ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.525
Committed: Wed Jan 22 14:09:07 2020 UTC (4 years, 3 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.524: +8 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.490 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9 root 1.372 *
10 root 1.199 * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12 root 1.372 *
13 root 1.199 * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16 root 1.372 *
17 root 1.199 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40 root 1.220 /* this big block deduces configuration from config.h */
41 root 1.59 #ifndef EV_STANDALONE
42 root 1.133 # ifdef EV_CONFIG_H
43     # include EV_CONFIG_H
44     # else
45     # include "config.h"
46     # endif
47 root 1.60
48 root 1.469 # if HAVE_FLOOR
49     # ifndef EV_USE_FLOOR
50     # define EV_USE_FLOOR 1
51     # endif
52 root 1.373 # endif
53    
54 root 1.274 # if HAVE_CLOCK_SYSCALL
55     # ifndef EV_USE_CLOCK_SYSCALL
56     # define EV_USE_CLOCK_SYSCALL 1
57     # ifndef EV_USE_REALTIME
58     # define EV_USE_REALTIME 0
59     # endif
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 1
62     # endif
63     # endif
64 root 1.416 # elif !defined EV_USE_CLOCK_SYSCALL
65 root 1.290 # define EV_USE_CLOCK_SYSCALL 0
66 root 1.274 # endif
67    
68 root 1.60 # if HAVE_CLOCK_GETTIME
69 root 1.97 # ifndef EV_USE_MONOTONIC
70     # define EV_USE_MONOTONIC 1
71     # endif
72     # ifndef EV_USE_REALTIME
73 root 1.279 # define EV_USE_REALTIME 0
74 root 1.97 # endif
75 root 1.126 # else
76     # ifndef EV_USE_MONOTONIC
77     # define EV_USE_MONOTONIC 0
78     # endif
79     # ifndef EV_USE_REALTIME
80     # define EV_USE_REALTIME 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.343 # if HAVE_NANOSLEEP
85     # ifndef EV_USE_NANOSLEEP
86     # define EV_USE_NANOSLEEP EV_FEATURE_OS
87     # endif
88     # else
89     # undef EV_USE_NANOSLEEP
90 root 1.193 # define EV_USE_NANOSLEEP 0
91     # endif
92    
93 root 1.343 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94     # ifndef EV_USE_SELECT
95 root 1.339 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 root 1.127 # endif
97 root 1.343 # else
98     # undef EV_USE_SELECT
99     # define EV_USE_SELECT 0
100 root 1.60 # endif
101    
102 root 1.343 # if HAVE_POLL && HAVE_POLL_H
103     # ifndef EV_USE_POLL
104 root 1.339 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 root 1.127 # endif
106 root 1.343 # else
107     # undef EV_USE_POLL
108     # define EV_USE_POLL 0
109 root 1.60 # endif
110 root 1.127
111 root 1.343 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112     # ifndef EV_USE_EPOLL
113 root 1.339 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 root 1.127 # endif
115 root 1.343 # else
116     # undef EV_USE_EPOLL
117     # define EV_USE_EPOLL 0
118 root 1.60 # endif
119 root 1.127
120 root 1.491 # if HAVE_LINUX_AIO_ABI_H
121     # ifndef EV_USE_LINUXAIO
122 root 1.518 # define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
123 root 1.491 # endif
124     # else
125     # undef EV_USE_LINUXAIO
126     # define EV_USE_LINUXAIO 0
127     # endif
128    
129 root 1.511 # if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
130     # ifndef EV_USE_IOURING
131     # define EV_USE_IOURING EV_FEATURE_BACKENDS
132     # endif
133     # else
134     # undef EV_USE_IOURING
135     # define EV_USE_IOURING 0
136     # endif
137    
138 root 1.343 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139     # ifndef EV_USE_KQUEUE
140 root 1.339 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141 root 1.127 # endif
142 root 1.343 # else
143     # undef EV_USE_KQUEUE
144     # define EV_USE_KQUEUE 0
145 root 1.60 # endif
146 root 1.127
147 root 1.343 # if HAVE_PORT_H && HAVE_PORT_CREATE
148     # ifndef EV_USE_PORT
149 root 1.339 # define EV_USE_PORT EV_FEATURE_BACKENDS
150 root 1.127 # endif
151 root 1.343 # else
152     # undef EV_USE_PORT
153     # define EV_USE_PORT 0
154 root 1.118 # endif
155    
156 root 1.343 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157     # ifndef EV_USE_INOTIFY
158 root 1.339 # define EV_USE_INOTIFY EV_FEATURE_OS
159 root 1.152 # endif
160 root 1.343 # else
161     # undef EV_USE_INOTIFY
162     # define EV_USE_INOTIFY 0
163 root 1.152 # endif
164    
165 root 1.343 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166     # ifndef EV_USE_SIGNALFD
167 root 1.339 # define EV_USE_SIGNALFD EV_FEATURE_OS
168 root 1.303 # endif
169 root 1.343 # else
170     # undef EV_USE_SIGNALFD
171     # define EV_USE_SIGNALFD 0
172 root 1.303 # endif
173    
174 root 1.343 # if HAVE_EVENTFD
175     # ifndef EV_USE_EVENTFD
176 root 1.339 # define EV_USE_EVENTFD EV_FEATURE_OS
177 root 1.220 # endif
178 root 1.343 # else
179     # undef EV_USE_EVENTFD
180     # define EV_USE_EVENTFD 0
181 root 1.220 # endif
182 root 1.511
183 root 1.515 # if HAVE_SYS_TIMERFD_H
184     # ifndef EV_USE_TIMERFD
185     # define EV_USE_TIMERFD EV_FEATURE_OS
186     # endif
187     # else
188     # undef EV_USE_TIMERFD
189     # define EV_USE_TIMERFD 0
190     # endif
191    
192 root 1.29 #endif
193 root 1.17
194 root 1.483 /* OS X, in its infinite idiocy, actually HARDCODES
195     * a limit of 1024 into their select. Where people have brains,
196     * OS X engineers apparently have a vacuum. Or maybe they were
197     * ordered to have a vacuum, or they do anything for money.
198     * This might help. Or not.
199     * Note that this must be defined early, as other include files
200     * will rely on this define as well.
201     */
202     #define _DARWIN_UNLIMITED_SELECT 1
203    
204 root 1.1 #include <stdlib.h>
205 root 1.319 #include <string.h>
206 root 1.7 #include <fcntl.h>
207 root 1.16 #include <stddef.h>
208 root 1.1
209     #include <stdio.h>
210    
211 root 1.4 #include <assert.h>
212 root 1.1 #include <errno.h>
213 root 1.22 #include <sys/types.h>
214 root 1.71 #include <time.h>
215 root 1.326 #include <limits.h>
216 root 1.71
217 root 1.72 #include <signal.h>
218 root 1.71
219 root 1.152 #ifdef EV_H
220     # include EV_H
221     #else
222     # include "ev.h"
223     #endif
224    
225 root 1.410 #if EV_NO_THREADS
226     # undef EV_NO_SMP
227     # define EV_NO_SMP 1
228     # undef ECB_NO_THREADS
229     # define ECB_NO_THREADS 1
230     #endif
231     #if EV_NO_SMP
232     # undef EV_NO_SMP
233     # define ECB_NO_SMP 1
234     #endif
235    
236 root 1.103 #ifndef _WIN32
237 root 1.71 # include <sys/time.h>
238 root 1.45 # include <sys/wait.h>
239 root 1.140 # include <unistd.h>
240 root 1.103 #else
241 root 1.256 # include <io.h>
242 root 1.103 # define WIN32_LEAN_AND_MEAN
243 root 1.431 # include <winsock2.h>
244 root 1.103 # include <windows.h>
245     # ifndef EV_SELECT_IS_WINSOCKET
246     # define EV_SELECT_IS_WINSOCKET 1
247     # endif
248 root 1.331 # undef EV_AVOID_STDIO
249 root 1.45 #endif
250 root 1.103
251 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
252 root 1.40
253 root 1.305 /* try to deduce the maximum number of signals on this platform */
254 root 1.416 #if defined EV_NSIG
255 root 1.305 /* use what's provided */
256 root 1.416 #elif defined NSIG
257 root 1.305 # define EV_NSIG (NSIG)
258 root 1.416 #elif defined _NSIG
259 root 1.305 # define EV_NSIG (_NSIG)
260 root 1.416 #elif defined SIGMAX
261 root 1.305 # define EV_NSIG (SIGMAX+1)
262 root 1.416 #elif defined SIG_MAX
263 root 1.305 # define EV_NSIG (SIG_MAX+1)
264 root 1.416 #elif defined _SIG_MAX
265 root 1.305 # define EV_NSIG (_SIG_MAX+1)
266 root 1.416 #elif defined MAXSIG
267 root 1.305 # define EV_NSIG (MAXSIG+1)
268 root 1.416 #elif defined MAX_SIG
269 root 1.305 # define EV_NSIG (MAX_SIG+1)
270 root 1.416 #elif defined SIGARRAYSIZE
271 root 1.336 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272 root 1.416 #elif defined _sys_nsig
273 root 1.305 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274     #else
275 root 1.459 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
276 root 1.305 #endif
277    
278 root 1.373 #ifndef EV_USE_FLOOR
279     # define EV_USE_FLOOR 0
280     #endif
281    
282 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
283 root 1.460 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
284 root 1.338 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
285 root 1.274 # else
286     # define EV_USE_CLOCK_SYSCALL 0
287     # endif
288     #endif
289    
290 root 1.470 #if !(_POSIX_TIMERS > 0)
291     # ifndef EV_USE_MONOTONIC
292     # define EV_USE_MONOTONIC 0
293     # endif
294     # ifndef EV_USE_REALTIME
295     # define EV_USE_REALTIME 0
296     # endif
297     #endif
298    
299 root 1.29 #ifndef EV_USE_MONOTONIC
300 root 1.416 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
301 root 1.338 # define EV_USE_MONOTONIC EV_FEATURE_OS
302 root 1.253 # else
303     # define EV_USE_MONOTONIC 0
304     # endif
305 root 1.37 #endif
306    
307 root 1.118 #ifndef EV_USE_REALTIME
308 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
309 root 1.118 #endif
310    
311 root 1.193 #ifndef EV_USE_NANOSLEEP
312 root 1.253 # if _POSIX_C_SOURCE >= 199309L
313 root 1.338 # define EV_USE_NANOSLEEP EV_FEATURE_OS
314 root 1.253 # else
315     # define EV_USE_NANOSLEEP 0
316     # endif
317 root 1.193 #endif
318    
319 root 1.29 #ifndef EV_USE_SELECT
320 root 1.338 # define EV_USE_SELECT EV_FEATURE_BACKENDS
321 root 1.10 #endif
322    
323 root 1.59 #ifndef EV_USE_POLL
324 root 1.104 # ifdef _WIN32
325     # define EV_USE_POLL 0
326     # else
327 root 1.338 # define EV_USE_POLL EV_FEATURE_BACKENDS
328 root 1.104 # endif
329 root 1.41 #endif
330    
331 root 1.29 #ifndef EV_USE_EPOLL
332 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
333 root 1.338 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
334 root 1.220 # else
335     # define EV_USE_EPOLL 0
336     # endif
337 root 1.10 #endif
338    
339 root 1.44 #ifndef EV_USE_KQUEUE
340     # define EV_USE_KQUEUE 0
341     #endif
342    
343 root 1.118 #ifndef EV_USE_PORT
344     # define EV_USE_PORT 0
345 root 1.40 #endif
346    
347 root 1.490 #ifndef EV_USE_LINUXAIO
348 root 1.492 # if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349 root 1.518 # define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350 root 1.492 # else
351     # define EV_USE_LINUXAIO 0
352     # endif
353 root 1.490 #endif
354    
355 root 1.501 #ifndef EV_USE_IOURING
356 root 1.511 # if __linux /* later checks might disable again */
357     # define EV_USE_IOURING 1
358 root 1.501 # else
359     # define EV_USE_IOURING 0
360     # endif
361     #endif
362    
363 root 1.152 #ifndef EV_USE_INOTIFY
364 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
365 root 1.338 # define EV_USE_INOTIFY EV_FEATURE_OS
366 root 1.220 # else
367     # define EV_USE_INOTIFY 0
368     # endif
369 root 1.152 #endif
370    
371 root 1.149 #ifndef EV_PID_HASHSIZE
372 root 1.338 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
373 root 1.149 #endif
374    
375 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
376 root 1.338 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
377 root 1.152 #endif
378    
379 root 1.220 #ifndef EV_USE_EVENTFD
380     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
381 root 1.338 # define EV_USE_EVENTFD EV_FEATURE_OS
382 root 1.220 # else
383     # define EV_USE_EVENTFD 0
384     # endif
385     #endif
386    
387 root 1.303 #ifndef EV_USE_SIGNALFD
388 root 1.314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
389 root 1.338 # define EV_USE_SIGNALFD EV_FEATURE_OS
390 root 1.303 # else
391     # define EV_USE_SIGNALFD 0
392     # endif
393     #endif
394    
395 root 1.515 #ifndef EV_USE_TIMERFD
396     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397     # define EV_USE_TIMERFD EV_FEATURE_OS
398     # else
399     # define EV_USE_TIMERFD 0
400     # endif
401     #endif
402    
403 root 1.249 #if 0 /* debugging */
404 root 1.250 # define EV_VERIFY 3
405 root 1.249 # define EV_USE_4HEAP 1
406     # define EV_HEAP_CACHE_AT 1
407     #endif
408    
409 root 1.250 #ifndef EV_VERIFY
410 root 1.338 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
411 root 1.250 #endif
412    
413 root 1.243 #ifndef EV_USE_4HEAP
414 root 1.338 # define EV_USE_4HEAP EV_FEATURE_DATA
415 root 1.243 #endif
416    
417     #ifndef EV_HEAP_CACHE_AT
418 root 1.338 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419 root 1.243 #endif
420    
421 root 1.481 #ifdef __ANDROID__
422 root 1.452 /* supposedly, android doesn't typedef fd_mask */
423     # undef EV_USE_SELECT
424     # define EV_USE_SELECT 0
425     /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426     # undef EV_USE_CLOCK_SYSCALL
427     # define EV_USE_CLOCK_SYSCALL 0
428     #endif
429    
430     /* aix's poll.h seems to cause lots of trouble */
431     #ifdef _AIX
432     /* AIX has a completely broken poll.h header */
433     # undef EV_USE_POLL
434     # define EV_USE_POLL 0
435     #endif
436    
437 root 1.291 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
438     /* which makes programs even slower. might work on other unices, too. */
439     #if EV_USE_CLOCK_SYSCALL
440 root 1.423 # include <sys/syscall.h>
441 root 1.291 # ifdef SYS_clock_gettime
442     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
443     # undef EV_USE_MONOTONIC
444     # define EV_USE_MONOTONIC 1
445 root 1.501 # define EV_NEED_SYSCALL 1
446 root 1.291 # else
447     # undef EV_USE_CLOCK_SYSCALL
448     # define EV_USE_CLOCK_SYSCALL 0
449     # endif
450     #endif
451    
452 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
453 root 1.40
454     #ifndef CLOCK_MONOTONIC
455     # undef EV_USE_MONOTONIC
456     # define EV_USE_MONOTONIC 0
457     #endif
458    
459 root 1.31 #ifndef CLOCK_REALTIME
460 root 1.40 # undef EV_USE_REALTIME
461 root 1.31 # define EV_USE_REALTIME 0
462     #endif
463 root 1.40
464 root 1.152 #if !EV_STAT_ENABLE
465 root 1.185 # undef EV_USE_INOTIFY
466 root 1.152 # define EV_USE_INOTIFY 0
467     #endif
468    
469 root 1.511 #if __linux && EV_USE_IOURING
470 root 1.512 # include <linux/version.h>
471     # if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472 root 1.511 # undef EV_USE_IOURING
473     # define EV_USE_IOURING 0
474     # endif
475     #endif
476    
477 root 1.193 #if !EV_USE_NANOSLEEP
478 root 1.370 /* hp-ux has it in sys/time.h, which we unconditionally include above */
479 root 1.416 # if !defined _WIN32 && !defined __hpux
480 root 1.193 # include <sys/select.h>
481     # endif
482     #endif
483    
484 root 1.491 #if EV_USE_LINUXAIO
485     # include <sys/syscall.h>
486 root 1.502 # if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
487     # define EV_NEED_SYSCALL 1
488     # else
489 root 1.491 # undef EV_USE_LINUXAIO
490     # define EV_USE_LINUXAIO 0
491 root 1.501 # endif
492     #endif
493    
494     #if EV_USE_IOURING
495     # include <sys/syscall.h>
496 root 1.503 # if !SYS_io_uring_setup && __linux && !__alpha
497 root 1.501 # define SYS_io_uring_setup 425
498     # define SYS_io_uring_enter 426
499     # define SYS_io_uring_wregister 427
500     # endif
501 root 1.502 # if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502 root 1.501 # define EV_NEED_SYSCALL 1
503     # else
504     # undef EV_USE_IOURING
505     # define EV_USE_IOURING 0
506 root 1.491 # endif
507     #endif
508    
509 root 1.152 #if EV_USE_INOTIFY
510 root 1.273 # include <sys/statfs.h>
511 root 1.152 # include <sys/inotify.h>
512 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
513     # ifndef IN_DONT_FOLLOW
514     # undef EV_USE_INOTIFY
515     # define EV_USE_INOTIFY 0
516     # endif
517 root 1.152 #endif
518    
519 root 1.220 #if EV_USE_EVENTFD
520 root 1.515 /* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
521 root 1.221 # include <stdint.h>
522 root 1.303 # ifndef EFD_NONBLOCK
523     # define EFD_NONBLOCK O_NONBLOCK
524     # endif
525     # ifndef EFD_CLOEXEC
526 root 1.311 # ifdef O_CLOEXEC
527     # define EFD_CLOEXEC O_CLOEXEC
528     # else
529     # define EFD_CLOEXEC 02000000
530     # endif
531 root 1.303 # endif
532 root 1.354 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
533 root 1.220 #endif
534    
535 root 1.303 #if EV_USE_SIGNALFD
536 root 1.515 /* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537 root 1.314 # include <stdint.h>
538     # ifndef SFD_NONBLOCK
539     # define SFD_NONBLOCK O_NONBLOCK
540     # endif
541     # ifndef SFD_CLOEXEC
542     # ifdef O_CLOEXEC
543     # define SFD_CLOEXEC O_CLOEXEC
544     # else
545     # define SFD_CLOEXEC 02000000
546     # endif
547     # endif
548 root 1.515 EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
549 root 1.314
550     struct signalfd_siginfo
551     {
552     uint32_t ssi_signo;
553     char pad[128 - sizeof (uint32_t)];
554     };
555 root 1.303 #endif
556    
557 root 1.515 /* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558     #if EV_USE_TIMERFD
559     # include <sys/timerfd.h>
560     /* timerfd is only used for periodics */
561     # if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562     # undef EV_USE_TIMERFD
563     # define EV_USE_TIMERFD 0
564     # endif
565     #endif
566    
567 root 1.501 /*****************************************************************************/
568    
569 root 1.250 #if EV_VERIFY >= 3
570 root 1.340 # define EV_FREQUENT_CHECK ev_verify (EV_A)
571 root 1.248 #else
572     # define EV_FREQUENT_CHECK do { } while (0)
573     #endif
574    
575 root 1.176 /*
576 root 1.373 * This is used to work around floating point rounding problems.
577 root 1.177 * This value is good at least till the year 4000.
578 root 1.176 */
579 root 1.373 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580     /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
581 root 1.176
582 root 1.502 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
583     #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
584 root 1.523 #define MAX_BLOCKTIME2 1500001.07 /* same, but when timerfd is used to detect jumps, also safe delay to not overflow */
585 root 1.502
586 root 1.505 /* find a portable timestamp that is "always" in the future but fits into time_t.
587 root 1.502 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
588 root 1.505 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
589 root 1.502 #define EV_TSTAMP_HUGE \
590     (sizeof (time_t) >= 8 ? 10000000000000. \
591     : 0 < (time_t)4294967295 ? 4294967295. \
592     : 2147483647.) \
593 root 1.1
594 root 1.509 #ifndef EV_TS_CONST
595     # define EV_TS_CONST(nv) nv
596     # define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
597     # define EV_TS_FROM_USEC(us) us * 1e-6
598     # define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
599     # define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
600     # define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
601     # define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
602     #endif
603 root 1.347
604 root 1.391 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
605     /* ECB.H BEGIN */
606     /*
607     * libecb - http://software.schmorp.de/pkg/libecb
608     *
609 root 1.474 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
610 root 1.391 * Copyright (©) 2011 Emanuele Giaquinta
611     * All rights reserved.
612     *
613     * Redistribution and use in source and binary forms, with or without modifica-
614     * tion, are permitted provided that the following conditions are met:
615     *
616     * 1. Redistributions of source code must retain the above copyright notice,
617     * this list of conditions and the following disclaimer.
618     *
619     * 2. Redistributions in binary form must reproduce the above copyright
620     * notice, this list of conditions and the following disclaimer in the
621     * documentation and/or other materials provided with the distribution.
622     *
623     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
624     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
625     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
626     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
627     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
628     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
629     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
630     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
631     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
632     * OF THE POSSIBILITY OF SUCH DAMAGE.
633 root 1.467 *
634     * Alternatively, the contents of this file may be used under the terms of
635     * the GNU General Public License ("GPL") version 2 or any later version,
636     * in which case the provisions of the GPL are applicable instead of
637     * the above. If you wish to allow the use of your version of this file
638     * only under the terms of the GPL and not to allow others to use your
639     * version of this file under the BSD license, indicate your decision
640     * by deleting the provisions above and replace them with the notice
641     * and other provisions required by the GPL. If you do not delete the
642     * provisions above, a recipient may use your version of this file under
643     * either the BSD or the GPL.
