ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.55
Committed: Sun Nov 4 00:39:24 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.54: +9 -6 lines
Log Message:
multiplicity, work around bugs in http.c etc.

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.50 #ifndef EV_STANDALONE
32 root 1.29 # include "config.h"
33     #endif
34 root 1.17
35 root 1.1 #include <math.h>
36     #include <stdlib.h>
37 root 1.7 #include <unistd.h>
38     #include <fcntl.h>
39     #include <signal.h>
40 root 1.16 #include <stddef.h>
41 root 1.1
42     #include <stdio.h>
43    
44 root 1.4 #include <assert.h>
45 root 1.1 #include <errno.h>
46 root 1.22 #include <sys/types.h>
47 root 1.45 #ifndef WIN32
48     # include <sys/wait.h>
49     #endif
50 root 1.1 #include <sys/time.h>
51     #include <time.h>
52    
53 root 1.40 /**/
54    
55 root 1.29 #ifndef EV_USE_MONOTONIC
56 root 1.37 # define EV_USE_MONOTONIC 1
57     #endif
58    
59 root 1.29 #ifndef EV_USE_SELECT
60     # define EV_USE_SELECT 1
61 root 1.10 #endif
62    
63 root 1.51 #ifndef EV_USEV_POLL
64     # define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65 root 1.41 #endif
66    
67 root 1.29 #ifndef EV_USE_EPOLL
68     # define EV_USE_EPOLL 0
69 root 1.10 #endif
70    
71 root 1.44 #ifndef EV_USE_KQUEUE
72     # define EV_USE_KQUEUE 0
73     #endif
74    
75 root 1.40 #ifndef EV_USE_REALTIME
76     # define EV_USE_REALTIME 1
77     #endif
78    
79     /**/
80    
81     #ifndef CLOCK_MONOTONIC
82     # undef EV_USE_MONOTONIC
83     # define EV_USE_MONOTONIC 0
84     #endif
85    
86 root 1.31 #ifndef CLOCK_REALTIME
87 root 1.40 # undef EV_USE_REALTIME
88 root 1.31 # define EV_USE_REALTIME 0
89     #endif
90 root 1.40
91     /**/
92 root 1.1
93 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 root 1.1
98     #include "ev.h"
99    
100 root 1.40 #if __GNUC__ >= 3
101     # define expect(expr,value) __builtin_expect ((expr),(value))
102     # define inline inline
103     #else
104     # define expect(expr,value) (expr)
105     # define inline static
106     #endif
107    
108     #define expect_false(expr) expect ((expr) != 0, 0)
109     #define expect_true(expr) expect ((expr) != 0, 1)
110    
111 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
113    
114 root 1.10 typedef struct ev_watcher *W;
115     typedef struct ev_watcher_list *WL;
116 root 1.12 typedef struct ev_watcher_time *WT;
117 root 1.10
118 root 1.54 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119    
120 root 1.53 /*****************************************************************************/
121 root 1.1
122 root 1.53 typedef struct
123     {
124     struct ev_watcher_list *head;
125     unsigned char events;
126     unsigned char reify;
127     } ANFD;
128 root 1.1
129 root 1.53 typedef struct
130     {
131     W w;
132     int events;
133     } ANPENDING;
134 root 1.51
135 root 1.55 #if EV_MULTIPLICITY
136 root 1.54
137 root 1.53 struct ev_loop
138     {
139 root 1.54 # define VAR(name,decl) decl;
140 root 1.53 # include "ev_vars.h"
141     };
142 root 1.54 # undef VAR
143     # include "ev_wrap.h"
144    
145 root 1.53 #else
146 root 1.54
147     # define VAR(name,decl) static decl;
148 root 1.53 # include "ev_vars.h"
149 root 1.54 # undef VAR
150    
151 root 1.51 #endif
152 root 1.1
153 root 1.8 /*****************************************************************************/
154    
155 root 1.51 inline ev_tstamp
156 root 1.1 ev_time (void)
157     {
158 root 1.29 #if EV_USE_REALTIME
159 root 1.1 struct timespec ts;
160     clock_gettime (CLOCK_REALTIME, &ts);
161     return ts.tv_sec + ts.tv_nsec * 1e-9;
162     #else
163     struct timeval tv;
164     gettimeofday (&tv, 0);
165     return tv.tv_sec + tv.tv_usec * 1e-6;
166     #endif
167     }
168    
169 root 1.51 inline ev_tstamp
170 root 1.1 get_clock (void)
171     {
172 root 1.29 #if EV_USE_MONOTONIC
173 root 1.40 if (expect_true (have_monotonic))
174 root 1.1 {
175     struct timespec ts;
176     clock_gettime (CLOCK_MONOTONIC, &ts);
177     return ts.tv_sec + ts.tv_nsec * 1e-9;
178     }
179     #endif
180    
181     return ev_time ();
182     }
183    
184 root 1.51 ev_tstamp
185     ev_now (EV_P)
186     {
187     return rt_now;
188     }
189    
190 root 1.30 #define array_roundsize(base,n) ((n) | 4 & ~3)
191 root 1.29
192 root 1.1 #define array_needsize(base,cur,cnt,init) \
193 root 1.40 if (expect_false ((cnt) > cur)) \
194 root 1.1 { \
195 root 1.23 int newcnt = cur; \
196     do \
197     { \
198 root 1.30 newcnt = array_roundsize (base, newcnt << 1); \
199 root 1.23 } \
