_true (x < 0x38800000))
1378     {
1379     /* zero */
1380     if (ecb_expect_true (!x))
1381     return s;
1382    
1383     /* handle subnormals */
1384    
1385     /* too small, will be zero */
1386     if (e < (14 - 24)) /* might not be sharp, but is good enough */
1387     return s;
1388    
1389     m |= 0x00800000; /* make implicit bit explicit */
1390    
1391     /* very tricky - we need to round to the nearest e (+10) bit value */
1392     {
1393     unsigned int bits = 14 - e;
1394     unsigned int half = (1 << (bits - 1)) - 1;
1395     unsigned int even = (m >> bits) & 1;
1396    
1397     /* if this overflows, we will end up with a normalised number */
1398     m = (m + half + even) >> bits;
1399     }
1400    
1401     return s | m;
1402     }
1403    
1404     /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1405     m >>= 13;
1406    
1407     return s | 0x7c00 | m | !m;
1408     }
1409    
1410 root 1.450 /*******************************************************************************/
1411     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1412    
1413     /* basically, everything uses "ieee pure-endian" floating point numbers */
1414     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1415     #if 0 \
1416     || __i386 || __i386__ \
1417 sf-exg 1.475 || ECB_GCC_AMD64 \
1418 root 1.450 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1419     || defined __s390__ || defined __s390x__ \
1420     || defined __mips__ \
1421     || defined __alpha__ \
1422     || defined __hppa__ \
1423     || defined __ia64__ \
1424 root 1.457 || defined __m68k__ \
1425     || defined __m88k__ \
1426     || defined __sh__ \
1427 sf-exg 1.475 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1428 root 1.465 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1429 root 1.466 || defined __aarch64__
1430 root 1.450 #define ECB_STDFP 1
1431     #include <string.h> /* for memcpy */
1432     #else
1433     #define ECB_STDFP 0
1434     #endif
1435    
1436     #ifndef ECB_NO_LIBM
1437    
1438 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1439    
1440 root 1.462 /* only the oldest of old doesn't have this one. solaris. */
1441     #ifdef INFINITY
1442     #define ECB_INFINITY INFINITY
1443     #else
1444     #define ECB_INFINITY HUGE_VAL
1445     #endif
1446    
1447     #ifdef NAN
1448 root 1.458 #define ECB_NAN NAN
1449     #else
1450 root 1.462 #define ECB_NAN ECB_INFINITY
1451 root 1.458 #endif
1452    
1453 root 1.474 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1454     #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1455 root 1.476 #define ecb_frexpf(x,e) frexpf ((x), (e))
1456 root 1.474 #else
1457 root 1.476 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1458     #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1459 root 1.474 #endif
1460    
1461 root 1.450 /* convert a float to ieee single/binary32 */
1462 root 1.474 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1463     ecb_function_ ecb_const uint32_t
1464 root 1.450 ecb_float_to_binary32 (float x)
1465     {
1466     uint32_t r;
1467    
1468     #if ECB_STDFP
1469     memcpy (&r, &x, 4);
1470     #else
1471     /* slow emulation, works for anything but -0 */
1472     uint32_t m;
1473     int e;
1474    
1475     if (x == 0e0f ) return 0x00000000U;
1476     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1477     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1478     if (x != x ) return 0x7fbfffffU;
1479    
1480 root 1.476 m = ecb_frexpf (x, &e) * 0x1000000U;
1481 root 1.450
1482     r = m & 0x80000000U;
1483    
1484     if (r)
1485     m = -m;
1486    
1487     if (e <= -126)
1488     {
1489     m &= 0xffffffU;
1490     m >>= (-125 - e);
1491     e = -126;
1492     }
1493    
1494     r |= (e + 126) << 23;
1495     r |= m & 0x7fffffU;
1496     #endif
1497    
1498     return r;
1499     }
1500    
1501     /* converts an ieee single/binary32 to a float */
1502 root 1.474 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1503     ecb_function_ ecb_const float
1504 root 1.450 ecb_binary32_to_float (uint32_t x)
1505     {
1506     float r;
1507    
1508     #if ECB_STDFP
1509     memcpy (&r, &x, 4);
1510     #else
1511     /* emulation, only works for normals and subnormals and +0 */
1512     int neg = x >> 31;
1513     int e = (x >> 23) & 0xffU;
1514    
1515     x &= 0x7fffffU;
1516    
1517     if (e)
1518     x |= 0x800000U;
1519     else
1520     e = 1;
1521    
1522     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1523 root 1.474 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1524 root 1.450
1525     r = neg ? -r : r;
1526     #endif
1527    
1528     return r;
1529     }
1530    
1531     /* convert a double to ieee double/binary64 */
1532 root 1.474 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1533     ecb_function_ ecb_const uint64_t
1534 root 1.450 ecb_double_to_binary64 (double x)
1535     {
1536     uint64_t r;
1537    
1538     #if ECB_STDFP
1539     memcpy (&r, &x, 8);
1540     #else
1541     /* slow emulation, works for anything but -0 */
1542     uint64_t m;
1543     int e;
1544    
1545     if (x == 0e0 ) return 0x0000000000000000U;
1546     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1547     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1548     if (x != x ) return 0X7ff7ffffffffffffU;
1549    
1550     m = frexp (x, &e) * 0x20000000000000U;
1551    
1552     r = m & 0x8000000000000000;;
1553    
1554     if (r)
1555     m = -m;
1556    
1557     if (e <= -1022)
1558     {
1559     m &= 0x1fffffffffffffU;
1560     m >>= (-1021 - e);
1561     e = -1022;
1562     }
1563    
1564     r |= ((uint64_t)(e + 1022)) << 52;
1565     r |= m & 0xfffffffffffffU;
1566     #endif
1567    
1568     return r;
1569     }
1570    
1571     /* converts an ieee double/binary64 to a double */
1572 root 1.474 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1573     ecb_function_ ecb_const double
1574 root 1.450 ecb_binary64_to_double (uint64_t x)
1575     {
1576     double r;
1577    
1578     #if ECB_STDFP
1579     memcpy (&r, &x, 8);
1580     #else
1581     /* emulation, only works for normals and subnormals and +0 */
1582     int neg = x >> 63;
1583     int e = (x >> 52) & 0x7ffU;
1584    
1585     x &= 0xfffffffffffffU;
1586    
1587     if (e)
1588     x |= 0x10000000000000U;
1589     else
1590     e = 1;
1591    
1592     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1593     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1594    
1595     r = neg ? -r : r;
1596     #endif
1597    
1598     return r;
1599     }
1600    
1601 root 1.479 /* convert a float to ieee half/binary16 */
1602     ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1603     ecb_function_ ecb_const uint16_t
1604     ecb_float_to_binary16 (float x)
1605     {
1606     return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1607     }
1608    
1609     /* convert an ieee half/binary16 to float */
1610     ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1611     ecb_function_ ecb_const float
1612     ecb_binary16_to_float (uint16_t x)
1613     {
1614     return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1615     }
1616    
1617 root 1.450 #endif
1618    
1619 root 1.391 #endif
1620    
1621     /* ECB.H END */
1622 root 1.379
1623 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1624 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1625 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1626 root 1.500 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1627 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1628 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1629     * which will then provide the memory fences.
1630     */
1631     # error "memory fences not defined for your architecture, please report"
1632     #endif
1633    
1634     #ifndef ECB_MEMORY_FENCE
1635     # define ECB_MEMORY_FENCE do { } while (0)
1636     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1637     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1638 root 1.392 #endif
1639    
1640 root 1.379 #define inline_size ecb_inline
1641 root 1.169
1642 root 1.338 #if EV_FEATURE_CODE
1643 root 1.379 # define inline_speed ecb_inline
1644 root 1.338 #else
1645 root 1.500 # define inline_speed ecb_noinline static
1646 root 1.169 #endif
1647 root 1.40
1648 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1649    
1650     #if EV_MINPRI == EV_MAXPRI
1651     # define ABSPRI(w) (((W)w), 0)
1652     #else
1653     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1654     #endif
1655 root 1.42
1656 root 1.490 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1657 root 1.103
1658 root 1.136 typedef ev_watcher *W;
1659     typedef ev_watcher_list *WL;
1660     typedef ev_watcher_time *WT;
1661 root 1.10
1662 root 1.229 #define ev_active(w) ((W)(w))->active
1663 root 1.228 #define ev_at(w) ((WT)(w))->at
1664    
1665 root 1.279 #if EV_USE_REALTIME
1666 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1667 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1668 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1669     #endif
1670    
1671     #if EV_USE_MONOTONIC
1672 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1673 root 1.198 #endif
1674 root 1.54
1675 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1676     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1677     #endif
1678     #ifndef EV_WIN32_HANDLE_TO_FD
1679 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1680 root 1.313 #endif
1681     #ifndef EV_WIN32_CLOSE_FD
1682     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1683     #endif
1684    
1685 root 1.103 #ifdef _WIN32
1686 root 1.98 # include "ev_win32.c"
1687     #endif
1688 root 1.67
1689 root 1.53 /*****************************************************************************/
1690 root 1.1
1691 root 1.493 #if EV_USE_LINUXAIO
1692     # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1693     #endif
1694    
1695 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1696    
1697     #if EV_USE_FLOOR
1698     # include <math.h>
1699     # define ev_floor(v) floor (v)
1700     #else
1701    
1702     #include <float.h>
1703    
1704     /* a floor() replacement function, should be independent of ev_tstamp type */
1705 root 1.500 ecb_noinline
1706 root 1.480 static ev_tstamp
1707 root 1.373 ev_floor (ev_tstamp v)
1708     {
1709     /* the choice of shift factor is not terribly important */
1710     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1711     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1712     #else
1713     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1714     #endif
1715    
1716     /* argument too large for an unsigned long? */
1717 root 1.500 if (ecb_expect_false (v >= shift))
1718 root 1.373 {
1719     ev_tstamp f;
1720    
1721     if (v == v - 1.)
1722     return v; /* very large number */
1723    
1724     f = shift * ev_floor (v * (1. / shift));
1725     return f + ev_floor (v - f);
1726     }
1727    
1728     /* special treatment for negative args? */
1729 root 1.500 if (ecb_expect_false (v < 0.))
1730 root 1.373 {
1731     ev_tstamp f = -ev_floor (-v);
1732    
1733     return f - (f == v ? 0 : 1);
1734     }
1735    
1736     /* fits into an unsigned long */
1737     return (unsigned long)v;
1738     }
1739    
1740     #endif
1741    
1742     /*****************************************************************************/
1743    
1744 root 1.356 #ifdef __linux
1745     # include <sys/utsname.h>
1746     #endif
1747    
1748 root 1.500 ecb_noinline ecb_cold
1749 root 1.480 static unsigned int
1750 root 1.355 ev_linux_version (void)
1751     {
1752     #ifdef __linux
1753 root 1.359 unsigned int v = 0;
1754 root 1.355 struct utsname buf;
1755     int i;
1756     char *p = buf.release;
1757    
1758     if (uname (&buf))
1759     return 0;
1760    
1761     for (i = 3+1; --i; )
1762     {
1763     unsigned int c = 0;
1764    
1765     for (;;)
1766     {
1767     if (*p >= '0' && *p <= '9')
1768     c = c * 10 + *p++ - '0';
1769     else
1770     {
1771     p += *p == '.';
1772     break;
1773     }
1774     }
1775    
1776     v = (v << 8) | c;
1777     }
1778    
1779     return v;
1780     #else
1781     return 0;
1782     #endif
1783     }
1784    
1785     /*****************************************************************************/
1786    
1787 root 1.331 #if EV_AVOID_STDIO
1788 root 1.500 ecb_noinline ecb_cold
1789 root 1.480 static void
1790 root 1.331 ev_printerr (const char *msg)
1791     {
1792     write (STDERR_FILENO, msg, strlen (msg));
1793     }
1794     #endif
1795    
1796 root 1.486 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1797 root 1.69
1798 root 1.480 ecb_cold
1799     void
1800 root 1.486 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1801 root 1.69 {
1802     syserr_cb = cb;
1803     }
1804    
1805 root 1.500 ecb_noinline ecb_cold
1806 root 1.480 static void
1807 root 1.269 ev_syserr (const char *msg)
1808 root 1.69 {
1809 root 1.70 if (!msg)
1810     msg = "(libev) system error";
1811    
1812 root 1.69 if (syserr_cb)
1813 root 1.70 syserr_cb (msg);
1814 root 1.69 else
1815     {
1816 root 1.330 #if EV_AVOID_STDIO
1817 root 1.331 ev_printerr (msg);
1818     ev_printerr (": ");
1819 root 1.365 ev_printerr (strerror (errno));
1820 root 1.331 ev_printerr ("\n");
1821 root 1.330 #else
1822 root 1.70 perror (msg);
1823 root 1.330 #endif
1824 root 1.69 abort ();
1825     }
1826     }
1827    
1828 root 1.224 static void *
1829 root 1.486 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1830 root 1.224 {
1831     /* some systems, notably openbsd and darwin, fail to properly
1832 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1833 root 1.224 * the single unix specification, so work around them here.
1834 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1835     * despite documenting it otherwise.
