ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.51
Committed: Sat Nov 3 21:58:51 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.50: +240 -176 lines
Log Message:
prepare for multiple bases

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.50 #ifndef EV_STANDALONE
32 root 1.29 # include "config.h"
33     #endif
34 root 1.17
35 root 1.1 #include <math.h>
36     #include <stdlib.h>
37 root 1.7 #include <unistd.h>
38     #include <fcntl.h>
39     #include <signal.h>
40 root 1.16 #include <stddef.h>
41 root 1.1
42     #include <stdio.h>
43    
44 root 1.4 #include <assert.h>
45 root 1.1 #include <errno.h>
46 root 1.22 #include <sys/types.h>
47 root 1.45 #ifndef WIN32
48     # include <sys/wait.h>
49     #endif
50 root 1.1 #include <sys/time.h>
51     #include <time.h>
52    
53 root 1.40 /**/
54    
55 root 1.29 #ifndef EV_USE_MONOTONIC
56 root 1.37 # define EV_USE_MONOTONIC 1
57     #endif
58    
59 root 1.29 #ifndef EV_USE_SELECT
60     # define EV_USE_SELECT 1
61 root 1.10 #endif
62    
63 root 1.51 #ifndef EV_USEV_POLL
64     # define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65 root 1.41 #endif
66    
67 root 1.29 #ifndef EV_USE_EPOLL
68     # define EV_USE_EPOLL 0
69 root 1.10 #endif
70    
71 root 1.44 #ifndef EV_USE_KQUEUE
72     # define EV_USE_KQUEUE 0
73     #endif
74    
75 root 1.40 #ifndef EV_USE_REALTIME
76     # define EV_USE_REALTIME 1
77     #endif
78    
79     /**/
80    
81     #ifndef CLOCK_MONOTONIC
82     # undef EV_USE_MONOTONIC
83     # define EV_USE_MONOTONIC 0
84     #endif
85    
86 root 1.31 #ifndef CLOCK_REALTIME
87 root 1.40 # undef EV_USE_REALTIME
88 root 1.31 # define EV_USE_REALTIME 0
89     #endif
90 root 1.40
91     /**/
92 root 1.1
93 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 root 1.1
98     #include "ev.h"
99    
100 root 1.40 #if __GNUC__ >= 3
101     # define expect(expr,value) __builtin_expect ((expr),(value))
102     # define inline inline
103     #else
104     # define expect(expr,value) (expr)
105     # define inline static
106     #endif
107    
108     #define expect_false(expr) expect ((expr) != 0, 0)
109     #define expect_true(expr) expect ((expr) != 0, 1)
110    
111 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
113    
114 root 1.10 typedef struct ev_watcher *W;
115     typedef struct ev_watcher_list *WL;
116 root 1.12 typedef struct ev_watcher_time *WT;
117 root 1.10
118 root 1.51 static ev_tstamp now_floor, mn_now, diff; /* monotonic clock */
119     static ev_tstamp rt_now;
120     static int method;
121 root 1.1
122     static int have_monotonic; /* runtime */
123    
124     static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125 root 1.51 static void (*method_modify)(EV_P_ int fd, int oev, int nev);
126     static void (*method_poll)(EV_P_ ev_tstamp timeout);
127    
128     static int activecnt; /* number of active events */
129    
130     #if EV_USE_SELECT
131     static unsigned char *vec_ri, *vec_ro, *vec_wi, *vec_wo;
132     static int vec_max;
133     #endif
134    
135     #if EV_USEV_POLL
136     static struct pollfd *polls;
137     static int pollmax, pollcnt;
138     static int *pollidxs; /* maps fds into structure indices */
139     static int pollidxmax;
140     #endif
141    
142     #if EV_USE_EPOLL
143     static int epoll_fd = -1;
144    
145     static struct epoll_event *events;
146     static int eventmax;
147     #endif
148    
149     #if EV_USE_KQUEUE
150     static int kqueue_fd;
151     static struct kevent *kqueue_changes;
152     static int kqueue_changemax, kqueue_changecnt;
153     static struct kevent *kqueue_events;
154     static int kqueue_eventmax;
155     #endif
156 root 1.1
157 root 1.8 /*****************************************************************************/
158    
159 root 1.51 inline ev_tstamp
160 root 1.1 ev_time (void)
161     {
162 root 1.29 #if EV_USE_REALTIME
163 root 1.1 struct timespec ts;
164     clock_gettime (CLOCK_REALTIME, &ts);
165     return ts.tv_sec + ts.tv_nsec * 1e-9;
166     #else
167     struct timeval tv;
168     gettimeofday (&tv, 0);
169     return tv.tv_sec + tv.tv_usec * 1e-6;
170     #endif
171     }
172    
173 root 1.51 inline ev_tstamp
174 root 1.1 get_clock (void)
175     {
176 root 1.29 #if EV_USE_MONOTONIC
177 root 1.40 if (expect_true (have_monotonic))
178 root 1.1 {
179     struct timespec ts;
180     clock_gettime (CLOCK_MONOTONIC, &ts);
181     return ts.tv_sec + ts.tv_nsec * 1e-9;
182     }
183     #endif
184    
185     return ev_time ();
186     }
187    
188 root 1.51 ev_tstamp
189     ev_now (EV_P)
190     {
191     return rt_now;
192     }
193    
194 root 1.30 #define array_roundsize(base,n) ((n) | 4 & ~3)
