ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.502
Committed: Tue Jul 2 06:07:54 2019 UTC (4 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.501: +88 -66 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.490 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.469 # if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52 root 1.373 # endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.491 # if HAVE_LINUX_AIO_ABI_H
121     # ifndef EV_USE_LINUXAIO
122     # define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123     # endif
124     # else
125     # undef EV_USE_LINUXAIO
126     # define EV_USE_LINUXAIO 0
127     # endif
128    
129 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130     # ifndef EV_USE_KQUEUE
131 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132 root 1.127 # endif
133 root 1.343 # else
134     # undef EV_USE_KQUEUE
135     # define EV_USE_KQUEUE 0
136 root 1.60 # endif
137 root 1.127
138 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
139     # ifndef EV_USE_PORT
140 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
141 root 1.127 # endif
142 root 1.343 # else
143     # undef EV_USE_PORT
144     # define EV_USE_PORT 0
145 root 1.118 # endif
146    
147 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148     # ifndef EV_USE_INOTIFY
149 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
150 root 1.152 # endif
151 root 1.343 # else
152     # undef EV_USE_INOTIFY
153     # define EV_USE_INOTIFY 0
154 root 1.152 # endif
155    
156 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157     # ifndef EV_USE_SIGNALFD
158 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
159 root 1.303 # endif
160 root 1.343 # else
161     # undef EV_USE_SIGNALFD
162     # define EV_USE_SIGNALFD 0
163 root 1.303 # endif
164    
165 root 1.343 # if HAVE_EVENTFD
166     # ifndef EV_USE_EVENTFD
167 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
168 root 1.220 # endif
169 root 1.343 # else
170     # undef EV_USE_EVENTFD
171     # define EV_USE_EVENTFD 0
172 root 1.220 # endif
173 root 1.250
174 root 1.29 #endif
175 root 1.17
176 root 1.483 /* OS X, in its infinite idiocy, actually HARDCODES
177     * a limit of 1024 into their select. Where people have brains,
178     * OS X engineers apparently have a vacuum. Or maybe they were
179     * ordered to have a vacuum, or they do anything for money.
180     * This might help. Or not.
181     * Note that this must be defined early, as other include files
182     * will rely on this define as well.
183     */
184     #define _DARWIN_UNLIMITED_SELECT 1
185    
186 root 1.1 #include <stdlib.h>
187 root 1.319 #include <string.h>
188 root 1.7 #include <fcntl.h>
189 root 1.16 #include <stddef.h>
190 root 1.1
191     #include <stdio.h>
192    
193 root 1.4 #include <assert.h>
194 root 1.1 #include <errno.h>
195 root 1.22 #include <sys/types.h>
196 root 1.71 #include <time.h>
197 root 1.326 #include <limits.h>
198 root 1.71
199 root 1.72 #include <signal.h>
200 root 1.71
201 root 1.152 #ifdef EV_H
202     # include EV_H
203     #else
204     # include "ev.h"
205     #endif
206    
207 root 1.410 #if EV_NO_THREADS
208     # undef EV_NO_SMP
209     # define EV_NO_SMP 1
210     # undef ECB_NO_THREADS
211     # define ECB_NO_THREADS 1
212     #endif
213     #if EV_NO_SMP
214     # undef EV_NO_SMP
215     # define ECB_NO_SMP 1
216     #endif
217    
218 root 1.103 #ifndef _WIN32
219 root 1.71 # include <sys/time.h>
220 root 1.45 # include <sys/wait.h>
221 root 1.140 # include <unistd.h>
222 root 1.103 #else
223 root 1.256 # include <io.h>
224 root 1.103 # define WIN32_LEAN_AND_MEAN
225 root 1.431 # include <winsock2.h>
226 root 1.103 # include <windows.h>
227     # ifndef EV_SELECT_IS_WINSOCKET
228     # define EV_SELECT_IS_WINSOCKET 1
229     # endif
230 root 1.331 # undef EV_AVOID_STDIO
231 root 1.45 #endif
232 root 1.103
233 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
234 root 1.40
235 root 1.305 /* try to deduce the maximum number of signals on this platform */
236 root 1.416 #if defined EV_NSIG
237 root 1.305 /* use what's provided */
238 root 1.416 #elif defined NSIG
239 root 1.305 # define EV_NSIG (NSIG)
240 root 1.416 #elif defined _NSIG
241 root 1.305 # define EV_NSIG (_NSIG)
242 root 1.416 #elif defined SIGMAX
243 root 1.305 # define EV_NSIG (SIGMAX+1)
244 root 1.416 #elif defined SIG_MAX
245 root 1.305 # define EV_NSIG (SIG_MAX+1)
246 root 1.416 #elif defined _SIG_MAX
247 root 1.305 # define EV_NSIG (_SIG_MAX+1)
248 root 1.416 #elif defined MAXSIG
249 root 1.305 # define EV_NSIG (MAXSIG+1)
250 root 1.416 #elif defined MAX_SIG
251 root 1.305 # define EV_NSIG (MAX_SIG+1)
252 root 1.416 #elif defined SIGARRAYSIZE
253 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254 root 1.416 #elif defined _sys_nsig
255 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256     #else
257 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
258 root 1.305 #endif
259    
260 root 1.373 #ifndef EV_USE_FLOOR
261     # define EV_USE_FLOOR 0
262     #endif
263    
264 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
265 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267 root 1.274 # else
268     # define EV_USE_CLOCK_SYSCALL 0
269     # endif
270     #endif
271    
272 root 1.470 #if !(_POSIX_TIMERS > 0)
273     # ifndef EV_USE_MONOTONIC
274     # define EV_USE_MONOTONIC 0
275     # endif
276     # ifndef EV_USE_REALTIME
277     # define EV_USE_REALTIME 0
278     # endif
279     #endif
280    
281 root 1.29 #ifndef EV_USE_MONOTONIC
282 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
284 root 1.253 # else
285     # define EV_USE_MONOTONIC 0
286     # endif
287 root 1.37 #endif
288    
289 root 1.118 #ifndef EV_USE_REALTIME
290 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291 root 1.118 #endif
292    
293 root 1.193 #ifndef EV_USE_NANOSLEEP
294 root 1.253 # if _POSIX_C_SOURCE >= 199309L
295 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
296 root 1.253 # else
297     # define EV_USE_NANOSLEEP 0
298     # endif
299 root 1.193 #endif
300    
301 root 1.29 #ifndef EV_USE_SELECT
302 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
303 root 1.10 #endif
304    
305 root 1.59 #ifndef EV_USE_POLL
306 root 1.104 # ifdef _WIN32
307     # define EV_USE_POLL 0
308     # else
309 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
310 root 1.104 # endif
311 root 1.41 #endif
312    
313 root 1.29 #ifndef EV_USE_EPOLL
314 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
316 root 1.220 # else
317     # define EV_USE_EPOLL 0
318     # endif
319 root 1.10 #endif
320    
321 root 1.44 #ifndef EV_USE_KQUEUE
322     # define EV_USE_KQUEUE 0
323     #endif
324    
325 root 1.118 #ifndef EV_USE_PORT
326     # define EV_USE_PORT 0
327 root 1.40 #endif
328    
329 root 1.490 #ifndef EV_USE_LINUXAIO
330 root 1.492 # if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331     # define EV_USE_LINUXAIO 1
332     # else
333     # define EV_USE_LINUXAIO 0
334     # endif
335 root 1.490 #endif
336    
337 root 1.501 #ifndef EV_USE_IOURING
338     # if __linux
339     # define EV_USE_IOURING 0
340     # else
341     # define EV_USE_IOURING 0
342     # endif
343     #endif
344    
345 root 1.152 #ifndef EV_USE_INOTIFY
346 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
347 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
348 root 1.220 # else
349     # define EV_USE_INOTIFY 0
350     # endif
351 root 1.152 #endif
352    
353 root 1.149 #ifndef EV_PID_HASHSIZE
354 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
355 root 1.149 #endif
356    
357 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
358 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
359 root 1.152 #endif
360    
361 root 1.220 #ifndef EV_USE_EVENTFD
362     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
364 root 1.220 # else
365     # define EV_USE_EVENTFD 0
366     # endif
367     #endif
368    
369 root 1.303 #ifndef EV_USE_SIGNALFD
370 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
371 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
372 root 1.303 # else
373     # define EV_USE_SIGNALFD 0
374     # endif
375     #endif
376    
377 root 1.249 #if 0 /* debugging */
378 root 1.250 # define EV_VERIFY 3
379 root 1.249 # define EV_USE_4HEAP 1
380     # define EV_HEAP_CACHE_AT 1
381     #endif
382    
383 root 1.250 #ifndef EV_VERIFY
384 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
385 root 1.250 #endif
386    
387 root 1.243 #ifndef EV_USE_4HEAP
388 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
389 root 1.243 #endif
390    
391     #ifndef EV_HEAP_CACHE_AT
392 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
393 root 1.243 #endif
394    
395 root 1.481 #ifdef __ANDROID__
396 root 1.452 /* supposedly, android doesn't typedef fd_mask */
397     # undef EV_USE_SELECT
398     # define EV_USE_SELECT 0
399     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
400     # undef EV_USE_CLOCK_SYSCALL
401     # define EV_USE_CLOCK_SYSCALL 0
402     #endif
403    
404     /* aix's poll.h seems to cause lots of trouble */
405     #ifdef _AIX
406     /* AIX has a completely broken poll.h header */
407     # undef EV_USE_POLL
408     # define EV_USE_POLL 0
409     #endif
410    
411 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
412     /* which makes programs even slower. might work on other unices, too. */
413     #if EV_USE_CLOCK_SYSCALL
414 root 1.423 # include <sys/syscall.h>
415 root 1.291 # ifdef SYS_clock_gettime
416     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
417     # undef EV_USE_MONOTONIC
418     # define EV_USE_MONOTONIC 1
419 root 1.501 # define EV_NEED_SYSCALL 1
420 root 1.291 # else
421     # undef EV_USE_CLOCK_SYSCALL
422     # define EV_USE_CLOCK_SYSCALL 0
423     # endif
424     #endif
425    
426 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
427 root 1.40
428     #ifndef CLOCK_MONOTONIC
429     # undef EV_USE_MONOTONIC
430     # define EV_USE_MONOTONIC 0
431     #endif
432    
433 root 1.31 #ifndef CLOCK_REALTIME
434 root 1.40 # undef EV_USE_REALTIME
435 root 1.31 # define EV_USE_REALTIME 0
436     #endif
437 root 1.40
438 root 1.152 #if !EV_STAT_ENABLE
439 root 1.185 # undef EV_USE_INOTIFY
440 root 1.152 # define EV_USE_INOTIFY 0
441     #endif
442    
443 root 1.193 #if !EV_USE_NANOSLEEP
444 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
445 root 1.416 # if !defined _WIN32 && !defined __hpux
446 root 1.193 # include <sys/select.h>
447     # endif
448     #endif
449    
450 root 1.491 #if EV_USE_LINUXAIO
451     # include <sys/syscall.h>
452 root 1.502 # if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
453     # define EV_NEED_SYSCALL 1
454     # else
455 root 1.491 # undef EV_USE_LINUXAIO
456     # define EV_USE_LINUXAIO 0
457 root 1.501 # endif
458     #endif
459    
460     #if EV_USE_IOURING
461     # include <sys/syscall.h>
462     # if !__alpha && !SYS_io_uring_setup
463     # define SYS_io_uring_setup 425
464     # define SYS_io_uring_enter 426
465     # define SYS_io_uring_wregister 427
466     # endif
467 root 1.502 # if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
468 root 1.501 # define EV_NEED_SYSCALL 1
469     # else
470     # undef EV_USE_IOURING
471     # define EV_USE_IOURING 0
472 root 1.491 # endif
473     #endif
474    
475 root 1.152 #if EV_USE_INOTIFY
476 root 1.273 # include <sys/statfs.h>
477 root 1.152 # include <sys/inotify.h>
478 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
479     # ifndef IN_DONT_FOLLOW
480     # undef EV_USE_INOTIFY
481     # define EV_USE_INOTIFY 0
482     # endif
483 root 1.152 #endif
484    
485 root 1.220 #if EV_USE_EVENTFD
486     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
487 root 1.221 # include <stdint.h>
488 root 1.303 # ifndef EFD_NONBLOCK
489     # define EFD_NONBLOCK O_NONBLOCK
490     # endif
491     # ifndef EFD_CLOEXEC
492 root 1.311 # ifdef O_CLOEXEC
493     # define EFD_CLOEXEC O_CLOEXEC
494     # else
495     # define EFD_CLOEXEC 02000000
496     # endif
497 root 1.303 # endif
498 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
499 root 1.220 #endif
500    
501 root 1.303 #if EV_USE_SIGNALFD
502 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
503     # include <stdint.h>
504     # ifndef SFD_NONBLOCK
505     # define SFD_NONBLOCK O_NONBLOCK
506     # endif
507     # ifndef SFD_CLOEXEC
508     # ifdef O_CLOEXEC
509     # define SFD_CLOEXEC O_CLOEXEC
510     # else
511     # define SFD_CLOEXEC 02000000
512     # endif
513     # endif
514 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
515 root 1.314
516     struct signalfd_siginfo
517     {
518     uint32_t ssi_signo;
519     char pad[128 - sizeof (uint32_t)];
520     };
521 root 1.303 #endif
522    
523 root 1.501 /*****************************************************************************/
524    
525 root 1.250 #if EV_VERIFY >= 3
526 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
527 root 1.248 #else
528     # define EV_FREQUENT_CHECK do { } while (0)
529     #endif
530    
531 root 1.176 /*
532 root 1.373 * This is used to work around floating point rounding problems.
533 root 1.177 * This value is good at least till the year 4000.
534 root 1.176 */
535 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
536     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
537 root 1.176
538 root 1.502 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
539     #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
540    
541     /* find a portable timestamp that is "alawys" in the future but fits into time_t.
542     * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
543     * and sizes large than 32 bit, but and maybe the unlikely loating point time_t */
544     #define EV_TSTAMP_HUGE \
545     (sizeof (time_t) >= 8 ? 10000000000000. \
546     : 0 < (time_t)4294967295 ? 4294967295. \
547     : 2147483647.) \
548 root 1.1
549 root 1.347 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
550 root 1.348 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
551 root 1.347
552 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
553     /* ECB.H BEGIN */
554     /*
555     * libecb - http://software.schmorp.de/pkg/libecb
556     *
557 root 1.474 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
558 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
559     * All rights reserved.
560     *
561     * Redistribution and use in source and binary forms, with or without modifica-
562     * tion, are permitted provided that the following conditions are met:
563     *
564     * 1. Redistributions of source code must retain the above copyright notice,
565     * this list of conditions and the following disclaimer.
566     *
567     * 2. Redistributions in binary form must reproduce the above copyright
568     * notice, this list of conditions and the following disclaimer in the
569     * documentation and/or other materials provided with the distribution.
570     *
571     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
572     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
573     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
574     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
575     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
576     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
577     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
578     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
579     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
580     * OF THE POSSIBILITY OF SUCH DAMAGE.
581 root 1.467 *
582     * Alternatively, the contents of this file may be used under the terms of
583     * the GNU General Public License ("GPL") version 2 or any later version,
584     * in which case the provisions of the GPL are applicable instead of
585     * the above. If you wish to allow the use of your version of this file
586     * only under the terms of the GPL and not to allow others to use your
587     * version of this file under the BSD license, indicate your decision
588     * by deleting the provisions above and replace them with the notice
589     * and other provisions required by the GPL. If you do not delete the
590     * provisions above, a recipient may use your version of this file under
591     * either the BSD or the GPL.
592 root 1.391 */
593    
594     #ifndef ECB_H
595     #define ECB_H
596    
597 root 1.437 /* 16 bits major, 16 bits minor */
598 root 1.496 #define ECB_VERSION 0x00010006
599 root 1.437
600 root 1.391 #ifdef _WIN32
601     typedef signed char int8_t;
602     typedef unsigned char uint8_t;
603     typedef signed short int16_t;
604     typedef unsigned short uint16_t;
605     typedef signed int int32_t;
606     typedef unsigned int uint32_t;
607     #if __GNUC__
608     typedef signed long long int64_t;
609     typedef unsigned long long uint64_t;
610     #else /* _MSC_VER || __BORLANDC__ */
611     typedef signed __int64 int64_t;
612     typedef unsigned __int64 uint64_t;
613     #endif
614 root 1.437 #ifdef _WIN64
615     #define ECB_PTRSIZE 8
616     typedef uint64_t uintptr_t;
617     typedef int64_t intptr_t;
618     #else
619     #define ECB_PTRSIZE 4
620     typedef uint32_t uintptr_t;
621     typedef int32_t intptr_t;
622     #endif
623 root 1.391 #else
624     #include <inttypes.h>
625 root 1.479 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
626 root 1.437 #define ECB_PTRSIZE 8
627     #else
628     #define ECB_PTRSIZE 4
629     #endif
630 root 1.391 #endif
631 root 1.379
632 sf-exg 1.475 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
633     #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
634    
635 root 1.454 /* work around x32 idiocy by defining proper macros */
636 sf-exg 1.475 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
637 root 1.458 #if _ILP32
638 root 1.454 #define ECB_AMD64_X32 1
639     #else
640     #define ECB_AMD64 1
641     #endif
642     #endif
643    
644 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
645     * what their idiot authors think are the "more important" extensions,
646 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
647 root 1.379 * or so.
648     * we try to detect these and simply assume they are not gcc - if they have
649     * an issue with that they should have done it right in the first place.
650     */
651 root 1.474 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
652     #define ECB_GCC_VERSION(major,minor) 0
653     #else
654     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
655     #endif
656    
657     #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
658    
659     #if __clang__ && defined __has_builtin
660     #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
661     #else
662     #define ECB_CLANG_BUILTIN(x) 0
663     #endif
664    
665     #if __clang__ && defined __has_extension
666     #define ECB_CLANG_EXTENSION(x) __has_extension (x)
667     #else
668     #define ECB_CLANG_EXTENSION(x) 0
669 root 1.379 #endif
670    
671 root 1.437 #define ECB_CPP (__cplusplus+0)
672     #define ECB_CPP11 (__cplusplus >= 201103L)
673 root 1.488 #define ECB_CPP14 (__cplusplus >= 201402L)
674     #define ECB_CPP17 (__cplusplus >= 201703L)
675 root 1.437
676 root 1.450 #if ECB_CPP
677 root 1.464 #define ECB_C 0
678     #define ECB_STDC_VERSION 0
679     #else
680     #define ECB_C 1
681     #define ECB_STDC_VERSION __STDC_VERSION__
682     #endif
683    
684     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
685     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
686 root 1.488 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
687 root 1.464
688     #if ECB_CPP
689 root 1.450 #define ECB_EXTERN_C extern "C"
690     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
691     #define ECB_EXTERN_C_END }
692     #else
693     #define ECB_EXTERN_C extern
694     #define ECB_EXTERN_C_BEG
695     #define ECB_EXTERN_C_END
696     #endif
697    
698 root 1.391 /*****************************************************************************/
699    
700     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
701     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
702    
703 root 1.410 #if ECB_NO_THREADS
704 root 1.439 #define ECB_NO_SMP 1
705 root 1.410 #endif
706    
707 root 1.437 #if ECB_NO_SMP
708 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
709 root 1.40 #endif
710    
711 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
712     #if __xlC__ && ECB_CPP
713     #include <builtins.h>
714     #endif
715    
716 root 1.479 #if 1400 <= _MSC_VER
717     #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
718     #endif
719    
720 root 1.383 #ifndef ECB_MEMORY_FENCE
721 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
722 root 1.496 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
723 root 1.404 #if __i386 || __i386__
724 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
725 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
726 root 1.488 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
727 sf-exg 1.475 #elif ECB_GCC_AMD64
728 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
729     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
730 root 1.488 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
731 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
732 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
733 root 1.479 #elif defined __ARM_ARCH_2__ \
734     || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
735     || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
736     || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
737     || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
738     || defined __ARM_ARCH_5TEJ__
739     /* should not need any, unless running old code on newer cpu - arm doesn't support that */
740 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
741 root 1.479 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
742     || defined __ARM_ARCH_6T2__
743 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
744 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
745 root 1.479 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
746 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
747 root 1.464 #elif __aarch64__
748     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
749 root 1.477 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
750 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
751     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
752     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
753 root 1.417 #elif defined __s390__ || defined __s390x__
754 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
755 root 1.417 #elif defined __mips__
756 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
757 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
758     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
759 root 1.419 #elif defined __alpha__
760 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
761     #elif defined __hppa__
762     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
763     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
764     #elif defined __ia64__
765     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
766 root 1.457 #elif defined __m68k__
767     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
768     #elif defined __m88k__
769     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
770     #elif defined __sh__
771     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
772 root 1.383 #endif
773     #endif
774     #endif
775    
776     #ifndef ECB_MEMORY_FENCE
777 root 1.437 #if ECB_GCC_VERSION(4,7)
778 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
779 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
780 root 1.464 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
781     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
782 root 1.496 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
783 root 1.450
784 root 1.474 #elif ECB_CLANG_EXTENSION(c_atomic)
785     /* see comment below (stdatomic.h) about the C11 memory model. */
786     #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
787     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
788     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
789 root 1.496 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
790 root 1.450
791 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
792 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
793 root 1.462 #elif _MSC_VER >= 1500 /* VC++ 2008 */
794     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
795     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
796     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
797     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
798     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
799 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
800     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
801     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
802     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
803     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
804 root 1.417 #elif defined _WIN32
805 root 1.388 #include <WinNT.h>
806 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
807 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
808     #include <mbarrier.h>
809 root 1.496 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
810     #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
811     #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
812     #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
813 root 1.413 #elif __xlC__
814 root 1.414 #define ECB_MEMORY_FENCE __sync ()
815 root 1.383 #endif
816     #endif
817    
818     #ifndef ECB_MEMORY_FENCE
819 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
820     /* we assume that these memory fences work on all variables/all memory accesses, */
821     /* not just C11 atomics and atomic accesses */
822     #include <stdatomic.h>
823     #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
824 root 1.496 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
825     #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
826 root 1.437 #endif
827     #endif
828    
829     #ifndef ECB_MEMORY_FENCE
830 root 1.392 #if !ECB_AVOID_PTHREADS
831     /*
832     * if you get undefined symbol references to pthread_mutex_lock,
833     * or failure to find pthread.h, then you should implement
834     * the ECB_MEMORY_FENCE operations for your cpu/compiler
835     * OR provide pthread.h and link against the posix thread library
836     * of your system.
