ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.512
Committed: Fri Nov 22 19:54:38 2019 UTC (4 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: EV-rel-4_30
Changes since 1.511: +2 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.490 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.469 # if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52 root 1.373 # endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.491 # if HAVE_LINUX_AIO_ABI_H
121     # ifndef EV_USE_LINUXAIO
122     # define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123     # endif
124     # else
125     # undef EV_USE_LINUXAIO
126     # define EV_USE_LINUXAIO 0
127     # endif
128    
129 root 1.511 # if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
130     # ifndef EV_USE_IOURING
131     # define EV_USE_IOURING EV_FEATURE_BACKENDS
132     # endif
133     # else
134     # undef EV_USE_IOURING
135     # define EV_USE_IOURING 0
136     # endif
137    
138 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139     # ifndef EV_USE_KQUEUE
140 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141 root 1.127 # endif
142 root 1.343 # else
143     # undef EV_USE_KQUEUE
144     # define EV_USE_KQUEUE 0
145 root 1.60 # endif
146 root 1.127
147 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
148     # ifndef EV_USE_PORT
149 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
150 root 1.127 # endif
151 root 1.343 # else
152     # undef EV_USE_PORT
153     # define EV_USE_PORT 0
154 root 1.118 # endif
155    
156 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157     # ifndef EV_USE_INOTIFY
158 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
159 root 1.152 # endif
160 root 1.343 # else
161     # undef EV_USE_INOTIFY
162     # define EV_USE_INOTIFY 0
163 root 1.152 # endif
164    
165 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166     # ifndef EV_USE_SIGNALFD
167 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
168 root 1.303 # endif
169 root 1.343 # else
170     # undef EV_USE_SIGNALFD
171     # define EV_USE_SIGNALFD 0
172 root 1.303 # endif
173    
174 root 1.343 # if HAVE_EVENTFD
175     # ifndef EV_USE_EVENTFD
176 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
177 root 1.220 # endif
178 root 1.343 # else
179     # undef EV_USE_EVENTFD
180     # define EV_USE_EVENTFD 0
181 root 1.220 # endif
182 root 1.511
183 root 1.29 #endif
184 root 1.17
185 root 1.483 /* OS X, in its infinite idiocy, actually HARDCODES
186     * a limit of 1024 into their select. Where people have brains,
187     * OS X engineers apparently have a vacuum. Or maybe they were
188     * ordered to have a vacuum, or they do anything for money.
189     * This might help. Or not.
190     * Note that this must be defined early, as other include files
191     * will rely on this define as well.
192     */
193     #define _DARWIN_UNLIMITED_SELECT 1
194    
195 root 1.1 #include <stdlib.h>
196 root 1.319 #include <string.h>
197 root 1.7 #include <fcntl.h>
198 root 1.16 #include <stddef.h>
199 root 1.1
200     #include <stdio.h>
201    
202 root 1.4 #include <assert.h>
203 root 1.1 #include <errno.h>
204 root 1.22 #include <sys/types.h>
205 root 1.71 #include <time.h>
206 root 1.326 #include <limits.h>
207 root 1.71
208 root 1.72 #include <signal.h>
209 root 1.71
210 root 1.152 #ifdef EV_H
211     # include EV_H
212     #else
213     # include "ev.h"
214     #endif
215    
216 root 1.410 #if EV_NO_THREADS
217     # undef EV_NO_SMP
218     # define EV_NO_SMP 1
219     # undef ECB_NO_THREADS
220     # define ECB_NO_THREADS 1
221     #endif
222     #if EV_NO_SMP
223     # undef EV_NO_SMP
224     # define ECB_NO_SMP 1
225     #endif
226    
227 root 1.103 #ifndef _WIN32
228 root 1.71 # include <sys/time.h>
229 root 1.45 # include <sys/wait.h>
230 root 1.140 # include <unistd.h>
231 root 1.103 #else
232 root 1.256 # include <io.h>
233 root 1.103 # define WIN32_LEAN_AND_MEAN
234 root 1.431 # include <winsock2.h>
235 root 1.103 # include <windows.h>
236     # ifndef EV_SELECT_IS_WINSOCKET
237     # define EV_SELECT_IS_WINSOCKET 1
238     # endif
239 root 1.331 # undef EV_AVOID_STDIO
240 root 1.45 #endif
241 root 1.103
242 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
243 root 1.40
244 root 1.305 /* try to deduce the maximum number of signals on this platform */
245 root 1.416 #if defined EV_NSIG
246 root 1.305 /* use what's provided */
247 root 1.416 #elif defined NSIG
248 root 1.305 # define EV_NSIG (NSIG)
249 root 1.416 #elif defined _NSIG
250 root 1.305 # define EV_NSIG (_NSIG)
251 root 1.416 #elif defined SIGMAX
252 root 1.305 # define EV_NSIG (SIGMAX+1)
253 root 1.416 #elif defined SIG_MAX
254 root 1.305 # define EV_NSIG (SIG_MAX+1)
255 root 1.416 #elif defined _SIG_MAX
256 root 1.305 # define EV_NSIG (_SIG_MAX+1)
257 root 1.416 #elif defined MAXSIG
258 root 1.305 # define EV_NSIG (MAXSIG+1)
259 root 1.416 #elif defined MAX_SIG
260 root 1.305 # define EV_NSIG (MAX_SIG+1)
261 root 1.416 #elif defined SIGARRAYSIZE
262 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
263 root 1.416 #elif defined _sys_nsig
264 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
265     #else
266 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
267 root 1.305 #endif
268    
269 root 1.373 #ifndef EV_USE_FLOOR
270     # define EV_USE_FLOOR 0
271     #endif
272    
273 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
274 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
275 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
276 root 1.274 # else
277     # define EV_USE_CLOCK_SYSCALL 0
278     # endif
279     #endif
280    
281 root 1.470 #if !(_POSIX_TIMERS > 0)
282     # ifndef EV_USE_MONOTONIC
283     # define EV_USE_MONOTONIC 0
284     # endif
285     # ifndef EV_USE_REALTIME
286     # define EV_USE_REALTIME 0
287     # endif
288     #endif
289    
290 root 1.29 #ifndef EV_USE_MONOTONIC
291 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
292 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
293 root 1.253 # else
294     # define EV_USE_MONOTONIC 0
295     # endif
296 root 1.37 #endif
297    
298 root 1.118 #ifndef EV_USE_REALTIME
299 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
300 root 1.118 #endif
301    
302 root 1.193 #ifndef EV_USE_NANOSLEEP
303 root 1.253 # if _POSIX_C_SOURCE >= 199309L
304 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
305 root 1.253 # else
306     # define EV_USE_NANOSLEEP 0
307     # endif
308 root 1.193 #endif
309    
310 root 1.29 #ifndef EV_USE_SELECT
311 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
312 root 1.10 #endif
313    
314 root 1.59 #ifndef EV_USE_POLL
315 root 1.104 # ifdef _WIN32
316     # define EV_USE_POLL 0
317     # else
318 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
319 root 1.104 # endif
320 root 1.41 #endif
321    
322 root 1.29 #ifndef EV_USE_EPOLL
323 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
324 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
325 root 1.220 # else
326     # define EV_USE_EPOLL 0
327     # endif
328 root 1.10 #endif
329    
330 root 1.44 #ifndef EV_USE_KQUEUE
331     # define EV_USE_KQUEUE 0
332     #endif
333    
334 root 1.118 #ifndef EV_USE_PORT
335     # define EV_USE_PORT 0
336 root 1.40 #endif
337    
338 root 1.490 #ifndef EV_USE_LINUXAIO
339 root 1.492 # if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
340     # define EV_USE_LINUXAIO 1
341     # else
342     # define EV_USE_LINUXAIO 0
343     # endif
344 root 1.490 #endif
345    
346 root 1.501 #ifndef EV_USE_IOURING
347 root 1.511 # if __linux /* later checks might disable again */
348     # define EV_USE_IOURING 1
349 root 1.501 # else
350     # define EV_USE_IOURING 0
351     # endif
352     #endif
353    
354 root 1.152 #ifndef EV_USE_INOTIFY
355 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
356 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
357 root 1.220 # else
358     # define EV_USE_INOTIFY 0
359     # endif
360 root 1.152 #endif
361    
362 root 1.149 #ifndef EV_PID_HASHSIZE
363 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
364 root 1.149 #endif
365    
366 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
367 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
368 root 1.152 #endif
369    
370 root 1.220 #ifndef EV_USE_EVENTFD
371     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
372 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
373 root 1.220 # else
374     # define EV_USE_EVENTFD 0
375     # endif
376     #endif
377    
378 root 1.303 #ifndef EV_USE_SIGNALFD
379 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
380 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
381 root 1.303 # else
382     # define EV_USE_SIGNALFD 0
383     # endif
384     #endif
385    
386 root 1.249 #if 0 /* debugging */
387 root 1.250 # define EV_VERIFY 3
388 root 1.249 # define EV_USE_4HEAP 1
389     # define EV_HEAP_CACHE_AT 1
390     #endif
391    
392 root 1.250 #ifndef EV_VERIFY
393 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
394 root 1.250 #endif
395    
396 root 1.243 #ifndef EV_USE_4HEAP
397 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
398 root 1.243 #endif
399    
400     #ifndef EV_HEAP_CACHE_AT
401 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
402 root 1.243 #endif
403    
404 root 1.481 #ifdef __ANDROID__
405 root 1.452 /* supposedly, android doesn't typedef fd_mask */
406     # undef EV_USE_SELECT
407     # define EV_USE_SELECT 0
408     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
409     # undef EV_USE_CLOCK_SYSCALL
410     # define EV_USE_CLOCK_SYSCALL 0
411     #endif
412    
413     /* aix's poll.h seems to cause lots of trouble */
414     #ifdef _AIX
415     /* AIX has a completely broken poll.h header */
416     # undef EV_USE_POLL
417     # define EV_USE_POLL 0
418     #endif
419    
420 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
421     /* which makes programs even slower. might work on other unices, too. */
422     #if EV_USE_CLOCK_SYSCALL
423 root 1.423 # include <sys/syscall.h>
424 root 1.291 # ifdef SYS_clock_gettime
425     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
426     # undef EV_USE_MONOTONIC
427     # define EV_USE_MONOTONIC 1
428 root 1.501 # define EV_NEED_SYSCALL 1
429 root 1.291 # else
430     # undef EV_USE_CLOCK_SYSCALL
431     # define EV_USE_CLOCK_SYSCALL 0
432     # endif
433     #endif
434    
435 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
436 root 1.40
437     #ifndef CLOCK_MONOTONIC
438     # undef EV_USE_MONOTONIC
439     # define EV_USE_MONOTONIC 0
440     #endif
441    
442 root 1.31 #ifndef CLOCK_REALTIME
443 root 1.40 # undef EV_USE_REALTIME
444 root 1.31 # define EV_USE_REALTIME 0
445     #endif
446 root 1.40
447 root 1.152 #if !EV_STAT_ENABLE
448 root 1.185 # undef EV_USE_INOTIFY
449 root 1.152 # define EV_USE_INOTIFY 0
450     #endif
451    
452 root 1.511 #if __linux && EV_USE_IOURING
453 root 1.512 # include <linux/version.h>
454     # if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
455 root 1.511 # undef EV_USE_IOURING
456     # define EV_USE_IOURING 0
457     # endif
458     #endif
459    
460 root 1.193 #if !EV_USE_NANOSLEEP
461 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
462 root 1.416 # if !defined _WIN32 && !defined __hpux
463 root 1.193 # include <sys/select.h>
464     # endif
465     #endif
466    
467 root 1.491 #if EV_USE_LINUXAIO
468     # include <sys/syscall.h>
469 root 1.502 # if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
470     # define EV_NEED_SYSCALL 1
471     # else
472 root 1.491 # undef EV_USE_LINUXAIO
473     # define EV_USE_LINUXAIO 0
474 root 1.501 # endif
475     #endif
476    
477     #if EV_USE_IOURING
478     # include <sys/syscall.h>
479 root 1.503 # if !SYS_io_uring_setup && __linux && !__alpha
480 root 1.501 # define SYS_io_uring_setup 425
481     # define SYS_io_uring_enter 426
482     # define SYS_io_uring_wregister 427
483     # endif
484 root 1.502 # if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
485 root 1.501 # define EV_NEED_SYSCALL 1
486     # else
487     # undef EV_USE_IOURING
488     # define EV_USE_IOURING 0
489 root 1.491 # endif
490     #endif
491    
492 root 1.152 #if EV_USE_INOTIFY
493 root 1.273 # include <sys/statfs.h>
494 root 1.152 # include <sys/inotify.h>
495 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
496     # ifndef IN_DONT_FOLLOW
497     # undef EV_USE_INOTIFY
498     # define EV_USE_INOTIFY 0
499     # endif
500 root 1.152 #endif
501    
502 root 1.220 #if EV_USE_EVENTFD
503     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
504 root 1.221 # include <stdint.h>
505 root 1.303 # ifndef EFD_NONBLOCK
506     # define EFD_NONBLOCK O_NONBLOCK
507     # endif
508     # ifndef EFD_CLOEXEC
509 root 1.311 # ifdef O_CLOEXEC
510     # define EFD_CLOEXEC O_CLOEXEC
511     # else
512     # define EFD_CLOEXEC 02000000
513     # endif
514 root 1.303 # endif
515 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
516 root 1.220 #endif
517    
518 root 1.303 #if EV_USE_SIGNALFD
519 root 1.314 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
520     # include <stdint.h>
521     # ifndef SFD_NONBLOCK
522     # define SFD_NONBLOCK O_NONBLOCK
523     # endif
524     # ifndef SFD_CLOEXEC
525     # ifdef O_CLOEXEC
526     # define SFD_CLOEXEC O_CLOEXEC
527     # else
528     # define SFD_CLOEXEC 02000000
529     # endif
530     # endif
531 root 1.354 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
532 root 1.314
533     struct signalfd_siginfo
534     {
535     uint32_t ssi_signo;
536     char pad[128 - sizeof (uint32_t)];
537     };
538 root 1.303 #endif
539    
540 root 1.501 /*****************************************************************************/
541    
542 root 1.250 #if EV_VERIFY >= 3
543 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
544 root 1.248 #else
545     # define EV_FREQUENT_CHECK do { } while (0)
546     #endif
547    
548 root 1.176 /*
549 root 1.373 * This is used to work around floating point rounding problems.
550 root 1.177 * This value is good at least till the year 4000.
551 root 1.176 */
552 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
553     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
554 root 1.176
555 root 1.502 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
556     #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
557    
558 root 1.505 /* find a portable timestamp that is "always" in the future but fits into time_t.
559 root 1.502 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
560 root 1.505 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
561 root 1.502 #define EV_TSTAMP_HUGE \
562     (sizeof (time_t) >= 8 ? 10000000000000. \
563     : 0 < (time_t)4294967295 ? 4294967295. \
564     : 2147483647.) \
565 root 1.1
566 root 1.509 #ifndef EV_TS_CONST
567     # define EV_TS_CONST(nv) nv
568     # define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
569     # define EV_TS_FROM_USEC(us) us * 1e-6
570     # define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
571     # define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
572     # define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
573     # define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
574     #endif
575 root 1.347
576 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
577     /* ECB.H BEGIN */
578     /*
579     * libecb - http://software.schmorp.de/pkg/libecb
580     *
581 root 1.474 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
582 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
583     * All rights reserved.
584     *
585     * Redistribution and use in source and binary forms, with or without modifica-
586     * tion, are permitted provided that the following conditions are met:
587     *
588     * 1. Redistributions of source code must retain the above copyright notice,
589     * this list of conditions and the following disclaimer.
590     *
591     * 2. Redistributions in binary form must reproduce the above copyright
592     * notice, this list of conditions and the following disclaimer in the
593     * documentation and/or other materials provided with the distribution.
594     *
595     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
596     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
597     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
598     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
599     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
600     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
601     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
602     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
603     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
604     * OF THE POSSIBILITY OF SUCH DAMAGE.
605 root 1.467 *
606     * Alternatively, the contents of this file may be used under the terms of
607     * the GNU General Public License ("GPL") version 2 or any later version,
608     * in which case the provisions of the GPL are applicable instead of
609     * the above. If you wish to allow the use of your version of this file
610     * only under the terms of the GPL and not to allow others to use your
611     * version of this file under the BSD license, indicate your decision
612     * by deleting the provisions above and replace them with the notice
613     * and other provisions required by the GPL. If you do not delete the
614     * provisions above, a recipient may use your version of this file under
615     * either the BSD or the GPL.
616 root 1.391 */
617    
618     #ifndef ECB_H
619     #define ECB_H
620    
621 root 1.437 /* 16 bits major, 16 bits minor */
622 root 1.496 #define ECB_VERSION 0x00010006
623 root 1.437
624 root 1.391 #ifdef _WIN32
625     typedef signed char int8_t;
626     typedef unsigned char uint8_t;
627     typedef signed short int16_t;
628     typedef unsigned short uint16_t;
629     typedef signed int int32_t;
630     typedef unsigned int uint32_t;
631     #if __GNUC__
632     typedef signed long long int64_t;
633     typedef unsigned long long uint64_t;
634     #else /* _MSC_VER || __BORLANDC__ */
635     typedef signed __int64 int64_t;
636     typedef unsigned __int64 uint64_t;
637     #endif
638 root 1.437 #ifdef _WIN64
639     #define ECB_PTRSIZE 8
640     typedef uint64_t uintptr_t;
641     typedef int64_t intptr_t;
642     #else
643     #define ECB_PTRSIZE 4
644     typedef uint32_t uintptr_t;
645     typedef int32_t intptr_t;
646     #endif
647 root 1.391 #else
648     #include <inttypes.h>
649 root 1.479 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
650 root 1.437 #define ECB_PTRSIZE 8
651     #else
652     #define ECB_PTRSIZE 4
653     #endif
654 root 1.391 #endif
655 root 1.379
656 sf-exg 1.475 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
657     #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
658    
659 root 1.454 /* work around x32 idiocy by defining proper macros */
660 sf-exg 1.475 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
661 root 1.458 #if _ILP32
662 root 1.454 #define ECB_AMD64_X32 1
663     #else
664     #define ECB_AMD64 1
665     #endif
666     #endif
667    
668 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
669     * what their idiot authors think are the "more important" extensions,
670 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
671 root 1.379 * or so.
672     * we try to detect these and simply assume they are not gcc - if they have
673     * an issue with that they should have done it right in the first place.