1836 root 1.224 */
1837 root 1.333
1838 root 1.224 if (size)
1839     return realloc (ptr, size);
1840    
1841     free (ptr);
1842     return 0;
1843     }
1844    
1845 root 1.486 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1846 root 1.69
1847 root 1.480 ecb_cold
1848     void
1849 root 1.486 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1850 root 1.69 {
1851     alloc = cb;
1852     }
1853    
1854 root 1.150 inline_speed void *
1855 root 1.155 ev_realloc (void *ptr, long size)
1856 root 1.69 {
1857 root 1.224 ptr = alloc (ptr, size);
1858 root 1.69
1859     if (!ptr && size)
1860     {
1861 root 1.330 #if EV_AVOID_STDIO
1862 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1863 root 1.330 #else
1864 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1865 root 1.330 #endif
1866 root 1.69 abort ();
1867     }
1868    
1869     return ptr;
1870     }
1871    
1872     #define ev_malloc(size) ev_realloc (0, (size))
1873     #define ev_free(ptr) ev_realloc ((ptr), 0)
1874    
1875     /*****************************************************************************/
1876    
1877 root 1.298 /* set in reify when reification needed */
1878     #define EV_ANFD_REIFY 1
1879    
1880 root 1.288 /* file descriptor info structure */
1881 root 1.53 typedef struct
1882     {
1883 root 1.68 WL head;
1884 root 1.288 unsigned char events; /* the events watched for */
1885 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1886 root 1.490 unsigned char emask; /* some backends store the actual kernel mask in here */
1887 root 1.269 unsigned char unused;
1888     #if EV_USE_EPOLL
1889 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1890 root 1.269 #endif
1891 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1892 root 1.103 SOCKET handle;
1893     #endif
1894 root 1.357 #if EV_USE_IOCP
1895     OVERLAPPED or, ow;
1896     #endif
1897 root 1.53 } ANFD;
1898 root 1.1
1899 root 1.288 /* stores the pending event set for a given watcher */
1900 root 1.53 typedef struct
1901     {
1902     W w;
1903 root 1.288 int events; /* the pending event set for the given watcher */
1904 root 1.53 } ANPENDING;
1905 root 1.51
1906 root 1.155 #if EV_USE_INOTIFY
1907 root 1.241 /* hash table entry per inotify-id */
1908 root 1.152 typedef struct
1909     {
1910     WL head;
1911 root 1.155 } ANFS;
1912 root 1.152 #endif
1913    
1914 root 1.241 /* Heap Entry */
1915     #if EV_HEAP_CACHE_AT
1916 root 1.288 /* a heap element */
1917 root 1.241 typedef struct {
1918 root 1.243 ev_tstamp at;
1919 root 1.241 WT w;
1920     } ANHE;
1921    
1922 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1923     #define ANHE_at(he) (he).at /* access cached at, read-only */
1924     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1925 root 1.241 #else
1926 root 1.288 /* a heap element */
1927 root 1.241 typedef WT ANHE;
1928    
1929 root 1.248 #define ANHE_w(he) (he)
1930     #define ANHE_at(he) (he)->at
1931     #define ANHE_at_cache(he)
1932 root 1.241 #endif
1933    
1934 root 1.55 #if EV_MULTIPLICITY
1935 root 1.54
1936 root 1.80 struct ev_loop
1937     {
1938 root 1.86 ev_tstamp ev_rt_now;
1939 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1940 root 1.80 #define VAR(name,decl) decl;
1941     #include "ev_vars.h"
1942     #undef VAR
1943     };
1944     #include "ev_wrap.h"
1945    
1946 root 1.116 static struct ev_loop default_loop_struct;
1947 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1948 root 1.54
1949 root 1.53 #else
1950 root 1.54
1951 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1952 root 1.80 #define VAR(name,decl) static decl;
1953     #include "ev_vars.h"
1954     #undef VAR
1955    
1956 root 1.116 static int ev_default_loop_ptr;
1957 root 1.54
1958 root 1.51 #endif
1959 root 1.1
1960 root 1.338 #if EV_FEATURE_API
1961 root 1.500 # define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
1962     # define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
1963 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1964     #else
1965 root 1.298 # define EV_RELEASE_CB (void)0
1966     # define EV_ACQUIRE_CB (void)0
1967 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1968     #endif
1969    
1970 root 1.353 #define EVBREAK_RECURSE 0x80
1971 root 1.298
1972 root 1.8 /*****************************************************************************/
1973    
1974 root 1.292 #ifndef EV_HAVE_EV_TIME
1975 root 1.141 ev_tstamp
1976 root 1.486 ev_time (void) EV_NOEXCEPT
1977 root 1.1 {
1978 root 1.29 #if EV_USE_REALTIME
1979 root 1.500 if (ecb_expect_true (have_realtime))
1980 root 1.279 {
1981     struct timespec ts;
1982     clock_gettime (CLOCK_REALTIME, &ts);
1983     return ts.tv_sec + ts.tv_nsec * 1e-9;
1984     }
1985     #endif
1986    
1987 root 1.1 struct timeval tv;
1988     gettimeofday (&tv, 0);
1989     return tv.tv_sec + tv.tv_usec * 1e-6;
1990     }
1991 root 1.292 #endif
1992 root 1.1
1993 root 1.284 inline_size ev_tstamp
1994 root 1.1 get_clock (void)
1995     {
1996 root 1.29 #if EV_USE_MONOTONIC
1997 root 1.500 if (ecb_expect_true (have_monotonic))
1998 root 1.1 {
1999     struct timespec ts;
2000     clock_gettime (CLOCK_MONOTONIC, &ts);
2001     return ts.tv_sec + ts.tv_nsec * 1e-9;
2002     }
2003     #endif
2004    
2005     return ev_time ();
2006     }
2007    
2008 root 1.85 #if EV_MULTIPLICITY
2009 root 1.51 ev_tstamp
2010 root 1.486 ev_now (EV_P) EV_NOEXCEPT
2011 root 1.51 {
2012 root 1.85 return ev_rt_now;
2013 root 1.51 }
2014 root 1.85 #endif
2015 root 1.51
2016 root 1.193 void
2017 root 1.486 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2018 root 1.193 {
2019     if (delay > 0.)
2020     {
2021     #if EV_USE_NANOSLEEP
2022     struct timespec ts;
2023    
2024 root 1.348 EV_TS_SET (ts, delay);
2025 root 1.193 nanosleep (&ts, 0);
2026 root 1.416 #elif defined _WIN32
2027 root 1.482 /* maybe this should round up, as ms is very low resolution */
2028     /* compared to select (µs) or nanosleep (ns) */
2029 root 1.217 Sleep ((unsigned long)(delay * 1e3));
2030 root 1.193 #else
2031     struct timeval tv;
2032    
2033 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2034 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
2035 root 1.257 /* by older ones */
2036 sf-exg 1.349 EV_TV_SET (tv, delay);
2037 root 1.193 select (0, 0, 0, 0, &tv);
2038     #endif
2039     }
2040     }
2041    
2042     /*****************************************************************************/
2043    
2044 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2045 root 1.232
2046 root 1.288 /* find a suitable new size for the given array, */
2047 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
2048 root 1.284 inline_size int
2049 root 1.163 array_nextsize (int elem, int cur, int cnt)
2050     {
2051     int ncur = cur + 1;
2052    
2053     do
2054     ncur <<= 1;
2055     while (cnt > ncur);
2056    
2057 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2058 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2059 root 1.163 {
2060     ncur *= elem;
2061 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2062 root 1.163 ncur = ncur - sizeof (void *) * 4;
2063     ncur /= elem;
2064     }
2065    
2066     return ncur;
2067     }
2068    
2069 root 1.500 ecb_noinline ecb_cold
2070 root 1.480 static void *
2071 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
2072     {
2073     *cur = array_nextsize (elem, *cur, cnt);
2074     return ev_realloc (base, elem * *cur);
2075     }
2076 root 1.29
2077 root 1.495 #define array_needsize_noinit(base,offset,count)
2078 root 1.490
2079 root 1.495 #define array_needsize_zerofill(base,offset,count) \
2080     memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2081 root 1.265
2082 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
2083 root 1.500 if (ecb_expect_false ((cnt) > (cur))) \
2084 root 1.69 { \
2085 root 1.480 ecb_unused int ocur_ = (cur); \
2086 root 1.163 (base) = (type *)array_realloc \
2087     (sizeof (type), (base), &(cur), (cnt)); \
2088 root 1.495 init ((base), ocur_, ((cur) - ocur_)); \
2089 root 1.1 }
2090    
2091 root 1.163 #if 0
2092 root 1.74 #define array_slim(type,stem) \
2093 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2094     { \
2095     stem ## max = array_roundsize (stem ## cnt >> 1); \
2096 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2097 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2098     }
2099 root 1.163 #endif
2100 root 1.67
2101 root 1.65 #define array_free(stem, idx) \
2102 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2103 root 1.65
2104 root 1.8 /*****************************************************************************/
2105    
2106 root 1.288 /* dummy callback for pending events */
2107 root 1.500 ecb_noinline
2108 root 1.480 static void
2109 root 1.288 pendingcb (EV_P_ ev_prepare *w, int revents)
2110     {
2111     }
2112    
2113 root 1.500 ecb_noinline
2114 root 1.480 void
2115 root 1.486 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2116 root 1.1 {
2117 root 1.78 W w_ = (W)w;
2118 root 1.171 int pri = ABSPRI (w_);
2119 root 1.78
2120 root 1.500 if (ecb_expect_false (w_->pending))
2121 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
2122     else
2123 root 1.32 {
2124 root 1.171 w_->pending = ++pendingcnt [pri];
2125 root 1.490 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2126 root 1.171 pendings [pri][w_->pending - 1].w = w_;
2127     pendings [pri][w_->pending - 1].events = revents;
2128 root 1.32 }
2129 root 1.425
2130     pendingpri = NUMPRI - 1;
2131 root 1.1 }
2132    
2133 root 1.284 inline_speed void
2134     feed_reverse (EV_P_ W w)
2135     {
2136 root 1.490 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2137 root 1.284 rfeeds [rfeedcnt++] = w;
2138     }
2139    
2140     inline_size void
2141     feed_reverse_done (EV_P_ int revents)
2142     {
2143     do
2144     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2145     while (rfeedcnt);
2146     }
2147    
2148     inline_speed void
2149 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
2150 root 1.27 {
2151     int i;
2152    
2153     for (i = 0; i < eventcnt; ++i)
2154 root 1.78 ev_feed_event (EV_A_ events [i], type);
2155 root 1.27 }
2156    
2157 root 1.141 /*****************************************************************************/
2158    
2159 root 1.284 inline_speed void
2160 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
2161 root 1.1 {
2162     ANFD *anfd = anfds + fd;
2163 root 1.136 ev_io *w;
2164 root 1.1
2165 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2166 root 1.1 {
2167 root 1.79 int ev = w->events & revents;
2168 root 1.1
2169     if (ev)
2170 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
2171 root 1.1 }
2172     }
2173    
2174 root 1.298 /* do not submit kernel events for fds that have reify set */
2175     /* because that means they changed while we were polling for new events */
2176     inline_speed void
2177     fd_event (EV_P_ int fd, int revents)
2178     {
2179     ANFD *anfd = anfds + fd;
2180    
2181 root 1.500 if (ecb_expect_true (!anfd->reify))
2182 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2183 root 1.298 }
2184    
2185 root 1.79 void
2186 root 1.486 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2187 root 1.79 {
2188 root 1.168 if (fd >= 0 && fd < anfdmax)
2189 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2190 root 1.79 }
2191    
2192 root 1.288 /* make sure the external fd watch events are in-sync */
2193     /* with the kernel/libev internal state */
2194 root 1.284 inline_size void
2195 root 1.51 fd_reify (EV_P)
2196 root 1.9 {
2197     int i;
2198    
2199 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2200     for (i = 0; i < fdchangecnt; ++i)
2201     {
2202     int fd = fdchanges [i];
2203     ANFD *anfd = anfds + fd;
2204    
2205 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
2206 root 1.371 {
2207     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2208    
2209     if (handle != anfd->handle)
2210     {
2211     unsigned long arg;
2212    
2213     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2214    
2215     /* handle changed, but fd didn't - we need to do it in two steps */
2216     backend_modify (EV_A_ fd, anfd->events, 0);
2217     anfd->events = 0;
2218     anfd->handle = handle;
2219     }
2220     }
2221     }
2222     #endif
2223    
2224 root 1.27 for (i = 0; i < fdchangecnt; ++i)
2225     {
2226     int fd = fdchanges [i];
2227     ANFD *anfd = anfds + fd;
2228 root 1.136 ev_io *w;
2229 root 1.27
2230 root 1.350 unsigned char o_events = anfd->events;
2231     unsigned char o_reify = anfd->reify;
2232 root 1.27
2233 root 1.497 anfd->reify = 0;
2234 root 1.27
2235 root 1.500 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2236 root 1.350 {
2237     anfd->events = 0;
2238 root 1.184
2239 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2240     anfd->events |= (unsigned char)w->events;
2241 root 1.27
2242 root 1.351 if (o_events != anfd->events)
2243 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
2244     }
2245    
2246     if (o_reify & EV__IOFDSET)
2247     backend_modify (EV_A_ fd, o_events, anfd->events);
2248 root 1.27 }
2249    
2250     fdchangecnt = 0;
2251     }
2252    
2253 root 1.288 /* something about the given fd changed */
2254 root 1.480 inline_size
2255     void
2256 root 1.183 fd_change (EV_P_ int fd, int flags)
2257 root 1.27 {
2258 root 1.183 unsigned char reify = anfds [fd].reify;
2259 root 1.184 anfds [fd].reify |= flags;
2260 root 1.27
2261 root 1.500 if (ecb_expect_true (!reify))
2262 root 1.183 {
2263     ++fdchangecnt;
2264 root 1.490 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2265 root 1.183 fdchanges [fdchangecnt - 1] = fd;
2266     }
2267 root 1.9 }
2268    
2269 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2270 root 1.480 inline_speed ecb_cold void
2271 root 1.51 fd_kill (EV_P_ int fd)
2272 root 1.41 {
2273 root 1.136 ev_io *w;
2274 root 1.41
2275 root 1.136 while ((w = (ev_io *)anfds [fd].head))
2276 root 1.41 {
2277 root 1.51 ev_io_stop (EV_A_ w);
2278 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2279 root 1.41 }
2280     }
2281    
2282 root 1.336 /* check whether the given fd is actually valid, for error recovery */
2283 root 1.480 inline_size ecb_cold int
2284 root 1.71 fd_valid (int fd)
2285     {
2286 root 1.103 #ifdef _WIN32
2287 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2288 root 1.71 #else
2289     return fcntl (fd, F_GETFD) != -1;
2290     #endif
2291     }
2292    
2293 root 1.19 /* called on EBADF to verify fds */
2294 root 1.500 ecb_noinline ecb_cold
2295 root 1.480 static void
2296 root 1.51 fd_ebadf (EV_P)
2297 root 1.19 {
2298     int fd;
2299    
2300     for (fd = 0; fd < anfdmax; ++fd)
2301 root 1.27 if (anfds [fd].events)
2302 root 1.254 if (!fd_valid (fd) && errno == EBADF)
2303 root 1.51 fd_kill (EV_A_ fd);
2304 root 1.41 }
2305    
2306     /* called on ENOMEM in select/poll to kill some fds and retry */
2307 root 1.500 ecb_noinline ecb_cold
2308 root 1.480 static void
2309 root 1.51 fd_enomem (EV_P)
2310 root 1.41 {
2311 root 1.62 int fd;
2312 root 1.41
2313 root 1.62 for (fd = anfdmax; fd--; )
2314 root 1.41 if (anfds [fd].events)
2315     {
2316 root 1.51 fd_kill (EV_A_ fd);
2317 root 1.307 break;
2318 root 1.41 }
2319 root 1.19 }
2320    
2321 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
2322 root 1.500 ecb_noinline
2323 root 1.480 static void
2324 root 1.56 fd_rearm_all (EV_P)
2325     {
2326     int fd;
2327    
2328     for (fd = 0; fd < anfdmax; ++fd)
2329     if (anfds [fd].events)
2330     {
2331     anfds [fd].events = 0;
2332 root 1.268 anfds [fd].emask = 0;
2333 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2334 root 1.56 }
2335     }
2336    
2337 root 1.336 /* used to prepare libev internal fd's */
2338     /* this is not fork-safe */
2339     inline_speed void
2340     fd_intern (int fd)
2341     {
2342     #ifdef _WIN32
2343     unsigned long arg = 1;
2344     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2345     #else
2346     fcntl (fd, F_SETFD, FD_CLOEXEC);
2347     fcntl (fd, F_SETFL, O_NONBLOCK);
2348     #endif
2349     }
2350    
2351 root 1.8 /*****************************************************************************/
2352    
2353 root 1.235 /*
2354 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
2355 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2356     * the branching factor of the d-tree.
2357     */
2358    
2359     /*
2360 root 1.235 * at the moment we allow libev the luxury of two heaps,
2361     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2362     * which is more cache-efficient.
2363     * the difference is about 5% with 50000+ watchers.
