ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.52
Committed: Sat Nov 3 22:10:39 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.51: +2 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.50 #ifndef EV_STANDALONE
32 root 1.29 # include "config.h"
33     #endif
34 root 1.17
35 root 1.1 #include <math.h>
36     #include <stdlib.h>
37 root 1.7 #include <unistd.h>
38     #include <fcntl.h>
39     #include <signal.h>
40 root 1.16 #include <stddef.h>
41 root 1.1
42     #include <stdio.h>
43    
44 root 1.4 #include <assert.h>
45 root 1.1 #include <errno.h>
46 root 1.22 #include <sys/types.h>
47 root 1.45 #ifndef WIN32
48     # include <sys/wait.h>
49     #endif
50 root 1.1 #include <sys/time.h>
51     #include <time.h>
52    
53 root 1.40 /**/
54    
55 root 1.29 #ifndef EV_USE_MONOTONIC
56 root 1.37 # define EV_USE_MONOTONIC 1
57     #endif
58    
59 root 1.29 #ifndef EV_USE_SELECT
60     # define EV_USE_SELECT 1
61 root 1.10 #endif
62    
63 root 1.51 #ifndef EV_USEV_POLL
64     # define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65 root 1.41 #endif
66    
67 root 1.29 #ifndef EV_USE_EPOLL
68     # define EV_USE_EPOLL 0
69 root 1.10 #endif
70    
71 root 1.44 #ifndef EV_USE_KQUEUE
72     # define EV_USE_KQUEUE 0
73     #endif
74    
75 root 1.40 #ifndef EV_USE_REALTIME
76     # define EV_USE_REALTIME 1
77     #endif
78    
79     /**/
80    
81     #ifndef CLOCK_MONOTONIC
82     # undef EV_USE_MONOTONIC
83     # define EV_USE_MONOTONIC 0
84     #endif
85    
86 root 1.31 #ifndef CLOCK_REALTIME
87 root 1.40 # undef EV_USE_REALTIME
88 root 1.31 # define EV_USE_REALTIME 0
89     #endif
90 root 1.40
91     /**/
92 root 1.1
93 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 root 1.1
98     #include "ev.h"
99    
100 root 1.40 #if __GNUC__ >= 3
101     # define expect(expr,value) __builtin_expect ((expr),(value))
102     # define inline inline
103     #else
104     # define expect(expr,value) (expr)
105     # define inline static
106     #endif
107    
108     #define expect_false(expr) expect ((expr) != 0, 0)
109     #define expect_true(expr) expect ((expr) != 0, 1)
110    
111 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
113    
114 root 1.10 typedef struct ev_watcher *W;
115     typedef struct ev_watcher_list *WL;
116 root 1.12 typedef struct ev_watcher_time *WT;
117 root 1.10
118 root 1.51 static ev_tstamp now_floor, mn_now, diff; /* monotonic clock */
119     static ev_tstamp rt_now;
120     static int method;
121 root 1.1
122     static int have_monotonic; /* runtime */
123    
124     static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125 root 1.51 static void (*method_modify)(EV_P_ int fd, int oev, int nev);
126     static void (*method_poll)(EV_P_ ev_tstamp timeout);
127    
128     static int activecnt; /* number of active events */
129    
130     #if EV_USE_SELECT
131     static unsigned char *vec_ri, *vec_ro, *vec_wi, *vec_wo;
132     static int vec_max;
133     #endif
134    
135     #if EV_USEV_POLL
136     static struct pollfd *polls;
137     static int pollmax, pollcnt;
138     static int *pollidxs; /* maps fds into structure indices */
139     static int pollidxmax;
140     #endif
141    
142     #if EV_USE_EPOLL
143     static int epoll_fd = -1;
144    
145     static struct epoll_event *events;
146     static int eventmax;
147     #endif
148    
149     #if EV_USE_KQUEUE
150     static int kqueue_fd;
151     static struct kevent *kqueue_changes;
152     static int kqueue_changemax, kqueue_changecnt;
153     static struct kevent *kqueue_events;
154     static int kqueue_eventmax;
155     #endif
156 root 1.1
157 root 1.8 /*****************************************************************************/
158    
159 root 1.51 inline ev_tstamp
160 root 1.1 ev_time (void)
161     {
162 root 1.29 #if EV_USE_REALTIME
163 root 1.1 struct timespec ts;
164     clock_gettime (CLOCK_REALTIME, &ts);
165     return ts.tv_sec + ts.tv_nsec * 1e-9;
166     #else
167     struct timeval tv;
168     gettimeofday (&tv, 0);
169     return tv.tv_sec + tv.tv_usec * 1e-6;
170     #endif
171     }
172    
173 root 1.51 inline ev_tstamp
174 root 1.1 get_clock (void)
175     {
176 root 1.29 #if EV_USE_MONOTONIC
177 root 1.40 if (expect_true (have_monotonic))
178 root 1.1 {
179     struct timespec ts;
180     clock_gettime (CLOCK_MONOTONIC, &ts);
181     return ts.tv_sec + ts.tv_nsec * 1e-9;
182     }
183     #endif
184    
185     return ev_time ();
186     }
187    
188 root 1.51 ev_tstamp
189     ev_now (EV_P)
190     {
191     return rt_now;
192     }
193    
194 root 1.30 #define array_roundsize(base,n) ((n) | 4 & ~3)
195 root 1.29
