ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.57
Committed: Sun Nov 4 16:43:53 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.56: +2 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.50 #ifndef EV_STANDALONE
32 root 1.29 # include "config.h"
33     #endif
34 root 1.17
35 root 1.1 #include <math.h>
36     #include <stdlib.h>
37 root 1.7 #include <unistd.h>
38     #include <fcntl.h>
39     #include <signal.h>
40 root 1.16 #include <stddef.h>
41 root 1.1
42     #include <stdio.h>
43    
44 root 1.4 #include <assert.h>
45 root 1.1 #include <errno.h>
46 root 1.22 #include <sys/types.h>
47 root 1.45 #ifndef WIN32
48     # include <sys/wait.h>
49     #endif
50 root 1.1 #include <sys/time.h>
51     #include <time.h>
52    
53 root 1.40 /**/
54    
55 root 1.29 #ifndef EV_USE_MONOTONIC
56 root 1.37 # define EV_USE_MONOTONIC 1
57     #endif
58    
59 root 1.29 #ifndef EV_USE_SELECT
60     # define EV_USE_SELECT 1
61 root 1.10 #endif
62    
63 root 1.51 #ifndef EV_USEV_POLL
64     # define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65 root 1.41 #endif
66    
67 root 1.29 #ifndef EV_USE_EPOLL
68     # define EV_USE_EPOLL 0
69 root 1.10 #endif
70    
71 root 1.44 #ifndef EV_USE_KQUEUE
72     # define EV_USE_KQUEUE 0
73     #endif
74    
75 root 1.40 #ifndef EV_USE_REALTIME
76     # define EV_USE_REALTIME 1
77     #endif
78    
79     /**/
80    
81     #ifndef CLOCK_MONOTONIC
82     # undef EV_USE_MONOTONIC
83     # define EV_USE_MONOTONIC 0
84     #endif
85    
86 root 1.31 #ifndef CLOCK_REALTIME
87 root 1.40 # undef EV_USE_REALTIME
88 root 1.31 # define EV_USE_REALTIME 0
89     #endif
90 root 1.40
91     /**/
92 root 1.1
93 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 root 1.1
98     #include "ev.h"
99    
100 root 1.40 #if __GNUC__ >= 3
101     # define expect(expr,value) __builtin_expect ((expr),(value))
102     # define inline inline
103     #else
104     # define expect(expr,value) (expr)
105     # define inline static
106     #endif
107    
108     #define expect_false(expr) expect ((expr) != 0, 0)
109     #define expect_true(expr) expect ((expr) != 0, 1)
110    
111 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
113    
114 root 1.10 typedef struct ev_watcher *W;
115     typedef struct ev_watcher_list *WL;
116 root 1.12 typedef struct ev_watcher_time *WT;
117 root 1.10
118 root 1.54 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119    
120 root 1.53 /*****************************************************************************/
121 root 1.1
122 root 1.53 typedef struct
123     {
124     struct ev_watcher_list *head;
125     unsigned char events;
126     unsigned char reify;
127     } ANFD;
128 root 1.1
129 root 1.53 typedef struct
130     {
131     W w;
132     int events;
133     } ANPENDING;
134 root 1.51
135 root 1.55 #if EV_MULTIPLICITY
136 root 1.54
137 root 1.53 struct ev_loop
138     {
139 root 1.54 # define VAR(name,decl) decl;
140 root 1.53 # include "ev_vars.h"
141     };
142 root 1.54 # undef VAR
143     # include "ev_wrap.h"
144    
145 root 1.53 #else
146 root 1.54
147     # define VAR(name,decl) static decl;
148 root 1.53 # include "ev_vars.h"
149 root 1.54 # undef VAR
150    
151 root 1.51 #endif
152 root 1.1
153 root 1.8 /*****************************************************************************/
154    
155 root 1.51 inline ev_tstamp
156 root 1.1 ev_time (void)
157     {
158 root 1.29 #if EV_USE_REALTIME
159 root 1.1 struct timespec ts;
160     clock_gettime (CLOCK_REALTIME, &ts);
161     return ts.tv_sec + ts.tv_nsec * 1e-9;
162     #else
163     struct timeval tv;
164     gettimeofday (&tv, 0);
165     return tv.tv_sec + tv.tv_usec * 1e-6;
166     #endif
167     }
168    
169 root 1.51 inline ev_tstamp
170 root 1.1 get_clock (void)
171     {
172 root 1.29 #if EV_USE_MONOTONIC
173 root 1.40 if (expect_true (have_monotonic))
174 root 1.1 {
175     struct timespec ts;
176     clock_gettime (CLOCK_MONOTONIC, &ts);
177     return ts.tv_sec + ts.tv_nsec * 1e-9;
178     }
179     #endif
180    
181     return ev_time ();
182     }
183    
184 root 1.51 ev_tstamp
185     ev_now (EV_P)
186     {
187     return rt_now;
188     }
189    
190 root 1.30 #define array_roundsize(base,n) ((n) | 4 & ~3)
191 root 1.29
192 root 1.1 #define array_needsize(base,cur,cnt,init) \
193 root 1.40 if (expect_false ((cnt) > cur)) \
194 root 1.1 { \
195 root 1.23 int newcnt = cur; \
196     do \
197     { \
198 root 1.30 newcnt = array_roundsize (base, newcnt << 1); \
199 root 1.23 } \
200     while ((cnt) > newcnt); \
201     \