200     while ((cnt) > newcnt); \
201     \
202 root 1.1 base = realloc (base, sizeof (*base) * (newcnt)); \
203     init (base + cur, newcnt - cur); \
204     cur = newcnt; \
205     }
206    
207 root 1.8 /*****************************************************************************/
208    
209 root 1.1 static void
210     anfds_init (ANFD *base, int count)
211     {
212     while (count--)
213     {
214 root 1.27 base->head = 0;
215     base->events = EV_NONE;
216 root 1.33 base->reify = 0;
217    
218 root 1.1 ++base;
219     }
220     }
221    
222     static void
223 root 1.51 event (EV_P_ W w, int events)
224 root 1.1 {
225 root 1.32 if (w->pending)
226     {
227 root 1.42 pendings [ABSPRI (w)][w->pending - 1].events |= events;
228 root 1.32 return;
229     }
230    
231 root 1.42 w->pending = ++pendingcnt [ABSPRI (w)];
232     array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233     pendings [ABSPRI (w)][w->pending - 1].w = w;
234     pendings [ABSPRI (w)][w->pending - 1].events = events;
235 root 1.1 }
236    
237     static void
238 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
239 root 1.27 {
240     int i;
241    
242     for (i = 0; i < eventcnt; ++i)
243 root 1.51 event (EV_A_ events [i], type);
244 root 1.27 }
245    
246     static void
247 root 1.51 fd_event (EV_P_ int fd, int events)
248 root 1.1 {
249     ANFD *anfd = anfds + fd;
250     struct ev_io *w;
251    
252 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
253 root 1.1 {
254     int ev = w->events & events;
255    
256     if (ev)
257 root 1.51 event (EV_A_ (W)w, ev);
258 root 1.1 }
259     }
260    
261 root 1.27 /*****************************************************************************/
262    
263 root 1.9 static void
264 root 1.51 fd_reify (EV_P)
265 root 1.9 {
266     int i;
267    
268 root 1.27 for (i = 0; i < fdchangecnt; ++i)
269     {
270     int fd = fdchanges [i];
271     ANFD *anfd = anfds + fd;
272     struct ev_io *w;
273    
274     int events = 0;
275    
276 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 root 1.27 events |= w->events;
278    
279 root 1.33 anfd->reify = 0;
280 root 1.27
281     if (anfd->events != events)
282     {
283 root 1.51 method_modify (EV_A_ fd, anfd->events, events);
284 root 1.27 anfd->events = events;
285     }
286     }
287    
288     fdchangecnt = 0;
289     }
290    
291     static void
292 root 1.51 fd_change (EV_P_ int fd)
293 root 1.27 {
294 root 1.33 if (anfds [fd].reify || fdchangecnt < 0)
295 root 1.27 return;
296    
297 root 1.33 anfds [fd].reify = 1;
298 root 1.27
299     ++fdchangecnt;
300     array_needsize (fdchanges, fdchangemax, fdchangecnt, );
301     fdchanges [fdchangecnt - 1] = fd;
302 root 1.9 }
303    
304 root 1.41 static void
305 root 1.51 fd_kill (EV_P_ int fd)
306 root 1.41 {
307     struct ev_io *w;
308    
309 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
310 root 1.41 {
311 root 1.51 ev_io_stop (EV_A_ w);
312     event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 root 1.41 }
314     }
315    
316 root 1.19 /* called on EBADF to verify fds */
317     static void
318 root 1.51 fd_ebadf (EV_P)
319 root 1.19 {
320     int fd;
321    
322     for (fd = 0; fd < anfdmax; ++fd)
323 root 1.27 if (anfds [fd].events)
324 root 1.19 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
325 root 1.51 fd_kill (EV_A_ fd);
326 root 1.41 }
327    
328     /* called on ENOMEM in select/poll to kill some fds and retry */
329     static void
330 root 1.51 fd_enomem (EV_P)
331 root 1.41 {
332     int fd = anfdmax;
333    
334     while (fd--)
335     if (anfds [fd].events)
336     {
337     close (fd);
338 root 1.51 fd_kill (EV_A_ fd);
339 root 1.41 return;
340     }
341 root 1.19 }
342    
343 root 1.8 /*****************************************************************************/
344    
345 root 1.1 static void
346 root 1.54 upheap (WT *heap, int k)
347 root 1.1 {
348 root 1.54 WT w = heap [k];
349 root 1.1
350 root 1.54 while (k && heap [k >> 1]->at > w->at)
351 root 1.1 {
352 root 1.54 heap [k] = heap [k >> 1];
353     heap [k]->active = k + 1;
354 root 1.1 k >>= 1;
355     }
356    
357 root 1.54 heap [k] = w;
358     heap [k]->active = k + 1;
359 root 1.1
360     }
361    
362     static void
363 root 1.54 downheap (WT *heap, int N, int k)
364 root 1.1 {
365 root 1.54 WT w = heap [k];
366 root 1.1
367 root 1.4 while (k < (N >> 1))
368 root 1.1 {
369     int j = k << 1;
370    
371 root 1.54 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
372 root 1.1 ++j;
373    
374 root 1.54 if (w->at <= heap [j]->at)
