ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.56
Committed: Sun Nov 4 15:58:49 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.55: +160 -167 lines
Log Message:
better destroy support, separate into default loop and additional loops

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.50 #ifndef EV_STANDALONE
32 root 1.29 # include "config.h"
33     #endif
34 root 1.17
35 root 1.1 #include <math.h>
36     #include <stdlib.h>
37 root 1.7 #include <unistd.h>
38     #include <fcntl.h>
39     #include <signal.h>
40 root 1.16 #include <stddef.h>
41 root 1.1
42     #include <stdio.h>
43    
44 root 1.4 #include <assert.h>
45 root 1.1 #include <errno.h>
46 root 1.22 #include <sys/types.h>
47 root 1.45 #ifndef WIN32
48     # include <sys/wait.h>
49     #endif
50 root 1.1 #include <sys/time.h>
51     #include <time.h>
52    
53 root 1.40 /**/
54    
55 root 1.29 #ifndef EV_USE_MONOTONIC
56 root 1.37 # define EV_USE_MONOTONIC 1
57     #endif
58    
59 root 1.29 #ifndef EV_USE_SELECT
60     # define EV_USE_SELECT 1
61 root 1.10 #endif
62    
63 root 1.51 #ifndef EV_USEV_POLL
64     # define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65 root 1.41 #endif
66    
67 root 1.29 #ifndef EV_USE_EPOLL
68     # define EV_USE_EPOLL 0
69 root 1.10 #endif
70    
71 root 1.44 #ifndef EV_USE_KQUEUE
72     # define EV_USE_KQUEUE 0
73     #endif
74    
75 root 1.40 #ifndef EV_USE_REALTIME
76     # define EV_USE_REALTIME 1
77     #endif
78    
79     /**/
80    
81     #ifndef CLOCK_MONOTONIC
82     # undef EV_USE_MONOTONIC
83     # define EV_USE_MONOTONIC 0
84     #endif
85    
86 root 1.31 #ifndef CLOCK_REALTIME
87 root 1.40 # undef EV_USE_REALTIME
88 root 1.31 # define EV_USE_REALTIME 0
89     #endif
90 root 1.40
91     /**/
92 root 1.1
93 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 root 1.1
98     #include "ev.h"
99    
100 root 1.40 #if __GNUC__ >= 3
101     # define expect(expr,value) __builtin_expect ((expr),(value))
102     # define inline inline
103     #else
104     # define expect(expr,value) (expr)
105     # define inline static
106     #endif
107    
108     #define expect_false(expr) expect ((expr) != 0, 0)
109     #define expect_true(expr) expect ((expr) != 0, 1)
110    
111 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
113    
114 root 1.10 typedef struct ev_watcher *W;
115     typedef struct ev_watcher_list *WL;
116 root 1.12 typedef struct ev_watcher_time *WT;
117 root 1.10
118 root 1.54 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119    
120 root 1.53 /*****************************************************************************/
121 root 1.1
122 root 1.53 typedef struct
123     {
124     struct ev_watcher_list *head;
125     unsigned char events;
126     unsigned char reify;
127     } ANFD;
128 root 1.1
129 root 1.53 typedef struct
130     {
131     W w;
132     int events;
133     } ANPENDING;
134 root 1.51
135 root 1.55 #if EV_MULTIPLICITY
136 root 1.54
137 root 1.53 struct ev_loop
138     {
139 root 1.54 # define VAR(name,decl) decl;
140 root 1.53 # include "ev_vars.h"
141     };
142 root 1.54 # undef VAR
143     # include "ev_wrap.h"
144    
145 root 1.53 #else
146 root 1.54
147     # define VAR(name,decl) static decl;
148 root 1.53 # include "ev_vars.h"
149 root 1.54 # undef VAR
150    
151 root 1.51 #endif
152 root 1.1
153 root 1.8 /*****************************************************************************/
154    
155 root 1.51 inline ev_tstamp
156 root 1.1 ev_time (void)
157     {
158 root 1.29 #if EV_USE_REALTIME
159 root 1.1 struct timespec ts;
160     clock_gettime (CLOCK_REALTIME, &ts);
161     return ts.tv_sec + ts.tv_nsec * 1e-9;
162     #else
163     struct timeval tv;
164     gettimeofday (&tv, 0);
165     return tv.tv_sec + tv.tv_usec * 1e-6;
166     #endif
167     }
168    
169 root 1.51 inline ev_tstamp
170 root 1.1 get_clock (void)
171     {
172 root 1.29 #if EV_USE_MONOTONIC
173 root 1.40 if (expect_true (have_monotonic))
174 root 1.1 {
175     struct timespec ts;
176     clock_gettime (CLOCK_MONOTONIC, &ts);
177     return ts.tv_sec + ts.tv_nsec * 1e-9;
178     }
179     #endif
180    
181     return ev_time ();
182     }
183    
184 root 1.51 ev_tstamp
185     ev_now (EV_P)
186     {
187     return rt_now;
188     }
189    
190 root 1.30 #define array_roundsize(base,n) ((n) | 4 & ~3)
191 root 1.29
192 root 1.1 #define array_needsize(base,cur,cnt,init) \
193 root 1.40 if (expect_false ((cnt) > cur)) \
194 root 1.1 { \
195 root 1.23 int newcnt = cur; \
196     do \
197     { \
198 root 1.30 newcnt = array_roundsize (base, newcnt << 1); \