196 root 1.1 #define array_needsize(base,cur,cnt,init) \
197 root 1.40 if (expect_false ((cnt) > cur)) \
198 root 1.1 { \
199 root 1.23 int newcnt = cur; \
200     do \
201     { \
202 root 1.30 newcnt = array_roundsize (base, newcnt << 1); \
203 root 1.23 } \
204     while ((cnt) > newcnt); \
205     \
206 root 1.1 base = realloc (base, sizeof (*base) * (newcnt)); \
207     init (base + cur, newcnt - cur); \
208     cur = newcnt; \
209     }
210    
211 root 1.8 /*****************************************************************************/
212    
213 root 1.1 typedef struct
214     {
215 root 1.50 struct ev_watcher_list *head;
216 root 1.33 unsigned char events;
217     unsigned char reify;
218 root 1.1 } ANFD;
219    
220     static ANFD *anfds;
221     static int anfdmax;
222    
223     static void
224     anfds_init (ANFD *base, int count)
225     {
226     while (count--)
227     {
228 root 1.27 base->head = 0;
229     base->events = EV_NONE;
230 root 1.33 base->reify = 0;
231    
232 root 1.1 ++base;
233     }
234     }
235    
236     typedef struct
237     {
238 root 1.10 W w;
239 root 1.1 int events;
240     } ANPENDING;
241    
242 root 1.42 static ANPENDING *pendings [NUMPRI];
243     static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
244 root 1.1
245     static void
246 root 1.51 event (EV_P_ W w, int events)
247 root 1.1 {
248 root 1.32 if (w->pending)
249     {
250 root 1.42 pendings [ABSPRI (w)][w->pending - 1].events |= events;
251 root 1.32 return;
252     }
253    
254 root 1.42 w->pending = ++pendingcnt [ABSPRI (w)];
255     array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
256     pendings [ABSPRI (w)][w->pending - 1].w = w;
257     pendings [ABSPRI (w)][w->pending - 1].events = events;
258 root 1.1 }
259    
260     static void
261 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
262 root 1.27 {
263     int i;
264    
265     for (i = 0; i < eventcnt; ++i)
266 root 1.51 event (EV_A_ events [i], type);
267 root 1.27 }
268    
269     static void
270 root 1.51 fd_event (EV_P_ int fd, int events)
271 root 1.1 {
272     ANFD *anfd = anfds + fd;
273     struct ev_io *w;
274    
275 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
276 root 1.1 {
277     int ev = w->events & events;
278    
279     if (ev)
280 root 1.51 event (EV_A_ (W)w, ev);
281 root 1.1 }
282     }
283    
284 root 1.27 /*****************************************************************************/
285    
286     static int *fdchanges;
287     static int fdchangemax, fdchangecnt;
288    
289 root 1.9 static void
290 root 1.51 fd_reify (EV_P)
291 root 1.9 {
292     int i;
293    
294 root 1.27 for (i = 0; i < fdchangecnt; ++i)
295     {
296     int fd = fdchanges [i];
297     ANFD *anfd = anfds + fd;
298     struct ev_io *w;
299    
300     int events = 0;
301    
302 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
303 root 1.27 events |= w->events;
304    
305 root 1.33 anfd->reify = 0;
306 root 1.27
307     if (anfd->events != events)
308     {
309 root 1.51 method_modify (EV_A_ fd, anfd->events, events);
310 root 1.27 anfd->events = events;
311     }
312     }
313    
314     fdchangecnt = 0;
315     }
316    
317     static void
318 root 1.51 fd_change (EV_P_ int fd)
319 root 1.27 {
320 root 1.33 if (anfds [fd].reify || fdchangecnt < 0)
321 root 1.27 return;
322    
323 root 1.33 anfds [fd].reify = 1;
324 root 1.27
325     ++fdchangecnt;
326     array_needsize (fdchanges, fdchangemax, fdchangecnt, );
327     fdchanges [fdchangecnt - 1] = fd;
328 root 1.9 }
329    
330 root 1.41 static void
331 root 1.51 fd_kill (EV_P_ int fd)
332 root 1.41 {
333     struct ev_io *w;
334    
335 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
336 root 1.41 {
337 root 1.51 ev_io_stop (EV_A_ w);
338     event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
339 root 1.41 }
340     }
341    
342 root 1.19 /* called on EBADF to verify fds */
343     static void
344 root 1.51 fd_ebadf (EV_P)
345 root 1.19 {
346     int fd;
347    
348     for (fd = 0; fd < anfdmax; ++fd)
349 root 1.27 if (anfds [fd].events)
350 root 1.19 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
351 root 1.51 fd_kill (EV_A_ fd);
352 root 1.41 }
353    
354     /* called on ENOMEM in select/poll to kill some fds and retry */
355     static void
356 root 1.51 fd_enomem (EV_P)
357 root 1.41 {
358     int fd = anfdmax;
359    
360     while (fd--)
361     if (anfds [fd].events)
362     {
363     close (fd);
364 root 1.51 fd_kill (EV_A_ fd);
365 root 1.41 return;
366     }
367 root 1.19 }
368    
369 root 1.8 /*****************************************************************************/
370    