2364     */
2365 root 1.241 #if EV_USE_4HEAP
2366 root 1.235
2367 root 1.237 #define DHEAP 4
2368     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2369 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2370 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
2371 root 1.235
2372     /* away from the root */
2373 root 1.284 inline_speed void
2374 root 1.241 downheap (ANHE *heap, int N, int k)
2375 root 1.235 {
2376 root 1.241 ANHE he = heap [k];
2377     ANHE *E = heap + N + HEAP0;
2378 root 1.235
2379     for (;;)
2380     {
2381     ev_tstamp minat;
2382 root 1.241 ANHE *minpos;
2383 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2384 root 1.235
2385 root 1.248 /* find minimum child */
2386 root 1.500 if (ecb_expect_true (pos + DHEAP - 1 < E))
2387 root 1.235 {
2388 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2389     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2390     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2391     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2392 root 1.235 }
2393 root 1.240 else if (pos < E)
2394 root 1.235 {
2395 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2396     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2397     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2398     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2399 root 1.235 }
2400 root 1.240 else
2401     break;
2402 root 1.235
2403 root 1.241 if (ANHE_at (he) <= minat)
2404 root 1.235 break;
2405    
2406 root 1.247 heap [k] = *minpos;
2407 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2408 root 1.235
2409     k = minpos - heap;
2410     }
2411    
2412 root 1.247 heap [k] = he;
2413 root 1.241 ev_active (ANHE_w (he)) = k;
2414 root 1.235 }
2415    
2416 root 1.248 #else /* 4HEAP */
2417 root 1.235
2418     #define HEAP0 1
2419 root 1.247 #define HPARENT(k) ((k) >> 1)
2420 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2421 root 1.235
2422 root 1.248 /* away from the root */
2423 root 1.284 inline_speed void
2424 root 1.248 downheap (ANHE *heap, int N, int k)
2425 root 1.1 {
2426 root 1.241 ANHE he = heap [k];
2427 root 1.1
2428 root 1.228 for (;;)
2429 root 1.1 {
2430 root 1.248 int c = k << 1;
2431 root 1.179
2432 root 1.309 if (c >= N + HEAP0)
2433 root 1.179 break;
2434    
2435 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2436     ? 1 : 0;
2437    
2438     if (ANHE_at (he) <= ANHE_at (heap [c]))
2439     break;
2440    
2441     heap [k] = heap [c];
2442 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2443 root 1.248
2444     k = c;
2445 root 1.1 }
2446    
2447 root 1.243 heap [k] = he;
2448 root 1.248 ev_active (ANHE_w (he)) = k;
2449 root 1.1 }
2450 root 1.248 #endif
2451 root 1.1
2452 root 1.248 /* towards the root */
2453 root 1.284 inline_speed void
2454 root 1.248 upheap (ANHE *heap, int k)
2455 root 1.1 {
2456 root 1.241 ANHE he = heap [k];
2457 root 1.1
2458 root 1.179 for (;;)
2459 root 1.1 {
2460 root 1.248 int p = HPARENT (k);
2461 root 1.179
2462 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2463 root 1.179 break;
2464 root 1.1
2465 root 1.248 heap [k] = heap [p];
2466 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2467 root 1.248 k = p;
2468 root 1.1 }
2469    
2470 root 1.241 heap [k] = he;
2471     ev_active (ANHE_w (he)) = k;
2472 root 1.1 }
2473    
2474 root 1.288 /* move an element suitably so it is in a correct place */
2475 root 1.284 inline_size void
2476 root 1.241 adjustheap (ANHE *heap, int N, int k)
2477 root 1.84 {
2478 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2479 root 1.247 upheap (heap, k);
2480     else
2481     downheap (heap, N, k);
2482 root 1.84 }
2483    
2484 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2485 root 1.284 inline_size void
2486 root 1.248 reheap (ANHE *heap, int N)
2487     {
2488     int i;
2489 root 1.251
2490 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2491     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2492     for (i = 0; i < N; ++i)
2493     upheap (heap, i + HEAP0);
2494     }
2495    
2496 root 1.8 /*****************************************************************************/
2497    
2498 root 1.288 /* associate signal watchers to a signal signal */
2499 root 1.7 typedef struct
2500     {
2501 root 1.307 EV_ATOMIC_T pending;
2502 root 1.306 #if EV_MULTIPLICITY
2503     EV_P;
2504     #endif
2505 root 1.68 WL head;
2506 root 1.7 } ANSIG;
2507    
2508 root 1.306 static ANSIG signals [EV_NSIG - 1];
2509 root 1.7
2510 root 1.207 /*****************************************************************************/
2511    
2512 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2513 root 1.207
2514 root 1.500 ecb_noinline ecb_cold
2515 root 1.480 static void
2516 root 1.207 evpipe_init (EV_P)
2517     {
2518 root 1.288 if (!ev_is_active (&pipe_w))
2519 root 1.207 {
2520 root 1.448 int fds [2];
2521    
2522 root 1.336 # if EV_USE_EVENTFD
2523 root 1.448 fds [0] = -1;
2524     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2525     if (fds [1] < 0 && errno == EINVAL)
2526     fds [1] = eventfd (0, 0);
2527    
2528     if (fds [1] < 0)
2529     # endif
2530     {
2531     while (pipe (fds))
2532     ev_syserr ("(libev) error creating signal/async pipe");
2533    
2534     fd_intern (fds [0]);
2535 root 1.220 }
2536 root 1.448
2537     evpipe [0] = fds [0];
2538    
2539     if (evpipe [1] < 0)
2540     evpipe [1] = fds [1]; /* first call, set write fd */
2541 root 1.220 else
2542     {
2543 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2544     /* so that evpipe_write can always rely on its value. */
2545     /* this branch does not do anything sensible on windows, */
2546     /* so must not be executed on windows */
2547 root 1.207
2548 root 1.448 dup2 (fds [1], evpipe [1]);
2549     close (fds [1]);
2550 root 1.220 }
2551 root 1.207
2552 root 1.455 fd_intern (evpipe [1]);
2553    
2554 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2555 root 1.288 ev_io_start (EV_A_ &pipe_w);
2556 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2557 root 1.207 }
2558     }
2559    
2560 root 1.380 inline_speed void
2561 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2562 root 1.207 {
2563 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2564    
2565 root 1.500 if (ecb_expect_true (*flag))
2566 root 1.387 return;
2567 root 1.383
2568     *flag = 1;
2569 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2570 root 1.383
2571     pipe_write_skipped = 1;
2572 root 1.378
2573 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2574 root 1.214
2575 root 1.383 if (pipe_write_wanted)
2576     {
2577     int old_errno;
2578 root 1.378
2579 root 1.436 pipe_write_skipped = 0;
2580     ECB_MEMORY_FENCE_RELEASE;
2581 root 1.220
2582 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2583 root 1.380
2584 root 1.220 #if EV_USE_EVENTFD
2585 root 1.448 if (evpipe [0] < 0)
2586 root 1.383 {
2587     uint64_t counter = 1;
2588 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2589 root 1.383 }
2590     else
2591 root 1.220 #endif
2592 root 1.383 {
2593 root 1.427 #ifdef _WIN32
2594     WSABUF buf;
2595     DWORD sent;
2596 root 1.485 buf.buf = (char *)&buf;
2597 root 1.427 buf.len = 1;
2598     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2599     #else
2600 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2601 root 1.427 #endif
2602 root 1.383 }
2603 root 1.214
2604 root 1.383 errno = old_errno;
2605 root 1.207 }
2606     }
2607    
2608 root 1.288 /* called whenever the libev signal pipe */
2609     /* got some events (signal, async) */
2610 root 1.207 static void
2611     pipecb (EV_P_ ev_io *iow, int revents)
2612     {
2613 root 1.307 int i;
2614    
2615 root 1.378 if (revents & EV_READ)
2616     {
2617 root 1.220 #if EV_USE_EVENTFD
2618 root 1.448 if (evpipe [0] < 0)
2619 root 1.378 {
2620     uint64_t counter;
2621 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2622 root 1.378 }
2623     else
2624 root 1.220 #endif
2625 root 1.378 {
2626 root 1.427 char dummy[4];
2627     #ifdef _WIN32
2628     WSABUF buf;
2629     DWORD recvd;
2630 root 1.432 DWORD flags = 0;
2631 root 1.427 buf.buf = dummy;
2632     buf.len = sizeof (dummy);
2633 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2634 root 1.427 #else
2635     read (evpipe [0], &dummy, sizeof (dummy));
2636     #endif
2637 root 1.378 }
2638 root 1.220 }
2639 root 1.207
2640 root 1.378 pipe_write_skipped = 0;
2641    
2642 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2643    
2644 root 1.369 #if EV_SIGNAL_ENABLE
2645 root 1.307 if (sig_pending)
2646 root 1.372 {
2647 root 1.307 sig_pending = 0;
2648 root 1.207
2649 root 1.436 ECB_MEMORY_FENCE;
2650 root 1.424
2651 root 1.307 for (i = EV_NSIG - 1; i--; )
2652 root 1.500 if (ecb_expect_false (signals [i].pending))
2653 root 1.307 ev_feed_signal_event (EV_A_ i + 1);
2654 root 1.207 }
2655 root 1.369 #endif
2656 root 1.207
2657 root 1.209 #if EV_ASYNC_ENABLE
2658 root 1.307 if (async_pending)
2659 root 1.207 {
2660 root 1.307 async_pending = 0;
2661 root 1.207
2662 root 1.436 ECB_MEMORY_FENCE;
2663 root 1.424
2664 root 1.207 for (i = asynccnt; i--; )
2665     if (asyncs [i]->sent)
2666     {
2667     asyncs [i]->sent = 0;
2668 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2669 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2670     }
2671     }
2672 root 1.209 #endif
2673 root 1.207 }
2674    
2675     /*****************************************************************************/
2676    
2677 root 1.366 void
2678 root 1.486 ev_feed_signal (int signum) EV_NOEXCEPT
2679 root 1.7 {
2680 root 1.207 #if EV_MULTIPLICITY
2681 root 1.453 EV_P;
2682 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2683 root 1.453 EV_A = signals [signum - 1].loop;
2684 root 1.366
2685     if (!EV_A)
2686     return;
2687 root 1.207 #endif
2688    
2689 root 1.366 signals [signum - 1].pending = 1;
2690     evpipe_write (EV_A_ &sig_pending);
2691     }
2692    
2693     static void
2694     ev_sighandler (int signum)
2695     {
2696 root 1.322 #ifdef _WIN32
2697 root 1.218 signal (signum, ev_sighandler);
2698 root 1.67 #endif
2699    
2700 root 1.366 ev_feed_signal (signum);
2701 root 1.7 }
2702    
2703 root 1.500 ecb_noinline
2704 root 1.480 void
2705 root 1.486 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2706 root 1.79 {
2707 root 1.80 WL w;
2708    
2709 root 1.500 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2710 root 1.307 return;
2711    
2712     --signum;
2713    
2714 root 1.79 #if EV_MULTIPLICITY
2715 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2716     /* or, likely more useful, feeding a signal nobody is waiting for */
2717 root 1.79
2718 root 1.500 if (ecb_expect_false (signals [signum].loop != EV_A))
2719 root 1.306 return;
2720 root 1.307 #endif
2721 root 1.306
2722 root 1.307 signals [signum].pending = 0;
2723 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2724 root 1.79
2725     for (w = signals [signum].head; w; w = w->next)
2726     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2727     }
2728    
2729 root 1.303 #if EV_USE_SIGNALFD
2730     static void
2731     sigfdcb (EV_P_ ev_io *iow, int revents)
2732     {
2733 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2734 root 1.303
2735     for (;;)
2736     {
2737     ssize_t res = read (sigfd, si, sizeof (si));
2738    
2739     /* not ISO-C, as res might be -1, but works with SuS */
2740     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2741     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2742    
2743     if (res < (ssize_t)sizeof (si))
2744     break;
2745     }
2746     }
2747     #endif
2748    
2749 root 1.336 #endif
2750    
2751 root 1.8 /*****************************************************************************/
2752    
2753 root 1.336 #if EV_CHILD_ENABLE
2754 root 1.182 static WL childs [EV_PID_HASHSIZE];
2755 root 1.71
2756 root 1.136 static ev_signal childev;
2757 root 1.59
2758 root 1.206 #ifndef WIFCONTINUED
2759     # define WIFCONTINUED(status) 0
2760     #endif
2761    
2762 root 1.288 /* handle a single child status event */
2763 root 1.284 inline_speed void
2764 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2765 root 1.47 {
2766 root 1.136 ev_child *w;
2767 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2768 root 1.47
2769 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2770 root 1.206 {
2771     if ((w->pid == pid || !w->pid)
2772     && (!traced || (w->flags & 1)))
2773     {
2774 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2775 root 1.206 w->rpid = pid;
2776     w->rstatus = status;
2777     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2778     }
2779     }
2780 root 1.47 }
2781    
2782 root 1.142 #ifndef WCONTINUED
2783     # define WCONTINUED 0
2784     #endif
2785    
2786 root 1.288 /* called on sigchld etc., calls waitpid */
2787 root 1.47 static void
2788 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2789 root 1.22 {
2790     int pid, status;
2791    
2792 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2793     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2794     if (!WCONTINUED
2795     || errno != EINVAL
2796     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2797     return;
2798    
2799 root 1.216 /* make sure we are called again until all children have been reaped */
2800 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2801     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2802 root 1.47
2803 root 1.216 child_reap (EV_A_ pid, pid, status);
2804 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2805 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2806 root 1.22 }
2807    
2808 root 1.45 #endif
2809    
2810 root 1.22 /*****************************************************************************/
2811    
2812 root 1.357 #if EV_USE_IOCP
2813     # include "ev_iocp.c"
2814     #endif
2815 root 1.118 #if EV_USE_PORT
2816     # include "ev_port.c"
2817     #endif
2818 root 1.44 #if EV_USE_KQUEUE
2819     # include "ev_kqueue.c"
2820     #endif
2821 root 1.493 #if EV_USE_EPOLL
2822     # include "ev_epoll.c"
2823     #endif
2824 root 1.490 #if EV_USE_LINUXAIO
2825     # include "ev_linuxaio.c"
2826     #endif
2827 root 1.501 #if EV_USE_IOURING
2828     # include "ev_iouring.c"
2829     #endif
2830 root 1.59 #if EV_USE_POLL
2831 root 1.41 # include "ev_poll.c"
2832     #endif
2833 root 1.29 #if EV_USE_SELECT
2834 root 1.1 # include "ev_select.c"
2835     #endif
2836    
2837 root 1.480 ecb_cold int
2838 root 1.486 ev_version_major (void) EV_NOEXCEPT
2839 root 1.24 {
2840     return EV_VERSION_MAJOR;
2841     }
2842    
2843 root 1.480 ecb_cold int
2844 root 1.486 ev_version_minor (void) EV_NOEXCEPT
2845 root 1.24 {
2846     return EV_VERSION_MINOR;
2847     }
2848    
2849 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2850 root 1.480 inline_size ecb_cold int
2851 root 1.51 enable_secure (void)
2852 root 1.41 {
2853 root 1.103 #ifdef _WIN32
2854 root 1.49 return 0;
2855     #else
2856 root 1.41 return getuid () != geteuid ()
2857     || getgid () != getegid ();
2858 root 1.49 #endif
2859 root 1.41 }
2860    
2861 root 1.480 ecb_cold
2862     unsigned int
2863 root 1.486 ev_supported_backends (void) EV_NOEXCEPT