195 root 1.29
196 root 1.1 #define array_needsize(base,cur,cnt,init) \
197 root 1.40 if (expect_false ((cnt) > cur)) \
198 root 1.1 { \
199 root 1.23 int newcnt = cur; \
200     do \
201     { \
202 root 1.30 newcnt = array_roundsize (base, newcnt << 1); \
203 root 1.23 } \
204     while ((cnt) > newcnt); \
205     \
206 root 1.1 base = realloc (base, sizeof (*base) * (newcnt)); \
207     init (base + cur, newcnt - cur); \
208     cur = newcnt; \
209     }
210    
211 root 1.8 /*****************************************************************************/
212    
213 root 1.1 typedef struct
214     {
215 root 1.50 struct ev_watcher_list *head;
216 root 1.33 unsigned char events;
217     unsigned char reify;
218 root 1.1 } ANFD;
219    
220     static ANFD *anfds;
221     static int anfdmax;
222    
223     static void
224     anfds_init (ANFD *base, int count)
225     {
226     while (count--)
227     {
228 root 1.27 base->head = 0;
229     base->events = EV_NONE;
230 root 1.33 base->reify = 0;
231    
232 root 1.1 ++base;
233     }
234     }
235    
236     typedef struct
237     {
238 root 1.10 W w;
239 root 1.1 int events;
240     } ANPENDING;
241    
242 root 1.42 static ANPENDING *pendings [NUMPRI];
243     static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
244 root 1.1
245     static void
246 root 1.51 event (EV_P_ W w, int events)
247 root 1.1 {
248 root 1.32 if (w->pending)
249     {
250 root 1.42 pendings [ABSPRI (w)][w->pending - 1].events |= events;
251 root 1.32 return;
252     }
253    
254 root 1.42 w->pending = ++pendingcnt [ABSPRI (w)];
255     array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
256     pendings [ABSPRI (w)][w->pending - 1].w = w;
257     pendings [ABSPRI (w)][w->pending - 1].events = events;
258 root 1.1 }
259    
260     static void
261 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
262 root 1.27 {
263     int i;
264    
265     for (i = 0; i < eventcnt; ++i)
266 root 1.51 event (EV_A_ events [i], type);
267 root 1.27 }
268    
269     static void
270 root 1.51 fd_event (EV_P_ int fd, int events)
271 root 1.1 {
272     ANFD *anfd = anfds + fd;
273     struct ev_io *w;
274    
275 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
276 root 1.1 {
277     int ev = w->events & events;
278    
279     if (ev)
280 root 1.51 event (EV_A_ (W)w, ev);
281 root 1.1 }
282     }
283    
284 root 1.27 /*****************************************************************************/
285    
286     static int *fdchanges;
287     static int fdchangemax, fdchangecnt;
288    
289 root 1.9 static void
290 root 1.51 fd_reify (EV_P)
291 root 1.9 {
292     int i;
293    
294 root 1.27 for (i = 0; i < fdchangecnt; ++i)
295     {
296     int fd = fdchanges [i];
297     ANFD *anfd = anfds + fd;
298     struct ev_io *w;
299    
300     int events = 0;
301    
302 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
303 root 1.27 events |= w->events;
304    
305 root 1.33 anfd->reify = 0;
306 root 1.27
307     if (anfd->events != events)
308     {
309 root 1.51 method_modify (EV_A_ fd, anfd->events, events);
310 root 1.27 anfd->events = events;
311     }
312     }
313    
314     fdchangecnt = 0;
315     }
316    
317     static void
318 root 1.51 fd_change (EV_P_ int fd)
319 root 1.27 {
320 root 1.33 if (anfds [fd].reify || fdchangecnt < 0)
321 root 1.27 return;
322    
323 root 1.33 anfds [fd].reify = 1;
324 root 1.27
325     ++fdchangecnt;
326     array_needsize (fdchanges, fdchangemax, fdchangecnt, );
327     fdchanges [fdchangecnt - 1] = fd;
328 root 1.9 }
329    
330 root 1.41 static void
331 root 1.51 fd_kill (EV_P_ int fd)
332 root 1.41 {
333     struct ev_io *w;
334    
335 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
336 root 1.41 {
337 root 1.51 ev_io_stop (EV_A_ w);
338     event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
339 root 1.41 }
340     }
341    
342 root 1.19 /* called on EBADF to verify fds */
343     static void
344 root 1.51 fd_ebadf (EV_P)
345 root 1.19 {
346     int fd;
347    
348     for (fd = 0; fd < anfdmax; ++fd)
349 root 1.27 if (anfds [fd].events)
350 root 1.19 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
351 root 1.51 fd_kill (EV_A_ fd);
352 root 1.41 }
353    
354     /* called on ENOMEM in select/poll to kill some fds and retry */
355     static void
356 root 1.51 fd_enomem (EV_P)
357 root 1.41 {
358     int fd = anfdmax;
359    
360     while (fd--)
361     if (anfds [fd].events)
362     {
363     close (fd);
364 root 1.51 fd_kill (EV_A_ fd);
365 root 1.41 return;
366     }
367 root 1.19 }
368    
369 root 1.8 /*****************************************************************************/