371 root 1.12 static struct ev_timer **timers;
372     static int timermax, timercnt;
373 root 1.4
374 root 1.12 static struct ev_periodic **periodics;
375     static int periodicmax, periodiccnt;
376 root 1.1
377     static void
378 root 1.12 upheap (WT *timers, int k)
379 root 1.1 {
380 root 1.12 WT w = timers [k];
381 root 1.1
382     while (k && timers [k >> 1]->at > w->at)
383     {
384     timers [k] = timers [k >> 1];
385     timers [k]->active = k + 1;
386     k >>= 1;
387     }
388    
389     timers [k] = w;
390     timers [k]->active = k + 1;
391    
392     }
393    
394     static void
395 root 1.12 downheap (WT *timers, int N, int k)
396 root 1.1 {
397 root 1.12 WT w = timers [k];
398 root 1.1
399 root 1.4 while (k < (N >> 1))
400 root 1.1 {
401     int j = k << 1;
402    
403 root 1.4 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
404 root 1.1 ++j;
405    
406     if (w->at <= timers [j]->at)
407     break;
408    
409     timers [k] = timers [j];
410 root 1.2 timers [k]->active = k + 1;
411 root 1.1 k = j;
412     }
413    
414     timers [k] = w;
415     timers [k]->active = k + 1;
416     }
417    
418 root 1.8 /*****************************************************************************/
419    
420 root 1.7 typedef struct
421     {
422 root 1.50 struct ev_watcher_list *head;
423 root 1.34 sig_atomic_t volatile gotsig;
424 root 1.7 } ANSIG;
425    
426     static ANSIG *signals;
427 root 1.4 static int signalmax;
428 root 1.1
429 root 1.7 static int sigpipe [2];
430 root 1.34 static sig_atomic_t volatile gotsig;
431 root 1.7 static struct ev_io sigev;
432    
433 root 1.1 static void
434 root 1.7 signals_init (ANSIG *base, int count)
435 root 1.1 {
436     while (count--)
437 root 1.7 {
438     base->head = 0;
439     base->gotsig = 0;
440 root 1.33
441 root 1.7 ++base;
442     }
443     }
444    
445     static void
446     sighandler (int signum)
447     {
448     signals [signum - 1].gotsig = 1;
449    
450     if (!gotsig)
451     {
452 root 1.48 int old_errno = errno;
453 root 1.7 gotsig = 1;
454 root 1.34 write (sigpipe [1], &signum, 1);
455 root 1.48 errno = old_errno;
456 root 1.7 }
457     }
458    
459     static void
460 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
461 root 1.7 {
462 root 1.50 struct ev_watcher_list *w;
463 root 1.38 int signum;
464 root 1.7
465 root 1.34 read (sigpipe [0], &revents, 1);
466 root 1.7 gotsig = 0;
467    
468 root 1.38 for (signum = signalmax; signum--; )
469     if (signals [signum].gotsig)
470 root 1.7 {
471 root 1.38 signals [signum].gotsig = 0;
472 root 1.7
473 root 1.38 for (w = signals [signum].head; w; w = w->next)
474 root 1.51 event (EV_A_ (W)w, EV_SIGNAL);
475 root 1.7 }
476     }
477    
478     static void
479 root 1.51 siginit (EV_P)
480 root 1.7 {
481 root 1.45 #ifndef WIN32
482 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
483     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
484    
485     /* rather than sort out wether we really need nb, set it */
486     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
487     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
488 root 1.45 #endif
489 root 1.7
490 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
491     ev_io_start (&sigev);
492 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
493 root 1.1 }
494    
495 root 1.8 /*****************************************************************************/
496    
497 root 1.9 static struct ev_idle **idles;
498     static int idlemax, idlecnt;
499    
500 root 1.20 static struct ev_prepare **prepares;
501     static int preparemax, preparecnt;
502    
503 root 1.9 static struct ev_check **checks;
504     static int checkmax, checkcnt;
505    
506     /*****************************************************************************/
507    
508 root 1.22 static struct ev_child *childs [PID_HASHSIZE];
509     static struct ev_signal childev;
510    
511 root 1.45 #ifndef WIN32
512    
513 root 1.22 #ifndef WCONTINUED
514     # define WCONTINUED 0
515     #endif
516    
517     static void
518 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
519 root 1.47 {
520     struct ev_child *w;
521    
522 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
523 root 1.47 if (w->pid == pid || !w->pid)
524     {
525     w->priority = sw->priority; /* need to do it *now* */
526     w->rpid = pid;
527     w->rstatus = status;
528 root 1.51 event (EV_A_ (W)w, EV_CHILD);
529 root 1.47 }
530     }
531    
532     static void
533 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
534 root 1.22 {
535     int pid, status;
536    
537 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
538     {