837     */
838     #include <pthread.h>
839     #define ECB_NEEDS_PTHREADS 1
840     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
841    
842     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
843     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
844     #endif
845     #endif
846 root 1.383
847 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
848 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
849 root 1.392 #endif
850    
851 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
852 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
853     #endif
854    
855 root 1.496 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
856     #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
857     #endif
858    
859 root 1.391 /*****************************************************************************/
860    
861 root 1.474 #if ECB_CPP
862 root 1.391 #define ecb_inline static inline
863     #elif ECB_GCC_VERSION(2,5)
864     #define ecb_inline static __inline__
865     #elif ECB_C99
866     #define ecb_inline static inline
867     #else
868     #define ecb_inline static
869     #endif
870    
871     #if ECB_GCC_VERSION(3,3)
872     #define ecb_restrict __restrict__
873     #elif ECB_C99
874     #define ecb_restrict restrict
875     #else
876     #define ecb_restrict
877     #endif
878    
879     typedef int ecb_bool;
880    
881     #define ECB_CONCAT_(a, b) a ## b
882     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
883     #define ECB_STRINGIFY_(a) # a
884     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
885 sf-exg 1.475 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
886 root 1.391
887     #define ecb_function_ ecb_inline
888    
889 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
890     #define ecb_attribute(attrlist) __attribute__ (attrlist)
891 root 1.379 #else
892     #define ecb_attribute(attrlist)
893 root 1.474 #endif
894 root 1.464
895 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
896     #define ecb_is_constant(expr) __builtin_constant_p (expr)
897     #else
898 root 1.464 /* possible C11 impl for integral types
899     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
900     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
901    
902 root 1.379 #define ecb_is_constant(expr) 0
903 root 1.474 #endif
904    
905     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
906     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
907     #else
908 root 1.379 #define ecb_expect(expr,value) (expr)
909 root 1.474 #endif
910    
911     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
912     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
913     #else
914 root 1.379 #define ecb_prefetch(addr,rw,locality)
915     #endif
916    
917 root 1.391 /* no emulation for ecb_decltype */
918 root 1.474 #if ECB_CPP11
919     // older implementations might have problems with decltype(x)::type, work around it
920     template<class T> struct ecb_decltype_t { typedef T type; };
921     #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
922     #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
923     #define ecb_decltype(x) __typeof__ (x)
924 root 1.391 #endif
925    
926 root 1.468 #if _MSC_VER >= 1300
927 root 1.474 #define ecb_deprecated __declspec (deprecated)
928 root 1.468 #else
929     #define ecb_deprecated ecb_attribute ((__deprecated__))
930     #endif
931    
932 root 1.476 #if _MSC_VER >= 1500
933 sf-exg 1.475 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
934     #elif ECB_GCC_VERSION(4,5)
935     #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
936     #else
937     #define ecb_deprecated_message(msg) ecb_deprecated
938     #endif
939    
940     #if _MSC_VER >= 1400
941     #define ecb_noinline __declspec (noinline)
942     #else
943     #define ecb_noinline ecb_attribute ((__noinline__))
944     #endif
945    
946 root 1.379 #define ecb_unused ecb_attribute ((__unused__))
947     #define ecb_const ecb_attribute ((__const__))
948     #define ecb_pure ecb_attribute ((__pure__))
949    
950 root 1.474 #if ECB_C11 || __IBMC_NORETURN
951 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
952 root 1.437 #define ecb_noreturn _Noreturn
953 sf-exg 1.475 #elif ECB_CPP11
954     #define ecb_noreturn [[noreturn]]
955     #elif _MSC_VER >= 1200
956     /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
957     #define ecb_noreturn __declspec (noreturn)
958 root 1.437 #else
959     #define ecb_noreturn ecb_attribute ((__noreturn__))
960     #endif
961    
962 root 1.379 #if ECB_GCC_VERSION(4,3)
963     #define ecb_artificial ecb_attribute ((__artificial__))
964     #define ecb_hot ecb_attribute ((__hot__))
965     #define ecb_cold ecb_attribute ((__cold__))
966     #else
967     #define ecb_artificial
968     #define ecb_hot
969     #define ecb_cold
970     #endif
971    
972     /* put around conditional expressions if you are very sure that the */
973     /* expression is mostly true or mostly false. note that these return */
974     /* booleans, not the expression. */
975     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
976     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
977 root 1.391 /* for compatibility to the rest of the world */
978     #define ecb_likely(expr) ecb_expect_true (expr)
979     #define ecb_unlikely(expr) ecb_expect_false (expr)
980    
981     /* count trailing zero bits and count # of one bits */
982 root 1.474 #if ECB_GCC_VERSION(3,4) \
983     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
984     && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
985     && ECB_CLANG_BUILTIN(__builtin_popcount))
986 root 1.391 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
987     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
988     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
989     #define ecb_ctz32(x) __builtin_ctz (x)
990     #define ecb_ctz64(x) __builtin_ctzll (x)
991     #define ecb_popcount32(x) __builtin_popcount (x)
992     /* no popcountll */
993     #else
994 root 1.474 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
995     ecb_function_ ecb_const int
996 root 1.391 ecb_ctz32 (uint32_t x)
997     {
998 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
999     unsigned long r;
1000     _BitScanForward (&r, x);
1001     return (int)r;
1002     #else
1003 root 1.391 int r = 0;
1004    
1005     x &= ~x + 1; /* this isolates the lowest bit */
1006    
1007     #if ECB_branchless_on_i386
1008     r += !!(x & 0xaaaaaaaa) << 0;
1009     r += !!(x & 0xcccccccc) << 1;
1010     r += !!(x & 0xf0f0f0f0) << 2;
1011     r += !!(x & 0xff00ff00) << 3;
1012     r += !!(x & 0xffff0000) << 4;
1013     #else
1014     if (x & 0xaaaaaaaa) r += 1;
1015     if (x & 0xcccccccc) r += 2;
1016     if (x & 0xf0f0f0f0) r += 4;
1017     if (x & 0xff00ff00) r += 8;
1018     if (x & 0xffff0000) r += 16;
1019     #endif
1020    
1021     return r;
1022 root 1.479 #endif
1023 root 1.391 }
1024    
1025 root 1.474 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1026     ecb_function_ ecb_const int
1027 root 1.391 ecb_ctz64 (uint64_t x)
1028     {
1029 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1030     unsigned long r;
1031     _BitScanForward64 (&r, x);
1032     return (int)r;
1033     #else
1034     int shift = x & 0xffffffff ? 0 : 32;
1035 root 1.391 return ecb_ctz32 (x >> shift) + shift;
1036 root 1.479 #endif
1037 root 1.391 }
1038    
1039 root 1.474 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1040     ecb_function_ ecb_const int
1041 root 1.391 ecb_popcount32 (uint32_t x)
1042     {
1043     x -= (x >> 1) & 0x55555555;
1044     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1045     x = ((x >> 4) + x) & 0x0f0f0f0f;
1046     x *= 0x01010101;
1047    
1048     return x >> 24;
1049     }
1050    
1051 root 1.474 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1052     ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1053 root 1.391 {
1054 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1055     unsigned long r;
1056     _BitScanReverse (&r, x);
1057     return (int)r;
1058     #else
1059 root 1.391 int r = 0;
1060    
1061     if (x >> 16) { x >>= 16; r += 16; }
1062     if (x >> 8) { x >>= 8; r += 8; }
1063     if (x >> 4) { x >>= 4; r += 4; }
1064     if (x >> 2) { x >>= 2; r += 2; }
1065     if (x >> 1) { r += 1; }
1066    
1067     return r;
1068 root 1.479 #endif
1069 root 1.391 }
1070    
1071 root 1.474 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1072     ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1073 root 1.391 {
1074 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1075     unsigned long r;
1076     _BitScanReverse64 (&r, x);
1077     return (int)r;
1078     #else
1079 root 1.391 int r = 0;
1080    
1081     if (x >> 32) { x >>= 32; r += 32; }
1082    
1083     return r + ecb_ld32 (x);
1084 root 1.479 #endif
1085 root 1.391 }
1086     #endif
1087    
1088 root 1.474 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1089     ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1090     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1091     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1092 root 1.437
1093 root 1.474 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1094     ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1095 root 1.403 {
1096     return ( (x * 0x0802U & 0x22110U)
1097 root 1.474 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1098 root 1.403 }
1099    
1100 root 1.474 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1101     ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1102 root 1.403 {
1103     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1104     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1105     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1106     x = ( x >> 8 ) | ( x << 8);
1107    
1108     return x;
1109     }
1110    
1111 root 1.474 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1112     ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1113 root 1.403 {
1114     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1115     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1116     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1117     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1118     x = ( x >> 16 ) | ( x << 16);
1119    
1120     return x;
1121     }
1122    
1123 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1124     /* so for this version we are lazy */
1125 root 1.474 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1126     ecb_function_ ecb_const int
1127 root 1.391 ecb_popcount64 (uint64_t x)
1128     {
1129     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1130     }
1131    
1132 root 1.474 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1133     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1134     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1135     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1136     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1137     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1138     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1139     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1140    
1141     ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1142     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1143     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1144     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1145     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1146     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1147     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1148     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1149 root 1.391
1150 root 1.474 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1151 root 1.476 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1152     #define ecb_bswap16(x) __builtin_bswap16 (x)
1153     #else
1154 root 1.391 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1155 root 1.476 #endif
1156 root 1.391 #define ecb_bswap32(x) __builtin_bswap32 (x)
1157     #define ecb_bswap64(x) __builtin_bswap64 (x)
1158 root 1.476 #elif _MSC_VER
1159     #include <stdlib.h>
1160     #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1161     #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1162     #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1163 root 1.391 #else
1164 root 1.474 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1165     ecb_function_ ecb_const uint16_t
1166 root 1.391 ecb_bswap16 (uint16_t x)
1167     {
1168     return ecb_rotl16 (x, 8);
1169     }
1170    
1171 root 1.474 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1172     ecb_function_ ecb_const uint32_t
1173 root 1.391 ecb_bswap32 (uint32_t x)
1174     {
1175     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1176     }
1177    
1178 root 1.474 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1179     ecb_function_ ecb_const uint64_t
1180 root 1.391 ecb_bswap64 (uint64_t x)
1181     {
1182     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1183     }
1184     #endif
1185    
1186 root 1.474 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1187 root 1.391 #define ecb_unreachable() __builtin_unreachable ()
1188     #else
1189     /* this seems to work fine, but gcc always emits a warning for it :/ */
1190 root 1.474 ecb_inline ecb_noreturn void ecb_unreachable (void);
1191     ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1192 root 1.391 #endif
1193    
1194     /* try to tell the compiler that some condition is definitely true */
1195 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1196 root 1.391
1197 root 1.479 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1198     ecb_inline ecb_const uint32_t
1199 root 1.391 ecb_byteorder_helper (void)
1200     {
1201 root 1.450 /* the union code still generates code under pressure in gcc, */
1202     /* but less than using pointers, and always seems to */
1203     /* successfully return a constant. */
1204     /* the reason why we have this horrible preprocessor mess */
1205     /* is to avoid it in all cases, at least on common architectures */
1206     /* or when using a recent enough gcc version (>= 4.6) */
1207 root 1.479 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1208     || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1209     #define ECB_LITTLE_ENDIAN 1
1210     return 0x44332211;
1211     #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1212     || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1213     #define ECB_BIG_ENDIAN 1
1214     return 0x11223344;
1215 root 1.450 #else
1216     union
1217     {
1218 root 1.479 uint8_t c[4];
1219     uint32_t u;
1220     } u = { 0x11, 0x22, 0x33, 0x44 };
1221     return u.u;
1222 root 1.450 #endif
1223 root 1.391 }
1224    
1225 root 1.474 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1226 root 1.479 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1227 root 1.474 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1228 root 1.479 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1229 root 1.391
1230     #if ECB_GCC_VERSION(3,0) || ECB_C99
1231     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1232     #else
1233     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1234     #endif
1235    
1236 root 1.474 #if ECB_CPP
1237 root 1.398 template<typename T>
1238     static inline T ecb_div_rd (T val, T div)
1239     {
1240     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1241     }
1242     template<typename T>
1243     static inline T ecb_div_ru (T val, T div)
1244     {
1245     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1246     }
1247     #else
1248     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1249     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1250     #endif
1251    
1252 root 1.391 #if ecb_cplusplus_does_not_suck
1253     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1254     template<typename T, int N>
1255     static inline int ecb_array_length (const T (&arr)[N])
1256     {
1257     return N;
1258     }
1259     #else
1260     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1261     #endif
1262    
1263 root 1.479 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1264     ecb_function_ ecb_const uint32_t
1265     ecb_binary16_to_binary32 (uint32_t x)
1266     {
1267     unsigned int s = (x & 0x8000) << (31 - 15);
1268     int e = (x >> 10) & 0x001f;
1269     unsigned int m = x & 0x03ff;
1270    
1271     if (ecb_expect_false (e == 31))
1272     /* infinity or NaN */
1273     e = 255 - (127 - 15);
1274     else if (ecb_expect_false (!e))
1275     {
1276     if (ecb_expect_true (!m))
1277     /* zero, handled by code below by forcing e to 0 */
1278     e = 0 - (127 - 15);
1279     else
1280     {
1281     /* subnormal, renormalise */
1282     unsigned int s = 10 - ecb_ld32 (m);
1283    
1284     m = (m << s) & 0x3ff; /* mask implicit bit */
1285     e -= s - 1;
1286     }
1287     }
1288    
1289     /* e and m now are normalised, or zero, (or inf or nan) */
1290     e += 127 - 15;
1291    
1292     return s | (e << 23) | (m << (23 - 10));
1293     }
1294    
1295     ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1296     ecb_function_ ecb_const uint16_t
1297     ecb_binary32_to_binary16 (uint32_t x)
1298     {
1299     unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1300     unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1301     unsigned int m = x & 0x007fffff;
1302    
1303     x &= 0x7fffffff;
1304    
1305     /* if it's within range of binary16 normals, use fast path */
1306     if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1307     {
1308     /* mantissa round-to-even */
1309     m += 0x00000fff + ((m >> (23 - 10)) & 1);
1310    
1311     /* handle overflow */
1312     if (ecb_expect_false (m >= 0x00800000))
1313     {
1314     m >>= 1;
1315     e += 1;
1316     }
1317    
1318     return s | (e << 10) | (m >> (23 - 10));
1319     }
1320    
1321     /* handle large numbers and infinity */
1322     if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1323     return s | 0x7c00;
1324    
1325     /* handle zero, subnormals and small numbers */
1326     if (ecb_expect_true (x < 0x38800000))
1327     {
1328     /* zero */
1329     if (ecb_expect_true (!x))
1330     return s;
1331    
1332     /* handle subnormals */
1333    
1334     /* too small, will be zero */
1335     if (e < (14 - 24)) /* might not be sharp, but is good enough */
1336     return s;
1337    
1338     m |= 0x00800000; /* make implicit bit explicit */
1339    
1340     /* very tricky - we need to round to the nearest e (+10) bit value */
1341     {
1342     unsigned int bits = 14 - e;
1343     unsigned int half = (1 << (bits - 1)) - 1;
1344     unsigned int even = (m >> bits) & 1;
1345    
1346     /* if this overflows, we will end up with a normalised number */
1347     m = (m + half + even) >> bits;
1348     }
1349    
1350     return s | m;
1351     }
1352    
1353     /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1354     m >>= 13;
1355    
1356     return s | 0x7c00 | m | !m;
1357     }
1358    
1359 root 1.450 /*******************************************************************************/
1360     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1361    
1362     /* basically, everything uses "ieee pure-endian" floating point numbers */
1363     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1364     #if 0 \
1365     || __i386 || __i386__ \
1366 sf-exg 1.475 || ECB_GCC_AMD64 \
1367 root 1.450 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1368     || defined __s390__ || defined __s390x__ \
1369     || defined __mips__ \
1370     || defined __alpha__ \
1371     || defined __hppa__ \
1372     || defined __ia64__ \
1373 root 1.457 || defined __m68k__ \
1374     || defined __m88k__ \
1375     || defined __sh__ \
1376 sf-exg 1.475 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1377 root 1.465 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1378 root 1.466 || defined __aarch64__
1379 root 1.450 #define ECB_STDFP 1
1380     #include <string.h> /* for memcpy */
1381     #else
1382     #define ECB_STDFP 0
1383     #endif
1384    
1385     #ifndef ECB_NO_LIBM
1386    
1387 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1388    
1389 root 1.462 /* only the oldest of old doesn't have this one. solaris. */
1390     #ifdef INFINITY
1391     #define ECB_INFINITY INFINITY
1392     #else
1393     #define ECB_INFINITY HUGE_VAL
1394     #endif
1395    
1396     #ifdef NAN
1397 root 1.458 #define ECB_NAN NAN
1398     #else
1399 root 1.462 #define ECB_NAN ECB_INFINITY
1400 root 1.458 #endif
1401    
1402 root 1.474 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1403     #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1404 root 1.476 #define ecb_frexpf(x,e) frexpf ((x), (e))
1405 root 1.474 #else
1406 root 1.476 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1407     #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1408 root 1.474 #endif
1409    
1410 root 1.450 /* convert a float to ieee single/binary32 */
1411 root 1.474 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1412     ecb_function_ ecb_const uint32_t
1413 root 1.450 ecb_float_to_binary32 (float x)
1414     {
1415     uint32_t r;
1416    
1417     #if ECB_STDFP
1418     memcpy (&r, &x, 4);
1419     #else
1420     /* slow emulation, works for anything but -0 */
1421     uint32_t m;
1422     int e;
1423    
1424     if (x == 0e0f ) return 0x00000000U;
1425     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1426     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1427     if (x != x ) return 0x7fbfffffU;
1428    
1429 root 1.476 m = ecb_frexpf (x, &e) * 0x1000000U;
1430 root 1.450
1431     r = m & 0x80000000U;
1432    
1433     if (r)
1434     m = -m;
1435    
1436     if (e <= -126)
1437     {
1438     m &= 0xffffffU;
1439     m >>= (-125 - e);
1440     e = -126;
1441     }
1442    
1443     r |= (e + 126) << 23;
1444     r |= m & 0x7fffffU;
1445     #endif
1446    
1447     return r;
1448     }
1449    
1450     /* converts an ieee single/binary32 to a float */
1451 root 1.474 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1452     ecb_function_ ecb_const float
1453 root 1.450 ecb_binary32_to_float (uint32_t x)
1454     {
1455     float r;
1456    
1457     #if ECB_STDFP
1458     memcpy (&r, &x, 4);
1459     #else
1460     /* emulation, only works for normals and subnormals and +0 */
1461     int neg = x >> 31;
1462     int e = (x >> 23) & 0xffU;
1463    
1464     x &= 0x7fffffU;
1465    
1466     if (e)
1467     x |= 0x800000U;
1468     else
1469     e = 1;
1470    
1471     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1472 root 1.474 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1473 root 1.450
1474     r = neg ? -r : r;
1475     #endif
1476    
1477     return r;
1478     }
1479    
1480     /* convert a double to ieee double/binary64 */
1481 root 1.474 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1482     ecb_function_ ecb_const uint64_t
1483 root 1.450 ecb_double_to_binary64 (double x)
1484     {
1485     uint64_t r;
1486    
1487     #if ECB_STDFP
1488     memcpy (&r, &x, 8);
1489     #else
1490     /* slow emulation, works for anything but -0 */
1491     uint64_t m;
1492     int e;
1493    
1494     if (x == 0e0 ) return 0x0000000000000000U;
1495     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1496     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1497     if (x != x ) return 0X7ff7ffffffffffffU;
1498    
1499     m = frexp (x, &e) * 0x20000000000000U;
1500    
1501     r = m & 0x8000000000000000;;
1502    
1503     if (r)
1504     m = -m;
1505    
1506     if (e <= -1022)
1507     {
1508     m &= 0x1fffffffffffffU;
1509     m >>= (-1021 - e);
1510     e = -1022;
1511     }
1512    
1513     r |= ((uint64_t)(e + 1022)) << 52;
1514     r |= m & 0xfffffffffffffU;
1515     #endif
1516    
1517     return r;
1518     }
1519    
1520     /* converts an ieee double/binary64 to a double */
1521 root 1.474 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1522     ecb_function_ ecb_const double
1523 root 1.450 ecb_binary64_to_double (uint64_t x)
1524     {
1525     double r;
1526    
1527     #if ECB_STDFP
1528     memcpy (&r, &x, 8);
1529     #else
1530     /* emulation, only works for normals and subnormals and +0 */
1531     int neg = x >> 63;
1532     int e = (x >> 52) & 0x7ffU;
1533    
1534     x &= 0xfffffffffffffU;
1535    
1536     if (e)
1537     x |= 0x10000000000000U;
1538     else
1539     e = 1;
1540    
1541     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1542     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1543    
1544     r = neg ? -r : r;
1545     #endif
1546    
1547     return r;
1548     }
1549    
1550 root 1.479 /* convert a float to ieee half/binary16 */
1551     ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1552     ecb_function_ ecb_const uint16_t
1553     ecb_float_to_binary16 (float x)
1554     {
1555     return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1556     }
1557    
1558     /* convert an ieee half/binary16 to float */
1559     ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1560     ecb_function_ ecb_const float
1561     ecb_binary16_to_float (uint16_t x)
1562     {
1563     return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1564     }
1565    
1566 root 1.450 #endif
1567    
1568 root 1.391 #endif
1569    
1570     /* ECB.H END */
1571 root 1.379
1572 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1573 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1574 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1575 root 1.500 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1576 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1577 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1578     * which will then provide the memory fences.