375 root 1.1 break;
376    
377 root 1.54 heap [k] = heap [j];
378     heap [k]->active = k + 1;
379 root 1.1 k = j;
380     }
381    
382 root 1.54 heap [k] = w;
383     heap [k]->active = k + 1;
384 root 1.1 }
385    
386 root 1.8 /*****************************************************************************/
387    
388 root 1.7 typedef struct
389     {
390 root 1.50 struct ev_watcher_list *head;
391 root 1.34 sig_atomic_t volatile gotsig;
392 root 1.7 } ANSIG;
393    
394     static ANSIG *signals;
395 root 1.4 static int signalmax;
396 root 1.1
397 root 1.7 static int sigpipe [2];
398 root 1.34 static sig_atomic_t volatile gotsig;
399 root 1.7
400 root 1.1 static void
401 root 1.7 signals_init (ANSIG *base, int count)
402 root 1.1 {
403     while (count--)
404 root 1.7 {
405     base->head = 0;
406     base->gotsig = 0;
407 root 1.33
408 root 1.7 ++base;
409     }
410     }
411    
412     static void
413     sighandler (int signum)
414     {
415     signals [signum - 1].gotsig = 1;
416    
417     if (!gotsig)
418     {
419 root 1.48 int old_errno = errno;
420 root 1.7 gotsig = 1;
421 root 1.34 write (sigpipe [1], &signum, 1);
422 root 1.48 errno = old_errno;
423 root 1.7 }
424     }
425    
426     static void
427 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
428 root 1.7 {
429 root 1.50 struct ev_watcher_list *w;
430 root 1.38 int signum;
431 root 1.7
432 root 1.34 read (sigpipe [0], &revents, 1);
433 root 1.7 gotsig = 0;
434    
435 root 1.38 for (signum = signalmax; signum--; )
436     if (signals [signum].gotsig)
437 root 1.7 {
438 root 1.38 signals [signum].gotsig = 0;
439 root 1.7
440 root 1.38 for (w = signals [signum].head; w; w = w->next)
441 root 1.51 event (EV_A_ (W)w, EV_SIGNAL);
442 root 1.7 }
443     }
444    
445     static void
446 root 1.51 siginit (EV_P)
447 root 1.7 {
448 root 1.45 #ifndef WIN32
449 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
450     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
451    
452     /* rather than sort out wether we really need nb, set it */
453     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
454     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
455 root 1.45 #endif
456 root 1.7
457 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
458 root 1.54 ev_io_start (EV_A_ &sigev);
459 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
460 root 1.1 }
461    
462 root 1.8 /*****************************************************************************/
463    
464 root 1.45 #ifndef WIN32
465    
466 root 1.22 #ifndef WCONTINUED
467     # define WCONTINUED 0
468     #endif
469    
470     static void
471 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
472 root 1.47 {
473     struct ev_child *w;
474    
475 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
476 root 1.47 if (w->pid == pid || !w->pid)
477     {
478     w->priority = sw->priority; /* need to do it *now* */
479     w->rpid = pid;
480     w->rstatus = status;
481 root 1.51 event (EV_A_ (W)w, EV_CHILD);
482 root 1.47 }
483     }
484    
485     static void
486 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
487 root 1.22 {
488     int pid, status;
489    
490 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
491     {
492     /* make sure we are called again until all childs have been reaped */
493 root 1.51 event (EV_A_ (W)sw, EV_SIGNAL);
494 root 1.47
495 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
496     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
497 root 1.47 }
498 root 1.22 }
499    
500 root 1.45 #endif
501    
502 root 1.22 /*****************************************************************************/
503    
504 root 1.44 #if EV_USE_KQUEUE
505     # include "ev_kqueue.c"
506     #endif
507 root 1.29 #if EV_USE_EPOLL
508 root 1.1 # include "ev_epoll.c"
509     #endif
510 root 1.51 #if EV_USEV_POLL
511 root 1.41 # include "ev_poll.c"
512     #endif
513 root 1.29 #if EV_USE_SELECT
514 root 1.1 # include "ev_select.c"
515     #endif
516    
517 root 1.24 int
518     ev_version_major (void)
519     {
520     return EV_VERSION_MAJOR;
521     }
522    
523     int
524     ev_version_minor (void)
525     {
526     return EV_VERSION_MINOR;
527     }
528    
529 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
530 root 1.41 static int
531 root 1.51 enable_secure (void)
532 root 1.41 {
533 root 1.49 #ifdef WIN32
534     return 0;
535     #else
536 root 1.41 return getuid () != geteuid ()
537     || getgid () != getegid ();
538 root 1.49 #endif
539 root 1.41 }
540    
541 root 1.51 int