2864 root 1.129 {
2865 root 1.130 unsigned int flags = 0;
2866 root 1.129
2867 root 1.490 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2868     if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2869     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2870     if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2871 root 1.501 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
2872 root 1.490 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2873     if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2874 root 1.129
2875     return flags;
2876     }
2877    
2878 root 1.480 ecb_cold
2879     unsigned int
2880 root 1.486 ev_recommended_backends (void) EV_NOEXCEPT
2881 root 1.1 {
2882 root 1.131 unsigned int flags = ev_supported_backends ();
2883 root 1.129
2884     #ifndef __NetBSD__
2885     /* kqueue is borked on everything but netbsd apparently */
2886     /* it usually doesn't work correctly on anything but sockets and pipes */
2887     flags &= ~EVBACKEND_KQUEUE;
2888     #endif
2889     #ifdef __APPLE__
2890 root 1.278 /* only select works correctly on that "unix-certified" platform */
2891     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2892     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2893 root 1.129 #endif
2894 root 1.342 #ifdef __FreeBSD__
2895     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2896     #endif
2897 root 1.129
2898 root 1.491 /* TODO: linuxaio is very experimental */
2899 root 1.494 #if !EV_RECOMMEND_LINUXAIO
2900 root 1.491 flags &= ~EVBACKEND_LINUXAIO;
2901 root 1.494 #endif
2902 root 1.501 /* TODO: linuxaio is super experimental */
2903     #if !EV_RECOMMEND_IOURING
2904     flags &= ~EVBACKEND_IOURING;
2905     #endif
2906 root 1.491
2907 root 1.129 return flags;
2908 root 1.51 }
2909    
2910 root 1.480 ecb_cold
2911     unsigned int
2912 root 1.486 ev_embeddable_backends (void) EV_NOEXCEPT
2913 root 1.134 {
2914 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2915    
2916 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2917 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2918     flags &= ~EVBACKEND_EPOLL;
2919 root 1.196
2920     return flags;
2921 root 1.134 }
2922    
2923     unsigned int
2924 root 1.486 ev_backend (EV_P) EV_NOEXCEPT
2925 root 1.130 {
2926     return backend;
2927     }
2928    
2929 root 1.338 #if EV_FEATURE_API
2930 root 1.162 unsigned int
2931 root 1.486 ev_iteration (EV_P) EV_NOEXCEPT
2932 root 1.162 {
2933     return loop_count;
2934     }
2935    
2936 root 1.294 unsigned int
2937 root 1.486 ev_depth (EV_P) EV_NOEXCEPT
2938 root 1.294 {
2939     return loop_depth;
2940     }
2941    
2942 root 1.193 void
2943 root 1.486 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2944 root 1.193 {
2945     io_blocktime = interval;
2946     }
2947    
2948     void
2949 root 1.486 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2950 root 1.193 {
2951     timeout_blocktime = interval;
2952     }
2953    
2954 root 1.297 void
2955 root 1.486 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2956 root 1.297 {
2957     userdata = data;
2958     }
2959    
2960     void *
2961 root 1.486 ev_userdata (EV_P) EV_NOEXCEPT
2962 root 1.297 {
2963     return userdata;
2964     }
2965    
2966 root 1.379 void
2967 root 1.486 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2968 root 1.297 {
2969     invoke_cb = invoke_pending_cb;
2970     }
2971    
2972 root 1.379 void
2973 root 1.486 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2974 root 1.297 {
2975 root 1.298 release_cb = release;
2976     acquire_cb = acquire;
2977 root 1.297 }
2978     #endif
2979    
2980 root 1.288 /* initialise a loop structure, must be zero-initialised */
2981 root 1.500 ecb_noinline ecb_cold
2982 root 1.480 static void
2983 root 1.486 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
2984 root 1.51 {
2985 root 1.130 if (!backend)
2986 root 1.23 {
2987 root 1.366 origflags = flags;
2988    
2989 root 1.279 #if EV_USE_REALTIME
2990     if (!have_realtime)
2991     {
2992     struct timespec ts;
2993    
2994     if (!clock_gettime (CLOCK_REALTIME, &ts))
2995     have_realtime = 1;
2996     }
2997     #endif
2998    
2999 root 1.29 #if EV_USE_MONOTONIC
3000 root 1.279 if (!have_monotonic)
3001     {
3002     struct timespec ts;
3003    
3004     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
3005     have_monotonic = 1;
3006     }
3007 root 1.1 #endif
3008    
3009 root 1.306 /* pid check not overridable via env */
3010     #ifndef _WIN32
3011     if (flags & EVFLAG_FORKCHECK)
3012     curpid = getpid ();
3013     #endif
3014    
3015     if (!(flags & EVFLAG_NOENV)
3016     && !enable_secure ()
3017     && getenv ("LIBEV_FLAGS"))
3018     flags = atoi (getenv ("LIBEV_FLAGS"));
3019    
3020 root 1.378 ev_rt_now = ev_time ();
3021     mn_now = get_clock ();
3022     now_floor = mn_now;
3023     rtmn_diff = ev_rt_now - mn_now;
3024 root 1.338 #if EV_FEATURE_API
3025 root 1.378 invoke_cb = ev_invoke_pending;
3026 root 1.297 #endif
3027 root 1.1
3028 root 1.378 io_blocktime = 0.;
3029     timeout_blocktime = 0.;
3030     backend = 0;
3031     backend_fd = -1;
3032     sig_pending = 0;
3033 root 1.307 #if EV_ASYNC_ENABLE
3034 root 1.378 async_pending = 0;
3035 root 1.307 #endif
3036 root 1.378 pipe_write_skipped = 0;
3037     pipe_write_wanted = 0;
3038 root 1.448 evpipe [0] = -1;
3039     evpipe [1] = -1;
3040 root 1.209 #if EV_USE_INOTIFY
3041 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3042 root 1.209 #endif
3043 root 1.303 #if EV_USE_SIGNALFD
3044 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3045 root 1.303 #endif
3046 root 1.193
3047 root 1.366 if (!(flags & EVBACKEND_MASK))
3048 root 1.129 flags |= ev_recommended_backends ();
3049 root 1.41
3050 root 1.357 #if EV_USE_IOCP
3051 root 1.490 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3052 root 1.357 #endif
3053 root 1.118 #if EV_USE_PORT
3054 root 1.490 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
3055 root 1.118 #endif
3056 root 1.44 #if EV_USE_KQUEUE
3057 root 1.490 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3058     #endif
3059 root 1.501 #if EV_USE_IOURING
3060     if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3061     #endif
3062 root 1.490 #if EV_USE_LINUXAIO
3063     if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
3064 root 1.44 #endif
3065 root 1.29 #if EV_USE_EPOLL
3066 root 1.490 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
3067 root 1.41 #endif
3068 root 1.59 #if EV_USE_POLL
3069 root 1.490 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
3070 root 1.1 #endif
3071 root 1.29 #if EV_USE_SELECT
3072 root 1.490 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
3073 root 1.1 #endif
3074 root 1.70
3075 root 1.288 ev_prepare_init (&pending_w, pendingcb);
3076    
3077 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3078 root 1.288 ev_init (&pipe_w, pipecb);
3079     ev_set_priority (&pipe_w, EV_MAXPRI);
3080 root 1.336 #endif
3081 root 1.56 }
3082     }
3083    
3084 root 1.288 /* free up a loop structure */
3085 root 1.480 ecb_cold
3086     void
3087 root 1.422 ev_loop_destroy (EV_P)
3088 root 1.56 {
3089 root 1.65 int i;
3090    
3091 root 1.364 #if EV_MULTIPLICITY
3092 root 1.363 /* mimic free (0) */
3093     if (!EV_A)
3094     return;
3095 root 1.364 #endif
3096 root 1.363
3097 root 1.361 #if EV_CLEANUP_ENABLE
3098     /* queue cleanup watchers (and execute them) */
3099 root 1.500 if (ecb_expect_false (cleanupcnt))
3100 root 1.361 {
3101     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3102     EV_INVOKE_PENDING;
3103     }
3104     #endif
3105    
3106 root 1.359 #if EV_CHILD_ENABLE
3107 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3108 root 1.359 {
3109     ev_ref (EV_A); /* child watcher */
3110     ev_signal_stop (EV_A_ &childev);
3111     }
3112     #endif
3113    
3114 root 1.288 if (ev_is_active (&pipe_w))
3115 root 1.207 {
3116 root 1.303 /*ev_ref (EV_A);*/
3117     /*ev_io_stop (EV_A_ &pipe_w);*/
3118 root 1.207
3119 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3120     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3121 root 1.207 }
3122    
3123 root 1.303 #if EV_USE_SIGNALFD
3124     if (ev_is_active (&sigfd_w))
3125 root 1.317 close (sigfd);
3126 root 1.303 #endif
3127    
3128 root 1.152 #if EV_USE_INOTIFY
3129     if (fs_fd >= 0)
3130     close (fs_fd);
3131     #endif
3132    
3133     if (backend_fd >= 0)
3134     close (backend_fd);
3135    
3136 root 1.357 #if EV_USE_IOCP
3137 root 1.490 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3138 root 1.357 #endif
3139 root 1.118 #if EV_USE_PORT
3140 root 1.490 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3141 root 1.118 #endif
3142 root 1.56 #if EV_USE_KQUEUE
3143 root 1.490 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3144     #endif
3145 root 1.501 #if EV_USE_IOURING
3146     if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3147     #endif
3148 root 1.490 #if EV_USE_LINUXAIO
3149     if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3150 root 1.56 #endif
3151     #if EV_USE_EPOLL
3152 root 1.490 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3153 root 1.56 #endif
3154 root 1.59 #if EV_USE_POLL
3155 root 1.490 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3156 root 1.56 #endif
3157     #if EV_USE_SELECT
3158 root 1.490 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3159 root 1.56 #endif
3160 root 1.1
3161 root 1.65 for (i = NUMPRI; i--; )
3162 root 1.164 {
3163     array_free (pending, [i]);
3164     #if EV_IDLE_ENABLE
3165     array_free (idle, [i]);
3166     #endif
3167     }
3168 root 1.65
3169 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
3170 root 1.186
3171 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
3172 root 1.284 array_free (rfeed, EMPTY);
3173 root 1.164 array_free (fdchange, EMPTY);
3174     array_free (timer, EMPTY);
3175 root 1.140 #if EV_PERIODIC_ENABLE
3176 root 1.164 array_free (periodic, EMPTY);
3177 root 1.93 #endif
3178 root 1.187 #if EV_FORK_ENABLE
3179     array_free (fork, EMPTY);
3180     #endif
3181 root 1.360 #if EV_CLEANUP_ENABLE
3182     array_free (cleanup, EMPTY);
3183     #endif
3184 root 1.164 array_free (prepare, EMPTY);
3185     array_free (check, EMPTY);
3186 root 1.209 #if EV_ASYNC_ENABLE
3187     array_free (async, EMPTY);
3188     #endif
3189 root 1.65
3190 root 1.130 backend = 0;
3191 root 1.359
3192     #if EV_MULTIPLICITY
3193     if (ev_is_default_loop (EV_A))
3194     #endif
3195     ev_default_loop_ptr = 0;
3196     #if EV_MULTIPLICITY
3197     else
3198     ev_free (EV_A);
3199     #endif
3200 root 1.56 }
3201 root 1.22
3202 root 1.226 #if EV_USE_INOTIFY
3203 root 1.284 inline_size void infy_fork (EV_P);
3204 root 1.226 #endif
3205 root 1.154
3206 root 1.284 inline_size void
3207 root 1.56 loop_fork (EV_P)
3208     {
3209 root 1.118 #if EV_USE_PORT
3210 root 1.490 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3211 root 1.56 #endif
3212     #if EV_USE_KQUEUE
3213 root 1.490 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3214     #endif
3215 root 1.501 #if EV_USE_IOURING
3216     if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3217     #endif
3218 root 1.490 #if EV_USE_LINUXAIO
3219     if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3220 root 1.45 #endif
3221 root 1.118 #if EV_USE_EPOLL
3222 root 1.490 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3223 root 1.118 #endif
3224 root 1.154 #if EV_USE_INOTIFY
3225     infy_fork (EV_A);
3226     #endif
3227 root 1.70
3228 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3229 root 1.478 if (ev_is_active (&pipe_w) && postfork != 2)
3230 root 1.70 {
3231 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3232 root 1.70
3233     ev_ref (EV_A);
3234 root 1.288 ev_io_stop (EV_A_ &pipe_w);
3235 root 1.220
3236     if (evpipe [0] >= 0)
3237 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
3238 root 1.207
3239     evpipe_init (EV_A);
3240 root 1.443 /* iterate over everything, in case we missed something before */
3241     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3242 root 1.448 }
3243 root 1.337 #endif
3244 root 1.70
3245     postfork = 0;
3246 root 1.1 }
3247    
3248 root 1.55 #if EV_MULTIPLICITY
3249 root 1.250
3250 root 1.480 ecb_cold
3251     struct ev_loop *
3252 root 1.486 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3253 root 1.54 {
3254 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3255 root 1.69
3256 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
3257 root 1.108 loop_init (EV_A_ flags);
3258 root 1.56
3259 root 1.130 if (ev_backend (EV_A))
3260 root 1.306 return EV_A;
3261 root 1.54
3262 root 1.359 ev_free (EV_A);
3263 root 1.55 return 0;
3264 root 1.54 }
3265    
3266 root 1.297 #endif /* multiplicity */
3267 root 1.248
3268     #if EV_VERIFY
3269 root 1.500 ecb_noinline ecb_cold
3270 root 1.480 static void
3271 root 1.251 verify_watcher (EV_P_ W w)
3272     {
3273 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3274 root 1.251
3275     if (w->pending)
3276 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3277 root 1.251 }
3278    
3279 root 1.500 ecb_noinline ecb_cold
3280 root 1.480 static void
3281 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
3282     {
3283     int i;
3284    
3285     for (i = HEAP0; i < N + HEAP0; ++i)
3286     {
3287 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3288     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3289     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3290 root 1.251
3291     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3292     }
3293     }
3294    
3295 root 1.500 ecb_noinline ecb_cold
3296 root 1.480 static void
3297 root 1.251 array_verify (EV_P_ W *ws, int cnt)
3298 root 1.248 {
3299     while (cnt--)
3300 root 1.251 {
3301 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3302 root 1.251 verify_watcher (EV_A_ ws [cnt]);
3303     }
3304 root 1.248 }
3305 root 1.250 #endif
3306 root 1.248
3307 root 1.338 #if EV_FEATURE_API
3308 root 1.379 void ecb_cold
3309 root 1.486 ev_verify (EV_P) EV_NOEXCEPT
3310 root 1.248 {
3311 root 1.250 #if EV_VERIFY
3312 root 1.429 int i;
3313 root 1.426 WL w, w2;
3314 root 1.251
3315     assert (activecnt >= -1);
3316    
3317     assert (fdchangemax >= fdchangecnt);
3318     for (i = 0; i < fdchangecnt; ++i)
3319 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3320 root 1.251
3321     assert (anfdmax >= 0);
3322 root 1.429 for (i = 0; i < anfdmax; ++i)
3323     {
3324     int j = 0;
3325    
3326     for (w = w2 = anfds [i].head; w; w = w->next)
3327     {
3328     verify_watcher (EV_A_ (W)w);
3329 root 1.426
3330 root 1.429 if (j++ & 1)
3331     {
3332     assert (("libev: io watcher list contains a loop", w != w2));
3333     w2 = w2->next;
3334     }
3335 root 1.426
3336 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3337     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3338     }
3339     }
3340 root 1.251
3341     assert (timermax >= timercnt);
3342     verify_heap (EV_A_ timers, timercnt);
3343 root 1.248
3344     #if EV_PERIODIC_ENABLE
3345 root 1.251 assert (periodicmax >= periodiccnt);