202 root 1.1 base = realloc (base, sizeof (*base) * (newcnt)); \
203     init (base + cur, newcnt - cur); \
204     cur = newcnt; \
205     }
206    
207 root 1.8 /*****************************************************************************/
208    
209 root 1.1 static void
210     anfds_init (ANFD *base, int count)
211     {
212     while (count--)
213     {
214 root 1.27 base->head = 0;
215     base->events = EV_NONE;
216 root 1.33 base->reify = 0;
217    
218 root 1.1 ++base;
219     }
220     }
221    
222     static void
223 root 1.51 event (EV_P_ W w, int events)
224 root 1.1 {
225 root 1.32 if (w->pending)
226     {
227 root 1.42 pendings [ABSPRI (w)][w->pending - 1].events |= events;
228 root 1.32 return;
229     }
230    
231 root 1.42 w->pending = ++pendingcnt [ABSPRI (w)];
232     array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233     pendings [ABSPRI (w)][w->pending - 1].w = w;
234     pendings [ABSPRI (w)][w->pending - 1].events = events;
235 root 1.1 }
236    
237     static void
238 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
239 root 1.27 {
240     int i;
241    
242     for (i = 0; i < eventcnt; ++i)
243 root 1.51 event (EV_A_ events [i], type);
244 root 1.27 }
245    
246     static void
247 root 1.51 fd_event (EV_P_ int fd, int events)
248 root 1.1 {
249     ANFD *anfd = anfds + fd;
250     struct ev_io *w;
251    
252 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
253 root 1.1 {
254     int ev = w->events & events;
255    
256     if (ev)
257 root 1.51 event (EV_A_ (W)w, ev);
258 root 1.1 }
259     }
260    
261 root 1.27 /*****************************************************************************/
262    
263 root 1.9 static void
264 root 1.51 fd_reify (EV_P)
265 root 1.9 {
266     int i;
267    
268 root 1.27 for (i = 0; i < fdchangecnt; ++i)
269     {
270     int fd = fdchanges [i];
271     ANFD *anfd = anfds + fd;
272     struct ev_io *w;
273    
274     int events = 0;
275    
276 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 root 1.27 events |= w->events;
278    
279 root 1.33 anfd->reify = 0;
280 root 1.27
281     if (anfd->events != events)
282     {
283 root 1.51 method_modify (EV_A_ fd, anfd->events, events);
284 root 1.27 anfd->events = events;
285     }
286     }
287    
288     fdchangecnt = 0;
289     }
290    
291     static void
292 root 1.51 fd_change (EV_P_ int fd)
293 root 1.27 {
294 root 1.33 if (anfds [fd].reify || fdchangecnt < 0)
295 root 1.27 return;
296    
297 root 1.33 anfds [fd].reify = 1;
298 root 1.27
299     ++fdchangecnt;
300     array_needsize (fdchanges, fdchangemax, fdchangecnt, );
301     fdchanges [fdchangecnt - 1] = fd;
302 root 1.9 }
303    
304 root 1.41 static void
305 root 1.51 fd_kill (EV_P_ int fd)
306 root 1.41 {
307     struct ev_io *w;
308    
309 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
310 root 1.41 {
311 root 1.51 ev_io_stop (EV_A_ w);
312     event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 root 1.41 }
314     }
315    
316 root 1.19 /* called on EBADF to verify fds */
317     static void
318 root 1.51 fd_ebadf (EV_P)
319 root 1.19 {
320     int fd;
321    
322     for (fd = 0; fd < anfdmax; ++fd)
323 root 1.27 if (anfds [fd].events)
324 root 1.19 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
325 root 1.51 fd_kill (EV_A_ fd);
326 root 1.41 }
327    
328     /* called on ENOMEM in select/poll to kill some fds and retry */
329     static void
330 root 1.51 fd_enomem (EV_P)
331 root 1.41 {
332     int fd = anfdmax;
333    
334     while (fd--)
335     if (anfds [fd].events)
336     {
337     close (fd);
338 root 1.51 fd_kill (EV_A_ fd);
339 root 1.41 return;
340     }
341 root 1.19 }
342    
343 root 1.56 /* susually called after fork if method needs to re-arm all fds from scratch */
344     static void
345     fd_rearm_all (EV_P)
346     {
347     int fd;
348    
349     /* this should be highly optimised to not do anything but set a flag */
350     for (fd = 0; fd < anfdmax; ++fd)
351     if (anfds [fd].events)
352     {
353     anfds [fd].events = 0;
354     fd_change (fd);
355     }
356     }
357    
358 root 1.8 /*****************************************************************************/
359    
360 root 1.1 static void
361 root 1.54 upheap (WT *heap, int k)
362 root 1.1 {
363 root 1.54 WT w = heap [k];
364 root 1.1
365 root 1.54 while (k && heap [k >> 1]->at > w->at)
366 root 1.1 {
367 root 1.54 heap [k] = heap [k >> 1];
368     heap [k]->active = k + 1;
369 root 1.1 k >>= 1;
370     }
371    
372 root 1.54 heap [k] = w;
373     heap [k]->active = k + 1;
374 root 1.1