199 root 1.23 } \
200     while ((cnt) > newcnt); \
201     \
202 root 1.1 base = realloc (base, sizeof (*base) * (newcnt)); \
203     init (base + cur, newcnt - cur); \
204     cur = newcnt; \
205     }
206    
207 root 1.8 /*****************************************************************************/
208    
209 root 1.1 static void
210     anfds_init (ANFD *base, int count)
211     {
212     while (count--)
213     {
214 root 1.27 base->head = 0;
215     base->events = EV_NONE;
216 root 1.33 base->reify = 0;
217    
218 root 1.1 ++base;
219     }
220     }
221    
222     static void
223 root 1.51 event (EV_P_ W w, int events)
224 root 1.1 {
225 root 1.32 if (w->pending)
226     {
227 root 1.42 pendings [ABSPRI (w)][w->pending - 1].events |= events;
228 root 1.32 return;
229     }
230    
231 root 1.42 w->pending = ++pendingcnt [ABSPRI (w)];
232     array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233     pendings [ABSPRI (w)][w->pending - 1].w = w;
234     pendings [ABSPRI (w)][w->pending - 1].events = events;
235 root 1.1 }
236    
237     static void
238 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
239 root 1.27 {
240     int i;
241    
242     for (i = 0; i < eventcnt; ++i)
243 root 1.51 event (EV_A_ events [i], type);
244 root 1.27 }
245    
246     static void
247 root 1.51 fd_event (EV_P_ int fd, int events)
248 root 1.1 {
249     ANFD *anfd = anfds + fd;
250     struct ev_io *w;
251    
252 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
253 root 1.1 {
254     int ev = w->events & events;
255    
256     if (ev)
257 root 1.51 event (EV_A_ (W)w, ev);
258 root 1.1 }
259     }
260    
261 root 1.27 /*****************************************************************************/
262    
263 root 1.9 static void
264 root 1.51 fd_reify (EV_P)
265 root 1.9 {
266     int i;
267    
268 root 1.27 for (i = 0; i < fdchangecnt; ++i)
269     {
270     int fd = fdchanges [i];
271     ANFD *anfd = anfds + fd;
272     struct ev_io *w;
273    
274     int events = 0;
275    
276 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 root 1.27 events |= w->events;
278    
279 root 1.33 anfd->reify = 0;
280 root 1.27
281     if (anfd->events != events)
282     {
283 root 1.51 method_modify (EV_A_ fd, anfd->events, events);
284 root 1.27 anfd->events = events;
285     }
286     }
287    
288     fdchangecnt = 0;
289     }
290    
291     static void
292 root 1.51 fd_change (EV_P_ int fd)
293 root 1.27 {
294 root 1.33 if (anfds [fd].reify || fdchangecnt < 0)
295 root 1.27 return;
296    
297 root 1.33 anfds [fd].reify = 1;
298 root 1.27
299     ++fdchangecnt;
300     array_needsize (fdchanges, fdchangemax, fdchangecnt, );
301     fdchanges [fdchangecnt - 1] = fd;
302 root 1.9 }
303    
304 root 1.41 static void
305 root 1.51 fd_kill (EV_P_ int fd)
306 root 1.41 {
307     struct ev_io *w;
308    
309 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
310 root 1.41 {
311 root 1.51 ev_io_stop (EV_A_ w);
312     event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 root 1.41 }
314     }
315    
316 root 1.19 /* called on EBADF to verify fds */
317     static void
318 root 1.51 fd_ebadf (EV_P)
319 root 1.19 {
320     int fd;
321    
322     for (fd = 0; fd < anfdmax; ++fd)
323 root 1.27 if (anfds [fd].events)
324 root 1.19 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
325 root 1.51 fd_kill (EV_A_ fd);
326 root 1.41 }
327    
328     /* called on ENOMEM in select/poll to kill some fds and retry */
329     static void
330 root 1.51 fd_enomem (EV_P)
331 root 1.41 {
332     int fd = anfdmax;
333    
334     while (fd--)
335     if (anfds [fd].events)
336     {
337     close (fd);
338 root 1.51 fd_kill (EV_A_ fd);
339 root 1.41 return;
340     }
341 root 1.19 }
342    
343 root 1.56 /* susually called after fork if method needs to re-arm all fds from scratch */
344     static void
345     fd_rearm_all (EV_P)
346     {
347     int fd;
348    
349     /* this should be highly optimised to not do anything but set a flag */
350     for (fd = 0; fd < anfdmax; ++fd)
351     if (anfds [fd].events)
352     {
353     anfds [fd].events = 0;
354     fd_change (fd);
355     }
356     }
357    
358 root 1.8 /*****************************************************************************/
359    
360 root 1.1 static void
361 root 1.54 upheap (WT *heap, int k)
362 root 1.1 {
363 root 1.54 WT w = heap [k];
364 root 1.1
365 root 1.54 while (k && heap [k >> 1]->at > w->at)
366 root 1.1 {
367 root 1.54 heap [k] = heap [k >> 1];
368     heap [k]->active = k + 1;
369 root 1.1 k >>= 1;
