ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.59
Committed: Sun Nov 4 18:15:16 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.58: +11 -9 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.59 #ifndef EV_STANDALONE
32 root 1.29 # include "config.h"
33     #endif
34 root 1.17
35 root 1.1 #include <math.h>
36     #include <stdlib.h>
37 root 1.7 #include <unistd.h>
38     #include <fcntl.h>
39     #include <signal.h>
40 root 1.16 #include <stddef.h>
41 root 1.1
42     #include <stdio.h>
43    
44 root 1.4 #include <assert.h>
45 root 1.1 #include <errno.h>
46 root 1.22 #include <sys/types.h>
47 root 1.45 #ifndef WIN32
48     # include <sys/wait.h>
49     #endif
50 root 1.1 #include <sys/time.h>
51     #include <time.h>
52    
53 root 1.40 /**/
54    
55 root 1.29 #ifndef EV_USE_MONOTONIC
56 root 1.37 # define EV_USE_MONOTONIC 1
57     #endif
58    
59 root 1.29 #ifndef EV_USE_SELECT
60     # define EV_USE_SELECT 1
61 root 1.10 #endif
62    
63 root 1.59 #ifndef EV_USE_POLL
64     # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65 root 1.41 #endif
66    
67 root 1.29 #ifndef EV_USE_EPOLL
68     # define EV_USE_EPOLL 0
69 root 1.10 #endif
70    
71 root 1.44 #ifndef EV_USE_KQUEUE
72     # define EV_USE_KQUEUE 0
73     #endif
74    
75 root 1.40 #ifndef EV_USE_REALTIME
76     # define EV_USE_REALTIME 1
77     #endif
78    
79     /**/
80    
81     #ifndef CLOCK_MONOTONIC
82     # undef EV_USE_MONOTONIC
83     # define EV_USE_MONOTONIC 0
84     #endif
85    
86 root 1.31 #ifndef CLOCK_REALTIME
87 root 1.40 # undef EV_USE_REALTIME
88 root 1.31 # define EV_USE_REALTIME 0
89     #endif
90 root 1.40
91     /**/
92 root 1.1
93 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 root 1.1
98 root 1.59 #include "ev.h"
99 root 1.1
100 root 1.40 #if __GNUC__ >= 3
101     # define expect(expr,value) __builtin_expect ((expr),(value))
102     # define inline inline
103     #else
104     # define expect(expr,value) (expr)
105     # define inline static
106     #endif
107    
108     #define expect_false(expr) expect ((expr) != 0, 0)
109     #define expect_true(expr) expect ((expr) != 0, 1)
110    
111 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
113    
114 root 1.10 typedef struct ev_watcher *W;
115     typedef struct ev_watcher_list *WL;
116 root 1.12 typedef struct ev_watcher_time *WT;
117 root 1.10
118 root 1.54 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119    
120 root 1.53 /*****************************************************************************/
121 root 1.1
122 root 1.53 typedef struct
123     {
124     struct ev_watcher_list *head;
125     unsigned char events;
126     unsigned char reify;
127     } ANFD;
128 root 1.1
129 root 1.53 typedef struct
130     {
131     W w;
132     int events;
133     } ANPENDING;
134 root 1.51
135 root 1.55 #if EV_MULTIPLICITY
136 root 1.54
137 root 1.53 struct ev_loop
138     {
139 root 1.54 # define VAR(name,decl) decl;
140 root 1.53 # include "ev_vars.h"
141     };
142 root 1.54 # undef VAR
143     # include "ev_wrap.h"
144    
145 root 1.53 #else
146 root 1.54
147     # define VAR(name,decl) static decl;
148 root 1.53 # include "ev_vars.h"
149 root 1.54 # undef VAR
150    
151 root 1.51 #endif
152 root 1.1
153 root 1.8 /*****************************************************************************/
154    
155 root 1.51 inline ev_tstamp
156 root 1.1 ev_time (void)
157     {
158 root 1.29 #if EV_USE_REALTIME
159 root 1.1 struct timespec ts;
160     clock_gettime (CLOCK_REALTIME, &ts);
161     return ts.tv_sec + ts.tv_nsec * 1e-9;
162     #else
163     struct timeval tv;
164     gettimeofday (&tv, 0);
165     return tv.tv_sec + tv.tv_usec * 1e-6;
166     #endif
167     }
168    
169 root 1.51 inline ev_tstamp
170 root 1.1 get_clock (void)
171     {
172 root 1.29 #if EV_USE_MONOTONIC
173 root 1.40 if (expect_true (have_monotonic))
174 root 1.1 {
175     struct timespec ts;
176     clock_gettime (CLOCK_MONOTONIC, &ts);
177     return ts.tv_sec + ts.tv_nsec * 1e-9;