644 root 1.391 */
645    
646     #ifndef ECB_H
647     #define ECB_H
648    
649 root 1.437 /* 16 bits major, 16 bits minor */
650 root 1.523 #define ECB_VERSION 0x00010008
651    
652     #include <string.h> /* for memcpy */
653 root 1.437
654 root 1.391 #ifdef _WIN32
655     typedef signed char int8_t;
656     typedef unsigned char uint8_t;
657 root 1.523 typedef signed char int_fast8_t;
658     typedef unsigned char uint_fast8_t;
659 root 1.391 typedef signed short int16_t;
660     typedef unsigned short uint16_t;
661 root 1.523 typedef signed int int_fast16_t;
662     typedef unsigned int uint_fast16_t;
663 root 1.391 typedef signed int int32_t;
664     typedef unsigned int uint32_t;
665 root 1.523 typedef signed int int_fast32_t;
666     typedef unsigned int uint_fast32_t;
667 root 1.391 #if __GNUC__
668     typedef signed long long int64_t;
669     typedef unsigned long long uint64_t;
670     #else /* _MSC_VER || __BORLANDC__ */
671     typedef signed __int64 int64_t;
672     typedef unsigned __int64 uint64_t;
673     #endif
674 root 1.523 typedef int64_t int_fast64_t;
675     typedef uint64_t uint_fast64_t;
676 root 1.437 #ifdef _WIN64
677     #define ECB_PTRSIZE 8
678     typedef uint64_t uintptr_t;
679     typedef int64_t intptr_t;
680     #else
681     #define ECB_PTRSIZE 4
682     typedef uint32_t uintptr_t;
683     typedef int32_t intptr_t;
684     #endif
685 root 1.391 #else
686     #include <inttypes.h>
687 root 1.479 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
688 root 1.437 #define ECB_PTRSIZE 8
689     #else
690     #define ECB_PTRSIZE 4
691     #endif
692 root 1.391 #endif
693 root 1.379
694 sf-exg 1.475 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
695     #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
696    
697 root 1.523 #ifndef ECB_OPTIMIZE_SIZE
698     #if __OPTIMIZE_SIZE__
699     #define ECB_OPTIMIZE_SIZE 1
700     #else
701     #define ECB_OPTIMIZE_SIZE 0
702     #endif
703     #endif
704    
705 root 1.454 /* work around x32 idiocy by defining proper macros */
706 sf-exg 1.475 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
707 root 1.458 #if _ILP32
708 root 1.454 #define ECB_AMD64_X32 1
709     #else
710     #define ECB_AMD64 1
711     #endif
712     #endif
713    
714 root 1.379 /* many compilers define _GNUC_ to some versions but then only implement
715     * what their idiot authors think are the "more important" extensions,
716 root 1.391 * causing enormous grief in return for some better fake benchmark numbers.
717 root 1.379 * or so.
718     * we try to detect these and simply assume they are not gcc - if they have
719     * an issue with that they should have done it right in the first place.
720     */
721 root 1.474 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
722     #define ECB_GCC_VERSION(major,minor) 0
723     #else
724     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
725     #endif
726    
727     #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
728    
729     #if __clang__ && defined __has_builtin
730     #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
731     #else
732     #define ECB_CLANG_BUILTIN(x) 0
733     #endif
734    
735     #if __clang__ && defined __has_extension
736     #define ECB_CLANG_EXTENSION(x) __has_extension (x)
737     #else
738     #define ECB_CLANG_EXTENSION(x) 0
739 root 1.379 #endif
740    
741 root 1.437 #define ECB_CPP (__cplusplus+0)
742     #define ECB_CPP11 (__cplusplus >= 201103L)
743 root 1.488 #define ECB_CPP14 (__cplusplus >= 201402L)
744     #define ECB_CPP17 (__cplusplus >= 201703L)
745 root 1.437
746 root 1.450 #if ECB_CPP
747 root 1.464 #define ECB_C 0
748     #define ECB_STDC_VERSION 0
749     #else
750     #define ECB_C 1
751     #define ECB_STDC_VERSION __STDC_VERSION__
752     #endif
753    
754     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
755     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
756 root 1.488 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
757 root 1.464
758     #if ECB_CPP
759 root 1.450 #define ECB_EXTERN_C extern "C"
760     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
761     #define ECB_EXTERN_C_END }
762     #else
763     #define ECB_EXTERN_C extern
764     #define ECB_EXTERN_C_BEG
765     #define ECB_EXTERN_C_END
766     #endif
767    
768 root 1.391 /*****************************************************************************/
769    
770     /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
771     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
772    
773 root 1.410 #if ECB_NO_THREADS
774 root 1.439 #define ECB_NO_SMP 1
775 root 1.410 #endif
776    
777 root 1.437 #if ECB_NO_SMP
778 root 1.393 #define ECB_MEMORY_FENCE do { } while (0)
779 root 1.40 #endif
780    
781 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
782     #if __xlC__ && ECB_CPP
783     #include <builtins.h>
784     #endif
785    
786 root 1.479 #if 1400 <= _MSC_VER
787     #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
788     #endif
789    
790 root 1.383 #ifndef ECB_MEMORY_FENCE
791 root 1.417 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
792 root 1.496 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
793 root 1.404 #if __i386 || __i386__
794 root 1.383 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
795 root 1.437 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
796 root 1.488 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
797 sf-exg 1.475 #elif ECB_GCC_AMD64
798 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
799     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
800 root 1.488 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
801 root 1.392 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
802 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
803 root 1.479 #elif defined __ARM_ARCH_2__ \
804     || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
805     || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
806     || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
807     || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
808     || defined __ARM_ARCH_5TEJ__
809     /* should not need any, unless running old code on newer cpu - arm doesn't support that */
810 root 1.417 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
811 root 1.479 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
812     || defined __ARM_ARCH_6T2__
813 root 1.415 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
814 root 1.417 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
815 root 1.479 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
816 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
817 root 1.464 #elif __aarch64__
818     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
819 root 1.477 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
820 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
821     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
822     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
823 root 1.417 #elif defined __s390__ || defined __s390x__
824 root 1.408 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
825 root 1.417 #elif defined __mips__
826 root 1.458 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
827 root 1.456 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
828     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
829 root 1.419 #elif defined __alpha__
830 root 1.437 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
831     #elif defined __hppa__
832     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
833     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
834     #elif defined __ia64__
835     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
836 root 1.457 #elif defined __m68k__
837     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
838     #elif defined __m88k__
839     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
840     #elif defined __sh__
841     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
842 root 1.383 #endif
843     #endif
844     #endif
845    
846     #ifndef ECB_MEMORY_FENCE
847 root 1.437 #if ECB_GCC_VERSION(4,7)
848 root 1.442 /* see comment below (stdatomic.h) about the C11 memory model. */
849 root 1.437 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
850 root 1.464 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
851     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
852 root 1.496 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
853 root 1.450
854 root 1.474 #elif ECB_CLANG_EXTENSION(c_atomic)
855     /* see comment below (stdatomic.h) about the C11 memory model. */
856     #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
857     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
858     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
859 root 1.496 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
860 root 1.450
861 root 1.437 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
862 root 1.383 #define ECB_MEMORY_FENCE __sync_synchronize ()
863 root 1.462 #elif _MSC_VER >= 1500 /* VC++ 2008 */
864     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
865     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
866     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
867     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
868     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
869 root 1.389 #elif _MSC_VER >= 1400 /* VC++ 2005 */
870     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
871     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
872     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
873     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
874 root 1.417 #elif defined _WIN32
875 root 1.388 #include <WinNT.h>
876 root 1.391 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
877 root 1.403 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
878     #include <mbarrier.h>
879 root 1.496 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
880     #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
881     #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
882     #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
883 root 1.413 #elif __xlC__
884 root 1.414 #define ECB_MEMORY_FENCE __sync ()
885 root 1.383 #endif
886     #endif
887    
888     #ifndef ECB_MEMORY_FENCE
889 root 1.437 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
890     /* we assume that these memory fences work on all variables/all memory accesses, */
891     /* not just C11 atomics and atomic accesses */
892     #include <stdatomic.h>
893     #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
894 root 1.496 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
895     #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
896 root 1.437 #endif
897     #endif
898    
899     #ifndef ECB_MEMORY_FENCE
900 root 1.392 #if !ECB_AVOID_PTHREADS
901     /*
902     * if you get undefined symbol references to pthread_mutex_lock,
903     * or failure to find pthread.h, then you should implement
904     * the ECB_MEMORY_FENCE operations for your cpu/compiler
905     * OR provide pthread.h and link against the posix thread library
906     * of your system.
907     */
908     #include <pthread.h>
909     #define ECB_NEEDS_PTHREADS 1
910     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
911    
912     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
913     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
914     #endif
915     #endif
916 root 1.383
917 root 1.417 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
918 root 1.383 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
919 root 1.392 #endif
920    
921 root 1.417 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
922 root 1.383 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
923     #endif
924    
925 root 1.496 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
926     #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
927     #endif
928    
929 root 1.391 /*****************************************************************************/
930    
931 root 1.474 #if ECB_CPP
932 root 1.391 #define ecb_inline static inline
933     #elif ECB_GCC_VERSION(2,5)
934     #define ecb_inline static __inline__
935     #elif ECB_C99
936     #define ecb_inline static inline
937     #else
938     #define ecb_inline static
939     #endif
940    
941     #if ECB_GCC_VERSION(3,3)
942     #define ecb_restrict __restrict__
943     #elif ECB_C99
944     #define ecb_restrict restrict
945     #else
946     #define ecb_restrict
947     #endif
948    
949     typedef int ecb_bool;
950    
951     #define ECB_CONCAT_(a, b) a ## b
952     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
953     #define ECB_STRINGIFY_(a) # a
954     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
955 sf-exg 1.475 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
956 root 1.391
957     #define ecb_function_ ecb_inline
958    
959 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
960     #define ecb_attribute(attrlist) __attribute__ (attrlist)
961 root 1.379 #else
962     #define ecb_attribute(attrlist)
963 root 1.474 #endif
964 root 1.464
965 root 1.474 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
966     #define ecb_is_constant(expr) __builtin_constant_p (expr)
967     #else
968 root 1.464 /* possible C11 impl for integral types
969     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
970     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
971    
972 root 1.379 #define ecb_is_constant(expr) 0
973 root 1.474 #endif
974    
975     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
976     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
977     #else
978 root 1.379 #define ecb_expect(expr,value) (expr)
979 root 1.474 #endif
980    
981     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
982     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
983     #else
984 root 1.379 #define ecb_prefetch(addr,rw,locality)
985     #endif
986    
987 root 1.391 /* no emulation for ecb_decltype */
988 root 1.474 #if ECB_CPP11
989     // older implementations might have problems with decltype(x)::type, work around it
990     template<class T> struct ecb_decltype_t { typedef T type; };
991     #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
992     #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
993     #define ecb_decltype(x) __typeof__ (x)
994 root 1.391 #endif
995    
996 root 1.468 #if _MSC_VER >= 1300
997 root 1.474 #define ecb_deprecated __declspec (deprecated)
998 root 1.468 #else
999     #define ecb_deprecated ecb_attribute ((__deprecated__))
1000     #endif
1001    
1002 root 1.476 #if _MSC_VER >= 1500
1003 sf-exg 1.475 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
1004     #elif ECB_GCC_VERSION(4,5)
1005     #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
1006     #else
1007     #define ecb_deprecated_message(msg) ecb_deprecated
1008     #endif
1009    
1010     #if _MSC_VER >= 1400
1011     #define ecb_noinline __declspec (noinline)
1012     #else
1013     #define ecb_noinline ecb_attribute ((__noinline__))
1014     #endif
1015    
1016 root 1.379 #define ecb_unused ecb_attribute ((__unused__))
1017     #define ecb_const ecb_attribute ((__const__))
1018     #define ecb_pure ecb_attribute ((__pure__))
1019    
1020 root 1.474 #if ECB_C11 || __IBMC_NORETURN
1021 root 1.476 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1022 root 1.437 #define ecb_noreturn _Noreturn
1023 sf-exg 1.475 #elif ECB_CPP11
1024     #define ecb_noreturn [[noreturn]]
1025     #elif _MSC_VER >= 1200
1026     /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1027     #define ecb_noreturn __declspec (noreturn)
1028 root 1.437 #else
1029     #define ecb_noreturn ecb_attribute ((__noreturn__))
1030     #endif
1031    
1032 root 1.379 #if ECB_GCC_VERSION(4,3)
1033     #define ecb_artificial ecb_attribute ((__artificial__))
1034     #define ecb_hot ecb_attribute ((__hot__))
1035     #define ecb_cold ecb_attribute ((__cold__))
1036     #else
1037     #define ecb_artificial
1038     #define ecb_hot
1039     #define ecb_cold
1040     #endif
1041    
1042     /* put around conditional expressions if you are very sure that the */
1043     /* expression is mostly true or mostly false. note that these return */
1044     /* booleans, not the expression. */
1045     #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1046     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1047 root 1.391 /* for compatibility to the rest of the world */
1048     #define ecb_likely(expr) ecb_expect_true (expr)
1049     #define ecb_unlikely(expr) ecb_expect_false (expr)
1050    
1051     /* count trailing zero bits and count # of one bits */
1052 root 1.474 #if ECB_GCC_VERSION(3,4) \
1053     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1054     && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1055     && ECB_CLANG_BUILTIN(__builtin_popcount))
1056 root 1.391 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1057     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1058     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1059     #define ecb_ctz32(x) __builtin_ctz (x)
1060     #define ecb_ctz64(x) __builtin_ctzll (x)
1061     #define ecb_popcount32(x) __builtin_popcount (x)
1062     /* no popcountll */
1063     #else
1064 root 1.474 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1065     ecb_function_ ecb_const int
1066 root 1.391 ecb_ctz32 (uint32_t x)
1067     {
1068 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1069     unsigned long r;
1070     _BitScanForward (&r, x);
1071     return (int)r;
1072     #else
1073 root 1.391 int r = 0;
1074    
1075     x &= ~x + 1; /* this isolates the lowest bit */
1076    
1077     #if ECB_branchless_on_i386
1078     r += !!(x & 0xaaaaaaaa) << 0;
1079     r += !!(x & 0xcccccccc) << 1;
1080     r += !!(x & 0xf0f0f0f0) << 2;
1081     r += !!(x & 0xff00ff00) << 3;
1082     r += !!(x & 0xffff0000) << 4;
1083     #else
1084     if (x & 0xaaaaaaaa) r += 1;
1085     if (x & 0xcccccccc) r += 2;
1086     if (x & 0xf0f0f0f0) r += 4;
1087     if (x & 0xff00ff00) r += 8;
1088     if (x & 0xffff0000) r += 16;
1089     #endif
1090    
1091     return r;
1092 root 1.479 #endif
1093 root 1.391 }
1094    
1095 root 1.474 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1096     ecb_function_ ecb_const int
1097 root 1.391 ecb_ctz64 (uint64_t x)
1098     {
1099 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1100     unsigned long r;
1101     _BitScanForward64 (&r, x);
1102     return (int)r;
1103     #else
1104     int shift = x & 0xffffffff ? 0 : 32;
1105 root 1.391 return ecb_ctz32 (x >> shift) + shift;
1106 root 1.479 #endif
1107 root 1.391 }
1108    
1109 root 1.474 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1110     ecb_function_ ecb_const int
1111 root 1.391 ecb_popcount32 (uint32_t x)
1112     {
1113     x -= (x >> 1) & 0x55555555;
1114     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1115     x = ((x >> 4) + x) & 0x0f0f0f0f;
1116     x *= 0x01010101;
1117    
1118     return x >> 24;
1119     }
1120    
1121 root 1.474 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1122     ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1123 root 1.391 {
1124 root 1.479 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1125     unsigned long r;
1126     _BitScanReverse (&r, x);
1127     return (int)r;
1128     #else
1129 root 1.391 int r = 0;
1130    
1131     if (x >> 16) { x >>= 16; r += 16; }
1132     if (x >> 8) { x >>= 8; r += 8; }
1133     if (x >> 4) { x >>= 4; r += 4; }
1134     if (x >> 2) { x >>= 2; r += 2; }
1135     if (x >> 1) { r += 1; }
1136    
1137     return r;
1138 root 1.479 #endif
1139 root 1.391 }
1140    
1141 root 1.474 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1142     ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1143 root 1.391 {
1144 root 1.479 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1145     unsigned long r;
1146     _BitScanReverse64 (&r, x);
1147     return (int)r;
1148     #else
1149 root 1.391 int r = 0;
1150    
1151     if (x >> 32) { x >>= 32; r += 32; }
1152    
1153     return r + ecb_ld32 (x);
1154 root 1.479 #endif
1155 root 1.391 }
1156     #endif
1157    
1158 root 1.474 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1159     ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1160     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1161     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1162 root 1.437
1163 root 1.474 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1164     ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1165 root 1.403 {
1166     return ( (x * 0x0802U & 0x22110U)
1167 root 1.474 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1168 root 1.403 }
1169    
1170 root 1.474 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1171     ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1172 root 1.403 {
1173     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1174     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1175     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1176     x = ( x >> 8 ) | ( x << 8);
1177    
1178     return x;
1179     }
1180    
1181 root 1.474 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1182     ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1183 root 1.403 {
1184     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1185     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1186     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1187     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1188     x = ( x >> 16 ) | ( x << 16);
1189    
1190     return x;
1191     }
1192    
1193 root 1.391 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1194     /* so for this version we are lazy */
1195 root 1.474 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1196     ecb_function_ ecb_const int
1197 root 1.391 ecb_popcount64 (uint64_t x)
1198     {
1199     return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1200     }
1201    
1202 root 1.474 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1203     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1204     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1205     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1206     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1207     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1208     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1209     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1210    
1211     ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1212     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1213     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1214     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1215     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1216     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1217     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1218     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1219 root 1.391
1220 root 1.523 #if ECB_CPP
1221    
1222     inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
1223     inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
1224     inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
1225     inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
1226    
1227     inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
1228     inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
1229     inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
1230     inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
1231    
1232     inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
1233     inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
1234     inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
1235     inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
1236    
1237     inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
1238     inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
1239     inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
1240     inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
1241    
1242     inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
1243     inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
1244     inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
1245    
1246     inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
1247     inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
1248     inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
1249     inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
1250    
1251     inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
1252     inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
1253     inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
1254     inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
1255    
1256     #endif
1257    
1258 root 1.474 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1259 root 1.476 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1260     #define ecb_bswap16(x) __builtin_bswap16 (x)
1261     #else
1262 root 1.391 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1263 root 1.476 #endif
1264 root 1.391 #define ecb_bswap32(x) __builtin_bswap32 (x)
1265     #define ecb_bswap64(x) __builtin_bswap64 (x)
1266 root 1.476 #elif _MSC_VER
1267     #include <stdlib.h>
1268     #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1269     #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1270     #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1271 root 1.391 #else
1272 root 1.474 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1273     ecb_function_ ecb_const uint16_t
1274 root 1.391 ecb_bswap16 (uint16_t x)
1275     {
1276     return ecb_rotl16 (x, 8);
1277     }
1278    
1279 root 1.474 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1280     ecb_function_ ecb_const uint32_t
1281 root 1.391 ecb_bswap32 (uint32_t x)
1282     {
1283     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1284     }
1285    
1286 root 1.474 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1287     ecb_function_ ecb_const uint64_t
1288 root 1.391 ecb_bswap64 (uint64_t x)
1289     {
1290     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1291     }
1292     #endif
1293    
1294 root 1.474 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1295 root 1.391 #define ecb_unreachable() __builtin_unreachable ()
1296     #else
1297     /* this seems to work fine, but gcc always emits a warning for it :/ */
1298 root 1.474 ecb_inline ecb_noreturn void ecb_unreachable (void);
1299     ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1300 root 1.391 #endif
1301    
1302     /* try to tell the compiler that some condition is definitely true */
1303 root 1.450 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1304 root 1.391
1305 root 1.479 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1306     ecb_inline ecb_const uint32_t
1307 root 1.391 ecb_byteorder_helper (void)
1308     {
1309 root 1.450 /* the union code still generates code under pressure in gcc, */
1310     /* but less than using pointers, and always seems to */
1311     /* successfully return a constant. */
1312     /* the reason why we have this horrible preprocessor mess */
1313     /* is to avoid it in all cases, at least on common architectures */
1314     /* or when using a recent enough gcc version (>= 4.6) */
1315 root 1.479 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1316     || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1317     #define ECB_LITTLE_ENDIAN 1
1318     return 0x44332211;
1319     #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1320     || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1321     #define ECB_BIG_ENDIAN 1
1322     return 0x11223344;
1323 root 1.450 #else
1324     union
1325     {
1326 root 1.479 uint8_t c[4];
1327     uint32_t u;
1328     } u = { 0x11, 0x22, 0x33, 0x44 };
1329     return u.u;
1330 root 1.450 #endif
1331 root 1.391 }
1332    
1333 root 1.474 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1334 root 1.479 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1335 root 1.474 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1336 root 1.479 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1337 root 1.391
1338 root 1.523 /*****************************************************************************/
1339     /* unaligned load/store */
1340    
1341     ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1342     ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1343     ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1344    
1345     ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1346     ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1347     ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1348    
1349     ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1350     ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1351     ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1352    