542     ev_method (EV_P)
543 root 1.1 {
544 root 1.51 return method;
545     }
546    
547 root 1.55 inline int
548 root 1.54 loop_init (EV_P_ int methods)
549 root 1.51 {
550     if (!method)
551 root 1.23 {
552 root 1.29 #if EV_USE_MONOTONIC
553 root 1.23 {
554     struct timespec ts;
555     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
556     have_monotonic = 1;
557     }
558 root 1.1 #endif
559    
560 root 1.51 rt_now = ev_time ();
561     mn_now = get_clock ();
562     now_floor = mn_now;
563 root 1.54 rtmn_diff = rt_now - mn_now;
564 root 1.1
565 root 1.23 if (pipe (sigpipe))
566     return 0;
567 root 1.7
568 root 1.41 if (methods == EVMETHOD_AUTO)
569 root 1.51 if (!enable_secure () && getenv ("LIBmethodS"))
570     methods = atoi (getenv ("LIBmethodS"));
571 root 1.50 else
572     methods = EVMETHOD_ANY;
573 root 1.41
574 root 1.51 method = 0;
575 root 1.44 #if EV_USE_KQUEUE
576 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
577 root 1.44 #endif
578 root 1.29 #if EV_USE_EPOLL
579 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
580 root 1.41 #endif
581 root 1.51 #if EV_USEV_POLL
582     if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
583 root 1.1 #endif
584 root 1.29 #if EV_USE_SELECT
585 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
586 root 1.1 #endif
587    
588 root 1.51 if (method)
589 root 1.23 {
590 root 1.28 ev_watcher_init (&sigev, sigcb);
591 root 1.47 ev_set_priority (&sigev, EV_MAXPRI);
592 root 1.51 siginit (EV_A);
593 root 1.22
594 root 1.45 #ifndef WIN32
595 root 1.28 ev_signal_init (&childev, childcb, SIGCHLD);
596 root 1.47 ev_set_priority (&childev, EV_MAXPRI);
597 root 1.51 ev_signal_start (EV_A_ &childev);
598 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
599 root 1.45 #endif
600 root 1.23 }
601 root 1.7 }
602    
603 root 1.51 return method;
604 root 1.1 }
605    
606 root 1.55 #if EV_MULTIPLICITY
607 root 1.54
608     struct ev_loop *
609     ev_loop_new (int methods)
610     {
611     struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
612    
613 root 1.55 if (loop_init (EV_A_ methods))
614     return loop;
615 root 1.54
616 root 1.55 ev_loop_delete (loop);
617    
618     return 0;
619 root 1.54 }
620    
621     void
622     ev_loop_delete (EV_P)
623     {
624     /*TODO*/
625     free (loop);
626     }
627    
628     #else
629    
630     int
631     ev_init (int methods)
632     {
633 root 1.55 return loop_init (methods);
634 root 1.54 }
635    
636     #endif
637    
638 root 1.8 /*****************************************************************************/
639    
640 root 1.24 void
641 root 1.35 ev_fork_prepare (void)
642 root 1.1 {
643 root 1.11 /* nop */
644 root 1.1 }
645    
646 root 1.24 void
647 root 1.35 ev_fork_parent (void)
648 root 1.1 {
649 root 1.11 /* nop */
650 root 1.1 }
651    
652 root 1.24 void
653 root 1.35 ev_fork_child (void)
654 root 1.1 {
655 root 1.54 /*TODO*/
656     #if !EV_MULTIPLICITY
657 root 1.29 #if EV_USE_EPOLL
658 root 1.51 if (method == EVMETHOD_EPOLL)
659 root 1.54 epoll_postfork_child (EV_A);
660 root 1.1 #endif
661 root 1.7
662 root 1.54 ev_io_stop (EV_A_ &sigev);
663 root 1.7 close (sigpipe [0]);
664     close (sigpipe [1]);
665     pipe (sigpipe);
666 root 1.54 siginit (EV_A);
667     #endif
668 root 1.1 }
669    
670 root 1.8 /*****************************************************************************/
671    
672 root 1.1 static void
673 root 1.51 call_pending (EV_P)
674 root 1.1 {
675 root 1.42 int pri;
676    
677     for (pri = NUMPRI; pri--; )
678     while (pendingcnt [pri])
679     {
680     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
681 root 1.1
682 root 1.42 if (p->w)
683     {
684     p->w->pending = 0;
685 root 1.51 p->w->cb (EV_A_ p->w, p->events);
686 root 1.42 }
687     }
688 root 1.1 }
689    
690     static void
691 root 1.51 timers_reify (EV_P)
692 root 1.1 {
693 root 1.51 while (timercnt && timers [0]->at <= mn_now)
694 root 1.1 {
695     struct ev_timer *w = timers [0];
696    
697 root 1.4 /* first reschedule or stop timer */
698 root 1.1 if (w->repeat)
699     {
700 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
701 root 1.51 w->at = mn_now + w->repeat;
702 root 1.12 downheap ((WT *)timers, timercnt, 0);
703     }
704     else
705 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
706 root 1.30
707 root 1.54 event (EV_A_ (W)w, EV_TIMEOUT);
708 root 1.12 }
709     }
710 root 1.4
711 root 1.12 static void
712 root 1.51 periodics_reify (EV_P)
713 root 1.12 {
714 root 1.51 while (periodiccnt && periodics [0]->at <= rt_now)