178     }
179     #endif
180    
181     return ev_time ();
182     }
183    
184 root 1.51 ev_tstamp
185     ev_now (EV_P)
186     {
187     return rt_now;
188     }
189    
190 root 1.30 #define array_roundsize(base,n) ((n) | 4 & ~3)
191 root 1.29
192 root 1.1 #define array_needsize(base,cur,cnt,init) \
193 root 1.40 if (expect_false ((cnt) > cur)) \
194 root 1.1 { \
195 root 1.23 int newcnt = cur; \
196     do \
197     { \
198 root 1.30 newcnt = array_roundsize (base, newcnt << 1); \
199 root 1.23 } \
200     while ((cnt) > newcnt); \
201     \
202 root 1.1 base = realloc (base, sizeof (*base) * (newcnt)); \
203     init (base + cur, newcnt - cur); \
204     cur = newcnt; \
205     }
206    
207 root 1.8 /*****************************************************************************/
208    
209 root 1.1 static void
210     anfds_init (ANFD *base, int count)
211     {
212     while (count--)
213     {
214 root 1.27 base->head = 0;
215     base->events = EV_NONE;
216 root 1.33 base->reify = 0;
217    
218 root 1.1 ++base;
219     }
220     }
221    
222     static void
223 root 1.51 event (EV_P_ W w, int events)
224 root 1.1 {
225 root 1.32 if (w->pending)
226     {
227 root 1.42 pendings [ABSPRI (w)][w->pending - 1].events |= events;
228 root 1.32 return;
229     }
230    
231 root 1.42 w->pending = ++pendingcnt [ABSPRI (w)];
232     array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233     pendings [ABSPRI (w)][w->pending - 1].w = w;
234     pendings [ABSPRI (w)][w->pending - 1].events = events;
235 root 1.1 }
236    
237     static void
238 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
239 root 1.27 {
240     int i;
241    
242     for (i = 0; i < eventcnt; ++i)
243 root 1.51 event (EV_A_ events [i], type);
244 root 1.27 }
245    
246     static void
247 root 1.51 fd_event (EV_P_ int fd, int events)
248 root 1.1 {
249     ANFD *anfd = anfds + fd;
250     struct ev_io *w;
251    
252 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
253 root 1.1 {
254     int ev = w->events & events;
255    
256     if (ev)
257 root 1.51 event (EV_A_ (W)w, ev);
258 root 1.1 }
259     }
260    
261 root 1.27 /*****************************************************************************/
262    
263 root 1.9 static void
264 root 1.51 fd_reify (EV_P)
265 root 1.9 {
266     int i;
267    
268 root 1.27 for (i = 0; i < fdchangecnt; ++i)
269     {
270     int fd = fdchanges [i];
271     ANFD *anfd = anfds + fd;
272     struct ev_io *w;
273    
274     int events = 0;
275    
276 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 root 1.27 events |= w->events;
278    
279 root 1.33 anfd->reify = 0;
280 root 1.27
281     if (anfd->events != events)
282     {
283 root 1.51 method_modify (EV_A_ fd, anfd->events, events);
284 root 1.27 anfd->events = events;
285     }
286     }
287    
288     fdchangecnt = 0;
289     }
290    
291     static void
292 root 1.51 fd_change (EV_P_ int fd)
293 root 1.27 {
294 root 1.33 if (anfds [fd].reify || fdchangecnt < 0)
295 root 1.27 return;
296    
297 root 1.33 anfds [fd].reify = 1;
298 root 1.27
299     ++fdchangecnt;
300     array_needsize (fdchanges, fdchangemax, fdchangecnt, );
301     fdchanges [fdchangecnt - 1] = fd;
302 root 1.9 }
303    
304 root 1.41 static void
305 root 1.51 fd_kill (EV_P_ int fd)
306 root 1.41 {
307     struct ev_io *w;
308    
309 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
310 root 1.41 {
311 root 1.51 ev_io_stop (EV_A_ w);
312     event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 root 1.41 }
314     }
315    
316 root 1.19 /* called on EBADF to verify fds */
317     static void
318 root 1.51 fd_ebadf (EV_P)
319 root 1.19 {
320     int fd;
321    
322     for (fd = 0; fd < anfdmax; ++fd)
323 root 1.27 if (anfds [fd].events)
324 root 1.19 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
325 root 1.51 fd_kill (EV_A_ fd);
326 root 1.41 }
327    
328     /* called on ENOMEM in select/poll to kill some fds and retry */
329     static void