3346     verify_heap (EV_A_ periodics, periodiccnt);
3347 root 1.248 #endif
3348    
3349 root 1.251 for (i = NUMPRI; i--; )
3350     {
3351     assert (pendingmax [i] >= pendingcnt [i]);
3352 root 1.248 #if EV_IDLE_ENABLE
3353 root 1.252 assert (idleall >= 0);
3354 root 1.251 assert (idlemax [i] >= idlecnt [i]);
3355     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3356 root 1.248 #endif
3357 root 1.251 }
3358    
3359 root 1.248 #if EV_FORK_ENABLE
3360 root 1.251 assert (forkmax >= forkcnt);
3361     array_verify (EV_A_ (W *)forks, forkcnt);
3362 root 1.248 #endif
3363 root 1.251
3364 root 1.360 #if EV_CLEANUP_ENABLE
3365     assert (cleanupmax >= cleanupcnt);
3366     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3367     #endif
3368    
3369 root 1.250 #if EV_ASYNC_ENABLE
3370 root 1.251 assert (asyncmax >= asynccnt);
3371     array_verify (EV_A_ (W *)asyncs, asynccnt);
3372 root 1.250 #endif
3373 root 1.251
3374 root 1.337 #if EV_PREPARE_ENABLE
3375 root 1.251 assert (preparemax >= preparecnt);
3376     array_verify (EV_A_ (W *)prepares, preparecnt);
3377 root 1.337 #endif
3378 root 1.251
3379 root 1.337 #if EV_CHECK_ENABLE
3380 root 1.251 assert (checkmax >= checkcnt);
3381     array_verify (EV_A_ (W *)checks, checkcnt);
3382 root 1.337 #endif
3383 root 1.251
3384     # if 0
3385 root 1.336 #if EV_CHILD_ENABLE
3386 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3387 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3388 root 1.336 #endif
3389 root 1.251 # endif
3390 root 1.248 #endif
3391     }
3392 root 1.297 #endif
3393 root 1.56
3394     #if EV_MULTIPLICITY
3395 root 1.480 ecb_cold
3396     struct ev_loop *
3397 root 1.54 #else
3398     int
3399 root 1.358 #endif
3400 root 1.486 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3401 root 1.54 {
3402 root 1.116 if (!ev_default_loop_ptr)
3403 root 1.56 {
3404     #if EV_MULTIPLICITY
3405 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
3406 root 1.56 #else
3407 ayin 1.117 ev_default_loop_ptr = 1;
3408 root 1.54 #endif
3409    
3410 root 1.110 loop_init (EV_A_ flags);
3411 root 1.56
3412 root 1.130 if (ev_backend (EV_A))
3413 root 1.56 {
3414 root 1.336 #if EV_CHILD_ENABLE
3415 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
3416     ev_set_priority (&childev, EV_MAXPRI);
3417     ev_signal_start (EV_A_ &childev);
3418     ev_unref (EV_A); /* child watcher should not keep loop alive */
3419     #endif
3420     }
3421     else
3422 root 1.116 ev_default_loop_ptr = 0;
3423 root 1.56 }
3424 root 1.8
3425 root 1.116 return ev_default_loop_ptr;
3426 root 1.1 }
3427    
3428 root 1.24 void
3429 root 1.486 ev_loop_fork (EV_P) EV_NOEXCEPT
3430 root 1.1 {
3431 root 1.440 postfork = 1;
3432 root 1.1 }
3433    
3434 root 1.8 /*****************************************************************************/
3435    
3436 root 1.168 void
3437     ev_invoke (EV_P_ void *w, int revents)
3438     {
3439     EV_CB_INVOKE ((W)w, revents);
3440     }
3441    
3442 root 1.300 unsigned int
3443 root 1.486 ev_pending_count (EV_P) EV_NOEXCEPT
3444 root 1.300 {
3445     int pri;
3446     unsigned int count = 0;
3447    
3448     for (pri = NUMPRI; pri--; )
3449     count += pendingcnt [pri];
3450    
3451     return count;
3452     }
3453    
3454 root 1.500 ecb_noinline
3455 root 1.480 void
3456 root 1.296 ev_invoke_pending (EV_P)
3457 root 1.1 {
3458 root 1.445 pendingpri = NUMPRI;
3459    
3460 root 1.484 do
3461 root 1.445 {
3462     --pendingpri;
3463    
3464 root 1.484 /* pendingpri possibly gets modified in the inner loop */
3465 root 1.445 while (pendingcnt [pendingpri])
3466     {
3467     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3468 root 1.1
3469 root 1.445 p->w->pending = 0;
3470     EV_CB_INVOKE (p->w, p->events);
3471     EV_FREQUENT_CHECK;
3472     }
3473     }
3474 root 1.484 while (pendingpri);
3475 root 1.1 }
3476    
3477 root 1.234 #if EV_IDLE_ENABLE
3478 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3479     /* only when higher priorities are idle" logic */
3480 root 1.284 inline_size void
3481 root 1.234 idle_reify (EV_P)
3482     {
3483 root 1.500 if (ecb_expect_false (idleall))
3484 root 1.234 {
3485     int pri;
3486    
3487     for (pri = NUMPRI; pri--; )
3488     {
3489     if (pendingcnt [pri])
3490     break;
3491    
3492     if (idlecnt [pri])
3493     {
3494     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3495     break;
3496     }
3497     }
3498     }
3499     }
3500     #endif
3501    
3502 root 1.288 /* make timers pending */
3503 root 1.284 inline_size void
3504 root 1.51 timers_reify (EV_P)
3505 root 1.1 {
3506 root 1.248 EV_FREQUENT_CHECK;
3507    
3508 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3509 root 1.1 {
3510 root 1.284 do
3511     {
3512     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3513 root 1.1
3514 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3515    
3516     /* first reschedule or stop timer */
3517     if (w->repeat)
3518     {
3519     ev_at (w) += w->repeat;
3520     if (ev_at (w) < mn_now)
3521     ev_at (w) = mn_now;
3522 root 1.61
3523 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3524 root 1.90
3525 root 1.284 ANHE_at_cache (timers [HEAP0]);
3526     downheap (timers, timercnt, HEAP0);
3527     }
3528     else
3529     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3530 root 1.243
3531 root 1.284 EV_FREQUENT_CHECK;
3532     feed_reverse (EV_A_ (W)w);
3533 root 1.12 }
3534 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3535 root 1.30
3536 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3537 root 1.12 }
3538     }
3539 root 1.4
3540 root 1.140 #if EV_PERIODIC_ENABLE
3541 root 1.370
3542 root 1.500 ecb_noinline
3543 root 1.480 static void
3544 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3545     {
3546 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3547     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3548    
3549     /* the above almost always errs on the low side */
3550     while (at <= ev_rt_now)
3551     {
3552     ev_tstamp nat = at + w->interval;
3553    
3554     /* when resolution fails us, we use ev_rt_now */
3555 root 1.500 if (ecb_expect_false (nat == at))
3556 root 1.373 {
3557     at = ev_rt_now;
3558     break;
3559     }
3560    
3561     at = nat;
3562     }
3563    
3564     ev_at (w) = at;
3565 root 1.370 }
3566    
3567 root 1.288 /* make periodics pending */
3568 root 1.284 inline_size void
3569 root 1.51 periodics_reify (EV_P)
3570 root 1.12 {
3571 root 1.248 EV_FREQUENT_CHECK;
3572 root 1.250
3573 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3574 root 1.12 {
3575 root 1.284 do
3576     {
3577     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3578 root 1.1
3579 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3580 root 1.61
3581 root 1.284 /* first reschedule or stop timer */
3582     if (w->reschedule_cb)
3583     {
3584     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3585 root 1.243
3586 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3587 root 1.243
3588 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3589     downheap (periodics, periodiccnt, HEAP0);
3590     }
3591     else if (w->interval)
3592 root 1.246 {
3593 root 1.370 periodic_recalc (EV_A_ w);
3594 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3595     downheap (periodics, periodiccnt, HEAP0);
3596 root 1.246 }
3597 root 1.284 else
3598     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3599 root 1.243
3600 root 1.284 EV_FREQUENT_CHECK;
3601     feed_reverse (EV_A_ (W)w);
3602 root 1.1 }
3603 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3604 root 1.12
3605 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3606 root 1.12 }
3607     }
3608    
3609 root 1.288 /* simply recalculate all periodics */
3610 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3611 root 1.500 ecb_noinline ecb_cold
3612 root 1.480 static void
3613 root 1.54 periodics_reschedule (EV_P)
3614 root 1.12 {
3615     int i;
3616    
3617 root 1.13 /* adjust periodics after time jump */
3618 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3619 root 1.12 {
3620 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3621 root 1.12
3622 root 1.77 if (w->reschedule_cb)
3623 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3624 root 1.77 else if (w->interval)
3625 root 1.370 periodic_recalc (EV_A_ w);
3626 root 1.242
3627 root 1.248 ANHE_at_cache (periodics [i]);
3628 root 1.77 }
3629 root 1.12
3630 root 1.248 reheap (periodics, periodiccnt);
3631 root 1.1 }
3632 root 1.93 #endif
3633 root 1.1
3634 root 1.288 /* adjust all timers by a given offset */
3635 root 1.500 ecb_noinline ecb_cold
3636 root 1.480 static void
3637 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3638     {
3639     int i;
3640    
3641     for (i = 0; i < timercnt; ++i)
3642     {
3643     ANHE *he = timers + i + HEAP0;
3644     ANHE_w (*he)->at += adjust;
3645     ANHE_at_cache (*he);
3646     }
3647     }
3648    
3649 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3650 root 1.324 /* also detect if there was a timejump, and act accordingly */
3651 root 1.284 inline_speed void
3652 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3653 root 1.4 {
3654 root 1.40 #if EV_USE_MONOTONIC
3655 root 1.500 if (ecb_expect_true (have_monotonic))
3656 root 1.40 {
3657 root 1.289 int i;
3658 root 1.178 ev_tstamp odiff = rtmn_diff;
3659    
3660     mn_now = get_clock ();
3661    
3662     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3663     /* interpolate in the meantime */
3664 root 1.500 if (ecb_expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3665 root 1.40 {
3666 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3667     return;
3668     }
3669    
3670     now_floor = mn_now;
3671     ev_rt_now = ev_time ();
3672 root 1.4
3673 root 1.178 /* loop a few times, before making important decisions.
3674     * on the choice of "4": one iteration isn't enough,
3675     * in case we get preempted during the calls to
3676     * ev_time and get_clock. a second call is almost guaranteed
3677     * to succeed in that case, though. and looping a few more times
3678     * doesn't hurt either as we only do this on time-jumps or
3679     * in the unlikely event of having been preempted here.
3680     */
3681     for (i = 4; --i; )
3682     {
3683 root 1.373 ev_tstamp diff;
3684 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3685 root 1.4
3686 root 1.373 diff = odiff - rtmn_diff;
3687    
3688 root 1.500 if (ecb_expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3689 root 1.178 return; /* all is well */
3690 root 1.4
3691 root 1.178 ev_rt_now = ev_time ();
3692     mn_now = get_clock ();
3693     now_floor = mn_now;
3694     }
3695 root 1.4
3696 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3697     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3698 root 1.140 # if EV_PERIODIC_ENABLE
3699 root 1.178 periodics_reschedule (EV_A);
3700 root 1.93 # endif
3701 root 1.4 }
3702     else
3703 root 1.40 #endif
3704 root 1.4 {
3705 root 1.85 ev_rt_now = ev_time ();
3706 root 1.40
3707 root 1.500 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3708 root 1.13 {
3709 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3710     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3711 root 1.140 #if EV_PERIODIC_ENABLE
3712 root 1.54 periodics_reschedule (EV_A);
3713 root 1.93 #endif
3714 root 1.13 }
3715 root 1.4
3716 root 1.85 mn_now = ev_rt_now;
3717 root 1.4 }
3718     }
3719    
3720 root 1.418 int
3721 root 1.353 ev_run (EV_P_ int flags)
3722 root 1.1 {
3723 root 1.338 #if EV_FEATURE_API
3724 root 1.294 ++loop_depth;
3725 root 1.297 #endif
3726 root 1.294
3727 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3728 root 1.298
3729 root 1.353 loop_done = EVBREAK_CANCEL;
3730 root 1.1
3731 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3732 root 1.158
3733 root 1.161 do
3734 root 1.9 {
3735 root 1.250 #if EV_VERIFY >= 2
3736 root 1.340 ev_verify (EV_A);
3737 root 1.250 #endif
3738    
3739 root 1.158 #ifndef _WIN32
3740 root 1.500 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
3741     if (ecb_expect_false (getpid () != curpid))
3742 root 1.158 {
3743     curpid = getpid ();
3744     postfork = 1;
3745     }
3746     #endif
3747    
3748 root 1.157 #if EV_FORK_ENABLE
3749     /* we might have forked, so queue fork handlers */
3750 root 1.500 if (ecb_expect_false (postfork))
3751 root 1.157 if (forkcnt)
3752     {
3753     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3754 root 1.297 EV_INVOKE_PENDING;
3755 root 1.157 }
3756     #endif
3757 root 1.147
3758 root 1.337 #if EV_PREPARE_ENABLE
3759 root 1.170 /* queue prepare watchers (and execute them) */
3760 root 1.500 if (ecb_expect_false (preparecnt))
3761 root 1.20 {
3762 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3763 root 1.297 EV_INVOKE_PENDING;
3764 root 1.20 }
3765 root 1.337 #endif
3766 root 1.9
3767 root 1.500 if (ecb_expect_false (loop_done))
3768 root 1.298 break;
3769    
3770 root 1.70 /* we might have forked, so reify kernel state if necessary */
3771 root 1.500 if (ecb_expect_false (postfork))
3772 root 1.70 loop_fork (EV_A);
3773    
3774 root 1.1 /* update fd-related kernel structures */
3775 root 1.51 fd_reify (EV_A);
3776 root 1.1
3777     /* calculate blocking time */
3778 root 1.135 {
3779 root 1.193 ev_tstamp waittime = 0.;
3780     ev_tstamp sleeptime = 0.;
3781 root 1.12
3782 root 1.353 /* remember old timestamp for io_blocktime calculation */
3783     ev_tstamp prev_mn_now = mn_now;
3784 root 1.293
3785 root 1.353 /* update time to cancel out callback processing overhead */
3786     time_update (EV_A_ 1e100);
3787 root 1.135
3788 root 1.378 /* from now on, we want a pipe-wake-up */
3789     pipe_write_wanted = 1;
3790    
3791 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3792 root 1.383
3793 root 1.500 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3794 root 1.353 {
3795 root 1.287 waittime = MAX_BLOCKTIME;
3796    
3797 root 1.135 if (timercnt)
3798     {
3799 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3800 root 1.193 if (waittime > to) waittime = to;
3801 root 1.135 }
3802 root 1.4
3803 root 1.140 #if EV_PERIODIC_ENABLE
3804 root 1.135 if (periodiccnt)
3805     {
3806 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3807 root 1.193 if (waittime > to) waittime = to;
3808 root 1.135 }
3809 root 1.93 #endif
3810 root 1.4
3811 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3812 root 1.500 if (ecb_expect_false (waittime < timeout_blocktime))
3813 root 1.193 waittime = timeout_blocktime;
3814    
3815 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3816     /* to pass a minimum nonzero value to the backend */
3817 root 1.500 if (ecb_expect_false (waittime < backend_mintime))
3818 root 1.377 waittime = backend_mintime;
3819    
3820 root 1.293 /* extra check because io_blocktime is commonly 0 */
3821 root 1.500 if (ecb_expect_false (io_blocktime))
3822 root 1.293 {
3823     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3824 root 1.193
3825 root 1.376 if (sleeptime > waittime - backend_mintime)
3826     sleeptime = waittime - backend_mintime;
3827 root 1.193
3828 root 1.500 if (ecb_expect_true (sleeptime > 0.))