539     /* make sure we are called again until all childs have been reaped */
540 root 1.51 event (EV_A_ (W)sw, EV_SIGNAL);
541 root 1.47
542 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
543     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
544 root 1.47 }
545 root 1.22 }
546    
547 root 1.45 #endif
548    
549 root 1.22 /*****************************************************************************/
550    
551 root 1.44 #if EV_USE_KQUEUE
552     # include "ev_kqueue.c"
553     #endif
554 root 1.29 #if EV_USE_EPOLL
555 root 1.1 # include "ev_epoll.c"
556     #endif
557 root 1.51 #if EV_USEV_POLL
558 root 1.41 # include "ev_poll.c"
559     #endif
560 root 1.29 #if EV_USE_SELECT
561 root 1.1 # include "ev_select.c"
562     #endif
563    
564 root 1.24 int
565     ev_version_major (void)
566     {
567     return EV_VERSION_MAJOR;
568     }
569    
570     int
571     ev_version_minor (void)
572     {
573     return EV_VERSION_MINOR;
574     }
575    
576 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
577 root 1.41 static int
578 root 1.51 enable_secure (void)
579 root 1.41 {
580 root 1.49 #ifdef WIN32
581     return 0;
582     #else
583 root 1.41 return getuid () != geteuid ()
584     || getgid () != getegid ();
585 root 1.49 #endif
586 root 1.41 }
587    
588 root 1.51 int
589     ev_method (EV_P)
590 root 1.1 {
591 root 1.51 return method;
592     }
593    
594     int
595     ev_init (EV_P_ int methods)
596     {
597     if (!method)
598 root 1.23 {
599 root 1.29 #if EV_USE_MONOTONIC
600 root 1.23 {
601     struct timespec ts;
602     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
603     have_monotonic = 1;
604     }
605 root 1.1 #endif
606    
607 root 1.51 rt_now = ev_time ();
608     mn_now = get_clock ();
609     now_floor = mn_now;
610     diff = rt_now - mn_now;
611 root 1.1
612 root 1.23 if (pipe (sigpipe))
613     return 0;
614 root 1.7
615 root 1.41 if (methods == EVMETHOD_AUTO)
616 root 1.51 if (!enable_secure () && getenv ("LIBmethodS"))
617     methods = atoi (getenv ("LIBmethodS"));
618 root 1.50 else
619     methods = EVMETHOD_ANY;
620 root 1.41
621 root 1.51 method = 0;
622 root 1.44 #if EV_USE_KQUEUE
623 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
624 root 1.44 #endif
625 root 1.29 #if EV_USE_EPOLL
626 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
627 root 1.41 #endif
628 root 1.51 #if EV_USEV_POLL
629     if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
630 root 1.1 #endif
631 root 1.29 #if EV_USE_SELECT
632 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
633 root 1.1 #endif
634    
635 root 1.51 if (method)
636 root 1.23 {
637 root 1.28 ev_watcher_init (&sigev, sigcb);
638 root 1.47 ev_set_priority (&sigev, EV_MAXPRI);
639 root 1.51 siginit (EV_A);
640 root 1.22
641 root 1.45 #ifndef WIN32
642 root 1.28 ev_signal_init (&childev, childcb, SIGCHLD);
643 root 1.47 ev_set_priority (&childev, EV_MAXPRI);
644 root 1.51 ev_signal_start (EV_A_ &childev);
645 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
646 root 1.45 #endif
647 root 1.23 }
648 root 1.7 }
649    
650 root 1.51 return method;
651 root 1.1 }
652    
653 root 1.8 /*****************************************************************************/
654    
655 root 1.24 void
656 root 1.35 ev_fork_prepare (void)
657 root 1.1 {
658 root 1.11 /* nop */
659 root 1.1 }
660    
661 root 1.24 void
662 root 1.35 ev_fork_parent (void)
663 root 1.1 {
664 root 1.11 /* nop */
665 root 1.1 }
666    
667 root 1.24 void
668 root 1.35 ev_fork_child (void)
669 root 1.1 {
670 root 1.29 #if EV_USE_EPOLL
671 root 1.51 if (method == EVMETHOD_EPOLL)
672 root 1.5 epoll_postfork_child ();
673 root 1.1 #endif
674 root 1.7
675 root 1.28 ev_io_stop (&sigev);
676 root 1.7 close (sigpipe [0]);
677     close (sigpipe [1]);
678     pipe (sigpipe);
679     siginit ();
680 root 1.1 }
681    
682 root 1.8 /*****************************************************************************/
683    
684 root 1.1 static void
685 root 1.51 call_pending (EV_P)
686 root 1.1 {
687 root 1.42 int pri;
688    
689     for (pri = NUMPRI; pri--; )
690     while (pendingcnt [pri])
691     {
692     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
693 root 1.1
694 root 1.42 if (p->w)
695     {
696     p->w->pending = 0;
697 root 1.51 p->w->cb (EV_A_ p->w, p->events);
698 root 1.42 }
699     }
700 root 1.1 }
701    
702     static void
703 root 1.51 timers_reify (EV_P)
704 root 1.1 {
705 root 1.51 while (timercnt && timers [0]->at <= mn_now)
706 root 1.1 {
707     struct ev_timer *w = timers [0];
708    
709 root 1.4 /* first reschedule or stop timer */
710 root 1.1 if (w->repeat)
711     {