330 root 1.51 fd_enomem (EV_P)
331 root 1.41 {
332     int fd = anfdmax;
333    
334     while (fd--)
335     if (anfds [fd].events)
336     {
337     close (fd);
338 root 1.51 fd_kill (EV_A_ fd);
339 root 1.41 return;
340     }
341 root 1.19 }
342    
343 root 1.56 /* susually called after fork if method needs to re-arm all fds from scratch */
344     static void
345     fd_rearm_all (EV_P)
346     {
347     int fd;
348    
349     /* this should be highly optimised to not do anything but set a flag */
350     for (fd = 0; fd < anfdmax; ++fd)
351     if (anfds [fd].events)
352     {
353     anfds [fd].events = 0;
354     fd_change (fd);
355     }
356     }
357    
358 root 1.8 /*****************************************************************************/
359    
360 root 1.1 static void
361 root 1.54 upheap (WT *heap, int k)
362 root 1.1 {
363 root 1.54 WT w = heap [k];
364 root 1.1
365 root 1.54 while (k && heap [k >> 1]->at > w->at)
366 root 1.1 {
367 root 1.54 heap [k] = heap [k >> 1];
368     heap [k]->active = k + 1;
369 root 1.1 k >>= 1;
370     }
371    
372 root 1.54 heap [k] = w;
373     heap [k]->active = k + 1;
374 root 1.1
375     }
376    
377     static void
378 root 1.54 downheap (WT *heap, int N, int k)
379 root 1.1 {
380 root 1.54 WT w = heap [k];
381 root 1.1
382 root 1.4 while (k < (N >> 1))
383 root 1.1 {
384     int j = k << 1;
385    
386 root 1.54 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
387 root 1.1 ++j;
388    
389 root 1.54 if (w->at <= heap [j]->at)
390 root 1.1 break;
391    
392 root 1.54 heap [k] = heap [j];
393     heap [k]->active = k + 1;
394 root 1.1 k = j;
395     }
396    
397 root 1.54 heap [k] = w;
398     heap [k]->active = k + 1;
399 root 1.1 }
400    
401 root 1.8 /*****************************************************************************/
402    
403 root 1.7 typedef struct
404     {
405 root 1.50 struct ev_watcher_list *head;
406 root 1.34 sig_atomic_t volatile gotsig;
407 root 1.7 } ANSIG;
408    
409     static ANSIG *signals;
410 root 1.4 static int signalmax;
411 root 1.1
412 root 1.7 static int sigpipe [2];
413 root 1.34 static sig_atomic_t volatile gotsig;
414 root 1.59 static struct ev_io sigev;
415 root 1.7
416 root 1.1 static void
417 root 1.7 signals_init (ANSIG *base, int count)
418 root 1.1 {
419     while (count--)
420 root 1.7 {
421     base->head = 0;
422     base->gotsig = 0;
423 root 1.33
424 root 1.7 ++base;
425     }
426     }
427    
428     static void
429     sighandler (int signum)
430     {
431     signals [signum - 1].gotsig = 1;
432    
433     if (!gotsig)
434     {
435 root 1.48 int old_errno = errno;
436 root 1.7 gotsig = 1;
437 root 1.34 write (sigpipe [1], &signum, 1);
438 root 1.48 errno = old_errno;
439 root 1.7 }
440     }
441    
442     static void
443 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
444 root 1.7 {
445 root 1.50 struct ev_watcher_list *w;
446 root 1.38 int signum;
447 root 1.7
448 root 1.34 read (sigpipe [0], &revents, 1);
449 root 1.7 gotsig = 0;
450    
451 root 1.38 for (signum = signalmax; signum--; )
452     if (signals [signum].gotsig)
453 root 1.7 {
454 root 1.38 signals [signum].gotsig = 0;
455 root 1.7
456 root 1.38 for (w = signals [signum].head; w; w = w->next)
457 root 1.51 event (EV_A_ (W)w, EV_SIGNAL);
458 root 1.7 }
459     }
460    
461     static void
462 root 1.51 siginit (EV_P)
463 root 1.7 {
464 root 1.45 #ifndef WIN32
465 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
466     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
467    
468     /* rather than sort out wether we really need nb, set it */
469     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
470     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
471 root 1.45 #endif
472 root 1.7
473 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
474 root 1.54 ev_io_start (EV_A_ &sigev);
475 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
476 root 1.1 }
477    
478 root 1.8 /*****************************************************************************/