1353     ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
1354     ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
1355     ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
1356    
1357     ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
1358     ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
1359     ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
1360    
1361     ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1362     ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1363     ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1364    
1365     ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1366     ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1367     ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1368    
1369     ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
1370     ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
1371     ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
1372    
1373     ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
1374     ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
1375     ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
1376    
1377     ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
1378     ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
1379     ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
1380    
1381     #if ECB_CPP
1382    
1383     inline uint8_t ecb_bswap (uint8_t v) { return v; }
1384     inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
1385     inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
1386     inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
1387    
1388     template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1389     template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1390     template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
1391     template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
1392     template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
1393     template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
1394     template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
1395     template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
1396    
1397     template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1398     template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1399     template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
1400     template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
1401     template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
1402     template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
1403     template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
1404     template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
1405    
1406     #endif
1407    
1408     /*****************************************************************************/
1409    
1410 root 1.391 #if ECB_GCC_VERSION(3,0) || ECB_C99
1411     #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1412     #else
1413     #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1414     #endif
1415    
1416 root 1.474 #if ECB_CPP
1417 root 1.398 template<typename T>
1418     static inline T ecb_div_rd (T val, T div)
1419     {
1420     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1421     }
1422     template<typename T>
1423     static inline T ecb_div_ru (T val, T div)
1424     {
1425     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1426     }
1427     #else
1428     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1429     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1430     #endif
1431    
1432 root 1.391 #if ecb_cplusplus_does_not_suck
1433     /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1434     template<typename T, int N>
1435     static inline int ecb_array_length (const T (&arr)[N])
1436     {
1437     return N;
1438     }
1439     #else
1440     #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1441     #endif
1442    
1443 root 1.523 /*****************************************************************************/
1444    
1445 root 1.479 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1446     ecb_function_ ecb_const uint32_t
1447     ecb_binary16_to_binary32 (uint32_t x)
1448     {
1449     unsigned int s = (x & 0x8000) << (31 - 15);
1450     int e = (x >> 10) & 0x001f;
1451     unsigned int m = x & 0x03ff;
1452    
1453     if (ecb_expect_false (e == 31))
1454     /* infinity or NaN */
1455     e = 255 - (127 - 15);
1456     else if (ecb_expect_false (!e))
1457     {
1458     if (ecb_expect_true (!m))
1459     /* zero, handled by code below by forcing e to 0 */
1460     e = 0 - (127 - 15);
1461     else
1462     {
1463     /* subnormal, renormalise */
1464     unsigned int s = 10 - ecb_ld32 (m);
1465    
1466     m = (m << s) & 0x3ff; /* mask implicit bit */
1467     e -= s - 1;
1468     }
1469     }
1470    
1471     /* e and m now are normalised, or zero, (or inf or nan) */
1472     e += 127 - 15;
1473    
1474     return s | (e << 23) | (m << (23 - 10));
1475     }
1476    
1477     ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1478     ecb_function_ ecb_const uint16_t
1479     ecb_binary32_to_binary16 (uint32_t x)
1480     {
1481     unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1482     unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1483     unsigned int m = x & 0x007fffff;
1484    
1485     x &= 0x7fffffff;
1486    
1487     /* if it's within range of binary16 normals, use fast path */
1488     if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1489     {
1490     /* mantissa round-to-even */
1491     m += 0x00000fff + ((m >> (23 - 10)) & 1);
1492    
1493     /* handle overflow */
1494     if (ecb_expect_false (m >= 0x00800000))
1495     {
1496     m >>= 1;
1497     e += 1;
1498     }
1499    
1500     return s | (e << 10) | (m >> (23 - 10));
1501     }
1502    
1503     /* handle large numbers and infinity */
1504     if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1505     return s | 0x7c00;
1506    
1507     /* handle zero, subnormals and small numbers */
1508     if (ecb_expect_true (x < 0x38800000))
1509     {
1510     /* zero */
1511     if (ecb_expect_true (!x))
1512     return s;
1513    
1514     /* handle subnormals */
1515    
1516     /* too small, will be zero */
1517     if (e < (14 - 24)) /* might not be sharp, but is good enough */
1518     return s;
1519    
1520     m |= 0x00800000; /* make implicit bit explicit */
1521    
1522     /* very tricky - we need to round to the nearest e (+10) bit value */
1523     {
1524     unsigned int bits = 14 - e;
1525     unsigned int half = (1 << (bits - 1)) - 1;
1526     unsigned int even = (m >> bits) & 1;
1527    
1528     /* if this overflows, we will end up with a normalised number */
1529     m = (m + half + even) >> bits;
1530     }
1531    
1532     return s | m;
1533     }
1534    
1535     /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1536     m >>= 13;
1537    
1538     return s | 0x7c00 | m | !m;
1539     }
1540    
1541 root 1.450 /*******************************************************************************/
1542     /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1543    
1544     /* basically, everything uses "ieee pure-endian" floating point numbers */
1545     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1546     #if 0 \
1547     || __i386 || __i386__ \
1548 sf-exg 1.475 || ECB_GCC_AMD64 \
1549 root 1.450 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1550     || defined __s390__ || defined __s390x__ \
1551     || defined __mips__ \
1552     || defined __alpha__ \
1553     || defined __hppa__ \
1554     || defined __ia64__ \
1555 root 1.457 || defined __m68k__ \
1556     || defined __m88k__ \
1557     || defined __sh__ \
1558 sf-exg 1.475 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1559 root 1.465 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1560 root 1.466 || defined __aarch64__
1561 root 1.450 #define ECB_STDFP 1
1562     #else
1563     #define ECB_STDFP 0
1564     #endif
1565    
1566     #ifndef ECB_NO_LIBM
1567    
1568 root 1.458 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1569    
1570 root 1.462 /* only the oldest of old doesn't have this one. solaris. */
1571     #ifdef INFINITY
1572     #define ECB_INFINITY INFINITY
1573     #else
1574     #define ECB_INFINITY HUGE_VAL
1575     #endif
1576    
1577     #ifdef NAN
1578 root 1.458 #define ECB_NAN NAN
1579     #else
1580 root 1.462 #define ECB_NAN ECB_INFINITY
1581 root 1.458 #endif
1582    
1583 root 1.474 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1584     #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1585 root 1.476 #define ecb_frexpf(x,e) frexpf ((x), (e))
1586 root 1.474 #else
1587 root 1.476 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1588     #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1589 root 1.474 #endif
1590    
1591 root 1.450 /* convert a float to ieee single/binary32 */
1592 root 1.474 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1593     ecb_function_ ecb_const uint32_t
1594 root 1.450 ecb_float_to_binary32 (float x)
1595     {
1596     uint32_t r;
1597    
1598     #if ECB_STDFP
1599     memcpy (&r, &x, 4);
1600     #else
1601     /* slow emulation, works for anything but -0 */
1602     uint32_t m;
1603     int e;
1604    
1605     if (x == 0e0f ) return 0x00000000U;
1606     if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1607     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1608     if (x != x ) return 0x7fbfffffU;
1609    
1610 root 1.476 m = ecb_frexpf (x, &e) * 0x1000000U;
1611 root 1.450
1612     r = m & 0x80000000U;
1613    
1614     if (r)
1615     m = -m;
1616    
1617     if (e <= -126)
1618     {
1619     m &= 0xffffffU;
1620     m >>= (-125 - e);
1621     e = -126;
1622     }
1623    
1624     r |= (e + 126) << 23;
1625     r |= m & 0x7fffffU;
1626     #endif
1627    
1628     return r;
1629     }
1630    
1631     /* converts an ieee single/binary32 to a float */
1632 root 1.474 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1633     ecb_function_ ecb_const float
1634 root 1.450 ecb_binary32_to_float (uint32_t x)
1635     {
1636     float r;
1637    
1638     #if ECB_STDFP
1639     memcpy (&r, &x, 4);
1640     #else
1641     /* emulation, only works for normals and subnormals and +0 */
1642     int neg = x >> 31;
1643     int e = (x >> 23) & 0xffU;
1644    
1645     x &= 0x7fffffU;
1646    
1647     if (e)
1648     x |= 0x800000U;
1649     else
1650     e = 1;
1651    
1652     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1653 root 1.474 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1654 root 1.450
1655     r = neg ? -r : r;
1656     #endif
1657    
1658     return r;
1659     }
1660    
1661     /* convert a double to ieee double/binary64 */
1662 root 1.474 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1663     ecb_function_ ecb_const uint64_t
1664 root 1.450 ecb_double_to_binary64 (double x)
1665     {
1666     uint64_t r;
1667    
1668     #if ECB_STDFP
1669     memcpy (&r, &x, 8);
1670     #else
1671     /* slow emulation, works for anything but -0 */
1672     uint64_t m;
1673     int e;
1674    
1675     if (x == 0e0 ) return 0x0000000000000000U;
1676     if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1677     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1678     if (x != x ) return 0X7ff7ffffffffffffU;
1679    
1680     m = frexp (x, &e) * 0x20000000000000U;
1681    
1682     r = m & 0x8000000000000000;;
1683    
1684     if (r)
1685     m = -m;
1686    
1687     if (e <= -1022)
1688     {
1689     m &= 0x1fffffffffffffU;
1690     m >>= (-1021 - e);
1691     e = -1022;
1692     }
1693    
1694     r |= ((uint64_t)(e + 1022)) << 52;
1695     r |= m & 0xfffffffffffffU;
1696     #endif
1697    
1698     return r;
1699     }
1700    
1701     /* converts an ieee double/binary64 to a double */
1702 root 1.474 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1703     ecb_function_ ecb_const double
1704 root 1.450 ecb_binary64_to_double (uint64_t x)
1705     {
1706     double r;
1707    
1708     #if ECB_STDFP
1709     memcpy (&r, &x, 8);
1710     #else
1711     /* emulation, only works for normals and subnormals and +0 */
1712     int neg = x >> 63;
1713     int e = (x >> 52) & 0x7ffU;
1714    
1715     x &= 0xfffffffffffffU;
1716    
1717     if (e)
1718     x |= 0x10000000000000U;
1719     else
1720     e = 1;
1721    
1722     /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1723     r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1724    
1725     r = neg ? -r : r;
1726     #endif
1727    
1728     return r;
1729     }
1730    
1731 root 1.479 /* convert a float to ieee half/binary16 */
1732     ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1733     ecb_function_ ecb_const uint16_t
1734     ecb_float_to_binary16 (float x)
1735     {
1736     return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1737     }
1738    
1739     /* convert an ieee half/binary16 to float */
1740     ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1741     ecb_function_ ecb_const float
1742     ecb_binary16_to_float (uint16_t x)
1743     {
1744     return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1745     }
1746    
1747 root 1.450 #endif
1748    
1749 root 1.391 #endif
1750    
1751     /* ECB.H END */
1752 root 1.379
1753 root 1.392 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1754 root 1.397 /* if your architecture doesn't need memory fences, e.g. because it is
1755 root 1.396 * single-cpu/core, or if you use libev in a project that doesn't use libev
1756 root 1.500 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1757 sf-exg 1.402 * libev, in which cases the memory fences become nops.
1758 root 1.396 * alternatively, you can remove this #error and link against libpthread,
1759     * which will then provide the memory fences.
1760     */
1761     # error "memory fences not defined for your architecture, please report"
1762     #endif
1763    
1764     #ifndef ECB_MEMORY_FENCE
1765     # define ECB_MEMORY_FENCE do { } while (0)
1766     # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1767     # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1768 root 1.392 #endif
1769    
1770 root 1.379 #define inline_size ecb_inline
1771 root 1.169
1772 root 1.338 #if EV_FEATURE_CODE
1773 root 1.379 # define inline_speed ecb_inline
1774 root 1.338 #else
1775 root 1.500 # define inline_speed ecb_noinline static
1776 root 1.169 #endif
1777 root 1.40
1778 root 1.502 /*****************************************************************************/
1779     /* raw syscall wrappers */
1780    
1781     #if EV_NEED_SYSCALL
1782    
1783     #include <sys/syscall.h>
1784    
1785     /*
1786     * define some syscall wrappers for common architectures
1787     * this is mostly for nice looks during debugging, not performance.
1788     * our syscalls return < 0, not == -1, on error. which is good
1789     * enough for linux aio.
1790     * TODO: arm is also common nowadays, maybe even mips and x86
1791     * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1792     */
1793 root 1.519 #if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1794 root 1.502 /* the costly errno access probably kills this for size optimisation */
1795    
1796     #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1797     ({ \
1798     long res; \
1799     register unsigned long r6 __asm__ ("r9" ); \
1800     register unsigned long r5 __asm__ ("r8" ); \
1801     register unsigned long r4 __asm__ ("r10"); \
1802     register unsigned long r3 __asm__ ("rdx"); \
1803     register unsigned long r2 __asm__ ("rsi"); \
1804     register unsigned long r1 __asm__ ("rdi"); \
1805     if (narg >= 6) r6 = (unsigned long)(arg6); \
1806     if (narg >= 5) r5 = (unsigned long)(arg5); \
1807     if (narg >= 4) r4 = (unsigned long)(arg4); \
1808     if (narg >= 3) r3 = (unsigned long)(arg3); \
1809     if (narg >= 2) r2 = (unsigned long)(arg2); \
1810     if (narg >= 1) r1 = (unsigned long)(arg1); \
1811     __asm__ __volatile__ ( \
1812     "syscall\n\t" \
1813     : "=a" (res) \
1814     : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1815     : "cc", "r11", "cx", "memory"); \
1816     errno = -res; \
1817     res; \
1818     })
1819    
1820     #endif
1821    
1822     #ifdef ev_syscall
1823     #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1824     #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1825     #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1826     #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1827     #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1828     #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1829     #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1830     #else
1831     #define ev_syscall0(nr) syscall (nr)
1832     #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1833     #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1834     #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1835     #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1836     #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1837     #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1838     #endif
1839    
1840     #endif
1841    
1842     /*****************************************************************************/
1843    
1844 root 1.295 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1845    
1846     #if EV_MINPRI == EV_MAXPRI
1847     # define ABSPRI(w) (((W)w), 0)
1848     #else
1849     # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1850     #endif
1851 root 1.42
1852 root 1.490 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1853 root 1.103
1854 root 1.136 typedef ev_watcher *W;
1855     typedef ev_watcher_list *WL;
1856     typedef ev_watcher_time *WT;
1857 root 1.10
1858 root 1.229 #define ev_active(w) ((W)(w))->active
1859 root 1.228 #define ev_at(w) ((WT)(w))->at
1860    
1861 root 1.279 #if EV_USE_REALTIME
1862 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1863 sf-exg 1.345 /* giving it a reasonably high chance of working on typical architectures */
1864 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1865     #endif
1866    
1867     #if EV_USE_MONOTONIC
1868 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1869 root 1.198 #endif
1870 root 1.54
1871 root 1.313 #ifndef EV_FD_TO_WIN32_HANDLE
1872     # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1873     #endif
1874     #ifndef EV_WIN32_HANDLE_TO_FD
1875 root 1.322 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1876 root 1.313 #endif
1877     #ifndef EV_WIN32_CLOSE_FD
1878     # define EV_WIN32_CLOSE_FD(fd) close (fd)
1879     #endif
1880    
1881 root 1.103 #ifdef _WIN32
1882 root 1.98 # include "ev_win32.c"
1883     #endif
1884 root 1.67
1885 root 1.53 /*****************************************************************************/
1886 root 1.1
1887 root 1.493 #if EV_USE_LINUXAIO
1888     # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1889     #endif
1890    
1891 root 1.373 /* define a suitable floor function (only used by periodics atm) */
1892    
1893     #if EV_USE_FLOOR
1894     # include <math.h>
1895     # define ev_floor(v) floor (v)
1896     #else
1897    
1898     #include <float.h>
1899    
1900     /* a floor() replacement function, should be independent of ev_tstamp type */
1901 root 1.500 ecb_noinline
1902 root 1.480 static ev_tstamp
1903 root 1.373 ev_floor (ev_tstamp v)
1904     {
1905     /* the choice of shift factor is not terribly important */
1906     #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1907     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1908     #else
1909     const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1910     #endif
1911    
1912 root 1.504 /* special treatment for negative arguments */
1913     if (ecb_expect_false (v < 0.))
1914     {
1915     ev_tstamp f = -ev_floor (-v);
1916    
1917     return f - (f == v ? 0 : 1);
1918     }
1919    
1920     /* argument too large for an unsigned long? then reduce it */
1921 root 1.500 if (ecb_expect_false (v >= shift))
1922 root 1.373 {
1923     ev_tstamp f;
1924    
1925     if (v == v - 1.)
1926 root 1.504 return v; /* very large numbers are assumed to be integer */
1927 root 1.373
1928     f = shift * ev_floor (v * (1. / shift));
1929     return f + ev_floor (v - f);
1930     }
1931    
1932     /* fits into an unsigned long */
1933     return (unsigned long)v;
1934     }
1935    
1936     #endif
1937    
1938     /*****************************************************************************/
1939    
1940 root 1.356 #ifdef __linux
1941     # include <sys/utsname.h>
1942     #endif
1943    
1944 root 1.500 ecb_noinline ecb_cold
1945 root 1.480 static unsigned int
1946 root 1.355 ev_linux_version (void)
1947     {
1948     #ifdef __linux
1949 root 1.359 unsigned int v = 0;
1950 root 1.355 struct utsname buf;
1951     int i;
1952     char *p = buf.release;
1953    
1954     if (uname (&buf))
1955     return 0;
1956    
1957     for (i = 3+1; --i; )
1958     {
1959     unsigned int c = 0;
1960    
1961     for (;;)
1962     {
1963     if (*p >= '0' && *p <= '9')
1964     c = c * 10 + *p++ - '0';
1965     else
1966     {
1967     p += *p == '.';
1968     break;
1969     }
1970     }
1971    
1972     v = (v << 8) | c;
1973     }
1974    
1975     return v;
1976     #else
1977     return 0;
1978     #endif
1979     }
1980    
1981     /*****************************************************************************/
1982    
1983 root 1.331 #if EV_AVOID_STDIO
1984 root 1.500 ecb_noinline ecb_cold
1985 root 1.480 static void
1986 root 1.331 ev_printerr (const char *msg)
1987     {
1988     write (STDERR_FILENO, msg, strlen (msg));
1989     }
1990     #endif
1991    
1992 root 1.486 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1993 root 1.69
1994 root 1.480 ecb_cold
1995     void
1996 root 1.486 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1997 root 1.69 {
1998     syserr_cb = cb;
1999     }
2000    
2001 root 1.500 ecb_noinline ecb_cold
2002 root 1.480 static void
2003 root 1.269 ev_syserr (const char *msg)
2004 root 1.69 {
2005 root 1.70 if (!msg)
2006     msg = "(libev) system error";
2007    
2008 root 1.69 if (syserr_cb)
2009 root 1.70 syserr_cb (msg);
2010 root 1.69 else
2011     {
2012 root 1.330 #if EV_AVOID_STDIO
2013 root 1.331 ev_printerr (msg);
2014     ev_printerr (": ");
2015 root 1.365 ev_printerr (strerror (errno));
2016 root 1.331 ev_printerr ("\n");
2017 root 1.330 #else
2018 root 1.70 perror (msg);
2019 root 1.330 #endif
2020 root 1.69 abort ();
2021     }
2022     }
2023    
2024 root 1.224 static void *
2025 root 1.486 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
2026 root 1.224 {
2027     /* some systems, notably openbsd and darwin, fail to properly
2028 root 1.335 * implement realloc (x, 0) (as required by both ansi c-89 and
2029 root 1.224 * the single unix specification, so work around them here.
2030 root 1.447 * recently, also (at least) fedora and debian started breaking it,
2031     * despite documenting it otherwise.
2032 root 1.224 */
2033 root 1.333
2034 root 1.224 if (size)
2035     return realloc (ptr, size);
2036    
2037     free (ptr);
2038     return 0;
2039     }
2040    
2041 root 1.486 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
2042 root 1.69
2043 root 1.480 ecb_cold
2044     void
2045 root 1.486 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
2046 root 1.69 {
2047     alloc = cb;
2048     }
2049    
2050 root 1.150 inline_speed void *
2051 root 1.155 ev_realloc (void *ptr, long size)
2052 root 1.69 {
2053 root 1.224 ptr = alloc (ptr, size);
2054 root 1.69
2055     if (!ptr && size)
2056     {
2057 root 1.330 #if EV_AVOID_STDIO
2058 root 1.365 ev_printerr ("(libev) memory allocation failed, aborting.\n");
2059 root 1.330 #else
2060 root 1.365 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
2061 root 1.330 #endif
2062 root 1.69 abort ();
2063     }
2064    
2065     return ptr;
2066     }
2067    
2068     #define ev_malloc(size) ev_realloc (0, (size))
2069     #define ev_free(ptr) ev_realloc ((ptr), 0)
2070    
2071     /*****************************************************************************/
2072    
2073 root 1.298 /* set in reify when reification needed */
2074     #define EV_ANFD_REIFY 1
2075    
2076 root 1.288 /* file descriptor info structure */
2077 root 1.53 typedef struct
2078     {
2079 root 1.68 WL head;
2080 root 1.288 unsigned char events; /* the events watched for */
2081 root 1.298 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
2082 root 1.490 unsigned char emask; /* some backends store the actual kernel mask in here */
2083 root 1.502 unsigned char eflags; /* flags field for use by backends */
2084 root 1.269 #if EV_USE_EPOLL
2085 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
2086 root 1.269 #endif
2087 root 1.357 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2088 root 1.103 SOCKET handle;
2089     #endif
2090 root 1.357 #if EV_USE_IOCP
2091     OVERLAPPED or, ow;
2092     #endif
2093 root 1.53 } ANFD;
2094 root 1.1
2095 root 1.288 /* stores the pending event set for a given watcher */
2096 root 1.53 typedef struct
2097     {
2098     W w;
2099 root 1.288 int events; /* the pending event set for the given watcher */
2100 root 1.53 } ANPENDING;
2101 root 1.51
2102 root 1.155 #if EV_USE_INOTIFY
2103 root 1.241 /* hash table entry per inotify-id */
2104 root 1.152 typedef struct
2105     {
2106     WL head;
2107 root 1.155 } ANFS;
2108 root 1.152 #endif
2109    
2110 root 1.241 /* Heap Entry */
2111     #if EV_HEAP_CACHE_AT
2112 root 1.288 /* a heap element */
2113 root 1.241 typedef struct {
2114 root 1.243 ev_tstamp at;
2115 root 1.241 WT w;
2116     } ANHE;
2117    
2118 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
2119     #define ANHE_at(he) (he).at /* access cached at, read-only */
2120     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
2121 root 1.241 #else
2122 root 1.288 /* a heap element */
2123 root 1.241 typedef WT ANHE;
2124    
2125 root 1.248 #define ANHE_w(he) (he)
2126     #define ANHE_at(he) (he)->at
2127     #define ANHE_at_cache(he)
2128 root 1.241 #endif
2129    
2130 root 1.55 #if EV_MULTIPLICITY
2131 root 1.54
2132 root 1.80 struct ev_loop
2133     {
2134 root 1.86 ev_tstamp ev_rt_now;
2135 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
2136 root 1.80 #define VAR(name,decl) decl;
2137     #include "ev_vars.h"
2138     #undef VAR
2139     };
2140     #include "ev_wrap.h"
2141    
2142 root 1.116 static struct ev_loop default_loop_struct;
2143 sf-exg 1.402 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
2144 root 1.54
2145 root 1.53 #else
2146 root 1.54
2147 root 1.509 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
2148 root 1.80 #define VAR(name,decl) static decl;
2149     #include "ev_vars.h"
2150     #undef VAR
2151    
2152 root 1.116 static int ev_default_loop_ptr;
2153 root 1.54
2154 root 1.51 #endif
2155 root 1.1
2156 root 1.338 #if EV_FEATURE_API
2157 root 1.500 # define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2158     # define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2159 root 1.297 # define EV_INVOKE_PENDING invoke_cb (EV_A)
2160     #else
2161 root 1.298 # define EV_RELEASE_CB (void)0
2162     # define EV_ACQUIRE_CB (void)0
2163 root 1.297 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2164     #endif
2165    
2166 root 1.353 #define EVBREAK_RECURSE 0x80
2167 root 1.298
2168 root 1.8 /*****************************************************************************/
2169    
2170 root 1.292 #ifndef EV_HAVE_EV_TIME
2171 root 1.141 ev_tstamp
2172 root 1.486 ev_time (void) EV_NOEXCEPT
2173 root 1.1 {
2174 root 1.29 #if EV_USE_REALTIME
2175 root 1.500 if (ecb_expect_true (have_realtime))
2176 root 1.279 {
2177     struct timespec ts;
2178     clock_gettime (CLOCK_REALTIME, &ts);
2179 root 1.505 return EV_TS_GET (ts);
2180 root 1.279 }
2181     #endif
2182    
2183 root 1.510 {
2184     struct timeval tv;
2185     gettimeofday (&tv, 0);
2186     return EV_TV_GET (tv);
2187     }
2188 root 1.1 }
2189 root 1.292 #endif
2190 root 1.1
2191 root 1.284 inline_size ev_tstamp
2192 root 1.1 get_clock (void)
2193     {
2194 root 1.29 #if EV_USE_MONOTONIC
2195 root 1.500 if (ecb_expect_true (have_monotonic))
2196 root 1.1 {
2197     struct timespec ts;
2198     clock_gettime (CLOCK_MONOTONIC, &ts);
2199 root 1.505 return EV_TS_GET (ts);
2200 root 1.1 }
2201     #endif
2202    
2203     return ev_time ();
2204     }
2205    
2206 root 1.85 #if EV_MULTIPLICITY
2207 root 1.51 ev_tstamp
2208 root 1.486 ev_now (EV_P) EV_NOEXCEPT
2209 root 1.51 {
2210 root 1.85 return ev_rt_now;
2211 root 1.51 }
2212 root 1.85 #endif
2213 root 1.51
2214 root 1.193 void
2215 root 1.486 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2216 root 1.193 {
2217 root 1.509 if (delay > EV_TS_CONST (0.))