370    
371 root 1.12 static struct ev_timer **timers;
372     static int timermax, timercnt;
373 root 1.4
374 root 1.12 static struct ev_periodic **periodics;
375     static int periodicmax, periodiccnt;
376 root 1.1
377     static void
378 root 1.12 upheap (WT *timers, int k)
379 root 1.1 {
380 root 1.12 WT w = timers [k];
381 root 1.1
382     while (k && timers [k >> 1]->at > w->at)
383     {
384     timers [k] = timers [k >> 1];
385     timers [k]->active = k + 1;
386     k >>= 1;
387     }
388    
389     timers [k] = w;
390     timers [k]->active = k + 1;
391    
392     }
393    
394     static void
395 root 1.12 downheap (WT *timers, int N, int k)
396 root 1.1 {
397 root 1.12 WT w = timers [k];
398 root 1.1
399 root 1.4 while (k < (N >> 1))
400 root 1.1 {
401     int j = k << 1;
402    
403 root 1.4 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
404 root 1.1 ++j;
405    
406     if (w->at <= timers [j]->at)
407     break;
408    
409     timers [k] = timers [j];
410 root 1.2 timers [k]->active = k + 1;
411 root 1.1 k = j;
412     }
413    
414     timers [k] = w;
415     timers [k]->active = k + 1;
416     }
417    
418 root 1.8 /*****************************************************************************/
419    
420 root 1.7 typedef struct
421     {
422 root 1.50 struct ev_watcher_list *head;
423 root 1.34 sig_atomic_t volatile gotsig;
424 root 1.7 } ANSIG;
425    
426     static ANSIG *signals;
427 root 1.4 static int signalmax;
428 root 1.1
429 root 1.7 static int sigpipe [2];
430 root 1.34 static sig_atomic_t volatile gotsig;
431 root 1.7 static struct ev_io sigev;
432    
433 root 1.1 static void
434 root 1.7 signals_init (ANSIG *base, int count)
435 root 1.1 {
436     while (count--)
437 root 1.7 {
438     base->head = 0;
439     base->gotsig = 0;
440 root 1.33
441 root 1.7 ++base;
442     }
443     }
444    
445     static void
446     sighandler (int signum)
447     {
448     signals [signum - 1].gotsig = 1;
449    
450     if (!gotsig)
451     {
452 root 1.48 int old_errno = errno;
453 root 1.7 gotsig = 1;
454 root 1.34 write (sigpipe [1], &signum, 1);
455 root 1.48 errno = old_errno;
456 root 1.7 }
457     }
458    
459     static void
460 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
461 root 1.7 {
462 root 1.50 struct ev_watcher_list *w;
463 root 1.38 int signum;
464 root 1.7
465 root 1.34 read (sigpipe [0], &revents, 1);
466 root 1.7 gotsig = 0;
467    
468 root 1.38 for (signum = signalmax; signum--; )
469     if (signals [signum].gotsig)
470 root 1.7 {
471 root 1.38 signals [signum].gotsig = 0;
472 root 1.7
473 root 1.38 for (w = signals [signum].head; w; w = w->next)
474 root 1.51 event (EV_A_ (W)w, EV_SIGNAL);
475 root 1.7 }
476     }
477    
478     static void
479 root 1.51 siginit (EV_P)
480 root 1.7 {
481 root 1.45 #ifndef WIN32
482 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
483     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
484    
485     /* rather than sort out wether we really need nb, set it */
486     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
487     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
488 root 1.45 #endif
489 root 1.7
490 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
491     ev_io_start (&sigev);
492 root 1.1 }
493    
494 root 1.8 /*****************************************************************************/
495    
496 root 1.9 static struct ev_idle **idles;
497     static int idlemax, idlecnt;
498    
499 root 1.20 static struct ev_prepare **prepares;
500     static int preparemax, preparecnt;
501    
502 root 1.9 static struct ev_check **checks;
503     static int checkmax, checkcnt;
504    
505     /*****************************************************************************/
506    
507 root 1.22 static struct ev_child *childs [PID_HASHSIZE];
508     static struct ev_signal childev;
509    
510 root 1.45 #ifndef WIN32
511    
512 root 1.22 #ifndef WCONTINUED
513     # define WCONTINUED 0
514     #endif
515    
516     static void
517 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
518 root 1.47 {
519     struct ev_child *w;
520    
521 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
522 root 1.47 if (w->pid == pid || !w->pid)
523     {
524     w->priority = sw->priority; /* need to do it *now* */
525     w->rpid = pid;
526     w->rstatus = status;
527 root 1.51 event (EV_A_ (W)w, EV_CHILD);
528 root 1.47 }
529     }
530    
531     static void
532 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
533 root 1.22 {
534     int pid, status;
535    
536 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
537     {