375     }
376    
377     static void
378 root 1.54 downheap (WT *heap, int N, int k)
379 root 1.1 {
380 root 1.54 WT w = heap [k];
381 root 1.1
382 root 1.4 while (k < (N >> 1))
383 root 1.1 {
384     int j = k << 1;
385    
386 root 1.54 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
387 root 1.1 ++j;
388    
389 root 1.54 if (w->at <= heap [j]->at)
390 root 1.1 break;
391    
392 root 1.54 heap [k] = heap [j];
393     heap [k]->active = k + 1;
394 root 1.1 k = j;
395     }
396    
397 root 1.54 heap [k] = w;
398     heap [k]->active = k + 1;
399 root 1.1 }
400    
401 root 1.8 /*****************************************************************************/
402    
403 root 1.7 typedef struct
404     {
405 root 1.50 struct ev_watcher_list *head;
406 root 1.34 sig_atomic_t volatile gotsig;
407 root 1.7 } ANSIG;
408    
409     static ANSIG *signals;
410 root 1.4 static int signalmax;
411 root 1.1
412 root 1.7 static int sigpipe [2];
413 root 1.34 static sig_atomic_t volatile gotsig;
414 root 1.7
415 root 1.1 static void
416 root 1.7 signals_init (ANSIG *base, int count)
417 root 1.1 {
418     while (count--)
419 root 1.7 {
420     base->head = 0;
421     base->gotsig = 0;
422 root 1.33
423 root 1.7 ++base;
424     }
425     }
426    
427     static void
428     sighandler (int signum)
429     {
430     signals [signum - 1].gotsig = 1;
431    
432     if (!gotsig)
433     {
434 root 1.48 int old_errno = errno;
435 root 1.7 gotsig = 1;
436 root 1.34 write (sigpipe [1], &signum, 1);
437 root 1.48 errno = old_errno;
438 root 1.7 }
439     }
440    
441     static void
442 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
443 root 1.7 {
444 root 1.50 struct ev_watcher_list *w;
445 root 1.38 int signum;
446 root 1.7
447 root 1.34 read (sigpipe [0], &revents, 1);
448 root 1.7 gotsig = 0;
449    
450 root 1.38 for (signum = signalmax; signum--; )
451     if (signals [signum].gotsig)
452 root 1.7 {
453 root 1.38 signals [signum].gotsig = 0;
454 root 1.7
455 root 1.38 for (w = signals [signum].head; w; w = w->next)
456 root 1.51 event (EV_A_ (W)w, EV_SIGNAL);
457 root 1.7 }
458     }
459    
460     static void
461 root 1.51 siginit (EV_P)
462 root 1.7 {
463 root 1.45 #ifndef WIN32
464 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
465     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
466    
467     /* rather than sort out wether we really need nb, set it */
468     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
469     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
470 root 1.45 #endif
471 root 1.7
472 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
473 root 1.54 ev_io_start (EV_A_ &sigev);
474 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
475 root 1.1 }
476    
477 root 1.8 /*****************************************************************************/
478    
479 root 1.45 #ifndef WIN32
480    
481 root 1.22 #ifndef WCONTINUED
482     # define WCONTINUED 0
483     #endif
484    
485     static void
486 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
487 root 1.47 {
488     struct ev_child *w;
489    
490 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
491 root 1.47 if (w->pid == pid || !w->pid)
492     {
493     w->priority = sw->priority; /* need to do it *now* */
494     w->rpid = pid;
495     w->rstatus = status;
496 root 1.51 event (EV_A_ (W)w, EV_CHILD);
497 root 1.47 }
498     }
499    
500     static void
501 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
502 root 1.22 {
503     int pid, status;
504    
505 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
506     {
507     /* make sure we are called again until all childs have been reaped */
508 root 1.51 event (EV_A_ (W)sw, EV_SIGNAL);
509 root 1.47
510 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
511     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
512 root 1.47 }
513 root 1.22 }
514    
515 root 1.45 #endif
516    
517 root 1.22 /*****************************************************************************/
518    
519 root 1.44 #if EV_USE_KQUEUE
520     # include "ev_kqueue.c"
521     #endif
522 root 1.29 #if EV_USE_EPOLL
523 root 1.1 # include "ev_epoll.c"
524     #endif
525 root 1.51 #if EV_USEV_POLL
526 root 1.41 # include "ev_poll.c"
527     #endif
528 root 1.29 #if EV_USE_SELECT
529 root 1.1 # include "ev_select.c"
530     #endif
531    
532 root 1.24 int
533     ev_version_major (void)
534     {
535     return EV_VERSION_MAJOR;
536     }
537    
538     int
539     ev_version_minor (void)
540     {
541     return EV_VERSION_MINOR;