3829 root 1.293 {
3830     ev_sleep (sleeptime);
3831     waittime -= sleeptime;
3832     }
3833 root 1.193 }
3834 root 1.135 }
3835 root 1.1
3836 root 1.338 #if EV_FEATURE_API
3837 root 1.162 ++loop_count;
3838 root 1.297 #endif
3839 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3840 root 1.193 backend_poll (EV_A_ waittime);
3841 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3842 root 1.178
3843 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3844 root 1.378
3845 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3846 root 1.378 if (pipe_write_skipped)
3847     {
3848     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3849     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3850     }
3851    
3852 root 1.178 /* update ev_rt_now, do magic */
3853 root 1.193 time_update (EV_A_ waittime + sleeptime);
3854 root 1.135 }
3855 root 1.1
3856 root 1.9 /* queue pending timers and reschedule them */
3857 root 1.51 timers_reify (EV_A); /* relative timers called last */
3858 root 1.140 #if EV_PERIODIC_ENABLE
3859 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3860 root 1.93 #endif
3861 root 1.1
3862 root 1.164 #if EV_IDLE_ENABLE
3863 root 1.137 /* queue idle watchers unless other events are pending */
3864 root 1.164 idle_reify (EV_A);
3865     #endif
3866 root 1.9
3867 root 1.337 #if EV_CHECK_ENABLE
3868 root 1.20 /* queue check watchers, to be executed first */
3869 root 1.500 if (ecb_expect_false (checkcnt))
3870 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3871 root 1.337 #endif
3872 root 1.9
3873 root 1.297 EV_INVOKE_PENDING;
3874 root 1.1 }
3875 root 1.500 while (ecb_expect_true (
3876 root 1.219 activecnt
3877     && !loop_done
3878 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3879 root 1.219 ));
3880 root 1.13
3881 root 1.353 if (loop_done == EVBREAK_ONE)
3882     loop_done = EVBREAK_CANCEL;
3883 root 1.294
3884 root 1.338 #if EV_FEATURE_API
3885 root 1.294 --loop_depth;
3886 root 1.297 #endif
3887 root 1.418
3888     return activecnt;
3889 root 1.51 }
3890    
3891     void
3892 root 1.486 ev_break (EV_P_ int how) EV_NOEXCEPT
3893 root 1.51 {
3894     loop_done = how;
3895 root 1.1 }
3896    
3897 root 1.285 void
3898 root 1.486 ev_ref (EV_P) EV_NOEXCEPT
3899 root 1.285 {
3900     ++activecnt;
3901     }
3902    
3903     void
3904 root 1.486 ev_unref (EV_P) EV_NOEXCEPT
3905 root 1.285 {
3906     --activecnt;
3907     }
3908    
3909     void
3910 root 1.486 ev_now_update (EV_P) EV_NOEXCEPT
3911 root 1.285 {
3912     time_update (EV_A_ 1e100);
3913     }
3914    
3915     void
3916 root 1.486 ev_suspend (EV_P) EV_NOEXCEPT
3917 root 1.285 {
3918     ev_now_update (EV_A);
3919     }
3920    
3921     void
3922 root 1.486 ev_resume (EV_P) EV_NOEXCEPT
3923 root 1.285 {
3924     ev_tstamp mn_prev = mn_now;
3925    
3926     ev_now_update (EV_A);
3927     timers_reschedule (EV_A_ mn_now - mn_prev);
3928 root 1.286 #if EV_PERIODIC_ENABLE
3929 root 1.288 /* TODO: really do this? */
3930 root 1.285 periodics_reschedule (EV_A);
3931 root 1.286 #endif
3932 root 1.285 }
3933    
3934 root 1.8 /*****************************************************************************/
3935 root 1.288 /* singly-linked list management, used when the expected list length is short */
3936 root 1.8
3937 root 1.284 inline_size void
3938 root 1.10 wlist_add (WL *head, WL elem)
3939 root 1.1 {
3940     elem->next = *head;
3941     *head = elem;
3942     }
3943    
3944 root 1.284 inline_size void
3945 root 1.10 wlist_del (WL *head, WL elem)
3946 root 1.1 {
3947     while (*head)
3948     {
3949 root 1.500 if (ecb_expect_true (*head == elem))
3950 root 1.1 {
3951     *head = elem->next;
3952 root 1.307 break;
3953 root 1.1 }
3954    
3955     head = &(*head)->next;
3956     }
3957     }
3958    
3959 root 1.288 /* internal, faster, version of ev_clear_pending */
3960 root 1.284 inline_speed void
3961 root 1.166 clear_pending (EV_P_ W w)
3962 root 1.16 {
3963     if (w->pending)
3964     {
3965 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3966 root 1.16 w->pending = 0;
3967     }
3968     }
3969    
3970 root 1.167 int
3971 root 1.486 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3972 root 1.166 {
3973     W w_ = (W)w;
3974     int pending = w_->pending;
3975    
3976 root 1.500 if (ecb_expect_true (pending))
3977 root 1.172 {
3978     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3979 root 1.288 p->w = (W)&pending_w;
3980 root 1.172 w_->pending = 0;
3981     return p->events;
3982     }
3983     else
3984 root 1.167 return 0;
3985 root 1.166 }
3986    
3987 root 1.284 inline_size void
3988 root 1.164 pri_adjust (EV_P_ W w)
3989     {
3990 root 1.295 int pri = ev_priority (w);
3991 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3992     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3993 root 1.295 ev_set_priority (w, pri);
3994 root 1.164 }
3995    
3996 root 1.284 inline_speed void
3997 root 1.51 ev_start (EV_P_ W w, int active)
3998 root 1.1 {
3999 root 1.164 pri_adjust (EV_A_ w);
4000 root 1.1 w->active = active;
4001 root 1.51 ev_ref (EV_A);
4002 root 1.1 }
4003    
4004 root 1.284 inline_size void
4005 root 1.51 ev_stop (EV_P_ W w)
4006 root 1.1 {
4007 root 1.51 ev_unref (EV_A);
4008 root 1.1 w->active = 0;
4009     }
4010    
4011 root 1.8 /*****************************************************************************/
4012    
4013 root 1.500 ecb_noinline
4014 root 1.480 void
4015 root 1.486 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4016 root 1.1 {
4017 root 1.37 int fd = w->fd;
4018    
4019 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4020 root 1.1 return;
4021    
4022 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4023 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4024 root 1.33
4025 root 1.498 #if EV_VERIFY >= 2
4026     assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4027     #endif
4028 root 1.248 EV_FREQUENT_CHECK;
4029    
4030 root 1.51 ev_start (EV_A_ (W)w, 1);
4031 root 1.490 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4032 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
4033 root 1.1
4034 root 1.426 /* common bug, apparently */
4035     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4036    
4037 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4038 root 1.281 w->events &= ~EV__IOFDSET;
4039 root 1.248
4040     EV_FREQUENT_CHECK;
4041 root 1.1 }
4042    
4043 root 1.500 ecb_noinline
4044 root 1.480 void
4045 root 1.486 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4046 root 1.1 {
4047 root 1.166 clear_pending (EV_A_ (W)w);
4048 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4049 root 1.1 return;
4050    
4051 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4052 root 1.89
4053 root 1.498 #if EV_VERIFY >= 2
4054     assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4055     #endif
4056 root 1.248 EV_FREQUENT_CHECK;
4057    
4058 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
4059 root 1.51 ev_stop (EV_A_ (W)w);
4060 root 1.1
4061 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4062 root 1.248
4063     EV_FREQUENT_CHECK;
4064 root 1.1 }
4065    
4066 root 1.500 ecb_noinline
4067 root 1.480 void
4068 root 1.486 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4069 root 1.1 {
4070 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4071 root 1.1 return;
4072    
4073 root 1.228 ev_at (w) += mn_now;
4074 root 1.12
4075 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4076 root 1.13
4077 root 1.248 EV_FREQUENT_CHECK;
4078    
4079     ++timercnt;
4080     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4081 root 1.490 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4082 root 1.241 ANHE_w (timers [ev_active (w)]) = (WT)w;
4083 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
4084 root 1.235 upheap (timers, ev_active (w));
4085 root 1.62
4086 root 1.248 EV_FREQUENT_CHECK;
4087    
4088 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4089 root 1.12 }
4090    
4091 root 1.500 ecb_noinline
4092 root 1.480 void
4093 root 1.486 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4094 root 1.12 {
4095 root 1.166 clear_pending (EV_A_ (W)w);
4096 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4097 root 1.12 return;
4098    
4099 root 1.248 EV_FREQUENT_CHECK;
4100    
4101 root 1.230 {
4102     int active = ev_active (w);
4103 root 1.62
4104 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4105 root 1.151
4106 root 1.248 --timercnt;
4107    
4108 root 1.500 if (ecb_expect_true (active < timercnt + HEAP0))
4109 root 1.151 {
4110 root 1.248 timers [active] = timers [timercnt + HEAP0];
4111 root 1.181 adjustheap (timers, timercnt, active);
4112 root 1.151 }
4113 root 1.248 }
4114 root 1.228
4115     ev_at (w) -= mn_now;
4116 root 1.14
4117 root 1.51 ev_stop (EV_A_ (W)w);
4118 root 1.328
4119     EV_FREQUENT_CHECK;
4120 root 1.12 }
4121 root 1.4
4122 root 1.500 ecb_noinline
4123 root 1.480 void
4124 root 1.486 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4125 root 1.14 {
4126 root 1.248 EV_FREQUENT_CHECK;
4127    
4128 root 1.407 clear_pending (EV_A_ (W)w);
4129 root 1.406
4130 root 1.14 if (ev_is_active (w))
4131     {
4132     if (w->repeat)
4133 root 1.99 {
4134 root 1.228 ev_at (w) = mn_now + w->repeat;
4135 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
4136 root 1.230 adjustheap (timers, timercnt, ev_active (w));
4137 root 1.99 }
4138 root 1.14 else
4139 root 1.51 ev_timer_stop (EV_A_ w);
4140 root 1.14 }
4141     else if (w->repeat)
4142 root 1.112 {
4143 root 1.229 ev_at (w) = w->repeat;
4144 root 1.112 ev_timer_start (EV_A_ w);
4145     }
4146 root 1.248
4147     EV_FREQUENT_CHECK;
4148 root 1.14 }
4149    
4150 root 1.301 ev_tstamp
4151 root 1.486 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4152 root 1.301 {
4153     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4154     }
4155    
4156 root 1.140 #if EV_PERIODIC_ENABLE
4157 root 1.500 ecb_noinline
4158 root 1.480 void
4159 root 1.486 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4160 root 1.12 {
4161 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4162 root 1.12 return;
4163 root 1.1
4164 root 1.77 if (w->reschedule_cb)
4165 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4166 root 1.77 else if (w->interval)
4167     {
4168 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4169 root 1.370 periodic_recalc (EV_A_ w);
4170 root 1.77 }
4171 root 1.173 else
4172 root 1.228 ev_at (w) = w->offset;
4173 root 1.12
4174 root 1.248 EV_FREQUENT_CHECK;
4175    
4176     ++periodiccnt;
4177     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4178 root 1.490 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4179 root 1.241 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4180 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
4181 root 1.235 upheap (periodics, ev_active (w));
4182 root 1.62
4183 root 1.248 EV_FREQUENT_CHECK;
4184    
4185 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4186 root 1.1 }
4187    
4188 root 1.500 ecb_noinline
4189 root 1.480 void
4190 root 1.486 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4191 root 1.1 {
4192 root 1.166 clear_pending (EV_A_ (W)w);
4193 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4194 root 1.1 return;
4195    
4196 root 1.248 EV_FREQUENT_CHECK;
4197    
4198 root 1.230 {
4199     int active = ev_active (w);
4200 root 1.62
4201 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4202 root 1.151
4203 root 1.248 --periodiccnt;
4204    
4205 root 1.500 if (ecb_expect_true (active < periodiccnt + HEAP0))
4206 root 1.151 {
4207 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
4208 root 1.181 adjustheap (periodics, periodiccnt, active);
4209 root 1.151 }
4210 root 1.248 }
4211 root 1.228
4212 root 1.328 ev_stop (EV_A_ (W)w);
4213    
4214 root 1.248 EV_FREQUENT_CHECK;
4215 root 1.1 }
4216    
4217 root 1.500 ecb_noinline
4218 root 1.480 void
4219 root 1.486 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4220 root 1.77 {
4221 root 1.84 /* TODO: use adjustheap and recalculation */
4222 root 1.77 ev_periodic_stop (EV_A_ w);
4223     ev_periodic_start (EV_A_ w);
4224     }
4225 root 1.93 #endif
4226 root 1.77
4227 root 1.56 #ifndef SA_RESTART
4228     # define SA_RESTART 0
4229     #endif
4230    
4231 root 1.336 #if EV_SIGNAL_ENABLE
4232    
4233 root 1.500 ecb_noinline
4234 root 1.480 void
4235 root 1.486 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4236 root 1.56 {
4237 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4238 root 1.56 return;
4239    
4240 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4241    
4242     #if EV_MULTIPLICITY
4243 root 1.308 assert (("libev: a signal must not be attached to two different loops",
4244 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4245    
4246     signals [w->signum - 1].loop = EV_A;
4247 root 1.449 ECB_MEMORY_FENCE_RELEASE;
4248 root 1.306 #endif
4249 root 1.56
4250 root 1.303 EV_FREQUENT_CHECK;
4251    
4252     #if EV_USE_SIGNALFD
4253     if (sigfd == -2)
4254     {
4255     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4256     if (sigfd < 0 && errno == EINVAL)
4257     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4258    
4259     if (sigfd >= 0)
4260     {
4261     fd_intern (sigfd); /* doing it twice will not hurt */
4262    
4263     sigemptyset (&sigfd_set);
4264    
4265     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4266     ev_set_priority (&sigfd_w, EV_MAXPRI);
4267     ev_io_start (EV_A_ &sigfd_w);
4268     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4269     }
4270     }
4271    
4272     if (sigfd >= 0)
4273     {
4274     /* TODO: check .head */
4275     sigaddset (&sigfd_set, w->signum);
4276     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4277 root 1.207
4278 root 1.303 signalfd (sigfd, &sigfd_set, 0);
4279     }
4280 root 1.180 #endif
4281    
4282 root 1.56 ev_start (EV_A_ (W)w, 1);
4283 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
4284 root 1.56
4285 root 1.63 if (!((WL)w)->next)
4286 root 1.304 # if EV_USE_SIGNALFD
4287 root 1.306 if (sigfd < 0) /*TODO*/
4288 root 1.304 # endif
4289 root 1.306 {
4290 root 1.322 # ifdef _WIN32
4291 root 1.317 evpipe_init (EV_A);
4292    
4293 root 1.306 signal (w->signum, ev_sighandler);
4294     # else
4295     struct sigaction sa;
4296    
4297     evpipe_init (EV_A);
4298    
4299     sa.sa_handler = ev_sighandler;
4300     sigfillset (&sa.sa_mask);
4301     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4302     sigaction (w->signum, &sa, 0);
4303    
4304 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
4305     {
4306     sigemptyset (&sa.sa_mask);
4307     sigaddset (&sa.sa_mask, w->signum);
4308     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4309     }
4310 root 1.67 #endif