479    
480 root 1.45 #ifndef WIN32
481    
482 root 1.59 static struct ev_child *childs [PID_HASHSIZE];
483     static struct ev_signal childev;
484    
485 root 1.22 #ifndef WCONTINUED
486     # define WCONTINUED 0
487     #endif
488    
489     static void
490 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
491 root 1.47 {
492     struct ev_child *w;
493    
494 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
495 root 1.47 if (w->pid == pid || !w->pid)
496     {
497     w->priority = sw->priority; /* need to do it *now* */
498     w->rpid = pid;
499     w->rstatus = status;
500 root 1.51 event (EV_A_ (W)w, EV_CHILD);
501 root 1.47 }
502     }
503    
504     static void
505 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
506 root 1.22 {
507     int pid, status;
508    
509 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
510     {
511     /* make sure we are called again until all childs have been reaped */
512 root 1.51 event (EV_A_ (W)sw, EV_SIGNAL);
513 root 1.47
514 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
515     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
516 root 1.47 }
517 root 1.22 }
518    
519 root 1.45 #endif
520    
521 root 1.22 /*****************************************************************************/
522    
523 root 1.44 #if EV_USE_KQUEUE
524     # include "ev_kqueue.c"
525     #endif
526 root 1.29 #if EV_USE_EPOLL
527 root 1.1 # include "ev_epoll.c"
528     #endif
529 root 1.59 #if EV_USE_POLL
530 root 1.41 # include "ev_poll.c"
531     #endif
532 root 1.29 #if EV_USE_SELECT
533 root 1.1 # include "ev_select.c"
534     #endif
535    
536 root 1.24 int
537     ev_version_major (void)
538     {
539     return EV_VERSION_MAJOR;
540     }
541    
542     int
543     ev_version_minor (void)
544     {
545     return EV_VERSION_MINOR;
546     }
547    
548 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
549 root 1.41 static int
550 root 1.51 enable_secure (void)
551 root 1.41 {
552 root 1.49 #ifdef WIN32
553     return 0;
554     #else
555 root 1.41 return getuid () != geteuid ()
556     || getgid () != getegid ();
557 root 1.49 #endif
558 root 1.41 }
559    
560 root 1.51 int
561     ev_method (EV_P)
562 root 1.1 {
563 root 1.51 return method;
564     }
565    
566 root 1.56 static void
567 root 1.54 loop_init (EV_P_ int methods)
568 root 1.51 {
569     if (!method)
570 root 1.23 {
571 root 1.29 #if EV_USE_MONOTONIC
572 root 1.23 {
573     struct timespec ts;
574     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
575     have_monotonic = 1;
576     }
577 root 1.1 #endif
578    
579 root 1.51 rt_now = ev_time ();
580     mn_now = get_clock ();
581     now_floor = mn_now;
582 root 1.54 rtmn_diff = rt_now - mn_now;
583 root 1.1
584 root 1.41 if (methods == EVMETHOD_AUTO)
585 root 1.56 if (!enable_secure () && getenv ("LIBEV_METHODS"))
586     methods = atoi (getenv ("LIBEV_METHODS"));
587 root 1.50 else
588     methods = EVMETHOD_ANY;
589 root 1.41
590 root 1.51 method = 0;
591 root 1.44 #if EV_USE_KQUEUE
592 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
593 root 1.44 #endif
594 root 1.29 #if EV_USE_EPOLL
595 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
596 root 1.41 #endif
597 root 1.59 #if EV_USE_POLL
598 root 1.51 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
599 root 1.1 #endif
600 root 1.29 #if EV_USE_SELECT
601 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
602 root 1.1 #endif
603 root 1.56 }
604     }
605    
606     void
607     loop_destroy (EV_P)
608     {
609     #if EV_USE_KQUEUE
610     if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
611     #endif
612     #if EV_USE_EPOLL
613     if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
614     #endif
615 root 1.59 #if EV_USE_POLL
616 root 1.56 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
617     #endif
618     #if EV_USE_SELECT
619     if (method == EVMETHOD_SELECT) select_destroy (EV_A);
620     #endif
621 root 1.1