674     */
675 root 1.474 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
676     #define ECB_GCC_VERSION(major,minor) 0
677     #else
678     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
679     #endif
680    
681     #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
682    
683     #if __clang__ && defined __has_builtin
684     #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
685     #else
686     #define ECB_CLANG_BUILTIN(x) 0
687     #endif
688    
689     #if __clang__ && defined __has_extension
690     #define ECB_CLANG_EXTENSION(x) __has_extension (x)
691     #else
692     #define ECB_CLANG_EXTENSION(x) 0
693 root 1.379 #endif
694    
695 root 1.437 #define ECB_CPP (__cplusplus+0)
696     #define ECB_CPP11 (__cplusplus >= 201103L)
697 root 1.488 #define ECB_CPP14 (__cplusplus >= 201402L)
698     #define ECB_CPP17 (__cplusplus >= 201703L)
699 root 1.437
700 root 1.450 #if ECB_CPP
701 root 1.464 #define ECB_C 0
702     #define ECB_STDC_VERSION 0
703     #else
704     #define ECB_C 1
705     #define ECB_STDC_VERSION __STDC_VERSION__
706     #endif
707    
708     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
709     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
710 root 1.488 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
711 root 1.464
712     #if ECB_CPP
713 root 1.450 #define ECB_EXTERN_C extern "C"
714     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
715     #define ECB_EXTERN_C_END }
716     #else
717     #define ECB_EXTERN_C extern
718     #define ECB_EXTERN_C_BEG
719     #define ECB_EXTERN_C_END
720     #endif
721    
722 root 1.391 /*****************************************************************************/
723    
724     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
725     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
726    
727 root 1.410 #if ECB_NO_THREADS
728 root 1.439 #define ECB_NO_SMP 1
729 root 1.410 #endif
730    
731 root 1.437 #if ECB_NO_SMP
732 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
733 root 1.40 #endif
734    
735 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
736     #if __xlC__ && ECB_CPP
737     #include <builtins.h>
738     #endif
739    
740 root 1.479 #if 1400 <= _MSC_VER
741     #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
742     #endif
743    
744 root 1.383 #ifndef ECB_MEMORY_FENCE
745 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
746 root 1.496 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
747 root 1.404 #if __i386 || __i386__
748 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
749 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
750 root 1.488 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
751 sf-exg 1.475 #elif ECB_GCC_AMD64
752 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
753     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
754 root 1.488 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
755 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
756 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
757 root 1.479 #elif defined __ARM_ARCH_2__ \
758     || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
759     || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
760     || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
761     || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
762     || defined __ARM_ARCH_5TEJ__
763     /* should not need any, unless running old code on newer cpu - arm doesn't support that */
764 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
765 root 1.479 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
766     || defined __ARM_ARCH_6T2__
767 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
768 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
769 root 1.479 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
770 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
771 root 1.464 #elif __aarch64__
772     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
773 root 1.477 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
774 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
775     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
776     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
777 root 1.417 #elif defined __s390__ || defined __s390x__
778 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
779 root 1.417 #elif defined __mips__
780 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
781 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
782     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
783 root 1.419 #elif defined __alpha__
784 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
785     #elif defined __hppa__
786     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
787     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
788     #elif defined __ia64__
789     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
790 root 1.457 #elif defined __m68k__
791     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
792     #elif defined __m88k__
793     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
794     #elif defined __sh__
795     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
796 root 1.383 #endif
797     #endif
798     #endif
799    
800     #ifndef ECB_MEMORY_FENCE
801 root 1.437 #if ECB_GCC_VERSION(4,7)
802 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
803 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
804 root 1.464 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
805     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
806 root 1.496 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
807 root 1.450
808 root 1.474 #elif ECB_CLANG_EXTENSION(c_atomic)
809     /* see comment below (stdatomic.h) about the C11 memory model. */
810     #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
811     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
812     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
813 root 1.496 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
814 root 1.450
815 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
816 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
817 root 1.462 #elif _MSC_VER >= 1500 /* VC++ 2008 */
818     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
819     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
820     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
821     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
822     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
823 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
824     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
825     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
826     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
827     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
828 root 1.417 #elif defined _WIN32
829 root 1.388 #include <WinNT.h>
830 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
831 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
832     #include <mbarrier.h>
833 root 1.496 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
834     #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
835     #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
836     #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
837 root 1.413 #elif __xlC__
838 root 1.414 #define ECB_MEMORY_FENCE __sync ()
839 root 1.383 #endif
840     #endif
841    
842     #ifndef ECB_MEMORY_FENCE
843 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
844     /* we assume that these memory fences work on all variables/all memory accesses, */
845     /* not just C11 atomics and atomic accesses */
846     #include <stdatomic.h>
847     #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
848 root 1.496 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
849     #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
850 root 1.437 #endif
851     #endif
852    
853     #ifndef ECB_MEMORY_FENCE
854 root 1.392 #if !ECB_AVOID_PTHREADS
855     /*
856     * if you get undefined symbol references to pthread_mutex_lock,
857     * or failure to find pthread.h, then you should implement
858     * the ECB_MEMORY_FENCE operations for your cpu/compiler
859     * OR provide pthread.h and link against the posix thread library
860     * of your system.
861     */
862     #include <pthread.h>
863     #define ECB_NEEDS_PTHREADS 1
864     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
865    
866     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
867     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
868     #endif
869     #endif
870 root 1.383
871 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
872 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
873 root 1.392 #endif
874    
875 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
876 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
877     #endif
878    
879 root 1.496 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
880     #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
881     #endif
882    
883 root 1.391 /*****************************************************************************/
884    
885 root 1.474 #if ECB_CPP
886 root 1.391 #define ecb_inline static inline
887     #elif ECB_GCC_VERSION(2,5)
888     #define ecb_inline static __inline__
889     #elif ECB_C99
890     #define ecb_inline static inline
891     #else
892     #define ecb_inline static
893     #endif
894    
895     #if ECB_GCC_VERSION(3,3)
896     #define ecb_restrict __restrict__
897     #elif ECB_C99
898     #define ecb_restrict restrict
899     #else
900     #define ecb_restrict
901     #endif
902    
903     typedef int ecb_bool;
904    
905     #define ECB_CONCAT_(a, b) a ## b
906     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
907     #define ECB_STRINGIFY_(a) # a
908     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
909 sf-exg 1.475 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
910 root 1.391
911     #define ecb_function_ ecb_inline
912    
913 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
914     #define ecb_attribute(attrlist) __attribute__ (attrlist)
915 root 1.379 #else
916     #define ecb_attribute(attrlist)
917 root 1.474 #endif
918 root 1.464
919 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
920     #define ecb_is_constant(expr) __builtin_constant_p (expr)
921     #else
922 root 1.464 /* possible C11 impl for integral types
923     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
924     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
925    
926 root 1.379 #define ecb_is_constant(expr) 0
927 root 1.474 #endif
928    
929     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
930     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
931     #else
932 root 1.379 #define ecb_expect(expr,value) (expr)
933 root 1.474 #endif
934    
935     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
936     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
937     #else
938 root 1.379 #define ecb_prefetch(addr,rw,locality)
939     #endif
940    
941 root 1.391 /* no emulation for ecb_decltype */
942 root 1.474 #if ECB_CPP11
943     // older implementations might have problems with decltype(x)::type, work around it
944     template<class T> struct ecb_decltype_t { typedef T type; };
945     #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
946     #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
947     #define ecb_decltype(x) __typeof__ (x)
948 root 1.391 #endif
949    
950 root 1.468 #if _MSC_VER >= 1300
951 root 1.474 #define ecb_deprecated __declspec (deprecated)
952 root 1.468 #else
953     #define ecb_deprecated ecb_attribute ((__deprecated__))
954     #endif
955    
956 root 1.476 #if _MSC_VER >= 1500
957 sf-exg 1.475 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
958     #elif ECB_GCC_VERSION(4,5)
959     #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
960     #else
961     #define ecb_deprecated_message(msg) ecb_deprecated
962     #endif
963    
964     #if _MSC_VER >= 1400
965     #define ecb_noinline __declspec (noinline)
966     #else
967     #define ecb_noinline ecb_attribute ((__noinline__))
968     #endif
969    
970 root 1.379 #define ecb_unused ecb_attribute ((__unused__))
971     #define ecb_const ecb_attribute ((__const__))
972     #define ecb_pure ecb_attribute ((__pure__))
973    
974 root 1.474 #if ECB_C11 || __IBMC_NORETURN
975 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
976 root 1.437 #define ecb_noreturn _Noreturn
977 sf-exg 1.475 #elif ECB_CPP11
978     #define ecb_noreturn [[noreturn]]
979     #elif _MSC_VER >= 1200
980     /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
981     #define ecb_noreturn __declspec (noreturn)
982 root 1.437 #else
983     #define ecb_noreturn ecb_attribute ((__noreturn__))
984     #endif
985    
986 root 1.379 #if ECB_GCC_VERSION(4,3)
987     #define ecb_artificial ecb_attribute ((__artificial__))
988     #define ecb_hot ecb_attribute ((__hot__))
989     #define ecb_cold ecb_attribute ((__cold__))
990     #else
991     #define ecb_artificial
992     #define ecb_hot
993     #define ecb_cold
994     #endif
995    
996     /* put around conditional expressions if you are very sure that the */
997     /* expression is mostly true or mostly false. note that these return */
998     /* booleans, not the expression. */
999     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1000     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1001 root 1.391 /* for compatibility to the rest of the world */
1002     #define ecb_likely(expr) ecb_expect_true (expr)
1003     #define ecb_unlikely(expr) ecb_expect_false (expr)
1004    
1005     /* count trailing zero bits and count # of one bits */
1006 root 1.474 #if ECB_GCC_VERSION(3,4) \
1007     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1008     && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1009     && ECB_CLANG_BUILTIN(__builtin_popcount))
1010 root 1.391 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1011     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1012     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1013     #define ecb_ctz32(x) __builtin_ctz (x)
1014     #define ecb_ctz64(x) __builtin_ctzll (x)
1015     #define ecb_popcount32(x) __builtin_popcount (x)
1016     /* no popcountll */
1017     #else
1018 root 1.474 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1019     ecb_function_ ecb_const int
1020 root 1.391 ecb_ctz32 (uint32_t x)
1021     {
1022 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1023     unsigned long r;
1024     _BitScanForward (&r, x);
1025     return (int)r;
1026     #else
1027 root 1.391 int r = 0;
1028    
1029     x &= ~x + 1; /* this isolates the lowest bit */
1030    
1031     #if ECB_branchless_on_i386
1032     r += !!(x & 0xaaaaaaaa) << 0;
1033     r += !!(x & 0xcccccccc) << 1;
1034     r += !!(x & 0xf0f0f0f0) << 2;
1035     r += !!(x & 0xff00ff00) << 3;
1036     r += !!(x & 0xffff0000) << 4;
1037     #else
1038     if (x & 0xaaaaaaaa) r += 1;
1039     if (x & 0xcccccccc) r += 2;
1040     if (x & 0xf0f0f0f0) r += 4;
1041     if (x & 0xff00ff00) r += 8;
1042     if (x & 0xffff0000) r += 16;
1043     #endif
1044    
1045     return r;
1046 root 1.479 #endif
1047 root 1.391 }
1048    
1049 root 1.474 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1050     ecb_function_ ecb_const int
1051 root 1.391 ecb_ctz64 (uint64_t x)
1052     {
1053 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1054     unsigned long r;
1055     _BitScanForward64 (&r, x);
1056     return (int)r;
1057     #else
1058     int shift = x & 0xffffffff ? 0 : 32;
1059 root 1.391 return ecb_ctz32 (x >> shift) + shift;
1060 root 1.479 #endif
1061 root 1.391 }
1062    
1063 root 1.474 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1064     ecb_function_ ecb_const int
1065 root 1.391 ecb_popcount32 (uint32_t x)
1066     {
1067     x -= (x >> 1) & 0x55555555;
1068     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1069     x = ((x >> 4) + x) & 0x0f0f0f0f;
1070     x *= 0x01010101;
1071    
1072     return x >> 24;
1073     }
1074    
1075 root 1.474 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1076     ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1077 root 1.391 {
1078 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1079     unsigned long r;
1080     _BitScanReverse (&r, x);
1081     return (int)r;
1082     #else
1083 root 1.391 int r = 0;
1084    
1085     if (x >> 16) { x >>= 16; r += 16; }
1086     if (x >> 8) { x >>= 8; r += 8; }
1087     if (x >> 4) { x >>= 4; r += 4; }
1088     if (x >> 2) { x >>= 2; r += 2; }
1089     if (x >> 1) { r += 1; }
1090    
1091     return r;
1092 root 1.479 #endif
1093 root 1.391 }
1094    
1095 root 1.474 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1096     ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1097 root 1.391 {
1098 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1099     unsigned long r;
1100     _BitScanReverse64 (&r, x);
1101     return (int)r;
1102     #else
1103 root 1.391 int r = 0;
1104    
1105     if (x >> 32) { x >>= 32; r += 32; }
1106    
1107     return r + ecb_ld32 (x);
1108 root 1.479 #endif
1109 root 1.391 }
1110     #endif
1111    
1112 root 1.474 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1113     ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1114     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1115     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1116 root 1.437
1117 root 1.474 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1118     ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1119 root 1.403 {
1120     return ( (x * 0x0802U & 0x22110U)
1121 root 1.474 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1122 root 1.403 }
1123    
1124 root 1.474 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1125     ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1126 root 1.403 {
1127     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1128     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1129     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1130     x = ( x >> 8 ) | ( x << 8);
1131    
1132     return x;
1133     }
1134    
1135 root 1.474 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1136     ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1137 root 1.403 {
1138     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1139     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1140     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1141     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1142     x = ( x >> 16 ) | ( x << 16);
1143    
1144     return x;
1145     }
1146    
1147 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1148     /* so for this version we are lazy */
1149 root 1.474 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1150     ecb_function_ ecb_const int
1151 root 1.391 ecb_popcount64 (uint64_t x)
1152     {
1153     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1154     }
1155    
1156 root 1.474 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1157     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1158     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1159     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1160     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1161     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1162     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1163     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1164    
1165     ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1166     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1167     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1168     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1169     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1170     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1171     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1172     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1173 root 1.391
1174 root 1.474 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1175 root 1.476 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1176     #define ecb_bswap16(x) __builtin_bswap16 (x)
1177     #else
1178 root 1.391 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1179 root 1.476 #endif
1180 root 1.391 #define ecb_bswap32(x) __builtin_bswap32 (x)
1181     #define ecb_bswap64(x) __builtin_bswap64 (x)
1182 root 1.476 #elif _MSC_VER
1183     #include <stdlib.h>
1184     #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1185     #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1186     #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1187 root 1.391 #else
1188 root 1.474 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1189     ecb_function_ ecb_const uint16_t
1190 root 1.391 ecb_bswap16 (uint16_t x)
1191     {
1192     return ecb_rotl16 (x, 8);
1193     }
1194    
1195 root 1.474 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1196     ecb_function_ ecb_const uint32_t
1197 root 1.391 ecb_bswap32 (uint32_t x)
1198     {
1199     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1200     }
1201    
1202 root 1.474 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1203     ecb_function_ ecb_const uint64_t
1204 root 1.391 ecb_bswap64 (uint64_t x)
1205     {
1206     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1207     }
1208     #endif
1209    
1210 root 1.474 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1211 root 1.391 #define ecb_unreachable() __builtin_unreachable ()
1212     #else
1213     /* this seems to work fine, but gcc always emits a warning for it :/ */
1214 root 1.474 ecb_inline ecb_noreturn void ecb_unreachable (void);
1215     ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1216 root 1.391 #endif
1217    
1218     /* try to tell the compiler that some condition is definitely true */
1219 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1220 root 1.391
1221 root 1.479 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1222     ecb_inline ecb_const uint32_t
1223 root 1.391 ecb_byteorder_helper (void)
1224     {
1225 root 1.450 /* the union code still generates code under pressure in gcc, */
1226     /* but less than using pointers, and always seems to */
1227     /* successfully return a constant. */
1228     /* the reason why we have this horrible preprocessor mess */
1229     /* is to avoid it in all cases, at least on common architectures */
1230     /* or when using a recent enough gcc version (>= 4.6) */
1231 root 1.479 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1232     || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1233     #define ECB_LITTLE_ENDIAN 1
1234     return 0x44332211;
1235     #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1236     || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1237     #define ECB_BIG_ENDIAN 1
1238     return 0x11223344;
1239 root 1.450 #else
1240     union
1241     {
1242 root 1.479 uint8_t c[4];
1243     uint32_t u;
1244     } u = { 0x11, 0x22, 0x33, 0x44 };
1245     return u.u;
1246 root 1.450 #endif
1247 root 1.391 }
1248    
1249 root 1.474 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1250 root 1.479 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1251 root 1.474 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1252 root 1.479 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1253 root 1.391
1254     #if ECB_GCC_VERSION(3,0) || ECB_C99
1255     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1256     #else
1257     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1258     #endif
1259    
1260 root 1.474 #if ECB_CPP
1261 root 1.398 template<typename T>
1262     static inline T ecb_div_rd (T val, T div)
1263     {
1264     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1265     }
1266     template<typename T>
1267     static inline T ecb_div_ru (T val, T div)
1268     {
1269     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1270     }
1271     #else
1272     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1273     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1274     #endif
1275    
1276 root 1.391 #if ecb_cplusplus_does_not_suck
1277     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1278     template<typename T, int N>
1279     static inline int ecb_array_length (const T (&arr)[N])
1280     {
1281     return N;
1282     }
1283     #else
1284     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1285     #endif
1286    
1287 root 1.479 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1288     ecb_function_ ecb_const uint32_t
1289     ecb_binary16_to_binary32 (uint32_t x)
1290     {
1291     unsigned int s = (x & 0x8000) << (31 - 15);
1292     int e = (x >> 10) & 0x001f;
1293     unsigned int m = x & 0x03ff;
1294    
1295     if (ecb_expect_false (e == 31))
1296     /* infinity or NaN */
1297     e = 255 - (127 - 15);
1298     else if (ecb_expect_false (!e))
1299     {
1300     if (ecb_expect_true (!m))
1301     /* zero, handled by code below by forcing e to 0 */
1302     e = 0 - (127 - 15);
1303     else
1304     {
1305     /* subnormal, renormalise */
1306     unsigned int s = 10 - ecb_ld32 (m);
1307    
1308     m = (m << s) & 0x3ff; /* mask implicit bit */
1309     e -= s - 1;
1310     }
1311     }
1312    
1313     /* e and m now are normalised, or zero, (or inf or nan) */
1314     e += 127 - 15;
1315    
1316     return s | (e << 23) | (m << (23 - 10));
1317     }
1318    
1319     ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1320     ecb_function_ ecb_const uint16_t
1321     ecb_binary32_to_binary16 (uint32_t x)
1322     {
1323     unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1324     unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1325     unsigned int m = x & 0x007fffff;
1326    
1327     x &= 0x7fffffff;
1328    
1329     /* if it's within range of binary16 normals, use fast path */
1330     if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1331     {
1332     /* mantissa round-to-even */
1333     m += 0x00000fff + ((m >> (23 - 10)) & 1);
1334    
1335     /* handle overflow */
1336     if (ecb_expect_false (m >= 0x00800000))
1337     {
1338     m >>= 1;
1339     e += 1;
1340     }
1341    
1342     return s | (e << 10) | (m >> (23 - 10));
1343     }
1344    
1345     /* handle large numbers and infinity */
1346     if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1347     return s | 0x7c00;
1348    
1349     /* handle zero, subnormals and small numbers */
1350     if (ecb_expect_true (x < 0x38800000))
1351     {
1352     /* zero */
1353     if (ecb_expect_true (!x))
1354     return s;
1355    
1356     /* handle subnormals */
1357    
1358     /* too small, will be zero */
1359     if (e < (14 - 24)) /* might not be sharp, but is good enough */
1360     return s;
1361    
1362     m |= 0x00800000; /* make implicit bit explicit */
1363    
1364     /* very tricky - we need to round to the nearest e (+10) bit value */
1365     {
1366     unsigned int bits = 14 - e;
1367     unsigned int half = (1 << (bits - 1)) - 1;
1368     unsigned int even = (m >> bits) & 1;
1369    
1370     /* if this overflows, we will end up with a normalised number */
1371     m = (m + half + even) >> bits;
1372     }
1373    
1374     return s | m;
1375     }
1376    
1377     /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1378     m >>= 13;
1379    
1380     return s | 0x7c00 | m | !m;
1381     }
1382    
1383 root 1.450 /*******************************************************************************/
1384     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1385    
1386     /* basically, everything uses "ieee pure-endian" floating point numbers */
1387     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1388     #if 0 \
1389     || __i386 || __i386__ \
1390 sf-exg 1.475 || ECB_GCC_AMD64 \
1391 root 1.450 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1392     || defined __s390__ || defined __s390x__ \
1393     || defined __mips__ \
1394     || defined __alpha__ \
1395     || defined __hppa__ \
1396     || defined __ia64__ \
1397 root 1.457 || defined __m68k__ \
1398     || defined __m88k__ \
1399     || defined __sh__ \
1400 sf-exg 1.475 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1401 root 1.465 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1402 root 1.466 || defined __aarch64__
1403 root 1.450 #define ECB_STDFP 1
1404     #include <string.h> /* for memcpy */
1405     #else
1406     #define ECB_STDFP 0
1407     #endif
1408    
1409     #ifndef ECB_NO_LIBM
1410    
1411 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1412    
1413 root 1.462 /* only the oldest of old doesn't have this one. solaris. */
1414     #ifdef INFINITY
1415     #define ECB_INFINITY INFINITY
1416     #else
1417     #define ECB_INFINITY HUGE_VAL
1418     #endif
1419    
1420     #ifdef NAN
1421 root 1.458 #define ECB_NAN NAN
1422     #else
1423 root 1.462 #define ECB_NAN ECB_INFINITY
1424 root 1.458 #endif
1425    
1426 root 1.474 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1427     #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1428 root 1.476 #define ecb_frexpf(x,e) frexpf ((x), (e))
1429 root 1.474 #else
1430 root 1.476 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1431     #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1432 root 1.474 #endif
1433    
1434 root 1.450 /* convert a float to ieee single/binary32 */
1435 root 1.474 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1436     ecb_function_ ecb_const uint32_t
1437 root 1.450 ecb_float_to_binary32 (float x)
1438     {
1439     uint32_t r;
1440    
1441     #if ECB_STDFP
1442     memcpy (&r, &x, 4);
1443     #else
1444     /* slow emulation, works for anything but -0 */
1445     uint32_t m;
1446     int e;
1447    
1448     if (x == 0e0f ) return 0x00000000U;
1449     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1450     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1451     if (x != x ) return 0x7fbfffffU;
1452    
1453 root 1.476 m = ecb_frexpf (x, &e) * 0x1000000U;
1454 root 1.450
1455     r = m & 0x80000000U;
1456    
1457     if (r)
1458     m = -m;
1459    
1460     if (e <= -126)
1461     {
1462     m &= 0xffffffU;
1463     m >>= (-125 - e);
1464     e = -126;
1465     }
1466    
1467     r |= (e + 126) << 23;
1468     r |= m & 0x7fffffU;
1469     #endif
1470    
1471     return r;
1472     }
1473    
1474     /* converts an ieee single/binary32 to a float */
1475 root 1.474 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1476     ecb_function_ ecb_const float
1477 root 1.450 ecb_binary32_to_float (uint32_t x)
1478     {
1479     float r;
1480    
1481     #if ECB_STDFP
1482     memcpy (&r, &x, 4);
1483     #else
1484     /* emulation, only works for normals and subnormals and +0 */
1485     int neg = x >> 31;
1486     int e = (x >> 23) & 0xffU;
1487    
1488     x &= 0x7fffffU;
1489    
1490     if (e)
1491     x |= 0x800000U;
1492     else
1493     e = 1;
1494    
1495     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1496 root 1.474 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1497 root 1.450
1498     r = neg ? -r : r;
1499     #endif
1500    
1501     return r;
1502     }
1503    
1504     /* convert a double to ieee double/binary64 */
1505 root 1.474 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1506     ecb_function_ ecb_const uint64_t
1507 root 1.450 ecb_double_to_binary64 (double x)
1508     {
1509     uint64_t r;
1510    
1511     #if ECB_STDFP
1512     memcpy (&r, &x, 8);
1513     #else
1514     /* slow emulation, works for anything but -0 */
1515     uint64_t m;
1516     int e;
1517    
1518     if (x == 0e0 ) return 0x0000000000000000U;
1519     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1520     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1521     if (x != x ) return 0X7ff7ffffffffffffU;
1522    
1523     m = frexp (x, &e) * 0x20000000000000U;
1524    
1525     r = m & 0x8000000000000000;;
1526    
1527     if (r)
1528     m = -m;
1529    
1530     if (e <= -1022)
1531     {
1532     m &= 0x1fffffffffffffU;
1533     m >>= (-1021 - e);
1534     e = -1022;
1535     }
1536    
1537     r |= ((uint64_t)(e + 1022)) << 52;
1538     r |= m & 0xfffffffffffffU;
1539     #endif
1540    
1541     return r;
1542     }
1543    
1544     /* converts an ieee double/binary64 to a double */
1545 root 1.474 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1546     ecb_function_ ecb_const double
1547 root 1.450 ecb_binary64_to_double (uint64_t x)
1548     {
1549     double r;
1550    
1551     #if ECB_STDFP
1552     memcpy (&r, &x, 8);
1553     #else
1554     /* emulation, only works for normals and subnormals and +0 */
1555     int neg = x >> 63;
1556     int e = (x >> 52) & 0x7ffU;
1557    
1558     x &= 0xfffffffffffffU;
1559    
1560     if (e)
1561     x |= 0x10000000000000U;
1562     else
1563     e = 1;
1564    
1565     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1566     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1567    
1568     r = neg ? -r : r;
1569     #endif
1570    
1571     return r;
1572     }
1573    
1574 root 1.479 /* convert a float to ieee half/binary16 */
1575     ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1576     ecb_function_ ecb_const uint16_t
1577     ecb_float_to_binary16 (float x)
1578     {
1579     return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1580     }
1581    
1582     /* convert an ieee half/binary16 to float */
1583     ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1584     ecb_function_ ecb_const float
1585     ecb_binary16_to_float (uint16_t x)
1586     {
1587     return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1588     }
1589    
1590 root 1.450 #endif
1591    
1592 root 1.391 #endif
1593    
1594     /* ECB.H END */
1595 root 1.379
1596 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1597 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1598 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1599 root 1.500 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1600 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1601 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1602     * which will then provide the memory fences.