715 root 1.12 {
716     struct ev_periodic *w = periodics [0];
717 root 1.1
718 root 1.12 /* first reschedule or stop timer */
719     if (w->interval)
720     {
721 root 1.51 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
722     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
723 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
724 root 1.1 }
725     else
726 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
727 root 1.12
728 root 1.51 event (EV_A_ (W)w, EV_PERIODIC);
729 root 1.12 }
730     }
731    
732     static void
733 root 1.54 periodics_reschedule (EV_P)
734 root 1.12 {
735     int i;
736    
737 root 1.13 /* adjust periodics after time jump */
738 root 1.12 for (i = 0; i < periodiccnt; ++i)
739     {
740     struct ev_periodic *w = periodics [i];
741    
742     if (w->interval)
743 root 1.4 {
744 root 1.51 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
745 root 1.12
746     if (fabs (diff) >= 1e-4)
747     {
748 root 1.51 ev_periodic_stop (EV_A_ w);
749     ev_periodic_start (EV_A_ w);
750 root 1.12
751     i = 0; /* restart loop, inefficient, but time jumps should be rare */
752     }
753 root 1.4 }
754 root 1.12 }
755 root 1.1 }
756    
757 root 1.51 inline int
758     time_update_monotonic (EV_P)
759 root 1.40 {
760 root 1.51 mn_now = get_clock ();
761 root 1.40
762 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
763 root 1.40 {
764 root 1.54 rt_now = rtmn_diff + mn_now;
765 root 1.40 return 0;
766     }
767     else
768     {
769 root 1.51 now_floor = mn_now;
770     rt_now = ev_time ();
771 root 1.40 return 1;
772     }
773     }
774    
775 root 1.4 static void
776 root 1.51 time_update (EV_P)
777 root 1.4 {
778     int i;
779 root 1.12
780 root 1.40 #if EV_USE_MONOTONIC
781     if (expect_true (have_monotonic))
782     {
783 root 1.51 if (time_update_monotonic (EV_A))
784 root 1.40 {
785 root 1.54 ev_tstamp odiff = rtmn_diff;
786 root 1.4
787 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
788     {
789 root 1.54 rtmn_diff = rt_now - mn_now;
790 root 1.4
791 root 1.54 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
792 root 1.40 return; /* all is well */
793 root 1.4
794 root 1.51 rt_now = ev_time ();
795     mn_now = get_clock ();
796     now_floor = mn_now;
797 root 1.40 }
798 root 1.4
799 root 1.54 periodics_reschedule (EV_A);
800 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
801 root 1.54 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
802 root 1.4 }
803     }
804     else
805 root 1.40 #endif
806 root 1.4 {
807 root 1.51 rt_now = ev_time ();
808 root 1.40
809 root 1.51 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
810 root 1.13 {
811 root 1.54 periodics_reschedule (EV_A);
812 root 1.13
813     /* adjust timers. this is easy, as the offset is the same for all */
814     for (i = 0; i < timercnt; ++i)
815 root 1.54 timers [i]->at += rt_now - mn_now;
816 root 1.13 }
817 root 1.4
818 root 1.51 mn_now = rt_now;
819 root 1.4 }
820     }
821    
822 root 1.51 void
823     ev_ref (EV_P)
824     {
825     ++activecnt;
826     }
827 root 1.1
828 root 1.51 void
829     ev_unref (EV_P)
830     {
831     --activecnt;
832     }
833    
834     static int loop_done;
835    
836     void
837     ev_loop (EV_P_ int flags)
838 root 1.1 {
839     double block;
840 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
841 root 1.1
842 root 1.20 do
843 root 1.9 {
844 root 1.20 /* queue check watchers (and execute them) */
845 root 1.40 if (expect_false (preparecnt))
846 root 1.20 {
847 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
848     call_pending (EV_A);
849 root 1.20 }
850 root 1.9
851 root 1.1 /* update fd-related kernel structures */
852 root 1.51 fd_reify (EV_A);
853 root 1.1
854     /* calculate blocking time */
855 root 1.12
856 root 1.21 /* we only need this for !monotonic clockor timers, but as we basically
857     always have timers, we just calculate it always */
858 root 1.40 #if EV_USE_MONOTONIC
859     if (expect_true (have_monotonic))
860 root 1.51 time_update_monotonic (EV_A);
861 root 1.40 else
862     #endif
863     {
864 root 1.51 rt_now = ev_time ();
865     mn_now = rt_now;
866 root 1.40 }
867 root 1.12
868 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
869 root 1.1 block = 0.;
870     else
871     {
872 root 1.4 block = MAX_BLOCKTIME;
873    
874 root 1.12 if (timercnt)
875 root 1.4 {
876 root 1.51 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
877 root 1.4 if (block > to) block = to;
878     }
879    
880 root 1.12 if (periodiccnt)
881 root 1.4 {