622 root 1.56 method = 0;
623     /*TODO*/
624     }
625 root 1.22
626 root 1.56 void
627     loop_fork (EV_P)
628     {
629     /*TODO*/
630     #if EV_USE_EPOLL
631     if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
632     #endif
633     #if EV_USE_KQUEUE
634     if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
635 root 1.45 #endif
636 root 1.1 }
637    
638 root 1.55 #if EV_MULTIPLICITY
639 root 1.54 struct ev_loop *
640     ev_loop_new (int methods)
641     {
642     struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
643    
644 root 1.56 loop_init (EV_A_ methods);
645    
646     if (ev_methods (EV_A))
647 root 1.55 return loop;
648 root 1.54
649 root 1.55 return 0;
650 root 1.54 }
651    
652     void
653 root 1.56 ev_loop_destroy (EV_P)
654 root 1.54 {
655 root 1.56 loop_destroy (EV_A);
656 root 1.54 free (loop);
657     }
658    
659 root 1.56 void
660     ev_loop_fork (EV_P)
661     {
662     loop_fork (EV_A);
663     }
664    
665     #endif
666    
667     #if EV_MULTIPLICITY
668     struct ev_loop default_loop_struct;
669     static struct ev_loop *default_loop;
670    
671     struct ev_loop *
672 root 1.54 #else
673 root 1.56 static int default_loop;
674 root 1.54
675     int
676 root 1.56 #endif
677     ev_default_loop (int methods)
678 root 1.54 {
679 root 1.56 if (sigpipe [0] == sigpipe [1])
680     if (pipe (sigpipe))
681     return 0;
682 root 1.54
683 root 1.56 if (!default_loop)
684     {
685     #if EV_MULTIPLICITY
686     struct ev_loop *loop = default_loop = &default_loop_struct;
687     #else
688     default_loop = 1;
689 root 1.54 #endif
690    
691 root 1.56 loop_init (EV_A_ methods);
692    
693     if (ev_method (EV_A))
694     {
695     ev_watcher_init (&sigev, sigcb);
696     ev_set_priority (&sigev, EV_MAXPRI);
697     siginit (EV_A);
698    
699     #ifndef WIN32
700     ev_signal_init (&childev, childcb, SIGCHLD);
701     ev_set_priority (&childev, EV_MAXPRI);
702     ev_signal_start (EV_A_ &childev);
703     ev_unref (EV_A); /* child watcher should not keep loop alive */
704     #endif
705     }
706     else
707     default_loop = 0;
708     }
709 root 1.8
710 root 1.56 return default_loop;
711 root 1.1 }
712    
713 root 1.24 void
714 root 1.56 ev_default_destroy (void)
715 root 1.1 {
716 root 1.57 #if EV_MULTIPLICITY
717 root 1.56 struct ev_loop *loop = default_loop;
718 root 1.57 #endif
719 root 1.56
720     ev_ref (EV_A); /* child watcher */
721     ev_signal_stop (EV_A_ &childev);
722    
723     ev_ref (EV_A); /* signal watcher */
724     ev_io_stop (EV_A_ &sigev);
725    
726     close (sigpipe [0]); sigpipe [0] = 0;
727     close (sigpipe [1]); sigpipe [1] = 0;
728    
729     loop_destroy (EV_A);
730 root 1.1 }
731    
732 root 1.24 void
733 root 1.56 ev_default_fork (EV_P)
734 root 1.1 {
735 root 1.56 loop_fork (EV_A);
736 root 1.7
737 root 1.54 ev_io_stop (EV_A_ &sigev);
738 root 1.7 close (sigpipe [0]);
739     close (sigpipe [1]);
740     pipe (sigpipe);
741 root 1.56
742     ev_ref (EV_A); /* signal watcher */
743 root 1.54 siginit (EV_A);
744 root 1.1 }
745    
746 root 1.8 /*****************************************************************************/
747    
748 root 1.1 static void
749 root 1.51 call_pending (EV_P)
750 root 1.1 {
751 root 1.42 int pri;
752    
753     for (pri = NUMPRI; pri--; )
754     while (pendingcnt [pri])
755     {
756     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
757 root 1.1
758 root 1.42 if (p->w)
759     {
760     p->w->pending = 0;
761 root 1.51 p->w->cb (EV_A_ p->w, p->events);
762 root 1.42 }
763     }
764 root 1.1 }
765    
766     static void
767 root 1.51 timers_reify (EV_P)
768 root 1.1 {
769 root 1.51 while (timercnt && timers [0]->at <= mn_now)
770 root 1.1 {
771     struct ev_timer *w = timers [0];
772    
773 root 1.4 /* first reschedule or stop timer */
774 root 1.1 if (w->repeat)
775     {
776 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
777 root 1.51 w->at = mn_now + w->repeat;