370     }
371    
372 root 1.54 heap [k] = w;
373     heap [k]->active = k + 1;
374 root 1.1
375     }
376    
377     static void
378 root 1.54 downheap (WT *heap, int N, int k)
379 root 1.1 {
380 root 1.54 WT w = heap [k];
381 root 1.1
382 root 1.4 while (k < (N >> 1))
383 root 1.1 {
384     int j = k << 1;
385    
386 root 1.54 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
387 root 1.1 ++j;
388    
389 root 1.54 if (w->at <= heap [j]->at)
390 root 1.1 break;
391    
392 root 1.54 heap [k] = heap [j];
393     heap [k]->active = k + 1;
394 root 1.1 k = j;
395     }
396    
397 root 1.54 heap [k] = w;
398     heap [k]->active = k + 1;
399 root 1.1 }
400    
401 root 1.8 /*****************************************************************************/
402    
403 root 1.7 typedef struct
404     {
405 root 1.50 struct ev_watcher_list *head;
406 root 1.34 sig_atomic_t volatile gotsig;
407 root 1.7 } ANSIG;
408    
409     static ANSIG *signals;
410 root 1.4 static int signalmax;
411 root 1.1
412 root 1.7 static int sigpipe [2];
413 root 1.34 static sig_atomic_t volatile gotsig;
414 root 1.7
415 root 1.1 static void
416 root 1.7 signals_init (ANSIG *base, int count)
417 root 1.1 {
418     while (count--)
419 root 1.7 {
420     base->head = 0;
421     base->gotsig = 0;
422 root 1.33
423 root 1.7 ++base;
424     }
425     }
426    
427     static void
428     sighandler (int signum)
429     {
430     signals [signum - 1].gotsig = 1;
431    
432     if (!gotsig)
433     {
434 root 1.48 int old_errno = errno;
435 root 1.7 gotsig = 1;
436 root 1.34 write (sigpipe [1], &signum, 1);
437 root 1.48 errno = old_errno;
438 root 1.7 }
439     }
440    
441     static void
442 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
443 root 1.7 {
444 root 1.50 struct ev_watcher_list *w;
445 root 1.38 int signum;
446 root 1.7
447 root 1.34 read (sigpipe [0], &revents, 1);
448 root 1.7 gotsig = 0;
449    
450 root 1.38 for (signum = signalmax; signum--; )
451     if (signals [signum].gotsig)
452 root 1.7 {
453 root 1.38 signals [signum].gotsig = 0;
454 root 1.7
455 root 1.38 for (w = signals [signum].head; w; w = w->next)
456 root 1.51 event (EV_A_ (W)w, EV_SIGNAL);
457 root 1.7 }
458     }
459    
460     static void
461 root 1.51 siginit (EV_P)
462 root 1.7 {
463 root 1.45 #ifndef WIN32
464 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
465     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
466    
467     /* rather than sort out wether we really need nb, set it */
468     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
469     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
470 root 1.45 #endif
471 root 1.7
472 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
473 root 1.54 ev_io_start (EV_A_ &sigev);
474 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
475 root 1.1 }
476    
477 root 1.8 /*****************************************************************************/
478    
479 root 1.45 #ifndef WIN32
480    
481 root 1.22 #ifndef WCONTINUED
482     # define WCONTINUED 0
483     #endif
484    
485     static void
486 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
487 root 1.47 {
488     struct ev_child *w;
489    
490 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
491 root 1.47 if (w->pid == pid || !w->pid)
492     {
493     w->priority = sw->priority; /* need to do it *now* */
494     w->rpid = pid;
495     w->rstatus = status;
496 root 1.51 event (EV_A_ (W)w, EV_CHILD);
497 root 1.47 }
498     }
499    
500     static void
501 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
502 root 1.22 {
503     int pid, status;
504    
505 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
506     {
507     /* make sure we are called again until all childs have been reaped */
508 root 1.51 event (EV_A_ (W)sw, EV_SIGNAL);
509 root 1.47
510 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
511     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
512 root 1.47 }
513 root 1.22 }
514    
515 root 1.45 #endif
516    
517 root 1.22 /*****************************************************************************/
518    
519 root 1.44 #if EV_USE_KQUEUE
520     # include "ev_kqueue.c"
521     #endif
522 root 1.29 #if EV_USE_EPOLL
523 root 1.1 # include "ev_epoll.c"
524     #endif
525 root 1.51 #if EV_USEV_POLL
526 root 1.41 # include "ev_poll.c"
527     #endif
528 root 1.29 #if EV_USE_SELECT
529 root 1.1 # include "ev_select.c"
530     #endif
531    
532 root 1.24 int
533     ev_version_major (void)
534     {
535     return EV_VERSION_MAJOR;
536     }