1579     */
1580     # error "memory fences not defined for your architecture, please report"
1581     #endif
1582    
1583     #ifndef ECB_MEMORY_FENCE
1584     # define ECB_MEMORY_FENCE do { } while (0)
1585     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1586     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1587 root 1.392 #endif
1588    
1589 root 1.379 #define inline_size ecb_inline
1590 root 1.169
1591 root 1.338 #if EV_FEATURE_CODE
1592 root 1.379 # define inline_speed ecb_inline
1593 root 1.338 #else
1594 root 1.500 # define inline_speed ecb_noinline static
1595 root 1.169 #endif
1596 root 1.40
1597 root 1.502 /*****************************************************************************/
1598     /* raw syscall wrappers */
1599    
1600     #if EV_NEED_SYSCALL
1601    
1602     #include <sys/syscall.h>
1603    
1604     /*
1605     * define some syscall wrappers for common architectures
1606     * this is mostly for nice looks during debugging, not performance.
1607     * our syscalls return < 0, not == -1, on error. which is good
1608     * enough for linux aio.
1609     * TODO: arm is also common nowadays, maybe even mips and x86
1610     * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1611     */
1612     #if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1613     /* the costly errno access probably kills this for size optimisation */
1614    
1615     #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1616     ({ \
1617     long res; \
1618     register unsigned long r6 __asm__ ("r9" ); \
1619     register unsigned long r5 __asm__ ("r8" ); \
1620     register unsigned long r4 __asm__ ("r10"); \
1621     register unsigned long r3 __asm__ ("rdx"); \
1622     register unsigned long r2 __asm__ ("rsi"); \
1623     register unsigned long r1 __asm__ ("rdi"); \
1624     if (narg >= 6) r6 = (unsigned long)(arg6); \
1625     if (narg >= 5) r5 = (unsigned long)(arg5); \
1626     if (narg >= 4) r4 = (unsigned long)(arg4); \
1627     if (narg >= 3) r3 = (unsigned long)(arg3); \
1628     if (narg >= 2) r2 = (unsigned long)(arg2); \
1629     if (narg >= 1) r1 = (unsigned long)(arg1); \
1630     __asm__ __volatile__ ( \
1631     "syscall\n\t" \
1632     : "=a" (res) \
1633     : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1634     : "cc", "r11", "cx", "memory"); \
1635     errno = -res; \
1636     res; \
1637     })
1638    
1639     #endif
1640    
1641     #ifdef ev_syscall
1642     #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1643     #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1644     #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1645     #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1646     #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1647     #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1648     #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1649     #else
1650     #define ev_syscall0(nr) syscall (nr)
1651     #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1652     #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1653     #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1654     #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1655     #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1656     #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1657     #endif
1658    
1659     #endif
1660    
1661     /*****************************************************************************/
1662    
1663 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1664    
1665     #if EV_MINPRI == EV_MAXPRI
1666     # define ABSPRI(w) (((W)w), 0)
1667     #else
1668     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1669     #endif
1670 root 1.42
1671 root 1.490 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1672 root 1.103
1673 root 1.136 typedef ev_watcher *W;
1674     typedef ev_watcher_list *WL;
1675     typedef ev_watcher_time *WT;
1676 root 1.10
1677 root 1.229 #define ev_active(w) ((W)(w))->active
1678 root 1.228 #define ev_at(w) ((WT)(w))->at
1679    
1680 root 1.279 #if EV_USE_REALTIME
1681 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1682 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1683 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1684     #endif
1685    
1686     #if EV_USE_MONOTONIC
1687 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1688 root 1.198 #endif
1689 root 1.54
1690 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1691     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1692     #endif
1693     #ifndef EV_WIN32_HANDLE_TO_FD
1694 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1695 root 1.313 #endif
1696     #ifndef EV_WIN32_CLOSE_FD
1697     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1698     #endif
1699    
1700 root 1.103 #ifdef _WIN32
1701 root 1.98 # include "ev_win32.c"
1702     #endif
1703 root 1.67
1704 root 1.53 /*****************************************************************************/
1705 root 1.1
1706 root 1.493 #if EV_USE_LINUXAIO
1707     # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1708     #endif
1709    
1710 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1711    
1712     #if EV_USE_FLOOR
1713     # include <math.h>
1714     # define ev_floor(v) floor (v)
1715     #else
1716    
1717     #include <float.h>
1718    
1719     /* a floor() replacement function, should be independent of ev_tstamp type */
1720 root 1.500 ecb_noinline
1721 root 1.480 static ev_tstamp
1722 root 1.373 ev_floor (ev_tstamp v)
1723     {
1724     /* the choice of shift factor is not terribly important */
1725     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1726     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1727     #else
1728     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1729     #endif
1730    
1731     /* argument too large for an unsigned long? */
1732 root 1.500 if (ecb_expect_false (v >= shift))
1733 root 1.373 {
1734     ev_tstamp f;
1735    
1736     if (v == v - 1.)
1737     return v; /* very large number */
1738    
1739     f = shift * ev_floor (v * (1. / shift));
1740     return f + ev_floor (v - f);
1741     }
1742    
1743     /* special treatment for negative args? */
1744 root 1.500 if (ecb_expect_false (v < 0.))
1745 root 1.373 {
1746     ev_tstamp f = -ev_floor (-v);
1747    
1748     return f - (f == v ? 0 : 1);
1749     }
1750    
1751     /* fits into an unsigned long */
1752     return (unsigned long)v;
1753     }
1754    
1755     #endif
1756    
1757     /*****************************************************************************/
1758    
1759 root 1.356 #ifdef __linux
1760     # include <sys/utsname.h>
1761     #endif
1762    
1763 root 1.500 ecb_noinline ecb_cold
1764 root 1.480 static unsigned int
1765 root 1.355 ev_linux_version (void)
1766     {
1767     #ifdef __linux
1768 root 1.359 unsigned int v = 0;
1769 root 1.355 struct utsname buf;
1770     int i;
1771     char *p = buf.release;
1772    
1773     if (uname (&buf))
1774     return 0;
1775    
1776     for (i = 3+1; --i; )
1777     {
1778     unsigned int c = 0;
1779    
1780     for (;;)
1781     {
1782     if (*p >= '0' && *p <= '9')
1783     c = c * 10 + *p++ - '0';
1784     else
1785     {
1786     p += *p == '.';
1787     break;
1788     }
1789     }
1790    
1791     v = (v << 8) | c;
1792     }
1793    
1794     return v;
1795     #else
1796     return 0;
1797     #endif
1798     }
1799    
1800     /*****************************************************************************/
1801    
1802 root 1.331 #if EV_AVOID_STDIO
1803 root 1.500 ecb_noinline ecb_cold
1804 root 1.480 static void
1805 root 1.331 ev_printerr (const char *msg)
1806     {
1807     write (STDERR_FILENO, msg, strlen (msg));
1808     }
1809     #endif
1810    
1811 root 1.486 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1812 root 1.69
1813 root 1.480 ecb_cold
1814     void
1815 root 1.486 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1816 root 1.69 {
1817     syserr_cb = cb;
1818     }
1819    
1820 root 1.500 ecb_noinline ecb_cold
1821 root 1.480 static void
1822 root 1.269 ev_syserr (const char *msg)
1823 root 1.69 {
1824 root 1.70 if (!msg)
1825     msg = "(libev) system error";
1826    
1827 root 1.69 if (syserr_cb)
1828 root 1.70 syserr_cb (msg);
1829 root 1.69 else
1830     {
1831 root 1.330 #if EV_AVOID_STDIO
1832 root 1.331 ev_printerr (msg);
1833     ev_printerr (": ");
1834 root 1.365 ev_printerr (strerror (errno));
1835 root 1.331 ev_printerr ("\n");
1836 root 1.330 #else
1837 root 1.70 perror (msg);
1838 root 1.330 #endif
1839 root 1.69 abort ();
1840     }
1841     }
1842    
1843 root 1.224 static void *
1844 root 1.486 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1845 root 1.224 {
1846     /* some systems, notably openbsd and darwin, fail to properly
1847 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1848 root 1.224 * the single unix specification, so work around them here.
1849 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1850     * despite documenting it otherwise.
1851 root 1.224 */
1852 root 1.333
1853 root 1.224 if (size)
1854     return realloc (ptr, size);
1855    
1856     free (ptr);
1857     return 0;
1858     }
1859    
1860 root 1.486 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1861 root 1.69
1862 root 1.480 ecb_cold
1863     void
1864 root 1.486 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1865 root 1.69 {
1866     alloc = cb;
1867     }
1868    
1869 root 1.150 inline_speed void *
1870 root 1.155 ev_realloc (void *ptr, long size)
1871 root 1.69 {
1872 root 1.224 ptr = alloc (ptr, size);
1873 root 1.69
1874     if (!ptr && size)
1875     {
1876 root 1.330 #if EV_AVOID_STDIO
1877 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1878 root 1.330 #else
1879 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1880 root 1.330 #endif
1881 root 1.69 abort ();
1882     }
1883    
1884     return ptr;
1885     }
1886    
1887     #define ev_malloc(size) ev_realloc (0, (size))
1888     #define ev_free(ptr) ev_realloc ((ptr), 0)
1889    
1890     /*****************************************************************************/
1891    
1892 root 1.298 /* set in reify when reification needed */
1893     #define EV_ANFD_REIFY 1
1894    
1895 root 1.288 /* file descriptor info structure */
1896 root 1.53 typedef struct
1897     {
1898 root 1.68 WL head;
1899 root 1.288 unsigned char events; /* the events watched for */
1900 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1901 root 1.490 unsigned char emask; /* some backends store the actual kernel mask in here */
1902 root 1.502 unsigned char eflags; /* flags field for use by backends */
1903 root 1.269 #if EV_USE_EPOLL
1904 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1905 root 1.269 #endif
1906 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1907 root 1.103 SOCKET handle;
1908     #endif
1909 root 1.357 #if EV_USE_IOCP
1910     OVERLAPPED or, ow;
1911     #endif
1912 root 1.53 } ANFD;
1913 root 1.1
1914 root 1.288 /* stores the pending event set for a given watcher */
1915 root 1.53 typedef struct
1916     {
1917     W w;
1918 root 1.288 int events; /* the pending event set for the given watcher */
1919 root 1.53 } ANPENDING;
1920 root 1.51
1921 root 1.155 #if EV_USE_INOTIFY
1922 root 1.241 /* hash table entry per inotify-id */
1923 root 1.152 typedef struct
1924     {
1925     WL head;
1926 root 1.155 } ANFS;
1927 root 1.152 #endif
1928    
1929 root 1.241 /* Heap Entry */
1930     #if EV_HEAP_CACHE_AT
1931 root 1.288 /* a heap element */
1932 root 1.241 typedef struct {
1933 root 1.243 ev_tstamp at;
1934 root 1.241 WT w;
1935     } ANHE;
1936    
1937 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1938     #define ANHE_at(he) (he).at /* access cached at, read-only */
1939     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1940 root 1.241 #else
1941 root 1.288 /* a heap element */
1942 root 1.241 typedef WT ANHE;
1943    
1944 root 1.248 #define ANHE_w(he) (he)
1945     #define ANHE_at(he) (he)->at
1946     #define ANHE_at_cache(he)
1947 root 1.241 #endif
1948    
1949 root 1.55 #if EV_MULTIPLICITY
1950 root 1.54
1951 root 1.80 struct ev_loop
1952     {
1953 root 1.86 ev_tstamp ev_rt_now;
1954 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1955 root 1.80 #define VAR(name,decl) decl;
1956     #include "ev_vars.h"
1957     #undef VAR
1958     };
1959     #include "ev_wrap.h"
1960    
1961 root 1.116 static struct ev_loop default_loop_struct;
1962 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1963 root 1.54
1964 root 1.53 #else
1965 root 1.54
1966 sf-exg 1.402 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1967 root 1.80 #define VAR(name,decl) static decl;
1968     #include "ev_vars.h"
1969     #undef VAR
1970    
1971 root 1.116 static int ev_default_loop_ptr;
1972 root 1.54
1973 root 1.51 #endif
1974 root 1.1
1975 root 1.338 #if EV_FEATURE_API
1976 root 1.500 # define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
1977     # define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
1978 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1979     #else
1980 root 1.298 # define EV_RELEASE_CB (void)0
1981     # define EV_ACQUIRE_CB (void)0
1982 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1983     #endif
1984    
1985 root 1.353 #define EVBREAK_RECURSE 0x80
1986 root 1.298
1987 root 1.8 /*****************************************************************************/
1988    
1989 root 1.292 #ifndef EV_HAVE_EV_TIME
1990 root 1.141 ev_tstamp
1991 root 1.486 ev_time (void) EV_NOEXCEPT
1992 root 1.1 {
1993 root 1.29 #if EV_USE_REALTIME
1994 root 1.500 if (ecb_expect_true (have_realtime))
1995 root 1.279 {
1996     struct timespec ts;
1997     clock_gettime (CLOCK_REALTIME, &ts);
1998     return ts.tv_sec + ts.tv_nsec * 1e-9;
1999     }
2000     #endif
2001    
2002 root 1.1 struct timeval tv;
2003     gettimeofday (&tv, 0);
2004     return tv.tv_sec + tv.tv_usec * 1e-6;
2005     }
2006 root 1.292 #endif
2007 root 1.1
2008 root 1.284 inline_size ev_tstamp
2009 root 1.1 get_clock (void)
2010     {
2011 root 1.29 #if EV_USE_MONOTONIC
2012 root 1.500 if (ecb_expect_true (have_monotonic))
2013 root 1.1 {
2014     struct timespec ts;
2015     clock_gettime (CLOCK_MONOTONIC, &ts);
2016     return ts.tv_sec + ts.tv_nsec * 1e-9;
2017     }
2018     #endif
2019    
2020     return ev_time ();
2021     }
2022    
2023 root 1.85 #if EV_MULTIPLICITY
2024 root 1.51 ev_tstamp
2025 root 1.486 ev_now (EV_P) EV_NOEXCEPT
2026 root 1.51 {
2027 root 1.85 return ev_rt_now;
2028 root 1.51 }
2029 root 1.85 #endif
2030 root 1.51
2031 root 1.193 void
2032 root 1.486 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2033 root 1.193 {
2034     if (delay > 0.)