4311 root 1.306 }
4312 root 1.248
4313     EV_FREQUENT_CHECK;
4314 root 1.56 }
4315    
4316 root 1.500 ecb_noinline
4317 root 1.480 void
4318 root 1.486 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4319 root 1.56 {
4320 root 1.166 clear_pending (EV_A_ (W)w);
4321 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4322 root 1.56 return;
4323    
4324 root 1.248 EV_FREQUENT_CHECK;
4325    
4326 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
4327 root 1.56 ev_stop (EV_A_ (W)w);
4328    
4329     if (!signals [w->signum - 1].head)
4330 root 1.306 {
4331 root 1.307 #if EV_MULTIPLICITY
4332 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
4333 root 1.307 #endif
4334     #if EV_USE_SIGNALFD
4335 root 1.306 if (sigfd >= 0)
4336     {
4337 root 1.321 sigset_t ss;
4338    
4339     sigemptyset (&ss);
4340     sigaddset (&ss, w->signum);
4341 root 1.306 sigdelset (&sigfd_set, w->signum);
4342 root 1.321
4343 root 1.306 signalfd (sigfd, &sigfd_set, 0);
4344 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
4345 root 1.306 }
4346     else
4347 root 1.307 #endif
4348 root 1.306 signal (w->signum, SIG_DFL);
4349     }
4350 root 1.248
4351     EV_FREQUENT_CHECK;
4352 root 1.56 }
4353    
4354 root 1.336 #endif
4355    
4356     #if EV_CHILD_ENABLE
4357    
4358 root 1.28 void
4359 root 1.486 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4360 root 1.22 {
4361 root 1.56 #if EV_MULTIPLICITY
4362 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4363 root 1.56 #endif
4364 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4365 root 1.22 return;
4366    
4367 root 1.248 EV_FREQUENT_CHECK;
4368    
4369 root 1.51 ev_start (EV_A_ (W)w, 1);
4370 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4371 root 1.248
4372     EV_FREQUENT_CHECK;
4373 root 1.22 }
4374    
4375 root 1.28 void
4376 root 1.486 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4377 root 1.22 {
4378 root 1.166 clear_pending (EV_A_ (W)w);
4379 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4380 root 1.22 return;
4381    
4382 root 1.248 EV_FREQUENT_CHECK;
4383    
4384 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4385 root 1.51 ev_stop (EV_A_ (W)w);
4386 root 1.248
4387     EV_FREQUENT_CHECK;
4388 root 1.22 }
4389    
4390 root 1.336 #endif
4391    
4392 root 1.140 #if EV_STAT_ENABLE
4393    
4394     # ifdef _WIN32
4395 root 1.146 # undef lstat
4396     # define lstat(a,b) _stati64 (a,b)
4397 root 1.140 # endif
4398    
4399 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
4400     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4401     #define MIN_STAT_INTERVAL 0.1074891
4402 root 1.143
4403 root 1.500 ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4404 root 1.152
4405     #if EV_USE_INOTIFY
4406 root 1.326
4407     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4408     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4409 root 1.152
4410 root 1.500 ecb_noinline
4411 root 1.480 static void
4412 root 1.152 infy_add (EV_P_ ev_stat *w)
4413     {
4414 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
4415     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4416     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4417     | IN_DONT_FOLLOW | IN_MASK_ADD);
4418 root 1.152
4419 root 1.318 if (w->wd >= 0)
4420 root 1.152 {
4421 root 1.318 struct statfs sfs;
4422    
4423     /* now local changes will be tracked by inotify, but remote changes won't */
4424     /* unless the filesystem is known to be local, we therefore still poll */
4425     /* also do poll on <2.6.25, but with normal frequency */
4426    
4427     if (!fs_2625)
4428     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4429     else if (!statfs (w->path, &sfs)
4430     && (sfs.f_type == 0x1373 /* devfs */
4431 root 1.451 || sfs.f_type == 0x4006 /* fat */
4432     || sfs.f_type == 0x4d44 /* msdos */
4433 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
4434 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
4435     || sfs.f_type == 0x858458f6 /* ramfs */
4436     || sfs.f_type == 0x5346544e /* ntfs */
4437 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
4438 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
4439 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
4440 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
4441 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
4442     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4443     else
4444     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4445     }
4446     else
4447     {
4448     /* can't use inotify, continue to stat */
4449 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4450 root 1.152
4451 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
4452 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4453 root 1.233 /* but an efficiency issue only */
4454 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4455 root 1.152 {
4456 root 1.153 char path [4096];
4457 root 1.152 strcpy (path, w->path);
4458    
4459     do
4460     {
4461     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4462     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4463    
4464     char *pend = strrchr (path, '/');
4465    
4466 root 1.275 if (!pend || pend == path)
4467     break;
4468 root 1.152
4469     *pend = 0;
4470 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4471 root 1.372 }
4472 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4473     }
4474     }
4475 root 1.275
4476     if (w->wd >= 0)
4477 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4478 root 1.152
4479 root 1.318 /* now re-arm timer, if required */
4480     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4481     ev_timer_again (EV_A_ &w->timer);
4482     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4483 root 1.152 }
4484    
4485 root 1.500 ecb_noinline
4486 root 1.480 static void
4487 root 1.152 infy_del (EV_P_ ev_stat *w)
4488     {
4489     int slot;
4490     int wd = w->wd;
4491    
4492     if (wd < 0)
4493     return;
4494    
4495     w->wd = -2;
4496 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4497 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4498    
4499     /* remove this watcher, if others are watching it, they will rearm */
4500     inotify_rm_watch (fs_fd, wd);
4501     }
4502    
4503 root 1.500 ecb_noinline
4504 root 1.480 static void
4505 root 1.152 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4506     {
4507     if (slot < 0)
4508 root 1.264 /* overflow, need to check for all hash slots */
4509 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4510 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4511     else
4512     {
4513     WL w_;
4514    
4515 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4516 root 1.152 {
4517     ev_stat *w = (ev_stat *)w_;
4518     w_ = w_->next; /* lets us remove this watcher and all before it */
4519    
4520     if (w->wd == wd || wd == -1)
4521     {
4522     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4523     {
4524 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4525 root 1.152 w->wd = -1;
4526     infy_add (EV_A_ w); /* re-add, no matter what */
4527     }
4528    
4529 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4530 root 1.152 }
4531     }
4532     }
4533     }
4534    
4535     static void
4536     infy_cb (EV_P_ ev_io *w, int revents)
4537     {
4538     char buf [EV_INOTIFY_BUFSIZE];
4539     int ofs;
4540     int len = read (fs_fd, buf, sizeof (buf));
4541    
4542 root 1.326 for (ofs = 0; ofs < len; )
4543     {
4544     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4545     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4546     ofs += sizeof (struct inotify_event) + ev->len;
4547     }
4548 root 1.152 }
4549    
4550 root 1.480 inline_size ecb_cold
4551     void
4552 root 1.330 ev_check_2625 (EV_P)
4553     {
4554     /* kernels < 2.6.25 are borked
4555     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4556     */
4557     if (ev_linux_version () < 0x020619)
4558 root 1.273 return;
4559 root 1.264
4560 root 1.273 fs_2625 = 1;
4561     }
4562 root 1.264
4563 root 1.315 inline_size int
4564     infy_newfd (void)
4565     {
4566 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4567 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4568     if (fd >= 0)
4569     return fd;
4570     #endif
4571     return inotify_init ();
4572     }
4573    
4574 root 1.284 inline_size void
4575 root 1.273 infy_init (EV_P)
4576     {
4577     if (fs_fd != -2)
4578     return;
4579 root 1.264
4580 root 1.273 fs_fd = -1;
4581 root 1.264
4582 root 1.330 ev_check_2625 (EV_A);
4583 root 1.264
4584 root 1.315 fs_fd = infy_newfd ();
4585 root 1.152
4586     if (fs_fd >= 0)
4587     {
4588 root 1.315 fd_intern (fs_fd);
4589 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4590     ev_set_priority (&fs_w, EV_MAXPRI);
4591     ev_io_start (EV_A_ &fs_w);
4592 root 1.317 ev_unref (EV_A);
4593 root 1.152 }
4594     }
4595    
4596 root 1.284 inline_size void
4597 root 1.154 infy_fork (EV_P)
4598     {
4599     int slot;
4600    
4601     if (fs_fd < 0)
4602     return;
4603    
4604 root 1.317 ev_ref (EV_A);
4605 root 1.315 ev_io_stop (EV_A_ &fs_w);
4606 root 1.154 close (fs_fd);
4607 root 1.315 fs_fd = infy_newfd ();
4608    
4609     if (fs_fd >= 0)
4610     {
4611     fd_intern (fs_fd);
4612     ev_io_set (&fs_w, fs_fd, EV_READ);
4613     ev_io_start (EV_A_ &fs_w);
4614 root 1.317 ev_unref (EV_A);
4615 root 1.315 }
4616 root 1.154
4617 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4618 root 1.154 {
4619     WL w_ = fs_hash [slot].head;
4620     fs_hash [slot].head = 0;
4621    
4622     while (w_)
4623     {
4624     ev_stat *w = (ev_stat *)w_;
4625     w_ = w_->next; /* lets us add this watcher */
4626    
4627     w->wd = -1;
4628    
4629     if (fs_fd >= 0)
4630     infy_add (EV_A_ w); /* re-add, no matter what */
4631     else
4632 root 1.318 {
4633     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4634     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4635     ev_timer_again (EV_A_ &w->timer);
4636     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4637     }
4638 root 1.154 }
4639     }
4640     }
4641    
4642 root 1.152 #endif
4643    
4644 root 1.255 #ifdef _WIN32
4645     # define EV_LSTAT(p,b) _stati64 (p, b)
4646     #else
4647     # define EV_LSTAT(p,b) lstat (p, b)
4648     #endif
4649    
4650 root 1.140 void
4651 root 1.486 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4652 root 1.140 {
4653     if (lstat (w->path, &w->attr) < 0)
4654     w->attr.st_nlink = 0;
4655     else if (!w->attr.st_nlink)
4656     w->attr.st_nlink = 1;
4657     }
4658    
4659 root 1.500 ecb_noinline
4660 root 1.480 static void
4661 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4662     {
4663     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4664    
4665 root 1.320 ev_statdata prev = w->attr;
4666 root 1.140 ev_stat_stat (EV_A_ w);
4667    
4668 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4669     if (
4670 root 1.320 prev.st_dev != w->attr.st_dev
4671     || prev.st_ino != w->attr.st_ino
4672     || prev.st_mode != w->attr.st_mode
4673     || prev.st_nlink != w->attr.st_nlink
4674     || prev.st_uid != w->attr.st_uid
4675     || prev.st_gid != w->attr.st_gid
4676     || prev.st_rdev != w->attr.st_rdev
4677     || prev.st_size != w->attr.st_size
4678     || prev.st_atime != w->attr.st_atime
4679     || prev.st_mtime != w->attr.st_mtime
4680     || prev.st_ctime != w->attr.st_ctime
4681 root 1.156 ) {
4682 root 1.320 /* we only update w->prev on actual differences */
4683     /* in case we test more often than invoke the callback, */
4684     /* to ensure that prev is always different to attr */
4685     w->prev = prev;
4686    
4687 root 1.152 #if EV_USE_INOTIFY
4688 root 1.264 if (fs_fd >= 0)
4689     {
4690     infy_del (EV_A_ w);
4691     infy_add (EV_A_ w);
4692     ev_stat_stat (EV_A_ w); /* avoid race... */
4693     }
4694 root 1.152 #endif
4695    
4696     ev_feed_event (EV_A_ w, EV_STAT);
4697     }
4698 root 1.140 }
4699    
4700     void
4701 root 1.486 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4702 root 1.140 {
4703 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4704 root 1.140 return;
4705    
4706     ev_stat_stat (EV_A_ w);
4707    
4708 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4709     w->interval = MIN_STAT_INTERVAL;
4710 root 1.143
4711 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4712 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4713 root 1.152
4714     #if EV_USE_INOTIFY
4715     infy_init (EV_A);
4716    
4717     if (fs_fd >= 0)
4718     infy_add (EV_A_ w);
4719     else
4720     #endif
4721 root 1.318 {
4722     ev_timer_again (EV_A_ &w->timer);
4723     ev_unref (EV_A);
4724     }
4725 root 1.140
4726     ev_start (EV_A_ (W)w, 1);
4727 root 1.248
4728     EV_FREQUENT_CHECK;
4729 root 1.140 }
4730    
4731     void
4732 root 1.486 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4733 root 1.140 {
4734 root 1.166 clear_pending (EV_A_ (W)w);
4735 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4736 root 1.140 return;
4737    
4738 root 1.248 EV_FREQUENT_CHECK;
4739    
4740 root 1.152 #if EV_USE_INOTIFY
4741     infy_del (EV_A_ w);
4742     #endif
4743 root 1.318
4744     if (ev_is_active (&w->timer))
4745     {
4746     ev_ref (EV_A);
4747     ev_timer_stop (EV_A_ &w->timer);
4748     }
4749 root 1.140
4750 root 1.134 ev_stop (EV_A_ (W)w);
4751 root 1.248
4752     EV_FREQUENT_CHECK;
4753 root 1.134 }
4754     #endif
4755    
4756 root 1.164 #if EV_IDLE_ENABLE
4757 root 1.144 void
4758 root 1.486 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4759 root 1.144 {
4760 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4761 root 1.144 return;
4762    
4763 root 1.164 pri_adjust (EV_A_ (W)w);
4764    
4765 root 1.248 EV_FREQUENT_CHECK;
4766    
4767 root 1.164 {
4768     int active = ++idlecnt [ABSPRI (w)];
4769    
4770     ++idleall;
4771     ev_start (EV_A_ (W)w, active);
4772    
4773 root 1.490 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4774 root 1.164 idles [ABSPRI (w)][active - 1] = w;
4775     }
4776 root 1.248
4777     EV_FREQUENT_CHECK;
4778 root 1.144 }
4779    
4780     void
4781 root 1.486 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4782 root 1.144 {
4783 root 1.166 clear_pending (EV_A_ (W)w);
4784 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4785 root 1.144 return;
4786    
4787 root 1.248 EV_FREQUENT_CHECK;
4788    
4789 root 1.144 {
4790 root 1.230 int active = ev_active (w);
4791 root 1.164
4792     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4793 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4794 root 1.164
4795     ev_stop (EV_A_ (W)w);
4796     --idleall;