537    
538     int
539     ev_version_minor (void)
540     {
541     return EV_VERSION_MINOR;
542     }
543    
544 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
545 root 1.41 static int
546 root 1.51 enable_secure (void)
547 root 1.41 {
548 root 1.49 #ifdef WIN32
549     return 0;
550     #else
551 root 1.41 return getuid () != geteuid ()
552     || getgid () != getegid ();
553 root 1.49 #endif
554 root 1.41 }
555    
556 root 1.51 int
557     ev_method (EV_P)
558 root 1.1 {
559 root 1.51 return method;
560     }
561    
562 root 1.56 static void
563 root 1.54 loop_init (EV_P_ int methods)
564 root 1.51 {
565     if (!method)
566 root 1.23 {
567 root 1.29 #if EV_USE_MONOTONIC
568 root 1.23 {
569     struct timespec ts;
570     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
571     have_monotonic = 1;
572     }
573 root 1.1 #endif
574    
575 root 1.51 rt_now = ev_time ();
576     mn_now = get_clock ();
577     now_floor = mn_now;
578 root 1.54 rtmn_diff = rt_now - mn_now;
579 root 1.1
580 root 1.41 if (methods == EVMETHOD_AUTO)
581 root 1.56 if (!enable_secure () && getenv ("LIBEV_METHODS"))
582     methods = atoi (getenv ("LIBEV_METHODS"));
583 root 1.50 else
584     methods = EVMETHOD_ANY;
585 root 1.41
586 root 1.51 method = 0;
587 root 1.44 #if EV_USE_KQUEUE
588 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
589 root 1.44 #endif
590 root 1.29 #if EV_USE_EPOLL
591 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
592 root 1.41 #endif
593 root 1.51 #if EV_USEV_POLL
594     if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
595 root 1.1 #endif
596 root 1.29 #if EV_USE_SELECT
597 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
598 root 1.1 #endif
599 root 1.56 }
600     }
601    
602     void
603     loop_destroy (EV_P)
604     {
605     #if EV_USE_KQUEUE
606     if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
607     #endif
608     #if EV_USE_EPOLL
609     if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
610     #endif
611     #if EV_USEV_POLL
612     if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
613     #endif
614     #if EV_USE_SELECT
615     if (method == EVMETHOD_SELECT) select_destroy (EV_A);
616     #endif
617 root 1.1
618 root 1.56 method = 0;
619     /*TODO*/
620     }
621 root 1.22
622 root 1.56 void
623     loop_fork (EV_P)
624     {
625     /*TODO*/
626     #if EV_USE_EPOLL
627     if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
628     #endif
629     #if EV_USE_KQUEUE
630     if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
631 root 1.45 #endif
632 root 1.1 }
633    
634 root 1.55 #if EV_MULTIPLICITY
635 root 1.54 struct ev_loop *
636     ev_loop_new (int methods)
637     {
638     struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
639    
640 root 1.56 loop_init (EV_A_ methods);
641    
642     if (ev_methods (EV_A))
643 root 1.55 return loop;
644 root 1.54
645 root 1.55 return 0;
646 root 1.54 }
647    
648     void
649 root 1.56 ev_loop_destroy (EV_P)
650 root 1.54 {
651 root 1.56 loop_destroy (EV_A);
652 root 1.54 free (loop);
653     }
654    
655 root 1.56 void
656     ev_loop_fork (EV_P)
657     {
658     loop_fork (EV_A);
659     }
660    
661     #endif
662    
663     #if EV_MULTIPLICITY
664     struct ev_loop default_loop_struct;
665     static struct ev_loop *default_loop;
666    
667     struct ev_loop *
668 root 1.54 #else
669 root 1.56 static int default_loop;
670 root 1.54
671     int
672 root 1.56 #endif
673     ev_default_loop (int methods)
674 root 1.54 {
675 root 1.56 if (sigpipe [0] == sigpipe [1])
676     if (pipe (sigpipe))
677     return 0;
678 root 1.54
679 root 1.56 if (!default_loop)
680     {
681     #if EV_MULTIPLICITY
682     struct ev_loop *loop = default_loop = &default_loop_struct;
683     #else
684     default_loop = 1;
685 root 1.54 #endif
686    
687 root 1.56 loop_init (EV_A_ methods);
688    
689     if (ev_method (EV_A))
690     {
691     ev_watcher_init (&sigev, sigcb);
692     ev_set_priority (&sigev, EV_MAXPRI);
693     siginit (EV_A);
694    
695     #ifndef WIN32
696     ev_signal_init (&childev, childcb, SIGCHLD);
697     ev_set_priority (&childev, EV_MAXPRI);
698     ev_signal_start (EV_A_ &childev);
699     ev_unref (EV_A); /* child watcher should not keep loop alive */
700     #endif
701     }
702     else
703     default_loop = 0;
704     }
705 root 1.8
706 root 1.56 return default_loop;
707 root 1.1 }
708    
709 root 1.24 void
710 root 1.56 ev_default_destroy (void)
711 root 1.1 {
712 root 1.56 struct ev_loop *loop = default_loop;
713    