882 root 1.51 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
883 root 1.4 if (block > to) block = to;
884     }
885    
886 root 1.1 if (block < 0.) block = 0.;
887     }
888    
889 root 1.51 method_poll (EV_A_ block);
890 root 1.1
891 root 1.51 /* update rt_now, do magic */
892     time_update (EV_A);
893 root 1.4
894 root 1.9 /* queue pending timers and reschedule them */
895 root 1.51 timers_reify (EV_A); /* relative timers called last */
896     periodics_reify (EV_A); /* absolute timers called first */
897 root 1.1
898 root 1.9 /* queue idle watchers unless io or timers are pending */
899     if (!pendingcnt)
900 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
901 root 1.9
902 root 1.20 /* queue check watchers, to be executed first */
903     if (checkcnt)
904 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
905 root 1.9
906 root 1.51 call_pending (EV_A);
907 root 1.1 }
908 root 1.51 while (activecnt && !loop_done);
909 root 1.13
910 root 1.51 if (loop_done != 2)
911     loop_done = 0;
912     }
913    
914     void
915     ev_unloop (EV_P_ int how)
916     {
917     loop_done = how;
918 root 1.1 }
919    
920 root 1.8 /*****************************************************************************/
921    
922 root 1.51 inline void
923 root 1.10 wlist_add (WL *head, WL elem)
924 root 1.1 {
925     elem->next = *head;
926     *head = elem;
927     }
928    
929 root 1.51 inline void
930 root 1.10 wlist_del (WL *head, WL elem)
931 root 1.1 {
932     while (*head)
933     {
934     if (*head == elem)
935     {
936     *head = elem->next;
937     return;
938     }
939    
940     head = &(*head)->next;
941     }
942     }
943    
944 root 1.51 inline void
945     ev_clear_pending (EV_P_ W w)
946 root 1.16 {
947     if (w->pending)
948     {
949 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
950 root 1.16 w->pending = 0;
951     }
952     }
953    
954 root 1.51 inline void
955     ev_start (EV_P_ W w, int active)
956 root 1.1 {
957 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
958     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
959    
960 root 1.1 w->active = active;
961 root 1.51 ev_ref (EV_A);
962 root 1.1 }
963    
964 root 1.51 inline void
965     ev_stop (EV_P_ W w)
966 root 1.1 {
967 root 1.51 ev_unref (EV_A);
968 root 1.1 w->active = 0;
969     }
970    
971 root 1.8 /*****************************************************************************/
972    
973 root 1.1 void
974 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
975 root 1.1 {
976 root 1.37 int fd = w->fd;
977    
978 root 1.1 if (ev_is_active (w))
979     return;
980    
981 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
982    
983 root 1.51 ev_start (EV_A_ (W)w, 1);
984 root 1.1 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
985 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
986 root 1.1
987 root 1.51 fd_change (EV_A_ fd);
988 root 1.1 }
989    
990     void
991 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
992 root 1.1 {
993 root 1.51 ev_clear_pending (EV_A_ (W)w);
994 root 1.1 if (!ev_is_active (w))
995     return;
996    
997 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
998 root 1.51 ev_stop (EV_A_ (W)w);
999 root 1.1
1000 root 1.51 fd_change (EV_A_ w->fd);
1001 root 1.1 }
1002    
1003     void
1004 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1005 root 1.1 {
1006     if (ev_is_active (w))
1007     return;
1008    
1009 root 1.51 w->at += mn_now;
1010 root 1.12
1011 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1012 root 1.13
1013 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1014 root 1.12 array_needsize (timers, timermax, timercnt, );
1015     timers [timercnt - 1] = w;
1016     upheap ((WT *)timers, timercnt - 1);
1017     }
1018    
1019     void
1020 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1021 root 1.12 {
1022 root 1.51 ev_clear_pending (EV_A_ (W)w);
1023 root 1.12 if (!ev_is_active (w))
1024     return;
1025    
1026     if (w->active < timercnt--)
1027 root 1.1 {
1028 root 1.12 timers [w->active - 1] = timers [timercnt];
1029     downheap ((WT *)timers, timercnt, w->active - 1);
1030     }
1031 root 1.4
1032 root 1.14 w->at = w->repeat;
1033    
1034 root 1.51 ev_stop (EV_A_ (W)w);
1035 root 1.12 }
1036 root 1.4
1037 root 1.12 void
1038 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1039 root 1.14 {
1040     if (ev_is_active (w))
1041     {
1042     if (w->repeat)
1043     {
1044 root 1.51 w->at = mn_now + w->repeat;
1045 root 1.14 downheap ((WT *)timers, timercnt, w->active - 1);
1046     }
1047     else