542     }
543    
544 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
545 root 1.41 static int
546 root 1.51 enable_secure (void)
547 root 1.41 {
548 root 1.49 #ifdef WIN32
549     return 0;
550     #else
551 root 1.41 return getuid () != geteuid ()
552     || getgid () != getegid ();
553 root 1.49 #endif
554 root 1.41 }
555    
556 root 1.51 int
557     ev_method (EV_P)
558 root 1.1 {
559 root 1.51 return method;
560     }
561    
562 root 1.56 static void
563 root 1.54 loop_init (EV_P_ int methods)
564 root 1.51 {
565     if (!method)
566 root 1.23 {
567 root 1.29 #if EV_USE_MONOTONIC
568 root 1.23 {
569     struct timespec ts;
570     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
571     have_monotonic = 1;
572     }
573 root 1.1 #endif
574    
575 root 1.51 rt_now = ev_time ();
576     mn_now = get_clock ();
577     now_floor = mn_now;
578 root 1.54 rtmn_diff = rt_now - mn_now;
579 root 1.1
580 root 1.41 if (methods == EVMETHOD_AUTO)
581 root 1.56 if (!enable_secure () && getenv ("LIBEV_METHODS"))
582     methods = atoi (getenv ("LIBEV_METHODS"));
583 root 1.50 else
584     methods = EVMETHOD_ANY;
585 root 1.41
586 root 1.51 method = 0;
587 root 1.44 #if EV_USE_KQUEUE
588 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
589 root 1.44 #endif
590 root 1.29 #if EV_USE_EPOLL
591 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
592 root 1.41 #endif
593 root 1.51 #if EV_USEV_POLL
594     if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
595 root 1.1 #endif
596 root 1.29 #if EV_USE_SELECT
597 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
598 root 1.1 #endif
599 root 1.56 }
600     }
601    
602     void
603     loop_destroy (EV_P)
604     {
605     #if EV_USE_KQUEUE
606     if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
607     #endif
608     #if EV_USE_EPOLL
609     if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
610     #endif
611     #if EV_USEV_POLL
612     if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
613     #endif
614     #if EV_USE_SELECT
615     if (method == EVMETHOD_SELECT) select_destroy (EV_A);
616     #endif
617 root 1.1
618 root 1.56 method = 0;
619     /*TODO*/
620     }
621 root 1.22
622 root 1.56 void
623     loop_fork (EV_P)
624     {
625     /*TODO*/
626     #if EV_USE_EPOLL
627     if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
628     #endif
629     #if EV_USE_KQUEUE
630     if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
631 root 1.45 #endif
632 root 1.1 }
633    
634 root 1.55 #if EV_MULTIPLICITY
635 root 1.54 struct ev_loop *
636     ev_loop_new (int methods)
637     {
638     struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
639    
640 root 1.56 loop_init (EV_A_ methods);
641    
642     if (ev_methods (EV_A))
643 root 1.55 return loop;
644 root 1.54
645 root 1.55 return 0;
646 root 1.54 }
647    
648     void
649 root 1.56 ev_loop_destroy (EV_P)
650 root 1.54 {
651 root 1.56 loop_destroy (EV_A);
652 root 1.54 free (loop);
653     }
654    
655 root 1.56 void
656     ev_loop_fork (EV_P)
657     {
658     loop_fork (EV_A);
659     }
660    
661     #endif
662    
663     #if EV_MULTIPLICITY
664     struct ev_loop default_loop_struct;
665     static struct ev_loop *default_loop;
666    
667     struct ev_loop *
668 root 1.54 #else
669 root 1.56 static int default_loop;
670 root 1.54
671     int
672 root 1.56 #endif
673     ev_default_loop (int methods)
674 root 1.54 {
675 root 1.56 if (sigpipe [0] == sigpipe [1])
676     if (pipe (sigpipe))
677     return 0;
678 root 1.54
679 root 1.56 if (!default_loop)
680     {
681     #if EV_MULTIPLICITY
682     struct ev_loop *loop = default_loop = &default_loop_struct;
683     #else
684     default_loop = 1;
685 root 1.54 #endif
686    
687 root 1.56 loop_init (EV_A_ methods);
688    
689     if (ev_method (EV_A))
690     {
691     ev_watcher_init (&sigev, sigcb);
692     ev_set_priority (&sigev, EV_MAXPRI);
693     siginit (EV_A);
694    
695     #ifndef WIN32
696     ev_signal_init (&childev, childcb, SIGCHLD);
697     ev_set_priority (&childev, EV_MAXPRI);
698     ev_signal_start (EV_A_ &childev);
699     ev_unref (EV_A); /* child watcher should not keep loop alive */
700     #endif
701     }
702     else
703     default_loop = 0;
704     }
705 root 1.8
706 root 1.56 return default_loop;
707 root 1.1 }
708    
709 root 1.24 void
710 root 1.56 ev_default_destroy (void)
711 root 1.1 {
712 root 1.57 #if EV_MULTIPLICITY
713 root 1.56 struct ev_loop *loop = default_loop;
714 root 1.57 #endif
715 root 1.56
716     ev_ref (EV_A); /* child watcher */