714     ev_ref (EV_A); /* child watcher */
715     ev_signal_stop (EV_A_ &childev);
716    
717     ev_ref (EV_A); /* signal watcher */
718     ev_io_stop (EV_A_ &sigev);
719    
720     close (sigpipe [0]); sigpipe [0] = 0;
721     close (sigpipe [1]); sigpipe [1] = 0;
722    
723     loop_destroy (EV_A);
724 root 1.1 }
725    
726 root 1.24 void
727 root 1.56 ev_default_fork (EV_P)
728 root 1.1 {
729 root 1.56 loop_fork (EV_A);
730 root 1.7
731 root 1.54 ev_io_stop (EV_A_ &sigev);
732 root 1.7 close (sigpipe [0]);
733     close (sigpipe [1]);
734     pipe (sigpipe);
735 root 1.56
736     ev_ref (EV_A); /* signal watcher */
737 root 1.54 siginit (EV_A);
738 root 1.1 }
739    
740 root 1.8 /*****************************************************************************/
741    
742 root 1.1 static void
743 root 1.51 call_pending (EV_P)
744 root 1.1 {
745 root 1.42 int pri;
746    
747     for (pri = NUMPRI; pri--; )
748     while (pendingcnt [pri])
749     {
750     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
751 root 1.1
752 root 1.42 if (p->w)
753     {
754     p->w->pending = 0;
755 root 1.51 p->w->cb (EV_A_ p->w, p->events);
756 root 1.42 }
757     }
758 root 1.1 }
759    
760     static void
761 root 1.51 timers_reify (EV_P)
762 root 1.1 {
763 root 1.51 while (timercnt && timers [0]->at <= mn_now)
764 root 1.1 {
765     struct ev_timer *w = timers [0];
766    
767 root 1.4 /* first reschedule or stop timer */
768 root 1.1 if (w->repeat)
769     {
770 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
771 root 1.51 w->at = mn_now + w->repeat;
772 root 1.12 downheap ((WT *)timers, timercnt, 0);
773     }
774     else
775 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
776 root 1.30
777 root 1.54 event (EV_A_ (W)w, EV_TIMEOUT);
778 root 1.12 }
779     }
780 root 1.4
781 root 1.12 static void
782 root 1.51 periodics_reify (EV_P)
783 root 1.12 {
784 root 1.51 while (periodiccnt && periodics [0]->at <= rt_now)
785 root 1.12 {
786     struct ev_periodic *w = periodics [0];
787 root 1.1
788 root 1.12 /* first reschedule or stop timer */
789     if (w->interval)
790     {
791 root 1.51 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
792     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
793 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
794 root 1.1 }
795     else
796 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
797 root 1.12
798 root 1.51 event (EV_A_ (W)w, EV_PERIODIC);
799 root 1.12 }
800     }
801    
802     static void
803 root 1.54 periodics_reschedule (EV_P)
804 root 1.12 {
805     int i;
806    
807 root 1.13 /* adjust periodics after time jump */
808 root 1.12 for (i = 0; i < periodiccnt; ++i)
809     {
810     struct ev_periodic *w = periodics [i];
811    
812     if (w->interval)
813 root 1.4 {
814 root 1.51 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
815 root 1.12
816     if (fabs (diff) >= 1e-4)
817     {
818 root 1.51 ev_periodic_stop (EV_A_ w);
819     ev_periodic_start (EV_A_ w);
820 root 1.12
821     i = 0; /* restart loop, inefficient, but time jumps should be rare */
822     }
823 root 1.4 }
824 root 1.12 }
825 root 1.1 }
826    
827 root 1.51 inline int
828     time_update_monotonic (EV_P)
829 root 1.40 {
830 root 1.51 mn_now = get_clock ();
831 root 1.40
832 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
833 root 1.40 {
834 root 1.54 rt_now = rtmn_diff + mn_now;
835 root 1.40 return 0;
836     }
837     else
838     {
839 root 1.51 now_floor = mn_now;
840     rt_now = ev_time ();
841 root 1.40 return 1;
842     }
843     }
844    
845 root 1.4 static void
846 root 1.51 time_update (EV_P)
847 root 1.4 {
848     int i;
849 root 1.12
850 root 1.40 #if EV_USE_MONOTONIC
851     if (expect_true (have_monotonic))
852     {
853 root 1.51 if (time_update_monotonic (EV_A))
854 root 1.40 {
855 root 1.54 ev_tstamp odiff = rtmn_diff;
856 root 1.4
857 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
858     {
859 root 1.54 rtmn_diff = rt_now - mn_now;
860 root 1.4
861 root 1.54 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
862 root 1.40 return; /* all is well */
863 root 1.4
864 root 1.51 rt_now = ev_time ();
865     mn_now = get_clock ();
866     now_floor = mn_now;
867 root 1.40 }
868 root 1.4
869 root 1.54 periodics_reschedule (EV_A);
870 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
871 root 1.54 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
872 root 1.4 }
873     }
874     else
875 root 1.40 #endif
876 root 1.4 {
877 root 1.51 rt_now = ev_time ();
878 root 1.40
879 root 1.51 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