712 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
713 root 1.51 w->at = mn_now + w->repeat;
714 root 1.12 downheap ((WT *)timers, timercnt, 0);
715     }
716     else
717 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
718 root 1.30
719     event ((W)w, EV_TIMEOUT);
720 root 1.12 }
721     }
722 root 1.4
723 root 1.12 static void
724 root 1.51 periodics_reify (EV_P)
725 root 1.12 {
726 root 1.51 while (periodiccnt && periodics [0]->at <= rt_now)
727 root 1.12 {
728     struct ev_periodic *w = periodics [0];
729 root 1.1
730 root 1.12 /* first reschedule or stop timer */
731     if (w->interval)
732     {
733 root 1.51 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
734     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
735 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
736 root 1.1 }
737     else
738 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
739 root 1.12
740 root 1.51 event (EV_A_ (W)w, EV_PERIODIC);
741 root 1.12 }
742     }
743    
744     static void
745 root 1.51 periodics_reschedule (EV_P_ ev_tstamp diff)
746 root 1.12 {
747     int i;
748    
749 root 1.13 /* adjust periodics after time jump */
750 root 1.12 for (i = 0; i < periodiccnt; ++i)
751     {
752     struct ev_periodic *w = periodics [i];
753    
754     if (w->interval)
755 root 1.4 {
756 root 1.51 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
757 root 1.12
758     if (fabs (diff) >= 1e-4)
759     {
760 root 1.51 ev_periodic_stop (EV_A_ w);
761     ev_periodic_start (EV_A_ w);
762 root 1.12
763     i = 0; /* restart loop, inefficient, but time jumps should be rare */
764     }
765 root 1.4 }
766 root 1.12 }
767 root 1.1 }
768    
769 root 1.51 inline int
770     time_update_monotonic (EV_P)
771 root 1.40 {
772 root 1.51 mn_now = get_clock ();
773 root 1.40
774 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
775 root 1.40 {
776 root 1.51 rt_now = mn_now + diff;
777 root 1.40 return 0;
778     }
779     else
780     {
781 root 1.51 now_floor = mn_now;
782     rt_now = ev_time ();
783 root 1.40 return 1;
784     }
785     }
786    
787 root 1.4 static void
788 root 1.51 time_update (EV_P)
789 root 1.4 {
790     int i;
791 root 1.12
792 root 1.40 #if EV_USE_MONOTONIC
793     if (expect_true (have_monotonic))
794     {
795 root 1.51 if (time_update_monotonic (EV_A))
796 root 1.40 {
797     ev_tstamp odiff = diff;
798 root 1.4
799 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
800     {
801 root 1.51 diff = rt_now - mn_now;
802 root 1.4
803 root 1.40 if (fabs (odiff - diff) < MIN_TIMEJUMP)
804     return; /* all is well */
805 root 1.4
806 root 1.51 rt_now = ev_time ();
807     mn_now = get_clock ();
808     now_floor = mn_now;
809 root 1.40 }
810 root 1.4
811 root 1.51 periodics_reschedule (EV_A_ diff - odiff);
812 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
813 root 1.4 }
814     }
815     else
816 root 1.40 #endif
817 root 1.4 {
818 root 1.51 rt_now = ev_time ();
819 root 1.40
820 root 1.51 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
821 root 1.13 {
822 root 1.51 periodics_reschedule (EV_A_ rt_now - mn_now);
823 root 1.13
824     /* adjust timers. this is easy, as the offset is the same for all */
825     for (i = 0; i < timercnt; ++i)
826     timers [i]->at += diff;
827     }
828 root 1.4
829 root 1.51 mn_now = rt_now;
830 root 1.4 }
831     }
832    
833 root 1.51 void
834     ev_ref (EV_P)
835     {
836     ++activecnt;
837     }
838 root 1.1
839 root 1.51 void
840     ev_unref (EV_P)
841     {
842     --activecnt;
843     }
844    
845     static int loop_done;
846    
847     void
848     ev_loop (EV_P_ int flags)
849 root 1.1 {
850     double block;
851 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
852 root 1.1
853 root 1.20 do
854 root 1.9 {
855 root 1.20 /* queue check watchers (and execute them) */
856 root 1.40 if (expect_false (preparecnt))
857 root 1.20 {
858 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
859     call_pending (EV_A);
860 root 1.20 }
861 root 1.9
862 root 1.1 /* update fd-related kernel structures */
863 root 1.51 fd_reify (EV_A);
864 root 1.1
865     /* calculate blocking time */
866 root 1.12
867 root 1.21 /* we only need this for !monotonic clockor timers, but as we basically
868     always have timers, we just calculate it always */
869 root 1.40 #if EV_USE_MONOTONIC
870     if (expect_true (have_monotonic))
871 root 1.51 time_update_monotonic (EV_A);
872 root 1.40 else
873     #endif
874     {
875 root 1.51 rt_now = ev_time ();
876     mn_now = rt_now;
877 root 1.40 }
878 root 1.12
879 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
880 root 1.1 block = 0.;
881     else
882     {