1048 root 1.51 ev_timer_stop (EV_A_ w);
1049 root 1.14 }
1050     else if (w->repeat)
1051 root 1.51 ev_timer_start (EV_A_ w);
1052 root 1.14 }
1053    
1054     void
1055 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1056 root 1.12 {
1057     if (ev_is_active (w))
1058     return;
1059 root 1.1
1060 root 1.33 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1061 root 1.13
1062 root 1.12 /* this formula differs from the one in periodic_reify because we do not always round up */
1063     if (w->interval)
1064 root 1.51 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1065 root 1.12
1066 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1067 root 1.12 array_needsize (periodics, periodicmax, periodiccnt, );
1068     periodics [periodiccnt - 1] = w;
1069     upheap ((WT *)periodics, periodiccnt - 1);
1070 root 1.1 }
1071    
1072     void
1073 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1074 root 1.1 {
1075 root 1.51 ev_clear_pending (EV_A_ (W)w);
1076 root 1.1 if (!ev_is_active (w))
1077     return;
1078    
1079 root 1.12 if (w->active < periodiccnt--)
1080 root 1.2 {
1081 root 1.12 periodics [w->active - 1] = periodics [periodiccnt];
1082     downheap ((WT *)periodics, periodiccnt, w->active - 1);
1083 root 1.2 }
1084    
1085 root 1.51 ev_stop (EV_A_ (W)w);
1086 root 1.1 }
1087    
1088 root 1.47 #ifndef SA_RESTART
1089     # define SA_RESTART 0
1090     #endif
1091    
1092 root 1.1 void
1093 root 1.51 ev_signal_start (EV_P_ struct ev_signal *w)
1094 root 1.1 {
1095     if (ev_is_active (w))
1096     return;
1097    
1098 root 1.33 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1099    
1100 root 1.51 ev_start (EV_A_ (W)w, 1);
1101 root 1.1 array_needsize (signals, signalmax, w->signum, signals_init);
1102 root 1.10 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1103 root 1.7
1104     if (!w->next)
1105     {
1106     struct sigaction sa;
1107     sa.sa_handler = sighandler;
1108     sigfillset (&sa.sa_mask);
1109 root 1.47 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1110 root 1.7 sigaction (w->signum, &sa, 0);
1111     }
1112 root 1.1 }
1113    
1114     void
1115 root 1.51 ev_signal_stop (EV_P_ struct ev_signal *w)
1116 root 1.1 {
1117 root 1.51 ev_clear_pending (EV_A_ (W)w);
1118 root 1.1 if (!ev_is_active (w))
1119     return;
1120    
1121 root 1.10 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1122 root 1.51 ev_stop (EV_A_ (W)w);
1123 root 1.7
1124     if (!signals [w->signum - 1].head)
1125     signal (w->signum, SIG_DFL);
1126 root 1.1 }
1127    
1128 root 1.28 void
1129 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1130 root 1.9 {
1131     if (ev_is_active (w))
1132     return;
1133    
1134 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1135 root 1.9 array_needsize (idles, idlemax, idlecnt, );
1136     idles [idlecnt - 1] = w;
1137     }
1138    
1139 root 1.28 void
1140 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1141 root 1.9 {
1142 root 1.51 ev_clear_pending (EV_A_ (W)w);
1143 root 1.16 if (ev_is_active (w))
1144     return;
1145    
1146 root 1.9 idles [w->active - 1] = idles [--idlecnt];
1147 root 1.51 ev_stop (EV_A_ (W)w);
1148 root 1.9 }
1149    
1150 root 1.28 void
1151 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1152 root 1.20 {
1153     if (ev_is_active (w))
1154     return;
1155    
1156 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1157 root 1.20 array_needsize (prepares, preparemax, preparecnt, );
1158     prepares [preparecnt - 1] = w;
1159     }
1160    
1161 root 1.28 void
1162 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1163 root 1.20 {
1164 root 1.51 ev_clear_pending (EV_A_ (W)w);
1165 root 1.20 if (ev_is_active (w))
1166     return;
1167    
1168     prepares [w->active - 1] = prepares [--preparecnt];
1169 root 1.51 ev_stop (EV_A_ (W)w);
1170 root 1.20 }
1171    
1172 root 1.28 void
1173 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1174 root 1.9 {
1175     if (ev_is_active (w))
1176     return;
1177    
1178 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1179 root 1.9 array_needsize (checks, checkmax, checkcnt, );
1180     checks [checkcnt - 1] = w;
1181     }
1182    
1183 root 1.28 void
1184 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1185 root 1.9 {
1186 root 1.51 ev_clear_pending (EV_A_ (W)w);
1187 root 1.16 if (ev_is_active (w))
1188     return;
1189    
1190 root 1.9 checks [w->active - 1] = checks [--checkcnt];
1191 root 1.51 ev_stop (EV_A_ (W)w);
1192 root 1.9 }
1193    
1194 root 1.28 void