538     /* make sure we are called again until all childs have been reaped */
539 root 1.51 event (EV_A_ (W)sw, EV_SIGNAL);
540 root 1.47
541 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
542     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
543 root 1.47 }
544 root 1.22 }
545    
546 root 1.45 #endif
547    
548 root 1.22 /*****************************************************************************/
549    
550 root 1.44 #if EV_USE_KQUEUE
551     # include "ev_kqueue.c"
552     #endif
553 root 1.29 #if EV_USE_EPOLL
554 root 1.1 # include "ev_epoll.c"
555     #endif
556 root 1.51 #if EV_USEV_POLL
557 root 1.41 # include "ev_poll.c"
558     #endif
559 root 1.29 #if EV_USE_SELECT
560 root 1.1 # include "ev_select.c"
561     #endif
562    
563 root 1.24 int
564     ev_version_major (void)
565     {
566     return EV_VERSION_MAJOR;
567     }
568    
569     int
570     ev_version_minor (void)
571     {
572     return EV_VERSION_MINOR;
573     }
574    
575 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
576 root 1.41 static int
577 root 1.51 enable_secure (void)
578 root 1.41 {
579 root 1.49 #ifdef WIN32
580     return 0;
581     #else
582 root 1.41 return getuid () != geteuid ()
583     || getgid () != getegid ();
584 root 1.49 #endif
585 root 1.41 }
586    
587 root 1.51 int
588     ev_method (EV_P)
589 root 1.1 {
590 root 1.51 return method;
591     }
592    
593     int
594     ev_init (EV_P_ int methods)
595     {
596     if (!method)
597 root 1.23 {
598 root 1.29 #if EV_USE_MONOTONIC
599 root 1.23 {
600     struct timespec ts;
601     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
602     have_monotonic = 1;
603     }
604 root 1.1 #endif
605    
606 root 1.51 rt_now = ev_time ();
607     mn_now = get_clock ();
608     now_floor = mn_now;
609     diff = rt_now - mn_now;
610 root 1.1
611 root 1.23 if (pipe (sigpipe))
612     return 0;
613 root 1.7
614 root 1.41 if (methods == EVMETHOD_AUTO)
615 root 1.51 if (!enable_secure () && getenv ("LIBmethodS"))
616     methods = atoi (getenv ("LIBmethodS"));
617 root 1.50 else
618     methods = EVMETHOD_ANY;
619 root 1.41
620 root 1.51 method = 0;
621 root 1.44 #if EV_USE_KQUEUE
622 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
623 root 1.44 #endif
624 root 1.29 #if EV_USE_EPOLL
625 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
626 root 1.41 #endif
627 root 1.51 #if EV_USEV_POLL
628     if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
629 root 1.1 #endif
630 root 1.29 #if EV_USE_SELECT
631 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
632 root 1.1 #endif
633    
634 root 1.51 if (method)
635 root 1.23 {
636 root 1.28 ev_watcher_init (&sigev, sigcb);
637 root 1.47 ev_set_priority (&sigev, EV_MAXPRI);
638 root 1.51 siginit (EV_A);
639 root 1.22
640 root 1.45 #ifndef WIN32
641 root 1.28 ev_signal_init (&childev, childcb, SIGCHLD);
642 root 1.47 ev_set_priority (&childev, EV_MAXPRI);
643 root 1.51 ev_signal_start (EV_A_ &childev);
644 root 1.45 #endif
645 root 1.23 }
646 root 1.7 }
647    
648 root 1.51 return method;
649 root 1.1 }
650    
651 root 1.8 /*****************************************************************************/
652    
653 root 1.24 void
654 root 1.35 ev_fork_prepare (void)
655 root 1.1 {
656 root 1.11 /* nop */
657 root 1.1 }
658    
659 root 1.24 void
660 root 1.35 ev_fork_parent (void)
661 root 1.1 {
662 root 1.11 /* nop */
663 root 1.1 }
664    
665 root 1.24 void
666 root 1.35 ev_fork_child (void)
667 root 1.1 {
668 root 1.29 #if EV_USE_EPOLL
669 root 1.51 if (method == EVMETHOD_EPOLL)
670 root 1.5 epoll_postfork_child ();
671 root 1.1 #endif
672 root 1.7
673 root 1.28 ev_io_stop (&sigev);
674 root 1.7 close (sigpipe [0]);
675     close (sigpipe [1]);
676     pipe (sigpipe);
677     siginit ();
678 root 1.1 }
679    
680 root 1.8 /*****************************************************************************/
681    
682 root 1.1 static void
683 root 1.51 call_pending (EV_P)
684 root 1.1 {
685 root 1.42 int pri;
686    
687     for (pri = NUMPRI; pri--; )
688     while (pendingcnt [pri])
689     {
690     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
691 root 1.1
692 root 1.42 if (p->w)
693     {
694     p->w->pending = 0;
695 root 1.51 p->w->cb (EV_A_ p->w, p->events);
696 root 1.42 }
697     }
698 root 1.1 }
699    
700     static void
701 root 1.51 timers_reify (EV_P)
702 root 1.1 {
703 root 1.51 while (timercnt && timers [0]->at <= mn_now)
704 root 1.1 {
705     struct ev_timer *w = timers [0];
706    
707 root 1.4 /* first reschedule or stop timer */
708 root 1.1 if (w->repeat)
709     {
710 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