1603     */
1604     # error "memory fences not defined for your architecture, please report"
1605     #endif
1606    
1607     #ifndef ECB_MEMORY_FENCE
1608     # define ECB_MEMORY_FENCE do { } while (0)
1609     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1610     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1611 root 1.392 #endif
1612    
1613 root 1.379 #define inline_size ecb_inline
1614 root 1.169
1615 root 1.338 #if EV_FEATURE_CODE
1616 root 1.379 # define inline_speed ecb_inline
1617 root 1.338 #else
1618 root 1.500 # define inline_speed ecb_noinline static
1619 root 1.169 #endif
1620 root 1.40
1621 root 1.502 /*****************************************************************************/
1622     /* raw syscall wrappers */
1623    
1624     #if EV_NEED_SYSCALL
1625    
1626     #include <sys/syscall.h>
1627    
1628     /*
1629     * define some syscall wrappers for common architectures
1630     * this is mostly for nice looks during debugging, not performance.
1631     * our syscalls return < 0, not == -1, on error. which is good
1632     * enough for linux aio.
1633     * TODO: arm is also common nowadays, maybe even mips and x86
1634     * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1635     */
1636     #if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1637     /* the costly errno access probably kills this for size optimisation */
1638    
1639     #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1640     ({ \
1641     long res; \
1642     register unsigned long r6 __asm__ ("r9" ); \
1643     register unsigned long r5 __asm__ ("r8" ); \
1644     register unsigned long r4 __asm__ ("r10"); \
1645     register unsigned long r3 __asm__ ("rdx"); \
1646     register unsigned long r2 __asm__ ("rsi"); \
1647     register unsigned long r1 __asm__ ("rdi"); \
1648     if (narg >= 6) r6 = (unsigned long)(arg6); \
1649     if (narg >= 5) r5 = (unsigned long)(arg5); \
1650     if (narg >= 4) r4 = (unsigned long)(arg4); \
1651     if (narg >= 3) r3 = (unsigned long)(arg3); \
1652     if (narg >= 2) r2 = (unsigned long)(arg2); \
1653     if (narg >= 1) r1 = (unsigned long)(arg1); \
1654     __asm__ __volatile__ ( \
1655     "syscall\n\t" \
1656     : "=a" (res) \
1657     : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1658     : "cc", "r11", "cx", "memory"); \
1659     errno = -res; \
1660     res; \
1661     })
1662    
1663     #endif
1664    
1665     #ifdef ev_syscall
1666     #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1667     #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1668     #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1669     #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1670     #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1671     #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1672     #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1673     #else
1674     #define ev_syscall0(nr) syscall (nr)
1675     #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1676     #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1677     #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1678     #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1679     #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1680     #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1681     #endif
1682    
1683     #endif
1684    
1685     /*****************************************************************************/
1686    
1687 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1688    
1689     #if EV_MINPRI == EV_MAXPRI
1690     # define ABSPRI(w) (((W)w), 0)
1691     #else
1692     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1693     #endif
1694 root 1.42
1695 root 1.490 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1696 root 1.103
1697 root 1.136 typedef ev_watcher *W;
1698     typedef ev_watcher_list *WL;
1699     typedef ev_watcher_time *WT;
1700 root 1.10
1701 root 1.229 #define ev_active(w) ((W)(w))->active
1702 root 1.228 #define ev_at(w) ((WT)(w))->at
1703    
1704 root 1.279 #if EV_USE_REALTIME
1705 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1706 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1707 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1708     #endif
1709    
1710     #if EV_USE_MONOTONIC
1711 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1712 root 1.198 #endif
1713 root 1.54
1714 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1715     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1716     #endif
1717     #ifndef EV_WIN32_HANDLE_TO_FD
1718 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1719 root 1.313 #endif
1720     #ifndef EV_WIN32_CLOSE_FD
1721     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1722     #endif
1723    
1724 root 1.103 #ifdef _WIN32
1725 root 1.98 # include "ev_win32.c"
1726     #endif
1727 root 1.67
1728 root 1.53 /*****************************************************************************/
1729 root 1.1
1730 root 1.493 #if EV_USE_LINUXAIO
1731     # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1732     #endif
1733    
1734 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1735    
1736     #if EV_USE_FLOOR
1737     # include <math.h>
1738     # define ev_floor(v) floor (v)
1739     #else
1740    
1741     #include <float.h>
1742    
1743     /* a floor() replacement function, should be independent of ev_tstamp type */
1744 root 1.500 ecb_noinline
1745 root 1.480 static ev_tstamp
1746 root 1.373 ev_floor (ev_tstamp v)
1747     {
1748     /* the choice of shift factor is not terribly important */
1749     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1750     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1751     #else
1752     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1753     #endif
1754    
1755 root 1.504 /* special treatment for negative arguments */
1756     if (ecb_expect_false (v < 0.))
1757     {
1758     ev_tstamp f = -ev_floor (-v);
1759    
1760     return f - (f == v ? 0 : 1);
1761     }
1762    
1763     /* argument too large for an unsigned long? then reduce it */
1764 root 1.500 if (ecb_expect_false (v >= shift))
1765 root 1.373 {
1766     ev_tstamp f;
1767    
1768     if (v == v - 1.)
1769 root 1.504 return v; /* very large numbers are assumed to be integer */
1770 root 1.373
1771     f = shift * ev_floor (v * (1. / shift));
1772     return f + ev_floor (v - f);
1773     }
1774    
1775     /* fits into an unsigned long */
1776     return (unsigned long)v;
1777     }
1778    
1779     #endif
1780    
1781     /*****************************************************************************/
1782    
1783 root 1.356 #ifdef __linux
1784     # include <sys/utsname.h>
1785     #endif
1786    
1787 root 1.500 ecb_noinline ecb_cold
1788 root 1.480 static unsigned int
1789 root 1.355 ev_linux_version (void)
1790     {
1791     #ifdef __linux
1792 root 1.359 unsigned int v = 0;
1793 root 1.355 struct utsname buf;
1794     int i;
1795     char *p = buf.release;
1796    
1797     if (uname (&buf))
1798     return 0;
1799    
1800     for (i = 3+1; --i; )
1801     {
1802     unsigned int c = 0;
1803    
1804     for (;;)
1805     {
1806     if (*p >= '0' && *p <= '9')
1807     c = c * 10 + *p++ - '0';
1808     else
1809     {
1810     p += *p == '.';
1811     break;
1812     }
1813     }
1814    
1815     v = (v << 8) | c;
1816     }
1817    
1818     return v;
1819     #else
1820     return 0;
1821     #endif
1822     }
1823    
1824     /*****************************************************************************/
1825    
1826 root 1.331 #if EV_AVOID_STDIO
1827 root 1.500 ecb_noinline ecb_cold
1828 root 1.480 static void
1829 root 1.331 ev_printerr (const char *msg)
1830     {
1831     write (STDERR_FILENO, msg, strlen (msg));
1832     }
1833     #endif
1834    
1835 root 1.486 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1836 root 1.69
1837 root 1.480 ecb_cold
1838     void
1839 root 1.486 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1840 root 1.69 {
1841     syserr_cb = cb;
1842     }
1843    
1844 root 1.500 ecb_noinline ecb_cold
1845 root 1.480 static void
1846 root 1.269 ev_syserr (const char *msg)
1847 root 1.69 {
1848 root 1.70 if (!msg)
1849     msg = "(libev) system error";
1850    
1851 root 1.69 if (syserr_cb)
1852 root 1.70 syserr_cb (msg);
1853 root 1.69 else
1854     {
1855 root 1.330 #if EV_AVOID_STDIO
1856 root 1.331 ev_printerr (msg);
1857     ev_printerr (": ");
1858 root 1.365 ev_printerr (strerror (errno));
1859 root 1.331 ev_printerr ("\n");
1860 root 1.330 #else
1861 root 1.70 perror (msg);
1862 root 1.330 #endif
1863 root 1.69 abort ();
1864     }
1865     }
1866    
1867 root 1.224 static void *
1868 root 1.486 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1869 root 1.224 {
1870     /* some systems, notably openbsd and darwin, fail to properly
1871 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
1872 root 1.224 * the single unix specification, so work around them here.
1873 root 1.447 * recently, also (at least) fedora and debian started breaking it,
1874     * despite documenting it otherwise.
1875 root 1.224 */
1876 root 1.333
1877 root 1.224 if (size)
1878     return realloc (ptr, size);
1879    
1880     free (ptr);
1881     return 0;
1882     }
1883    
1884 root 1.486 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1885 root 1.69
1886 root 1.480 ecb_cold
1887     void
1888 root 1.486 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1889 root 1.69 {
1890     alloc = cb;
1891     }
1892    
1893 root 1.150 inline_speed void *
1894 root 1.155 ev_realloc (void *ptr, long size)
1895 root 1.69 {
1896 root 1.224 ptr = alloc (ptr, size);
1897 root 1.69
1898     if (!ptr && size)
1899     {
1900 root 1.330 #if EV_AVOID_STDIO
1901 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1902 root 1.330 #else
1903 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1904 root 1.330 #endif
1905 root 1.69 abort ();
1906     }
1907    
1908     return ptr;
1909     }
1910    
1911     #define ev_malloc(size) ev_realloc (0, (size))
1912     #define ev_free(ptr) ev_realloc ((ptr), 0)
1913    
1914     /*****************************************************************************/
1915    
1916 root 1.298 /* set in reify when reification needed */
1917     #define EV_ANFD_REIFY 1
1918    
1919 root 1.288 /* file descriptor info structure */
1920 root 1.53 typedef struct
1921     {
1922 root 1.68 WL head;
1923 root 1.288 unsigned char events; /* the events watched for */
1924 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1925 root 1.490 unsigned char emask; /* some backends store the actual kernel mask in here */
1926 root 1.502 unsigned char eflags; /* flags field for use by backends */
1927 root 1.269 #if EV_USE_EPOLL
1928 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
1929 root 1.269 #endif
1930 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1931 root 1.103 SOCKET handle;
1932     #endif
1933 root 1.357 #if EV_USE_IOCP
1934     OVERLAPPED or, ow;
1935     #endif
1936 root 1.53 } ANFD;
1937 root 1.1
1938 root 1.288 /* stores the pending event set for a given watcher */
1939 root 1.53 typedef struct
1940     {
1941     W w;
1942 root 1.288 int events; /* the pending event set for the given watcher */
1943 root 1.53 } ANPENDING;
1944 root 1.51
1945 root 1.155 #if EV_USE_INOTIFY
1946 root 1.241 /* hash table entry per inotify-id */
1947 root 1.152 typedef struct
1948     {
1949     WL head;
1950 root 1.155 } ANFS;
1951 root 1.152 #endif
1952    
1953 root 1.241 /* Heap Entry */
1954     #if EV_HEAP_CACHE_AT
1955 root 1.288 /* a heap element */
1956 root 1.241 typedef struct {
1957 root 1.243 ev_tstamp at;
1958 root 1.241 WT w;
1959     } ANHE;
1960    
1961 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
1962     #define ANHE_at(he) (he).at /* access cached at, read-only */
1963     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1964 root 1.241 #else
1965 root 1.288 /* a heap element */
1966 root 1.241 typedef WT ANHE;
1967    
1968 root 1.248 #define ANHE_w(he) (he)
1969     #define ANHE_at(he) (he)->at
1970     #define ANHE_at_cache(he)
1971 root 1.241 #endif
1972    
1973 root 1.55 #if EV_MULTIPLICITY
1974 root 1.54
1975 root 1.80 struct ev_loop
1976     {
1977 root 1.86 ev_tstamp ev_rt_now;
1978 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
1979 root 1.80 #define VAR(name,decl) decl;
1980     #include "ev_vars.h"
1981     #undef VAR
1982     };
1983     #include "ev_wrap.h"
1984    
1985 root 1.116 static struct ev_loop default_loop_struct;
1986 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1987 root 1.54
1988 root 1.53 #else
1989 root 1.54
1990 root 1.509 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
1991 root 1.80 #define VAR(name,decl) static decl;
1992     #include "ev_vars.h"
1993     #undef VAR
1994    
1995 root 1.116 static int ev_default_loop_ptr;
1996 root 1.54
1997 root 1.51 #endif
1998 root 1.1
1999 root 1.338 #if EV_FEATURE_API
2000 root 1.500 # define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2001     # define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2002 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
2003     #else
2004 root 1.298 # define EV_RELEASE_CB (void)0
2005     # define EV_ACQUIRE_CB (void)0
2006 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2007     #endif
2008    
2009 root 1.353 #define EVBREAK_RECURSE 0x80
2010 root 1.298
2011 root 1.8 /*****************************************************************************/
2012    
2013 root 1.292 #ifndef EV_HAVE_EV_TIME
2014 root 1.141 ev_tstamp
2015 root 1.486 ev_time (void) EV_NOEXCEPT
2016 root 1.1 {
2017 root 1.29 #if EV_USE_REALTIME
2018 root 1.500 if (ecb_expect_true (have_realtime))
2019 root 1.279 {
2020     struct timespec ts;
2021     clock_gettime (CLOCK_REALTIME, &ts);
2022 root 1.505 return EV_TS_GET (ts);
2023 root 1.279 }
2024     #endif
2025    
2026 root 1.510 {
2027     struct timeval tv;
2028     gettimeofday (&tv, 0);
2029     return EV_TV_GET (tv);
2030     }
2031 root 1.1 }
2032 root 1.292 #endif
2033 root 1.1
2034 root 1.284 inline_size ev_tstamp
2035 root 1.1 get_clock (void)
2036     {
2037 root 1.29 #if EV_USE_MONOTONIC
2038 root 1.500 if (ecb_expect_true (have_monotonic))
2039 root 1.1 {
2040     struct timespec ts;
2041     clock_gettime (CLOCK_MONOTONIC, &ts);
2042 root 1.505 return EV_TS_GET (ts);
2043 root 1.1 }
2044     #endif
2045    
2046     return ev_time ();
2047     }
2048    
2049 root 1.85 #if EV_MULTIPLICITY
2050 root 1.51 ev_tstamp
2051 root 1.486 ev_now (EV_P) EV_NOEXCEPT
2052 root 1.51 {
2053 root 1.85 return ev_rt_now;
2054 root 1.51 }
2055 root 1.85 #endif
2056 root 1.51
2057 root 1.193 void
2058 root 1.486 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2059 root 1.193 {
2060 root 1.509 if (delay > EV_TS_CONST (0.))