778 root 1.12 downheap ((WT *)timers, timercnt, 0);
779     }
780     else
781 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
782 root 1.30
783 root 1.54 event (EV_A_ (W)w, EV_TIMEOUT);
784 root 1.12 }
785     }
786 root 1.4
787 root 1.12 static void
788 root 1.51 periodics_reify (EV_P)
789 root 1.12 {
790 root 1.51 while (periodiccnt && periodics [0]->at <= rt_now)
791 root 1.12 {
792     struct ev_periodic *w = periodics [0];
793 root 1.1
794 root 1.12 /* first reschedule or stop timer */
795     if (w->interval)
796     {
797 root 1.51 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
798     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
799 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
800 root 1.1 }
801     else
802 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
803 root 1.12
804 root 1.51 event (EV_A_ (W)w, EV_PERIODIC);
805 root 1.12 }
806     }
807    
808     static void
809 root 1.54 periodics_reschedule (EV_P)
810 root 1.12 {
811     int i;
812    
813 root 1.13 /* adjust periodics after time jump */
814 root 1.12 for (i = 0; i < periodiccnt; ++i)
815     {
816     struct ev_periodic *w = periodics [i];
817    
818     if (w->interval)
819 root 1.4 {
820 root 1.51 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
821 root 1.12
822     if (fabs (diff) >= 1e-4)
823     {
824 root 1.51 ev_periodic_stop (EV_A_ w);
825     ev_periodic_start (EV_A_ w);
826 root 1.12
827     i = 0; /* restart loop, inefficient, but time jumps should be rare */
828     }
829 root 1.4 }
830 root 1.12 }
831 root 1.1 }
832    
833 root 1.51 inline int
834     time_update_monotonic (EV_P)
835 root 1.40 {
836 root 1.51 mn_now = get_clock ();
837 root 1.40
838 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
839 root 1.40 {
840 root 1.54 rt_now = rtmn_diff + mn_now;
841 root 1.40 return 0;
842     }
843     else
844     {
845 root 1.51 now_floor = mn_now;
846     rt_now = ev_time ();
847 root 1.40 return 1;
848     }
849     }
850    
851 root 1.4 static void
852 root 1.51 time_update (EV_P)
853 root 1.4 {
854     int i;
855 root 1.12
856 root 1.40 #if EV_USE_MONOTONIC
857     if (expect_true (have_monotonic))
858     {
859 root 1.51 if (time_update_monotonic (EV_A))
860 root 1.40 {
861 root 1.54 ev_tstamp odiff = rtmn_diff;
862 root 1.4
863 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
864     {
865 root 1.54 rtmn_diff = rt_now - mn_now;
866 root 1.4
867 root 1.54 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
868 root 1.40 return; /* all is well */
869 root 1.4
870 root 1.51 rt_now = ev_time ();
871     mn_now = get_clock ();
872     now_floor = mn_now;
873 root 1.40 }
874 root 1.4
875 root 1.54 periodics_reschedule (EV_A);
876 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
877 root 1.54 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
878 root 1.4 }
879     }
880     else
881 root 1.40 #endif
882 root 1.4 {
883 root 1.51 rt_now = ev_time ();
884 root 1.40
885 root 1.51 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
886 root 1.13 {
887 root 1.54 periodics_reschedule (EV_A);
888 root 1.13
889     /* adjust timers. this is easy, as the offset is the same for all */
890     for (i = 0; i < timercnt; ++i)
891 root 1.54 timers [i]->at += rt_now - mn_now;
892 root 1.13 }
893 root 1.4
894 root 1.51 mn_now = rt_now;
895 root 1.4 }
896     }
897    
898 root 1.51 void
899     ev_ref (EV_P)
900     {
901     ++activecnt;
902     }
903 root 1.1
904 root 1.51 void
905     ev_unref (EV_P)
906     {
907     --activecnt;
908     }
909    
910     static int loop_done;
911    
912     void
913     ev_loop (EV_P_ int flags)
914 root 1.1 {
915     double block;
916 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
917 root 1.1
918 root 1.20 do
919 root 1.9 {
920 root 1.20 /* queue check watchers (and execute them) */
921 root 1.40 if (expect_false (preparecnt))
922 root 1.20 {
923 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
924     call_pending (EV_A);
925 root 1.20 }
926 root 1.9