711 root 1.51 w->at = mn_now + w->repeat;
712 root 1.12 downheap ((WT *)timers, timercnt, 0);
713     }
714     else
715 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
716 root 1.30
717     event ((W)w, EV_TIMEOUT);
718 root 1.12 }
719     }
720 root 1.4
721 root 1.12 static void
722 root 1.51 periodics_reify (EV_P)
723 root 1.12 {
724 root 1.51 while (periodiccnt && periodics [0]->at <= rt_now)
725 root 1.12 {
726     struct ev_periodic *w = periodics [0];
727 root 1.1
728 root 1.12 /* first reschedule or stop timer */
729     if (w->interval)
730     {
731 root 1.51 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
732     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
733 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
734 root 1.1 }
735     else
736 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
737 root 1.12
738 root 1.51 event (EV_A_ (W)w, EV_PERIODIC);
739 root 1.12 }
740     }
741    
742     static void
743 root 1.51 periodics_reschedule (EV_P_ ev_tstamp diff)
744 root 1.12 {
745     int i;
746    
747 root 1.13 /* adjust periodics after time jump */
748 root 1.12 for (i = 0; i < periodiccnt; ++i)
749     {
750     struct ev_periodic *w = periodics [i];
751    
752     if (w->interval)
753 root 1.4 {
754 root 1.51 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
755 root 1.12
756     if (fabs (diff) >= 1e-4)
757     {
758 root 1.51 ev_periodic_stop (EV_A_ w);
759     ev_periodic_start (EV_A_ w);
760 root 1.12
761     i = 0; /* restart loop, inefficient, but time jumps should be rare */
762     }
763 root 1.4 }
764 root 1.12 }
765 root 1.1 }
766    
767 root 1.51 inline int
768     time_update_monotonic (EV_P)
769 root 1.40 {
770 root 1.51 mn_now = get_clock ();
771 root 1.40
772 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
773 root 1.40 {
774 root 1.51 rt_now = mn_now + diff;
775 root 1.40 return 0;
776     }
777     else
778     {
779 root 1.51 now_floor = mn_now;
780     rt_now = ev_time ();
781 root 1.40 return 1;
782     }
783     }
784    
785 root 1.4 static void
786 root 1.51 time_update (EV_P)
787 root 1.4 {
788     int i;
789 root 1.12
790 root 1.40 #if EV_USE_MONOTONIC
791     if (expect_true (have_monotonic))
792     {
793 root 1.51 if (time_update_monotonic (EV_A))
794 root 1.40 {
795     ev_tstamp odiff = diff;
796 root 1.4
797 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
798     {
799 root 1.51 diff = rt_now - mn_now;
800 root 1.4
801 root 1.40 if (fabs (odiff - diff) < MIN_TIMEJUMP)
802     return; /* all is well */
803 root 1.4
804 root 1.51 rt_now = ev_time ();
805     mn_now = get_clock ();
806     now_floor = mn_now;
807 root 1.40 }
808 root 1.4
809 root 1.51 periodics_reschedule (EV_A_ diff - odiff);
810 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
811 root 1.4 }
812     }
813     else
814 root 1.40 #endif
815 root 1.4 {
816 root 1.51 rt_now = ev_time ();
817 root 1.40
818 root 1.51 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
819 root 1.13 {
820 root 1.51 periodics_reschedule (EV_A_ rt_now - mn_now);
821 root 1.13
822     /* adjust timers. this is easy, as the offset is the same for all */
823     for (i = 0; i < timercnt; ++i)
824     timers [i]->at += diff;
825     }
826 root 1.4
827 root 1.51 mn_now = rt_now;
828 root 1.4 }
829     }
830    
831 root 1.51 void
832     ev_ref (EV_P)
833     {
834     ++activecnt;
835     }
836 root 1.1
837 root 1.51 void
838     ev_unref (EV_P)
839     {
840     --activecnt;
841     }
842    
843     static int loop_done;
844    
845     void
846     ev_loop (EV_P_ int flags)
847 root 1.1 {
848     double block;
849 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
850 root 1.1
851 root 1.20 do
852 root 1.9 {
853 root 1.20 /* queue check watchers (and execute them) */
854 root 1.40 if (expect_false (preparecnt))
855 root 1.20 {
856 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
857     call_pending (EV_A);
858 root 1.20 }
859 root 1.9
860 root 1.1 /* update fd-related kernel structures */
861 root 1.51 fd_reify (EV_A);
862 root 1.1
863     /* calculate blocking time */
864 root 1.12
865 root 1.21 /* we only need this for !monotonic clockor timers, but as we basically
866     always have timers, we just calculate it always */
867 root 1.40 #if EV_USE_MONOTONIC
868     if (expect_true (have_monotonic))
869 root 1.51 time_update_monotonic (EV_A);
870 root 1.40 else
871     #endif
872     {
873 root 1.51 rt_now = ev_time ();
874     mn_now = rt_now;
875 root 1.40 }
876 root 1.12
877 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
878 root 1.1 block = 0.;
879     else
880     {
881 root 1.4 block = MAX_BLOCKTIME;
882    
883 root 1.12 if (timercnt)