2061 root 1.193 {
2062     #if EV_USE_NANOSLEEP
2063     struct timespec ts;
2064    
2065 root 1.348 EV_TS_SET (ts, delay);
2066 root 1.193 nanosleep (&ts, 0);
2067 root 1.416 #elif defined _WIN32
2068 root 1.482 /* maybe this should round up, as ms is very low resolution */
2069     /* compared to select (µs) or nanosleep (ns) */
2070 root 1.508 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2071 root 1.193 #else
2072     struct timeval tv;
2073    
2074 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2075 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
2076 root 1.257 /* by older ones */
2077 sf-exg 1.349 EV_TV_SET (tv, delay);
2078 root 1.193 select (0, 0, 0, 0, &tv);
2079     #endif
2080     }
2081     }
2082    
2083     /*****************************************************************************/
2084    
2085 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2086 root 1.232
2087 root 1.288 /* find a suitable new size for the given array, */
2088 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
2089 root 1.284 inline_size int
2090 root 1.163 array_nextsize (int elem, int cur, int cnt)
2091     {
2092     int ncur = cur + 1;
2093    
2094     do
2095     ncur <<= 1;
2096     while (cnt > ncur);
2097    
2098 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2099 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2100 root 1.163 {
2101     ncur *= elem;
2102 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2103 root 1.163 ncur = ncur - sizeof (void *) * 4;
2104     ncur /= elem;
2105     }
2106    
2107     return ncur;
2108     }
2109    
2110 root 1.500 ecb_noinline ecb_cold
2111 root 1.480 static void *
2112 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
2113     {
2114     *cur = array_nextsize (elem, *cur, cnt);
2115     return ev_realloc (base, elem * *cur);
2116     }
2117 root 1.29
2118 root 1.495 #define array_needsize_noinit(base,offset,count)
2119 root 1.490
2120 root 1.495 #define array_needsize_zerofill(base,offset,count) \
2121     memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2122 root 1.265
2123 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
2124 root 1.500 if (ecb_expect_false ((cnt) > (cur))) \
2125 root 1.69 { \
2126 root 1.480 ecb_unused int ocur_ = (cur); \
2127 root 1.163 (base) = (type *)array_realloc \
2128     (sizeof (type), (base), &(cur), (cnt)); \
2129 root 1.495 init ((base), ocur_, ((cur) - ocur_)); \
2130 root 1.1 }
2131    
2132 root 1.163 #if 0
2133 root 1.74 #define array_slim(type,stem) \
2134 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2135     { \
2136     stem ## max = array_roundsize (stem ## cnt >> 1); \
2137 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2138 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2139     }
2140 root 1.163 #endif
2141 root 1.67
2142 root 1.65 #define array_free(stem, idx) \
2143 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2144 root 1.65
2145 root 1.8 /*****************************************************************************/
2146    
2147 root 1.288 /* dummy callback for pending events */
2148 root 1.500 ecb_noinline
2149 root 1.480 static void
2150 root 1.288 pendingcb (EV_P_ ev_prepare *w, int revents)
2151     {
2152     }
2153    
2154 root 1.500 ecb_noinline
2155 root 1.480 void
2156 root 1.486 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2157 root 1.1 {
2158 root 1.78 W w_ = (W)w;
2159 root 1.171 int pri = ABSPRI (w_);
2160 root 1.78
2161 root 1.500 if (ecb_expect_false (w_->pending))
2162 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
2163     else
2164 root 1.32 {
2165 root 1.171 w_->pending = ++pendingcnt [pri];
2166 root 1.490 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2167 root 1.171 pendings [pri][w_->pending - 1].w = w_;
2168     pendings [pri][w_->pending - 1].events = revents;
2169 root 1.32 }
2170 root 1.425
2171     pendingpri = NUMPRI - 1;
2172 root 1.1 }
2173    
2174 root 1.284 inline_speed void
2175     feed_reverse (EV_P_ W w)
2176     {
2177 root 1.490 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2178 root 1.284 rfeeds [rfeedcnt++] = w;
2179     }
2180    
2181     inline_size void
2182     feed_reverse_done (EV_P_ int revents)
2183     {
2184     do
2185     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2186     while (rfeedcnt);
2187     }
2188    
2189     inline_speed void
2190 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
2191 root 1.27 {
2192     int i;
2193    
2194     for (i = 0; i < eventcnt; ++i)
2195 root 1.78 ev_feed_event (EV_A_ events [i], type);
2196 root 1.27 }
2197    
2198 root 1.141 /*****************************************************************************/
2199    
2200 root 1.284 inline_speed void
2201 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
2202 root 1.1 {
2203     ANFD *anfd = anfds + fd;
2204 root 1.136 ev_io *w;
2205 root 1.1
2206 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2207 root 1.1 {
2208 root 1.79 int ev = w->events & revents;
2209 root 1.1
2210     if (ev)
2211 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
2212 root 1.1 }
2213     }
2214    
2215 root 1.298 /* do not submit kernel events for fds that have reify set */
2216     /* because that means they changed while we were polling for new events */
2217     inline_speed void
2218     fd_event (EV_P_ int fd, int revents)
2219     {
2220     ANFD *anfd = anfds + fd;
2221    
2222 root 1.500 if (ecb_expect_true (!anfd->reify))
2223 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2224 root 1.298 }
2225    
2226 root 1.79 void
2227 root 1.486 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2228 root 1.79 {
2229 root 1.168 if (fd >= 0 && fd < anfdmax)
2230 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2231 root 1.79 }
2232    
2233 root 1.288 /* make sure the external fd watch events are in-sync */
2234     /* with the kernel/libev internal state */
2235 root 1.284 inline_size void
2236 root 1.51 fd_reify (EV_P)
2237 root 1.9 {
2238     int i;
2239    
2240 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2241     for (i = 0; i < fdchangecnt; ++i)
2242     {
2243     int fd = fdchanges [i];
2244     ANFD *anfd = anfds + fd;
2245    
2246 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
2247 root 1.371 {
2248     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2249    
2250     if (handle != anfd->handle)
2251     {
2252     unsigned long arg;
2253    
2254     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2255    
2256     /* handle changed, but fd didn't - we need to do it in two steps */
2257     backend_modify (EV_A_ fd, anfd->events, 0);
2258     anfd->events = 0;
2259     anfd->handle = handle;
2260     }
2261     }
2262     }
2263     #endif
2264    
2265 root 1.27 for (i = 0; i < fdchangecnt; ++i)
2266     {
2267     int fd = fdchanges [i];
2268     ANFD *anfd = anfds + fd;
2269 root 1.136 ev_io *w;
2270 root 1.27
2271 root 1.350 unsigned char o_events = anfd->events;
2272     unsigned char o_reify = anfd->reify;
2273 root 1.27
2274 root 1.497 anfd->reify = 0;
2275 root 1.27
2276 root 1.500 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2277 root 1.350 {
2278     anfd->events = 0;
2279 root 1.184
2280 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2281     anfd->events |= (unsigned char)w->events;
2282 root 1.27
2283 root 1.351 if (o_events != anfd->events)
2284 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
2285     }
2286    
2287     if (o_reify & EV__IOFDSET)
2288     backend_modify (EV_A_ fd, o_events, anfd->events);
2289 root 1.27 }
2290    
2291     fdchangecnt = 0;
2292     }
2293    
2294 root 1.288 /* something about the given fd changed */
2295 root 1.480 inline_size
2296     void
2297 root 1.183 fd_change (EV_P_ int fd, int flags)
2298 root 1.27 {
2299 root 1.183 unsigned char reify = anfds [fd].reify;
2300 root 1.184 anfds [fd].reify |= flags;
2301 root 1.27
2302 root 1.500 if (ecb_expect_true (!reify))
2303 root 1.183 {
2304     ++fdchangecnt;
2305 root 1.490 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2306 root 1.183 fdchanges [fdchangecnt - 1] = fd;
2307     }
2308 root 1.9 }
2309    
2310 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2311 root 1.480 inline_speed ecb_cold void
2312 root 1.51 fd_kill (EV_P_ int fd)
2313 root 1.41 {
2314 root 1.136 ev_io *w;
2315 root 1.41
2316 root 1.136 while ((w = (ev_io *)anfds [fd].head))
2317 root 1.41 {
2318 root 1.51 ev_io_stop (EV_A_ w);
2319 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2320 root 1.41 }
2321     }
2322    
2323 root 1.336 /* check whether the given fd is actually valid, for error recovery */
2324 root 1.480 inline_size ecb_cold int
2325 root 1.71 fd_valid (int fd)
2326     {
2327 root 1.103 #ifdef _WIN32
2328 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2329 root 1.71 #else
2330     return fcntl (fd, F_GETFD) != -1;
2331     #endif
2332     }
2333    
2334 root 1.19 /* called on EBADF to verify fds */
2335 root 1.500 ecb_noinline ecb_cold
2336 root 1.480 static void
2337 root 1.51 fd_ebadf (EV_P)
2338 root 1.19 {
2339     int fd;
2340    
2341     for (fd = 0; fd < anfdmax; ++fd)
2342 root 1.27 if (anfds [fd].events)
2343 root 1.254 if (!fd_valid (fd) && errno == EBADF)
2344 root 1.51 fd_kill (EV_A_ fd);
2345 root 1.41 }
2346    
2347     /* called on ENOMEM in select/poll to kill some fds and retry */
2348 root 1.500 ecb_noinline ecb_cold
2349 root 1.480 static void
2350 root 1.51 fd_enomem (EV_P)
2351 root 1.41 {
2352 root 1.62 int fd;
2353 root 1.41
2354 root 1.62 for (fd = anfdmax; fd--; )
2355 root 1.41 if (anfds [fd].events)
2356     {
2357 root 1.51 fd_kill (EV_A_ fd);
2358 root 1.307 break;
2359 root 1.41 }
2360 root 1.19 }
2361    
2362 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
2363 root 1.500 ecb_noinline
2364 root 1.480 static void
2365 root 1.56 fd_rearm_all (EV_P)
2366     {
2367     int fd;
2368    
2369     for (fd = 0; fd < anfdmax; ++fd)
2370     if (anfds [fd].events)
2371     {
2372     anfds [fd].events = 0;
2373 root 1.268 anfds [fd].emask = 0;
2374 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2375 root 1.56 }
2376     }
2377    
2378 root 1.336 /* used to prepare libev internal fd's */
2379     /* this is not fork-safe */
2380     inline_speed void
2381     fd_intern (int fd)
2382     {
2383     #ifdef _WIN32
2384     unsigned long arg = 1;
2385     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2386     #else
2387     fcntl (fd, F_SETFD, FD_CLOEXEC);
2388     fcntl (fd, F_SETFL, O_NONBLOCK);
2389     #endif
2390     }
2391    
2392 root 1.8 /*****************************************************************************/
2393    
2394 root 1.235 /*
2395 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
2396 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2397     * the branching factor of the d-tree.
2398     */
2399    
2400     /*
2401 root 1.235 * at the moment we allow libev the luxury of two heaps,
2402     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2403     * which is more cache-efficient.
2404     * the difference is about 5% with 50000+ watchers.
2405     */
2406 root 1.241 #if EV_USE_4HEAP
2407 root 1.235
2408 root 1.237 #define DHEAP 4
2409     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2410 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2411 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
2412 root 1.235
2413     /* away from the root */
2414 root 1.284 inline_speed void
2415 root 1.241 downheap (ANHE *heap, int N, int k)
2416 root 1.235 {
2417 root 1.241 ANHE he = heap [k];
2418     ANHE *E = heap + N + HEAP0;
2419 root 1.235
2420     for (;;)
2421     {
2422     ev_tstamp minat;
2423 root 1.241 ANHE *minpos;
2424 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2425 root 1.235
2426 root 1.248 /* find minimum child */
2427 root 1.500 if (ecb_expect_true (pos + DHEAP - 1 < E))
2428 root 1.235 {
2429 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2430 root 1.506 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2431     if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2432     if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2433 root 1.235 }
2434 root 1.240 else if (pos < E)
2435 root 1.235 {
2436 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2437 root 1.506 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2438     if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2439     if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2440 root 1.235 }
2441 root 1.240 else
2442     break;
2443 root 1.235
2444 root 1.241 if (ANHE_at (he) <= minat)
2445 root 1.235 break;
2446    
2447 root 1.247 heap [k] = *minpos;
2448 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2449 root 1.235
2450     k = minpos - heap;
2451     }
2452    
2453 root 1.247 heap [k] = he;
2454 root 1.241 ev_active (ANHE_w (he)) = k;
2455 root 1.235 }
2456    
2457 root 1.506 #else /* not 4HEAP */
2458 root 1.235
2459     #define HEAP0 1
2460 root 1.247 #define HPARENT(k) ((k) >> 1)
2461 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2462 root 1.235
2463 root 1.248 /* away from the root */
2464 root 1.284 inline_speed void
2465 root 1.248 downheap (ANHE *heap, int N, int k)
2466 root 1.1 {
2467 root 1.241 ANHE he = heap [k];
2468 root 1.1
2469 root 1.228 for (;;)
2470 root 1.1 {
2471 root 1.248 int c = k << 1;
2472 root 1.179
2473 root 1.309 if (c >= N + HEAP0)
2474 root 1.179 break;
2475    
2476 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2477     ? 1 : 0;
2478    
2479     if (ANHE_at (he) <= ANHE_at (heap [c]))
2480     break;
2481    
2482     heap [k] = heap [c];
2483 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2484 root 1.248
2485     k = c;
2486 root 1.1 }
2487    
2488 root 1.243 heap [k] = he;
2489 root 1.248 ev_active (ANHE_w (he)) = k;
2490 root 1.1 }
2491 root 1.248 #endif
2492 root 1.1
2493 root 1.248 /* towards the root */
2494 root 1.284 inline_speed void
2495 root 1.248 upheap (ANHE *heap, int k)
2496 root 1.1 {
2497 root 1.241 ANHE he = heap [k];
2498 root 1.1
2499 root 1.179 for (;;)
2500 root 1.1 {
2501 root 1.248 int p = HPARENT (k);
2502 root 1.179
2503 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2504 root 1.179 break;
2505 root 1.1
2506 root 1.248 heap [k] = heap [p];
2507 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2508 root 1.248 k = p;
2509 root 1.1 }
2510    
2511 root 1.241 heap [k] = he;
2512     ev_active (ANHE_w (he)) = k;
2513 root 1.1 }
2514    
2515 root 1.288 /* move an element suitably so it is in a correct place */
2516 root 1.284 inline_size void
2517 root 1.241 adjustheap (ANHE *heap, int N, int k)
2518 root 1.84 {
2519 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2520 root 1.247 upheap (heap, k);
2521     else
2522     downheap (heap, N, k);
2523 root 1.84 }
2524    
2525 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2526 root 1.284 inline_size void
2527 root 1.248 reheap (ANHE *heap, int N)
2528     {
2529     int i;
2530 root 1.251
2531 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2532     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2533     for (i = 0; i < N; ++i)
2534     upheap (heap, i + HEAP0);
2535     }
2536    
2537 root 1.8 /*****************************************************************************/
2538    
2539 root 1.288 /* associate signal watchers to a signal signal */
2540 root 1.7 typedef struct
2541     {
2542 root 1.307 EV_ATOMIC_T pending;
2543 root 1.306 #if EV_MULTIPLICITY
2544     EV_P;
2545     #endif
2546 root 1.68 WL head;
2547 root 1.7 } ANSIG;
2548    
2549 root 1.306 static ANSIG signals [EV_NSIG - 1];
2550 root 1.7
2551 root 1.207 /*****************************************************************************/
2552    
2553 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2554 root 1.207
2555 root 1.500 ecb_noinline ecb_cold
2556 root 1.480 static void
2557 root 1.207 evpipe_init (EV_P)
2558     {
2559 root 1.288 if (!ev_is_active (&pipe_w))
2560 root 1.207 {
2561 root 1.448 int fds [2];
2562    
2563 root 1.336 # if EV_USE_EVENTFD
2564 root 1.448 fds [0] = -1;
2565     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2566     if (fds [1] < 0 && errno == EINVAL)
2567     fds [1] = eventfd (0, 0);
2568    
2569     if (fds [1] < 0)
2570     # endif
2571     {
2572     while (pipe (fds))
2573     ev_syserr ("(libev) error creating signal/async pipe");
2574    
2575     fd_intern (fds [0]);
2576 root 1.220 }
2577 root 1.448
2578     evpipe [0] = fds [0];
2579    
2580     if (evpipe [1] < 0)
2581     evpipe [1] = fds [1]; /* first call, set write fd */
2582 root 1.220 else
2583     {
2584 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2585     /* so that evpipe_write can always rely on its value. */
2586     /* this branch does not do anything sensible on windows, */
2587     /* so must not be executed on windows */
2588 root 1.207
2589 root 1.448 dup2 (fds [1], evpipe [1]);
2590     close (fds [1]);
2591 root 1.220 }
2592 root 1.207
2593 root 1.455 fd_intern (evpipe [1]);
2594    
2595 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2596 root 1.288 ev_io_start (EV_A_ &pipe_w);
2597 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2598 root 1.207 }
2599     }
2600    
2601 root 1.380 inline_speed void
2602 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2603 root 1.207 {
2604 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2605    
2606 root 1.500 if (ecb_expect_true (*flag))
2607 root 1.387 return;
2608 root 1.383
2609     *flag = 1;
2610 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2611 root 1.383
2612     pipe_write_skipped = 1;
2613 root 1.378
2614 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2615 root 1.214
2616 root 1.383 if (pipe_write_wanted)
2617     {
2618     int old_errno;
2619 root 1.378
2620 root 1.436 pipe_write_skipped = 0;
2621     ECB_MEMORY_FENCE_RELEASE;
2622 root 1.220
2623 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2624 root 1.380
2625 root 1.220 #if EV_USE_EVENTFD
2626 root 1.448 if (evpipe [0] < 0)
2627 root 1.383 {
2628     uint64_t counter = 1;
2629 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2630 root 1.383 }
2631     else
2632 root 1.220 #endif
2633 root 1.383 {
2634 root 1.427 #ifdef _WIN32
2635     WSABUF buf;
2636     DWORD sent;
2637 root 1.485 buf.buf = (char *)&buf;
2638 root 1.427 buf.len = 1;
2639     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2640     #else
2641 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2642 root 1.427 #endif
2643 root 1.383 }
2644 root 1.214
2645 root 1.383 errno = old_errno;
2646 root 1.207 }
2647     }
2648    
2649 root 1.288 /* called whenever the libev signal pipe */
2650     /* got some events (signal, async) */
2651 root 1.207 static void
2652     pipecb (EV_P_ ev_io *iow, int revents)
2653     {
2654 root 1.307 int i;
2655    
2656 root 1.378 if (revents & EV_READ)
2657     {
2658 root 1.220 #if EV_USE_EVENTFD
2659 root 1.448 if (evpipe [0] < 0)
2660 root 1.378 {
2661     uint64_t counter;
2662 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2663 root 1.378 }
2664     else
2665 root 1.220 #endif
2666 root 1.378 {
2667 root 1.427 char dummy[4];
2668     #ifdef _WIN32
2669     WSABUF buf;
2670     DWORD recvd;
2671 root 1.432 DWORD flags = 0;
2672 root 1.427 buf.buf = dummy;
2673     buf.len = sizeof (dummy);
2674 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2675 root 1.427 #else
2676     read (evpipe [0], &dummy, sizeof (dummy));
2677     #endif
2678 root 1.378 }
2679 root 1.220 }
2680 root 1.207
2681 root 1.378 pipe_write_skipped = 0;
2682    
2683 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2684    
2685 root 1.369 #if EV_SIGNAL_ENABLE
2686 root 1.307 if (sig_pending)
2687 root 1.372 {
2688 root 1.307 sig_pending = 0;
2689 root 1.207
2690 root 1.436 ECB_MEMORY_FENCE;
2691 root 1.424
2692 root 1.307 for (i = EV_NSIG - 1; i--; )
2693 root 1.500 if (ecb_expect_false (signals [i].pending))
2694 root 1.307 ev_feed_signal_event (EV_A_ i + 1);
2695 root 1.207 }
2696 root 1.369 #endif
2697 root 1.207
2698 root 1.209 #if EV_ASYNC_ENABLE
2699 root 1.307 if (async_pending)
2700 root 1.207 {
2701 root 1.307 async_pending = 0;
2702 root 1.207
2703 root 1.436 ECB_MEMORY_FENCE;
2704 root 1.424
2705 root 1.207 for (i = asynccnt; i--; )
2706     if (asyncs [i]->sent)
2707     {