880 root 1.13 {
881 root 1.54 periodics_reschedule (EV_A);
882 root 1.13
883     /* adjust timers. this is easy, as the offset is the same for all */
884     for (i = 0; i < timercnt; ++i)
885 root 1.54 timers [i]->at += rt_now - mn_now;
886 root 1.13 }
887 root 1.4
888 root 1.51 mn_now = rt_now;
889 root 1.4 }
890     }
891    
892 root 1.51 void
893     ev_ref (EV_P)
894     {
895     ++activecnt;
896     }
897 root 1.1
898 root 1.51 void
899     ev_unref (EV_P)
900     {
901     --activecnt;
902     }
903    
904     static int loop_done;
905    
906     void
907     ev_loop (EV_P_ int flags)
908 root 1.1 {
909     double block;
910 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
911 root 1.1
912 root 1.20 do
913 root 1.9 {
914 root 1.20 /* queue check watchers (and execute them) */
915 root 1.40 if (expect_false (preparecnt))
916 root 1.20 {
917 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
918     call_pending (EV_A);
919 root 1.20 }
920 root 1.9
921 root 1.1 /* update fd-related kernel structures */
922 root 1.51 fd_reify (EV_A);
923 root 1.1
924     /* calculate blocking time */
925 root 1.12
926 root 1.21 /* we only need this for !monotonic clockor timers, but as we basically
927     always have timers, we just calculate it always */
928 root 1.40 #if EV_USE_MONOTONIC
929     if (expect_true (have_monotonic))
930 root 1.51 time_update_monotonic (EV_A);
931 root 1.40 else
932     #endif
933     {
934 root 1.51 rt_now = ev_time ();
935     mn_now = rt_now;
936 root 1.40 }
937 root 1.12
938 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
939 root 1.1 block = 0.;
940     else
941     {
942 root 1.4 block = MAX_BLOCKTIME;
943    
944 root 1.12 if (timercnt)
945 root 1.4 {
946 root 1.51 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
947 root 1.4 if (block > to) block = to;
948     }
949    
950 root 1.12 if (periodiccnt)
951 root 1.4 {
952 root 1.51 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
953 root 1.4 if (block > to) block = to;
954     }
955    
956 root 1.1 if (block < 0.) block = 0.;
957     }
958    
959 root 1.51 method_poll (EV_A_ block);
960 root 1.1
961 root 1.51 /* update rt_now, do magic */
962     time_update (EV_A);
963 root 1.4
964 root 1.9 /* queue pending timers and reschedule them */
965 root 1.51 timers_reify (EV_A); /* relative timers called last */
966     periodics_reify (EV_A); /* absolute timers called first */
967 root 1.1
968 root 1.9 /* queue idle watchers unless io or timers are pending */
969     if (!pendingcnt)
970 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
971 root 1.9
972 root 1.20 /* queue check watchers, to be executed first */
973     if (checkcnt)
974 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
975 root 1.9
976 root 1.51 call_pending (EV_A);
977 root 1.1 }
978 root 1.51 while (activecnt && !loop_done);
979 root 1.13
980 root 1.51 if (loop_done != 2)
981     loop_done = 0;
982     }
983    
984     void
985     ev_unloop (EV_P_ int how)
986     {
987     loop_done = how;
988 root 1.1 }
989    
990 root 1.8 /*****************************************************************************/
991    
992 root 1.51 inline void
993 root 1.10 wlist_add (WL *head, WL elem)
994 root 1.1 {
995     elem->next = *head;
996     *head = elem;
997     }
998    
999 root 1.51 inline void
1000 root 1.10 wlist_del (WL *head, WL elem)
1001 root 1.1 {
1002     while (*head)
1003     {
1004     if (*head == elem)
1005     {
1006     *head = elem->next;
1007     return;
1008     }
1009    
1010     head = &(*head)->next;
1011     }
1012     }
1013    
1014 root 1.51 inline void
1015     ev_clear_pending (EV_P_ W w)
1016 root 1.16 {
1017     if (w->pending)
1018     {
1019 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1020 root 1.16 w->pending = 0;
1021     }
1022     }
1023    
1024 root 1.51 inline void
1025     ev_start (EV_P_ W w, int active)
1026 root 1.1 {
1027 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1028     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1029    
1030 root 1.1 w->active = active;
1031 root 1.51 ev_ref (EV_A);
1032 root 1.1 }
1033    
1034 root 1.51 inline void
1035     ev_stop (EV_P_ W w)
1036 root 1.1 {
1037 root 1.51 ev_unref (EV_A);
1038 root 1.1 w->active = 0;
1039     }
1040    
1041 root 1.8 /*****************************************************************************/
1042    
1043 root 1.1 void
1044 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
1045 root 1.1 {
1046 root 1.37 int fd = w->fd;
1047    
1048 root 1.1 if (ev_is_active (w))