717     ev_signal_stop (EV_A_ &childev);
718    
719     ev_ref (EV_A); /* signal watcher */
720     ev_io_stop (EV_A_ &sigev);
721    
722     close (sigpipe [0]); sigpipe [0] = 0;
723     close (sigpipe [1]); sigpipe [1] = 0;
724    
725     loop_destroy (EV_A);
726 root 1.1 }
727    
728 root 1.24 void
729 root 1.56 ev_default_fork (EV_P)
730 root 1.1 {
731 root 1.56 loop_fork (EV_A);
732 root 1.7
733 root 1.54 ev_io_stop (EV_A_ &sigev);
734 root 1.7 close (sigpipe [0]);
735     close (sigpipe [1]);
736     pipe (sigpipe);
737 root 1.56
738     ev_ref (EV_A); /* signal watcher */
739 root 1.54 siginit (EV_A);
740 root 1.1 }
741    
742 root 1.8 /*****************************************************************************/
743    
744 root 1.1 static void
745 root 1.51 call_pending (EV_P)
746 root 1.1 {
747 root 1.42 int pri;
748    
749     for (pri = NUMPRI; pri--; )
750     while (pendingcnt [pri])
751     {
752     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
753 root 1.1
754 root 1.42 if (p->w)
755     {
756     p->w->pending = 0;
757 root 1.51 p->w->cb (EV_A_ p->w, p->events);
758 root 1.42 }
759     }
760 root 1.1 }
761    
762     static void
763 root 1.51 timers_reify (EV_P)
764 root 1.1 {
765 root 1.51 while (timercnt && timers [0]->at <= mn_now)
766 root 1.1 {
767     struct ev_timer *w = timers [0];
768    
769 root 1.4 /* first reschedule or stop timer */
770 root 1.1 if (w->repeat)
771     {
772 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
773 root 1.51 w->at = mn_now + w->repeat;
774 root 1.12 downheap ((WT *)timers, timercnt, 0);
775     }
776     else
777 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
778 root 1.30
779 root 1.54 event (EV_A_ (W)w, EV_TIMEOUT);
780 root 1.12 }
781     }
782 root 1.4
783 root 1.12 static void
784 root 1.51 periodics_reify (EV_P)
785 root 1.12 {
786 root 1.51 while (periodiccnt && periodics [0]->at <= rt_now)
787 root 1.12 {
788     struct ev_periodic *w = periodics [0];
789 root 1.1
790 root 1.12 /* first reschedule or stop timer */
791     if (w->interval)
792     {
793 root 1.51 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
794     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
795 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
796 root 1.1 }
797     else
798 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
799 root 1.12
800 root 1.51 event (EV_A_ (W)w, EV_PERIODIC);
801 root 1.12 }
802     }
803    
804     static void
805 root 1.54 periodics_reschedule (EV_P)
806 root 1.12 {
807     int i;
808    
809 root 1.13 /* adjust periodics after time jump */
810 root 1.12 for (i = 0; i < periodiccnt; ++i)
811     {
812     struct ev_periodic *w = periodics [i];
813    
814     if (w->interval)
815 root 1.4 {
816 root 1.51 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
817 root 1.12
818     if (fabs (diff) >= 1e-4)
819     {
820 root 1.51 ev_periodic_stop (EV_A_ w);
821     ev_periodic_start (EV_A_ w);
822 root 1.12
823     i = 0; /* restart loop, inefficient, but time jumps should be rare */
824     }
825 root 1.4 }
826 root 1.12 }
827 root 1.1 }
828    
829 root 1.51 inline int
830     time_update_monotonic (EV_P)
831 root 1.40 {
832 root 1.51 mn_now = get_clock ();
833 root 1.40
834 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
835 root 1.40 {
836 root 1.54 rt_now = rtmn_diff + mn_now;
837 root 1.40 return 0;
838     }
839     else
840     {
841 root 1.51 now_floor = mn_now;
842     rt_now = ev_time ();
843 root 1.40 return 1;
844     }
845     }
846    
847 root 1.4 static void
848 root 1.51 time_update (EV_P)
849 root 1.4 {
850     int i;
851 root 1.12
852 root 1.40 #if EV_USE_MONOTONIC
853     if (expect_true (have_monotonic))
854     {
855 root 1.51 if (time_update_monotonic (EV_A))
856 root 1.40 {
857 root 1.54 ev_tstamp odiff = rtmn_diff;
858 root 1.4
859 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
860     {
861 root 1.54 rtmn_diff = rt_now - mn_now;
862 root 1.4
863 root 1.54 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
864 root 1.40 return; /* all is well */
865 root 1.4
866 root 1.51 rt_now = ev_time ();
867     mn_now = get_clock ();
868     now_floor = mn_now;
869 root 1.40 }
870 root 1.4
871 root 1.54 periodics_reschedule (EV_A);
872 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
873 root 1.54 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
874 root 1.4 }
875     }
876     else
877 root 1.40 #endif
878 root 1.4 {
879 root 1.51 rt_now = ev_time ();
880 root 1.40
881 root 1.51 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