2035     {
2036     #if EV_USE_NANOSLEEP
2037     struct timespec ts;
2038    
2039 root 1.348 EV_TS_SET (ts, delay);
2040 root 1.193 nanosleep (&ts, 0);
2041 root 1.416 #elif defined _WIN32
2042 root 1.482 /* maybe this should round up, as ms is very low resolution */
2043     /* compared to select (µs) or nanosleep (ns) */
2044 root 1.217 Sleep ((unsigned long)(delay * 1e3));
2045 root 1.193 #else
2046     struct timeval tv;
2047    
2048 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2049 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
2050 root 1.257 /* by older ones */
2051 sf-exg 1.349 EV_TV_SET (tv, delay);
2052 root 1.193 select (0, 0, 0, 0, &tv);
2053     #endif
2054     }
2055     }
2056    
2057     /*****************************************************************************/
2058    
2059 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2060 root 1.232
2061 root 1.288 /* find a suitable new size for the given array, */
2062 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
2063 root 1.284 inline_size int
2064 root 1.163 array_nextsize (int elem, int cur, int cnt)
2065     {
2066     int ncur = cur + 1;
2067    
2068     do
2069     ncur <<= 1;
2070     while (cnt > ncur);
2071    
2072 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2073 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2074 root 1.163 {
2075     ncur *= elem;
2076 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2077 root 1.163 ncur = ncur - sizeof (void *) * 4;
2078     ncur /= elem;
2079     }
2080    
2081     return ncur;
2082     }
2083    
2084 root 1.500 ecb_noinline ecb_cold
2085 root 1.480 static void *
2086 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
2087     {
2088     *cur = array_nextsize (elem, *cur, cnt);
2089     return ev_realloc (base, elem * *cur);
2090     }
2091 root 1.29
2092 root 1.495 #define array_needsize_noinit(base,offset,count)
2093 root 1.490
2094 root 1.495 #define array_needsize_zerofill(base,offset,count) \
2095     memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2096 root 1.265
2097 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
2098 root 1.500 if (ecb_expect_false ((cnt) > (cur))) \
2099 root 1.69 { \
2100 root 1.480 ecb_unused int ocur_ = (cur); \
2101 root 1.163 (base) = (type *)array_realloc \
2102     (sizeof (type), (base), &(cur), (cnt)); \
2103 root 1.495 init ((base), ocur_, ((cur) - ocur_)); \
2104 root 1.1 }
2105    
2106 root 1.163 #if 0
2107 root 1.74 #define array_slim(type,stem) \
2108 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2109     { \
2110     stem ## max = array_roundsize (stem ## cnt >> 1); \
2111 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2112 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2113     }
2114 root 1.163 #endif
2115 root 1.67
2116 root 1.65 #define array_free(stem, idx) \
2117 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2118 root 1.65
2119 root 1.8 /*****************************************************************************/
2120    
2121 root 1.288 /* dummy callback for pending events */
2122 root 1.500 ecb_noinline
2123 root 1.480 static void
2124 root 1.288 pendingcb (EV_P_ ev_prepare *w, int revents)
2125     {
2126     }
2127    
2128 root 1.500 ecb_noinline
2129 root 1.480 void
2130 root 1.486 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2131 root 1.1 {
2132 root 1.78 W w_ = (W)w;
2133 root 1.171 int pri = ABSPRI (w_);
2134 root 1.78
2135 root 1.500 if (ecb_expect_false (w_->pending))
2136 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
2137     else
2138 root 1.32 {
2139 root 1.171 w_->pending = ++pendingcnt [pri];
2140 root 1.490 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2141 root 1.171 pendings [pri][w_->pending - 1].w = w_;
2142     pendings [pri][w_->pending - 1].events = revents;
2143 root 1.32 }
2144 root 1.425
2145     pendingpri = NUMPRI - 1;
2146 root 1.1 }
2147    
2148 root 1.284 inline_speed void
2149     feed_reverse (EV_P_ W w)
2150     {
2151 root 1.490 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2152 root 1.284 rfeeds [rfeedcnt++] = w;
2153     }
2154    
2155     inline_size void
2156     feed_reverse_done (EV_P_ int revents)
2157     {
2158     do
2159     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2160     while (rfeedcnt);
2161     }
2162    
2163     inline_speed void
2164 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
2165 root 1.27 {
2166     int i;
2167    
2168     for (i = 0; i < eventcnt; ++i)
2169 root 1.78 ev_feed_event (EV_A_ events [i], type);
2170 root 1.27 }
2171    
2172 root 1.141 /*****************************************************************************/
2173    
2174 root 1.284 inline_speed void
2175 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
2176 root 1.1 {
2177     ANFD *anfd = anfds + fd;
2178 root 1.136 ev_io *w;
2179 root 1.1
2180 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2181 root 1.1 {
2182 root 1.79 int ev = w->events & revents;
2183 root 1.1
2184     if (ev)
2185 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
2186 root 1.1 }
2187     }
2188    
2189 root 1.298 /* do not submit kernel events for fds that have reify set */
2190     /* because that means they changed while we were polling for new events */
2191     inline_speed void
2192     fd_event (EV_P_ int fd, int revents)
2193     {
2194     ANFD *anfd = anfds + fd;
2195    
2196 root 1.500 if (ecb_expect_true (!anfd->reify))
2197 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2198 root 1.298 }
2199    
2200 root 1.79 void
2201 root 1.486 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2202 root 1.79 {
2203 root 1.168 if (fd >= 0 && fd < anfdmax)
2204 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2205 root 1.79 }
2206    
2207 root 1.288 /* make sure the external fd watch events are in-sync */
2208     /* with the kernel/libev internal state */
2209 root 1.284 inline_size void
2210 root 1.51 fd_reify (EV_P)
2211 root 1.9 {
2212     int i;
2213    
2214 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2215     for (i = 0; i < fdchangecnt; ++i)
2216     {
2217     int fd = fdchanges [i];
2218     ANFD *anfd = anfds + fd;
2219    
2220 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
2221 root 1.371 {
2222     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2223    
2224     if (handle != anfd->handle)
2225     {
2226     unsigned long arg;
2227    
2228     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2229    
2230     /* handle changed, but fd didn't - we need to do it in two steps */
2231     backend_modify (EV_A_ fd, anfd->events, 0);
2232     anfd->events = 0;
2233     anfd->handle = handle;
2234     }
2235     }
2236     }
2237     #endif
2238    
2239 root 1.27 for (i = 0; i < fdchangecnt; ++i)
2240     {
2241     int fd = fdchanges [i];
2242     ANFD *anfd = anfds + fd;
2243 root 1.136 ev_io *w;
2244 root 1.27
2245 root 1.350 unsigned char o_events = anfd->events;
2246     unsigned char o_reify = anfd->reify;
2247 root 1.27
2248 root 1.497 anfd->reify = 0;
2249 root 1.27
2250 root 1.500 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2251 root 1.350 {
2252     anfd->events = 0;
2253 root 1.184
2254 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2255     anfd->events |= (unsigned char)w->events;
2256 root 1.27
2257 root 1.351 if (o_events != anfd->events)
2258 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
2259     }
2260    
2261     if (o_reify & EV__IOFDSET)
2262     backend_modify (EV_A_ fd, o_events, anfd->events);
2263 root 1.27 }
2264    
2265     fdchangecnt = 0;
2266     }
2267    
2268 root 1.288 /* something about the given fd changed */
2269 root 1.480 inline_size
2270     void
2271 root 1.183 fd_change (EV_P_ int fd, int flags)
2272 root 1.27 {
2273 root 1.183 unsigned char reify = anfds [fd].reify;
2274 root 1.184 anfds [fd].reify |= flags;
2275 root 1.27
2276 root 1.500 if (ecb_expect_true (!reify))
2277 root 1.183 {
2278     ++fdchangecnt;
2279 root 1.490 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2280 root 1.183 fdchanges [fdchangecnt - 1] = fd;
2281     }
2282 root 1.9 }
2283    
2284 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2285 root 1.480 inline_speed ecb_cold void
2286 root 1.51 fd_kill (EV_P_ int fd)
2287 root 1.41 {
2288 root 1.136 ev_io *w;
2289 root 1.41
2290 root 1.136 while ((w = (ev_io *)anfds [fd].head))
2291 root 1.41 {
2292 root 1.51 ev_io_stop (EV_A_ w);
2293 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2294 root 1.41 }
2295     }
2296    
2297 root 1.336 /* check whether the given fd is actually valid, for error recovery */
2298 root 1.480 inline_size ecb_cold int
2299 root 1.71 fd_valid (int fd)
2300     {
2301 root 1.103 #ifdef _WIN32
2302 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2303 root 1.71 #else
2304     return fcntl (fd, F_GETFD) != -1;
2305     #endif
2306     }
2307    
2308 root 1.19 /* called on EBADF to verify fds */
2309 root 1.500 ecb_noinline ecb_cold
2310 root 1.480 static void
2311 root 1.51 fd_ebadf (EV_P)
2312 root 1.19 {
2313     int fd;
2314    
2315     for (fd = 0; fd < anfdmax; ++fd)
2316 root 1.27 if (anfds [fd].events)
2317 root 1.254 if (!fd_valid (fd) && errno == EBADF)
2318 root 1.51 fd_kill (EV_A_ fd);
2319 root 1.41 }
2320    
2321     /* called on ENOMEM in select/poll to kill some fds and retry */
2322 root 1.500 ecb_noinline ecb_cold
2323 root 1.480 static void
2324 root 1.51 fd_enomem (EV_P)
2325 root 1.41 {
2326 root 1.62 int fd;
2327 root 1.41
2328 root 1.62 for (fd = anfdmax; fd--; )
2329 root 1.41 if (anfds [fd].events)
2330     {
2331 root 1.51 fd_kill (EV_A_ fd);
2332 root 1.307 break;
2333 root 1.41 }
2334 root 1.19 }
2335    
2336 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
2337 root 1.500 ecb_noinline
2338 root 1.480 static void
2339 root 1.56 fd_rearm_all (EV_P)
2340     {
2341     int fd;
2342    
2343     for (fd = 0; fd < anfdmax; ++fd)
2344     if (anfds [fd].events)
2345     {
2346     anfds [fd].events = 0;
2347 root 1.268 anfds [fd].emask = 0;
2348 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2349 root 1.56 }
2350     }
2351    
2352 root 1.336 /* used to prepare libev internal fd's */
2353     /* this is not fork-safe */
2354     inline_speed void
2355     fd_intern (int fd)
2356     {
2357     #ifdef _WIN32
2358     unsigned long arg = 1;
2359     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2360     #else
2361     fcntl (fd, F_SETFD, FD_CLOEXEC);
2362     fcntl (fd, F_SETFL, O_NONBLOCK);
2363     #endif
2364     }
2365    
2366 root 1.8 /*****************************************************************************/
2367    
2368 root 1.235 /*
2369 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
2370 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2371     * the branching factor of the d-tree.
2372     */
2373    
2374     /*
2375 root 1.235 * at the moment we allow libev the luxury of two heaps,
2376     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2377     * which is more cache-efficient.
2378     * the difference is about 5% with 50000+ watchers.
2379     */
2380 root 1.241 #if EV_USE_4HEAP
2381 root 1.235
2382 root 1.237 #define DHEAP 4
2383     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2384 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2385 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
2386 root 1.235
2387     /* away from the root */
2388 root 1.284 inline_speed void
2389 root 1.241 downheap (ANHE *heap, int N, int k)
2390 root 1.235 {
2391 root 1.241 ANHE he = heap [k];
2392     ANHE *E = heap + N + HEAP0;
2393 root 1.235
2394     for (;;)
2395     {
2396     ev_tstamp minat;
2397 root 1.241 ANHE *minpos;
2398 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2399 root 1.235
2400 root 1.248 /* find minimum child */
2401 root 1.500 if (ecb_expect_true (pos + DHEAP - 1 < E))
2402 root 1.235 {
2403 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2404     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2405     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2406     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2407 root 1.235 }
2408 root 1.240 else if (pos < E)
2409 root 1.235 {
2410 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2411     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2412     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2413     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2414 root 1.235 }
2415 root 1.240 else
2416     break;
2417 root 1.235
2418 root 1.241 if (ANHE_at (he) <= minat)
2419 root 1.235 break;
2420    
2421 root 1.247 heap [k] = *minpos;
2422 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2423 root 1.235
2424     k = minpos - heap;
2425     }
2426    
2427 root 1.247 heap [k] = he;
2428 root 1.241 ev_active (ANHE_w (he)) = k;
2429 root 1.235 }
2430    
2431 root 1.248 #else /* 4HEAP */
2432 root 1.235
2433     #define HEAP0 1
2434 root 1.247 #define HPARENT(k) ((k) >> 1)
2435 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2436 root 1.235
2437 root 1.248 /* away from the root */
2438 root 1.284 inline_speed void
2439 root 1.248 downheap (ANHE *heap, int N, int k)
2440 root 1.1 {
2441 root 1.241 ANHE he = heap [k];
2442 root 1.1
2443 root 1.228 for (;;)
2444 root 1.1 {
2445 root 1.248 int c = k << 1;
2446 root 1.179
2447 root 1.309 if (c >= N + HEAP0)
2448 root 1.179 break;
2449    
2450 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2451     ? 1 : 0;
2452    
2453     if (ANHE_at (he) <= ANHE_at (heap [c]))
2454     break;
2455    
2456     heap [k] = heap [c];
2457 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2458 root 1.248
2459     k = c;
2460 root 1.1 }
2461    
2462 root 1.243 heap [k] = he;
2463 root 1.248 ev_active (ANHE_w (he)) = k;
2464 root 1.1 }
2465 root 1.248 #endif
2466 root 1.1
2467 root 1.248 /* towards the root */
2468 root 1.284 inline_speed void
2469 root 1.248 upheap (ANHE *heap, int k)
2470 root 1.1 {
2471 root 1.241 ANHE he = heap [k];
2472 root 1.1
2473 root 1.179 for (;;)
2474 root 1.1 {
2475 root 1.248 int p = HPARENT (k);
2476 root 1.179
2477 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2478 root 1.179 break;
2479 root 1.1
2480 root 1.248 heap [k] = heap [p];
2481 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2482 root 1.248 k = p;
2483 root 1.1 }
2484    
2485 root 1.241 heap [k] = he;
2486     ev_active (ANHE_w (he)) = k;
2487 root 1.1 }
2488    
2489 root 1.288 /* move an element suitably so it is in a correct place */
2490 root 1.284 inline_size void
2491 root 1.241 adjustheap (ANHE *heap, int N, int k)
2492 root 1.84 {
2493 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2494 root 1.247 upheap (heap, k);
2495     else
2496     downheap (heap, N, k);
2497 root 1.84 }
2498    
2499 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2500 root 1.284 inline_size void
2501 root 1.248 reheap (ANHE *heap, int N)
2502     {
2503     int i;
2504 root 1.251
2505 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2506     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2507     for (i = 0; i < N; ++i)
2508     upheap (heap, i + HEAP0);
2509     }
2510    
2511 root 1.8 /*****************************************************************************/
2512    
2513 root 1.288 /* associate signal watchers to a signal signal */
2514 root 1.7 typedef struct
2515     {
2516 root 1.307 EV_ATOMIC_T pending;
2517 root 1.306 #if EV_MULTIPLICITY
2518     EV_P;
2519     #endif
2520 root 1.68 WL head;
2521 root 1.7 } ANSIG;
2522    
2523 root 1.306 static ANSIG signals [EV_NSIG - 1];
2524 root 1.7
2525 root 1.207 /*****************************************************************************/
2526    
2527 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2528 root 1.207
2529 root 1.500 ecb_noinline ecb_cold
2530 root 1.480 static void
2531 root 1.207 evpipe_init (EV_P)
2532     {
2533 root 1.288 if (!ev_is_active (&pipe_w))
2534 root 1.207 {
2535 root 1.448 int fds [2];
2536    
2537 root 1.336 # if EV_USE_EVENTFD
2538 root 1.448 fds [0] = -1;
2539     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2540     if (fds [1] < 0 && errno == EINVAL)
2541     fds [1] = eventfd (0, 0);
2542    
2543     if (fds [1] < 0)
2544     # endif
2545     {
2546     while (pipe (fds))
2547     ev_syserr ("(libev) error creating signal/async pipe");
2548    
2549     fd_intern (fds [0]);
2550 root 1.220 }
2551 root 1.448
2552     evpipe [0] = fds [0];
2553    
2554     if (evpipe [1] < 0)
2555     evpipe [1] = fds [1]; /* first call, set write fd */
2556 root 1.220 else
2557     {
2558 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2559     /* so that evpipe_write can always rely on its value. */
2560     /* this branch does not do anything sensible on windows, */
2561     /* so must not be executed on windows */
2562 root 1.207
2563 root 1.448 dup2 (fds [1], evpipe [1]);
2564     close (fds [1]);
2565 root 1.220 }
2566 root 1.207
2567 root 1.455 fd_intern (evpipe [1]);
2568    
2569 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2570 root 1.288 ev_io_start (EV_A_ &pipe_w);
2571 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2572 root 1.207 }
2573     }
2574    
2575 root 1.380 inline_speed void
2576 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2577 root 1.207 {
2578 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2579    
2580 root 1.500 if (ecb_expect_true (*flag))
2581 root 1.387 return;
2582 root 1.383
2583     *flag = 1;
2584 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2585 root 1.383
2586     pipe_write_skipped = 1;
2587 root 1.378
2588 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2589 root 1.214
2590 root 1.383 if (pipe_write_wanted)
2591     {
2592     int old_errno;
2593 root 1.378
2594 root 1.436 pipe_write_skipped = 0;
2595     ECB_MEMORY_FENCE_RELEASE;
2596 root 1.220
2597 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2598 root 1.380
2599 root 1.220 #if EV_USE_EVENTFD
2600 root 1.448 if (evpipe [0] < 0)
2601 root 1.383 {
2602     uint64_t counter = 1;
2603 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2604 root 1.383 }
2605     else
2606 root 1.220 #endif
2607 root 1.383 {
2608 root 1.427 #ifdef _WIN32
2609     WSABUF buf;
2610     DWORD sent;
2611 root 1.485 buf.buf = (char *)&buf;
2612 root 1.427 buf.len = 1;
2613     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2614     #else
2615 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2616 root 1.427 #endif
2617 root 1.383 }
2618 root 1.214
2619 root 1.383 errno = old_errno;
2620 root 1.207 }
2621     }
2622    
2623 root 1.288 /* called whenever the libev signal pipe */
2624     /* got some events (signal, async) */
2625 root 1.207 static void
2626     pipecb (EV_P_ ev_io *iow, int revents)
2627     {
2628 root 1.307 int i;
2629    
2630 root 1.378 if (revents & EV_READ)
2631     {
2632 root 1.220 #if EV_USE_EVENTFD
2633 root 1.448 if (evpipe [0] < 0)
2634 root 1.378 {
2635     uint64_t counter;
2636 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2637 root 1.378 }