2218 root 1.193 {
2219     #if EV_USE_NANOSLEEP
2220     struct timespec ts;
2221    
2222 root 1.348 EV_TS_SET (ts, delay);
2223 root 1.193 nanosleep (&ts, 0);
2224 root 1.416 #elif defined _WIN32
2225 root 1.482 /* maybe this should round up, as ms is very low resolution */
2226     /* compared to select (µs) or nanosleep (ns) */
2227 root 1.508 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2228 root 1.193 #else
2229     struct timeval tv;
2230    
2231 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2232 root 1.302 /* something not guaranteed by newer posix versions, but guaranteed */
2233 root 1.257 /* by older ones */
2234 sf-exg 1.349 EV_TV_SET (tv, delay);
2235 root 1.193 select (0, 0, 0, 0, &tv);
2236     #endif
2237     }
2238     }
2239    
2240     /*****************************************************************************/
2241    
2242 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2243 root 1.232
2244 root 1.288 /* find a suitable new size for the given array, */
2245 sf-exg 1.345 /* hopefully by rounding to a nice-to-malloc size */
2246 root 1.284 inline_size int
2247 root 1.163 array_nextsize (int elem, int cur, int cnt)
2248     {
2249     int ncur = cur + 1;
2250    
2251     do
2252     ncur <<= 1;
2253     while (cnt > ncur);
2254    
2255 root 1.400 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2256 root 1.232 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2257 root 1.163 {
2258     ncur *= elem;
2259 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2260 root 1.163 ncur = ncur - sizeof (void *) * 4;
2261     ncur /= elem;
2262     }
2263    
2264     return ncur;
2265     }
2266    
2267 root 1.500 ecb_noinline ecb_cold
2268 root 1.480 static void *
2269 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
2270     {
2271     *cur = array_nextsize (elem, *cur, cnt);
2272     return ev_realloc (base, elem * *cur);
2273     }
2274 root 1.29
2275 root 1.495 #define array_needsize_noinit(base,offset,count)
2276 root 1.490
2277 root 1.495 #define array_needsize_zerofill(base,offset,count) \
2278     memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2279 root 1.265
2280 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
2281 root 1.500 if (ecb_expect_false ((cnt) > (cur))) \
2282 root 1.69 { \
2283 root 1.480 ecb_unused int ocur_ = (cur); \
2284 root 1.163 (base) = (type *)array_realloc \
2285     (sizeof (type), (base), &(cur), (cnt)); \
2286 root 1.495 init ((base), ocur_, ((cur) - ocur_)); \
2287 root 1.1 }
2288    
2289 root 1.163 #if 0
2290 root 1.74 #define array_slim(type,stem) \
2291 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2292     { \
2293     stem ## max = array_roundsize (stem ## cnt >> 1); \
2294 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2295 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2296     }
2297 root 1.163 #endif
2298 root 1.67
2299 root 1.65 #define array_free(stem, idx) \
2300 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2301 root 1.65
2302 root 1.8 /*****************************************************************************/
2303    
2304 root 1.288 /* dummy callback for pending events */
2305 root 1.500 ecb_noinline
2306 root 1.480 static void
2307 root 1.288 pendingcb (EV_P_ ev_prepare *w, int revents)
2308     {
2309     }
2310    
2311 root 1.500 ecb_noinline
2312 root 1.480 void
2313 root 1.486 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2314 root 1.1 {
2315 root 1.78 W w_ = (W)w;
2316 root 1.171 int pri = ABSPRI (w_);
2317 root 1.78
2318 root 1.500 if (ecb_expect_false (w_->pending))
2319 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
2320     else
2321 root 1.32 {
2322 root 1.171 w_->pending = ++pendingcnt [pri];
2323 root 1.490 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2324 root 1.171 pendings [pri][w_->pending - 1].w = w_;
2325     pendings [pri][w_->pending - 1].events = revents;
2326 root 1.32 }
2327 root 1.425
2328     pendingpri = NUMPRI - 1;
2329 root 1.1 }
2330    
2331 root 1.284 inline_speed void
2332     feed_reverse (EV_P_ W w)
2333     {
2334 root 1.490 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2335 root 1.284 rfeeds [rfeedcnt++] = w;
2336     }
2337    
2338     inline_size void
2339     feed_reverse_done (EV_P_ int revents)
2340     {
2341     do
2342     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2343     while (rfeedcnt);
2344     }
2345    
2346     inline_speed void
2347 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
2348 root 1.27 {
2349     int i;
2350    
2351     for (i = 0; i < eventcnt; ++i)
2352 root 1.78 ev_feed_event (EV_A_ events [i], type);
2353 root 1.27 }
2354    
2355 root 1.141 /*****************************************************************************/
2356    
2357 root 1.284 inline_speed void
2358 root 1.337 fd_event_nocheck (EV_P_ int fd, int revents)
2359 root 1.1 {
2360     ANFD *anfd = anfds + fd;
2361 root 1.136 ev_io *w;
2362 root 1.1
2363 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2364 root 1.1 {
2365 root 1.79 int ev = w->events & revents;
2366 root 1.1
2367     if (ev)
2368 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
2369 root 1.1 }
2370     }
2371    
2372 root 1.298 /* do not submit kernel events for fds that have reify set */
2373     /* because that means they changed while we were polling for new events */
2374     inline_speed void
2375     fd_event (EV_P_ int fd, int revents)
2376     {
2377     ANFD *anfd = anfds + fd;
2378    
2379 root 1.500 if (ecb_expect_true (!anfd->reify))
2380 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2381 root 1.298 }
2382    
2383 root 1.79 void
2384 root 1.486 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2385 root 1.79 {
2386 root 1.168 if (fd >= 0 && fd < anfdmax)
2387 root 1.337 fd_event_nocheck (EV_A_ fd, revents);
2388 root 1.79 }
2389    
2390 root 1.288 /* make sure the external fd watch events are in-sync */
2391     /* with the kernel/libev internal state */
2392 root 1.284 inline_size void
2393 root 1.51 fd_reify (EV_P)
2394 root 1.9 {
2395     int i;
2396    
2397 root 1.519 /* most backends do not modify the fdchanges list in backend_modfiy.
2398     * except io_uring, which has fixed-size buffers which might force us
2399 root 1.524 * to handle events in backend_modify, causing fdchanges to be amended,
2400 root 1.519 * which could result in an endless loop.
2401     * to avoid this, we do not dynamically handle fds that were added
2402 root 1.524 * during fd_reify. that means that for those backends, fdchangecnt
2403 root 1.519 * might be non-zero during poll, which must cause them to not block.
2404     * to not put too much of a burden on other backends, this detail
2405     * needs to be handled in the backend.
2406     */
2407     int changecnt = fdchangecnt;
2408    
2409 root 1.371 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2410 root 1.519 for (i = 0; i < changecnt; ++i)
2411 root 1.371 {
2412     int fd = fdchanges [i];
2413     ANFD *anfd = anfds + fd;
2414    
2415 root 1.374 if (anfd->reify & EV__IOFDSET && anfd->head)
2416 root 1.371 {
2417     SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2418    
2419     if (handle != anfd->handle)
2420     {
2421     unsigned long arg;
2422    
2423     assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2424    
2425     /* handle changed, but fd didn't - we need to do it in two steps */
2426     backend_modify (EV_A_ fd, anfd->events, 0);
2427     anfd->events = 0;
2428     anfd->handle = handle;
2429     }
2430     }
2431     }
2432     #endif
2433    
2434 root 1.519 for (i = 0; i < changecnt; ++i)
2435 root 1.27 {
2436     int fd = fdchanges [i];
2437     ANFD *anfd = anfds + fd;
2438 root 1.136 ev_io *w;
2439 root 1.27
2440 root 1.350 unsigned char o_events = anfd->events;
2441     unsigned char o_reify = anfd->reify;
2442 root 1.27
2443 root 1.497 anfd->reify = 0;
2444 root 1.27
2445 root 1.500 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2446 root 1.350 {
2447     anfd->events = 0;
2448 root 1.184
2449 root 1.350 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2450     anfd->events |= (unsigned char)w->events;
2451 root 1.27
2452 root 1.351 if (o_events != anfd->events)
2453 root 1.350 o_reify = EV__IOFDSET; /* actually |= */
2454     }
2455    
2456     if (o_reify & EV__IOFDSET)
2457     backend_modify (EV_A_ fd, o_events, anfd->events);
2458 root 1.27 }
2459    
2460 root 1.519 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2461     * this is a rare case (see beginning comment in this function), so we copy them to the
2462     * front and hope the backend handles this case.
2463     */
2464     if (ecb_expect_false (fdchangecnt != changecnt))
2465     memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2466    
2467     fdchangecnt -= changecnt;
2468 root 1.27 }
2469    
2470 root 1.288 /* something about the given fd changed */
2471 root 1.480 inline_size
2472     void
2473 root 1.183 fd_change (EV_P_ int fd, int flags)
2474 root 1.27 {
2475 root 1.183 unsigned char reify = anfds [fd].reify;
2476 root 1.184 anfds [fd].reify |= flags;
2477 root 1.27
2478 root 1.500 if (ecb_expect_true (!reify))
2479 root 1.183 {
2480     ++fdchangecnt;
2481 root 1.490 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2482 root 1.183 fdchanges [fdchangecnt - 1] = fd;
2483     }
2484 root 1.9 }
2485    
2486 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2487 root 1.480 inline_speed ecb_cold void
2488 root 1.51 fd_kill (EV_P_ int fd)
2489 root 1.41 {
2490 root 1.136 ev_io *w;
2491 root 1.41
2492 root 1.136 while ((w = (ev_io *)anfds [fd].head))
2493 root 1.41 {
2494 root 1.51 ev_io_stop (EV_A_ w);
2495 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2496 root 1.41 }
2497     }
2498    
2499 root 1.336 /* check whether the given fd is actually valid, for error recovery */
2500 root 1.480 inline_size ecb_cold int
2501 root 1.71 fd_valid (int fd)
2502     {
2503 root 1.103 #ifdef _WIN32
2504 root 1.322 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2505 root 1.71 #else
2506     return fcntl (fd, F_GETFD) != -1;
2507     #endif
2508     }
2509    
2510 root 1.19 /* called on EBADF to verify fds */
2511 root 1.500 ecb_noinline ecb_cold
2512 root 1.480 static void
2513 root 1.51 fd_ebadf (EV_P)
2514 root 1.19 {
2515     int fd;
2516    
2517     for (fd = 0; fd < anfdmax; ++fd)
2518 root 1.27 if (anfds [fd].events)
2519 root 1.254 if (!fd_valid (fd) && errno == EBADF)
2520 root 1.51 fd_kill (EV_A_ fd);
2521 root 1.41 }
2522    
2523     /* called on ENOMEM in select/poll to kill some fds and retry */
2524 root 1.500 ecb_noinline ecb_cold
2525 root 1.480 static void
2526 root 1.51 fd_enomem (EV_P)
2527 root 1.41 {
2528 root 1.62 int fd;
2529 root 1.41
2530 root 1.62 for (fd = anfdmax; fd--; )
2531 root 1.41 if (anfds [fd].events)
2532     {
2533 root 1.51 fd_kill (EV_A_ fd);
2534 root 1.307 break;
2535 root 1.41 }
2536 root 1.19 }
2537    
2538 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
2539 root 1.500 ecb_noinline
2540 root 1.480 static void
2541 root 1.56 fd_rearm_all (EV_P)
2542     {
2543     int fd;
2544    
2545     for (fd = 0; fd < anfdmax; ++fd)
2546     if (anfds [fd].events)
2547     {
2548     anfds [fd].events = 0;
2549 root 1.268 anfds [fd].emask = 0;
2550 root 1.298 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2551 root 1.56 }
2552     }
2553    
2554 root 1.336 /* used to prepare libev internal fd's */
2555     /* this is not fork-safe */
2556     inline_speed void
2557     fd_intern (int fd)
2558     {
2559     #ifdef _WIN32
2560     unsigned long arg = 1;
2561     ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2562     #else
2563     fcntl (fd, F_SETFD, FD_CLOEXEC);
2564     fcntl (fd, F_SETFL, O_NONBLOCK);
2565     #endif
2566     }
2567    
2568 root 1.8 /*****************************************************************************/
2569    
2570 root 1.235 /*
2571 sf-exg 1.345 * the heap functions want a real array index. array index 0 is guaranteed to not
2572 root 1.241 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2573     * the branching factor of the d-tree.
2574     */
2575    
2576     /*
2577 root 1.235 * at the moment we allow libev the luxury of two heaps,
2578     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2579     * which is more cache-efficient.
2580     * the difference is about 5% with 50000+ watchers.
2581     */
2582 root 1.241 #if EV_USE_4HEAP
2583 root 1.235
2584 root 1.237 #define DHEAP 4
2585     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2586 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2587 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
2588 root 1.235
2589     /* away from the root */
2590 root 1.284 inline_speed void
2591 root 1.241 downheap (ANHE *heap, int N, int k)
2592 root 1.235 {
2593 root 1.241 ANHE he = heap [k];
2594     ANHE *E = heap + N + HEAP0;
2595 root 1.235
2596     for (;;)
2597     {
2598     ev_tstamp minat;
2599 root 1.241 ANHE *minpos;
2600 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2601 root 1.235
2602 root 1.248 /* find minimum child */
2603 root 1.500 if (ecb_expect_true (pos + DHEAP - 1 < E))
2604 root 1.235 {
2605 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2606 root 1.506 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2607     if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2608     if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2609 root 1.235 }
2610 root 1.240 else if (pos < E)
2611 root 1.235 {
2612 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2613 root 1.506 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2614     if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2615     if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2616 root 1.235 }
2617 root 1.240 else
2618     break;
2619 root 1.235
2620 root 1.241 if (ANHE_at (he) <= minat)
2621 root 1.235 break;
2622    
2623 root 1.247 heap [k] = *minpos;
2624 root 1.241 ev_active (ANHE_w (*minpos)) = k;
2625 root 1.235
2626     k = minpos - heap;
2627     }
2628    
2629 root 1.247 heap [k] = he;
2630 root 1.241 ev_active (ANHE_w (he)) = k;
2631 root 1.235 }
2632    
2633 root 1.506 #else /* not 4HEAP */
2634 root 1.235
2635     #define HEAP0 1
2636 root 1.247 #define HPARENT(k) ((k) >> 1)
2637 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
2638 root 1.235
2639 root 1.248 /* away from the root */
2640 root 1.284 inline_speed void
2641 root 1.248 downheap (ANHE *heap, int N, int k)
2642 root 1.1 {
2643 root 1.241 ANHE he = heap [k];
2644 root 1.1
2645 root 1.228 for (;;)
2646 root 1.1 {
2647 root 1.248 int c = k << 1;
2648 root 1.179
2649 root 1.309 if (c >= N + HEAP0)
2650 root 1.179 break;
2651    
2652 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2653     ? 1 : 0;
2654    
2655     if (ANHE_at (he) <= ANHE_at (heap [c]))
2656     break;
2657    
2658     heap [k] = heap [c];
2659 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2660 root 1.248
2661     k = c;
2662 root 1.1 }
2663    
2664 root 1.243 heap [k] = he;
2665 root 1.248 ev_active (ANHE_w (he)) = k;
2666 root 1.1 }
2667 root 1.248 #endif
2668 root 1.1
2669 root 1.248 /* towards the root */
2670 root 1.284 inline_speed void
2671 root 1.248 upheap (ANHE *heap, int k)
2672 root 1.1 {
2673 root 1.241 ANHE he = heap [k];
2674 root 1.1
2675 root 1.179 for (;;)
2676 root 1.1 {
2677 root 1.248 int p = HPARENT (k);
2678 root 1.179
2679 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2680 root 1.179 break;
2681 root 1.1
2682 root 1.248 heap [k] = heap [p];
2683 root 1.241 ev_active (ANHE_w (heap [k])) = k;
2684 root 1.248 k = p;
2685 root 1.1 }
2686    
2687 root 1.241 heap [k] = he;
2688     ev_active (ANHE_w (he)) = k;
2689 root 1.1 }
2690    
2691 root 1.288 /* move an element suitably so it is in a correct place */
2692 root 1.284 inline_size void
2693 root 1.241 adjustheap (ANHE *heap, int N, int k)
2694 root 1.84 {
2695 root 1.310 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2696 root 1.247 upheap (heap, k);
2697     else
2698     downheap (heap, N, k);
2699 root 1.84 }
2700    
2701 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
2702 root 1.284 inline_size void
2703 root 1.248 reheap (ANHE *heap, int N)
2704     {
2705     int i;
2706 root 1.251
2707 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2708     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2709     for (i = 0; i < N; ++i)
2710     upheap (heap, i + HEAP0);
2711     }
2712    
2713 root 1.8 /*****************************************************************************/
2714    
2715 root 1.522 /* associate signal watchers to a signal */
2716 root 1.7 typedef struct
2717     {
2718 root 1.307 EV_ATOMIC_T pending;
2719 root 1.306 #if EV_MULTIPLICITY
2720     EV_P;
2721     #endif
2722 root 1.68 WL head;
2723 root 1.7 } ANSIG;
2724    
2725 root 1.306 static ANSIG signals [EV_NSIG - 1];
2726 root 1.7
2727 root 1.207 /*****************************************************************************/
2728    
2729 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2730 root 1.207
2731 root 1.500 ecb_noinline ecb_cold
2732 root 1.480 static void
2733 root 1.207 evpipe_init (EV_P)
2734     {
2735 root 1.288 if (!ev_is_active (&pipe_w))
2736 root 1.207 {
2737 root 1.448 int fds [2];
2738    
2739 root 1.336 # if EV_USE_EVENTFD
2740 root 1.448 fds [0] = -1;
2741     fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2742     if (fds [1] < 0 && errno == EINVAL)
2743     fds [1] = eventfd (0, 0);
2744    
2745     if (fds [1] < 0)
2746     # endif
2747     {
2748     while (pipe (fds))
2749     ev_syserr ("(libev) error creating signal/async pipe");
2750    
2751     fd_intern (fds [0]);
2752 root 1.220 }
2753 root 1.448
2754     evpipe [0] = fds [0];
2755    
2756     if (evpipe [1] < 0)
2757     evpipe [1] = fds [1]; /* first call, set write fd */
2758 root 1.220 else
2759     {
2760 root 1.448 /* on subsequent calls, do not change evpipe [1] */
2761     /* so that evpipe_write can always rely on its value. */
2762     /* this branch does not do anything sensible on windows, */
2763     /* so must not be executed on windows */
2764 root 1.207
2765 root 1.448 dup2 (fds [1], evpipe [1]);
2766     close (fds [1]);
2767 root 1.220 }
2768 root 1.207
2769 root 1.455 fd_intern (evpipe [1]);
2770    
2771 root 1.448 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2772 root 1.288 ev_io_start (EV_A_ &pipe_w);
2773 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
2774 root 1.207 }
2775     }
2776    
2777 root 1.380 inline_speed void
2778 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2779 root 1.207 {
2780 root 1.424 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2781    
2782 root 1.500 if (ecb_expect_true (*flag))
2783 root 1.387 return;
2784 root 1.383
2785     *flag = 1;
2786 root 1.384 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2787 root 1.383
2788     pipe_write_skipped = 1;
2789 root 1.378
2790 root 1.384 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2791 root 1.214
2792 root 1.383 if (pipe_write_wanted)
2793     {
2794     int old_errno;
2795 root 1.378
2796 root 1.436 pipe_write_skipped = 0;
2797     ECB_MEMORY_FENCE_RELEASE;
2798 root 1.220
2799 root 1.383 old_errno = errno; /* save errno because write will clobber it */
2800 root 1.380
2801 root 1.220 #if EV_USE_EVENTFD
2802 root 1.448 if (evpipe [0] < 0)
2803 root 1.383 {
2804     uint64_t counter = 1;
2805 root 1.448 write (evpipe [1], &counter, sizeof (uint64_t));
2806 root 1.383 }
2807     else
2808 root 1.220 #endif
2809 root 1.383 {
2810 root 1.427 #ifdef _WIN32
2811     WSABUF buf;
2812     DWORD sent;
2813 root 1.485 buf.buf = (char *)&buf;
2814 root 1.427 buf.len = 1;
2815     WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2816     #else
2817 root 1.383 write (evpipe [1], &(evpipe [1]), 1);
2818 root 1.427 #endif
2819 root 1.383 }
2820 root 1.214
2821 root 1.383 errno = old_errno;
2822 root 1.207 }
2823     }
2824    
2825 root 1.288 /* called whenever the libev signal pipe */
2826     /* got some events (signal, async) */
2827 root 1.207 static void
2828     pipecb (EV_P_ ev_io *iow, int revents)
2829     {
2830 root 1.307 int i;
2831    
2832 root 1.378 if (revents & EV_READ)
2833     {
2834 root 1.220 #if EV_USE_EVENTFD
2835 root 1.448 if (evpipe [0] < 0)
2836 root 1.378 {
2837     uint64_t counter;
2838 root 1.448 read (evpipe [1], &counter, sizeof (uint64_t));