882 root 1.13 {
883 root 1.54 periodics_reschedule (EV_A);
884 root 1.13
885     /* adjust timers. this is easy, as the offset is the same for all */
886     for (i = 0; i < timercnt; ++i)
887 root 1.54 timers [i]->at += rt_now - mn_now;
888 root 1.13 }
889 root 1.4
890 root 1.51 mn_now = rt_now;
891 root 1.4 }
892     }
893    
894 root 1.51 void
895     ev_ref (EV_P)
896     {
897     ++activecnt;
898     }
899 root 1.1
900 root 1.51 void
901     ev_unref (EV_P)
902     {
903     --activecnt;
904     }
905    
906     static int loop_done;
907    
908     void
909     ev_loop (EV_P_ int flags)
910 root 1.1 {
911     double block;
912 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
913 root 1.1
914 root 1.20 do
915 root 1.9 {
916 root 1.20 /* queue check watchers (and execute them) */
917 root 1.40 if (expect_false (preparecnt))
918 root 1.20 {
919 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
920     call_pending (EV_A);
921 root 1.20 }
922 root 1.9
923 root 1.1 /* update fd-related kernel structures */
924 root 1.51 fd_reify (EV_A);
925 root 1.1
926     /* calculate blocking time */
927 root 1.12
928 root 1.21 /* we only need this for !monotonic clockor timers, but as we basically
929     always have timers, we just calculate it always */
930 root 1.40 #if EV_USE_MONOTONIC
931     if (expect_true (have_monotonic))
932 root 1.51 time_update_monotonic (EV_A);
933 root 1.40 else
934     #endif
935     {
936 root 1.51 rt_now = ev_time ();
937     mn_now = rt_now;
938 root 1.40 }
939 root 1.12
940 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
941 root 1.1 block = 0.;
942     else
943     {
944 root 1.4 block = MAX_BLOCKTIME;
945    
946 root 1.12 if (timercnt)
947 root 1.4 {
948 root 1.51 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
949 root 1.4 if (block > to) block = to;
950     }
951    
952 root 1.12 if (periodiccnt)
953 root 1.4 {
954 root 1.51 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
955 root 1.4 if (block > to) block = to;
956     }
957    
958 root 1.1 if (block < 0.) block = 0.;
959     }
960    
961 root 1.51 method_poll (EV_A_ block);
962 root 1.1
963 root 1.51 /* update rt_now, do magic */
964     time_update (EV_A);
965 root 1.4
966 root 1.9 /* queue pending timers and reschedule them */
967 root 1.51 timers_reify (EV_A); /* relative timers called last */
968     periodics_reify (EV_A); /* absolute timers called first */
969 root 1.1
970 root 1.9 /* queue idle watchers unless io or timers are pending */
971     if (!pendingcnt)
972 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
973 root 1.9
974 root 1.20 /* queue check watchers, to be executed first */
975     if (checkcnt)
976 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
977 root 1.9
978 root 1.51 call_pending (EV_A);
979 root 1.1 }
980 root 1.51 while (activecnt && !loop_done);
981 root 1.13
982 root 1.51 if (loop_done != 2)
983     loop_done = 0;
984     }
985    
986     void
987     ev_unloop (EV_P_ int how)
988     {
989     loop_done = how;
990 root 1.1 }
991    
992 root 1.8 /*****************************************************************************/
993    
994 root 1.51 inline void
995 root 1.10 wlist_add (WL *head, WL elem)
996 root 1.1 {
997     elem->next = *head;
998     *head = elem;
999     }
1000    
1001 root 1.51 inline void
1002 root 1.10 wlist_del (WL *head, WL elem)
1003 root 1.1 {
1004     while (*head)
1005     {
1006     if (*head == elem)
1007     {
1008     *head = elem->next;
1009     return;
1010     }
1011    
1012     head = &(*head)->next;
1013     }
1014     }
1015    
1016 root 1.51 inline void
1017     ev_clear_pending (EV_P_ W w)
1018 root 1.16 {
1019     if (w->pending)
1020     {
1021 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1022 root 1.16 w->pending = 0;
1023     }
1024     }
1025    
1026 root 1.51 inline void
1027     ev_start (EV_P_ W w, int active)
1028 root 1.1 {
1029 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1030     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1031    
1032 root 1.1 w->active = active;
1033 root 1.51 ev_ref (EV_A);
1034 root 1.1 }
1035    
1036 root 1.51 inline void
1037     ev_stop (EV_P_ W w)
1038 root 1.1 {
1039 root 1.51 ev_unref (EV_A);
1040 root 1.1 w->active = 0;
1041     }
1042    
1043 root 1.8 /*****************************************************************************/
1044    
1045 root 1.1 void
1046 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
1047 root 1.1 {
1048 root 1.37 int fd = w->fd;
1049    
1050 root 1.1 if (ev_is_active (w))