883 root 1.4 block = MAX_BLOCKTIME;
884    
885 root 1.12 if (timercnt)
886 root 1.4 {
887 root 1.51 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
888 root 1.4 if (block > to) block = to;
889     }
890    
891 root 1.12 if (periodiccnt)
892 root 1.4 {
893 root 1.51 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
894 root 1.4 if (block > to) block = to;
895     }
896    
897 root 1.1 if (block < 0.) block = 0.;
898     }
899    
900 root 1.51 method_poll (EV_A_ block);
901 root 1.1
902 root 1.51 /* update rt_now, do magic */
903     time_update (EV_A);
904 root 1.4
905 root 1.9 /* queue pending timers and reschedule them */
906 root 1.51 timers_reify (EV_A); /* relative timers called last */
907     periodics_reify (EV_A); /* absolute timers called first */
908 root 1.1
909 root 1.9 /* queue idle watchers unless io or timers are pending */
910     if (!pendingcnt)
911 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
912 root 1.9
913 root 1.20 /* queue check watchers, to be executed first */
914     if (checkcnt)
915 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
916 root 1.9
917 root 1.51 call_pending (EV_A);
918 root 1.1 }
919 root 1.51 while (activecnt && !loop_done);
920 root 1.13
921 root 1.51 if (loop_done != 2)
922     loop_done = 0;
923     }
924    
925     void
926     ev_unloop (EV_P_ int how)
927     {
928     loop_done = how;
929 root 1.1 }
930    
931 root 1.8 /*****************************************************************************/
932    
933 root 1.51 inline void
934 root 1.10 wlist_add (WL *head, WL elem)
935 root 1.1 {
936     elem->next = *head;
937     *head = elem;
938     }
939    
940 root 1.51 inline void
941 root 1.10 wlist_del (WL *head, WL elem)
942 root 1.1 {
943     while (*head)
944     {
945     if (*head == elem)
946     {
947     *head = elem->next;
948     return;
949     }
950    
951     head = &(*head)->next;
952     }
953     }
954    
955 root 1.51 inline void
956     ev_clear_pending (EV_P_ W w)
957 root 1.16 {
958     if (w->pending)
959     {
960 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
961 root 1.16 w->pending = 0;
962     }
963     }
964    
965 root 1.51 inline void
966     ev_start (EV_P_ W w, int active)
967 root 1.1 {
968 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
969     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
970    
971 root 1.1 w->active = active;
972 root 1.51 ev_ref (EV_A);
973 root 1.1 }
974    
975 root 1.51 inline void
976     ev_stop (EV_P_ W w)
977 root 1.1 {
978 root 1.51 ev_unref (EV_A);
979 root 1.1 w->active = 0;
980     }
981    
982 root 1.8 /*****************************************************************************/
983    
984 root 1.1 void
985 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
986 root 1.1 {
987 root 1.37 int fd = w->fd;
988    
989 root 1.1 if (ev_is_active (w))
990     return;
991    
992 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
993    
994 root 1.51 ev_start (EV_A_ (W)w, 1);
995 root 1.1 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
996 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
997 root 1.1
998 root 1.51 fd_change (EV_A_ fd);
999 root 1.1 }
1000    
1001     void
1002 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
1003 root 1.1 {
1004 root 1.51 ev_clear_pending (EV_A_ (W)w);
1005 root 1.1 if (!ev_is_active (w))
1006     return;
1007    
1008 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1009 root 1.51 ev_stop (EV_A_ (W)w);
1010 root 1.1
1011 root 1.51 fd_change (EV_A_ w->fd);
1012 root 1.1 }
1013    
1014     void
1015 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1016 root 1.1 {
1017     if (ev_is_active (w))
1018     return;
1019    
1020 root 1.51 w->at += mn_now;
1021 root 1.12
1022 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1023 root 1.13
1024 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1025 root 1.12 array_needsize (timers, timermax, timercnt, );
1026     timers [timercnt - 1] = w;
1027     upheap ((WT *)timers, timercnt - 1);
1028     }
1029    
1030     void
1031 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1032 root 1.12 {
1033 root 1.51 ev_clear_pending (EV_A_ (W)w);
1034 root 1.12 if (!ev_is_active (w))
1035     return;
1036    
1037     if (w->active < timercnt--)
1038 root 1.1 {
1039 root 1.12 timers [w->active - 1] = timers [timercnt];
1040     downheap ((WT *)timers, timercnt, w->active - 1);
1041     }
1042 root 1.4
1043 root 1.14 w->at = w->repeat;
1044    
1045 root 1.51 ev_stop (EV_A_ (W)w);
1046 root 1.12 }
1047 root 1.4
1048 root 1.12 void
1049 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1050 root 1.14 {
1051     if (ev_is_active (w))