2839 root 1.378 }
2840     else
2841 root 1.220 #endif
2842 root 1.378 {
2843 root 1.427 char dummy[4];
2844     #ifdef _WIN32
2845     WSABUF buf;
2846     DWORD recvd;
2847 root 1.432 DWORD flags = 0;
2848 root 1.427 buf.buf = dummy;
2849     buf.len = sizeof (dummy);
2850 root 1.432 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2851 root 1.427 #else
2852     read (evpipe [0], &dummy, sizeof (dummy));
2853     #endif
2854 root 1.378 }
2855 root 1.220 }
2856 root 1.207
2857 root 1.378 pipe_write_skipped = 0;
2858    
2859 root 1.424 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2860    
2861 root 1.369 #if EV_SIGNAL_ENABLE
2862 root 1.307 if (sig_pending)
2863 root 1.372 {
2864 root 1.307 sig_pending = 0;
2865 root 1.207
2866 root 1.436 ECB_MEMORY_FENCE;
2867 root 1.424
2868 root 1.307 for (i = EV_NSIG - 1; i--; )
2869 root 1.500 if (ecb_expect_false (signals [i].pending))
2870 root 1.307 ev_feed_signal_event (EV_A_ i + 1);
2871 root 1.207 }
2872 root 1.369 #endif
2873 root 1.207
2874 root 1.209 #if EV_ASYNC_ENABLE
2875 root 1.307 if (async_pending)
2876 root 1.207 {
2877 root 1.307 async_pending = 0;
2878 root 1.207
2879 root 1.436 ECB_MEMORY_FENCE;
2880 root 1.424
2881 root 1.207 for (i = asynccnt; i--; )
2882     if (asyncs [i]->sent)
2883     {
2884     asyncs [i]->sent = 0;
2885 root 1.436 ECB_MEMORY_FENCE_RELEASE;
2886 root 1.207 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2887     }
2888     }
2889 root 1.209 #endif
2890 root 1.207 }
2891    
2892     /*****************************************************************************/
2893    
2894 root 1.366 void
2895 root 1.486 ev_feed_signal (int signum) EV_NOEXCEPT
2896 root 1.7 {
2897 root 1.207 #if EV_MULTIPLICITY
2898 root 1.453 EV_P;
2899 root 1.449 ECB_MEMORY_FENCE_ACQUIRE;
2900 root 1.453 EV_A = signals [signum - 1].loop;
2901 root 1.366
2902     if (!EV_A)
2903     return;
2904 root 1.207 #endif
2905    
2906 root 1.366 signals [signum - 1].pending = 1;
2907     evpipe_write (EV_A_ &sig_pending);
2908     }
2909    
2910     static void
2911     ev_sighandler (int signum)
2912     {
2913 root 1.322 #ifdef _WIN32
2914 root 1.218 signal (signum, ev_sighandler);
2915 root 1.67 #endif
2916    
2917 root 1.366 ev_feed_signal (signum);
2918 root 1.7 }
2919    
2920 root 1.500 ecb_noinline
2921 root 1.480 void
2922 root 1.486 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2923 root 1.79 {
2924 root 1.80 WL w;
2925    
2926 root 1.500 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2927 root 1.307 return;
2928    
2929     --signum;
2930    
2931 root 1.79 #if EV_MULTIPLICITY
2932 root 1.307 /* it is permissible to try to feed a signal to the wrong loop */
2933     /* or, likely more useful, feeding a signal nobody is waiting for */
2934 root 1.79
2935 root 1.500 if (ecb_expect_false (signals [signum].loop != EV_A))
2936 root 1.306 return;
2937 root 1.307 #endif
2938 root 1.306
2939 root 1.307 signals [signum].pending = 0;
2940 root 1.438 ECB_MEMORY_FENCE_RELEASE;
2941 root 1.79
2942     for (w = signals [signum].head; w; w = w->next)
2943     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2944     }
2945    
2946 root 1.303 #if EV_USE_SIGNALFD
2947     static void
2948     sigfdcb (EV_P_ ev_io *iow, int revents)
2949     {
2950 root 1.306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2951 root 1.303
2952     for (;;)
2953     {
2954     ssize_t res = read (sigfd, si, sizeof (si));
2955    
2956     /* not ISO-C, as res might be -1, but works with SuS */
2957     for (sip = si; (char *)sip < (char *)si + res; ++sip)
2958     ev_feed_signal_event (EV_A_ sip->ssi_signo);
2959    
2960     if (res < (ssize_t)sizeof (si))
2961     break;
2962     }
2963     }
2964     #endif
2965    
2966 root 1.336 #endif
2967    
2968 root 1.8 /*****************************************************************************/
2969    
2970 root 1.336 #if EV_CHILD_ENABLE
2971 root 1.182 static WL childs [EV_PID_HASHSIZE];
2972 root 1.71
2973 root 1.136 static ev_signal childev;
2974 root 1.59
2975 root 1.206 #ifndef WIFCONTINUED
2976     # define WIFCONTINUED(status) 0
2977     #endif
2978    
2979 root 1.288 /* handle a single child status event */
2980 root 1.284 inline_speed void
2981 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
2982 root 1.47 {
2983 root 1.136 ev_child *w;
2984 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2985 root 1.47
2986 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2987 root 1.206 {
2988     if ((w->pid == pid || !w->pid)
2989     && (!traced || (w->flags & 1)))
2990     {
2991 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2992 root 1.206 w->rpid = pid;
2993     w->rstatus = status;
2994     ev_feed_event (EV_A_ (W)w, EV_CHILD);
2995     }
2996     }
2997 root 1.47 }
2998    
2999 root 1.142 #ifndef WCONTINUED
3000     # define WCONTINUED 0
3001     #endif
3002    
3003 root 1.288 /* called on sigchld etc., calls waitpid */
3004 root 1.47 static void
3005 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
3006 root 1.22 {
3007     int pid, status;
3008    
3009 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
3010     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
3011     if (!WCONTINUED
3012     || errno != EINVAL
3013     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
3014     return;
3015    
3016 root 1.216 /* make sure we are called again until all children have been reaped */
3017 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
3018     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
3019 root 1.47
3020 root 1.216 child_reap (EV_A_ pid, pid, status);
3021 root 1.338 if ((EV_PID_HASHSIZE) > 1)
3022 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
3023 root 1.22 }
3024    
3025 root 1.45 #endif
3026    
3027 root 1.22 /*****************************************************************************/
3028    
3029 root 1.515 #if EV_USE_TIMERFD
3030    
3031     static void periodics_reschedule (EV_P);
3032    
3033     static void
3034     timerfdcb (EV_P_ ev_io *iow, int revents)
3035     {
3036     struct itimerspec its = { 0 };
3037    
3038 root 1.523 its.it_value.tv_sec = ev_rt_now + (int)MAX_BLOCKTIME2;
3039 root 1.515 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
3040    
3041     ev_rt_now = ev_time ();
3042     /* periodics_reschedule only needs ev_rt_now */
3043     /* but maybe in the future we want the full treatment. */
3044     /*
3045     now_floor = EV_TS_CONST (0.);
3046     time_update (EV_A_ EV_TSTAMP_HUGE);
3047     */
3048 root 1.525 #if EV_PERIODIC_ENABLE
3049 root 1.515 periodics_reschedule (EV_A);
3050 root 1.525 #endif
3051 root 1.515 }
3052    
3053     ecb_noinline ecb_cold
3054     static void
3055     evtimerfd_init (EV_P)
3056     {
3057     if (!ev_is_active (&timerfd_w))
3058     {
3059     timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
3060    
3061     if (timerfd >= 0)
3062     {
3063     fd_intern (timerfd); /* just to be sure */
3064    
3065     ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
3066 root 1.516 ev_set_priority (&timerfd_w, EV_MINPRI);
3067 root 1.515 ev_io_start (EV_A_ &timerfd_w);
3068     ev_unref (EV_A); /* watcher should not keep loop alive */
3069    
3070     /* (re-) arm timer */
3071     timerfdcb (EV_A_ 0, 0);
3072     }
3073     }
3074     }
3075    
3076     #endif
3077    
3078     /*****************************************************************************/
3079    
3080 root 1.357 #if EV_USE_IOCP
3081     # include "ev_iocp.c"
3082     #endif
3083 root 1.118 #if EV_USE_PORT
3084     # include "ev_port.c"
3085     #endif
3086 root 1.44 #if EV_USE_KQUEUE
3087     # include "ev_kqueue.c"
3088     #endif
3089 root 1.493 #if EV_USE_EPOLL
3090     # include "ev_epoll.c"
3091     #endif
3092 root 1.490 #if EV_USE_LINUXAIO
3093     # include "ev_linuxaio.c"
3094     #endif
3095 root 1.501 #if EV_USE_IOURING
3096     # include "ev_iouring.c"
3097     #endif
3098 root 1.59 #if EV_USE_POLL
3099 root 1.41 # include "ev_poll.c"
3100     #endif
3101 root 1.29 #if EV_USE_SELECT
3102 root 1.1 # include "ev_select.c"
3103     #endif
3104    
3105 root 1.480 ecb_cold int
3106 root 1.486 ev_version_major (void) EV_NOEXCEPT
3107 root 1.24 {
3108     return EV_VERSION_MAJOR;
3109     }
3110    
3111 root 1.480 ecb_cold int
3112 root 1.486 ev_version_minor (void) EV_NOEXCEPT
3113 root 1.24 {
3114     return EV_VERSION_MINOR;
3115     }
3116    
3117 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
3118 root 1.480 inline_size ecb_cold int
3119 root 1.51 enable_secure (void)
3120 root 1.41 {
3121 root 1.103 #ifdef _WIN32
3122 root 1.49 return 0;
3123     #else
3124 root 1.41 return getuid () != geteuid ()
3125     || getgid () != getegid ();
3126 root 1.49 #endif
3127 root 1.41 }
3128    
3129 root 1.480 ecb_cold
3130     unsigned int
3131 root 1.486 ev_supported_backends (void) EV_NOEXCEPT
3132 root 1.129 {
3133 root 1.130 unsigned int flags = 0;
3134 root 1.129
3135 root 1.520 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
3136     if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
3137     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
3138     if (EV_USE_LINUXAIO ) flags |= EVBACKEND_LINUXAIO;
3139     if (EV_USE_IOURING && ev_linux_version () >= 0x050601) flags |= EVBACKEND_IOURING; /* 5.6.1+ */
3140     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3141     if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3142    
3143 root 1.129 return flags;
3144     }
3145    
3146 root 1.480 ecb_cold
3147     unsigned int
3148 root 1.486 ev_recommended_backends (void) EV_NOEXCEPT
3149 root 1.1 {
3150 root 1.131 unsigned int flags = ev_supported_backends ();
3151 root 1.129
3152     #ifndef __NetBSD__
3153     /* kqueue is borked on everything but netbsd apparently */
3154     /* it usually doesn't work correctly on anything but sockets and pipes */
3155     flags &= ~EVBACKEND_KQUEUE;
3156     #endif
3157     #ifdef __APPLE__
3158 root 1.278 /* only select works correctly on that "unix-certified" platform */
3159     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3160     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3161 root 1.129 #endif
3162 root 1.342 #ifdef __FreeBSD__
3163     flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3164     #endif
3165 root 1.129
3166 root 1.491 /* TODO: linuxaio is very experimental */
3167 root 1.494 #if !EV_RECOMMEND_LINUXAIO
3168 root 1.491 flags &= ~EVBACKEND_LINUXAIO;
3169 root 1.494 #endif
3170 root 1.501 /* TODO: linuxaio is super experimental */
3171     #if !EV_RECOMMEND_IOURING
3172     flags &= ~EVBACKEND_IOURING;
3173     #endif
3174 root 1.491
3175 root 1.129 return flags;
3176 root 1.51 }
3177    
3178 root 1.480 ecb_cold
3179     unsigned int
3180 root 1.486 ev_embeddable_backends (void) EV_NOEXCEPT
3181 root 1.134 {
3182 root 1.521 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT | EVBACKEND_IOURING;
3183 root 1.196
3184 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
3185 root 1.355 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
3186     flags &= ~EVBACKEND_EPOLL;
3187 root 1.196
3188 root 1.502 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
3189    
3190 root 1.196 return flags;
3191 root 1.134 }
3192    
3193     unsigned int
3194 root 1.486 ev_backend (EV_P) EV_NOEXCEPT
3195 root 1.130 {
3196     return backend;
3197     }
3198    
3199 root 1.338 #if EV_FEATURE_API
3200 root 1.162 unsigned int
3201 root 1.486 ev_iteration (EV_P) EV_NOEXCEPT
3202 root 1.162 {
3203     return loop_count;
3204     }
3205    
3206 root 1.294 unsigned int
3207 root 1.486 ev_depth (EV_P) EV_NOEXCEPT
3208 root 1.294 {
3209     return loop_depth;
3210     }
3211    
3212 root 1.193 void
3213 root 1.486 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3214 root 1.193 {
3215     io_blocktime = interval;
3216     }
3217    
3218     void
3219 root 1.486 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3220 root 1.193 {
3221     timeout_blocktime = interval;
3222     }
3223    
3224 root 1.297 void
3225 root 1.486 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3226 root 1.297 {
3227     userdata = data;
3228     }
3229    
3230     void *
3231 root 1.486 ev_userdata (EV_P) EV_NOEXCEPT
3232 root 1.297 {
3233     return userdata;
3234     }
3235    
3236 root 1.379 void
3237 root 1.486 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3238 root 1.297 {
3239     invoke_cb = invoke_pending_cb;
3240     }
3241    
3242 root 1.379 void
3243 root 1.486 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3244 root 1.297 {
3245 root 1.298 release_cb = release;
3246     acquire_cb = acquire;
3247 root 1.297 }
3248     #endif
3249    
3250 root 1.288 /* initialise a loop structure, must be zero-initialised */
3251 root 1.500 ecb_noinline ecb_cold
3252 root 1.480 static void
3253 root 1.486 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
3254 root 1.51 {
3255 root 1.130 if (!backend)
3256 root 1.23 {
3257 root 1.366 origflags = flags;
3258    
3259 root 1.279 #if EV_USE_REALTIME
3260     if (!have_realtime)
3261     {
3262     struct timespec ts;
3263    
3264     if (!clock_gettime (CLOCK_REALTIME, &ts))
3265     have_realtime = 1;
3266     }
3267     #endif
3268    
3269 root 1.29 #if EV_USE_MONOTONIC
3270 root 1.279 if (!have_monotonic)
3271     {
3272     struct timespec ts;
3273    
3274     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
3275     have_monotonic = 1;
3276     }
3277 root 1.1 #endif
3278    
3279 root 1.306 /* pid check not overridable via env */
3280     #ifndef _WIN32
3281     if (flags & EVFLAG_FORKCHECK)
3282     curpid = getpid ();
3283     #endif
3284    
3285     if (!(flags & EVFLAG_NOENV)
3286     && !enable_secure ()
3287     && getenv ("LIBEV_FLAGS"))
3288     flags = atoi (getenv ("LIBEV_FLAGS"));
3289    
3290 root 1.378 ev_rt_now = ev_time ();
3291     mn_now = get_clock ();
3292     now_floor = mn_now;
3293     rtmn_diff = ev_rt_now - mn_now;
3294 root 1.338 #if EV_FEATURE_API
3295 root 1.378 invoke_cb = ev_invoke_pending;
3296 root 1.297 #endif
3297 root 1.1
3298 root 1.378 io_blocktime = 0.;
3299     timeout_blocktime = 0.;
3300     backend = 0;
3301     backend_fd = -1;
3302     sig_pending = 0;
3303 root 1.307 #if EV_ASYNC_ENABLE
3304 root 1.378 async_pending = 0;
3305 root 1.307 #endif
3306 root 1.378 pipe_write_skipped = 0;
3307     pipe_write_wanted = 0;
3308 root 1.448 evpipe [0] = -1;
3309     evpipe [1] = -1;
3310 root 1.209 #if EV_USE_INOTIFY
3311 root 1.378 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3312 root 1.209 #endif
3313 root 1.303 #if EV_USE_SIGNALFD
3314 root 1.378 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3315 root 1.303 #endif
3316 root 1.515 #if EV_USE_TIMERFD
3317     timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3318     #endif
3319 root 1.193
3320 root 1.366 if (!(flags & EVBACKEND_MASK))
3321 root 1.129 flags |= ev_recommended_backends ();
3322 root 1.41
3323 root 1.357 #if EV_USE_IOCP
3324 root 1.490 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3325 root 1.357 #endif
3326 root 1.118 #if EV_USE_PORT
3327 root 1.490 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
3328 root 1.118 #endif
3329 root 1.44 #if EV_USE_KQUEUE
3330 root 1.490 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3331     #endif
3332 root 1.501 #if EV_USE_IOURING
3333     if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3334     #endif
3335 root 1.490 #if EV_USE_LINUXAIO
3336     if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
3337 root 1.44 #endif
3338 root 1.29 #if EV_USE_EPOLL
3339 root 1.490 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
3340 root 1.41 #endif
3341 root 1.59 #if EV_USE_POLL
3342 root 1.490 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
3343 root 1.1 #endif
3344 root 1.29 #if EV_USE_SELECT
3345 root 1.490 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
3346 root 1.1 #endif
3347 root 1.70
3348 root 1.288 ev_prepare_init (&pending_w, pendingcb);
3349    
3350 root 1.336 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3351 root 1.288 ev_init (&pipe_w, pipecb);
3352     ev_set_priority (&pipe_w, EV_MAXPRI);
3353 root 1.336 #endif
3354 root 1.56 }
3355     }
3356    
3357 root 1.288 /* free up a loop structure */
3358 root 1.480 ecb_cold
3359     void
3360 root 1.422 ev_loop_destroy (EV_P)
3361 root 1.56 {
3362 root 1.65 int i;
3363    
3364 root 1.364 #if EV_MULTIPLICITY
3365 root 1.363 /* mimic free (0) */
3366     if (!EV_A)
3367     return;
3368 root 1.364 #endif
3369 root 1.363
3370 root 1.361 #if EV_CLEANUP_ENABLE
3371     /* queue cleanup watchers (and execute them) */
3372 root 1.500 if (ecb_expect_false (cleanupcnt))
3373 root 1.361 {
3374     queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3375     EV_INVOKE_PENDING;
3376     }
3377     #endif
3378    
3379 root 1.359 #if EV_CHILD_ENABLE
3380 root 1.433 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3381 root 1.359 {
3382     ev_ref (EV_A); /* child watcher */
3383     ev_signal_stop (EV_A_ &childev);
3384     }
3385     #endif
3386    
3387 root 1.288 if (ev_is_active (&pipe_w))
3388 root 1.207 {
3389 root 1.303 /*ev_ref (EV_A);*/
3390     /*ev_io_stop (EV_A_ &pipe_w);*/
3391 root 1.207
3392 root 1.448 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3393     if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3394 root 1.207 }
3395    
3396 root 1.303 #if EV_USE_SIGNALFD
3397     if (ev_is_active (&sigfd_w))
3398 root 1.317 close (sigfd);
3399 root 1.303 #endif
3400    
3401 root 1.515 #if EV_USE_TIMERFD
3402     if (ev_is_active (&timerfd_w))
3403     close (timerfd);
3404     #endif
3405    
3406 root 1.152 #if EV_USE_INOTIFY
3407     if (fs_fd >= 0)
3408     close (fs_fd);
3409     #endif
3410    
3411     if (backend_fd >= 0)
3412     close (backend_fd);
3413    
3414 root 1.357 #if EV_USE_IOCP
3415 root 1.490 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3416 root 1.357 #endif
3417 root 1.118 #if EV_USE_PORT
3418 root 1.490 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3419 root 1.118 #endif
3420 root 1.56 #if EV_USE_KQUEUE
3421 root 1.490 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3422     #endif
3423 root 1.501 #if EV_USE_IOURING
3424     if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3425     #endif
3426 root 1.490 #if EV_USE_LINUXAIO
3427     if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3428 root 1.56 #endif
3429     #if EV_USE_EPOLL
3430 root 1.490 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3431 root 1.56 #endif
3432 root 1.59 #if EV_USE_POLL
3433 root 1.490 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3434 root 1.56 #endif
3435     #if EV_USE_SELECT
3436 root 1.490 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3437 root 1.56 #endif
3438 root 1.1
3439 root 1.65 for (i = NUMPRI; i--; )
3440 root 1.164 {
3441     array_free (pending, [i]);
3442     #if EV_IDLE_ENABLE
3443     array_free (idle, [i]);
3444     #endif
3445     }
3446 root 1.65
3447 root 1.305 ev_free (anfds); anfds = 0; anfdmax = 0;
3448 root 1.186
3449 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
3450 root 1.284 array_free (rfeed, EMPTY);
3451 root 1.164 array_free (fdchange, EMPTY);
3452     array_free (timer, EMPTY);
3453 root 1.140 #if EV_PERIODIC_ENABLE
3454 root 1.164 array_free (periodic, EMPTY);
3455 root 1.93 #endif
3456 root 1.187 #if EV_FORK_ENABLE
3457     array_free (fork, EMPTY);
3458     #endif
3459 root 1.360 #if EV_CLEANUP_ENABLE
3460     array_free (cleanup, EMPTY);
3461     #endif
3462 root 1.164 array_free (prepare, EMPTY);
3463     array_free (check, EMPTY);
3464 root 1.209 #if EV_ASYNC_ENABLE
3465     array_free (async, EMPTY);
3466     #endif
3467 root 1.65
3468 root 1.130 backend = 0;
3469 root 1.359
3470     #if EV_MULTIPLICITY
3471     if (ev_is_default_loop (EV_A))
3472     #endif
3473     ev_default_loop_ptr = 0;
3474     #if EV_MULTIPLICITY
3475     else
3476     ev_free (EV_A);
3477     #endif
3478 root 1.56 }
3479 root 1.22
3480 root 1.226 #if EV_USE_INOTIFY
3481 root 1.284 inline_size void infy_fork (EV_P);
3482 root 1.226 #endif
3483 root 1.154
3484 root 1.284 inline_size void
3485 root 1.56 loop_fork (EV_P)
3486     {
3487 root 1.118 #if EV_USE_PORT
3488 root 1.490 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3489 root 1.56 #endif
3490     #if EV_USE_KQUEUE
3491 root 1.490 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3492     #endif