1049     return;
1050    
1051 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
1052    
1053 root 1.51 ev_start (EV_A_ (W)w, 1);
1054 root 1.1 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1055 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1056 root 1.1
1057 root 1.51 fd_change (EV_A_ fd);
1058 root 1.1 }
1059    
1060     void
1061 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
1062 root 1.1 {
1063 root 1.51 ev_clear_pending (EV_A_ (W)w);
1064 root 1.1 if (!ev_is_active (w))
1065     return;
1066    
1067 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1068 root 1.51 ev_stop (EV_A_ (W)w);
1069 root 1.1
1070 root 1.51 fd_change (EV_A_ w->fd);
1071 root 1.1 }
1072    
1073     void
1074 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1075 root 1.1 {
1076     if (ev_is_active (w))
1077     return;
1078    
1079 root 1.51 w->at += mn_now;
1080 root 1.12
1081 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1082 root 1.13
1083 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1084 root 1.12 array_needsize (timers, timermax, timercnt, );
1085     timers [timercnt - 1] = w;
1086     upheap ((WT *)timers, timercnt - 1);
1087     }
1088    
1089     void
1090 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1091 root 1.12 {
1092 root 1.51 ev_clear_pending (EV_A_ (W)w);
1093 root 1.12 if (!ev_is_active (w))
1094     return;
1095    
1096     if (w->active < timercnt--)
1097 root 1.1 {
1098 root 1.12 timers [w->active - 1] = timers [timercnt];
1099     downheap ((WT *)timers, timercnt, w->active - 1);
1100     }
1101 root 1.4
1102 root 1.14 w->at = w->repeat;
1103    
1104 root 1.51 ev_stop (EV_A_ (W)w);
1105 root 1.12 }
1106 root 1.4
1107 root 1.12 void
1108 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1109 root 1.14 {
1110     if (ev_is_active (w))
1111     {
1112     if (w->repeat)
1113     {
1114 root 1.51 w->at = mn_now + w->repeat;
1115 root 1.14 downheap ((WT *)timers, timercnt, w->active - 1);
1116     }
1117     else
1118 root 1.51 ev_timer_stop (EV_A_ w);
1119 root 1.14 }
1120     else if (w->repeat)
1121 root 1.51 ev_timer_start (EV_A_ w);
1122 root 1.14 }
1123    
1124     void
1125 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1126 root 1.12 {
1127     if (ev_is_active (w))
1128     return;
1129 root 1.1
1130 root 1.33 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1131 root 1.13
1132 root 1.12 /* this formula differs from the one in periodic_reify because we do not always round up */
1133     if (w->interval)
1134 root 1.51 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1135 root 1.12
1136 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1137 root 1.12 array_needsize (periodics, periodicmax, periodiccnt, );
1138     periodics [periodiccnt - 1] = w;
1139     upheap ((WT *)periodics, periodiccnt - 1);
1140 root 1.1 }
1141    
1142     void
1143 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1144 root 1.1 {
1145 root 1.51 ev_clear_pending (EV_A_ (W)w);
1146 root 1.1 if (!ev_is_active (w))
1147     return;
1148    
1149 root 1.12 if (w->active < periodiccnt--)
1150 root 1.2 {
1151 root 1.12 periodics [w->active - 1] = periodics [periodiccnt];
1152     downheap ((WT *)periodics, periodiccnt, w->active - 1);
1153 root 1.2 }
1154    
1155 root 1.51 ev_stop (EV_A_ (W)w);
1156 root 1.1 }
1157    
1158 root 1.28 void
1159 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1160 root 1.9 {
1161     if (ev_is_active (w))
1162     return;
1163    
1164 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1165 root 1.9 array_needsize (idles, idlemax, idlecnt, );
1166     idles [idlecnt - 1] = w;
1167     }
1168    
1169 root 1.28 void
1170 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1171 root 1.9 {
1172 root 1.51 ev_clear_pending (EV_A_ (W)w);
1173 root 1.16 if (ev_is_active (w))
1174     return;
1175    
1176 root 1.9 idles [w->active - 1] = idles [--idlecnt];
1177 root 1.51 ev_stop (EV_A_ (W)w);
1178 root 1.9 }
1179    
1180 root 1.28 void
1181 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1182 root 1.20 {
1183     if (ev_is_active (w))
1184     return;
1185    
1186 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1187 root 1.20 array_needsize (prepares, preparemax, preparecnt, );
1188     prepares [preparecnt - 1] = w;
1189     }
1190    
1191 root 1.28 void
1192 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1193 root 1.20 {
1194 root 1.51 ev_clear_pending (EV_A_ (W)w);
1195 root 1.20 if (ev_is_active (w))
1196     return;
1197    
1198     prepares [w->active - 1] = prepares [--preparecnt];