927 root 1.1 /* update fd-related kernel structures */
928 root 1.51 fd_reify (EV_A);
929 root 1.1
930     /* calculate blocking time */
931 root 1.12
932 root 1.21 /* we only need this for !monotonic clockor timers, but as we basically
933     always have timers, we just calculate it always */
934 root 1.40 #if EV_USE_MONOTONIC
935     if (expect_true (have_monotonic))
936 root 1.51 time_update_monotonic (EV_A);
937 root 1.40 else
938     #endif
939     {
940 root 1.51 rt_now = ev_time ();
941     mn_now = rt_now;
942 root 1.40 }
943 root 1.12
944 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
945 root 1.1 block = 0.;
946     else
947     {
948 root 1.4 block = MAX_BLOCKTIME;
949    
950 root 1.12 if (timercnt)
951 root 1.4 {
952 root 1.51 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
953 root 1.4 if (block > to) block = to;
954     }
955    
956 root 1.12 if (periodiccnt)
957 root 1.4 {
958 root 1.51 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
959 root 1.4 if (block > to) block = to;
960     }
961    
962 root 1.1 if (block < 0.) block = 0.;
963     }
964    
965 root 1.51 method_poll (EV_A_ block);
966 root 1.1
967 root 1.51 /* update rt_now, do magic */
968     time_update (EV_A);
969 root 1.4
970 root 1.9 /* queue pending timers and reschedule them */
971 root 1.51 timers_reify (EV_A); /* relative timers called last */
972     periodics_reify (EV_A); /* absolute timers called first */
973 root 1.1
974 root 1.9 /* queue idle watchers unless io or timers are pending */
975     if (!pendingcnt)
976 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
977 root 1.9
978 root 1.20 /* queue check watchers, to be executed first */
979     if (checkcnt)
980 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
981 root 1.9
982 root 1.51 call_pending (EV_A);
983 root 1.1 }
984 root 1.51 while (activecnt && !loop_done);
985 root 1.13
986 root 1.51 if (loop_done != 2)
987     loop_done = 0;
988     }
989    
990     void
991     ev_unloop (EV_P_ int how)
992     {
993     loop_done = how;
994 root 1.1 }
995    
996 root 1.8 /*****************************************************************************/
997    
998 root 1.51 inline void
999 root 1.10 wlist_add (WL *head, WL elem)
1000 root 1.1 {
1001     elem->next = *head;
1002     *head = elem;
1003     }
1004    
1005 root 1.51 inline void
1006 root 1.10 wlist_del (WL *head, WL elem)
1007 root 1.1 {
1008     while (*head)
1009     {
1010     if (*head == elem)
1011     {
1012     *head = elem->next;
1013     return;
1014     }
1015    
1016     head = &(*head)->next;
1017     }
1018     }
1019    
1020 root 1.51 inline void
1021     ev_clear_pending (EV_P_ W w)
1022 root 1.16 {
1023     if (w->pending)
1024     {
1025 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1026 root 1.16 w->pending = 0;
1027     }
1028     }
1029    
1030 root 1.51 inline void
1031     ev_start (EV_P_ W w, int active)
1032 root 1.1 {
1033 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1034     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1035    
1036 root 1.1 w->active = active;
1037 root 1.51 ev_ref (EV_A);
1038 root 1.1 }
1039    
1040 root 1.51 inline void
1041     ev_stop (EV_P_ W w)
1042 root 1.1 {
1043 root 1.51 ev_unref (EV_A);
1044 root 1.1 w->active = 0;
1045     }
1046    
1047 root 1.8 /*****************************************************************************/
1048    
1049 root 1.1 void
1050 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
1051 root 1.1 {
1052 root 1.37 int fd = w->fd;
1053    
1054 root 1.1 if (ev_is_active (w))
1055     return;
1056    
1057 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
1058    
1059 root 1.51 ev_start (EV_A_ (W)w, 1);
1060 root 1.1 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1061 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1062 root 1.1
1063 root 1.51 fd_change (EV_A_ fd);
1064 root 1.1 }
1065    
1066     void
1067 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
1068 root 1.1 {