884 root 1.4 {
885 root 1.51 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
886 root 1.4 if (block > to) block = to;
887     }
888    
889 root 1.12 if (periodiccnt)
890 root 1.4 {
891 root 1.51 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
892 root 1.4 if (block > to) block = to;
893     }
894    
895 root 1.1 if (block < 0.) block = 0.;
896     }
897    
898 root 1.51 method_poll (EV_A_ block);
899 root 1.1
900 root 1.51 /* update rt_now, do magic */
901     time_update (EV_A);
902 root 1.4
903 root 1.9 /* queue pending timers and reschedule them */
904 root 1.51 timers_reify (EV_A); /* relative timers called last */
905     periodics_reify (EV_A); /* absolute timers called first */
906 root 1.1
907 root 1.9 /* queue idle watchers unless io or timers are pending */
908     if (!pendingcnt)
909 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
910 root 1.9
911 root 1.20 /* queue check watchers, to be executed first */
912     if (checkcnt)
913 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
914 root 1.9
915 root 1.51 call_pending (EV_A);
916     printf ("activecnt %d\n", activecnt);//D
917 root 1.1 }
918 root 1.51 while (activecnt && !loop_done);
919 root 1.13
920 root 1.51 if (loop_done != 2)
921     loop_done = 0;
922     }
923    
924     void
925     ev_unloop (EV_P_ int how)
926     {
927     loop_done = how;
928 root 1.1 }
929    
930 root 1.8 /*****************************************************************************/
931    
932 root 1.51 inline void
933 root 1.10 wlist_add (WL *head, WL elem)
934 root 1.1 {
935     elem->next = *head;
936     *head = elem;
937     }
938    
939 root 1.51 inline void
940 root 1.10 wlist_del (WL *head, WL elem)
941 root 1.1 {
942     while (*head)
943     {
944     if (*head == elem)
945     {
946     *head = elem->next;
947     return;
948     }
949    
950     head = &(*head)->next;
951     }
952     }
953    
954 root 1.51 inline void
955     ev_clear_pending (EV_P_ W w)
956 root 1.16 {
957     if (w->pending)
958     {
959 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
960 root 1.16 w->pending = 0;
961     }
962     }
963    
964 root 1.51 inline void
965     ev_start (EV_P_ W w, int active)
966 root 1.1 {
967 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
968     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
969    
970 root 1.1 w->active = active;
971 root 1.51 ev_ref (EV_A);
972 root 1.1 }
973    
974 root 1.51 inline void
975     ev_stop (EV_P_ W w)
976 root 1.1 {
977 root 1.51 ev_unref (EV_A);
978 root 1.1 w->active = 0;
979     }
980    
981 root 1.8 /*****************************************************************************/
982    
983 root 1.1 void
984 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
985 root 1.1 {
986 root 1.37 int fd = w->fd;
987    
988 root 1.1 if (ev_is_active (w))
989     return;
990    
991 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
992    
993 root 1.51 ev_start (EV_A_ (W)w, 1);
994 root 1.1 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
995 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
996 root 1.1
997 root 1.51 fd_change (EV_A_ fd);
998 root 1.1 }
999    
1000     void
1001 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
1002 root 1.1 {
1003 root 1.51 ev_clear_pending (EV_A_ (W)w);
1004 root 1.1 if (!ev_is_active (w))
1005     return;
1006    
1007 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1008 root 1.51 ev_stop (EV_A_ (W)w);
1009 root 1.1
1010 root 1.51 fd_change (EV_A_ w->fd);
1011 root 1.1 }
1012    
1013     void
1014 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1015 root 1.1 {
1016     if (ev_is_active (w))
1017     return;
1018    
1019 root 1.51 w->at += mn_now;
1020 root 1.12
1021 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1022 root 1.13
1023 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1024 root 1.12 array_needsize (timers, timermax, timercnt, );
1025     timers [timercnt - 1] = w;
1026     upheap ((WT *)timers, timercnt - 1);
1027     }
1028    
1029     void
1030 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1031 root 1.12 {
1032 root 1.51 ev_clear_pending (EV_A_ (W)w);
1033 root 1.12 if (!ev_is_active (w))
1034     return;
1035    
1036     if (w->active < timercnt--)
1037 root 1.1 {
1038 root 1.12 timers [w->active - 1] = timers [timercnt];
1039     downheap ((WT *)timers, timercnt, w->active - 1);
1040     }
1041 root 1.4
1042 root 1.14 w->at = w->repeat;
1043    
1044 root 1.51 ev_stop (EV_A_ (W)w);
1045 root 1.12 }
1046 root 1.4
1047 root 1.12 void
1048 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1049 root 1.14 {
1050     if (ev_is_active (w))