2708     asyncs [i]->sent = 0;
2709 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2710 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2711     }
2712     }
2713 root 1.209 #endif
2714 root 1.207 }
2715    
2716     /*****************************************************************************/
2717    
2718 root 1.366 void
2719 root 1.486 ev_feed_signal (int signum) EV_NOEXCEPT
2720 root 1.7 {
2721 root 1.207 #if EV_MULTIPLICITY
2722 root 1.453 EV_P;
2723 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2724 root 1.453 EV_A = signals [signum - 1].loop;
2725 root 1.366
2726     if (!EV_A)
2727     return;
2728 root 1.207 #endif
2729    
2730 root 1.366 signals [signum - 1].pending = 1;
2731     evpipe_write (EV_A_ &sig_pending);
2732     }
2733    
2734     static void
2735     ev_sighandler (int signum)
2736     {
2737 root 1.322 #ifdef _WIN32
2738 root 1.218 signal (signum, ev_sighandler);
2739 root 1.67 #endif
2740    
2741 root 1.366 ev_feed_signal (signum);
2742 root 1.7 }
2743    
2744 root 1.500 ecb_noinline
2745 root 1.480 void
2746 root 1.486 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2747 root 1.79 {
2748 root 1.80 WL w;
2749    
2750 root 1.500 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2751 root 1.307 return;
2752    
2753     --signum;
2754    
2755 root 1.79 #if EV_MULTIPLICITY
2756 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2757     /* or, likely more useful, feeding a signal nobody is waiting for */
2758 root 1.79
2759 root 1.500 if (ecb_expect_false (signals [signum].loop != EV_A))
2760 root 1.306 return;
2761 root 1.307 #endif
2762 root 1.306
2763 root 1.307 signals [signum].pending = 0;
2764 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2765 root 1.79
2766     for (w = signals [signum].head; w; w = w->next)
2767     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2768     }
2769    
2770 root 1.303 #if EV_USE_SIGNALFD
2771     static void
2772     sigfdcb (EV_P_ ev_io *iow, int revents)
2773     {
2774 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2775 root 1.303
2776     for (;;)
2777     {
2778     ssize_t res = read (sigfd, si, sizeof (si));
2779    
2780     /* not ISO-C, as res might be -1, but works with SuS */
2781     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2782     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2783    
2784     if (res < (ssize_t)sizeof (si))
2785     break;
2786     }
2787     }
2788     #endif
2789    
2790 root 1.336 #endif
2791    
2792 root 1.8 /*****************************************************************************/
2793    
2794 root 1.336 #if EV_CHILD_ENABLE
2795 root 1.182 static WL childs [EV_PID_HASHSIZE];
2796 root 1.71
2797 root 1.136 static ev_signal childev;
2798 root 1.59
2799 root 1.206 #ifndef WIFCONTINUED
2800     # define WIFCONTINUED(status) 0
2801     #endif
2802    
2803 root 1.288 /* handle a single child status event */
2804 root 1.284 inline_speed void
2805 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2806 root 1.47 {
2807 root 1.136 ev_child *w;
2808 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2809 root 1.47
2810 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2811 root 1.206 {
2812     if ((w->pid == pid || !w->pid)
2813     && (!traced || (w->flags & 1)))
2814     {
2815 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2816 root 1.206 w->rpid = pid;
2817     w->rstatus = status;
2818     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2819     }
2820     }
2821 root 1.47 }
2822    
2823 root 1.142 #ifndef WCONTINUED
2824     # define WCONTINUED 0
2825     #endif
2826    
2827 root 1.288 /* called on sigchld etc., calls waitpid */
2828 root 1.47 static void
2829 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
2830 root 1.22 {
2831     int pid, status;
2832    
2833 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2834     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2835     if (!WCONTINUED
2836     || errno != EINVAL
2837     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2838     return;
2839    
2840 root 1.216 /* make sure we are called again until all children have been reaped */
2841 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
2842     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2843 root 1.47
2844 root 1.216 child_reap (EV_A_ pid, pid, status);
2845 root 1.338 if ((EV_PID_HASHSIZE) > 1)
2846 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2847 root 1.22 }
2848    
2849 root 1.45 #endif
2850    
2851 root 1.22 /*****************************************************************************/
2852    
2853 root 1.357 #if EV_USE_IOCP
2854     # include "ev_iocp.c"
2855     #endif
2856 root 1.118 #if EV_USE_PORT
2857     # include "ev_port.c"
2858     #endif
2859 root 1.44 #if EV_USE_KQUEUE
2860     # include "ev_kqueue.c"
2861     #endif
2862 root 1.493 #if EV_USE_EPOLL
2863     # include "ev_epoll.c"
2864     #endif
2865 root 1.490 #if EV_USE_LINUXAIO
2866     # include "ev_linuxaio.c"
2867     #endif
2868 root 1.501 #if EV_USE_IOURING
2869     # include "ev_iouring.c"
2870     #endif
2871 root 1.59 #if EV_USE_POLL
2872 root 1.41 # include "ev_poll.c"
2873     #endif
2874 root 1.29 #if EV_USE_SELECT
2875 root 1.1 # include "ev_select.c"
2876     #endif
2877    
2878 root 1.480 ecb_cold int
2879 root 1.486 ev_version_major (void) EV_NOEXCEPT
2880 root 1.24 {
2881     return EV_VERSION_MAJOR;
2882     }
2883    
2884 root 1.480 ecb_cold int
2885 root 1.486 ev_version_minor (void) EV_NOEXCEPT
2886 root 1.24 {
2887     return EV_VERSION_MINOR;
2888     }
2889    
2890 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
2891 root 1.480 inline_size ecb_cold int
2892 root 1.51 enable_secure (void)
2893 root 1.41 {
2894 root 1.103 #ifdef _WIN32
2895 root 1.49 return 0;
2896     #else
2897 root 1.41 return getuid () != geteuid ()
2898     || getgid () != getegid ();
2899 root 1.49 #endif
2900 root 1.41 }
2901    
2902 root 1.480 ecb_cold
2903     unsigned int
2904 root 1.486 ev_supported_backends (void) EV_NOEXCEPT
2905 root 1.129 {
2906 root 1.130 unsigned int flags = 0;
2907 root 1.129
2908 root 1.490 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2909     if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2910     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2911     if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2912 root 1.501 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
2913 root 1.490 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2914     if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2915 root 1.129
2916     return flags;
2917     }
2918    
2919 root 1.480 ecb_cold
2920     unsigned int
2921 root 1.486 ev_recommended_backends (void) EV_NOEXCEPT
2922 root 1.1 {
2923 root 1.131 unsigned int flags = ev_supported_backends ();
2924 root 1.129
2925     #ifndef __NetBSD__
2926     /* kqueue is borked on everything but netbsd apparently */
2927     /* it usually doesn't work correctly on anything but sockets and pipes */
2928     flags &= ~EVBACKEND_KQUEUE;
2929     #endif
2930     #ifdef __APPLE__
2931 root 1.278 /* only select works correctly on that "unix-certified" platform */
2932     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2933     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2934 root 1.129 #endif
2935 root 1.342 #ifdef __FreeBSD__
2936     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2937     #endif
2938 root 1.129
2939 root 1.491 /* TODO: linuxaio is very experimental */
2940 root 1.494 #if !EV_RECOMMEND_LINUXAIO
2941 root 1.491 flags &= ~EVBACKEND_LINUXAIO;
2942 root 1.494 #endif
2943 root 1.501 /* TODO: linuxaio is super experimental */
2944     #if !EV_RECOMMEND_IOURING
2945     flags &= ~EVBACKEND_IOURING;
2946     #endif
2947 root 1.491
2948 root 1.129 return flags;
2949 root 1.51 }
2950    
2951 root 1.480 ecb_cold
2952     unsigned int
2953 root 1.486 ev_embeddable_backends (void) EV_NOEXCEPT
2954 root 1.134 {
2955 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2956    
2957 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2958 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2959     flags &= ~EVBACKEND_EPOLL;
2960 root 1.196
2961 root 1.502 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
2962    
2963     /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
2964     * because our backend_fd is the epoll fd we need as fallback.
2965     * if the kernel ever is fixed, this might change...
2966     */
2967    
2968 root 1.196 return flags;
2969 root 1.134 }
2970    
2971     unsigned int
2972 root 1.486 ev_backend (EV_P) EV_NOEXCEPT
2973 root 1.130 {
2974     return backend;
2975     }
2976    
2977 root 1.338 #if EV_FEATURE_API
2978 root 1.162 unsigned int
2979 root 1.486 ev_iteration (EV_P) EV_NOEXCEPT
2980 root 1.162 {
2981     return loop_count;
2982     }
2983    
2984 root 1.294 unsigned int
2985 root 1.486 ev_depth (EV_P) EV_NOEXCEPT
2986 root 1.294 {
2987     return loop_depth;
2988     }
2989    
2990 root 1.193 void
2991 root 1.486 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2992 root 1.193 {
2993     io_blocktime = interval;
2994     }
2995    
2996     void
2997 root 1.486 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2998 root 1.193 {
2999     timeout_blocktime = interval;
3000     }
3001    
3002 root 1.297 void
3003 root 1.486 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3004 root 1.297 {
3005     userdata = data;
3006     }
3007    
3008     void *
3009 root 1.486 ev_userdata (EV_P) EV_NOEXCEPT
3010 root 1.297 {
3011     return userdata;
3012     }
3013    
3014 root 1.379 void
3015 root 1.486 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3016 root 1.297 {
3017     invoke_cb = invoke_pending_cb;
3018     }
3019    
3020 root 1.379 void
3021 root 1.486 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3022 root 1.297 {
3023 root 1.298 release_cb = release;
3024     acquire_cb = acquire;
3025 root 1.297 }
3026     #endif
3027    
3028 root 1.288 /* initialise a loop structure, must be zero-initialised */
3029 root 1.500 ecb_noinline ecb_cold
3030 root 1.480 static void
3031 root 1.486 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
3032 root 1.51 {
3033 root 1.130 if (!backend)
3034 root 1.23 {
3035 root 1.366 origflags = flags;
3036    
3037 root 1.279 #if EV_USE_REALTIME
3038     if (!have_realtime)
3039     {
3040     struct timespec ts;
3041    
3042     if (!clock_gettime (CLOCK_REALTIME, &ts))
3043     have_realtime = 1;
3044     }
3045     #endif
3046    
3047 root 1.29 #if EV_USE_MONOTONIC
3048 root 1.279 if (!have_monotonic)
3049     {
3050     struct timespec ts;
3051    
3052     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
3053     have_monotonic = 1;
3054     }
3055 root 1.1 #endif
3056    
3057 root 1.306 /* pid check not overridable via env */
3058     #ifndef _WIN32
3059     if (flags & EVFLAG_FORKCHECK)
3060     curpid = getpid ();
3061     #endif
3062    
3063     if (!(flags & EVFLAG_NOENV)
3064     && !enable_secure ()
3065     && getenv ("LIBEV_FLAGS"))
3066     flags = atoi (getenv ("LIBEV_FLAGS"));
3067    
3068 root 1.378 ev_rt_now = ev_time ();
3069     mn_now = get_clock ();
3070     now_floor = mn_now;
3071     rtmn_diff = ev_rt_now - mn_now;
3072 root 1.338 #if EV_FEATURE_API
3073 root 1.378 invoke_cb = ev_invoke_pending;
3074 root 1.297 #endif
3075 root 1.1
3076 root 1.378 io_blocktime = 0.;
3077     timeout_blocktime = 0.;
3078     backend = 0;
3079     backend_fd = -1;
3080     sig_pending = 0;
3081 root 1.307 #if EV_ASYNC_ENABLE
3082 root 1.378 async_pending = 0;
3083 root 1.307 #endif
3084 root 1.378 pipe_write_skipped = 0;
3085     pipe_write_wanted = 0;
3086 root 1.448 evpipe [0] = -1;
3087     evpipe [1] = -1;
3088 root 1.209 #if EV_USE_INOTIFY
3089 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3090 root 1.209 #endif
3091 root 1.303 #if EV_USE_SIGNALFD
3092 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3093 root 1.303 #endif
3094 root 1.193
3095 root 1.366 if (!(flags & EVBACKEND_MASK))
3096 root 1.129 flags |= ev_recommended_backends ();
3097 root 1.41
3098 root 1.357 #if EV_USE_IOCP
3099 root 1.490 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3100 root 1.357 #endif
3101 root 1.118 #if EV_USE_PORT
3102 root 1.490 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
3103 root 1.118 #endif
3104 root 1.44 #if EV_USE_KQUEUE
3105 root 1.490 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3106     #endif
3107 root 1.501 #if EV_USE_IOURING
3108     if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3109     #endif
3110 root 1.490 #if EV_USE_LINUXAIO
3111     if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
3112 root 1.44 #endif
3113 root 1.29 #if EV_USE_EPOLL
3114 root 1.490 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
3115 root 1.41 #endif
3116 root 1.59 #if EV_USE_POLL
3117 root 1.490 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
3118 root 1.1 #endif
3119 root 1.29 #if EV_USE_SELECT
3120 root 1.490 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
3121 root 1.1 #endif
3122 root 1.70
3123 root 1.288 ev_prepare_init (&pending_w, pendingcb);
3124    
3125 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3126 root 1.288 ev_init (&pipe_w, pipecb);
3127     ev_set_priority (&pipe_w, EV_MAXPRI);
3128 root 1.336 #endif
3129 root 1.56 }
3130     }
3131    
3132 root 1.288 /* free up a loop structure */
3133 root 1.480 ecb_cold
3134     void
3135 root 1.422 ev_loop_destroy (EV_P)
3136 root 1.56 {
3137 root 1.65 int i;
3138    
3139 root 1.364 #if EV_MULTIPLICITY
3140 root 1.363 /* mimic free (0) */
3141     if (!EV_A)
3142     return;
3143 root 1.364 #endif
3144 root 1.363
3145 root 1.361 #if EV_CLEANUP_ENABLE
3146     /* queue cleanup watchers (and execute them) */
3147 root 1.500 if (ecb_expect_false (cleanupcnt))
3148 root 1.361 {
3149     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3150     EV_INVOKE_PENDING;
3151     }
3152     #endif
3153    
3154 root 1.359 #if EV_CHILD_ENABLE
3155 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3156 root 1.359 {
3157     ev_ref (EV_A); /* child watcher */
3158     ev_signal_stop (EV_A_ &childev);
3159     }
3160     #endif
3161    
3162 root 1.288 if (ev_is_active (&pipe_w))
3163 root 1.207 {
3164 root 1.303 /*ev_ref (EV_A);*/
3165     /*ev_io_stop (EV_A_ &pipe_w);*/
3166 root 1.207
3167 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3168     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3169 root 1.207 }
3170    
3171 root 1.303 #if EV_USE_SIGNALFD
3172     if (ev_is_active (&sigfd_w))
3173 root 1.317 close (sigfd);
3174 root 1.303 #endif
3175    
3176 root 1.152 #if EV_USE_INOTIFY
3177     if (fs_fd >= 0)
3178     close (fs_fd);
3179     #endif
3180    
3181     if (backend_fd >= 0)
3182     close (backend_fd);
3183    
3184 root 1.357 #if EV_USE_IOCP
3185 root 1.490 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3186 root 1.357 #endif
3187 root 1.118 #if EV_USE_PORT
3188 root 1.490 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3189 root 1.118 #endif
3190 root 1.56 #if EV_USE_KQUEUE
3191 root 1.490 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3192     #endif
3193 root 1.501 #if EV_USE_IOURING
3194     if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3195     #endif
3196 root 1.490 #if EV_USE_LINUXAIO
3197     if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3198 root 1.56 #endif
3199     #if EV_USE_EPOLL
3200 root 1.490 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3201 root 1.56 #endif
3202 root 1.59 #if EV_USE_POLL
3203 root 1.490 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3204 root 1.56 #endif
3205     #if EV_USE_SELECT
3206 root 1.490 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3207 root 1.56 #endif
3208 root 1.1
3209 root 1.65 for (i = NUMPRI; i--; )
3210 root 1.164 {
3211     array_free (pending, [i]);
3212     #if EV_IDLE_ENABLE
3213     array_free (idle, [i]);
3214     #endif
3215     }
3216 root 1.65
3217 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
3218 root 1.186
3219 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
3220 root 1.284 array_free (rfeed, EMPTY);
3221 root 1.164 array_free (fdchange, EMPTY);
3222     array_free (timer, EMPTY);
3223 root 1.140 #if EV_PERIODIC_ENABLE
3224 root 1.164 array_free (periodic, EMPTY);
3225 root 1.93 #endif
3226 root 1.187 #if EV_FORK_ENABLE
3227     array_free (fork, EMPTY);
3228     #endif
3229 root 1.360 #if EV_CLEANUP_ENABLE
3230     array_free (cleanup, EMPTY);
3231     #endif
3232 root 1.164 array_free (prepare, EMPTY);
3233     array_free (check, EMPTY);
3234 root 1.209 #if EV_ASYNC_ENABLE
3235     array_free (async, EMPTY);
3236     #endif
3237 root 1.65
3238 root 1.130 backend = 0;
3239 root 1.359
3240     #if EV_MULTIPLICITY
3241     if (ev_is_default_loop (EV_A))
3242     #endif
3243     ev_default_loop_ptr = 0;
3244     #if EV_MULTIPLICITY
3245     else
3246     ev_free (EV_A);
3247     #endif
3248 root 1.56 }
3249 root 1.22
3250 root 1.226 #if EV_USE_INOTIFY
3251 root 1.284 inline_size void infy_fork (EV_P);
3252 root 1.226 #endif
3253 root 1.154
3254 root 1.284 inline_size void
3255 root 1.56 loop_fork (EV_P)
3256     {
3257 root 1.118 #if EV_USE_PORT
3258 root 1.490 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3259 root 1.56 #endif
3260     #if EV_USE_KQUEUE
3261 root 1.490 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3262     #endif
3263 root 1.501 #if EV_USE_IOURING
3264     if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3265     #endif
3266 root 1.490 #if EV_USE_LINUXAIO
3267     if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3268 root 1.45 #endif
3269 root 1.118 #if EV_USE_EPOLL
3270 root 1.490 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3271 root 1.118 #endif
3272 root 1.154 #if EV_USE_INOTIFY
3273     infy_fork (EV_A);
3274     #endif
3275 root 1.70
3276 root 1.448 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3277 root 1.478 if (ev_is_active (&pipe_w) && postfork != 2)
3278 root 1.70 {
3279 root 1.378 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3280 root 1.70
3281     ev_ref (EV_A);
3282 root 1.288 ev_io_stop (EV_A_ &pipe_w);
3283 root 1.220
3284     if (evpipe [0] >= 0)
3285 root 1.448 EV_WIN32_CLOSE_FD (evpipe [0]);
3286 root 1.207
3287     evpipe_init (EV_A);
3288 root 1.443 /* iterate over everything, in case we missed something before */
3289     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3290 root 1.448 }
3291 root 1.337 #endif
3292 root 1.70
3293     postfork = 0;
3294 root 1.1 }
3295    
3296 root 1.55 #if EV_MULTIPLICITY
3297 root 1.250
3298 root 1.480 ecb_cold
3299     struct ev_loop *
3300 root 1.486 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3301 root 1.54 {
3302 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3303 root 1.69
3304 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
3305 root 1.108 loop_init (EV_A_ flags);
3306 root 1.56
3307 root 1.130 if (ev_backend (EV_A))
3308 root 1.306 return EV_A;
3309 root 1.54
3310 root 1.359 ev_free (EV_A);
3311 root 1.55 return 0;
3312 root 1.54 }
3313    
3314 root 1.297 #endif /* multiplicity */
3315 root 1.248
3316     #if EV_VERIFY
3317 root 1.500 ecb_noinline ecb_cold
3318 root 1.480 static void
3319 root 1.251 verify_watcher (EV_P_ W w)
3320     {
3321 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3322 root 1.251
3323     if (w->pending)
3324 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3325 root 1.251 }
3326    
3327 root 1.500 ecb_noinline ecb_cold
3328 root 1.480 static void
3329 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
3330     {
3331     int i;
3332    
3333     for (i = HEAP0; i < N + HEAP0; ++i)
3334     {
3335 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3336     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3337     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3338 root 1.251
3339     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3340     }
3341     }
3342    
3343 root 1.500 ecb_noinline ecb_cold
3344 root 1.480 static void
3345 root 1.251 array_verify (EV_P_ W *ws, int cnt)
3346 root 1.248 {
3347     while (cnt--)
3348 root 1.251 {
3349 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3350 root 1.251 verify_watcher (EV_A_ ws [cnt]);
3351     }
3352 root 1.248 }