2638     else
2639 root 1.220 #endif
2640 root 1.378 {
2641 root 1.427 char dummy[4];
2642     #ifdef _WIN32
2643     WSABUF buf;
2644     DWORD recvd;
2645 root 1.432 DWORD flags = 0;
2646 root 1.427 buf.buf = dummy;
2647     buf.len = sizeof (dummy);
2648 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2649 root 1.427 #else
2650     read (evpipe [0], &dummy, sizeof (dummy));
2651     #endif
2652 root 1.378 }
2653 root 1.220 }
2654 root 1.207
2655 root 1.378 pipe_write_skipped = 0;
2656    
2657 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2658    
2659 root 1.369 #if EV_SIGNAL_ENABLE
2660 root 1.307 if (sig_pending)
2661 root 1.372 {
2662 root 1.307 sig_pending = 0;
2663 root 1.207
2664 root 1.436 ECB_MEMORY_FENCE;
2665 root 1.424
2666 root 1.307 for (i = EV_NSIG - 1; i--; )
2667 root 1.500 if (ecb_expect_false (signals [i].pending))
2668 root 1.307 ev_feed_signal_event (EV_A_ i + 1);
2669 root 1.207 }
2670 root 1.369 #endif
2671 root 1.207
2672 root 1.209 #if EV_ASYNC_ENABLE
2673 root 1.307 if (async_pending)
2674 root 1.207 {
2675 root 1.307 async_pending = 0;
2676 root 1.207
2677 root 1.436 ECB_MEMORY_FENCE;
2678 root 1.424
2679 root 1.207 for (i = asynccnt; i--; )
2680     if (asyncs [i]->sent)
2681     {
2682     asyncs [i]->sent = 0;
2683 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2684 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2685     }
2686     }
2687 root 1.209 #endif
2688 root 1.207 }
2689    
2690     /*****************************************************************************/
2691    
2692 root 1.366 void
2693 root 1.486 ev_feed_signal (int signum) EV_NOEXCEPT
2694 root 1.7 {
2695 root 1.207 #if EV_MULTIPLICITY
2696 root 1.453 EV_P;
2697 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2698 root 1.453 EV_A = signals [signum - 1].loop;
2699 root 1.366
2700     if (!EV_A)
2701     return;
2702 root 1.207 #endif
2703    
2704 root 1.366 signals [signum - 1].pending = 1;
2705     evpipe_write (EV_A_ &sig_pending);
2706     }
2707    
2708     static void
2709     ev_sighandler (int signum)
2710     {
2711 root 1.322 #ifdef _WIN32
2712 root 1.218 signal (signum, ev_sighandler);
2713 root 1.67 #endif
2714    
2715 root 1.366 ev_feed_signal (signum);
2716 root 1.7 }
2717    
2718 root 1.500 ecb_noinline
2719 root 1.480 void
2720 root 1.486 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2721 root 1.79 {
2722 root 1.80 WL w;
2723    
2724 root 1.500 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2725 root 1.307 return;
2726    
2727     --signum;
2728    
2729 root 1.79 #if EV_MULTIPLICITY
2730 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2731     /* or, likely more useful, feeding a signal nobody is waiting for */
2732 root 1.79
2733 root 1.500 if (ecb_expect_false (signals [signum].loop != EV_A))
2734 root 1.306 return;
2735 root 1.307 #endif
2736 root 1.306
2737 root 1.307 signals [signum].pending = 0;
2738 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2739 root 1.79
2740     for (w = signals [signum].head; w; w = w->next)
2741     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2742     }
2743    
2744 root 1.303 #if EV_USE_SIGNALFD
2745     static void
2746     sigfdcb (EV_P_ ev_io *iow, int revents)
2747     {
2748 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2749 root 1.303
2750     for (;;)
2751     {
2752     ssize_t res = read (sigfd, si, sizeof (si));
2753    
2754     /* not ISO-C, as res might be -1, but works with SuS */
2755     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2756     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2757    
2758     if (res < (ssize_t)sizeof (si))
2759     break;
2760     }
2761     }
2762     #endif
2763    
2764 root 1.336 #endif
2765    
2766 root 1.8 /*****************************************************************************/
2767    
2768 root 1.336 #if EV_CHILD_ENABLE
2769 root 1.182 static WL childs [EV_PID_HASHSIZE];
2770 root 1.71
2771 root 1.136 static ev_signal childev;
2772 root 1.59
2773 root 1.206 #ifndef WIFCONTINUED
2774     # define WIFCONTINUED(status) 0
2775     #endif
2776    
2777 root 1.288 /* handle a single child status event */
2778 root 1.284 inline_speed void
2779 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2780 root 1.47 {
2781 root 1.136 ev_child *w;
2782 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2783 root 1.47
2784 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2785 root 1.206 {
2786     if ((w->pid == pid || !w->pid)
2787     && (!traced || (w->flags & 1)))
2788     {
2789 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2790 root 1.206 w->rpid = pid;
2791     w->rstatus = status;
2792     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2793     }
2794     }
2795 root 1.47 }
2796    
2797 root 1.142 #ifndef WCONTINUED
2798     # define WCONTINUED 0
2799     #endif
2800    
2801 root 1.288 /* called on sigchld etc., calls waitpid */
2802 root 1.47 static void
2803 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2804 root 1.22 {
2805     int pid, status;
2806    
2807 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2808     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2809     if (!WCONTINUED
2810     || errno != EINVAL
2811     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2812     return;
2813    
2814 root 1.216 /* make sure we are called again until all children have been reaped */
2815 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2816     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2817 root 1.47
2818 root 1.216 child_reap (EV_A_ pid, pid, status);
2819 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2820 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2821 root 1.22 }
2822    
2823 root 1.45 #endif
2824    
2825 root 1.22 /*****************************************************************************/
2826    
2827 root 1.357 #if EV_USE_IOCP
2828     # include "ev_iocp.c"
2829     #endif
2830 root 1.118 #if EV_USE_PORT
2831     # include "ev_port.c"
2832     #endif
2833 root 1.44 #if EV_USE_KQUEUE
2834     # include "ev_kqueue.c"
2835     #endif
2836 root 1.493 #if EV_USE_EPOLL
2837     # include "ev_epoll.c"
2838     #endif
2839 root 1.490 #if EV_USE_LINUXAIO
2840     # include "ev_linuxaio.c"
2841     #endif
2842 root 1.501 #if EV_USE_IOURING
2843     # include "ev_iouring.c"
2844     #endif
2845 root 1.59 #if EV_USE_POLL
2846 root 1.41 # include "ev_poll.c"
2847     #endif
2848 root 1.29 #if EV_USE_SELECT
2849 root 1.1 # include "ev_select.c"
2850     #endif
2851    
2852 root 1.480 ecb_cold int
2853 root 1.486 ev_version_major (void) EV_NOEXCEPT
2854 root 1.24 {
2855     return EV_VERSION_MAJOR;
2856     }
2857    
2858 root 1.480 ecb_cold int
2859 root 1.486 ev_version_minor (void) EV_NOEXCEPT
2860 root 1.24 {
2861     return EV_VERSION_MINOR;
2862     }
2863    
2864 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2865 root 1.480 inline_size ecb_cold int
2866 root 1.51 enable_secure (void)
2867 root 1.41 {
2868 root 1.103 #ifdef _WIN32
2869 root 1.49 return 0;
2870     #else
2871 root 1.41 return getuid () != geteuid ()
2872     || getgid () != getegid ();
2873 root 1.49 #endif
2874 root 1.41 }
2875    
2876 root 1.480 ecb_cold
2877     unsigned int
2878 root 1.486 ev_supported_backends (void) EV_NOEXCEPT
2879 root 1.129 {
2880 root 1.130 unsigned int flags = 0;
2881 root 1.129
2882 root 1.490 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2883     if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2884     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2885     if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2886 root 1.501 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
2887 root 1.490 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2888     if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2889 root 1.129
2890     return flags;
2891     }
2892    
2893 root 1.480 ecb_cold
2894     unsigned int
2895 root 1.486 ev_recommended_backends (void) EV_NOEXCEPT
2896 root 1.1 {
2897 root 1.131 unsigned int flags = ev_supported_backends ();
2898 root 1.129
2899     #ifndef __NetBSD__
2900     /* kqueue is borked on everything but netbsd apparently */
2901     /* it usually doesn't work correctly on anything but sockets and pipes */
2902     flags &= ~EVBACKEND_KQUEUE;
2903     #endif
2904     #ifdef __APPLE__
2905 root 1.278 /* only select works correctly on that "unix-certified" platform */
2906     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2907     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2908 root 1.129 #endif
2909 root 1.342 #ifdef __FreeBSD__
2910     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2911     #endif
2912 root 1.129
2913 root 1.491 /* TODO: linuxaio is very experimental */
2914 root 1.494 #if !EV_RECOMMEND_LINUXAIO
2915 root 1.491 flags &= ~EVBACKEND_LINUXAIO;
2916 root 1.494 #endif
2917 root 1.501 /* TODO: linuxaio is super experimental */
2918     #if !EV_RECOMMEND_IOURING
2919     flags &= ~EVBACKEND_IOURING;
2920     #endif
2921 root 1.491
2922 root 1.129 return flags;
2923 root 1.51 }
2924    
2925 root 1.480 ecb_cold
2926     unsigned int
2927 root 1.486 ev_embeddable_backends (void) EV_NOEXCEPT
2928 root 1.134 {
2929 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2930    
2931 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2932 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2933     flags &= ~EVBACKEND_EPOLL;
2934 root 1.196
2935 root 1.502 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
2936    
2937     /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
2938     * because our backend_fd is the epoll fd we need as fallback.
2939     * if the kernel ever is fixed, this might change...
2940     */
2941    
2942 root 1.196 return flags;
2943 root 1.134 }
2944    
2945     unsigned int
2946 root 1.486 ev_backend (EV_P) EV_NOEXCEPT
2947 root 1.130 {
2948     return backend;
2949     }
2950    
2951 root 1.338 #if EV_FEATURE_API
2952 root 1.162 unsigned int
2953 root 1.486 ev_iteration (EV_P) EV_NOEXCEPT
2954 root 1.162 {
2955     return loop_count;
2956     }
2957    
2958 root 1.294 unsigned int
2959 root 1.486 ev_depth (EV_P) EV_NOEXCEPT
2960 root 1.294 {
2961     return loop_depth;
2962     }
2963    
2964 root 1.193 void
2965 root 1.486 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2966 root 1.193 {
2967     io_blocktime = interval;
2968     }
2969    
2970     void
2971 root 1.486 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2972 root 1.193 {
2973     timeout_blocktime = interval;
2974     }
2975    
2976 root 1.297 void
2977 root 1.486 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2978 root 1.297 {
2979     userdata = data;
2980     }
2981    
2982     void *
2983 root 1.486 ev_userdata (EV_P) EV_NOEXCEPT
2984 root 1.297 {
2985     return userdata;
2986     }
2987    
2988 root 1.379 void
2989 root 1.486 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2990 root 1.297 {
2991     invoke_cb = invoke_pending_cb;
2992     }
2993    
2994 root 1.379 void
2995 root 1.486 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2996 root 1.297 {
2997 root 1.298 release_cb = release;
2998     acquire_cb = acquire;
2999 root 1.297 }
3000     #endif
3001    
3002 root 1.288 /* initialise a loop structure, must be zero-initialised */
3003 root 1.500 ecb_noinline ecb_cold
3004 root 1.480 static void
3005 root 1.486 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
3006 root 1.51 {
3007 root 1.130 if (!backend)
3008 root 1.23 {
3009 root 1.366 origflags = flags;
3010    
3011 root 1.279 #if EV_USE_REALTIME
3012     if (!have_realtime)
3013     {
3014     struct timespec ts;
3015    
3016     if (!clock_gettime (CLOCK_REALTIME, &ts))
3017     have_realtime = 1;
3018     }
3019     #endif
3020    
3021 root 1.29 #if EV_USE_MONOTONIC
3022 root 1.279 if (!have_monotonic)
3023     {
3024     struct timespec ts;
3025    
3026     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
3027     have_monotonic = 1;
3028     }
3029 root 1.1 #endif
3030    
3031 root 1.306 /* pid check not overridable via env */
3032     #ifndef _WIN32
3033     if (flags & EVFLAG_FORKCHECK)
3034     curpid = getpid ();
3035     #endif
3036    
3037     if (!(flags & EVFLAG_NOENV)
3038     && !enable_secure ()
3039     && getenv ("LIBEV_FLAGS"))
3040     flags = atoi (getenv ("LIBEV_FLAGS"));
3041    
3042 root 1.378 ev_rt_now = ev_time ();
3043     mn_now = get_clock ();
3044     now_floor = mn_now;
3045     rtmn_diff = ev_rt_now - mn_now;
3046 root 1.338 #if EV_FEATURE_API
3047 root 1.378 invoke_cb = ev_invoke_pending;
3048 root 1.297 #endif
3049 root 1.1
3050 root 1.378 io_blocktime = 0.;
3051     timeout_blocktime = 0.;
3052     backend = 0;
3053     backend_fd = -1;
3054     sig_pending = 0;
3055 root 1.307 #if EV_ASYNC_ENABLE
3056 root 1.378 async_pending = 0;
3057 root 1.307 #endif
3058 root 1.378 pipe_write_skipped = 0;
3059     pipe_write_wanted = 0;
3060 root 1.448 evpipe [0] = -1;
3061     evpipe [1] = -1;
3062 root 1.209 #if EV_USE_INOTIFY
3063 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3064 root 1.209 #endif
3065 root 1.303 #if EV_USE_SIGNALFD
3066 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3067 root 1.303 #endif
3068 root 1.193
3069 root 1.366 if (!(flags & EVBACKEND_MASK))
3070 root 1.129 flags |= ev_recommended_backends ();
3071 root 1.41
3072 root 1.357 #if EV_USE_IOCP
3073 root 1.490 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3074 root 1.357 #endif
3075 root 1.118 #if EV_USE_PORT
3076 root 1.490 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
3077 root 1.118 #endif
3078 root 1.44 #if EV_USE_KQUEUE
3079 root 1.490 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3080     #endif
3081 root 1.501 #if EV_USE_IOURING
3082     if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3083     #endif
3084 root 1.490 #if EV_USE_LINUXAIO
3085     if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
3086 root 1.44 #endif
3087 root 1.29 #if EV_USE_EPOLL
3088 root 1.490 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
3089 root 1.41 #endif
3090 root 1.59 #if EV_USE_POLL
3091 root 1.490 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
3092 root 1.1 #endif
3093 root 1.29 #if EV_USE_SELECT
3094 root 1.490 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
3095 root 1.1 #endif
3096 root 1.70
3097 root 1.288 ev_prepare_init (&pending_w, pendingcb);
3098    
3099 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3100 root 1.288 ev_init (&pipe_w, pipecb);
3101     ev_set_priority (&pipe_w, EV_MAXPRI);
3102 root 1.336 #endif
3103 root 1.56 }
3104     }
3105    
3106 root 1.288 /* free up a loop structure */
3107 root 1.480 ecb_cold
3108     void
3109 root 1.422 ev_loop_destroy (EV_P)
3110 root 1.56 {
3111 root 1.65 int i;
3112    
3113 root 1.364 #if EV_MULTIPLICITY
3114 root 1.363 /* mimic free (0) */
3115     if (!EV_A)
3116     return;
3117 root 1.364 #endif
3118 root 1.363
3119 root 1.361 #if EV_CLEANUP_ENABLE
3120     /* queue cleanup watchers (and execute them) */
3121 root 1.500 if (ecb_expect_false (cleanupcnt))
3122 root 1.361 {
3123     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3124     EV_INVOKE_PENDING;
3125     }
3126     #endif
3127    
3128 root 1.359 #if EV_CHILD_ENABLE
3129 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3130 root 1.359 {
3131     ev_ref (EV_A); /* child watcher */
3132     ev_signal_stop (EV_A_ &childev);
3133     }
3134     #endif
3135    
3136 root 1.288 if (ev_is_active (&pipe_w))
3137 root 1.207 {
3138 root 1.303 /*ev_ref (EV_A);*/
3139     /*ev_io_stop (EV_A_ &pipe_w);*/
3140 root 1.207
3141 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3142     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3143 root 1.207 }
3144    
3145 root 1.303 #if EV_USE_SIGNALFD
3146     if (ev_is_active (&sigfd_w))
3147 root 1.317 close (sigfd);
3148 root 1.303 #endif
3149    
3150 root 1.152 #if EV_USE_INOTIFY
3151     if (fs_fd >= 0)
3152     close (fs_fd);
3153     #endif
3154    
3155     if (backend_fd >= 0)
3156     close (backend_fd);
3157    
3158 root 1.357 #if EV_USE_IOCP
3159 root 1.490 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3160 root 1.357 #endif
3161 root 1.118 #if EV_USE_PORT
3162 root 1.490 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3163 root 1.118 #endif
3164 root 1.56 #if EV_USE_KQUEUE
3165 root 1.490 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3166     #endif
3167 root 1.501 #if EV_USE_IOURING
3168     if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3169     #endif
3170 root 1.490 #if EV_USE_LINUXAIO
3171     if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3172 root 1.56 #endif
3173     #if EV_USE_EPOLL
3174 root 1.490 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3175 root 1.56 #endif
3176 root 1.59 #if EV_USE_POLL
3177 root 1.490 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3178 root 1.56 #endif
3179     #if EV_USE_SELECT
3180 root 1.490 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3181 root 1.56 #endif
3182 root 1.1
3183 root 1.65 for (i = NUMPRI; i--; )
3184 root 1.164 {
3185     array_free (pending, [i]);
3186     #if EV_IDLE_ENABLE
3187     array_free (idle, [i]);
3188     #endif
3189     }
3190 root 1.65
3191 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
3192 root 1.186
3193 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
3194 root 1.284 array_free (rfeed, EMPTY);
3195 root 1.164 array_free (fdchange, EMPTY);
3196     array_free (timer, EMPTY);
3197 root 1.140 #if EV_PERIODIC_ENABLE
3198 root 1.164 array_free (periodic, EMPTY);
3199 root 1.93 #endif
3200 root 1.187 #if EV_FORK_ENABLE
3201     array_free (fork, EMPTY);
3202     #endif
3203 root 1.360 #if EV_CLEANUP_ENABLE
3204     array_free (cleanup, EMPTY);
3205     #endif
3206 root 1.164 array_free (prepare, EMPTY);
3207     array_free (check, EMPTY);
3208 root 1.209 #if EV_ASYNC_ENABLE
3209     array_free (async, EMPTY);
3210     #endif
3211 root 1.65
3212 root 1.130 backend = 0;
3213 root 1.359
3214     #if EV_MULTIPLICITY
3215     if (ev_is_default_loop (EV_A))
3216     #endif
3217     ev_default_loop_ptr = 0;
3218     #if EV_MULTIPLICITY
3219     else
3220     ev_free (EV_A);
3221     #endif
3222 root 1.56 }
3223 root 1.22
3224 root 1.226 #if EV_USE_INOTIFY
3225 root 1.284 inline_size void infy_fork (EV_P);
3226 root 1.226 #endif
3227 root 1.154
3228 root 1.284 inline_size void
3229 root 1.56 loop_fork (EV_P)
3230     {
3231 root 1.118 #if EV_USE_PORT
3232 root 1.490 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3233 root 1.56 #endif
3234     #if EV_USE_KQUEUE
3235 root 1.490 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3236     #endif
3237 root 1.501 #if EV_USE_IOURING
3238     if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3239     #endif
3240 root 1.490 #if EV_USE_LINUXAIO
3241     if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3242 root 1.45 #endif
3243 root 1.118 #if EV_USE_EPOLL