1051     return;
1052    
1053 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
1054    
1055 root 1.51 ev_start (EV_A_ (W)w, 1);
1056 root 1.1 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1057 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1058 root 1.1
1059 root 1.51 fd_change (EV_A_ fd);
1060 root 1.1 }
1061    
1062     void
1063 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
1064 root 1.1 {
1065 root 1.51 ev_clear_pending (EV_A_ (W)w);
1066 root 1.1 if (!ev_is_active (w))
1067     return;
1068    
1069 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1070 root 1.51 ev_stop (EV_A_ (W)w);
1071 root 1.1
1072 root 1.51 fd_change (EV_A_ w->fd);
1073 root 1.1 }
1074    
1075     void
1076 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1077 root 1.1 {
1078     if (ev_is_active (w))
1079     return;
1080    
1081 root 1.51 w->at += mn_now;
1082 root 1.12
1083 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1084 root 1.13
1085 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1086 root 1.12 array_needsize (timers, timermax, timercnt, );
1087     timers [timercnt - 1] = w;
1088     upheap ((WT *)timers, timercnt - 1);
1089     }
1090    
1091     void
1092 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1093 root 1.12 {
1094 root 1.51 ev_clear_pending (EV_A_ (W)w);
1095 root 1.12 if (!ev_is_active (w))
1096     return;
1097    
1098     if (w->active < timercnt--)
1099 root 1.1 {
1100 root 1.12 timers [w->active - 1] = timers [timercnt];
1101     downheap ((WT *)timers, timercnt, w->active - 1);
1102     }
1103 root 1.4
1104 root 1.14 w->at = w->repeat;
1105    
1106 root 1.51 ev_stop (EV_A_ (W)w);
1107 root 1.12 }
1108 root 1.4
1109 root 1.12 void
1110 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1111 root 1.14 {
1112     if (ev_is_active (w))
1113     {
1114     if (w->repeat)
1115     {
1116 root 1.51 w->at = mn_now + w->repeat;
1117 root 1.14 downheap ((WT *)timers, timercnt, w->active - 1);
1118     }
1119     else
1120 root 1.51 ev_timer_stop (EV_A_ w);
1121 root 1.14 }
1122     else if (w->repeat)
1123 root 1.51 ev_timer_start (EV_A_ w);
1124 root 1.14 }
1125    
1126     void
1127 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1128 root 1.12 {
1129     if (ev_is_active (w))
1130     return;
1131 root 1.1
1132 root 1.33 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1133 root 1.13
1134 root 1.12 /* this formula differs from the one in periodic_reify because we do not always round up */
1135     if (w->interval)
1136 root 1.51 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1137 root 1.12
1138 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1139 root 1.12 array_needsize (periodics, periodicmax, periodiccnt, );
1140     periodics [periodiccnt - 1] = w;
1141     upheap ((WT *)periodics, periodiccnt - 1);
1142 root 1.1 }
1143    
1144     void
1145 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1146 root 1.1 {
1147 root 1.51 ev_clear_pending (EV_A_ (W)w);
1148 root 1.1 if (!ev_is_active (w))
1149     return;
1150    
1151 root 1.12 if (w->active < periodiccnt--)
1152 root 1.2 {
1153 root 1.12 periodics [w->active - 1] = periodics [periodiccnt];
1154     downheap ((WT *)periodics, periodiccnt, w->active - 1);
1155 root 1.2 }
1156    
1157 root 1.51 ev_stop (EV_A_ (W)w);
1158 root 1.1 }
1159    
1160 root 1.28 void
1161 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1162 root 1.9 {
1163     if (ev_is_active (w))
1164     return;
1165    
1166 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1167 root 1.9 array_needsize (idles, idlemax, idlecnt, );
1168     idles [idlecnt - 1] = w;
1169     }
1170    
1171 root 1.28 void
1172 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1173 root 1.9 {
1174 root 1.51 ev_clear_pending (EV_A_ (W)w);
1175 root 1.16 if (ev_is_active (w))
1176     return;
1177    
1178 root 1.9 idles [w->active - 1] = idles [--idlecnt];
1179 root 1.51 ev_stop (EV_A_ (W)w);
1180 root 1.9 }
1181    
1182 root 1.28 void
1183 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1184 root 1.20 {
1185     if (ev_is_active (w))
1186     return;
1187    
1188 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1189 root 1.20 array_needsize (prepares, preparemax, preparecnt, );
1190     prepares [preparecnt - 1] = w;
1191     }
1192    
1193 root 1.28 void
1194 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1195 root 1.20 {
1196 root 1.51 ev_clear_pending (EV_A_ (W)w);
1197 root 1.20 if (ev_is_active (w))
1198     return;
1199    
1200     prepares [w->active - 1] = prepares [--preparecnt];