3493 root 1.501 #if EV_USE_IOURING
3494     if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3495     #endif
3496 root 1.490 #if EV_USE_LINUXAIO
3497     if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3498 root 1.45 #endif
3499 root 1.118 #if EV_USE_EPOLL
3500 root 1.490 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3501 root 1.118 #endif
3502 root 1.154 #if EV_USE_INOTIFY
3503     infy_fork (EV_A);
3504     #endif
3505 root 1.70
3506 root 1.515 if (postfork != 2)
3507 root 1.70 {
3508 root 1.515 #if EV_USE_SIGNALFD
3509     /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3510     #endif
3511    
3512     #if EV_USE_TIMERFD
3513     if (ev_is_active (&timerfd_w))
3514     {
3515     ev_ref (EV_A);
3516     ev_io_stop (EV_A_ &timerfd_w);
3517 root 1.70
3518 root 1.515 close (timerfd);
3519     timerfd = -2;
3520    
3521     evtimerfd_init (EV_A);
3522     /* reschedule periodics, in case we missed something */
3523     ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3524     }
3525     #endif
3526    
3527     #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3528     if (ev_is_active (&pipe_w))
3529     {
3530     /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3531    
3532     ev_ref (EV_A);
3533     ev_io_stop (EV_A_ &pipe_w);
3534    
3535     if (evpipe [0] >= 0)
3536     EV_WIN32_CLOSE_FD (evpipe [0]);
3537    
3538     evpipe_init (EV_A);
3539     /* iterate over everything, in case we missed something before */
3540     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3541     }
3542     #endif
3543 root 1.448 }
3544 root 1.70
3545     postfork = 0;
3546 root 1.1 }
3547    
3548 root 1.55 #if EV_MULTIPLICITY
3549 root 1.250
3550 root 1.480 ecb_cold
3551     struct ev_loop *
3552 root 1.486 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3553 root 1.54 {
3554 root 1.306 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3555 root 1.69
3556 root 1.306 memset (EV_A, 0, sizeof (struct ev_loop));
3557 root 1.108 loop_init (EV_A_ flags);
3558 root 1.56
3559 root 1.130 if (ev_backend (EV_A))
3560 root 1.306 return EV_A;
3561 root 1.54
3562 root 1.359 ev_free (EV_A);
3563 root 1.55 return 0;
3564 root 1.54 }
3565    
3566 root 1.297 #endif /* multiplicity */
3567 root 1.248
3568     #if EV_VERIFY
3569 root 1.500 ecb_noinline ecb_cold
3570 root 1.480 static void
3571 root 1.251 verify_watcher (EV_P_ W w)
3572     {
3573 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3574 root 1.251
3575     if (w->pending)
3576 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3577 root 1.251 }
3578    
3579 root 1.500 ecb_noinline ecb_cold
3580 root 1.480 static void
3581 root 1.251 verify_heap (EV_P_ ANHE *heap, int N)
3582     {
3583     int i;
3584    
3585     for (i = HEAP0; i < N + HEAP0; ++i)
3586     {
3587 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3588     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3589     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3590 root 1.251
3591     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3592     }
3593     }
3594    
3595 root 1.500 ecb_noinline ecb_cold
3596 root 1.480 static void
3597 root 1.251 array_verify (EV_P_ W *ws, int cnt)
3598 root 1.248 {
3599     while (cnt--)
3600 root 1.251 {
3601 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3602 root 1.251 verify_watcher (EV_A_ ws [cnt]);
3603     }
3604 root 1.248 }
3605 root 1.250 #endif
3606 root 1.248
3607 root 1.338 #if EV_FEATURE_API
3608 root 1.379 void ecb_cold
3609 root 1.486 ev_verify (EV_P) EV_NOEXCEPT
3610 root 1.248 {
3611 root 1.250 #if EV_VERIFY
3612 root 1.429 int i;
3613 root 1.426 WL w, w2;
3614 root 1.251
3615     assert (activecnt >= -1);
3616    
3617     assert (fdchangemax >= fdchangecnt);
3618     for (i = 0; i < fdchangecnt; ++i)
3619 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3620 root 1.251
3621     assert (anfdmax >= 0);
3622 root 1.429 for (i = 0; i < anfdmax; ++i)
3623     {
3624     int j = 0;
3625    
3626     for (w = w2 = anfds [i].head; w; w = w->next)
3627     {
3628     verify_watcher (EV_A_ (W)w);
3629 root 1.426
3630 root 1.429 if (j++ & 1)
3631     {
3632     assert (("libev: io watcher list contains a loop", w != w2));
3633     w2 = w2->next;
3634     }
3635 root 1.426
3636 root 1.429 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3637     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3638     }
3639     }
3640 root 1.251
3641     assert (timermax >= timercnt);
3642     verify_heap (EV_A_ timers, timercnt);
3643 root 1.248
3644     #if EV_PERIODIC_ENABLE
3645 root 1.251 assert (periodicmax >= periodiccnt);
3646     verify_heap (EV_A_ periodics, periodiccnt);
3647 root 1.248 #endif
3648    
3649 root 1.251 for (i = NUMPRI; i--; )
3650     {
3651     assert (pendingmax [i] >= pendingcnt [i]);
3652 root 1.248 #if EV_IDLE_ENABLE
3653 root 1.252 assert (idleall >= 0);
3654 root 1.251 assert (idlemax [i] >= idlecnt [i]);
3655     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3656 root 1.248 #endif
3657 root 1.251 }
3658    
3659 root 1.248 #if EV_FORK_ENABLE
3660 root 1.251 assert (forkmax >= forkcnt);
3661     array_verify (EV_A_ (W *)forks, forkcnt);
3662 root 1.248 #endif
3663 root 1.251
3664 root 1.360 #if EV_CLEANUP_ENABLE
3665     assert (cleanupmax >= cleanupcnt);
3666     array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3667     #endif
3668    
3669 root 1.250 #if EV_ASYNC_ENABLE
3670 root 1.251 assert (asyncmax >= asynccnt);
3671     array_verify (EV_A_ (W *)asyncs, asynccnt);
3672 root 1.250 #endif
3673 root 1.251
3674 root 1.337 #if EV_PREPARE_ENABLE
3675 root 1.251 assert (preparemax >= preparecnt);
3676     array_verify (EV_A_ (W *)prepares, preparecnt);
3677 root 1.337 #endif
3678 root 1.251
3679 root 1.337 #if EV_CHECK_ENABLE
3680 root 1.251 assert (checkmax >= checkcnt);
3681     array_verify (EV_A_ (W *)checks, checkcnt);
3682 root 1.337 #endif
3683 root 1.251
3684     # if 0
3685 root 1.336 #if EV_CHILD_ENABLE
3686 root 1.338 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3687 root 1.307 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3688 root 1.336 #endif
3689 root 1.251 # endif
3690 root 1.248 #endif
3691     }
3692 root 1.297 #endif
3693 root 1.56
3694     #if EV_MULTIPLICITY
3695 root 1.480 ecb_cold
3696     struct ev_loop *
3697 root 1.54 #else
3698     int
3699 root 1.358 #endif
3700 root 1.486 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3701 root 1.54 {
3702 root 1.116 if (!ev_default_loop_ptr)
3703 root 1.56 {
3704     #if EV_MULTIPLICITY
3705 root 1.306 EV_P = ev_default_loop_ptr = &default_loop_struct;
3706 root 1.56 #else
3707 ayin 1.117 ev_default_loop_ptr = 1;
3708 root 1.54 #endif
3709    
3710 root 1.110 loop_init (EV_A_ flags);
3711 root 1.56
3712 root 1.130 if (ev_backend (EV_A))
3713 root 1.56 {
3714 root 1.336 #if EV_CHILD_ENABLE
3715 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
3716     ev_set_priority (&childev, EV_MAXPRI);
3717     ev_signal_start (EV_A_ &childev);
3718     ev_unref (EV_A); /* child watcher should not keep loop alive */
3719     #endif
3720     }
3721     else
3722 root 1.116 ev_default_loop_ptr = 0;
3723 root 1.56 }
3724 root 1.8
3725 root 1.116 return ev_default_loop_ptr;
3726 root 1.1 }
3727    
3728 root 1.24 void
3729 root 1.486 ev_loop_fork (EV_P) EV_NOEXCEPT
3730 root 1.1 {
3731 root 1.440 postfork = 1;
3732 root 1.1 }
3733    
3734 root 1.8 /*****************************************************************************/
3735    
3736 root 1.168 void
3737     ev_invoke (EV_P_ void *w, int revents)
3738     {
3739     EV_CB_INVOKE ((W)w, revents);
3740     }
3741    
3742 root 1.300 unsigned int
3743 root 1.486 ev_pending_count (EV_P) EV_NOEXCEPT
3744 root 1.300 {
3745     int pri;
3746     unsigned int count = 0;
3747    
3748     for (pri = NUMPRI; pri--; )
3749     count += pendingcnt [pri];
3750    
3751     return count;
3752     }
3753    
3754 root 1.500 ecb_noinline
3755 root 1.480 void
3756 root 1.296 ev_invoke_pending (EV_P)
3757 root 1.1 {
3758 root 1.445 pendingpri = NUMPRI;
3759    
3760 root 1.484 do
3761 root 1.445 {
3762     --pendingpri;
3763    
3764 root 1.484 /* pendingpri possibly gets modified in the inner loop */
3765 root 1.445 while (pendingcnt [pendingpri])
3766     {
3767     ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3768 root 1.1
3769 root 1.445 p->w->pending = 0;
3770     EV_CB_INVOKE (p->w, p->events);
3771     EV_FREQUENT_CHECK;
3772     }
3773     }
3774 root 1.484 while (pendingpri);
3775 root 1.1 }
3776    
3777 root 1.234 #if EV_IDLE_ENABLE
3778 root 1.288 /* make idle watchers pending. this handles the "call-idle */
3779     /* only when higher priorities are idle" logic */
3780 root 1.284 inline_size void
3781 root 1.234 idle_reify (EV_P)
3782     {
3783 root 1.500 if (ecb_expect_false (idleall))
3784 root 1.234 {
3785     int pri;
3786    
3787     for (pri = NUMPRI; pri--; )
3788     {
3789     if (pendingcnt [pri])
3790     break;
3791    
3792     if (idlecnt [pri])
3793     {
3794     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3795     break;
3796     }
3797     }
3798     }
3799     }
3800     #endif
3801    
3802 root 1.288 /* make timers pending */
3803 root 1.284 inline_size void
3804 root 1.51 timers_reify (EV_P)
3805 root 1.1 {
3806 root 1.248 EV_FREQUENT_CHECK;
3807    
3808 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3809 root 1.1 {
3810 root 1.284 do
3811     {
3812     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3813 root 1.1
3814 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3815    
3816     /* first reschedule or stop timer */
3817     if (w->repeat)
3818     {
3819     ev_at (w) += w->repeat;
3820     if (ev_at (w) < mn_now)
3821     ev_at (w) = mn_now;
3822 root 1.61
3823 root 1.509 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3824 root 1.90
3825 root 1.284 ANHE_at_cache (timers [HEAP0]);
3826     downheap (timers, timercnt, HEAP0);
3827     }
3828     else
3829     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3830 root 1.243
3831 root 1.284 EV_FREQUENT_CHECK;
3832     feed_reverse (EV_A_ (W)w);
3833 root 1.12 }
3834 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3835 root 1.30
3836 root 1.341 feed_reverse_done (EV_A_ EV_TIMER);
3837 root 1.12 }
3838     }
3839 root 1.4
3840 root 1.140 #if EV_PERIODIC_ENABLE
3841 root 1.370
3842 root 1.500 ecb_noinline
3843 root 1.480 static void
3844 root 1.370 periodic_recalc (EV_P_ ev_periodic *w)
3845     {
3846 root 1.373 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3847     ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3848    
3849     /* the above almost always errs on the low side */
3850     while (at <= ev_rt_now)
3851     {
3852     ev_tstamp nat = at + w->interval;
3853    
3854     /* when resolution fails us, we use ev_rt_now */
3855 root 1.500 if (ecb_expect_false (nat == at))
3856 root 1.373 {
3857     at = ev_rt_now;
3858     break;
3859     }
3860    
3861     at = nat;
3862     }
3863    
3864     ev_at (w) = at;
3865 root 1.370 }
3866    
3867 root 1.288 /* make periodics pending */
3868 root 1.284 inline_size void
3869 root 1.51 periodics_reify (EV_P)
3870 root 1.12 {
3871 root 1.248 EV_FREQUENT_CHECK;
3872 root 1.250
3873 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3874 root 1.12 {
3875 root 1.284 do
3876     {
3877     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3878 root 1.1
3879 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3880 root 1.61
3881 root 1.284 /* first reschedule or stop timer */
3882     if (w->reschedule_cb)
3883     {
3884     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3885 root 1.243
3886 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3887 root 1.243
3888 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3889     downheap (periodics, periodiccnt, HEAP0);
3890     }
3891     else if (w->interval)
3892 root 1.246 {
3893 root 1.370 periodic_recalc (EV_A_ w);
3894 root 1.284 ANHE_at_cache (periodics [HEAP0]);
3895     downheap (periodics, periodiccnt, HEAP0);
3896 root 1.246 }
3897 root 1.284 else
3898     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3899 root 1.243
3900 root 1.284 EV_FREQUENT_CHECK;
3901     feed_reverse (EV_A_ (W)w);
3902 root 1.1 }
3903 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3904 root 1.12
3905 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
3906 root 1.12 }
3907     }
3908    
3909 root 1.288 /* simply recalculate all periodics */
3910 sf-exg 1.345 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3911 root 1.500 ecb_noinline ecb_cold
3912 root 1.480 static void
3913 root 1.54 periodics_reschedule (EV_P)
3914 root 1.12 {
3915     int i;
3916    
3917 root 1.13 /* adjust periodics after time jump */
3918 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3919 root 1.12 {
3920 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3921 root 1.12
3922 root 1.77 if (w->reschedule_cb)
3923 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3924 root 1.77 else if (w->interval)
3925 root 1.370 periodic_recalc (EV_A_ w);
3926 root 1.242
3927 root 1.248 ANHE_at_cache (periodics [i]);
3928 root 1.77 }
3929 root 1.12
3930 root 1.248 reheap (periodics, periodiccnt);
3931 root 1.1 }
3932 root 1.93 #endif
3933 root 1.1
3934 root 1.288 /* adjust all timers by a given offset */
3935 root 1.500 ecb_noinline ecb_cold
3936 root 1.480 static void
3937 root 1.285 timers_reschedule (EV_P_ ev_tstamp adjust)
3938     {
3939     int i;
3940    
3941     for (i = 0; i < timercnt; ++i)
3942     {
3943     ANHE *he = timers + i + HEAP0;
3944     ANHE_w (*he)->at += adjust;
3945     ANHE_at_cache (*he);
3946     }
3947     }
3948    
3949 root 1.288 /* fetch new monotonic and realtime times from the kernel */
3950 root 1.324 /* also detect if there was a timejump, and act accordingly */
3951 root 1.284 inline_speed void
3952 root 1.178 time_update (EV_P_ ev_tstamp max_block)
3953 root 1.4 {
3954 root 1.40 #if EV_USE_MONOTONIC
3955 root 1.500 if (ecb_expect_true (have_monotonic))
3956 root 1.40 {
3957 root 1.289 int i;
3958 root 1.178 ev_tstamp odiff = rtmn_diff;
3959    
3960     mn_now = get_clock ();
3961    
3962     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3963     /* interpolate in the meantime */
3964 root 1.509 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
3965 root 1.40 {
3966 root 1.178 ev_rt_now = rtmn_diff + mn_now;
3967     return;
3968     }
3969    
3970     now_floor = mn_now;
3971     ev_rt_now = ev_time ();
3972 root 1.4
3973 root 1.178 /* loop a few times, before making important decisions.
3974     * on the choice of "4": one iteration isn't enough,
3975     * in case we get preempted during the calls to
3976     * ev_time and get_clock. a second call is almost guaranteed
3977     * to succeed in that case, though. and looping a few more times
3978     * doesn't hurt either as we only do this on time-jumps or
3979     * in the unlikely event of having been preempted here.
3980     */
3981     for (i = 4; --i; )
3982     {
3983 root 1.373 ev_tstamp diff;
3984 root 1.178 rtmn_diff = ev_rt_now - mn_now;
3985 root 1.4
3986 root 1.373 diff = odiff - rtmn_diff;
3987    
3988 root 1.509 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
3989 root 1.178 return; /* all is well */
3990 root 1.4
3991 root 1.178 ev_rt_now = ev_time ();
3992     mn_now = get_clock ();
3993     now_floor = mn_now;
3994     }
3995 root 1.4
3996 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
3997     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3998 root 1.140 # if EV_PERIODIC_ENABLE
3999 root 1.178 periodics_reschedule (EV_A);
4000 root 1.93 # endif
4001 root 1.4 }
4002     else
4003 root 1.40 #endif
4004 root 1.4 {
4005 root 1.85 ev_rt_now = ev_time ();
4006 root 1.40
4007 root 1.509 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
4008 root 1.13 {
4009 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
4010     timers_reschedule (EV_A_ ev_rt_now - mn_now);
4011 root 1.140 #if EV_PERIODIC_ENABLE
4012 root 1.54 periodics_reschedule (EV_A);
4013 root 1.93 #endif
4014 root 1.13 }
4015 root 1.4
4016 root 1.85 mn_now = ev_rt_now;
4017 root 1.4 }
4018     }
4019    
4020 root 1.418 int
4021 root 1.353 ev_run (EV_P_ int flags)
4022 root 1.1 {
4023 root 1.338 #if EV_FEATURE_API
4024 root 1.294 ++loop_depth;
4025 root 1.297 #endif
4026 root 1.294
4027 root 1.353 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
4028 root 1.298
4029 root 1.353 loop_done = EVBREAK_CANCEL;
4030 root 1.1
4031 root 1.297 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
4032 root 1.158
4033 root 1.161 do
4034 root 1.9 {
4035 root 1.250 #if EV_VERIFY >= 2
4036 root 1.340 ev_verify (EV_A);
4037 root 1.250 #endif
4038    
4039 root 1.158 #ifndef _WIN32
4040 root 1.500 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
4041     if (ecb_expect_false (getpid () != curpid))
4042 root 1.158 {
4043     curpid = getpid ();
4044     postfork = 1;
4045     }
4046     #endif
4047    
4048 root 1.157 #if EV_FORK_ENABLE
4049     /* we might have forked, so queue fork handlers */
4050 root 1.500 if (ecb_expect_false (postfork))
4051 root 1.157 if (forkcnt)
4052     {
4053     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
4054 root 1.297 EV_INVOKE_PENDING;
4055 root 1.157 }
4056     #endif
4057 root 1.147
4058 root 1.337 #if EV_PREPARE_ENABLE
4059 root 1.170 /* queue prepare watchers (and execute them) */
4060 root 1.500 if (ecb_expect_false (preparecnt))
4061 root 1.20 {
4062 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
4063 root 1.297 EV_INVOKE_PENDING;
4064 root 1.20 }
4065 root 1.337 #endif
4066 root 1.9
4067 root 1.500 if (ecb_expect_false (loop_done))
4068 root 1.298 break;
4069    
4070 root 1.70 /* we might have forked, so reify kernel state if necessary */
4071 root 1.500 if (ecb_expect_false (postfork))
4072 root 1.70 loop_fork (EV_A);
4073    
4074 root 1.1 /* update fd-related kernel structures */
4075 root 1.51 fd_reify (EV_A);
4076 root 1.1
4077     /* calculate blocking time */
4078 root 1.135 {
4079 root 1.193 ev_tstamp waittime = 0.;
4080     ev_tstamp sleeptime = 0.;
4081 root 1.12
4082 root 1.353 /* remember old timestamp for io_blocktime calculation */
4083     ev_tstamp prev_mn_now = mn_now;
4084 root 1.293
4085 root 1.353 /* update time to cancel out callback processing overhead */
4086 root 1.509 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
4087 root 1.135
4088 root 1.378 /* from now on, we want a pipe-wake-up */
4089     pipe_write_wanted = 1;
4090    
4091 root 1.389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
4092 root 1.383
4093 root 1.500 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
4094 root 1.353 {
4095 root 1.509 waittime = EV_TS_CONST (MAX_BLOCKTIME);
4096 root 1.287
4097 root 1.523 #if EV_USE_TIMERFD
4098     /* sleep a lot longer when we can reliably detect timejumps */
4099     if (ecb_expect_true (timerfd >= 0))
4100     waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4101     #endif
4102 root 1.525 #if !EV_PERIODIC_ENABLE
4103     /* without periodics but with monotonic clock there is no need */
4104     /* for any time jump detection, so sleep longer */
4105     if (ecb_expect_true (have_monotonic))
4106     waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4107     #endif
4108 root 1.523
4109 root 1.135 if (timercnt)
4110     {
4111 root 1.377 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
4112 root 1.193 if (waittime > to) waittime = to;
4113 root 1.135 }
4114 root 1.4
4115 root 1.140 #if EV_PERIODIC_ENABLE
4116 root 1.135 if (periodiccnt)
4117     {
4118 root 1.377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
4119 root 1.193 if (waittime > to) waittime = to;
4120 root 1.135 }
4121 root 1.93 #endif
4122 root 1.4
4123 root 1.293 /* don't let timeouts decrease the waittime below timeout_blocktime */
4124 root 1.500 if (ecb_expect_false (waittime < timeout_blocktime))
4125 root 1.193 waittime = timeout_blocktime;
4126    
4127 root 1.513 /* now there are two more special cases left, either we have
4128     * already-expired timers, so we should not sleep, or we have timers
4129 root 1.514 * that expire very soon, in which case we need to wait for a minimum
4130     * amount of time for some event loop backends.
4131 root 1.513 */
4132 root 1.500 if (ecb_expect_false (waittime < backend_mintime))
4133 root 1.513 waittime = waittime <= EV_TS_CONST (0.)
4134     ? EV_TS_CONST (0.)