3244 root 1.490 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3245 root 1.118 #endif
3246 root 1.154 #if EV_USE_INOTIFY
3247     infy_fork (EV_A);
3248     #endif
3249 root 1.70
3250 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3251 root 1.478 if (ev_is_active (&pipe_w) && postfork != 2)
3252 root 1.70 {
3253 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3254 root 1.70
3255     ev_ref (EV_A);
3256 root 1.288 ev_io_stop (EV_A_ &pipe_w);
3257 root 1.220
3258     if (evpipe [0] >= 0)
3259 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
3260 root 1.207
3261     evpipe_init (EV_A);
3262 root 1.443 /* iterate over everything, in case we missed something before */
3263     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3264 root 1.448 }
3265 root 1.337 #endif
3266 root 1.70
3267     postfork = 0;
3268 root 1.1 }
3269    
3270 root 1.55 #if EV_MULTIPLICITY
3271 root 1.250
3272 root 1.480 ecb_cold
3273     struct ev_loop *
3274 root 1.486 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3275 root 1.54 {
3276 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3277 root 1.69
3278 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
3279 root 1.108 loop_init (EV_A_ flags);
3280 root 1.56
3281 root 1.130 if (ev_backend (EV_A))
3282 root 1.306 return EV_A;
3283 root 1.54
3284 root 1.359 ev_free (EV_A);
3285 root 1.55 return 0;
3286 root 1.54 }
3287    
3288 root 1.297 #endif /* multiplicity */
3289 root 1.248
3290     #if EV_VERIFY
3291 root 1.500 ecb_noinline ecb_cold
3292 root 1.480 static void
3293 root 1.251 verify_watcher (EV_P_ W w)
3294     {
3295 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3296 root 1.251
3297     if (w->pending)
3298 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3299 root 1.251 }
3300    
3301 root 1.500 ecb_noinline ecb_cold
3302 root 1.480 static void
3303 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
3304     {
3305     int i;
3306    
3307     for (i = HEAP0; i < N + HEAP0; ++i)
3308     {
3309 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3310     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3311     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3312 root 1.251
3313     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3314     }
3315     }
3316    
3317 root 1.500 ecb_noinline ecb_cold
3318 root 1.480 static void
3319 root 1.251 array_verify (EV_P_ W *ws, int cnt)
3320 root 1.248 {
3321     while (cnt--)
3322 root 1.251 {
3323 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3324 root 1.251 verify_watcher (EV_A_ ws [cnt]);
3325     }
3326 root 1.248 }
3327 root 1.250 #endif
3328 root 1.248
3329 root 1.338 #if EV_FEATURE_API
3330 root 1.379 void ecb_cold
3331 root 1.486 ev_verify (EV_P) EV_NOEXCEPT
3332 root 1.248 {
3333 root 1.250 #if EV_VERIFY
3334 root 1.429 int i;
3335 root 1.426 WL w, w2;
3336 root 1.251
3337     assert (activecnt >= -1);
3338    
3339     assert (fdchangemax >= fdchangecnt);
3340     for (i = 0; i < fdchangecnt; ++i)
3341 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3342 root 1.251
3343     assert (anfdmax >= 0);
3344 root 1.429 for (i = 0; i < anfdmax; ++i)
3345     {
3346     int j = 0;
3347    
3348     for (w = w2 = anfds [i].head; w; w = w->next)
3349     {
3350     verify_watcher (EV_A_ (W)w);
3351 root 1.426
3352 root 1.429 if (j++ & 1)
3353     {
3354     assert (("libev: io watcher list contains a loop", w != w2));
3355     w2 = w2->next;
3356     }
3357 root 1.426
3358 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3359     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3360     }
3361     }
3362 root 1.251
3363     assert (timermax >= timercnt);
3364     verify_heap (EV_A_ timers, timercnt);
3365 root 1.248
3366     #if EV_PERIODIC_ENABLE
3367 root 1.251 assert (periodicmax >= periodiccnt);
3368     verify_heap (EV_A_ periodics, periodiccnt);
3369 root 1.248 #endif
3370    
3371 root 1.251 for (i = NUMPRI; i--; )
3372     {
3373     assert (pendingmax [i] >= pendingcnt [i]);
3374 root 1.248 #if EV_IDLE_ENABLE
3375 root 1.252 assert (idleall >= 0);
3376 root 1.251 assert (idlemax [i] >= idlecnt [i]);
3377     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3378 root 1.248 #endif
3379 root 1.251 }
3380    
3381 root 1.248 #if EV_FORK_ENABLE
3382 root 1.251 assert (forkmax >= forkcnt);
3383     array_verify (EV_A_ (W *)forks, forkcnt);
3384 root 1.248 #endif
3385 root 1.251
3386 root 1.360 #if EV_CLEANUP_ENABLE
3387     assert (cleanupmax >= cleanupcnt);
3388     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3389     #endif
3390    
3391 root 1.250 #if EV_ASYNC_ENABLE
3392 root 1.251 assert (asyncmax >= asynccnt);
3393     array_verify (EV_A_ (W *)asyncs, asynccnt);
3394 root 1.250 #endif
3395 root 1.251
3396 root 1.337 #if EV_PREPARE_ENABLE
3397 root 1.251 assert (preparemax >= preparecnt);
3398     array_verify (EV_A_ (W *)prepares, preparecnt);
3399 root 1.337 #endif
3400 root 1.251
3401 root 1.337 #if EV_CHECK_ENABLE
3402 root 1.251 assert (checkmax >= checkcnt);
3403     array_verify (EV_A_ (W *)checks, checkcnt);
3404 root 1.337 #endif
3405 root 1.251
3406     # if 0
3407 root 1.336 #if EV_CHILD_ENABLE
3408 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3409 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3410 root 1.336 #endif
3411 root 1.251 # endif
3412 root 1.248 #endif
3413     }
3414 root 1.297 #endif
3415 root 1.56
3416     #if EV_MULTIPLICITY
3417 root 1.480 ecb_cold
3418     struct ev_loop *
3419 root 1.54 #else
3420     int
3421 root 1.358 #endif
3422 root 1.486 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3423 root 1.54 {
3424 root 1.116 if (!ev_default_loop_ptr)
3425 root 1.56 {
3426     #if EV_MULTIPLICITY
3427 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
3428 root 1.56 #else
3429 ayin 1.117 ev_default_loop_ptr = 1;
3430 root 1.54 #endif
3431    
3432 root 1.110 loop_init (EV_A_ flags);
3433 root 1.56
3434 root 1.130 if (ev_backend (EV_A))
3435 root 1.56 {
3436 root 1.336 #if EV_CHILD_ENABLE
3437 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
3438     ev_set_priority (&childev, EV_MAXPRI);
3439     ev_signal_start (EV_A_ &childev);
3440     ev_unref (EV_A); /* child watcher should not keep loop alive */
3441     #endif
3442     }
3443     else
3444 root 1.116 ev_default_loop_ptr = 0;
3445 root 1.56 }
3446 root 1.8
3447 root 1.116 return ev_default_loop_ptr;
3448 root 1.1 }
3449    
3450 root 1.24 void
3451 root 1.486 ev_loop_fork (EV_P) EV_NOEXCEPT
3452 root 1.1 {
3453 root 1.440 postfork = 1;
3454 root 1.1 }
3455    
3456 root 1.8 /*****************************************************************************/
3457    
3458 root 1.168 void
3459     ev_invoke (EV_P_ void *w, int revents)
3460     {
3461     EV_CB_INVOKE ((W)w, revents);
3462     }
3463    
3464 root 1.300 unsigned int
3465 root 1.486 ev_pending_count (EV_P) EV_NOEXCEPT
3466 root 1.300 {
3467     int pri;
3468     unsigned int count = 0;
3469    
3470     for (pri = NUMPRI; pri--; )
3471     count += pendingcnt [pri];
3472    
3473     return count;
3474     }
3475    
3476 root 1.500 ecb_noinline
3477 root 1.480 void
3478 root 1.296 ev_invoke_pending (EV_P)
3479 root 1.1 {
3480 root 1.445 pendingpri = NUMPRI;
3481    
3482 root 1.484 do
3483 root 1.445 {
3484     --pendingpri;
3485    
3486 root 1.484 /* pendingpri possibly gets modified in the inner loop */
3487 root 1.445 while (pendingcnt [pendingpri])
3488     {
3489     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3490 root 1.1
3491 root 1.445 p->w->pending = 0;
3492     EV_CB_INVOKE (p->w, p->events);
3493     EV_FREQUENT_CHECK;
3494     }
3495     }
3496 root 1.484 while (pendingpri);
3497 root 1.1 }
3498    
3499 root 1.234 #if EV_IDLE_ENABLE
3500 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3501     /* only when higher priorities are idle" logic */
3502 root 1.284 inline_size void
3503 root 1.234 idle_reify (EV_P)
3504     {
3505 root 1.500 if (ecb_expect_false (idleall))
3506 root 1.234 {
3507     int pri;
3508    
3509     for (pri = NUMPRI; pri--; )
3510     {
3511     if (pendingcnt [pri])
3512     break;
3513    
3514     if (idlecnt [pri])
3515     {
3516     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3517     break;
3518     }
3519     }
3520     }
3521     }
3522     #endif
3523    
3524 root 1.288 /* make timers pending */
3525 root 1.284 inline_size void
3526 root 1.51 timers_reify (EV_P)
3527 root 1.1 {
3528 root 1.248 EV_FREQUENT_CHECK;
3529    
3530 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3531 root 1.1 {
3532 root 1.284 do
3533     {
3534     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3535 root 1.1
3536 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3537    
3538     /* first reschedule or stop timer */
3539     if (w->repeat)
3540     {
3541     ev_at (w) += w->repeat;
3542     if (ev_at (w) < mn_now)
3543     ev_at (w) = mn_now;
3544 root 1.61
3545 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3546 root 1.90
3547 root 1.284 ANHE_at_cache (timers [HEAP0]);
3548     downheap (timers, timercnt, HEAP0);
3549     }
3550     else
3551     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3552 root 1.243
3553 root 1.284 EV_FREQUENT_CHECK;
3554     feed_reverse (EV_A_ (W)w);
3555 root 1.12 }
3556 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3557 root 1.30
3558 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3559 root 1.12 }
3560     }
3561 root 1.4
3562 root 1.140 #if EV_PERIODIC_ENABLE
3563 root 1.370
3564 root 1.500 ecb_noinline
3565 root 1.480 static void
3566 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3567     {
3568 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3569     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3570    
3571     /* the above almost always errs on the low side */
3572     while (at <= ev_rt_now)
3573     {
3574     ev_tstamp nat = at + w->interval;
3575    
3576     /* when resolution fails us, we use ev_rt_now */
3577 root 1.500 if (ecb_expect_false (nat == at))
3578 root 1.373 {
3579     at = ev_rt_now;
3580     break;
3581     }
3582    
3583     at = nat;
3584     }
3585    
3586     ev_at (w) = at;
3587 root 1.370 }
3588    
3589 root 1.288 /* make periodics pending */
3590 root 1.284 inline_size void
3591 root 1.51 periodics_reify (EV_P)
3592 root 1.12 {
3593 root 1.248 EV_FREQUENT_CHECK;
3594 root 1.250
3595 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3596 root 1.12 {
3597 root 1.284 do
3598     {
3599     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3600 root 1.1
3601 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3602 root 1.61
3603 root 1.284 /* first reschedule or stop timer */
3604     if (w->reschedule_cb)
3605     {
3606     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3607 root 1.243
3608 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3609 root 1.243
3610 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3611     downheap (periodics, periodiccnt, HEAP0);
3612     }
3613     else if (w->interval)
3614 root 1.246 {
3615 root 1.370 periodic_recalc (EV_A_ w);
3616 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3617     downheap (periodics, periodiccnt, HEAP0);
3618 root 1.246 }
3619 root 1.284 else
3620     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3621 root 1.243
3622 root 1.284 EV_FREQUENT_CHECK;
3623     feed_reverse (EV_A_ (W)w);
3624 root 1.1 }
3625 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3626 root 1.12
3627 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3628 root 1.12 }
3629     }
3630    
3631 root 1.288 /* simply recalculate all periodics */
3632 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3633 root 1.500 ecb_noinline ecb_cold
3634 root 1.480 static void
3635 root 1.54 periodics_reschedule (EV_P)
3636 root 1.12 {
3637     int i;
3638    
3639 root 1.13 /* adjust periodics after time jump */
3640 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3641 root 1.12 {
3642 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3643 root 1.12
3644 root 1.77 if (w->reschedule_cb)
3645 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3646 root 1.77 else if (w->interval)
3647 root 1.370 periodic_recalc (EV_A_ w);
3648 root 1.242
3649 root 1.248 ANHE_at_cache (periodics [i]);
3650 root 1.77 }
3651 root 1.12
3652 root 1.248 reheap (periodics, periodiccnt);
3653 root 1.1 }
3654 root 1.93 #endif
3655 root 1.1
3656 root 1.288 /* adjust all timers by a given offset */
3657 root 1.500 ecb_noinline ecb_cold
3658 root 1.480 static void
3659 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3660     {
3661     int i;
3662    
3663     for (i = 0; i < timercnt; ++i)
3664     {
3665     ANHE *he = timers + i + HEAP0;
3666     ANHE_w (*he)->at += adjust;
3667     ANHE_at_cache (*he);
3668     }
3669     }
3670    
3671 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3672 root 1.324 /* also detect if there was a timejump, and act accordingly */
3673 root 1.284 inline_speed void
3674 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3675 root 1.4 {
3676 root 1.40 #if EV_USE_MONOTONIC
3677 root 1.500 if (ecb_expect_true (have_monotonic))
3678 root 1.40 {
3679 root 1.289 int i;
3680 root 1.178 ev_tstamp odiff = rtmn_diff;
3681    
3682     mn_now = get_clock ();
3683    
3684     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3685     /* interpolate in the meantime */
3686 root 1.500 if (ecb_expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3687 root 1.40 {
3688 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3689     return;
3690     }
3691    
3692     now_floor = mn_now;
3693     ev_rt_now = ev_time ();
3694 root 1.4
3695 root 1.178 /* loop a few times, before making important decisions.
3696     * on the choice of "4": one iteration isn't enough,
3697     * in case we get preempted during the calls to
3698     * ev_time and get_clock. a second call is almost guaranteed
3699     * to succeed in that case, though. and looping a few more times
3700     * doesn't hurt either as we only do this on time-jumps or
3701     * in the unlikely event of having been preempted here.
3702     */
3703     for (i = 4; --i; )
3704     {
3705 root 1.373 ev_tstamp diff;
3706 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3707 root 1.4
3708 root 1.373 diff = odiff - rtmn_diff;
3709    
3710 root 1.500 if (ecb_expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3711 root 1.178 return; /* all is well */
3712 root 1.4
3713 root 1.178 ev_rt_now = ev_time ();
3714     mn_now = get_clock ();
3715     now_floor = mn_now;
3716     }
3717 root 1.4
3718 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3719     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3720 root 1.140 # if EV_PERIODIC_ENABLE
3721 root 1.178 periodics_reschedule (EV_A);
3722 root 1.93 # endif
3723 root 1.4 }
3724     else
3725 root 1.40 #endif
3726 root 1.4 {
3727 root 1.85 ev_rt_now = ev_time ();
3728 root 1.40
3729 root 1.500 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3730 root 1.13 {
3731 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3732     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3733 root 1.140 #if EV_PERIODIC_ENABLE
3734 root 1.54 periodics_reschedule (EV_A);
3735 root 1.93 #endif
3736 root 1.13 }
3737 root 1.4
3738 root 1.85 mn_now = ev_rt_now;
3739 root 1.4 }
3740     }
3741    
3742 root 1.418 int
3743 root 1.353 ev_run (EV_P_ int flags)
3744 root 1.1 {
3745 root 1.338 #if EV_FEATURE_API
3746 root 1.294 ++loop_depth;
3747 root 1.297 #endif
3748 root 1.294
3749 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3750 root 1.298
3751 root 1.353 loop_done = EVBREAK_CANCEL;
3752 root 1.1
3753 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3754 root 1.158
3755 root 1.161 do
3756 root 1.9 {
3757 root 1.250 #if EV_VERIFY >= 2
3758 root 1.340 ev_verify (EV_A);
3759 root 1.250 #endif
3760    
3761 root 1.158 #ifndef _WIN32
3762 root 1.500 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
3763     if (ecb_expect_false (getpid () != curpid))
3764 root 1.158 {
3765     curpid = getpid ();
3766     postfork = 1;
3767     }
3768     #endif
3769    
3770 root 1.157 #if EV_FORK_ENABLE
3771     /* we might have forked, so queue fork handlers */
3772 root 1.500 if (ecb_expect_false (postfork))
3773 root 1.157 if (forkcnt)
3774     {
3775     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3776 root 1.297 EV_INVOKE_PENDING;
3777 root 1.157 }
3778     #endif
3779 root 1.147
3780 root 1.337 #if EV_PREPARE_ENABLE
3781 root 1.170 /* queue prepare watchers (and execute them) */
3782 root 1.500 if (ecb_expect_false (preparecnt))
3783 root 1.20 {
3784 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3785 root 1.297 EV_INVOKE_PENDING;
3786 root 1.20 }
3787 root 1.337 #endif
3788 root 1.9
3789 root 1.500 if (ecb_expect_false (loop_done))
3790 root 1.298 break;
3791    
3792 root 1.70 /* we might have forked, so reify kernel state if necessary */
3793 root 1.500 if (ecb_expect_false (postfork))
3794 root 1.70 loop_fork (EV_A);
3795    
3796 root 1.1 /* update fd-related kernel structures */
3797 root 1.51 fd_reify (EV_A);
3798 root 1.1
3799     /* calculate blocking time */
3800 root 1.135 {
3801 root 1.193 ev_tstamp waittime = 0.;
3802     ev_tstamp sleeptime = 0.;
3803 root 1.12
3804 root 1.353 /* remember old timestamp for io_blocktime calculation */
3805     ev_tstamp prev_mn_now = mn_now;
3806 root 1.293
3807 root 1.353 /* update time to cancel out callback processing overhead */
3808     time_update (EV_A_ 1e100);
3809 root 1.135
3810 root 1.378 /* from now on, we want a pipe-wake-up */
3811     pipe_write_wanted = 1;
3812    
3813 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3814 root 1.383
3815 root 1.500 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3816 root 1.353 {
3817 root 1.287 waittime = MAX_BLOCKTIME;
3818    
3819 root 1.135 if (timercnt)
3820     {
3821 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3822 root 1.193 if (waittime > to) waittime = to;
3823 root 1.135 }
3824 root 1.4
3825 root 1.140 #if EV_PERIODIC_ENABLE
3826 root 1.135 if (periodiccnt)
3827     {
3828 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3829 root 1.193 if (waittime > to) waittime = to;
3830 root 1.135 }
3831 root 1.93 #endif
3832 root 1.4
3833 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3834 root 1.500 if (ecb_expect_false (waittime < timeout_blocktime))
3835 root 1.193 waittime = timeout_blocktime;
3836    
3837 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3838     /* to pass a minimum nonzero value to the backend */
3839 root 1.500 if (ecb_expect_false (waittime < backend_mintime))
3840 root 1.377 waittime = backend_mintime;
3841    
3842 root 1.293 /* extra check because io_blocktime is commonly 0 */
3843 root 1.500 if (ecb_expect_false (io_blocktime))
3844 root 1.293 {
3845     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3846 root 1.193
3847 root 1.376 if (sleeptime > waittime - backend_mintime)
3848     sleeptime = waittime - backend_mintime;
3849 root 1.193
3850 root 1.500 if (ecb_expect_true (sleeptime > 0.))