1201 root 1.51 ev_stop (EV_A_ (W)w);
1202 root 1.20 }
1203    
1204 root 1.28 void
1205 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1206 root 1.9 {
1207     if (ev_is_active (w))
1208     return;
1209    
1210 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1211 root 1.9 array_needsize (checks, checkmax, checkcnt, );
1212     checks [checkcnt - 1] = w;
1213     }
1214    
1215 root 1.28 void
1216 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1217 root 1.9 {
1218 root 1.51 ev_clear_pending (EV_A_ (W)w);
1219 root 1.16 if (ev_is_active (w))
1220     return;
1221    
1222 root 1.9 checks [w->active - 1] = checks [--checkcnt];
1223 root 1.51 ev_stop (EV_A_ (W)w);
1224 root 1.9 }
1225    
1226 root 1.56 #ifndef SA_RESTART
1227     # define SA_RESTART 0
1228     #endif
1229    
1230     void
1231     ev_signal_start (EV_P_ struct ev_signal *w)
1232     {
1233     #if EV_MULTIPLICITY
1234     assert (("signal watchers are only supported in the default loop", loop == default_loop));
1235     #endif
1236     if (ev_is_active (w))
1237     return;
1238    
1239     assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1240    
1241     ev_start (EV_A_ (W)w, 1);
1242     array_needsize (signals, signalmax, w->signum, signals_init);
1243     wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1244    
1245     if (!w->next)
1246     {
1247     struct sigaction sa;
1248     sa.sa_handler = sighandler;
1249     sigfillset (&sa.sa_mask);
1250     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1251     sigaction (w->signum, &sa, 0);
1252     }
1253     }
1254    
1255     void
1256     ev_signal_stop (EV_P_ struct ev_signal *w)
1257     {
1258     ev_clear_pending (EV_A_ (W)w);
1259     if (!ev_is_active (w))
1260     return;
1261    
1262     wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1263     ev_stop (EV_A_ (W)w);
1264    
1265     if (!signals [w->signum - 1].head)
1266     signal (w->signum, SIG_DFL);
1267     }
1268    
1269 root 1.28 void
1270 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1271 root 1.22 {
1272 root 1.56 #if EV_MULTIPLICITY
1273     assert (("child watchers are only supported in the default loop", loop == default_loop));
1274     #endif
1275 root 1.22 if (ev_is_active (w))
1276     return;
1277    
1278 root 1.51 ev_start (EV_A_ (W)w, 1);
1279 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1280     }
1281    
1282 root 1.28 void
1283 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1284 root 1.22 {
1285 root 1.51 ev_clear_pending (EV_A_ (W)w);
1286 root 1.22 if (ev_is_active (w))
1287     return;
1288    
1289     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1290 root 1.51 ev_stop (EV_A_ (W)w);
1291 root 1.22 }
1292    
1293 root 1.1 /*****************************************************************************/
1294 root 1.10
1295 root 1.16 struct ev_once
1296     {
1297     struct ev_io io;
1298     struct ev_timer to;
1299     void (*cb)(int revents, void *arg);
1300     void *arg;
1301     };
1302    
1303     static void
1304 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1305 root 1.16 {
1306     void (*cb)(int revents, void *arg) = once->cb;
1307     void *arg = once->arg;
1308    
1309 root 1.51 ev_io_stop (EV_A_ &once->io);
1310     ev_timer_stop (EV_A_ &once->to);
1311 root 1.16 free (once);
1312    
1313     cb (revents, arg);
1314     }
1315    
1316     static void
1317 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1318 root 1.16 {
1319 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1320 root 1.16 }
1321    
1322     static void
1323 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1324 root 1.16 {
1325 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1326 root 1.16 }
1327    
1328     void
1329 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1330 root 1.16 {
1331     struct ev_once *once = malloc (sizeof (struct ev_once));
1332    
1333     if (!once)
1334 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1335 root 1.16 else
1336     {
1337     once->cb = cb;
1338     once->arg = arg;
1339    
1340 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1341 root 1.16 if (fd >= 0)
1342     {
1343 root 1.28 ev_io_set (&once->io, fd, events);
1344 root 1.51 ev_io_start (EV_A_ &once->io);
1345 root 1.16 }
1346    
1347 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1348 root 1.16 if (timeout >= 0.)
1349     {
1350 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1351 root 1.51 ev_timer_start (EV_A_ &once->to);
1352 root 1.16 }
1353     }
1354     }
1355