1051     {
1052     if (w->repeat)
1053     {
1054 root 1.51 w->at = mn_now + w->repeat;
1055 root 1.14 downheap ((WT *)timers, timercnt, w->active - 1);
1056     }
1057     else
1058 root 1.51 ev_timer_stop (EV_A_ w);
1059 root 1.14 }
1060     else if (w->repeat)
1061 root 1.51 ev_timer_start (EV_A_ w);
1062 root 1.14 }
1063    
1064     void
1065 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1066 root 1.12 {
1067     if (ev_is_active (w))
1068     return;
1069 root 1.1
1070 root 1.33 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1071 root 1.13
1072 root 1.12 /* this formula differs from the one in periodic_reify because we do not always round up */
1073     if (w->interval)
1074 root 1.51 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1075 root 1.12
1076 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1077 root 1.12 array_needsize (periodics, periodicmax, periodiccnt, );
1078     periodics [periodiccnt - 1] = w;
1079     upheap ((WT *)periodics, periodiccnt - 1);
1080 root 1.1 }
1081    
1082     void
1083 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1084 root 1.1 {
1085 root 1.51 ev_clear_pending (EV_A_ (W)w);
1086 root 1.1 if (!ev_is_active (w))
1087     return;
1088    
1089 root 1.12 if (w->active < periodiccnt--)
1090 root 1.2 {
1091 root 1.12 periodics [w->active - 1] = periodics [periodiccnt];
1092     downheap ((WT *)periodics, periodiccnt, w->active - 1);
1093 root 1.2 }
1094    
1095 root 1.51 ev_stop (EV_A_ (W)w);
1096 root 1.1 }
1097    
1098 root 1.47 #ifndef SA_RESTART
1099     # define SA_RESTART 0
1100     #endif
1101    
1102 root 1.1 void
1103 root 1.51 ev_signal_start (EV_P_ struct ev_signal *w)
1104 root 1.1 {
1105     if (ev_is_active (w))
1106     return;
1107    
1108 root 1.33 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1109    
1110 root 1.51 ev_start (EV_A_ (W)w, 1);
1111 root 1.1 array_needsize (signals, signalmax, w->signum, signals_init);
1112 root 1.10 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1113 root 1.7
1114     if (!w->next)
1115     {
1116     struct sigaction sa;
1117     sa.sa_handler = sighandler;
1118     sigfillset (&sa.sa_mask);
1119 root 1.47 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1120 root 1.7 sigaction (w->signum, &sa, 0);
1121     }
1122 root 1.1 }
1123    
1124     void
1125 root 1.51 ev_signal_stop (EV_P_ struct ev_signal *w)
1126 root 1.1 {
1127 root 1.51 ev_clear_pending (EV_A_ (W)w);
1128 root 1.1 if (!ev_is_active (w))
1129     return;
1130    
1131 root 1.10 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1132 root 1.51 ev_stop (EV_A_ (W)w);
1133 root 1.7
1134     if (!signals [w->signum - 1].head)
1135     signal (w->signum, SIG_DFL);
1136 root 1.1 }
1137    
1138 root 1.28 void
1139 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1140 root 1.9 {
1141     if (ev_is_active (w))
1142     return;
1143    
1144 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1145 root 1.9 array_needsize (idles, idlemax, idlecnt, );
1146     idles [idlecnt - 1] = w;
1147     }
1148    
1149 root 1.28 void
1150 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1151 root 1.9 {
1152 root 1.51 ev_clear_pending (EV_A_ (W)w);
1153 root 1.16 if (ev_is_active (w))
1154     return;
1155    
1156 root 1.9 idles [w->active - 1] = idles [--idlecnt];
1157 root 1.51 ev_stop (EV_A_ (W)w);
1158 root 1.9 }
1159    
1160 root 1.28 void
1161 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1162 root 1.20 {
1163     if (ev_is_active (w))
1164     return;
1165    
1166 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1167 root 1.20 array_needsize (prepares, preparemax, preparecnt, );
1168     prepares [preparecnt - 1] = w;
1169     }
1170    
1171 root 1.28 void
1172 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1173 root 1.20 {
1174 root 1.51 ev_clear_pending (EV_A_ (W)w);
1175 root 1.20 if (ev_is_active (w))
1176     return;
1177    
1178     prepares [w->active - 1] = prepares [--preparecnt];
1179 root 1.51 ev_stop (EV_A_ (W)w);
1180 root 1.20 }
1181    
1182 root 1.28 void
1183 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1184 root 1.9 {
1185     if (ev_is_active (w))
1186     return;
1187    
1188 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1189 root 1.9 array_needsize (checks, checkmax, checkcnt, );
1190     checks [checkcnt - 1] = w;
1191     }
1192    
1193 root 1.28 void
1194 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1195 root 1.9 {
1196 root 1.51 ev_clear_pending (EV_A_ (W)w);
1197 root 1.16 if (ev_is_active (w))
1198     return;
1199    
1200 root 1.9 checks [w->active - 1] = checks [--checkcnt];
1201 root 1.51 ev_stop (EV_A_ (W)w);