3851 root 1.293 {
3852     ev_sleep (sleeptime);
3853     waittime -= sleeptime;
3854     }
3855 root 1.193 }
3856 root 1.135 }
3857 root 1.1
3858 root 1.338 #if EV_FEATURE_API
3859 root 1.162 ++loop_count;
3860 root 1.297 #endif
3861 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3862 root 1.193 backend_poll (EV_A_ waittime);
3863 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3864 root 1.178
3865 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3866 root 1.378
3867 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3868 root 1.378 if (pipe_write_skipped)
3869     {
3870     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3871     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3872     }
3873    
3874 root 1.178 /* update ev_rt_now, do magic */
3875 root 1.193 time_update (EV_A_ waittime + sleeptime);
3876 root 1.135 }
3877 root 1.1
3878 root 1.9 /* queue pending timers and reschedule them */
3879 root 1.51 timers_reify (EV_A); /* relative timers called last */
3880 root 1.140 #if EV_PERIODIC_ENABLE
3881 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3882 root 1.93 #endif
3883 root 1.1
3884 root 1.164 #if EV_IDLE_ENABLE
3885 root 1.137 /* queue idle watchers unless other events are pending */
3886 root 1.164 idle_reify (EV_A);
3887     #endif
3888 root 1.9
3889 root 1.337 #if EV_CHECK_ENABLE
3890 root 1.20 /* queue check watchers, to be executed first */
3891 root 1.500 if (ecb_expect_false (checkcnt))
3892 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3893 root 1.337 #endif
3894 root 1.9
3895 root 1.297 EV_INVOKE_PENDING;
3896 root 1.1 }
3897 root 1.500 while (ecb_expect_true (
3898 root 1.219 activecnt
3899     && !loop_done
3900 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3901 root 1.219 ));
3902 root 1.13
3903 root 1.353 if (loop_done == EVBREAK_ONE)
3904     loop_done = EVBREAK_CANCEL;
3905 root 1.294
3906 root 1.338 #if EV_FEATURE_API
3907 root 1.294 --loop_depth;
3908 root 1.297 #endif
3909 root 1.418
3910     return activecnt;
3911 root 1.51 }
3912    
3913     void
3914 root 1.486 ev_break (EV_P_ int how) EV_NOEXCEPT
3915 root 1.51 {
3916     loop_done = how;
3917 root 1.1 }
3918    
3919 root 1.285 void
3920 root 1.486 ev_ref (EV_P) EV_NOEXCEPT
3921 root 1.285 {
3922     ++activecnt;
3923     }
3924    
3925     void
3926 root 1.486 ev_unref (EV_P) EV_NOEXCEPT
3927 root 1.285 {
3928     --activecnt;
3929     }
3930    
3931     void
3932 root 1.486 ev_now_update (EV_P) EV_NOEXCEPT
3933 root 1.285 {
3934     time_update (EV_A_ 1e100);
3935     }
3936    
3937     void
3938 root 1.486 ev_suspend (EV_P) EV_NOEXCEPT
3939 root 1.285 {
3940     ev_now_update (EV_A);
3941     }
3942    
3943     void
3944 root 1.486 ev_resume (EV_P) EV_NOEXCEPT
3945 root 1.285 {
3946     ev_tstamp mn_prev = mn_now;
3947    
3948     ev_now_update (EV_A);
3949     timers_reschedule (EV_A_ mn_now - mn_prev);
3950 root 1.286 #if EV_PERIODIC_ENABLE
3951 root 1.288 /* TODO: really do this? */
3952 root 1.285 periodics_reschedule (EV_A);
3953 root 1.286 #endif
3954 root 1.285 }
3955    
3956 root 1.8 /*****************************************************************************/
3957 root 1.288 /* singly-linked list management, used when the expected list length is short */
3958 root 1.8
3959 root 1.284 inline_size void
3960 root 1.10 wlist_add (WL *head, WL elem)
3961 root 1.1 {
3962     elem->next = *head;
3963     *head = elem;
3964     }
3965    
3966 root 1.284 inline_size void
3967 root 1.10 wlist_del (WL *head, WL elem)
3968 root 1.1 {
3969     while (*head)
3970     {
3971 root 1.500 if (ecb_expect_true (*head == elem))
3972 root 1.1 {
3973     *head = elem->next;
3974 root 1.307 break;
3975 root 1.1 }
3976    
3977     head = &(*head)->next;
3978     }
3979     }
3980    
3981 root 1.288 /* internal, faster, version of ev_clear_pending */
3982 root 1.284 inline_speed void
3983 root 1.166 clear_pending (EV_P_ W w)
3984 root 1.16 {
3985     if (w->pending)
3986     {
3987 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3988 root 1.16 w->pending = 0;
3989     }
3990     }
3991    
3992 root 1.167 int
3993 root 1.486 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3994 root 1.166 {
3995     W w_ = (W)w;
3996     int pending = w_->pending;
3997    
3998 root 1.500 if (ecb_expect_true (pending))
3999 root 1.172 {
4000     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4001 root 1.288 p->w = (W)&pending_w;
4002 root 1.172 w_->pending = 0;
4003     return p->events;
4004     }
4005     else
4006 root 1.167 return 0;
4007 root 1.166 }
4008    
4009 root 1.284 inline_size void
4010 root 1.164 pri_adjust (EV_P_ W w)
4011     {
4012 root 1.295 int pri = ev_priority (w);
4013 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4014     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4015 root 1.295 ev_set_priority (w, pri);
4016 root 1.164 }
4017    
4018 root 1.284 inline_speed void
4019 root 1.51 ev_start (EV_P_ W w, int active)
4020 root 1.1 {
4021 root 1.164 pri_adjust (EV_A_ w);
4022 root 1.1 w->active = active;
4023 root 1.51 ev_ref (EV_A);
4024 root 1.1 }
4025    
4026 root 1.284 inline_size void
4027 root 1.51 ev_stop (EV_P_ W w)
4028 root 1.1 {
4029 root 1.51 ev_unref (EV_A);
4030 root 1.1 w->active = 0;
4031     }
4032    
4033 root 1.8 /*****************************************************************************/
4034    
4035 root 1.500 ecb_noinline
4036 root 1.480 void
4037 root 1.486 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4038 root 1.1 {
4039 root 1.37 int fd = w->fd;
4040    
4041 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4042 root 1.1 return;
4043    
4044 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4045 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4046 root 1.33
4047 root 1.498 #if EV_VERIFY >= 2
4048     assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4049     #endif
4050 root 1.248 EV_FREQUENT_CHECK;
4051    
4052 root 1.51 ev_start (EV_A_ (W)w, 1);
4053 root 1.490 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4054 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
4055 root 1.1
4056 root 1.426 /* common bug, apparently */
4057     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4058    
4059 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4060 root 1.281 w->events &= ~EV__IOFDSET;
4061 root 1.248
4062     EV_FREQUENT_CHECK;
4063 root 1.1 }
4064    
4065 root 1.500 ecb_noinline
4066 root 1.480 void
4067 root 1.486 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4068 root 1.1 {
4069 root 1.166 clear_pending (EV_A_ (W)w);
4070 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4071 root 1.1 return;
4072    
4073 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4074 root 1.89
4075 root 1.498 #if EV_VERIFY >= 2
4076     assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4077     #endif
4078 root 1.248 EV_FREQUENT_CHECK;
4079    
4080 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
4081 root 1.51 ev_stop (EV_A_ (W)w);
4082 root 1.1
4083 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4084 root 1.248
4085     EV_FREQUENT_CHECK;
4086 root 1.1 }
4087    
4088 root 1.500 ecb_noinline
4089 root 1.480 void
4090 root 1.486 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4091 root 1.1 {
4092 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4093 root 1.1 return;
4094    
4095 root 1.228 ev_at (w) += mn_now;
4096 root 1.12
4097 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4098 root 1.13
4099 root 1.248 EV_FREQUENT_CHECK;
4100    
4101     ++timercnt;
4102     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4103 root 1.490 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4104 root 1.241 ANHE_w (timers [ev_active (w)]) = (WT)w;
4105 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
4106 root 1.235 upheap (timers, ev_active (w));
4107 root 1.62
4108 root 1.248 EV_FREQUENT_CHECK;
4109    
4110 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4111 root 1.12 }
4112    
4113 root 1.500 ecb_noinline
4114 root 1.480 void
4115 root 1.486 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4116 root 1.12 {
4117 root 1.166 clear_pending (EV_A_ (W)w);
4118 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4119 root 1.12 return;
4120    
4121 root 1.248 EV_FREQUENT_CHECK;
4122    
4123 root 1.230 {
4124     int active = ev_active (w);
4125 root 1.62
4126 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4127 root 1.151
4128 root 1.248 --timercnt;
4129    
4130 root 1.500 if (ecb_expect_true (active < timercnt + HEAP0))
4131 root 1.151 {
4132 root 1.248 timers [active] = timers [timercnt + HEAP0];
4133 root 1.181 adjustheap (timers, timercnt, active);
4134 root 1.151 }
4135 root 1.248 }
4136 root 1.228
4137     ev_at (w) -= mn_now;
4138 root 1.14
4139 root 1.51 ev_stop (EV_A_ (W)w);
4140 root 1.328
4141     EV_FREQUENT_CHECK;
4142 root 1.12 }
4143 root 1.4
4144 root 1.500 ecb_noinline
4145 root 1.480 void
4146 root 1.486 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4147 root 1.14 {
4148 root 1.248 EV_FREQUENT_CHECK;
4149    
4150 root 1.407 clear_pending (EV_A_ (W)w);
4151 root 1.406
4152 root 1.14 if (ev_is_active (w))
4153     {
4154     if (w->repeat)
4155 root 1.99 {
4156 root 1.228 ev_at (w) = mn_now + w->repeat;
4157 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
4158 root 1.230 adjustheap (timers, timercnt, ev_active (w));
4159 root 1.99 }
4160 root 1.14 else
4161 root 1.51 ev_timer_stop (EV_A_ w);
4162 root 1.14 }
4163     else if (w->repeat)
4164 root 1.112 {
4165 root 1.229 ev_at (w) = w->repeat;
4166 root 1.112 ev_timer_start (EV_A_ w);
4167     }
4168 root 1.248
4169     EV_FREQUENT_CHECK;
4170 root 1.14 }
4171    
4172 root 1.301 ev_tstamp
4173 root 1.486 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4174 root 1.301 {
4175     return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4176     }
4177    
4178 root 1.140 #if EV_PERIODIC_ENABLE
4179 root 1.500 ecb_noinline
4180 root 1.480 void
4181 root 1.486 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4182 root 1.12 {
4183 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4184 root 1.12 return;
4185 root 1.1
4186 root 1.77 if (w->reschedule_cb)
4187 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4188 root 1.77 else if (w->interval)
4189     {
4190 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4191 root 1.370 periodic_recalc (EV_A_ w);
4192 root 1.77 }
4193 root 1.173 else
4194 root 1.228 ev_at (w) = w->offset;
4195 root 1.12
4196 root 1.248 EV_FREQUENT_CHECK;
4197    
4198     ++periodiccnt;
4199     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4200 root 1.490 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4201 root 1.241 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4202 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
4203 root 1.235 upheap (periodics, ev_active (w));
4204 root 1.62
4205 root 1.248 EV_FREQUENT_CHECK;
4206    
4207 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4208 root 1.1 }
4209    
4210 root 1.500 ecb_noinline
4211 root 1.480 void
4212 root 1.486 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4213 root 1.1 {
4214 root 1.166 clear_pending (EV_A_ (W)w);
4215 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4216 root 1.1 return;
4217    
4218 root 1.248 EV_FREQUENT_CHECK;
4219    
4220 root 1.230 {
4221     int active = ev_active (w);
4222 root 1.62
4223 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4224 root 1.151
4225 root 1.248 --periodiccnt;
4226    
4227 root 1.500 if (ecb_expect_true (active < periodiccnt + HEAP0))
4228 root 1.151 {
4229 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
4230 root 1.181 adjustheap (periodics, periodiccnt, active);
4231 root 1.151 }
4232 root 1.248 }
4233 root 1.228
4234 root 1.328 ev_stop (EV_A_ (W)w);
4235    
4236 root 1.248 EV_FREQUENT_CHECK;
4237 root 1.1 }
4238    
4239 root 1.500 ecb_noinline
4240 root 1.480 void
4241 root 1.486 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4242 root 1.77 {
4243 root 1.84 /* TODO: use adjustheap and recalculation */
4244 root 1.77 ev_periodic_stop (EV_A_ w);
4245     ev_periodic_start (EV_A_ w);
4246     }
4247 root 1.93 #endif
4248 root 1.77
4249 root 1.56 #ifndef SA_RESTART
4250     # define SA_RESTART 0
4251     #endif
4252    
4253 root 1.336 #if EV_SIGNAL_ENABLE
4254    
4255 root 1.500 ecb_noinline
4256 root 1.480 void
4257 root 1.486 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4258 root 1.56 {
4259 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4260 root 1.56 return;
4261    
4262 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4263    
4264     #if EV_MULTIPLICITY
4265 root 1.308 assert (("libev: a signal must not be attached to two different loops",
4266 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4267    
4268     signals [w->signum - 1].loop = EV_A;
4269 root 1.449 ECB_MEMORY_FENCE_RELEASE;
4270 root 1.306 #endif
4271 root 1.56
4272 root 1.303 EV_FREQUENT_CHECK;
4273    
4274     #if EV_USE_SIGNALFD
4275     if (sigfd == -2)
4276     {
4277     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4278     if (sigfd < 0 && errno == EINVAL)
4279     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4280    
4281     if (sigfd >= 0)
4282     {
4283     fd_intern (sigfd); /* doing it twice will not hurt */
4284    
4285     sigemptyset (&sigfd_set);
4286    
4287     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4288     ev_set_priority (&sigfd_w, EV_MAXPRI);
4289     ev_io_start (EV_A_ &sigfd_w);
4290     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4291     }
4292     }
4293    
4294     if (sigfd >= 0)
4295     {
4296     /* TODO: check .head */
4297     sigaddset (&sigfd_set, w->signum);
4298     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4299 root 1.207
4300 root 1.303 signalfd (sigfd, &sigfd_set, 0);
4301     }
4302 root 1.180 #endif
4303    
4304 root 1.56 ev_start (EV_A_ (W)w, 1);
4305 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
4306 root 1.56
4307 root 1.63 if (!((WL)w)->next)
4308 root 1.304 # if EV_USE_SIGNALFD
4309 root 1.306 if (sigfd < 0) /*TODO*/
4310 root 1.304 # endif
4311 root 1.306 {
4312 root 1.322 # ifdef _WIN32
4313 root 1.317 evpipe_init (EV_A);
4314    
4315 root 1.306 signal (w->signum, ev_sighandler);
4316     # else
4317     struct sigaction sa;
4318    
4319     evpipe_init (EV_A);
4320    
4321     sa.sa_handler = ev_sighandler;
4322     sigfillset (&sa.sa_mask);
4323     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4324     sigaction (w->signum, &sa, 0);
4325    
4326 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
4327     {
4328     sigemptyset (&sa.sa_mask);
4329     sigaddset (&sa.sa_mask, w->signum);
4330     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4331     }
4332 root 1.67 #endif
4333 root 1.306 }
4334 root 1.248
4335     EV_FREQUENT_CHECK;
4336 root 1.56 }
4337    
4338 root 1.500 ecb_noinline
4339 root 1.480 void
4340 root 1.486 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4341 root 1.56 {
4342 root 1.166 clear_pending (EV_A_ (W)w);
4343 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4344 root 1.56 return;
4345    
4346 root 1.248 EV_FREQUENT_CHECK;
4347    
4348 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
4349 root 1.56 ev_stop (EV_A_ (W)w);
4350    
4351     if (!signals [w->signum - 1].head)
4352 root 1.306 {
4353 root 1.307 #if EV_MULTIPLICITY
4354 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
4355 root 1.307 #endif
4356     #if EV_USE_SIGNALFD
4357 root 1.306 if (sigfd >= 0)
4358     {
4359 root 1.321 sigset_t ss;
4360    
4361     sigemptyset (&ss);
4362     sigaddset (&ss, w->signum);
4363 root 1.306 sigdelset (&sigfd_set, w->signum);
4364 root 1.321
4365 root 1.306 signalfd (sigfd, &sigfd_set, 0);
4366 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
4367 root 1.306 }
4368     else
4369 root 1.307 #endif
4370 root 1.306 signal (w->signum, SIG_DFL);
4371     }
4372 root 1.248
4373     EV_FREQUENT_CHECK;
4374 root 1.56 }
4375    
4376 root 1.336 #endif
4377    
4378     #if EV_CHILD_ENABLE
4379    
4380 root 1.28 void
4381 root 1.486 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4382 root 1.22 {
4383 root 1.56 #if EV_MULTIPLICITY
4384 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4385 root 1.56 #endif
4386 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4387 root 1.22 return;
4388    
4389 root 1.248 EV_FREQUENT_CHECK;
4390    
4391 root 1.51 ev_start (EV_A_ (W)w, 1);
4392 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4393 root 1.248
4394     EV_FREQUENT_CHECK;
4395 root 1.22 }
4396    
4397 root 1.28 void
4398 root 1.486 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4399 root 1.22 {
4400 root 1.166 clear_pending (EV_A_ (W)w);
4401 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4402 root 1.22 return;
4403    
4404 root 1.248 EV_FREQUENT_CHECK;
4405    
4406 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4407 root 1.51 ev_stop (EV_A_ (W)w);
4408 root 1.248
4409     EV_FREQUENT_CHECK;
4410 root 1.22 }
4411    
4412 root 1.336 #endif
4413    
4414 root 1.140 #if EV_STAT_ENABLE
4415    
4416     # ifdef _WIN32
4417 root 1.146 # undef lstat
4418     # define lstat(a,b) _stati64 (a,b)
4419 root 1.140 # endif
4420    
4421 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
4422     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4423     #define MIN_STAT_INTERVAL 0.1074891
4424 root 1.143
4425 root 1.500 ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4426 root 1.152
4427     #if EV_USE_INOTIFY
4428 root 1.326
4429     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4430     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4431 root 1.152
4432 root 1.500 ecb_noinline
4433 root 1.480 static void
4434 root 1.152 infy_add (EV_P_ ev_stat *w)
4435     {
4436 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
4437     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4438     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4439     | IN_DONT_FOLLOW | IN_MASK_ADD);
4440 root 1.152
4441 root 1.318 if (w->wd >= 0)
4442 root 1.152 {
4443 root 1.318 struct statfs sfs;
4444    
4445     /* now local changes will be tracked by inotify, but remote changes won't */
4446     /* unless the filesystem is known to be local, we therefore still poll */
4447     /* also do poll on <2.6.25, but with normal frequency */
4448    
4449     if (!fs_2625)
4450     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4451     else if (!statfs (w->path, &sfs)
4452     && (sfs.f_type == 0x1373 /* devfs */
4453 root 1.451 || sfs.f_type == 0x4006 /* fat */
4454     || sfs.f_type == 0x4d44 /* msdos */
4455 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
4456 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
4457     || sfs.f_type == 0x858458f6 /* ramfs */
4458     || sfs.f_type == 0x5346544e /* ntfs */
4459 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
4460 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
4461 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
4462 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
4463 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
4464     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4465     else
4466     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4467     }
4468     else
4469     {
4470     /* can't use inotify, continue to stat */
4471 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4472 root 1.152
4473 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
4474 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4475 root 1.233 /* but an efficiency issue only */
4476 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4477 root 1.152 {
4478 root 1.153 char path [4096];
4479 root 1.152 strcpy (path, w->path);
4480    
4481     do
4482     {
4483     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4484     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4485    
4486     char *pend = strrchr (path, '/');
4487    
4488 root 1.275 if (!pend || pend == path)
4489     break;
4490 root 1.152
4491     *pend = 0;
4492 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4493 root 1.372 }
4494 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4495     }
4496     }
4497 root 1.275
4498     if (w->wd >= 0)
4499 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4500 root 1.152
4501 root 1.318 /* now re-arm timer, if required */
4502     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4503     ev_timer_again (EV_A_ &w->timer);
4504     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4505 root 1.152 }
4506    
4507 root 1.500 ecb_noinline
4508 root 1.480 static void
4509 root 1.152 infy_del (EV_P_ ev_stat *w)
4510     {
4511     int slot;
4512     int wd = w->wd;
4513    
4514     if (wd < 0)
4515     return;
4516    
4517     w->wd = -2;
4518 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4519 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4520    
4521     /* remove this watcher, if others are watching it, they will rearm */
4522     inotify_rm_watch (fs_fd, wd);
4523     }
4524    
4525 root 1.500 ecb_noinline
4526 root 1.480 static void
4527 root 1.152 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4528     {
4529     if (slot < 0)
4530 root 1.264 /* overflow, need to check for all hash slots */
4531 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4532 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4533     else
4534     {
4535     WL w_;
4536    
4537 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4538 root 1.152 {
4539     ev_stat *w = (ev_stat *)w_;
4540     w_ = w_->next; /* lets us remove this watcher and all before it */
4541    
4542     if (w->wd == wd || wd == -1)
4543     {
4544     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4545     {
4546 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4547 root 1.152 w->wd = -1;
4548     infy_add (EV_A_ w); /* re-add, no matter what */
4549     }
4550    
4551 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4552 root 1.152 }
4553     }
4554     }
4555     }
4556    
4557     static void
4558     infy_cb (EV_P_ ev_io *w, int revents)
4559     {