1195 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1196 root 1.22 {
1197     if (ev_is_active (w))
1198     return;
1199    
1200 root 1.51 ev_start (EV_A_ (W)w, 1);
1201 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1202     }
1203    
1204 root 1.28 void
1205 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1206 root 1.22 {
1207 root 1.51 ev_clear_pending (EV_A_ (W)w);
1208 root 1.22 if (ev_is_active (w))
1209     return;
1210    
1211     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1212 root 1.51 ev_stop (EV_A_ (W)w);
1213 root 1.22 }
1214    
1215 root 1.1 /*****************************************************************************/
1216 root 1.10
1217 root 1.16 struct ev_once
1218     {
1219     struct ev_io io;
1220     struct ev_timer to;
1221     void (*cb)(int revents, void *arg);
1222     void *arg;
1223     };
1224    
1225     static void
1226 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1227 root 1.16 {
1228     void (*cb)(int revents, void *arg) = once->cb;
1229     void *arg = once->arg;
1230    
1231 root 1.51 ev_io_stop (EV_A_ &once->io);
1232     ev_timer_stop (EV_A_ &once->to);
1233 root 1.16 free (once);
1234    
1235     cb (revents, arg);
1236     }
1237    
1238     static void
1239 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1240 root 1.16 {
1241 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1242 root 1.16 }
1243    
1244     static void
1245 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1246 root 1.16 {
1247 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1248 root 1.16 }
1249    
1250     void
1251 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1252 root 1.16 {
1253     struct ev_once *once = malloc (sizeof (struct ev_once));
1254    
1255     if (!once)
1256 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1257 root 1.16 else
1258     {
1259     once->cb = cb;
1260     once->arg = arg;
1261    
1262 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1263 root 1.16 if (fd >= 0)
1264     {
1265 root 1.28 ev_io_set (&once->io, fd, events);
1266 root 1.51 ev_io_start (EV_A_ &once->io);
1267 root 1.16 }
1268    
1269 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1270 root 1.16 if (timeout >= 0.)
1271     {
1272 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1273 root 1.51 ev_timer_start (EV_A_ &once->to);
1274 root 1.16 }
1275     }
1276     }
1277    
1278     /*****************************************************************************/
1279    
1280 root 1.13 #if 0
1281 root 1.12
1282     struct ev_io wio;
1283 root 1.1
1284     static void
1285     sin_cb (struct ev_io *w, int revents)
1286     {
1287     fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1288     }
1289    
1290     static void
1291     ocb (struct ev_timer *w, int revents)
1292     {
1293 root 1.4 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1294 root 1.28 ev_timer_stop (w);
1295     ev_timer_start (w);
1296 root 1.1 }
1297    
1298 root 1.7 static void
1299     scb (struct ev_signal *w, int revents)
1300     {
1301     fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1302 root 1.28 ev_io_stop (&wio);
1303     ev_io_start (&wio);
1304 root 1.7 }
1305    
1306 root 1.9 static void
1307     gcb (struct ev_signal *w, int revents)
1308     {
1309     fprintf (stderr, "generic %x\n", revents);
1310 root 1.12
1311 root 1.9 }
1312    
1313 root 1.1 int main (void)
1314     {
1315     ev_init (0);
1316    
1317 root 1.28 ev_io_init (&wio, sin_cb, 0, EV_READ);
1318     ev_io_start (&wio);
1319 root 1.1
1320 root 1.4 struct ev_timer t[10000];
1321 root 1.2
1322 root 1.9 #if 0
1323 root 1.2 int i;
1324 root 1.4 for (i = 0; i < 10000; ++i)
1325 root 1.2 {
1326     struct ev_timer *w = t + i;
1327 root 1.28 ev_watcher_init (w, ocb, i);
1328     ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1329     ev_timer_start (w);
1330 root 1.2 if (drand48 () < 0.5)
1331 root 1.28 ev_timer_stop (w);
1332 root 1.2 }
1333 root 1.4 #endif
1334    
1335     struct ev_timer t1;
1336 root 1.28 ev_timer_init (&t1, ocb, 5, 10);
1337     ev_timer_start (&t1);
1338 root 1.1
1339 root 1.7 struct ev_signal sig;
1340 root 1.28 ev_signal_init (&sig, scb, SIGQUIT);
1341     ev_signal_start (&sig);
1342 root 1.7
1343 root 1.9 struct ev_check cw;
1344 root 1.28 ev_check_init (&cw, gcb);
1345     ev_check_start (&cw);
1346 root 1.9
1347     struct ev_idle iw;
1348 root 1.28 ev_idle_init (&iw, gcb);
1349     ev_idle_start (&iw);
1350 root 1.9
1351 root 1.1 ev_loop (0);
1352    
1353     return 0;
1354     }
1355    
1356     #endif
1357    
1358    
1359    
1360