4797 root 1.144 }
4798 root 1.248
4799     EV_FREQUENT_CHECK;
4800 root 1.144 }
4801 root 1.164 #endif
4802 root 1.144
4803 root 1.337 #if EV_PREPARE_ENABLE
4804 root 1.144 void
4805 root 1.486 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4806 root 1.144 {
4807 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4808 root 1.144 return;
4809    
4810 root 1.248 EV_FREQUENT_CHECK;
4811    
4812 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4813 root 1.490 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4814 root 1.144 prepares [preparecnt - 1] = w;
4815 root 1.248
4816     EV_FREQUENT_CHECK;
4817 root 1.144 }
4818    
4819     void
4820 root 1.486 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4821 root 1.144 {
4822 root 1.166 clear_pending (EV_A_ (W)w);
4823 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4824 root 1.144 return;
4825    
4826 root 1.248 EV_FREQUENT_CHECK;
4827    
4828 root 1.144 {
4829 root 1.230 int active = ev_active (w);
4830    
4831 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4832 root 1.230 ev_active (prepares [active - 1]) = active;
4833 root 1.144 }
4834    
4835     ev_stop (EV_A_ (W)w);
4836 root 1.248
4837     EV_FREQUENT_CHECK;
4838 root 1.144 }
4839 root 1.337 #endif
4840 root 1.144
4841 root 1.337 #if EV_CHECK_ENABLE
4842 root 1.144 void
4843 root 1.486 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4844 root 1.144 {
4845 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4846 root 1.144 return;
4847    
4848 root 1.248 EV_FREQUENT_CHECK;
4849    
4850 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4851 root 1.490 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4852 root 1.144 checks [checkcnt - 1] = w;
4853 root 1.248
4854     EV_FREQUENT_CHECK;
4855 root 1.144 }
4856    
4857     void
4858 root 1.486 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4859 root 1.144 {
4860 root 1.166 clear_pending (EV_A_ (W)w);
4861 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4862 root 1.144 return;
4863    
4864 root 1.248 EV_FREQUENT_CHECK;
4865    
4866 root 1.144 {
4867 root 1.230 int active = ev_active (w);
4868    
4869 root 1.144 checks [active - 1] = checks [--checkcnt];
4870 root 1.230 ev_active (checks [active - 1]) = active;
4871 root 1.144 }
4872    
4873     ev_stop (EV_A_ (W)w);
4874 root 1.248
4875     EV_FREQUENT_CHECK;
4876 root 1.144 }
4877 root 1.337 #endif
4878 root 1.144
4879     #if EV_EMBED_ENABLE
4880 root 1.500 ecb_noinline
4881 root 1.480 void
4882 root 1.486 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4883 root 1.144 {
4884 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4885 root 1.144 }
4886    
4887     static void
4888 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4889 root 1.144 {
4890     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4891    
4892     if (ev_cb (w))
4893     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4894     else
4895 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4896 root 1.144 }
4897    
4898 root 1.189 static void
4899     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4900     {
4901     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4902    
4903 root 1.195 {
4904 root 1.306 EV_P = w->other;
4905 root 1.195
4906     while (fdchangecnt)
4907     {
4908     fd_reify (EV_A);
4909 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4910 root 1.195 }
4911     }
4912     }
4913    
4914 root 1.261 static void
4915     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4916     {
4917     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4918    
4919 root 1.277 ev_embed_stop (EV_A_ w);
4920    
4921 root 1.261 {
4922 root 1.306 EV_P = w->other;
4923 root 1.261
4924     ev_loop_fork (EV_A);
4925 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4926 root 1.261 }
4927 root 1.277
4928     ev_embed_start (EV_A_ w);
4929 root 1.261 }
4930    
4931 root 1.195 #if 0
4932     static void
4933     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4934     {
4935     ev_idle_stop (EV_A_ idle);
4936 root 1.189 }
4937 root 1.195 #endif
4938 root 1.189
4939 root 1.144 void
4940 root 1.486 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4941 root 1.144 {
4942 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4943 root 1.144 return;
4944    
4945     {
4946 root 1.306 EV_P = w->other;
4947 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4948 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4949 root 1.144 }
4950    
4951 root 1.248 EV_FREQUENT_CHECK;
4952    
4953 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4954     ev_io_start (EV_A_ &w->io);
4955    
4956 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4957     ev_set_priority (&w->prepare, EV_MINPRI);
4958     ev_prepare_start (EV_A_ &w->prepare);
4959    
4960 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4961     ev_fork_start (EV_A_ &w->fork);
4962    
4963 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4964    
4965 root 1.144 ev_start (EV_A_ (W)w, 1);
4966 root 1.248
4967     EV_FREQUENT_CHECK;
4968 root 1.144 }
4969    
4970     void
4971 root 1.486 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4972 root 1.144 {
4973 root 1.166 clear_pending (EV_A_ (W)w);
4974 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4975 root 1.144 return;
4976    
4977 root 1.248 EV_FREQUENT_CHECK;
4978    
4979 root 1.261 ev_io_stop (EV_A_ &w->io);
4980 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
4981 root 1.261 ev_fork_stop (EV_A_ &w->fork);
4982 root 1.248
4983 root 1.328 ev_stop (EV_A_ (W)w);
4984    
4985 root 1.248 EV_FREQUENT_CHECK;
4986 root 1.144 }
4987     #endif
4988    
4989 root 1.147 #if EV_FORK_ENABLE
4990     void
4991 root 1.486 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4992 root 1.147 {
4993 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4994 root 1.147 return;
4995    
4996 root 1.248 EV_FREQUENT_CHECK;
4997    
4998 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
4999 root 1.490 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5000 root 1.147 forks [forkcnt - 1] = w;
5001 root 1.248
5002     EV_FREQUENT_CHECK;
5003 root 1.147 }
5004    
5005     void
5006 root 1.486 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5007 root 1.147 {
5008 root 1.166 clear_pending (EV_A_ (W)w);
5009 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
5010 root 1.147 return;
5011    
5012 root 1.248 EV_FREQUENT_CHECK;
5013    
5014 root 1.147 {
5015 root 1.230 int active = ev_active (w);
5016    
5017 root 1.147 forks [active - 1] = forks [--forkcnt];
5018 root 1.230 ev_active (forks [active - 1]) = active;
5019 root 1.147 }
5020    
5021     ev_stop (EV_A_ (W)w);
5022 root 1.248
5023     EV_FREQUENT_CHECK;
5024 root 1.147 }
5025     #endif
5026    
5027 root 1.360 #if EV_CLEANUP_ENABLE
5028     void
5029 root 1.486 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5030 root 1.360 {
5031 root 1.500 if (ecb_expect_false (ev_is_active (w)))
5032 root 1.360 return;
5033    
5034     EV_FREQUENT_CHECK;
5035    
5036     ev_start (EV_A_ (W)w, ++cleanupcnt);
5037 root 1.490 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5038 root 1.360 cleanups [cleanupcnt - 1] = w;
5039    
5040 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
5041     ev_unref (EV_A);
5042 root 1.360 EV_FREQUENT_CHECK;
5043     }
5044    
5045     void
5046 root 1.486 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5047 root 1.360 {
5048     clear_pending (EV_A_ (W)w);
5049 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
5050 root 1.360 return;
5051    
5052     EV_FREQUENT_CHECK;
5053 root 1.362 ev_ref (EV_A);
5054 root 1.360
5055     {
5056     int active = ev_active (w);
5057    
5058     cleanups [active - 1] = cleanups [--cleanupcnt];
5059     ev_active (cleanups [active - 1]) = active;
5060     }
5061    
5062     ev_stop (EV_A_ (W)w);
5063    
5064     EV_FREQUENT_CHECK;
5065     }
5066     #endif
5067    
5068 root 1.207 #if EV_ASYNC_ENABLE
5069     void
5070 root 1.486 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5071 root 1.207 {
5072 root 1.500 if (ecb_expect_false (ev_is_active (w)))
5073 root 1.207 return;
5074    
5075 root 1.352 w->sent = 0;
5076    
5077 root 1.207 evpipe_init (EV_A);
5078    
5079 root 1.248 EV_FREQUENT_CHECK;
5080    
5081 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
5082 root 1.490 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5083 root 1.207 asyncs [asynccnt - 1] = w;
5084 root 1.248
5085     EV_FREQUENT_CHECK;
5086 root 1.207 }
5087    
5088     void
5089 root 1.486 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5090 root 1.207 {
5091     clear_pending (EV_A_ (W)w);
5092 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
5093 root 1.207 return;
5094    
5095 root 1.248 EV_FREQUENT_CHECK;
5096    
5097 root 1.207 {
5098 root 1.230 int active = ev_active (w);
5099    
5100 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
5101 root 1.230 ev_active (asyncs [active - 1]) = active;
5102 root 1.207 }
5103    
5104     ev_stop (EV_A_ (W)w);
5105 root 1.248
5106     EV_FREQUENT_CHECK;
5107 root 1.207 }
5108    
5109     void
5110 root 1.486 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5111 root 1.207 {
5112     w->sent = 1;
5113 root 1.307 evpipe_write (EV_A_ &async_pending);
5114 root 1.207 }
5115     #endif
5116    
5117 root 1.1 /*****************************************************************************/
5118 root 1.10
5119 root 1.16 struct ev_once
5120     {
5121 root 1.136 ev_io io;
5122     ev_timer to;
5123 root 1.16 void (*cb)(int revents, void *arg);
5124     void *arg;
5125     };
5126    
5127     static void
5128 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
5129 root 1.16 {
5130     void (*cb)(int revents, void *arg) = once->cb;
5131     void *arg = once->arg;
5132    
5133 root 1.259 ev_io_stop (EV_A_ &once->io);
5134 root 1.51 ev_timer_stop (EV_A_ &once->to);
5135 root 1.69 ev_free (once);
5136 root 1.16
5137     cb (revents, arg);
5138     }
5139    
5140     static void
5141 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
5142 root 1.16 {
5143 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5144    
5145     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5146 root 1.16 }
5147    
5148     static void
5149 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
5150 root 1.16 {
5151 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5152    
5153     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5154 root 1.16 }
5155    
5156     void
5157 root 1.486 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5158 root 1.16 {
5159 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5160 root 1.16
5161 root 1.123 once->cb = cb;
5162     once->arg = arg;
5163 root 1.16
5164 root 1.123 ev_init (&once->io, once_cb_io);
5165     if (fd >= 0)
5166     {
5167     ev_io_set (&once->io, fd, events);
5168     ev_io_start (EV_A_ &once->io);
5169     }
5170 root 1.16
5171 root 1.123 ev_init (&once->to, once_cb_to);
5172     if (timeout >= 0.)
5173     {
5174     ev_timer_set (&once->to, timeout, 0.);
5175     ev_timer_start (EV_A_ &once->to);
5176 root 1.16 }
5177     }
5178    
5179 root 1.282 /*****************************************************************************/
5180    
5181 root 1.288 #if EV_WALK_ENABLE
5182 root 1.480 ecb_cold
5183     void
5184 root 1.486 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5185 root 1.282 {
5186     int i, j;
5187     ev_watcher_list *wl, *wn;
5188    
5189     if (types & (EV_IO | EV_EMBED))
5190     for (i = 0; i < anfdmax; ++i)
5191     for (wl = anfds [i].head; wl; )
5192     {
5193     wn = wl->next;
5194    
5195     #if EV_EMBED_ENABLE
5196     if (ev_cb ((ev_io *)wl) == embed_io_cb)
5197     {
5198     if (types & EV_EMBED)
5199     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5200     }
5201     else
5202     #endif
5203     #if EV_USE_INOTIFY
5204     if (ev_cb ((ev_io *)wl) == infy_cb)
5205     ;
5206     else
5207     #endif
5208 root 1.288 if ((ev_io *)wl != &pipe_w)
5209 root 1.282 if (types & EV_IO)
5210     cb (EV_A_ EV_IO, wl);
5211    
5212     wl = wn;
5213     }
5214    
5215     if (types & (EV_TIMER | EV_STAT))
5216     for (i = timercnt + HEAP0; i-- > HEAP0; )
5217     #if EV_STAT_ENABLE
5218     /*TODO: timer is not always active*/
5219     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5220     {
5221     if (types & EV_STAT)
5222     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5223     }
5224     else
5225     #endif
5226     if (types & EV_TIMER)
5227     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5228    
5229     #if EV_PERIODIC_ENABLE
5230     if (types & EV_PERIODIC)
5231     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5232     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5233     #endif
5234    
5235     #if EV_IDLE_ENABLE
5236     if (types & EV_IDLE)
5237 root 1.390 for (j = NUMPRI; j--; )
5238 root 1.282 for (i = idlecnt [j]; i--; )
5239     cb (EV_A_ EV_IDLE, idles [j][i]);
5240     #endif
5241    
5242     #if EV_FORK_ENABLE
5243     if (types & EV_FORK)
5244     for (i = forkcnt; i--; )
5245     if (ev_cb (forks [i]) != embed_fork_cb)
5246     cb (EV_A_ EV_FORK, forks [i]);
5247     #endif
5248    
5249     #if EV_ASYNC_ENABLE
5250     if (types & EV_ASYNC)
5251     for (i = asynccnt; i--; )
5252     cb (EV_A_ EV_ASYNC, asyncs [i]);
5253     #endif
5254    
5255 root 1.337 #if EV_PREPARE_ENABLE
5256 root 1.282 if (types & EV_PREPARE)
5257     for (i = preparecnt; i--; )
5258 root 1.337 # if EV_EMBED_ENABLE
5259 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
5260 root 1.337 # endif
5261     cb (EV_A_ EV_PREPARE, prepares [i]);
5262 root 1.282 #endif
5263    
5264 root 1.337 #if EV_CHECK_ENABLE
5265 root 1.282 if (types & EV_CHECK)
5266     for (i = checkcnt; i--; )
5267     cb (EV_A_ EV_CHECK, checks [i]);
5268 root 1.337 #endif
5269 root 1.282
5270 root 1.337 #if EV_SIGNAL_ENABLE
5271 root 1.282 if (types & EV_SIGNAL)
5272 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
5273 root 1.282 for (wl = signals [i].head; wl; )
5274     {
5275     wn = wl->next;
5276     cb (EV_A_ EV_SIGNAL, wl);
5277     wl = wn;
5278     }
5279 root 1.337 #endif
5280 root 1.282
5281 root 1.337 #if EV_CHILD_ENABLE
5282 root 1.282 if (types & EV_CHILD)
5283 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
5284 root 1.282 for (wl = childs [i]; wl; )
5285     {
5286     wn = wl->next;
5287     cb (EV_A_ EV_CHILD, wl);
5288     wl = wn;
5289     }
5290 root 1.337 #endif
5291 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
5292     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5293     }
5294     #endif
5295    
5296 root 1.188 #if EV_MULTIPLICITY
5297     #include "ev_wrap.h"
5298     #endif
5299