4560     char buf [EV_INOTIFY_BUFSIZE];
4561     int ofs;
4562     int len = read (fs_fd, buf, sizeof (buf));
4563    
4564 root 1.326 for (ofs = 0; ofs < len; )
4565     {
4566     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4567     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4568     ofs += sizeof (struct inotify_event) + ev->len;
4569     }
4570 root 1.152 }
4571    
4572 root 1.480 inline_size ecb_cold
4573     void
4574 root 1.330 ev_check_2625 (EV_P)
4575     {
4576     /* kernels < 2.6.25 are borked
4577     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4578     */
4579     if (ev_linux_version () < 0x020619)
4580 root 1.273 return;
4581 root 1.264
4582 root 1.273 fs_2625 = 1;
4583     }
4584 root 1.264
4585 root 1.315 inline_size int
4586     infy_newfd (void)
4587     {
4588 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4589 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4590     if (fd >= 0)
4591     return fd;
4592     #endif
4593     return inotify_init ();
4594     }
4595    
4596 root 1.284 inline_size void
4597 root 1.273 infy_init (EV_P)
4598     {
4599     if (fs_fd != -2)
4600     return;
4601 root 1.264
4602 root 1.273 fs_fd = -1;
4603 root 1.264
4604 root 1.330 ev_check_2625 (EV_A);
4605 root 1.264
4606 root 1.315 fs_fd = infy_newfd ();
4607 root 1.152
4608     if (fs_fd >= 0)
4609     {
4610 root 1.315 fd_intern (fs_fd);
4611 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4612     ev_set_priority (&fs_w, EV_MAXPRI);
4613     ev_io_start (EV_A_ &fs_w);
4614 root 1.317 ev_unref (EV_A);
4615 root 1.152 }
4616     }
4617    
4618 root 1.284 inline_size void
4619 root 1.154 infy_fork (EV_P)
4620     {
4621     int slot;
4622    
4623     if (fs_fd < 0)
4624     return;
4625    
4626 root 1.317 ev_ref (EV_A);
4627 root 1.315 ev_io_stop (EV_A_ &fs_w);
4628 root 1.154 close (fs_fd);
4629 root 1.315 fs_fd = infy_newfd ();
4630    
4631     if (fs_fd >= 0)
4632     {
4633     fd_intern (fs_fd);
4634     ev_io_set (&fs_w, fs_fd, EV_READ);
4635     ev_io_start (EV_A_ &fs_w);
4636 root 1.317 ev_unref (EV_A);
4637 root 1.315 }
4638 root 1.154
4639 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4640 root 1.154 {
4641     WL w_ = fs_hash [slot].head;
4642     fs_hash [slot].head = 0;
4643    
4644     while (w_)
4645     {
4646     ev_stat *w = (ev_stat *)w_;
4647     w_ = w_->next; /* lets us add this watcher */
4648    
4649     w->wd = -1;
4650    
4651     if (fs_fd >= 0)
4652     infy_add (EV_A_ w); /* re-add, no matter what */
4653     else
4654 root 1.318 {
4655     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4656     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4657     ev_timer_again (EV_A_ &w->timer);
4658     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4659     }
4660 root 1.154 }
4661     }
4662     }
4663    
4664 root 1.152 #endif
4665    
4666 root 1.255 #ifdef _WIN32
4667     # define EV_LSTAT(p,b) _stati64 (p, b)
4668     #else
4669     # define EV_LSTAT(p,b) lstat (p, b)
4670     #endif
4671    
4672 root 1.140 void
4673 root 1.486 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4674 root 1.140 {
4675     if (lstat (w->path, &w->attr) < 0)
4676     w->attr.st_nlink = 0;
4677     else if (!w->attr.st_nlink)
4678     w->attr.st_nlink = 1;
4679     }
4680    
4681 root 1.500 ecb_noinline
4682 root 1.480 static void
4683 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4684     {
4685     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4686    
4687 root 1.320 ev_statdata prev = w->attr;
4688 root 1.140 ev_stat_stat (EV_A_ w);
4689    
4690 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4691     if (
4692 root 1.320 prev.st_dev != w->attr.st_dev
4693     || prev.st_ino != w->attr.st_ino
4694     || prev.st_mode != w->attr.st_mode
4695     || prev.st_nlink != w->attr.st_nlink
4696     || prev.st_uid != w->attr.st_uid
4697     || prev.st_gid != w->attr.st_gid
4698     || prev.st_rdev != w->attr.st_rdev
4699     || prev.st_size != w->attr.st_size
4700     || prev.st_atime != w->attr.st_atime
4701     || prev.st_mtime != w->attr.st_mtime
4702     || prev.st_ctime != w->attr.st_ctime
4703 root 1.156 ) {
4704 root 1.320 /* we only update w->prev on actual differences */
4705     /* in case we test more often than invoke the callback, */
4706     /* to ensure that prev is always different to attr */
4707     w->prev = prev;
4708    
4709 root 1.152 #if EV_USE_INOTIFY
4710 root 1.264 if (fs_fd >= 0)
4711     {
4712     infy_del (EV_A_ w);
4713     infy_add (EV_A_ w);
4714     ev_stat_stat (EV_A_ w); /* avoid race... */
4715     }
4716 root 1.152 #endif
4717    
4718     ev_feed_event (EV_A_ w, EV_STAT);
4719     }
4720 root 1.140 }
4721    
4722     void
4723 root 1.486 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4724 root 1.140 {
4725 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4726 root 1.140 return;
4727    
4728     ev_stat_stat (EV_A_ w);
4729    
4730 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4731     w->interval = MIN_STAT_INTERVAL;
4732 root 1.143
4733 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4734 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4735 root 1.152
4736     #if EV_USE_INOTIFY
4737     infy_init (EV_A);
4738    
4739     if (fs_fd >= 0)
4740     infy_add (EV_A_ w);
4741     else
4742     #endif
4743 root 1.318 {
4744     ev_timer_again (EV_A_ &w->timer);
4745     ev_unref (EV_A);
4746     }
4747 root 1.140
4748     ev_start (EV_A_ (W)w, 1);
4749 root 1.248
4750     EV_FREQUENT_CHECK;
4751 root 1.140 }
4752    
4753     void
4754 root 1.486 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4755 root 1.140 {
4756 root 1.166 clear_pending (EV_A_ (W)w);
4757 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4758 root 1.140 return;
4759    
4760 root 1.248 EV_FREQUENT_CHECK;
4761    
4762 root 1.152 #if EV_USE_INOTIFY
4763     infy_del (EV_A_ w);
4764     #endif
4765 root 1.318
4766     if (ev_is_active (&w->timer))
4767     {
4768     ev_ref (EV_A);
4769     ev_timer_stop (EV_A_ &w->timer);
4770     }
4771 root 1.140
4772 root 1.134 ev_stop (EV_A_ (W)w);
4773 root 1.248
4774     EV_FREQUENT_CHECK;
4775 root 1.134 }
4776     #endif
4777    
4778 root 1.164 #if EV_IDLE_ENABLE
4779 root 1.144 void
4780 root 1.486 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4781 root 1.144 {
4782 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4783 root 1.144 return;
4784    
4785 root 1.164 pri_adjust (EV_A_ (W)w);
4786    
4787 root 1.248 EV_FREQUENT_CHECK;
4788    
4789 root 1.164 {
4790     int active = ++idlecnt [ABSPRI (w)];
4791    
4792     ++idleall;
4793     ev_start (EV_A_ (W)w, active);
4794    
4795 root 1.490 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4796 root 1.164 idles [ABSPRI (w)][active - 1] = w;
4797     }
4798 root 1.248
4799     EV_FREQUENT_CHECK;
4800 root 1.144 }
4801    
4802     void
4803 root 1.486 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4804 root 1.144 {
4805 root 1.166 clear_pending (EV_A_ (W)w);
4806 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4807 root 1.144 return;
4808    
4809 root 1.248 EV_FREQUENT_CHECK;
4810    
4811 root 1.144 {
4812 root 1.230 int active = ev_active (w);
4813 root 1.164
4814     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4815 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4816 root 1.164
4817     ev_stop (EV_A_ (W)w);
4818     --idleall;
4819 root 1.144 }
4820 root 1.248
4821     EV_FREQUENT_CHECK;
4822 root 1.144 }
4823 root 1.164 #endif
4824 root 1.144
4825 root 1.337 #if EV_PREPARE_ENABLE
4826 root 1.144 void
4827 root 1.486 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4828 root 1.144 {
4829 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4830 root 1.144 return;
4831    
4832 root 1.248 EV_FREQUENT_CHECK;
4833    
4834 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4835 root 1.490 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4836 root 1.144 prepares [preparecnt - 1] = w;
4837 root 1.248
4838     EV_FREQUENT_CHECK;
4839 root 1.144 }
4840    
4841     void
4842 root 1.486 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4843 root 1.144 {
4844 root 1.166 clear_pending (EV_A_ (W)w);
4845 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4846 root 1.144 return;
4847    
4848 root 1.248 EV_FREQUENT_CHECK;
4849    
4850 root 1.144 {
4851 root 1.230 int active = ev_active (w);
4852    
4853 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4854 root 1.230 ev_active (prepares [active - 1]) = active;
4855 root 1.144 }
4856    
4857     ev_stop (EV_A_ (W)w);
4858 root 1.248
4859     EV_FREQUENT_CHECK;
4860 root 1.144 }
4861 root 1.337 #endif
4862 root 1.144
4863 root 1.337 #if EV_CHECK_ENABLE
4864 root 1.144 void
4865 root 1.486 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4866 root 1.144 {
4867 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4868 root 1.144 return;
4869    
4870 root 1.248 EV_FREQUENT_CHECK;
4871    
4872 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4873 root 1.490 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4874 root 1.144 checks [checkcnt - 1] = w;
4875 root 1.248
4876     EV_FREQUENT_CHECK;
4877 root 1.144 }
4878    
4879     void
4880 root 1.486 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4881 root 1.144 {
4882 root 1.166 clear_pending (EV_A_ (W)w);
4883 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4884 root 1.144 return;
4885    
4886 root 1.248 EV_FREQUENT_CHECK;
4887    
4888 root 1.144 {
4889 root 1.230 int active = ev_active (w);
4890    
4891 root 1.144 checks [active - 1] = checks [--checkcnt];
4892 root 1.230 ev_active (checks [active - 1]) = active;
4893 root 1.144 }
4894    
4895     ev_stop (EV_A_ (W)w);
4896 root 1.248
4897     EV_FREQUENT_CHECK;
4898 root 1.144 }
4899 root 1.337 #endif
4900 root 1.144
4901     #if EV_EMBED_ENABLE
4902 root 1.500 ecb_noinline
4903 root 1.480 void
4904 root 1.486 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4905 root 1.144 {
4906 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4907 root 1.144 }
4908    
4909     static void
4910 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4911 root 1.144 {
4912     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4913    
4914     if (ev_cb (w))
4915     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4916     else
4917 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4918 root 1.144 }
4919    
4920 root 1.189 static void
4921     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4922     {
4923     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4924    
4925 root 1.195 {
4926 root 1.306 EV_P = w->other;
4927 root 1.195
4928     while (fdchangecnt)
4929     {
4930     fd_reify (EV_A);
4931 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4932 root 1.195 }
4933     }
4934     }
4935    
4936 root 1.261 static void
4937     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4938     {
4939     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4940    
4941 root 1.277 ev_embed_stop (EV_A_ w);
4942    
4943 root 1.261 {
4944 root 1.306 EV_P = w->other;
4945 root 1.261
4946     ev_loop_fork (EV_A);
4947 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4948 root 1.261 }
4949 root 1.277
4950     ev_embed_start (EV_A_ w);
4951 root 1.261 }
4952    
4953 root 1.195 #if 0
4954     static void
4955     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4956     {
4957     ev_idle_stop (EV_A_ idle);
4958 root 1.189 }
4959 root 1.195 #endif
4960 root 1.189
4961 root 1.144 void
4962 root 1.486 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4963 root 1.144 {
4964 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4965 root 1.144 return;
4966    
4967     {
4968 root 1.306 EV_P = w->other;
4969 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4970 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4971 root 1.144 }
4972    
4973 root 1.248 EV_FREQUENT_CHECK;
4974    
4975 root 1.144 ev_set_priority (&w->io, ev_priority (w));
4976     ev_io_start (EV_A_ &w->io);
4977    
4978 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
4979     ev_set_priority (&w->prepare, EV_MINPRI);
4980     ev_prepare_start (EV_A_ &w->prepare);
4981    
4982 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
4983     ev_fork_start (EV_A_ &w->fork);
4984    
4985 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4986    
4987 root 1.144 ev_start (EV_A_ (W)w, 1);
4988 root 1.248
4989     EV_FREQUENT_CHECK;
4990 root 1.144 }
4991    
4992     void
4993 root 1.486 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4994 root 1.144 {
4995 root 1.166 clear_pending (EV_A_ (W)w);
4996 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4997 root 1.144 return;
4998    
4999 root 1.248 EV_FREQUENT_CHECK;
5000    
5001 root 1.261 ev_io_stop (EV_A_ &w->io);
5002 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
5003 root 1.261 ev_fork_stop (EV_A_ &w->fork);
5004 root 1.248
5005 root 1.328 ev_stop (EV_A_ (W)w);
5006    
5007 root 1.248 EV_FREQUENT_CHECK;
5008 root 1.144 }
5009     #endif
5010    
5011 root 1.147 #if EV_FORK_ENABLE
5012     void
5013 root 1.486 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5014 root 1.147 {
5015 root 1.500 if (ecb_expect_false (ev_is_active (w)))
5016 root 1.147 return;
5017    
5018 root 1.248 EV_FREQUENT_CHECK;
5019    
5020 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
5021 root 1.490 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5022 root 1.147 forks [forkcnt - 1] = w;
5023 root 1.248
5024     EV_FREQUENT_CHECK;
5025 root 1.147 }
5026    
5027     void
5028 root 1.486 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5029 root 1.147 {
5030 root 1.166 clear_pending (EV_A_ (W)w);
5031 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
5032 root 1.147 return;
5033    
5034 root 1.248 EV_FREQUENT_CHECK;
5035    
5036 root 1.147 {
5037 root 1.230 int active = ev_active (w);
5038    
5039 root 1.147 forks [active - 1] = forks [--forkcnt];
5040 root 1.230 ev_active (forks [active - 1]) = active;
5041 root 1.147 }
5042    
5043     ev_stop (EV_A_ (W)w);
5044 root 1.248
5045     EV_FREQUENT_CHECK;
5046 root 1.147 }
5047     #endif
5048    
5049 root 1.360 #if EV_CLEANUP_ENABLE
5050     void
5051 root 1.486 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5052 root 1.360 {
5053 root 1.500 if (ecb_expect_false (ev_is_active (w)))
5054 root 1.360 return;
5055    
5056     EV_FREQUENT_CHECK;
5057    
5058     ev_start (EV_A_ (W)w, ++cleanupcnt);
5059 root 1.490 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5060 root 1.360 cleanups [cleanupcnt - 1] = w;
5061    
5062 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
5063     ev_unref (EV_A);
5064 root 1.360 EV_FREQUENT_CHECK;
5065     }
5066    
5067     void
5068 root 1.486 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5069 root 1.360 {
5070     clear_pending (EV_A_ (W)w);
5071 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
5072 root 1.360 return;
5073    
5074     EV_FREQUENT_CHECK;
5075 root 1.362 ev_ref (EV_A);
5076 root 1.360
5077     {
5078     int active = ev_active (w);
5079    
5080     cleanups [active - 1] = cleanups [--cleanupcnt];
5081     ev_active (cleanups [active - 1]) = active;
5082     }
5083    
5084     ev_stop (EV_A_ (W)w);
5085    
5086     EV_FREQUENT_CHECK;
5087     }
5088     #endif
5089    
5090 root 1.207 #if EV_ASYNC_ENABLE
5091     void
5092 root 1.486 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5093 root 1.207 {
5094 root 1.500 if (ecb_expect_false (ev_is_active (w)))
5095 root 1.207 return;
5096    
5097 root 1.352 w->sent = 0;
5098    
5099 root 1.207 evpipe_init (EV_A);
5100    
5101 root 1.248 EV_FREQUENT_CHECK;
5102    
5103 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
5104 root 1.490 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5105 root 1.207 asyncs [asynccnt - 1] = w;
5106 root 1.248
5107     EV_FREQUENT_CHECK;
5108 root 1.207 }
5109    
5110     void
5111 root 1.486 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5112 root 1.207 {
5113     clear_pending (EV_A_ (W)w);
5114 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
5115 root 1.207 return;
5116    
5117 root 1.248 EV_FREQUENT_CHECK;
5118    
5119 root 1.207 {
5120 root 1.230 int active = ev_active (w);
5121    
5122 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
5123 root 1.230 ev_active (asyncs [active - 1]) = active;
5124 root 1.207 }
5125    
5126     ev_stop (EV_A_ (W)w);
5127 root 1.248
5128     EV_FREQUENT_CHECK;
5129 root 1.207 }
5130    
5131     void
5132 root 1.486 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5133 root 1.207 {
5134     w->sent = 1;
5135 root 1.307 evpipe_write (EV_A_ &async_pending);
5136 root 1.207 }
5137     #endif
5138    
5139 root 1.1 /*****************************************************************************/
5140 root 1.10
5141 root 1.16 struct ev_once
5142     {
5143 root 1.136 ev_io io;
5144     ev_timer to;
5145 root 1.16 void (*cb)(int revents, void *arg);
5146     void *arg;
5147     };
5148    
5149     static void
5150 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
5151 root 1.16 {
5152     void (*cb)(int revents, void *arg) = once->cb;
5153     void *arg = once->arg;
5154    
5155 root 1.259 ev_io_stop (EV_A_ &once->io);
5156 root 1.51 ev_timer_stop (EV_A_ &once->to);
5157 root 1.69 ev_free (once);
5158 root 1.16
5159     cb (revents, arg);
5160     }
5161    
5162     static void
5163 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
5164 root 1.16 {
5165 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5166    
5167     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5168 root 1.16 }
5169    
5170     static void
5171 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
5172 root 1.16 {
5173 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5174    
5175     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5176 root 1.16 }
5177    
5178     void
5179 root 1.486 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5180 root 1.16 {
5181 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5182 root 1.16
5183 root 1.123 once->cb = cb;
5184     once->arg = arg;
5185 root 1.16
5186 root 1.123 ev_init (&once->io, once_cb_io);
5187     if (fd >= 0)
5188     {
5189     ev_io_set (&once->io, fd, events);
5190     ev_io_start (EV_A_ &once->io);
5191     }
5192 root 1.16
5193 root 1.123 ev_init (&once->to, once_cb_to);
5194     if (timeout >= 0.)
5195     {
5196     ev_timer_set (&once->to, timeout, 0.);
5197     ev_timer_start (EV_A_ &once->to);
5198 root 1.16 }
5199     }
5200    
5201 root 1.282 /*****************************************************************************/
5202    
5203 root 1.288 #if EV_WALK_ENABLE
5204 root 1.480 ecb_cold
5205     void
5206 root 1.486 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5207 root 1.282 {
5208     int i, j;
5209     ev_watcher_list *wl, *wn;
5210    
5211     if (types & (EV_IO | EV_EMBED))
5212     for (i = 0; i < anfdmax; ++i)
5213     for (wl = anfds [i].head; wl; )
5214     {
5215     wn = wl->next;
5216    
5217     #if EV_EMBED_ENABLE
5218     if (ev_cb ((ev_io *)wl) == embed_io_cb)
5219     {
5220     if (types & EV_EMBED)
5221     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5222     }
5223     else
5224     #endif
5225     #if EV_USE_INOTIFY
5226     if (ev_cb ((ev_io *)wl) == infy_cb)
5227     ;
5228     else
5229     #endif
5230 root 1.288 if ((ev_io *)wl != &pipe_w)
5231 root 1.282 if (types & EV_IO)
5232     cb (EV_A_ EV_IO, wl);
5233    
5234     wl = wn;
5235     }
5236    
5237     if (types & (EV_TIMER | EV_STAT))
5238     for (i = timercnt + HEAP0; i-- > HEAP0; )
5239     #if EV_STAT_ENABLE
5240     /*TODO: timer is not always active*/
5241     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5242     {
5243     if (types & EV_STAT)
5244     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5245     }
5246     else
5247     #endif
5248     if (types & EV_TIMER)
5249     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5250    
5251     #if EV_PERIODIC_ENABLE
5252     if (types & EV_PERIODIC)
5253     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5254     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5255     #endif
5256    
5257     #if EV_IDLE_ENABLE
5258     if (types & EV_IDLE)
5259 root 1.390 for (j = NUMPRI; j--; )
5260 root 1.282 for (i = idlecnt [j]; i--; )
5261     cb (EV_A_ EV_IDLE, idles [j][i]);
5262     #endif
5263    
5264     #if EV_FORK_ENABLE
5265     if (types & EV_FORK)
5266     for (i = forkcnt; i--; )
5267     if (ev_cb (forks [i]) != embed_fork_cb)
5268     cb (EV_A_ EV_FORK, forks [i]);
5269     #endif
5270    
5271     #if EV_ASYNC_ENABLE
5272     if (types & EV_ASYNC)
5273     for (i = asynccnt; i--; )
5274     cb (EV_A_ EV_ASYNC, asyncs [i]);
5275     #endif
5276    
5277 root 1.337 #if EV_PREPARE_ENABLE
5278 root 1.282 if (types & EV_PREPARE)
5279     for (i = preparecnt; i--; )
5280 root 1.337 # if EV_EMBED_ENABLE
5281 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
5282 root 1.337 # endif
5283     cb (EV_A_ EV_PREPARE, prepares [i]);
5284 root 1.282 #endif
5285    
5286 root 1.337 #if EV_CHECK_ENABLE
5287 root 1.282 if (types & EV_CHECK)
5288     for (i = checkcnt; i--; )
5289     cb (EV_A_ EV_CHECK, checks [i]);
5290 root 1.337 #endif
5291 root 1.282
5292 root 1.337 #if EV_SIGNAL_ENABLE
5293 root 1.282 if (types & EV_SIGNAL)
5294 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
5295 root 1.282 for (wl = signals [i].head; wl; )
5296     {
5297     wn = wl->next;
5298     cb (EV_A_ EV_SIGNAL, wl);
5299     wl = wn;
5300     }
5301 root 1.337 #endif
5302 root 1.282
5303 root 1.337 #if EV_CHILD_ENABLE
5304 root 1.282 if (types & EV_CHILD)
5305 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
5306 root 1.282 for (wl = childs [i]; wl; )
5307     {
5308     wn = wl->next;
5309     cb (EV_A_ EV_CHILD, wl);
5310     wl = wn;
5311     }
5312 root 1.337 #endif
5313 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
5314     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5315     }
5316     #endif
5317    
5318 root 1.188 #if EV_MULTIPLICITY
5319     #include "ev_wrap.h"
5320     #endif
5321