4135     : backend_mintime;
4136 root 1.377
4137 root 1.293 /* extra check because io_blocktime is commonly 0 */
4138 root 1.500 if (ecb_expect_false (io_blocktime))
4139 root 1.293 {
4140     sleeptime = io_blocktime - (mn_now - prev_mn_now);
4141 root 1.193
4142 root 1.376 if (sleeptime > waittime - backend_mintime)
4143     sleeptime = waittime - backend_mintime;
4144 root 1.193
4145 root 1.509 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
4146 root 1.293 {
4147     ev_sleep (sleeptime);
4148     waittime -= sleeptime;
4149     }
4150 root 1.193 }
4151 root 1.135 }
4152 root 1.1
4153 root 1.338 #if EV_FEATURE_API
4154 root 1.162 ++loop_count;
4155 root 1.297 #endif
4156 root 1.353 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
4157 root 1.193 backend_poll (EV_A_ waittime);
4158 root 1.353 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4159 root 1.178
4160 sf-exg 1.402 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4161 root 1.378
4162 root 1.442 ECB_MEMORY_FENCE_ACQUIRE;
4163 root 1.378 if (pipe_write_skipped)
4164     {
4165     assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4166     ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4167     }
4168    
4169 root 1.178 /* update ev_rt_now, do magic */
4170 root 1.193 time_update (EV_A_ waittime + sleeptime);
4171 root 1.135 }
4172 root 1.1
4173 root 1.9 /* queue pending timers and reschedule them */
4174 root 1.51 timers_reify (EV_A); /* relative timers called last */
4175 root 1.140 #if EV_PERIODIC_ENABLE
4176 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
4177 root 1.93 #endif
4178 root 1.1
4179 root 1.164 #if EV_IDLE_ENABLE
4180 root 1.137 /* queue idle watchers unless other events are pending */
4181 root 1.164 idle_reify (EV_A);
4182     #endif
4183 root 1.9
4184 root 1.337 #if EV_CHECK_ENABLE
4185 root 1.20 /* queue check watchers, to be executed first */
4186 root 1.500 if (ecb_expect_false (checkcnt))
4187 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4188 root 1.337 #endif
4189 root 1.9
4190 root 1.297 EV_INVOKE_PENDING;
4191 root 1.1 }
4192 root 1.500 while (ecb_expect_true (
4193 root 1.219 activecnt
4194     && !loop_done
4195 root 1.353 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
4196 root 1.219 ));
4197 root 1.13
4198 root 1.353 if (loop_done == EVBREAK_ONE)
4199     loop_done = EVBREAK_CANCEL;
4200 root 1.294
4201 root 1.338 #if EV_FEATURE_API
4202 root 1.294 --loop_depth;
4203 root 1.297 #endif
4204 root 1.418
4205     return activecnt;
4206 root 1.51 }
4207    
4208     void
4209 root 1.486 ev_break (EV_P_ int how) EV_NOEXCEPT
4210 root 1.51 {
4211     loop_done = how;
4212 root 1.1 }
4213    
4214 root 1.285 void
4215 root 1.486 ev_ref (EV_P) EV_NOEXCEPT
4216 root 1.285 {
4217     ++activecnt;
4218     }
4219    
4220     void
4221 root 1.486 ev_unref (EV_P) EV_NOEXCEPT
4222 root 1.285 {
4223     --activecnt;
4224     }
4225    
4226     void
4227 root 1.486 ev_now_update (EV_P) EV_NOEXCEPT
4228 root 1.285 {
4229 root 1.509 time_update (EV_A_ EV_TSTAMP_HUGE);
4230 root 1.285 }
4231    
4232     void
4233 root 1.486 ev_suspend (EV_P) EV_NOEXCEPT
4234 root 1.285 {
4235     ev_now_update (EV_A);
4236     }
4237    
4238     void
4239 root 1.486 ev_resume (EV_P) EV_NOEXCEPT
4240 root 1.285 {
4241     ev_tstamp mn_prev = mn_now;
4242    
4243     ev_now_update (EV_A);
4244     timers_reschedule (EV_A_ mn_now - mn_prev);
4245 root 1.286 #if EV_PERIODIC_ENABLE
4246 root 1.288 /* TODO: really do this? */
4247 root 1.285 periodics_reschedule (EV_A);
4248 root 1.286 #endif
4249 root 1.285 }
4250    
4251 root 1.8 /*****************************************************************************/
4252 root 1.288 /* singly-linked list management, used when the expected list length is short */
4253 root 1.8
4254 root 1.284 inline_size void
4255 root 1.10 wlist_add (WL *head, WL elem)
4256 root 1.1 {
4257     elem->next = *head;
4258     *head = elem;
4259     }
4260    
4261 root 1.284 inline_size void
4262 root 1.10 wlist_del (WL *head, WL elem)
4263 root 1.1 {
4264     while (*head)
4265     {
4266 root 1.500 if (ecb_expect_true (*head == elem))
4267 root 1.1 {
4268     *head = elem->next;
4269 root 1.307 break;
4270 root 1.1 }
4271    
4272     head = &(*head)->next;
4273     }
4274     }
4275    
4276 root 1.288 /* internal, faster, version of ev_clear_pending */
4277 root 1.284 inline_speed void
4278 root 1.166 clear_pending (EV_P_ W w)
4279 root 1.16 {
4280     if (w->pending)
4281     {
4282 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
4283 root 1.16 w->pending = 0;
4284     }
4285     }
4286    
4287 root 1.167 int
4288 root 1.486 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4289 root 1.166 {
4290     W w_ = (W)w;
4291     int pending = w_->pending;
4292    
4293 root 1.500 if (ecb_expect_true (pending))
4294 root 1.172 {
4295     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4296 root 1.288 p->w = (W)&pending_w;
4297 root 1.172 w_->pending = 0;
4298     return p->events;
4299     }
4300     else
4301 root 1.167 return 0;
4302 root 1.166 }
4303    
4304 root 1.284 inline_size void
4305 root 1.164 pri_adjust (EV_P_ W w)
4306     {
4307 root 1.295 int pri = ev_priority (w);
4308 root 1.164 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4309     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4310 root 1.295 ev_set_priority (w, pri);
4311 root 1.164 }
4312    
4313 root 1.284 inline_speed void
4314 root 1.51 ev_start (EV_P_ W w, int active)
4315 root 1.1 {
4316 root 1.164 pri_adjust (EV_A_ w);
4317 root 1.1 w->active = active;
4318 root 1.51 ev_ref (EV_A);
4319 root 1.1 }
4320    
4321 root 1.284 inline_size void
4322 root 1.51 ev_stop (EV_P_ W w)
4323 root 1.1 {
4324 root 1.51 ev_unref (EV_A);
4325 root 1.1 w->active = 0;
4326     }
4327    
4328 root 1.8 /*****************************************************************************/
4329    
4330 root 1.500 ecb_noinline
4331 root 1.480 void
4332 root 1.486 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4333 root 1.1 {
4334 root 1.37 int fd = w->fd;
4335    
4336 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4337 root 1.1 return;
4338    
4339 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4340 root 1.327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4341 root 1.33
4342 root 1.498 #if EV_VERIFY >= 2
4343     assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4344     #endif
4345 root 1.248 EV_FREQUENT_CHECK;
4346    
4347 root 1.51 ev_start (EV_A_ (W)w, 1);
4348 root 1.490 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4349 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
4350 root 1.1
4351 root 1.426 /* common bug, apparently */
4352     assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4353    
4354 root 1.298 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4355 root 1.281 w->events &= ~EV__IOFDSET;
4356 root 1.248
4357     EV_FREQUENT_CHECK;
4358 root 1.1 }
4359    
4360 root 1.500 ecb_noinline
4361 root 1.480 void
4362 root 1.486 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4363 root 1.1 {
4364 root 1.166 clear_pending (EV_A_ (W)w);
4365 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4366 root 1.1 return;
4367    
4368 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4369 root 1.89
4370 root 1.498 #if EV_VERIFY >= 2
4371     assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4372     #endif
4373 root 1.248 EV_FREQUENT_CHECK;
4374    
4375 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
4376 root 1.51 ev_stop (EV_A_ (W)w);
4377 root 1.1
4378 root 1.350 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4379 root 1.248
4380     EV_FREQUENT_CHECK;
4381 root 1.1 }
4382    
4383 root 1.500 ecb_noinline
4384 root 1.480 void
4385 root 1.486 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4386 root 1.1 {
4387 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4388 root 1.1 return;
4389    
4390 root 1.228 ev_at (w) += mn_now;
4391 root 1.12
4392 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4393 root 1.13
4394 root 1.248 EV_FREQUENT_CHECK;
4395    
4396     ++timercnt;
4397     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4398 root 1.490 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4399 root 1.241 ANHE_w (timers [ev_active (w)]) = (WT)w;
4400 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
4401 root 1.235 upheap (timers, ev_active (w));
4402 root 1.62
4403 root 1.248 EV_FREQUENT_CHECK;
4404    
4405 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4406 root 1.12 }
4407    
4408 root 1.500 ecb_noinline
4409 root 1.480 void
4410 root 1.486 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4411 root 1.12 {
4412 root 1.166 clear_pending (EV_A_ (W)w);
4413 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4414 root 1.12 return;
4415    
4416 root 1.248 EV_FREQUENT_CHECK;
4417    
4418 root 1.230 {
4419     int active = ev_active (w);
4420 root 1.62
4421 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4422 root 1.151
4423 root 1.248 --timercnt;
4424    
4425 root 1.500 if (ecb_expect_true (active < timercnt + HEAP0))
4426 root 1.151 {
4427 root 1.248 timers [active] = timers [timercnt + HEAP0];
4428 root 1.181 adjustheap (timers, timercnt, active);
4429 root 1.151 }
4430 root 1.248 }
4431 root 1.228
4432     ev_at (w) -= mn_now;
4433 root 1.14
4434 root 1.51 ev_stop (EV_A_ (W)w);
4435 root 1.328
4436     EV_FREQUENT_CHECK;
4437 root 1.12 }
4438 root 1.4
4439 root 1.500 ecb_noinline
4440 root 1.480 void
4441 root 1.486 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4442 root 1.14 {
4443 root 1.248 EV_FREQUENT_CHECK;
4444    
4445 root 1.407 clear_pending (EV_A_ (W)w);
4446 root 1.406
4447 root 1.14 if (ev_is_active (w))
4448     {
4449     if (w->repeat)
4450 root 1.99 {
4451 root 1.228 ev_at (w) = mn_now + w->repeat;
4452 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
4453 root 1.230 adjustheap (timers, timercnt, ev_active (w));
4454 root 1.99 }
4455 root 1.14 else
4456 root 1.51 ev_timer_stop (EV_A_ w);
4457 root 1.14 }
4458     else if (w->repeat)
4459 root 1.112 {
4460 root 1.229 ev_at (w) = w->repeat;
4461 root 1.112 ev_timer_start (EV_A_ w);
4462     }
4463 root 1.248
4464     EV_FREQUENT_CHECK;
4465 root 1.14 }
4466    
4467 root 1.301 ev_tstamp
4468 root 1.486 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4469 root 1.301 {
4470 root 1.509 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4471 root 1.301 }
4472    
4473 root 1.140 #if EV_PERIODIC_ENABLE
4474 root 1.500 ecb_noinline
4475 root 1.480 void
4476 root 1.486 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4477 root 1.12 {
4478 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4479 root 1.12 return;
4480 root 1.1
4481 root 1.515 #if EV_USE_TIMERFD
4482     if (timerfd == -2)
4483     evtimerfd_init (EV_A);
4484     #endif
4485    
4486 root 1.77 if (w->reschedule_cb)
4487 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4488 root 1.77 else if (w->interval)
4489     {
4490 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4491 root 1.370 periodic_recalc (EV_A_ w);
4492 root 1.77 }
4493 root 1.173 else
4494 root 1.228 ev_at (w) = w->offset;
4495 root 1.12
4496 root 1.248 EV_FREQUENT_CHECK;
4497    
4498     ++periodiccnt;
4499     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4500 root 1.490 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4501 root 1.241 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4502 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
4503 root 1.235 upheap (periodics, ev_active (w));
4504 root 1.62
4505 root 1.248 EV_FREQUENT_CHECK;
4506    
4507 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4508 root 1.1 }
4509    
4510 root 1.500 ecb_noinline
4511 root 1.480 void
4512 root 1.486 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4513 root 1.1 {
4514 root 1.166 clear_pending (EV_A_ (W)w);
4515 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4516 root 1.1 return;
4517    
4518 root 1.248 EV_FREQUENT_CHECK;
4519    
4520 root 1.230 {
4521     int active = ev_active (w);
4522 root 1.62
4523 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4524 root 1.151
4525 root 1.248 --periodiccnt;
4526    
4527 root 1.500 if (ecb_expect_true (active < periodiccnt + HEAP0))
4528 root 1.151 {
4529 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
4530 root 1.181 adjustheap (periodics, periodiccnt, active);
4531 root 1.151 }
4532 root 1.248 }
4533 root 1.228
4534 root 1.328 ev_stop (EV_A_ (W)w);
4535    
4536 root 1.248 EV_FREQUENT_CHECK;
4537 root 1.1 }
4538    
4539 root 1.500 ecb_noinline
4540 root 1.480 void
4541 root 1.486 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4542 root 1.77 {
4543 root 1.84 /* TODO: use adjustheap and recalculation */
4544 root 1.77 ev_periodic_stop (EV_A_ w);
4545     ev_periodic_start (EV_A_ w);
4546     }
4547 root 1.93 #endif
4548 root 1.77
4549 root 1.56 #ifndef SA_RESTART
4550     # define SA_RESTART 0
4551     #endif
4552    
4553 root 1.336 #if EV_SIGNAL_ENABLE
4554    
4555 root 1.500 ecb_noinline
4556 root 1.480 void
4557 root 1.486 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4558 root 1.56 {
4559 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4560 root 1.56 return;
4561    
4562 root 1.306 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4563    
4564     #if EV_MULTIPLICITY
4565 root 1.308 assert (("libev: a signal must not be attached to two different loops",
4566 root 1.306 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4567    
4568     signals [w->signum - 1].loop = EV_A;
4569 root 1.449 ECB_MEMORY_FENCE_RELEASE;
4570 root 1.306 #endif
4571 root 1.56
4572 root 1.303 EV_FREQUENT_CHECK;
4573    
4574     #if EV_USE_SIGNALFD
4575     if (sigfd == -2)
4576     {
4577     sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4578     if (sigfd < 0 && errno == EINVAL)
4579     sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4580    
4581     if (sigfd >= 0)
4582     {
4583     fd_intern (sigfd); /* doing it twice will not hurt */
4584    
4585     sigemptyset (&sigfd_set);
4586    
4587     ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4588     ev_set_priority (&sigfd_w, EV_MAXPRI);
4589     ev_io_start (EV_A_ &sigfd_w);
4590     ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4591     }
4592     }
4593    
4594     if (sigfd >= 0)
4595     {
4596     /* TODO: check .head */
4597     sigaddset (&sigfd_set, w->signum);
4598     sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4599 root 1.207
4600 root 1.303 signalfd (sigfd, &sigfd_set, 0);
4601     }
4602 root 1.180 #endif
4603    
4604 root 1.56 ev_start (EV_A_ (W)w, 1);
4605 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
4606 root 1.56
4607 root 1.63 if (!((WL)w)->next)
4608 root 1.304 # if EV_USE_SIGNALFD
4609 root 1.306 if (sigfd < 0) /*TODO*/
4610 root 1.304 # endif
4611 root 1.306 {
4612 root 1.322 # ifdef _WIN32
4613 root 1.317 evpipe_init (EV_A);
4614    
4615 root 1.306 signal (w->signum, ev_sighandler);
4616     # else
4617     struct sigaction sa;
4618    
4619     evpipe_init (EV_A);
4620    
4621     sa.sa_handler = ev_sighandler;
4622     sigfillset (&sa.sa_mask);
4623     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4624     sigaction (w->signum, &sa, 0);
4625    
4626 root 1.366 if (origflags & EVFLAG_NOSIGMASK)
4627     {
4628     sigemptyset (&sa.sa_mask);
4629     sigaddset (&sa.sa_mask, w->signum);
4630     sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4631     }
4632 root 1.67 #endif
4633 root 1.306 }
4634 root 1.248
4635     EV_FREQUENT_CHECK;
4636 root 1.56 }
4637    
4638 root 1.500 ecb_noinline
4639 root 1.480 void
4640 root 1.486 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4641 root 1.56 {
4642 root 1.166 clear_pending (EV_A_ (W)w);
4643 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4644 root 1.56 return;
4645    
4646 root 1.248 EV_FREQUENT_CHECK;
4647    
4648 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
4649 root 1.56 ev_stop (EV_A_ (W)w);
4650    
4651     if (!signals [w->signum - 1].head)
4652 root 1.306 {
4653 root 1.307 #if EV_MULTIPLICITY
4654 root 1.306 signals [w->signum - 1].loop = 0; /* unattach from signal */
4655 root 1.307 #endif
4656     #if EV_USE_SIGNALFD
4657 root 1.306 if (sigfd >= 0)
4658     {
4659 root 1.321 sigset_t ss;
4660    
4661     sigemptyset (&ss);
4662     sigaddset (&ss, w->signum);
4663 root 1.306 sigdelset (&sigfd_set, w->signum);
4664 root 1.321
4665 root 1.306 signalfd (sigfd, &sigfd_set, 0);
4666 root 1.321 sigprocmask (SIG_UNBLOCK, &ss, 0);
4667 root 1.306 }
4668     else
4669 root 1.307 #endif
4670 root 1.306 signal (w->signum, SIG_DFL);
4671     }
4672 root 1.248
4673     EV_FREQUENT_CHECK;
4674 root 1.56 }
4675    
4676 root 1.336 #endif
4677    
4678     #if EV_CHILD_ENABLE
4679    
4680 root 1.28 void
4681 root 1.486 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4682 root 1.22 {
4683 root 1.56 #if EV_MULTIPLICITY
4684 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4685 root 1.56 #endif
4686 root 1.500 if (ecb_expect_false (ev_is_active (w)))
4687 root 1.22 return;
4688    
4689 root 1.248 EV_FREQUENT_CHECK;
4690    
4691 root 1.51 ev_start (EV_A_ (W)w, 1);
4692 root 1.338 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4693 root 1.248
4694     EV_FREQUENT_CHECK;
4695 root 1.22 }
4696    
4697 root 1.28 void
4698 root 1.486 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4699 root 1.22 {
4700 root 1.166 clear_pending (EV_A_ (W)w);
4701 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
4702 root 1.22 return;
4703    
4704 root 1.248 EV_FREQUENT_CHECK;
4705    
4706 root 1.338 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4707 root 1.51 ev_stop (EV_A_ (W)w);
4708 root 1.248
4709     EV_FREQUENT_CHECK;
4710 root 1.22 }
4711    
4712 root 1.336 #endif
4713    
4714 root 1.140 #if EV_STAT_ENABLE
4715    
4716     # ifdef _WIN32
4717 root 1.146 # undef lstat
4718     # define lstat(a,b) _stati64 (a,b)
4719 root 1.140 # endif
4720    
4721 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
4722     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4723     #define MIN_STAT_INTERVAL 0.1074891
4724 root 1.143
4725 root 1.500 ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4726 root 1.152
4727     #if EV_USE_INOTIFY
4728 root 1.326
4729     /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4730     # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4731 root 1.152
4732 root 1.500 ecb_noinline
4733 root 1.480 static void
4734 root 1.152 infy_add (EV_P_ ev_stat *w)
4735     {
4736 root 1.451 w->wd = inotify_add_watch (fs_fd, w->path,
4737     IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4738     | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4739     | IN_DONT_FOLLOW | IN_MASK_ADD);
4740 root 1.152
4741 root 1.318 if (w->wd >= 0)
4742 root 1.152 {
4743 root 1.318 struct statfs sfs;
4744    
4745     /* now local changes will be tracked by inotify, but remote changes won't */
4746     /* unless the filesystem is known to be local, we therefore still poll */
4747     /* also do poll on <2.6.25, but with normal frequency */
4748    
4749     if (!fs_2625)
4750     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4751     else if (!statfs (w->path, &sfs)
4752     && (sfs.f_type == 0x1373 /* devfs */
4753 root 1.451 || sfs.f_type == 0x4006 /* fat */
4754     || sfs.f_type == 0x4d44 /* msdos */
4755 root 1.318 || sfs.f_type == 0xEF53 /* ext2/3 */
4756 root 1.451 || sfs.f_type == 0x72b6 /* jffs2 */
4757     || sfs.f_type == 0x858458f6 /* ramfs */
4758     || sfs.f_type == 0x5346544e /* ntfs */
4759 root 1.318 || sfs.f_type == 0x3153464a /* jfs */
4760 root 1.451 || sfs.f_type == 0x9123683e /* btrfs */
4761 root 1.318 || sfs.f_type == 0x52654973 /* reiser3 */
4762 root 1.451 || sfs.f_type == 0x01021994 /* tmpfs */
4763 root 1.318 || sfs.f_type == 0x58465342 /* xfs */))
4764     w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4765     else
4766     w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4767     }
4768     else
4769     {
4770     /* can't use inotify, continue to stat */
4771 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4772 root 1.152
4773 root 1.318 /* if path is not there, monitor some parent directory for speedup hints */
4774 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4775 root 1.233 /* but an efficiency issue only */
4776 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4777 root 1.152 {
4778 root 1.153 char path [4096];
4779 root 1.152 strcpy (path, w->path);
4780    
4781     do
4782     {
4783     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4784     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4785    
4786     char *pend = strrchr (path, '/');
4787    
4788 root 1.275 if (!pend || pend == path)
4789     break;
4790 root 1.152
4791     *pend = 0;
4792 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
4793 root 1.372 }
4794 root 1.152 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4795     }
4796     }
4797 root 1.275
4798     if (w->wd >= 0)
4799 root 1.338 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4800 root 1.152
4801 root 1.318 /* now re-arm timer, if required */
4802     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4803     ev_timer_again (EV_A_ &w->timer);
4804     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4805 root 1.152 }
4806    
4807 root 1.500 ecb_noinline
4808 root 1.480 static void
4809 root 1.152 infy_del (EV_P_ ev_stat *w)
4810     {
4811     int slot;
4812     int wd = w->wd;
4813    
4814     if (wd < 0)
4815     return;
4816    
4817     w->wd = -2;
4818 root 1.338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4819 root 1.152 wlist_del (&fs_hash [slot].head, (WL)w);
4820    
4821     /* remove this watcher, if others are watching it, they will rearm */
4822     inotify_rm_watch (fs_fd, wd);
4823     }
4824    
4825 root 1.500 ecb_noinline
4826 root 1.480 static void
4827 root 1.152 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4828     {
4829     if (slot < 0)
4830 root 1.264 /* overflow, need to check for all hash slots */
4831 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4832 root 1.152 infy_wd (EV_A_ slot, wd, ev);
4833     else
4834     {
4835     WL w_;
4836    
4837 root 1.338 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4838 root 1.152 {
4839     ev_stat *w = (ev_stat *)w_;
4840     w_ = w_->next; /* lets us remove this watcher and all before it */
4841    
4842     if (w->wd == wd || wd == -1)
4843     {
4844     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4845     {
4846 root 1.338 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4847 root 1.152 w->wd = -1;