1202 root 1.9 }
1203    
1204 root 1.28 void
1205 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1206 root 1.22 {
1207     if (ev_is_active (w))
1208     return;
1209    
1210 root 1.51 ev_start (EV_A_ (W)w, 1);
1211 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1212     }
1213    
1214 root 1.28 void
1215 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1216 root 1.22 {
1217 root 1.51 ev_clear_pending (EV_A_ (W)w);
1218 root 1.22 if (ev_is_active (w))
1219     return;
1220    
1221     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1222 root 1.51 ev_stop (EV_A_ (W)w);
1223 root 1.22 }
1224    
1225 root 1.1 /*****************************************************************************/
1226 root 1.10
1227 root 1.16 struct ev_once
1228     {
1229     struct ev_io io;
1230     struct ev_timer to;
1231     void (*cb)(int revents, void *arg);
1232     void *arg;
1233     };
1234    
1235     static void
1236 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1237 root 1.16 {
1238     void (*cb)(int revents, void *arg) = once->cb;
1239     void *arg = once->arg;
1240    
1241 root 1.51 ev_io_stop (EV_A_ &once->io);
1242     ev_timer_stop (EV_A_ &once->to);
1243 root 1.16 free (once);
1244    
1245     cb (revents, arg);
1246     }
1247    
1248     static void
1249 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1250 root 1.16 {
1251 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1252 root 1.16 }
1253    
1254     static void
1255 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1256 root 1.16 {
1257 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1258 root 1.16 }
1259    
1260     void
1261 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1262 root 1.16 {
1263     struct ev_once *once = malloc (sizeof (struct ev_once));
1264    
1265     if (!once)
1266 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1267 root 1.16 else
1268     {
1269     once->cb = cb;
1270     once->arg = arg;
1271    
1272 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1273 root 1.16 if (fd >= 0)
1274     {
1275 root 1.28 ev_io_set (&once->io, fd, events);
1276 root 1.51 ev_io_start (EV_A_ &once->io);
1277 root 1.16 }
1278    
1279 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1280 root 1.16 if (timeout >= 0.)
1281     {
1282 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1283 root 1.51 ev_timer_start (EV_A_ &once->to);
1284 root 1.16 }
1285     }
1286     }
1287    
1288     /*****************************************************************************/
1289    
1290 root 1.13 #if 0
1291 root 1.12
1292     struct ev_io wio;
1293 root 1.1
1294     static void
1295     sin_cb (struct ev_io *w, int revents)
1296     {
1297     fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1298     }
1299    
1300     static void
1301     ocb (struct ev_timer *w, int revents)
1302     {
1303 root 1.4 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1304 root 1.28 ev_timer_stop (w);
1305     ev_timer_start (w);
1306 root 1.1 }
1307    
1308 root 1.7 static void
1309     scb (struct ev_signal *w, int revents)
1310     {
1311     fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1312 root 1.28 ev_io_stop (&wio);
1313     ev_io_start (&wio);
1314 root 1.7 }
1315    
1316 root 1.9 static void
1317     gcb (struct ev_signal *w, int revents)
1318     {
1319     fprintf (stderr, "generic %x\n", revents);
1320 root 1.12
1321 root 1.9 }
1322    
1323 root 1.1 int main (void)
1324     {
1325     ev_init (0);
1326    
1327 root 1.28 ev_io_init (&wio, sin_cb, 0, EV_READ);
1328     ev_io_start (&wio);
1329 root 1.1
1330 root 1.4 struct ev_timer t[10000];
1331 root 1.2
1332 root 1.9 #if 0
1333 root 1.2 int i;
1334 root 1.4 for (i = 0; i < 10000; ++i)
1335 root 1.2 {
1336     struct ev_timer *w = t + i;
1337 root 1.28 ev_watcher_init (w, ocb, i);
1338     ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1339     ev_timer_start (w);
1340 root 1.2 if (drand48 () < 0.5)
1341 root 1.28 ev_timer_stop (w);
1342 root 1.2 }
1343 root 1.4 #endif
1344    
1345     struct ev_timer t1;
1346 root 1.28 ev_timer_init (&t1, ocb, 5, 10);
1347     ev_timer_start (&t1);
1348 root 1.1
1349 root 1.7 struct ev_signal sig;
1350 root 1.28 ev_signal_init (&sig, scb, SIGQUIT);
1351     ev_signal_start (&sig);
1352 root 1.7
1353 root 1.9 struct ev_check cw;
1354 root 1.28 ev_check_init (&cw, gcb);
1355     ev_check_start (&cw);
1356 root 1.9
1357     struct ev_idle iw;
1358 root 1.28 ev_idle_init (&iw, gcb);
1359     ev_idle_start (&iw);
1360 root 1.9
1361 root 1.1 ev_loop (0);
1362    
1363     return 0;
1364     }
1365    
1366     #endif
1367    
1368    
1369    
1370