1052     {
1053     if (w->repeat)
1054     {
1055 root 1.51 w->at = mn_now + w->repeat;
1056 root 1.14 downheap ((WT *)timers, timercnt, w->active - 1);
1057     }
1058     else
1059 root 1.51 ev_timer_stop (EV_A_ w);
1060 root 1.14 }
1061     else if (w->repeat)
1062 root 1.51 ev_timer_start (EV_A_ w);
1063 root 1.14 }
1064    
1065     void
1066 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1067 root 1.12 {
1068     if (ev_is_active (w))
1069     return;
1070 root 1.1
1071 root 1.33 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1072 root 1.13
1073 root 1.12 /* this formula differs from the one in periodic_reify because we do not always round up */
1074     if (w->interval)
1075 root 1.51 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1076 root 1.12
1077 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1078 root 1.12 array_needsize (periodics, periodicmax, periodiccnt, );
1079     periodics [periodiccnt - 1] = w;
1080     upheap ((WT *)periodics, periodiccnt - 1);
1081 root 1.1 }
1082    
1083     void
1084 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1085 root 1.1 {
1086 root 1.51 ev_clear_pending (EV_A_ (W)w);
1087 root 1.1 if (!ev_is_active (w))
1088     return;
1089    
1090 root 1.12 if (w->active < periodiccnt--)
1091 root 1.2 {
1092 root 1.12 periodics [w->active - 1] = periodics [periodiccnt];
1093     downheap ((WT *)periodics, periodiccnt, w->active - 1);
1094 root 1.2 }
1095    
1096 root 1.51 ev_stop (EV_A_ (W)w);
1097 root 1.1 }
1098    
1099 root 1.47 #ifndef SA_RESTART
1100     # define SA_RESTART 0
1101     #endif
1102    
1103 root 1.1 void
1104 root 1.51 ev_signal_start (EV_P_ struct ev_signal *w)
1105 root 1.1 {
1106     if (ev_is_active (w))
1107     return;
1108    
1109 root 1.33 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1110    
1111 root 1.51 ev_start (EV_A_ (W)w, 1);
1112 root 1.1 array_needsize (signals, signalmax, w->signum, signals_init);
1113 root 1.10 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1114 root 1.7
1115     if (!w->next)
1116     {
1117     struct sigaction sa;
1118     sa.sa_handler = sighandler;
1119     sigfillset (&sa.sa_mask);
1120 root 1.47 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1121 root 1.7 sigaction (w->signum, &sa, 0);
1122     }
1123 root 1.1 }
1124    
1125     void
1126 root 1.51 ev_signal_stop (EV_P_ struct ev_signal *w)
1127 root 1.1 {
1128 root 1.51 ev_clear_pending (EV_A_ (W)w);
1129 root 1.1 if (!ev_is_active (w))
1130     return;
1131    
1132 root 1.10 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1133 root 1.51 ev_stop (EV_A_ (W)w);
1134 root 1.7
1135     if (!signals [w->signum - 1].head)
1136     signal (w->signum, SIG_DFL);
1137 root 1.1 }
1138    
1139 root 1.28 void
1140 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1141 root 1.9 {
1142     if (ev_is_active (w))
1143     return;
1144    
1145 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1146 root 1.9 array_needsize (idles, idlemax, idlecnt, );
1147     idles [idlecnt - 1] = w;
1148     }
1149    
1150 root 1.28 void
1151 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1152 root 1.9 {
1153 root 1.51 ev_clear_pending (EV_A_ (W)w);
1154 root 1.16 if (ev_is_active (w))
1155     return;
1156    
1157 root 1.9 idles [w->active - 1] = idles [--idlecnt];
1158 root 1.51 ev_stop (EV_A_ (W)w);
1159 root 1.9 }
1160    
1161 root 1.28 void
1162 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1163 root 1.20 {
1164     if (ev_is_active (w))
1165     return;
1166    
1167 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1168 root 1.20 array_needsize (prepares, preparemax, preparecnt, );
1169     prepares [preparecnt - 1] = w;
1170     }
1171    
1172 root 1.28 void
1173 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1174 root 1.20 {
1175 root 1.51 ev_clear_pending (EV_A_ (W)w);
1176 root 1.20 if (ev_is_active (w))
1177     return;
1178    
1179     prepares [w->active - 1] = prepares [--preparecnt];
1180 root 1.51 ev_stop (EV_A_ (W)w);
1181 root 1.20 }
1182    
1183 root 1.28 void
1184 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1185 root 1.9 {
1186     if (ev_is_active (w))
1187     return;
1188    
1189 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1190 root 1.9 array_needsize (checks, checkmax, checkcnt, );
1191     checks [checkcnt - 1] = w;
1192     }
1193    
1194 root 1.28 void
1195 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1196 root 1.9 {
1197 root 1.51 ev_clear_pending (EV_A_ (W)w);
1198 root 1.16 if (ev_is_active (w))
1199     return;
1200    
1201 root 1.9 checks [w->active - 1] = checks [--checkcnt];
1202 root 1.51 ev_stop (EV_A_ (W)w);