4848     infy_add (EV_A_ w); /* re-add, no matter what */
4849     }
4850    
4851 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
4852 root 1.152 }
4853     }
4854     }
4855     }
4856    
4857     static void
4858     infy_cb (EV_P_ ev_io *w, int revents)
4859     {
4860     char buf [EV_INOTIFY_BUFSIZE];
4861     int ofs;
4862     int len = read (fs_fd, buf, sizeof (buf));
4863    
4864 root 1.326 for (ofs = 0; ofs < len; )
4865     {
4866     struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4867     infy_wd (EV_A_ ev->wd, ev->wd, ev);
4868     ofs += sizeof (struct inotify_event) + ev->len;
4869     }
4870 root 1.152 }
4871    
4872 root 1.480 inline_size ecb_cold
4873     void
4874 root 1.330 ev_check_2625 (EV_P)
4875     {
4876     /* kernels < 2.6.25 are borked
4877     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4878     */
4879     if (ev_linux_version () < 0x020619)
4880 root 1.273 return;
4881 root 1.264
4882 root 1.273 fs_2625 = 1;
4883     }
4884 root 1.264
4885 root 1.315 inline_size int
4886     infy_newfd (void)
4887     {
4888 root 1.416 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4889 root 1.315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4890     if (fd >= 0)
4891     return fd;
4892     #endif
4893     return inotify_init ();
4894     }
4895    
4896 root 1.284 inline_size void
4897 root 1.273 infy_init (EV_P)
4898     {
4899     if (fs_fd != -2)
4900     return;
4901 root 1.264
4902 root 1.273 fs_fd = -1;
4903 root 1.264
4904 root 1.330 ev_check_2625 (EV_A);
4905 root 1.264
4906 root 1.315 fs_fd = infy_newfd ();
4907 root 1.152
4908     if (fs_fd >= 0)
4909     {
4910 root 1.315 fd_intern (fs_fd);
4911 root 1.152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4912     ev_set_priority (&fs_w, EV_MAXPRI);
4913     ev_io_start (EV_A_ &fs_w);
4914 root 1.317 ev_unref (EV_A);
4915 root 1.152 }
4916     }
4917    
4918 root 1.284 inline_size void
4919 root 1.154 infy_fork (EV_P)
4920     {
4921     int slot;
4922    
4923     if (fs_fd < 0)
4924     return;
4925    
4926 root 1.317 ev_ref (EV_A);
4927 root 1.315 ev_io_stop (EV_A_ &fs_w);
4928 root 1.154 close (fs_fd);
4929 root 1.315 fs_fd = infy_newfd ();
4930    
4931     if (fs_fd >= 0)
4932     {
4933     fd_intern (fs_fd);
4934     ev_io_set (&fs_w, fs_fd, EV_READ);
4935     ev_io_start (EV_A_ &fs_w);
4936 root 1.317 ev_unref (EV_A);
4937 root 1.315 }
4938 root 1.154
4939 root 1.338 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4940 root 1.154 {
4941     WL w_ = fs_hash [slot].head;
4942     fs_hash [slot].head = 0;
4943    
4944     while (w_)
4945     {
4946     ev_stat *w = (ev_stat *)w_;
4947     w_ = w_->next; /* lets us add this watcher */
4948    
4949     w->wd = -1;
4950    
4951     if (fs_fd >= 0)
4952     infy_add (EV_A_ w); /* re-add, no matter what */
4953     else
4954 root 1.318 {
4955     w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4956     if (ev_is_active (&w->timer)) ev_ref (EV_A);
4957     ev_timer_again (EV_A_ &w->timer);
4958     if (ev_is_active (&w->timer)) ev_unref (EV_A);
4959     }
4960 root 1.154 }
4961     }
4962     }
4963    
4964 root 1.152 #endif
4965    
4966 root 1.255 #ifdef _WIN32
4967     # define EV_LSTAT(p,b) _stati64 (p, b)
4968     #else
4969     # define EV_LSTAT(p,b) lstat (p, b)
4970     #endif
4971    
4972 root 1.140 void
4973 root 1.486 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4974 root 1.140 {
4975     if (lstat (w->path, &w->attr) < 0)
4976     w->attr.st_nlink = 0;
4977     else if (!w->attr.st_nlink)
4978     w->attr.st_nlink = 1;
4979     }
4980    
4981 root 1.500 ecb_noinline
4982 root 1.480 static void
4983 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4984     {
4985     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4986    
4987 root 1.320 ev_statdata prev = w->attr;
4988 root 1.140 ev_stat_stat (EV_A_ w);
4989    
4990 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4991     if (
4992 root 1.320 prev.st_dev != w->attr.st_dev
4993     || prev.st_ino != w->attr.st_ino
4994     || prev.st_mode != w->attr.st_mode
4995     || prev.st_nlink != w->attr.st_nlink
4996     || prev.st_uid != w->attr.st_uid
4997     || prev.st_gid != w->attr.st_gid
4998     || prev.st_rdev != w->attr.st_rdev
4999     || prev.st_size != w->attr.st_size
5000     || prev.st_atime != w->attr.st_atime
5001     || prev.st_mtime != w->attr.st_mtime
5002     || prev.st_ctime != w->attr.st_ctime
5003 root 1.156 ) {
5004 root 1.320 /* we only update w->prev on actual differences */
5005     /* in case we test more often than invoke the callback, */
5006     /* to ensure that prev is always different to attr */
5007     w->prev = prev;
5008    
5009 root 1.152 #if EV_USE_INOTIFY
5010 root 1.264 if (fs_fd >= 0)
5011     {
5012     infy_del (EV_A_ w);
5013     infy_add (EV_A_ w);
5014     ev_stat_stat (EV_A_ w); /* avoid race... */
5015     }
5016 root 1.152 #endif
5017    
5018     ev_feed_event (EV_A_ w, EV_STAT);
5019     }
5020 root 1.140 }
5021    
5022     void
5023 root 1.486 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
5024 root 1.140 {
5025 root 1.500 if (ecb_expect_false (ev_is_active (w)))
5026 root 1.140 return;
5027    
5028     ev_stat_stat (EV_A_ w);
5029    
5030 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
5031     w->interval = MIN_STAT_INTERVAL;
5032 root 1.143
5033 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
5034 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
5035 root 1.152
5036     #if EV_USE_INOTIFY
5037     infy_init (EV_A);
5038    
5039     if (fs_fd >= 0)
5040     infy_add (EV_A_ w);
5041     else
5042     #endif
5043 root 1.318 {
5044     ev_timer_again (EV_A_ &w->timer);
5045     ev_unref (EV_A);
5046     }
5047 root 1.140
5048     ev_start (EV_A_ (W)w, 1);
5049 root 1.248
5050     EV_FREQUENT_CHECK;
5051 root 1.140 }
5052    
5053     void
5054 root 1.486 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
5055 root 1.140 {
5056 root 1.166 clear_pending (EV_A_ (W)w);
5057 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
5058 root 1.140 return;
5059    
5060 root 1.248 EV_FREQUENT_CHECK;
5061    
5062 root 1.152 #if EV_USE_INOTIFY
5063     infy_del (EV_A_ w);
5064     #endif
5065 root 1.318
5066     if (ev_is_active (&w->timer))
5067     {
5068     ev_ref (EV_A);
5069     ev_timer_stop (EV_A_ &w->timer);
5070     }
5071 root 1.140
5072 root 1.134 ev_stop (EV_A_ (W)w);
5073 root 1.248
5074     EV_FREQUENT_CHECK;
5075 root 1.134 }
5076     #endif
5077    
5078 root 1.164 #if EV_IDLE_ENABLE
5079 root 1.144 void
5080 root 1.486 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
5081 root 1.144 {
5082 root 1.500 if (ecb_expect_false (ev_is_active (w)))
5083 root 1.144 return;
5084    
5085 root 1.164 pri_adjust (EV_A_ (W)w);
5086    
5087 root 1.248 EV_FREQUENT_CHECK;
5088    
5089 root 1.164 {
5090     int active = ++idlecnt [ABSPRI (w)];
5091    
5092     ++idleall;
5093     ev_start (EV_A_ (W)w, active);
5094    
5095 root 1.490 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
5096 root 1.164 idles [ABSPRI (w)][active - 1] = w;
5097     }
5098 root 1.248
5099     EV_FREQUENT_CHECK;
5100 root 1.144 }
5101    
5102     void
5103 root 1.486 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
5104 root 1.144 {
5105 root 1.166 clear_pending (EV_A_ (W)w);
5106 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
5107 root 1.144 return;
5108    
5109 root 1.248 EV_FREQUENT_CHECK;
5110    
5111 root 1.144 {
5112 root 1.230 int active = ev_active (w);
5113 root 1.164
5114     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
5115 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
5116 root 1.164
5117     ev_stop (EV_A_ (W)w);
5118     --idleall;
5119 root 1.144 }
5120 root 1.248
5121     EV_FREQUENT_CHECK;
5122 root 1.144 }
5123 root 1.164 #endif
5124 root 1.144
5125 root 1.337 #if EV_PREPARE_ENABLE
5126 root 1.144 void
5127 root 1.486 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
5128 root 1.144 {
5129 root 1.500 if (ecb_expect_false (ev_is_active (w)))
5130 root 1.144 return;
5131    
5132 root 1.248 EV_FREQUENT_CHECK;
5133    
5134 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
5135 root 1.490 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
5136 root 1.144 prepares [preparecnt - 1] = w;
5137 root 1.248
5138     EV_FREQUENT_CHECK;
5139 root 1.144 }
5140    
5141     void
5142 root 1.486 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
5143 root 1.144 {
5144 root 1.166 clear_pending (EV_A_ (W)w);
5145 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
5146 root 1.144 return;
5147    
5148 root 1.248 EV_FREQUENT_CHECK;
5149    
5150 root 1.144 {
5151 root 1.230 int active = ev_active (w);
5152    
5153 root 1.144 prepares [active - 1] = prepares [--preparecnt];
5154 root 1.230 ev_active (prepares [active - 1]) = active;
5155 root 1.144 }
5156    
5157     ev_stop (EV_A_ (W)w);
5158 root 1.248
5159     EV_FREQUENT_CHECK;
5160 root 1.144 }
5161 root 1.337 #endif
5162 root 1.144
5163 root 1.337 #if EV_CHECK_ENABLE
5164 root 1.144 void
5165 root 1.486 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
5166 root 1.144 {
5167 root 1.500 if (ecb_expect_false (ev_is_active (w)))
5168 root 1.144 return;
5169    
5170 root 1.248 EV_FREQUENT_CHECK;
5171    
5172 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
5173 root 1.490 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
5174 root 1.144 checks [checkcnt - 1] = w;
5175 root 1.248
5176     EV_FREQUENT_CHECK;
5177 root 1.144 }
5178    
5179     void
5180 root 1.486 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
5181 root 1.144 {
5182 root 1.166 clear_pending (EV_A_ (W)w);
5183 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
5184 root 1.144 return;
5185    
5186 root 1.248 EV_FREQUENT_CHECK;
5187    
5188 root 1.144 {
5189 root 1.230 int active = ev_active (w);
5190    
5191 root 1.144 checks [active - 1] = checks [--checkcnt];
5192 root 1.230 ev_active (checks [active - 1]) = active;
5193 root 1.144 }
5194    
5195     ev_stop (EV_A_ (W)w);
5196 root 1.248
5197     EV_FREQUENT_CHECK;
5198 root 1.144 }
5199 root 1.337 #endif
5200 root 1.144
5201     #if EV_EMBED_ENABLE
5202 root 1.500 ecb_noinline
5203 root 1.480 void
5204 root 1.486 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
5205 root 1.144 {
5206 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
5207 root 1.144 }
5208    
5209     static void
5210 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
5211 root 1.144 {
5212     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
5213    
5214     if (ev_cb (w))
5215     ev_feed_event (EV_A_ (W)w, EV_EMBED);
5216     else
5217 root 1.353 ev_run (w->other, EVRUN_NOWAIT);
5218 root 1.144 }
5219    
5220 root 1.189 static void
5221     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
5222     {
5223     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
5224    
5225 root 1.195 {
5226 root 1.306 EV_P = w->other;
5227 root 1.195
5228     while (fdchangecnt)
5229     {
5230     fd_reify (EV_A);
5231 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
5232 root 1.195 }
5233     }
5234     }
5235    
5236 root 1.517 #if EV_FORK_ENABLE
5237 root 1.261 static void
5238     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
5239     {
5240     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
5241    
5242 root 1.277 ev_embed_stop (EV_A_ w);
5243    
5244 root 1.261 {
5245 root 1.306 EV_P = w->other;
5246 root 1.261
5247     ev_loop_fork (EV_A);
5248 root 1.353 ev_run (EV_A_ EVRUN_NOWAIT);
5249 root 1.261 }
5250 root 1.277
5251     ev_embed_start (EV_A_ w);
5252 root 1.261 }
5253 root 1.517 #endif
5254 root 1.261
5255 root 1.195 #if 0
5256     static void
5257     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
5258     {
5259     ev_idle_stop (EV_A_ idle);
5260 root 1.189 }
5261 root 1.195 #endif
5262 root 1.189
5263 root 1.144 void
5264 root 1.486 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
5265 root 1.144 {
5266 root 1.500 if (ecb_expect_false (ev_is_active (w)))
5267 root 1.144 return;
5268    
5269     {
5270 root 1.306 EV_P = w->other;
5271 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
5272 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
5273 root 1.144 }
5274    
5275 root 1.248 EV_FREQUENT_CHECK;
5276    
5277 root 1.144 ev_set_priority (&w->io, ev_priority (w));
5278     ev_io_start (EV_A_ &w->io);
5279    
5280 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
5281     ev_set_priority (&w->prepare, EV_MINPRI);
5282     ev_prepare_start (EV_A_ &w->prepare);
5283    
5284 root 1.517 #if EV_FORK_ENABLE
5285 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
5286     ev_fork_start (EV_A_ &w->fork);
5287 root 1.517 #endif
5288 root 1.261
5289 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
5290    
5291 root 1.144 ev_start (EV_A_ (W)w, 1);
5292 root 1.248
5293     EV_FREQUENT_CHECK;
5294 root 1.144 }
5295    
5296     void
5297 root 1.486 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
5298 root 1.144 {
5299 root 1.166 clear_pending (EV_A_ (W)w);
5300 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
5301 root 1.144 return;
5302    
5303 root 1.248 EV_FREQUENT_CHECK;
5304    
5305 root 1.261 ev_io_stop (EV_A_ &w->io);
5306 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
5307 root 1.517 #if EV_FORK_ENABLE
5308 root 1.261 ev_fork_stop (EV_A_ &w->fork);
5309 root 1.517 #endif
5310 root 1.248
5311 root 1.328 ev_stop (EV_A_ (W)w);
5312    
5313 root 1.248 EV_FREQUENT_CHECK;
5314 root 1.144 }
5315     #endif
5316    
5317 root 1.147 #if EV_FORK_ENABLE
5318     void
5319 root 1.486 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5320 root 1.147 {
5321 root 1.500 if (ecb_expect_false (ev_is_active (w)))
5322 root 1.147 return;
5323    
5324 root 1.248 EV_FREQUENT_CHECK;
5325    
5326 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
5327 root 1.490 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5328 root 1.147 forks [forkcnt - 1] = w;
5329 root 1.248
5330     EV_FREQUENT_CHECK;
5331 root 1.147 }
5332    
5333     void
5334 root 1.486 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5335 root 1.147 {
5336 root 1.166 clear_pending (EV_A_ (W)w);
5337 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
5338 root 1.147 return;
5339    
5340 root 1.248 EV_FREQUENT_CHECK;
5341    
5342 root 1.147 {
5343 root 1.230 int active = ev_active (w);
5344    
5345 root 1.147 forks [active - 1] = forks [--forkcnt];
5346 root 1.230 ev_active (forks [active - 1]) = active;
5347 root 1.147 }
5348    
5349     ev_stop (EV_A_ (W)w);
5350 root 1.248
5351     EV_FREQUENT_CHECK;
5352 root 1.147 }
5353     #endif
5354    
5355 root 1.360 #if EV_CLEANUP_ENABLE
5356     void
5357 root 1.486 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5358 root 1.360 {
5359 root 1.500 if (ecb_expect_false (ev_is_active (w)))
5360 root 1.360 return;
5361    
5362     EV_FREQUENT_CHECK;
5363    
5364     ev_start (EV_A_ (W)w, ++cleanupcnt);
5365 root 1.490 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5366 root 1.360 cleanups [cleanupcnt - 1] = w;
5367    
5368 root 1.362 /* cleanup watchers should never keep a refcount on the loop */
5369     ev_unref (EV_A);
5370 root 1.360 EV_FREQUENT_CHECK;
5371     }
5372    
5373     void
5374 root 1.486 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5375 root 1.360 {
5376     clear_pending (EV_A_ (W)w);
5377 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
5378 root 1.360 return;
5379    
5380     EV_FREQUENT_CHECK;
5381 root 1.362 ev_ref (EV_A);
5382 root 1.360
5383     {
5384     int active = ev_active (w);
5385    
5386     cleanups [active - 1] = cleanups [--cleanupcnt];
5387     ev_active (cleanups [active - 1]) = active;
5388     }
5389    
5390     ev_stop (EV_A_ (W)w);
5391    
5392     EV_FREQUENT_CHECK;
5393     }
5394     #endif
5395    
5396 root 1.207 #if EV_ASYNC_ENABLE
5397     void
5398 root 1.486 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5399 root 1.207 {
5400 root 1.500 if (ecb_expect_false (ev_is_active (w)))
5401 root 1.207 return;
5402    
5403 root 1.352 w->sent = 0;
5404    
5405 root 1.207 evpipe_init (EV_A);
5406    
5407 root 1.248 EV_FREQUENT_CHECK;
5408    
5409 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
5410 root 1.490 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5411 root 1.207 asyncs [asynccnt - 1] = w;
5412 root 1.248
5413     EV_FREQUENT_CHECK;
5414 root 1.207 }
5415    
5416     void
5417 root 1.486 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5418 root 1.207 {
5419     clear_pending (EV_A_ (W)w);
5420 root 1.500 if (ecb_expect_false (!ev_is_active (w)))
5421 root 1.207 return;
5422    
5423 root 1.248 EV_FREQUENT_CHECK;
5424    
5425 root 1.207 {
5426 root 1.230 int active = ev_active (w);
5427    
5428 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
5429 root 1.230 ev_active (asyncs [active - 1]) = active;
5430 root 1.207 }
5431    
5432     ev_stop (EV_A_ (W)w);
5433 root 1.248
5434     EV_FREQUENT_CHECK;
5435 root 1.207 }
5436    
5437     void
5438 root 1.486 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5439 root 1.207 {
5440     w->sent = 1;
5441 root 1.307 evpipe_write (EV_A_ &async_pending);
5442 root 1.207 }
5443     #endif
5444    
5445 root 1.1 /*****************************************************************************/
5446 root 1.10
5447 root 1.16 struct ev_once
5448     {
5449 root 1.136 ev_io io;
5450     ev_timer to;
5451 root 1.16 void (*cb)(int revents, void *arg);
5452     void *arg;
5453     };
5454    
5455     static void
5456 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
5457 root 1.16 {
5458     void (*cb)(int revents, void *arg) = once->cb;
5459     void *arg = once->arg;
5460    
5461 root 1.259 ev_io_stop (EV_A_ &once->io);
5462 root 1.51 ev_timer_stop (EV_A_ &once->to);
5463 root 1.69 ev_free (once);
5464 root 1.16
5465     cb (revents, arg);
5466     }
5467    
5468     static void
5469 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
5470 root 1.16 {
5471 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5472    
5473     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5474 root 1.16 }
5475    
5476     static void
5477 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
5478 root 1.16 {
5479 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5480    
5481     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5482 root 1.16 }
5483    
5484     void
5485 root 1.486 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5486 root 1.16 {
5487 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5488 root 1.16
5489 root 1.123 once->cb = cb;
5490     once->arg = arg;
5491 root 1.16
5492 root 1.123 ev_init (&once->io, once_cb_io);
5493     if (fd >= 0)
5494     {
5495     ev_io_set (&once->io, fd, events);
5496     ev_io_start (EV_A_ &once->io);
5497     }
5498 root 1.16
5499 root 1.123 ev_init (&once->to, once_cb_to);
5500     if (timeout >= 0.)
5501     {
5502     ev_timer_set (&once->to, timeout, 0.);
5503     ev_timer_start (EV_A_ &once->to);
5504 root 1.16 }
5505     }
5506    
5507 root 1.282 /*****************************************************************************/
5508    
5509 root 1.288 #if EV_WALK_ENABLE
5510 root 1.480 ecb_cold
5511     void
5512 root 1.486 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5513 root 1.282 {
5514     int i, j;
5515     ev_watcher_list *wl, *wn;
5516    
5517     if (types & (EV_IO | EV_EMBED))
5518     for (i = 0; i < anfdmax; ++i)
5519     for (wl = anfds [i].head; wl; )
5520     {
5521     wn = wl->next;
5522    
5523     #if EV_EMBED_ENABLE
5524     if (ev_cb ((ev_io *)wl) == embed_io_cb)
5525     {
5526     if (types & EV_EMBED)
5527     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5528     }
5529     else
5530     #endif
5531     #if EV_USE_INOTIFY
5532     if (ev_cb ((ev_io *)wl) == infy_cb)
5533     ;
5534     else
5535     #endif
5536 root 1.288 if ((ev_io *)wl != &pipe_w)
5537 root 1.282 if (types & EV_IO)
5538     cb (EV_A_ EV_IO, wl);
5539    
5540     wl = wn;
5541     }
5542    
5543     if (types & (EV_TIMER | EV_STAT))
5544     for (i = timercnt + HEAP0; i-- > HEAP0; )
5545     #if EV_STAT_ENABLE
5546     /*TODO: timer is not always active*/
5547     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5548     {
5549     if (types & EV_STAT)
5550     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5551     }
5552     else
5553     #endif
5554     if (types & EV_TIMER)
5555     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5556    
5557     #if EV_PERIODIC_ENABLE
5558     if (types & EV_PERIODIC)
5559     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5560     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5561     #endif
5562    
5563     #if EV_IDLE_ENABLE
5564     if (types & EV_IDLE)
5565 root 1.390 for (j = NUMPRI; j--; )
5566 root 1.282 for (i = idlecnt [j]; i--; )
5567     cb (EV_A_ EV_IDLE, idles [j][i]);
5568     #endif
5569    
5570     #if EV_FORK_ENABLE
5571     if (types & EV_FORK)
5572     for (i = forkcnt; i--; )
5573     if (ev_cb (forks [i]) != embed_fork_cb)
5574     cb (EV_A_ EV_FORK, forks [i]);
5575     #endif
5576    
5577     #if EV_ASYNC_ENABLE
5578     if (types & EV_ASYNC)
5579     for (i = asynccnt; i--; )
5580     cb (EV_A_ EV_ASYNC, asyncs [i]);
5581     #endif
5582    
5583 root 1.337 #if EV_PREPARE_ENABLE
5584 root 1.282 if (types & EV_PREPARE)
5585     for (i = preparecnt; i--; )
5586 root 1.337 # if EV_EMBED_ENABLE
5587 root 1.282 if (ev_cb (prepares [i]) != embed_prepare_cb)
5588 root 1.337 # endif
5589     cb (EV_A_ EV_PREPARE, prepares [i]);
5590 root 1.282 #endif
5591    
5592 root 1.337 #if EV_CHECK_ENABLE
5593 root 1.282 if (types & EV_CHECK)
5594     for (i = checkcnt; i--; )
5595     cb (EV_A_ EV_CHECK, checks [i]);
5596 root 1.337 #endif
5597 root 1.282
5598 root 1.337 #if EV_SIGNAL_ENABLE
5599 root 1.282 if (types & EV_SIGNAL)
5600 root 1.306 for (i = 0; i < EV_NSIG - 1; ++i)
5601 root 1.282 for (wl = signals [i].head; wl; )
5602     {
5603     wn = wl->next;
5604     cb (EV_A_ EV_SIGNAL, wl);
5605     wl = wn;
5606     }
5607 root 1.337 #endif
5608 root 1.282
5609 root 1.337 #if EV_CHILD_ENABLE
5610 root 1.282 if (types & EV_CHILD)
5611 root 1.338 for (i = (EV_PID_HASHSIZE); i--; )
5612 root 1.282 for (wl = childs [i]; wl; )
5613     {
5614     wn = wl->next;
5615     cb (EV_A_ EV_CHILD, wl);
5616     wl = wn;
5617     }
5618 root 1.337 #endif
5619 root 1.282 /* EV_STAT 0x00001000 /* stat data changed */
5620     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5621     }
5622     #endif
5623    
5624 root 1.188 #if EV_MULTIPLICITY
5625     #include "ev_wrap.h"
5626     #endif
5627