3353 root 1.250 #endif
3354 root 1.248
3355 root 1.338 #if EV_FEATURE_API
3356 root 1.379 void ecb_cold
3357 root 1.486 ev_verify (EV_P) EV_NOEXCEPT
3358 root 1.248 {
3359 root 1.250 #if EV_VERIFY
3360 root 1.429 int i;
3361 root 1.426 WL w, w2;
3362 root 1.251
3363     assert (activecnt >= -1);
3364    
3365     assert (fdchangemax >= fdchangecnt);
3366     for (i = 0; i < fdchangecnt; ++i)
3367 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3368 root 1.251
3369     assert (anfdmax >= 0);
3370 root 1.429 for (i = 0; i < anfdmax; ++i)
3371     {
3372     int j = 0;
3373    
3374     for (w = w2 = anfds [i].head; w; w = w->next)
3375     {
3376     verify_watcher (EV_A_ (W)w);
3377 root 1.426
3378 root 1.429 if (j++ & 1)
3379     {
3380     assert (("libev: io watcher list contains a loop", w != w2));
3381     w2 = w2->next;
3382     }
3383 root 1.426
3384 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3385     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3386     }
3387     }
3388 root 1.251
3389     assert (timermax >= timercnt);
3390     verify_heap (EV_A_ timers, timercnt);
3391 root 1.248
3392     #if EV_PERIODIC_ENABLE
3393 root 1.251 assert (periodicmax >= periodiccnt);
3394     verify_heap (EV_A_ periodics, periodiccnt);
3395 root 1.248 #endif
3396    
3397 root 1.251 for (i = NUMPRI; i--; )
3398     {
3399     assert (pendingmax [i] >= pendingcnt [i]);
3400 root 1.248 #if EV_IDLE_ENABLE
3401 root 1.252 assert (idleall >= 0);
3402 root 1.251 assert (idlemax [i] >= idlecnt [i]);
3403     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3404 root 1.248 #endif
3405 root 1.251 }
3406    
3407 root 1.248 #if EV_FORK_ENABLE
3408 root 1.251 assert (forkmax >= forkcnt);
3409     array_verify (EV_A_ (W *)forks, forkcnt);
3410 root 1.248 #endif
3411 root 1.251
3412 root 1.360 #if EV_CLEANUP_ENABLE
3413     assert (cleanupmax >= cleanupcnt);
3414     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3415     #endif
3416    
3417 root 1.250 #if EV_ASYNC_ENABLE
3418 root 1.251 assert (asyncmax >= asynccnt);
3419     array_verify (EV_A_ (W *)asyncs, asynccnt);
3420 root 1.250 #endif
3421 root 1.251
3422 root 1.337 #if EV_PREPARE_ENABLE
3423 root 1.251 assert (preparemax >= preparecnt);
3424     array_verify (EV_A_ (W *)prepares, preparecnt);
3425 root 1.337 #endif
3426 root 1.251
3427 root 1.337 #if EV_CHECK_ENABLE
3428 root 1.251 assert (checkmax >= checkcnt);
3429     array_verify (EV_A_ (W *)checks, checkcnt);
3430 root 1.337 #endif
3431 root 1.251
3432     # if 0
3433 root 1.336 #if EV_CHILD_ENABLE
3434 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3435 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3436 root 1.336 #endif
3437 root 1.251 # endif
3438 root 1.248 #endif
3439     }
3440 root 1.297 #endif
3441 root 1.56
3442     #if EV_MULTIPLICITY
3443 root 1.480 ecb_cold
3444     struct ev_loop *
3445 root 1.54 #else
3446     int
3447 root 1.358 #endif
3448 root 1.486 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3449 root 1.54 {
3450 root 1.116 if (!ev_default_loop_ptr)
3451 root 1.56 {
3452     #if EV_MULTIPLICITY
3453 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
3454 root 1.56 #else
3455 ayin 1.117 ev_default_loop_ptr = 1;
3456 root 1.54 #endif
3457    
3458 root 1.110 loop_init (EV_A_ flags);
3459 root 1.56
3460 root 1.130 if (ev_backend (EV_A))
3461 root 1.56 {
3462 root 1.336 #if EV_CHILD_ENABLE
3463 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
3464     ev_set_priority (&childev, EV_MAXPRI);
3465     ev_signal_start (EV_A_ &childev);
3466     ev_unref (EV_A); /* child watcher should not keep loop alive */
3467     #endif
3468     }
3469     else
3470 root 1.116 ev_default_loop_ptr = 0;
3471 root 1.56 }
3472 root 1.8
3473 root 1.116 return ev_default_loop_ptr;
3474 root 1.1 }
3475    
3476 root 1.24 void
3477 root 1.486 ev_loop_fork (EV_P) EV_NOEXCEPT
3478 root 1.1 {
3479 root 1.440 postfork = 1;
3480 root 1.1 }
3481    
3482 root 1.8 /*****************************************************************************/
3483    
3484 root 1.168 void
3485     ev_invoke (EV_P_ void *w, int revents)
3486     {
3487     EV_CB_INVOKE ((W)w, revents);
3488     }
3489    
3490 root 1.300 unsigned int
3491 root 1.486 ev_pending_count (EV_P) EV_NOEXCEPT
3492 root 1.300 {
3493     int pri;
3494     unsigned int count = 0;
3495    
3496     for (pri = NUMPRI; pri--; )
3497     count += pendingcnt [pri];
3498    
3499     return count;
3500     }
3501    
3502 root 1.500 ecb_noinline
3503 root 1.480 void
3504 root 1.296 ev_invoke_pending (EV_P)
3505 root 1.1 {
3506 root 1.445 pendingpri = NUMPRI;
3507    
3508 root 1.484 do
3509 root 1.445 {
3510     --pendingpri;
3511    
3512 root 1.484 /* pendingpri possibly gets modified in the inner loop */
3513 root 1.445 while (pendingcnt [pendingpri])
3514     {
3515     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3516 root 1.1
3517 root 1.445 p->w->pending = 0;
3518     EV_CB_INVOKE (p->w, p->events);
3519     EV_FREQUENT_CHECK;
3520     }
3521     }
3522 root 1.484 while (pendingpri);
3523 root 1.1 }
3524    
3525 root 1.234 #if EV_IDLE_ENABLE
3526 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3527     /* only when higher priorities are idle" logic */
3528 root 1.284 inline_size void
3529 root 1.234 idle_reify (EV_P)
3530     {
3531 root 1.500 if (ecb_expect_false (idleall))
3532 root 1.234 {
3533     int pri;
3534    
3535     for (pri = NUMPRI; pri--; )
3536     {
3537     if (pendingcnt [pri])
3538     break;
3539    
3540     if (idlecnt [pri])
3541     {
3542     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3543     break;
3544     }
3545     }
3546     }
3547     }
3548     #endif
3549    
3550 root 1.288 /* make timers pending */
3551 root 1.284 inline_size void
3552 root 1.51 timers_reify (EV_P)
3553 root 1.1 {
3554 root 1.248 EV_FREQUENT_CHECK;
3555    
3556 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3557 root 1.1 {
3558 root 1.284 do
3559     {
3560     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3561 root 1.1
3562 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3563    
3564     /* first reschedule or stop timer */
3565     if (w->repeat)
3566     {
3567     ev_at (w) += w->repeat;
3568     if (ev_at (w) < mn_now)
3569     ev_at (w) = mn_now;
3570 root 1.61
3571 root 1.509 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3572 root 1.90
3573 root 1.284 ANHE_at_cache (timers [HEAP0]);
3574     downheap (timers, timercnt, HEAP0);
3575     }
3576     else
3577     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3578 root 1.243
3579 root 1.284 EV_FREQUENT_CHECK;
3580     feed_reverse (EV_A_ (W)w);
3581 root 1.12 }
3582 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3583 root 1.30
3584 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3585 root 1.12 }
3586     }
3587 root 1.4
3588 root 1.140 #if EV_PERIODIC_ENABLE
3589 root 1.370
3590 root 1.500 ecb_noinline
3591 root 1.480 static void
3592 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3593     {
3594 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3595     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3596    
3597     /* the above almost always errs on the low side */
3598     while (at <= ev_rt_now)
3599     {
3600     ev_tstamp nat = at + w->interval;
3601    
3602     /* when resolution fails us, we use ev_rt_now */
3603 root 1.500 if (ecb_expect_false (nat == at))
3604 root 1.373 {
3605     at = ev_rt_now;
3606     break;
3607     }
3608    
3609     at = nat;
3610     }
3611    
3612     ev_at (w) = at;
3613 root 1.370 }
3614    
3615 root 1.288 /* make periodics pending */
3616 root 1.284 inline_size void
3617 root 1.51 periodics_reify (EV_P)
3618 root 1.12 {
3619 root 1.248 EV_FREQUENT_CHECK;
3620 root 1.250
3621 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3622 root 1.12 {
3623 root 1.284 do
3624     {
3625     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3626 root 1.1
3627 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3628 root 1.61
3629 root 1.284 /* first reschedule or stop timer */
3630     if (w->reschedule_cb)
3631     {
3632     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3633 root 1.243
3634 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3635 root 1.243
3636 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3637     downheap (periodics, periodiccnt, HEAP0);
3638     }
3639     else if (w->interval)
3640 root 1.246 {
3641 root 1.370 periodic_recalc (EV_A_ w);
3642 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3643     downheap (periodics, periodiccnt, HEAP0);
3644 root 1.246 }
3645 root 1.284 else
3646     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3647 root 1.243
3648 root 1.284 EV_FREQUENT_CHECK;
3649     feed_reverse (EV_A_ (W)w);
3650 root 1.1 }
3651 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3652 root 1.12
3653 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3654 root 1.12 }
3655     }
3656    
3657 root 1.288 /* simply recalculate all periodics */
3658 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3659 root 1.500 ecb_noinline ecb_cold
3660 root 1.480 static void
3661 root 1.54 periodics_reschedule (EV_P)
3662 root 1.12 {
3663     int i;
3664    
3665 root 1.13 /* adjust periodics after time jump */
3666 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3667 root 1.12 {
3668 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3669 root 1.12
3670 root 1.77 if (w->reschedule_cb)
3671 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3672 root 1.77 else if (w->interval)
3673 root 1.370 periodic_recalc (EV_A_ w);
3674 root 1.242
3675 root 1.248 ANHE_at_cache (periodics [i]);
3676 root 1.77 }
3677 root 1.12
3678 root 1.248 reheap (periodics, periodiccnt);
3679 root 1.1 }
3680 root 1.93 #endif
3681 root 1.1
3682 root 1.288 /* adjust all timers by a given offset */
3683 root 1.500 ecb_noinline ecb_cold
3684 root 1.480 static void
3685 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3686     {
3687     int i;
3688    
3689     for (i = 0; i < timercnt; ++i)
3690     {
3691     ANHE *he = timers + i + HEAP0;
3692     ANHE_w (*he)->at += adjust;
3693     ANHE_at_cache (*he);
3694     }
3695     }
3696    
3697 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3698 root 1.324 /* also detect if there was a timejump, and act accordingly */
3699 root 1.284 inline_speed void
3700 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3701 root 1.4 {
3702 root 1.40 #if EV_USE_MONOTONIC
3703 root 1.500 if (ecb_expect_true (have_monotonic))
3704 root 1.40 {
3705 root 1.289 int i;
3706 root 1.178 ev_tstamp odiff = rtmn_diff;
3707    
3708     mn_now = get_clock ();
3709    
3710     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3711     /* interpolate in the meantime */
3712 root 1.509 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
3713 root 1.40 {
3714 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3715     return;
3716     }
3717    
3718     now_floor = mn_now;
3719     ev_rt_now = ev_time ();
3720 root 1.4
3721 root 1.178 /* loop a few times, before making important decisions.
3722     * on the choice of "4": one iteration isn't enough,
3723     * in case we get preempted during the calls to
3724     * ev_time and get_clock. a second call is almost guaranteed
3725     * to succeed in that case, though. and looping a few more times
3726     * doesn't hurt either as we only do this on time-jumps or
3727     * in the unlikely event of having been preempted here.
3728     */
3729     for (i = 4; --i; )
3730     {
3731 root 1.373 ev_tstamp diff;
3732 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3733 root 1.4
3734 root 1.373 diff = odiff - rtmn_diff;
3735    
3736 root 1.509 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
3737 root 1.178 return; /* all is well */
3738 root 1.4
3739 root 1.178 ev_rt_now = ev_time ();
3740     mn_now = get_clock ();
3741     now_floor = mn_now;
3742     }
3743 root 1.4
3744 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3745     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3746 root 1.140 # if EV_PERIODIC_ENABLE
3747 root 1.178 periodics_reschedule (EV_A);
3748 root 1.93 # endif
3749 root 1.4 }
3750     else
3751 root 1.40 #endif
3752 root 1.4 {
3753 root 1.85 ev_rt_now = ev_time ();
3754 root 1.40
3755 root 1.509 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
3756 root 1.13 {
3757 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
3758     timers_reschedule (EV_A_ ev_rt_now - mn_now);
3759 root 1.140 #if EV_PERIODIC_ENABLE
3760 root 1.54 periodics_reschedule (EV_A);
3761 root 1.93 #endif
3762 root 1.13 }
3763 root 1.4
3764 root 1.85 mn_now = ev_rt_now;
3765 root 1.4 }
3766     }
3767    
3768 root 1.418 int
3769 root 1.353 ev_run (EV_P_ int flags)
3770 root 1.1 {
3771 root 1.338 #if EV_FEATURE_API
3772 root 1.294 ++loop_depth;
3773 root 1.297 #endif
3774 root 1.294
3775 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3776 root 1.298
3777 root 1.353 loop_done = EVBREAK_CANCEL;
3778 root 1.1
3779 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3780 root 1.158
3781 root 1.161 do
3782 root 1.9 {
3783 root 1.250 #if EV_VERIFY >= 2
3784 root 1.340 ev_verify (EV_A);
3785 root 1.250 #endif
3786    
3787 root 1.158 #ifndef _WIN32
3788 root 1.500 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
3789     if (ecb_expect_false (getpid () != curpid))
3790 root 1.158 {
3791     curpid = getpid ();
3792     postfork = 1;
3793     }
3794     #endif
3795    
3796 root 1.157 #if EV_FORK_ENABLE
3797     /* we might have forked, so queue fork handlers */
3798 root 1.500 if (ecb_expect_false (postfork))
3799 root 1.157 if (forkcnt)
3800     {
3801     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3802 root 1.297 EV_INVOKE_PENDING;
3803 root 1.157 }
3804     #endif
3805 root 1.147
3806 root 1.337 #if EV_PREPARE_ENABLE
3807 root 1.170 /* queue prepare watchers (and execute them) */
3808 root 1.500 if (ecb_expect_false (preparecnt))
3809 root 1.20 {
3810 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3811 root 1.297 EV_INVOKE_PENDING;
3812 root 1.20 }
3813 root 1.337 #endif
3814 root 1.9
3815 root 1.500 if (ecb_expect_false (loop_done))
3816 root 1.298 break;
3817    
3818 root 1.70 /* we might have forked, so reify kernel state if necessary */
3819 root 1.500 if (ecb_expect_false (postfork))
3820 root 1.70 loop_fork (EV_A);
3821    
3822 root 1.1 /* update fd-related kernel structures */
3823 root 1.51 fd_reify (EV_A);
3824 root 1.1
3825     /* calculate blocking time */
3826 root 1.135 {
3827 root 1.193 ev_tstamp waittime = 0.;
3828     ev_tstamp sleeptime = 0.;
3829 root 1.12
3830 root 1.353 /* remember old timestamp for io_blocktime calculation */
3831     ev_tstamp prev_mn_now = mn_now;
3832 root 1.293
3833 root 1.353 /* update time to cancel out callback processing overhead */
3834 root 1.509 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3835 root 1.135
3836 root 1.378 /* from now on, we want a pipe-wake-up */
3837     pipe_write_wanted = 1;
3838    
3839 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3840 root 1.383
3841 root 1.500 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3842 root 1.353 {
3843 root 1.509 waittime = EV_TS_CONST (MAX_BLOCKTIME);
3844 root 1.287
3845 root 1.135 if (timercnt)
3846     {
3847 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3848 root 1.193 if (waittime > to) waittime = to;
3849 root 1.135 }
3850 root 1.4
3851 root 1.140 #if EV_PERIODIC_ENABLE
3852 root 1.135 if (periodiccnt)
3853     {
3854 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3855 root 1.193 if (waittime > to) waittime = to;
3856 root 1.135 }
3857 root 1.93 #endif
3858 root 1.4
3859 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
3860 root 1.500 if (ecb_expect_false (waittime < timeout_blocktime))
3861 root 1.193 waittime = timeout_blocktime;
3862    
3863 root 1.377 /* at this point, we NEED to wait, so we have to ensure */
3864     /* to pass a minimum nonzero value to the backend */
3865 root 1.500 if (ecb_expect_false (waittime < backend_mintime))
3866 root 1.377 waittime = backend_mintime;
3867    
3868 root 1.293 /* extra check because io_blocktime is commonly 0 */
3869 root 1.500 if (ecb_expect_false (io_blocktime))
3870 root 1.293 {
3871     sleeptime = io_blocktime - (mn_now - prev_mn_now);
3872 root 1.193
3873 root 1.376 if (sleeptime > waittime - backend_mintime)
3874     sleeptime = waittime - backend_mintime;
3875 root 1.193
3876 root 1.509 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
3877 root 1.293 {
3878     ev_sleep (sleeptime);
3879     waittime -= sleeptime;
3880     }
3881 root 1.193 }
3882 root 1.135 }
3883 root 1.1
3884 root 1.338 #if EV_FEATURE_API
3885 root 1.162 ++loop_count;
3886 root 1.297 #endif
3887 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3888 root 1.193 backend_poll (EV_A_ waittime);
3889 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3890 root 1.178
3891 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3892 root 1.378
3893 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
3894 root 1.378 if (pipe_write_skipped)
3895     {
3896     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3897     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3898     }
3899    
3900 root 1.178 /* update ev_rt_now, do magic */
3901 root 1.193 time_update (EV_A_ waittime + sleeptime);
3902 root 1.135 }
3903 root 1.1
3904 root 1.9 /* queue pending timers and reschedule them */
3905 root 1.51 timers_reify (EV_A); /* relative timers called last */
3906 root 1.140 #if EV_PERIODIC_ENABLE
3907 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
3908 root 1.93 #endif
3909 root 1.1
3910 root 1.164 #if EV_IDLE_ENABLE
3911 root 1.137 /* queue idle watchers unless other events are pending */
3912 root 1.164 idle_reify (EV_A);
3913     #endif
3914 root 1.9
3915 root 1.337 #if EV_CHECK_ENABLE
3916 root 1.20 /* queue check watchers, to be executed first */
3917 root 1.500 if (ecb_expect_false (checkcnt))
3918 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3919 root 1.337 #endif
3920 root 1.9
3921 root 1.297 EV_INVOKE_PENDING;
3922 root 1.1 }
3923 root 1.500 while (ecb_expect_true (
3924 root 1.219 activecnt
3925     && !loop_done
3926 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3927 root 1.219 ));
3928 root 1.13
3929 root 1.353 if (loop_done == EVBREAK_ONE)
3930     loop_done = EVBREAK_CANCEL;
3931 root 1.294
3932 root 1.338 #if EV_FEATURE_API
3933 root 1.294 --loop_depth;
3934 root 1.297 #endif
3935 root 1.418
3936     return activecnt;
3937 root 1.51 }
3938    
3939     void
3940 root 1.486 ev_break (EV_P_ int how) EV_NOEXCEPT
3941 root 1.51 {
3942     loop_done = how;
3943 root 1.1 }
3944    
3945 root 1.285 void
3946 root 1.486 ev_ref (EV_P) EV_NOEXCEPT
3947 root 1.285 {
3948     ++activecnt;
3949     }
3950    
3951     void
3952 root 1.486 ev_unref (EV_P) EV_NOEXCEPT
3953 root 1.285 {
3954     --activecnt;
3955     }
3956    
3957     void
3958 root 1.486 ev_now_update (EV_P) EV_NOEXCEPT
3959 root 1.285 {
3960 root 1.509 time_update (EV_A_ EV_TSTAMP_HUGE);
3961 root 1.285 }
3962    
3963     void
3964 root 1.486 ev_suspend (EV_P) EV_NOEXCEPT
3965 root 1.285 {
3966     ev_now_update (EV_A);
3967     }
3968    
3969     void
3970 root 1.486 ev_resume (EV_P) EV_NOEXCEPT
3971 root 1.285 {
3972     ev_tstamp mn_prev = mn_now;
3973    
3974     ev_now_update (EV_A);
3975     timers_reschedule (EV_A_ mn_now - mn_prev);
3976 root 1.286 #if EV_PERIODIC_ENABLE
3977 root 1.288 /* TODO: really do this? */
3978 root 1.285 periodics_reschedule (EV_A);
3979 root 1.286 #endif
3980 root 1.285 }
3981    
3982 root 1.8 /*****************************************************************************/
3983 root 1.288 /* singly-linked list management, used when the expected list length is short */
3984 root 1.8
3985 root 1.284 inline_size void
3986 root 1.10 wlist_add (WL *head, WL elem)
3987 root 1.1 {
3988     elem->next = *head;
3989     *head = elem;
3990     }
3991    
3992 root 1.284 inline_size void
3993 root 1.10 wlist_del (WL *head, WL elem)
3994 root 1.1 {
3995     while (*head)
3996     {
3997 root 1.500 if (ecb_expect_true (*head == elem))
3998 root 1.1 {
3999     *head = elem->next;
4000 root 1.307 break;
4001 root 1.1 }
4002    
4003     head = &(*head)->next;
4004     }
4005     }
4006    