1199 root 1.51 ev_stop (EV_A_ (W)w);
1200 root 1.20 }
1201    
1202 root 1.28 void
1203 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1204 root 1.9 {
1205     if (ev_is_active (w))
1206     return;
1207    
1208 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1209 root 1.9 array_needsize (checks, checkmax, checkcnt, );
1210     checks [checkcnt - 1] = w;
1211     }
1212    
1213 root 1.28 void
1214 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1215 root 1.9 {
1216 root 1.51 ev_clear_pending (EV_A_ (W)w);
1217 root 1.16 if (ev_is_active (w))
1218     return;
1219    
1220 root 1.9 checks [w->active - 1] = checks [--checkcnt];
1221 root 1.51 ev_stop (EV_A_ (W)w);
1222 root 1.9 }
1223    
1224 root 1.56 #ifndef SA_RESTART
1225     # define SA_RESTART 0
1226     #endif
1227    
1228     void
1229     ev_signal_start (EV_P_ struct ev_signal *w)
1230     {
1231     #if EV_MULTIPLICITY
1232     assert (("signal watchers are only supported in the default loop", loop == default_loop));
1233     #endif
1234     if (ev_is_active (w))
1235     return;
1236    
1237     assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1238    
1239     ev_start (EV_A_ (W)w, 1);
1240     array_needsize (signals, signalmax, w->signum, signals_init);
1241     wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1242    
1243     if (!w->next)
1244     {
1245     struct sigaction sa;
1246     sa.sa_handler = sighandler;
1247     sigfillset (&sa.sa_mask);
1248     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1249     sigaction (w->signum, &sa, 0);
1250     }
1251     }
1252    
1253     void
1254     ev_signal_stop (EV_P_ struct ev_signal *w)
1255     {
1256     ev_clear_pending (EV_A_ (W)w);
1257     if (!ev_is_active (w))
1258     return;
1259    
1260     wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1261     ev_stop (EV_A_ (W)w);
1262    
1263     if (!signals [w->signum - 1].head)
1264     signal (w->signum, SIG_DFL);
1265     }
1266    
1267 root 1.28 void
1268 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1269 root 1.22 {
1270 root 1.56 #if EV_MULTIPLICITY
1271     assert (("child watchers are only supported in the default loop", loop == default_loop));
1272     #endif
1273 root 1.22 if (ev_is_active (w))
1274     return;
1275    
1276 root 1.51 ev_start (EV_A_ (W)w, 1);
1277 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1278     }
1279    
1280 root 1.28 void
1281 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1282 root 1.22 {
1283 root 1.51 ev_clear_pending (EV_A_ (W)w);
1284 root 1.22 if (ev_is_active (w))
1285     return;
1286    
1287     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1288 root 1.51 ev_stop (EV_A_ (W)w);
1289 root 1.22 }
1290    
1291 root 1.1 /*****************************************************************************/
1292 root 1.10
1293 root 1.16 struct ev_once
1294     {
1295     struct ev_io io;
1296     struct ev_timer to;
1297     void (*cb)(int revents, void *arg);
1298     void *arg;
1299     };
1300    
1301     static void
1302 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1303 root 1.16 {
1304     void (*cb)(int revents, void *arg) = once->cb;
1305     void *arg = once->arg;
1306    
1307 root 1.51 ev_io_stop (EV_A_ &once->io);
1308     ev_timer_stop (EV_A_ &once->to);
1309 root 1.16 free (once);
1310    
1311     cb (revents, arg);
1312     }
1313    
1314     static void
1315 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1316 root 1.16 {
1317 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1318 root 1.16 }
1319    
1320     static void
1321 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1322 root 1.16 {
1323 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1324 root 1.16 }
1325    
1326     void
1327 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1328 root 1.16 {
1329     struct ev_once *once = malloc (sizeof (struct ev_once));
1330    
1331     if (!once)
1332 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1333 root 1.16 else
1334     {
1335     once->cb = cb;
1336     once->arg = arg;
1337    
1338 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1339 root 1.16 if (fd >= 0)
1340     {
1341 root 1.28 ev_io_set (&once->io, fd, events);
1342 root 1.51 ev_io_start (EV_A_ &once->io);
1343 root 1.16 }
1344    
1345 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1346 root 1.16 if (timeout >= 0.)
1347     {
1348 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1349 root 1.51 ev_timer_start (EV_A_ &once->to);
1350 root 1.16 }
1351     }
1352     }
1353