1203 root 1.9 }
1204    
1205 root 1.28 void
1206 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1207 root 1.22 {
1208     if (ev_is_active (w))
1209     return;
1210    
1211 root 1.51 ev_start (EV_A_ (W)w, 1);
1212 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1213     }
1214    
1215 root 1.28 void
1216 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1217 root 1.22 {
1218 root 1.51 ev_clear_pending (EV_A_ (W)w);
1219 root 1.22 if (ev_is_active (w))
1220     return;
1221    
1222     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1223 root 1.51 ev_stop (EV_A_ (W)w);
1224 root 1.22 }
1225    
1226 root 1.1 /*****************************************************************************/
1227 root 1.10
1228 root 1.16 struct ev_once
1229     {
1230     struct ev_io io;
1231     struct ev_timer to;
1232     void (*cb)(int revents, void *arg);
1233     void *arg;
1234     };
1235    
1236     static void
1237 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1238 root 1.16 {
1239     void (*cb)(int revents, void *arg) = once->cb;
1240     void *arg = once->arg;
1241    
1242 root 1.51 ev_io_stop (EV_A_ &once->io);
1243     ev_timer_stop (EV_A_ &once->to);
1244 root 1.16 free (once);
1245    
1246     cb (revents, arg);
1247     }
1248    
1249     static void
1250 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1251 root 1.16 {
1252 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1253 root 1.16 }
1254    
1255     static void
1256 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1257 root 1.16 {
1258 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1259 root 1.16 }
1260    
1261     void
1262 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1263 root 1.16 {
1264     struct ev_once *once = malloc (sizeof (struct ev_once));
1265    
1266     if (!once)
1267 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1268 root 1.16 else
1269     {
1270     once->cb = cb;
1271     once->arg = arg;
1272    
1273 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1274 root 1.16 if (fd >= 0)
1275     {
1276 root 1.28 ev_io_set (&once->io, fd, events);
1277 root 1.51 ev_io_start (EV_A_ &once->io);
1278 root 1.16 }
1279    
1280 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1281 root 1.16 if (timeout >= 0.)
1282     {
1283 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1284 root 1.51 ev_timer_start (EV_A_ &once->to);
1285 root 1.16 }
1286     }
1287     }
1288    
1289     /*****************************************************************************/
1290    
1291 root 1.13 #if 0
1292 root 1.12
1293     struct ev_io wio;
1294 root 1.1
1295     static void
1296     sin_cb (struct ev_io *w, int revents)
1297     {
1298     fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1299     }
1300    
1301     static void
1302     ocb (struct ev_timer *w, int revents)
1303     {
1304 root 1.4 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1305 root 1.28 ev_timer_stop (w);
1306     ev_timer_start (w);
1307 root 1.1 }
1308    
1309 root 1.7 static void
1310     scb (struct ev_signal *w, int revents)
1311     {
1312     fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1313 root 1.28 ev_io_stop (&wio);
1314     ev_io_start (&wio);
1315 root 1.7 }
1316    
1317 root 1.9 static void
1318     gcb (struct ev_signal *w, int revents)
1319     {
1320     fprintf (stderr, "generic %x\n", revents);
1321 root 1.12
1322 root 1.9 }
1323    
1324 root 1.1 int main (void)
1325     {
1326     ev_init (0);
1327    
1328 root 1.28 ev_io_init (&wio, sin_cb, 0, EV_READ);
1329     ev_io_start (&wio);
1330 root 1.1
1331 root 1.4 struct ev_timer t[10000];
1332 root 1.2
1333 root 1.9 #if 0
1334 root 1.2 int i;
1335 root 1.4 for (i = 0; i < 10000; ++i)
1336 root 1.2 {
1337     struct ev_timer *w = t + i;
1338 root 1.28 ev_watcher_init (w, ocb, i);
1339     ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1340     ev_timer_start (w);
1341 root 1.2 if (drand48 () < 0.5)
1342 root 1.28 ev_timer_stop (w);
1343 root 1.2 }
1344 root 1.4 #endif
1345    
1346     struct ev_timer t1;
1347 root 1.28 ev_timer_init (&t1, ocb, 5, 10);
1348     ev_timer_start (&t1);
1349 root 1.1
1350 root 1.7 struct ev_signal sig;
1351 root 1.28 ev_signal_init (&sig, scb, SIGQUIT);
1352     ev_signal_start (&sig);
1353 root 1.7
1354 root 1.9 struct ev_check cw;
1355 root 1.28 ev_check_init (&cw, gcb);
1356     ev_check_start (&cw);
1357 root 1.9
1358     struct ev_idle iw;
1359 root 1.28 ev_idle_init (&iw, gcb);
1360     ev_idle_start (&iw);
1361 root 1.9
1362 root 1.1 ev_loop (0);
1363    
1364     return 0;
1365     }
1366    
1367     #endif
1368    
1369    
1370    
1371