4007 root 1.288 /* internal, faster, version of ev_clear_pending */
4008 root 1.284 inline_speed void
4009 root 1.166 clear_pending (EV_P_ W w)
4010 root 1.16 {
4011     if (w->pending)
4012     {
4013 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
4014 root 1.16 w->pending = 0;
4015     }
4016     }
4017    
4018 root 1.167 int
4019 root 1.486 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4020 root 1.166 {
4021     W w_ = (W)w;
4022     int pending = w_->pending;
4023    
4024 root 1.500 if (ecb_expect_true (pending))
4025 root 1.172 {
4026     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4027 root 1.288 p->w = (W)&pending_w;
4028 root 1.172 w_->pending = 0;
4029     return p->events;
4030     }
4031     else
4032 root 1.167 return 0;
4033 root 1.166 }
4034    
4035 root 1.284 inline_size void
4036 root 1.164 pri_adjust (EV_P_ W w)
4037     {
4038 root 1.295 int pri = ev_priority (w);
4039 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4040     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4041 root 1.295 ev_set_priority (w, pri);
4042 root 1.164 }
4043    
4044 root 1.284 inline_speed void
4045 root 1.51 ev_start (EV_P_ W w, int active)
4046 root 1.1 {
4047 root 1.164 pri_adjust (EV_A_ w);
4048 root 1.1 w->active = active;
4049 root 1.51 ev_ref (EV_A);
4050 root 1.1 }
4051    
4052 root 1.284 inline_size void
4053 root 1.51 ev_stop (EV_P_ W w)
4054 root 1.1 {
4055 root 1.51 ev_unref (EV_A);
4056 root 1.1 w->active = 0;
4057     }
4058    
4059 root 1.8 /*****************************************************************************/
4060    
4061 root 1.500 ecb_noinline
4062 root 1.480 void
4063 root 1.486 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4064 root 1.1 {
4065 root 1.37 int fd = w->fd;
4066    
4067 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4068 root 1.1 return;
4069    
4070 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4071 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4072 root 1.33
4073 root 1.498 #if EV_VERIFY >= 2
4074     assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4075     #endif
4076 root 1.248 EV_FREQUENT_CHECK;
4077    
4078 root 1.51 ev_start (EV_A_ (W)w, 1);
4079 root 1.490 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4080 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
4081 root 1.1
4082 root 1.426 /* common bug, apparently */
4083     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4084    
4085 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4086 root 1.281 w->events &= ~EV__IOFDSET;
4087 root 1.248
4088     EV_FREQUENT_CHECK;
4089 root 1.1 }
4090    
4091 root 1.500 ecb_noinline
4092 root 1.480 void
4093 root 1.486 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4094 root 1.1 {
4095 root 1.166 clear_pending (EV_A_ (W)w);
4096 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4097 root 1.1 return;
4098    
4099 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4100 root 1.89
4101 root 1.498 #if EV_VERIFY >= 2
4102     assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4103     #endif
4104 root 1.248 EV_FREQUENT_CHECK;
4105    
4106 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
4107 root 1.51 ev_stop (EV_A_ (W)w);
4108 root 1.1
4109 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4110 root 1.248
4111     EV_FREQUENT_CHECK;
4112 root 1.1 }
4113    
4114 root 1.500 ecb_noinline
4115 root 1.480 void
4116 root 1.486 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4117 root 1.1 {
4118 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4119 root 1.1 return;
4120    
4121 root 1.228 ev_at (w) += mn_now;
4122 root 1.12
4123 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4124 root 1.13
4125 root 1.248 EV_FREQUENT_CHECK;
4126    
4127     ++timercnt;
4128     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4129 root 1.490 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4130 root 1.241 ANHE_w (timers [ev_active (w)]) = (WT)w;
4131 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
4132 root 1.235 upheap (timers, ev_active (w));
4133 root 1.62
4134 root 1.248 EV_FREQUENT_CHECK;
4135    
4136 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4137 root 1.12 }
4138    
4139 root 1.500 ecb_noinline
4140 root 1.480 void
4141 root 1.486 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4142 root 1.12 {
4143 root 1.166 clear_pending (EV_A_ (W)w);
4144 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4145 root 1.12 return;
4146    
4147 root 1.248 EV_FREQUENT_CHECK;
4148    
4149 root 1.230 {
4150     int active = ev_active (w);
4151 root 1.62
4152 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4153 root 1.151
4154 root 1.248 --timercnt;
4155    
4156 root 1.500 if (ecb_expect_true (active < timercnt + HEAP0))
4157 root 1.151 {
4158 root 1.248 timers [active] = timers [timercnt + HEAP0];
4159 root 1.181 adjustheap (timers, timercnt, active);
4160 root 1.151 }
4161 root 1.248 }
4162 root 1.228
4163     ev_at (w) -= mn_now;
4164 root 1.14
4165 root 1.51 ev_stop (EV_A_ (W)w);
4166 root 1.328
4167     EV_FREQUENT_CHECK;
4168 root 1.12 }
4169 root 1.4
4170 root 1.500 ecb_noinline
4171 root 1.480 void
4172 root 1.486 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4173 root 1.14 {
4174 root 1.248 EV_FREQUENT_CHECK;
4175    
4176 root 1.407 clear_pending (EV_A_ (W)w);
4177 root 1.406
4178 root 1.14 if (ev_is_active (w))
4179     {
4180     if (w->repeat)
4181 root 1.99 {
4182 root 1.228 ev_at (w) = mn_now + w->repeat;
4183 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
4184 root 1.230 adjustheap (timers, timercnt, ev_active (w));
4185 root 1.99 }
4186 root 1.14 else
4187 root 1.51 ev_timer_stop (EV_A_ w);
4188 root 1.14 }
4189     else if (w->repeat)
4190 root 1.112 {
4191 root 1.229 ev_at (w) = w->repeat;
4192 root 1.112 ev_timer_start (EV_A_ w);
4193     }
4194 root 1.248
4195     EV_FREQUENT_CHECK;
4196 root 1.14 }
4197    
4198 root 1.301 ev_tstamp
4199 root 1.486 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4200 root 1.301 {
4201 root 1.509 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4202 root 1.301 }
4203    
4204 root 1.140 #if EV_PERIODIC_ENABLE
4205 root 1.500 ecb_noinline
4206 root 1.480 void
4207 root 1.486 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4208 root 1.12 {
4209 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4210 root 1.12 return;
4211 root 1.1
4212 root 1.77 if (w->reschedule_cb)
4213 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4214 root 1.77 else if (w->interval)
4215     {
4216 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4217 root 1.370 periodic_recalc (EV_A_ w);
4218 root 1.77 }
4219 root 1.173 else
4220 root 1.228 ev_at (w) = w->offset;
4221 root 1.12
4222 root 1.248 EV_FREQUENT_CHECK;
4223    
4224     ++periodiccnt;
4225     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4226 root 1.490 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4227 root 1.241 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4228 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
4229 root 1.235 upheap (periodics, ev_active (w));
4230 root 1.62
4231 root 1.248 EV_FREQUENT_CHECK;
4232    
4233 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4234 root 1.1 }
4235    
4236 root 1.500 ecb_noinline
4237 root 1.480 void
4238 root 1.486 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4239 root 1.1 {
4240 root 1.166 clear_pending (EV_A_ (W)w);
4241 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4242 root 1.1 return;
4243    
4244 root 1.248 EV_FREQUENT_CHECK;
4245    
4246 root 1.230 {
4247     int active = ev_active (w);
4248 root 1.62
4249 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4250 root 1.151
4251 root 1.248 --periodiccnt;
4252    
4253 root 1.500 if (ecb_expect_true (active < periodiccnt + HEAP0))
4254 root 1.151 {
4255 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
4256 root 1.181 adjustheap (periodics, periodiccnt, active);
4257 root 1.151 }
4258 root 1.248 }
4259 root 1.228
4260 root 1.328 ev_stop (EV_A_ (W)w);
4261    
4262 root 1.248 EV_FREQUENT_CHECK;
4263 root 1.1 }
4264    
4265 root 1.500 ecb_noinline
4266 root 1.480 void
4267 root 1.486 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4268 root 1.77 {
4269 root 1.84 /* TODO: use adjustheap and recalculation */
4270 root 1.77 ev_periodic_stop (EV_A_ w);
4271     ev_periodic_start (EV_A_ w);
4272     }
4273 root 1.93 #endif
4274 root 1.77
4275 root 1.56 #ifndef SA_RESTART
4276     # define SA_RESTART 0
4277     #endif
4278    
4279 root 1.336 #if EV_SIGNAL_ENABLE
4280    
4281 root 1.500 ecb_noinline
4282 root 1.480 void
4283 root 1.486 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4284 root 1.56 {
4285 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4286 root 1.56 return;
4287    
4288 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4289    
4290     #if EV_MULTIPLICITY
4291 root 1.308 assert (("libev: a signal must not be attached to two different loops",
4292 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4293    
4294     signals [w->signum - 1].loop = EV_A;
4295 root 1.449 ECB_MEMORY_FENCE_RELEASE;
4296 root 1.306 #endif
4297 root 1.56
4298 root 1.303 EV_FREQUENT_CHECK;
4299    
4300     #if EV_USE_SIGNALFD
4301     if (sigfd == -2)
4302     {
4303     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4304     if (sigfd < 0 && errno == EINVAL)
4305     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4306    
4307     if (sigfd >= 0)
4308     {
4309     fd_intern (sigfd); /* doing it twice will not hurt */
4310    
4311     sigemptyset (&sigfd_set);
4312    
4313     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4314     ev_set_priority (&sigfd_w, EV_MAXPRI);
4315     ev_io_start (EV_A_ &sigfd_w);
4316     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4317     }
4318     }
4319    
4320     if (sigfd >= 0)
4321     {
4322     /* TODO: check .head */
4323     sigaddset (&sigfd_set, w->signum);
4324     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4325 root 1.207
4326 root 1.303 signalfd (sigfd, &sigfd_set, 0);
4327     }
4328 root 1.180 #endif
4329    
4330 root 1.56 ev_start (EV_A_ (W)w, 1);
4331 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
4332 root 1.56
4333 root 1.63 if (!((WL)w)->next)
4334 root 1.304 # if EV_USE_SIGNALFD
4335 root 1.306 if (sigfd < 0) /*TODO*/
4336 root 1.304 # endif
4337 root 1.306 {
4338 root 1.322 # ifdef _WIN32
4339 root 1.317 evpipe_init (EV_A);
4340    
4341 root 1.306 signal (w->signum, ev_sighandler);
4342     # else
4343     struct sigaction sa;
4344    
4345     evpipe_init (EV_A);
4346    
4347     sa.sa_handler = ev_sighandler;
4348     sigfillset (&sa.sa_mask);
4349     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4350     sigaction (w->signum, &sa, 0);
4351    
4352 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
4353     {
4354     sigemptyset (&sa.sa_mask);
4355     sigaddset (&sa.sa_mask, w->signum);
4356     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4357     }
4358 root 1.67 #endif
4359 root 1.306 }
4360 root 1.248
4361     EV_FREQUENT_CHECK;
4362 root 1.56 }
4363    
4364 root 1.500 ecb_noinline
4365 root 1.480 void
4366 root 1.486 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4367 root 1.56 {
4368 root 1.166 clear_pending (EV_A_ (W)w);
4369 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4370 root 1.56 return;
4371    
4372 root 1.248 EV_FREQUENT_CHECK;
4373    
4374 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
4375 root 1.56 ev_stop (EV_A_ (W)w);
4376    
4377     if (!signals [w->signum - 1].head)
4378 root 1.306 {
4379 root 1.307 #if EV_MULTIPLICITY
4380 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
4381 root 1.307 #endif
4382     #if EV_USE_SIGNALFD
4383 root 1.306 if (sigfd >= 0)
4384     {
4385 root 1.321 sigset_t ss;
4386    
4387     sigemptyset (&ss);
4388     sigaddset (&ss, w->signum);
4389 root 1.306 sigdelset (&sigfd_set, w->signum);
4390 root 1.321
4391 root 1.306 signalfd (sigfd, &sigfd_set, 0);
4392 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
4393 root 1.306 }
4394     else
4395 root 1.307 #endif
4396 root 1.306 signal (w->signum, SIG_DFL);
4397     }
4398 root 1.248
4399     EV_FREQUENT_CHECK;
4400 root 1.56 }
4401    
4402 root 1.336 #endif
4403    
4404     #if EV_CHILD_ENABLE
4405    
4406 root 1.28 void
4407 root 1.486 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4408 root 1.22 {
4409 root 1.56 #if EV_MULTIPLICITY
4410 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4411 root 1.56 #endif
4412 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4413 root 1.22 return;
4414    
4415 root 1.248 EV_FREQUENT_CHECK;
4416    
4417 root 1.51 ev_start (EV_A_ (W)w, 1);
4418 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4419 root 1.248
4420     EV_FREQUENT_CHECK;
4421 root 1.22 }
4422    
4423 root 1.28 void
4424 root 1.486 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4425 root 1.22 {
4426 root 1.166 clear_pending (EV_A_ (W)w);
4427 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4428 root 1.22 return;
4429    
4430 root 1.248 EV_FREQUENT_CHECK;
4431    
4432 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4433 root 1.51 ev_stop (EV_A_ (W)w);
4434 root 1.248
4435     EV_FREQUENT_CHECK;
4436 root 1.22 }
4437    
4438 root 1.336 #endif
4439    
4440 root 1.140 #if EV_STAT_ENABLE
4441    
4442     # ifdef _WIN32
4443 root 1.146 # undef lstat
4444     # define lstat(a,b) _stati64 (a,b)
4445 root 1.140 # endif
4446    
4447 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
4448     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4449     #define MIN_STAT_INTERVAL 0.1074891
4450 root 1.143
4451 root 1.500 ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4452 root 1.152
4453     #if EV_USE_INOTIFY
4454 root 1.326
4455     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4456     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4457 root 1.152
4458 root 1.500 ecb_noinline
4459 root 1.480 static void
4460 root 1.152 infy_add (EV_P_ ev_stat *w)
4461     {
4462 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
4463     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4464     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4465     | IN_DONT_FOLLOW | IN_MASK_ADD);
4466 root 1.152
4467 root 1.318 if (w->wd >= 0)
4468 root 1.152 {
4469 root 1.318 struct statfs sfs;
4470    
4471     /* now local changes will be tracked by inotify, but remote changes won't */
4472     /* unless the filesystem is known to be local, we therefore still poll */
4473     /* also do poll on <2.6.25, but with normal frequency */
4474    
4475     if (!fs_2625)
4476     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4477     else if (!statfs (w->path, &sfs)
4478     && (sfs.f_type == 0x1373 /* devfs */
4479 root 1.451 || sfs.f_type == 0x4006 /* fat */
4480     || sfs.f_type == 0x4d44 /* msdos */
4481 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
4482 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
4483     || sfs.f_type == 0x858458f6 /* ramfs */
4484     || sfs.f_type == 0x5346544e /* ntfs */
4485 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
4486 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
4487 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
4488 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
4489 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
4490     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4491     else
4492     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4493     }
4494     else
4495     {
4496     /* can't use inotify, continue to stat */
4497 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4498 root 1.152
4499 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
4500 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4501 root 1.233 /* but an efficiency issue only */
4502 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4503 root 1.152 {
4504 root 1.153 char path [4096];
4505 root 1.152 strcpy (path, w->path);
4506    
4507     do
4508     {
4509     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4510     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4511    
4512     char *pend = strrchr (path, '/');
4513    
4514 root 1.275 if (!pend || pend == path)
4515     break;
4516 root 1.152
4517     *pend = 0;
4518 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4519 root 1.372 }
4520 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4521     }
4522     }
4523 root 1.275
4524     if (w->wd >= 0)
4525 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4526 root 1.152
4527 root 1.318 /* now re-arm timer, if required */
4528     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4529     ev_timer_again (EV_A_ &w->timer);
4530     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4531 root 1.152 }
4532    
4533 root 1.500 ecb_noinline
4534 root 1.480 static void
4535 root 1.152 infy_del (EV_P_ ev_stat *w)
4536     {
4537     int slot;
4538     int wd = w->wd;
4539    
4540     if (wd < 0)
4541     return;
4542    
4543     w->wd = -2;
4544 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4545 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4546    
4547     /* remove this watcher, if others are watching it, they will rearm */
4548     inotify_rm_watch (fs_fd, wd);
4549     }
4550    
4551 root 1.500 ecb_noinline
4552 root 1.480 static void
4553 root 1.152 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4554     {
4555     if (slot < 0)
4556 root 1.264 /* overflow, need to check for all hash slots */
4557 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4558 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4559     else
4560     {
4561     WL w_;
4562    
4563 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4564 root 1.152 {
4565     ev_stat *w = (ev_stat *)w_;
4566     w_ = w_->next; /* lets us remove this watcher and all before it */
4567    
4568     if (w->wd == wd || wd == -1)
4569     {
4570     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4571     {
4572 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4573 root 1.152 w->wd = -1;
4574     infy_add (EV_A_ w); /* re-add, no matter what */
4575     }
4576    
4577 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4578 root 1.152 }
4579     }
4580     }
4581     }
4582    
4583     static void
4584     infy_cb (EV_P_ ev_io *w, int revents)
4585     {
4586     char buf [EV_INOTIFY_BUFSIZE];
4587     int ofs;
4588     int len = read (fs_fd, buf, sizeof (buf));
4589    
4590 root 1.326 for (ofs = 0; ofs < len; )
4591     {
4592     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4593     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4594     ofs += sizeof (struct inotify_event) + ev->len;
4595     }
4596 root 1.152 }
4597    
4598 root 1.480 inline_size ecb_cold
4599     void
4600 root 1.330 ev_check_2625 (EV_P)
4601     {
4602     /* kernels < 2.6.25 are borked
4603     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4604     */
4605     if (ev_linux_version () < 0x020619)
4606 root 1.273 return;
4607 root 1.264
4608 root 1.273 fs_2625 = 1;
4609     }
4610 root 1.264
4611 root 1.315 inline_size int
4612     infy_newfd (void)
4613     {
4614 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4615 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4616     if (fd >= 0)
4617     return fd;
4618     #endif
4619     return inotify_init ();
4620     }
4621    
4622 root 1.284 inline_size void
4623 root 1.273 infy_init (EV_P)
4624     {
4625     if (fs_fd != -2)
4626     return;
4627 root 1.264
4628 root 1.273 fs_fd = -1;
4629 root 1.264
4630 root 1.330 ev_check_2625 (EV_A);
4631 root 1.264
4632 root 1.315 fs_fd = infy_newfd ();
4633 root 1.152
4634     if (fs_fd >= 0)
4635     {
4636 root 1.315 fd_intern (fs_fd);
4637 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4638     ev_set_priority (&fs_w, EV_MAXPRI);
4639     ev_io_start (EV_A_ &fs_w);
4640 root 1.317 ev_unref (EV_A);
4641 root 1.152 }
4642     }
4643    
4644 root 1.284 inline_size void
4645 root 1.154 infy_fork (EV_P)
4646     {
4647     int slot;
4648    
4649     if (fs_fd < 0)
4650     return;
4651    
4652 root 1.317 ev_ref (EV_A);
4653 root 1.315 ev_io_stop (EV_A_ &fs_w);
4654 root 1.154 close (fs_fd);
4655 root 1.315 fs_fd = infy_newfd ();
4656    
4657     if (fs_fd >= 0)
4658     {
4659     fd_intern (fs_fd);
4660     ev_io_set (&fs_w, fs_fd, EV_READ);
4661     ev_io_start (EV_A_ &fs_w);
4662 root 1.317 ev_unref (EV_A);
4663 root 1.315 }
4664 root 1.154
4665 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4666 root 1.154 {
4667     WL w_ = fs_hash [slot].head;
4668     fs_hash [slot].head = 0;
4669    
4670     while (w_)
4671     {
4672     ev_stat *w = (ev_stat *)w_;
4673     w_ = w_->next; /* lets us add this watcher */
4674    
4675     w->wd = -1;
4676    
4677     if (fs_fd >= 0)
4678     infy_add (EV_A_ w); /* re-add, no matter what */
4679     else
4680 root 1.318 {
4681     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4682     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4683     ev_timer_again (EV_A_ &w->timer);
4684     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4685     }
4686 root 1.154 }
4687     }
4688     }
4689    
4690 root 1.152 #endif
4691    
4692 root 1.255 #ifdef _WIN32
4693     # define EV_LSTAT(p,b) _stati64 (p, b)
4694     #else
4695     # define EV_LSTAT(p,b) lstat (p, b)
4696     #endif
4697    
4698 root 1.140 void
4699 root 1.486 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4700 root 1.140 {
4701     if (lstat (w->path, &w->attr) < 0)
4702     w->attr.st_nlink = 0;
4703     else if (!w->attr.st_nlink)
4704     w->attr.st_nlink = 1;
4705     }
4706    
4707 root 1.500 ecb_noinline
4708 root 1.480 static void
4709 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4710     {
4711     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4712    
4713 root 1.320 ev_statdata prev = w->attr;
4714 root 1.140 ev_stat_stat (EV_A_ w);
4715    
4716 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4717     if (
4718 root 1.320 prev.st_dev != w->attr.st_dev
4719     || prev.st_ino != w->attr.st_ino
4720     || prev.st_mode != w->attr.st_mode
4721     || prev.st_nlink != w->attr.st_nlink
4722     || prev.st_uid != w->attr.st_uid
4723     || prev.st_gid != w->attr.st_gid
4724     || prev.st_rdev != w->attr.st_rdev
4725     || prev.st_size != w->attr.st_size
4726     || prev.st_atime != w->attr.st_atime
4727     || prev.st_mtime != w->attr.st_mtime
4728     || prev.st_ctime != w->attr.st_ctime
4729 root 1.156 ) {
4730 root 1.320 /* we only update w->prev on actual differences */
4731     /* in case we test more often than invoke the callback, */
4732     /* to ensure that prev is always different to attr */
4733     w->prev = prev;
4734    
4735 root 1.152 #if EV_USE_INOTIFY
4736 root 1.264 if (fs_fd >= 0)
4737     {
4738     infy_del (EV_A_ w);
4739     infy_add (EV_A_ w);
4740     ev_stat_stat (EV_A_ w); /* avoid race... */
4741     }
4742 root 1.152 #endif
4743    
4744     ev_feed_event (EV_A_ w, EV_STAT);
4745     }
4746 root 1.140 }
4747    
4748     void
4749 root 1.486 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4750 root 1.140 {
4751 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4752 root 1.140 return;
4753    
4754     ev_stat_stat (EV_A_ w);
4755    
4756 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4757     w->interval = MIN_STAT_INTERVAL;
4758 root 1.143
4759 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4760 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
4761 root 1.152
4762     #if EV_USE_INOTIFY
4763     infy_init (EV_A);
4764    
4765     if (fs_fd >= 0)
4766     infy_add (EV_A_ w);
4767     else
4768     #endif
4769 root 1.318 {
4770     ev_timer_again (EV_A_ &w->timer);
4771     ev_unref (EV_A);
4772     }
4773 root 1.140
4774     ev_start (EV_A_ (W)w, 1);
4775 root 1.248
4776     EV_FREQUENT_CHECK;
4777 root 1.140 }
4778    
4779     void
4780 root 1.486 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4781 root 1.140 {
4782 root 1.166 clear_pending (EV_A_ (W)w);
4783 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4784 root 1.140 return;
4785    
4786 root 1.248 EV_FREQUENT_CHECK;
4787    
4788 root 1.152 #if EV_USE_INOTIFY
4789     infy_del (EV_A_ w);
4790     #endif
4791 root 1.318
4792     if (ev_is_active (&w->timer))
4793     {
4794     ev_ref (EV_A);
4795     ev_timer_stop (EV_A_ &w->timer);
4796     }
4797 root 1.140
4798 root 1.134 ev_stop (EV_A_ (W)w);
4799 root 1.248
4800     EV_FREQUENT_CHECK;
4801 root 1.134 }
4802     #endif
4803    
4804 root 1.164 #if EV_IDLE_ENABLE
4805 root 1.144 void
4806 root 1.486 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4807 root 1.144 {
4808 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4809 root 1.144 return;
4810    
4811 root 1.164 pri_adjust (EV_A_ (W)w);
4812    
4813 root 1.248 EV_FREQUENT_CHECK;
4814    
4815 root 1.164 {
4816     int active = ++idlecnt [ABSPRI (w)];
4817    
4818     ++idleall;
4819     ev_start (EV_A_ (W)w, active);
4820    
4821 root 1.490 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4822 root 1.164 idles [ABSPRI (w)][active - 1] = w;
4823     }
4824 root 1.248
4825     EV_FREQUENT_CHECK;
4826 root 1.144 }
4827    
4828     void
4829 root 1.486 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4830 root 1.144 {
4831 root 1.166 clear_pending (EV_A_ (W)w);
4832 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4833 root 1.144 return;
4834    
4835 root 1.248 EV_FREQUENT_CHECK;
4836    
4837 root 1.144 {
4838 root 1.230 int active = ev_active (w);
4839 root 1.164
4840     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4841 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4842 root 1.164
4843     ev_stop (EV_A_ (W)w);
4844     --idleall;
4845 root 1.144 }
4846 root 1.248
4847     EV_FREQUENT_CHECK;
4848 root 1.144 }
4849 root 1.164 #endif
4850 root 1.144
4851 root 1.337 #if EV_PREPARE_ENABLE
4852 root 1.144 void
4853 root 1.486 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4854 root 1.144 {
4855 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4856 root 1.144 return;
4857    
4858 root 1.248 EV_FREQUENT_CHECK;
4859    
4860 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
4861 root 1.490 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4862 root 1.144 prepares [preparecnt - 1] = w;
4863 root 1.248
4864     EV_FREQUENT_CHECK;
4865 root 1.144 }
4866    
4867     void
4868 root 1.486 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4869 root 1.144 {
4870 root 1.166 clear_pending (EV_A_ (W)w);
4871 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4872 root 1.144 return;
4873    
4874 root 1.248 EV_FREQUENT_CHECK;
4875    
4876 root 1.144 {
4877 root 1.230 int active = ev_active (w);
4878    
4879 root 1.144 prepares [active - 1] = prepares [--preparecnt];
4880 root 1.230 ev_active (prepares [active - 1]) = active;
4881 root 1.144 }
4882    
4883     ev_stop (EV_A_ (W)w);
4884 root 1.248
4885     EV_FREQUENT_CHECK;
4886 root 1.144 }
4887 root 1.337 #endif
4888 root 1.144
4889 root 1.337 #if EV_CHECK_ENABLE
4890 root 1.144 void
4891 root 1.486 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4892 root 1.144 {
4893 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4894 root 1.144 return;
4895    
4896 root 1.248 EV_FREQUENT_CHECK;
4897    
4898 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
4899 root 1.490 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4900 root 1.144 checks [checkcnt - 1] = w;
4901 root 1.248
4902     EV_FREQUENT_CHECK;
4903 root 1.144 }
4904    
4905     void
4906 root 1.486 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4907 root 1.144 {
4908 root 1.166 clear_pending (EV_A_ (W)w);
4909 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4910 root 1.144 return;
4911    
4912 root 1.248 EV_FREQUENT_CHECK;
4913    
4914 root 1.144 {
4915 root 1.230 int active = ev_active (w);
4916    
4917 root 1.144 checks [active - 1] = checks [--checkcnt];
4918 root 1.230 ev_active (checks [active - 1]) = active;
4919 root 1.144 }
4920    
4921     ev_stop (EV_A_ (W)w);
4922 root 1.248
4923     EV_FREQUENT_CHECK;
4924 root 1.144 }
4925 root 1.337 #endif
4926 root 1.144
4927     #if EV_EMBED_ENABLE
4928 root 1.500 ecb_noinline
4929 root 1.480 void
4930 root 1.486 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4931 root 1.144 {
4932 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4933 root 1.144 }
4934    
4935     static void
4936 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
4937 root 1.144 {
4938     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4939    
4940     if (ev_cb (w))
4941     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4942     else
4943 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
4944 root 1.144 }
4945    
4946 root 1.189 static void
4947     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4948     {
4949     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4950    
4951 root 1.195 {
4952 root 1.306 EV_P = w->other;
4953 root 1.195
4954     while (fdchangecnt)
4955     {
4956     fd_reify (EV_A);
4957 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4958 root 1.195 }
4959     }
4960     }
4961    
4962 root 1.261 static void
4963     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4964     {
4965     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4966    
4967 root 1.277 ev_embed_stop (EV_A_ w);
4968    
4969 root 1.261 {
4970 root 1.306 EV_P = w->other;
4971 root 1.261
4972     ev_loop_fork (EV_A);
4973 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
4974 root 1.261 }
4975 root 1.277
4976     ev_embed_start (EV_A_ w);
4977 root 1.261 }
4978    
4979 root 1.195 #if 0
4980     static void
4981     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4982     {
4983     ev_idle_stop (EV_A_ idle);
4984 root 1.189 }
4985 root 1.195 #endif
4986 root 1.189
4987 root 1.144 void
4988 root 1.486 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4989 root 1.144 {
4990 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4991 root 1.144 return;
4992    
4993     {
4994 root 1.306 EV_P = w->other;
4995 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4996 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4997 root 1.144 }
4998    
4999 root 1.248 EV_FREQUENT_CHECK;
5000    
5001 root 1.144 ev_set_priority (&w->io, ev_priority (w));
5002     ev_io_start (EV_A_ &w->io);
5003    
5004 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
5005     ev_set_priority (&w->prepare, EV_MINPRI);
5006     ev_prepare_start (EV_A_ &w->prepare);
5007    
5008 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
5009     ev_fork_start (EV_A_ &w->fork);
5010    
5011 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
5012    
5013 root 1.144 ev_start (EV_A_ (W)w, 1);
5014 root 1.248
5015     EV_FREQUENT_CHECK;
5016 root 1.144 }
5017    
5018     void
5019 root 1.486 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
5020 root 1.144 {
5021 root 1.166 clear_pending (EV_A_ (W)w);
5022 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
5023 root 1.144 return;
5024    
5025 root 1.248 EV_FREQUENT_CHECK;
5026    
5027 root 1.261 ev_io_stop (EV_A_ &w->io);
5028 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
5029 root 1.261 ev_fork_stop (EV_A_ &w->fork);
5030 root 1.248
5031 root 1.328 ev_stop (EV_A_ (W)w);
5032    
5033 root 1.248 EV_FREQUENT_CHECK;
5034 root 1.144 }
5035     #endif
5036    
5037 root 1.147 #if EV_FORK_ENABLE
5038     void
5039 root 1.486 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5040 root 1.147 {
5041 root 1.500 if (ecb_expect_false (ev_is_active (w)))
5042 root 1.147 return;
5043    
5044 root 1.248 EV_FREQUENT_CHECK;
5045    
5046 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
5047 root 1.490 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5048 root 1.147 forks [forkcnt - 1] = w;
5049 root 1.248
5050     EV_FREQUENT_CHECK;
5051 root 1.147 }
5052    
5053     void
5054 root 1.486 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5055 root 1.147 {
5056 root 1.166 clear_pending (EV_A_ (W)w);
5057 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
5058 root 1.147 return;
5059    
5060 root 1.248 EV_FREQUENT_CHECK;
5061    
5062 root 1.147 {
5063 root 1.230 int active = ev_active (w);
5064    
5065 root 1.147 forks [active - 1] = forks [--forkcnt];
5066 root 1.230 ev_active (forks [active - 1]) = active;
5067 root 1.147 }
5068    
5069     ev_stop (EV_A_ (W)w);
5070 root 1.248
5071     EV_FREQUENT_CHECK;
5072 root 1.147 }
5073     #endif
5074    
5075 root 1.360 #if EV_CLEANUP_ENABLE
5076     void
5077 root 1.486 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5078 root 1.360 {
5079 root 1.500 if (ecb_expect_false (ev_is_active (w)))
5080 root 1.360 return;
5081    
5082     EV_FREQUENT_CHECK;
5083    
5084     ev_start (EV_A_ (W)w, ++cleanupcnt);
5085 root 1.490 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5086 root 1.360 cleanups [cleanupcnt - 1] = w;
5087    
5088 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
5089     ev_unref (EV_A);
5090 root 1.360 EV_FREQUENT_CHECK;
5091     }
5092    
5093     void
5094 root 1.486 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5095 root 1.360 {
5096     clear_pending (EV_A_ (W)w);
5097 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
5098 root 1.360 return;
5099    
5100     EV_FREQUENT_CHECK;
5101 root 1.362 ev_ref (EV_A);
5102 root 1.360
5103     {
5104     int active = ev_active (w);
5105    
5106     cleanups [active - 1] = cleanups [--cleanupcnt];
5107     ev_active (cleanups [active - 1]) = active;
5108     }
5109    
5110     ev_stop (EV_A_ (W)w);
5111    
5112     EV_FREQUENT_CHECK;
5113     }
5114     #endif
5115    
5116 root 1.207 #if EV_ASYNC_ENABLE
5117     void
5118 root 1.486 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5119 root 1.207 {
5120 root 1.500 if (ecb_expect_false (ev_is_active (w)))
5121 root 1.207 return;
5122    
5123 root 1.352 w->sent = 0;
5124    
5125 root 1.207 evpipe_init (EV_A);
5126    
5127 root 1.248 EV_FREQUENT_CHECK;
5128    
5129 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
5130 root 1.490 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5131 root 1.207 asyncs [asynccnt - 1] = w;
5132 root 1.248
5133     EV_FREQUENT_CHECK;
5134 root 1.207 }
5135    
5136     void
5137 root 1.486 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5138 root 1.207 {
5139     clear_pending (EV_A_ (W)w);
5140 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
5141 root 1.207 return;
5142    
5143 root 1.248 EV_FREQUENT_CHECK;
5144    
5145 root 1.207 {
5146 root 1.230 int active = ev_active (w);
5147    
5148 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
5149 root 1.230 ev_active (asyncs [active - 1]) = active;
5150 root 1.207 }
5151    
5152     ev_stop (EV_A_ (W)w);
5153 root 1.248
5154     EV_FREQUENT_CHECK;
5155 root 1.207 }
5156    
5157     void
5158 root 1.486 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5159 root 1.207 {
5160     w->sent = 1;
5161 root 1.307 evpipe_write (EV_A_ &async_pending);
5162 root 1.207 }
5163     #endif
5164    
5165 root 1.1 /*****************************************************************************/
5166 root 1.10
5167 root 1.16 struct ev_once
5168     {
5169 root 1.136 ev_io io;
5170     ev_timer to;
5171 root 1.16 void (*cb)(int revents, void *arg);
5172     void *arg;
5173     };
5174    
5175     static void
5176 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
5177 root 1.16 {
5178     void (*cb)(int revents, void *arg) = once->cb;
5179     void *arg = once->arg;
5180    
5181 root 1.259 ev_io_stop (EV_A_ &once->io);
5182 root 1.51 ev_timer_stop (EV_A_ &once->to);
5183 root 1.69 ev_free (once);
5184 root 1.16
5185     cb (revents, arg);
5186     }
5187    
5188     static void
5189 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
5190 root 1.16 {
5191 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5192    
5193     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5194 root 1.16 }
5195    
5196     static void
5197 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
5198 root 1.16 {
5199 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5200    
5201     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5202 root 1.16 }
5203    
5204     void
5205 root 1.486 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5206 root 1.16 {
5207 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5208 root 1.16
5209 root 1.123 once->cb = cb;
5210     once->arg = arg;
5211 root 1.16
5212 root 1.123 ev_init (&once->io, once_cb_io);
5213     if (fd >= 0)
5214     {
5215     ev_io_set (&once->io, fd, events);
5216     ev_io_start (EV_A_ &once->io);
5217     }
5218 root 1.16
5219 root 1.123 ev_init (&once->to, once_cb_to);
5220     if (timeout >= 0.)
5221     {
5222     ev_timer_set (&once->to, timeout, 0.);
5223     ev_timer_start (EV_A_ &once->to);
5224 root 1.16 }
5225     }
5226    
5227 root 1.282 /*****************************************************************************/
5228    
5229 root 1.288 #if EV_WALK_ENABLE
5230 root 1.480 ecb_cold
5231     void
5232 root 1.486 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5233 root 1.282 {
5234     int i, j;
5235     ev_watcher_list *wl, *wn;
5236    
5237     if (types & (EV_IO | EV_EMBED))
5238     for (i = 0; i < anfdmax; ++i)
5239     for (wl = anfds [i].head; wl; )
5240     {
5241     wn = wl->next;
5242    
5243     #if EV_EMBED_ENABLE
5244     if (ev_cb ((ev_io *)wl) == embed_io_cb)
5245     {
5246     if (types & EV_EMBED)
5247     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5248     }
5249     else
5250     #endif
5251     #if EV_USE_INOTIFY
5252     if (ev_cb ((ev_io *)wl) == infy_cb)
5253     ;
5254     else
5255     #endif
5256 root 1.288 if ((ev_io *)wl != &pipe_w)
5257 root 1.282 if (types & EV_IO)
5258     cb (EV_A_ EV_IO, wl);
5259    
5260     wl = wn;
5261     }
5262    
5263     if (types & (EV_TIMER | EV_STAT))
5264     for (i = timercnt + HEAP0; i-- > HEAP0; )
5265     #if EV_STAT_ENABLE
5266     /*TODO: timer is not always active*/
5267     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5268     {
5269     if (types & EV_STAT)
5270     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5271     }
5272     else
5273     #endif
5274     if (types & EV_TIMER)
5275     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5276    
5277     #if EV_PERIODIC_ENABLE
5278     if (types & EV_PERIODIC)
5279     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5280     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5281     #endif
5282    
5283     #if EV_IDLE_ENABLE
5284     if (types & EV_IDLE)
5285 root 1.390 for (j = NUMPRI; j--; )
5286 root 1.282 for (i = idlecnt [j]; i--; )
5287     cb (EV_A_ EV_IDLE, idles [j][i]);
5288     #endif
5289    
5290     #if EV_FORK_ENABLE
5291     if (types & EV_FORK)
5292     for (i = forkcnt; i--; )
5293     if (ev_cb (forks [i]) != embed_fork_cb)
5294     cb (EV_A_ EV_FORK, forks [i]);
5295     #endif
5296    
5297     #if EV_ASYNC_ENABLE
5298     if (types & EV_ASYNC)
5299     for (i = asynccnt; i--; )
5300     cb (EV_A_ EV_ASYNC, asyncs [i]);
5301     #endif
5302    
5303 root 1.337 #if EV_PREPARE_ENABLE
5304 root 1.282 if (types & EV_PREPARE)
5305     for (i = preparecnt; i--; )
5306 root 1.337 # if EV_EMBED_ENABLE
5307 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
5308 root 1.337 # endif
5309     cb (EV_A_ EV_PREPARE, prepares [i]);
5310 root 1.282 #endif
5311    
5312 root 1.337 #if EV_CHECK_ENABLE
5313 root 1.282 if (types & EV_CHECK)
5314     for (i = checkcnt; i--; )
5315     cb (EV_A_ EV_CHECK, checks [i]);
5316 root 1.337 #endif
5317 root 1.282
5318 root 1.337 #if EV_SIGNAL_ENABLE
5319 root 1.282 if (types & EV_SIGNAL)
5320 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
5321 root 1.282 for (wl = signals [i].head; wl; )
5322     {
5323     wn = wl->next;
5324     cb (EV_A_ EV_SIGNAL, wl);
5325     wl = wn;
5326     }
5327 root 1.337 #endif
5328 root 1.282
5329 root 1.337 #if EV_CHILD_ENABLE
5330 root 1.282 if (types & EV_CHILD)
5331 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
5332 root 1.282 for (wl = childs [i]; wl; )
5333     {
5334     wn = wl->next;
5335     cb (EV_A_ EV_CHILD, wl);
5336     wl = wn;
5337     }
5338 root 1.337 #endif
5339 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
5340     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5341     }
5342     #endif
5343    
5344 root 1.188 #if EV_MULTIPLICITY
5345     #include "ev_wrap.h"
5346     #endif
5347