1069 root 1.51 ev_clear_pending (EV_A_ (W)w);
1070 root 1.1 if (!ev_is_active (w))
1071     return;
1072    
1073 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1074 root 1.51 ev_stop (EV_A_ (W)w);
1075 root 1.1
1076 root 1.51 fd_change (EV_A_ w->fd);
1077 root 1.1 }
1078    
1079     void
1080 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1081 root 1.1 {
1082     if (ev_is_active (w))
1083     return;
1084    
1085 root 1.51 w->at += mn_now;
1086 root 1.12
1087 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1088 root 1.13
1089 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1090 root 1.12 array_needsize (timers, timermax, timercnt, );
1091     timers [timercnt - 1] = w;
1092     upheap ((WT *)timers, timercnt - 1);
1093     }
1094    
1095     void
1096 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1097 root 1.12 {
1098 root 1.51 ev_clear_pending (EV_A_ (W)w);
1099 root 1.12 if (!ev_is_active (w))
1100     return;
1101    
1102     if (w->active < timercnt--)
1103 root 1.1 {
1104 root 1.12 timers [w->active - 1] = timers [timercnt];
1105     downheap ((WT *)timers, timercnt, w->active - 1);
1106     }
1107 root 1.4
1108 root 1.14 w->at = w->repeat;
1109    
1110 root 1.51 ev_stop (EV_A_ (W)w);
1111 root 1.12 }
1112 root 1.4
1113 root 1.12 void
1114 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1115 root 1.14 {
1116     if (ev_is_active (w))
1117     {
1118     if (w->repeat)
1119     {
1120 root 1.51 w->at = mn_now + w->repeat;
1121 root 1.14 downheap ((WT *)timers, timercnt, w->active - 1);
1122     }
1123     else
1124 root 1.51 ev_timer_stop (EV_A_ w);
1125 root 1.14 }
1126     else if (w->repeat)
1127 root 1.51 ev_timer_start (EV_A_ w);
1128 root 1.14 }
1129    
1130     void
1131 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1132 root 1.12 {
1133     if (ev_is_active (w))
1134     return;
1135 root 1.1
1136 root 1.33 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1137 root 1.13
1138 root 1.12 /* this formula differs from the one in periodic_reify because we do not always round up */
1139     if (w->interval)
1140 root 1.51 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1141 root 1.12
1142 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1143 root 1.12 array_needsize (periodics, periodicmax, periodiccnt, );
1144     periodics [periodiccnt - 1] = w;
1145     upheap ((WT *)periodics, periodiccnt - 1);
1146 root 1.1 }
1147    
1148     void
1149 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1150 root 1.1 {
1151 root 1.51 ev_clear_pending (EV_A_ (W)w);
1152 root 1.1 if (!ev_is_active (w))
1153     return;
1154    
1155 root 1.12 if (w->active < periodiccnt--)
1156 root 1.2 {
1157 root 1.12 periodics [w->active - 1] = periodics [periodiccnt];
1158     downheap ((WT *)periodics, periodiccnt, w->active - 1);
1159 root 1.2 }
1160    
1161 root 1.51 ev_stop (EV_A_ (W)w);
1162 root 1.1 }
1163    
1164 root 1.28 void
1165 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1166 root 1.9 {
1167     if (ev_is_active (w))
1168     return;
1169    
1170 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1171 root 1.9 array_needsize (idles, idlemax, idlecnt, );
1172     idles [idlecnt - 1] = w;
1173     }
1174    
1175 root 1.28 void
1176 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1177 root 1.9 {
1178 root 1.51 ev_clear_pending (EV_A_ (W)w);
1179 root 1.16 if (ev_is_active (w))
1180     return;
1181    
1182 root 1.9 idles [w->active - 1] = idles [--idlecnt];
1183 root 1.51 ev_stop (EV_A_ (W)w);
1184 root 1.9 }
1185    
1186 root 1.28 void
1187 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1188 root 1.20 {
1189     if (ev_is_active (w))
1190     return;
1191    
1192 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1193 root 1.20 array_needsize (prepares, preparemax, preparecnt, );
1194     prepares [preparecnt - 1] = w;
1195     }
1196    
1197 root 1.28 void
1198 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1199 root 1.20 {
1200 root 1.51 ev_clear_pending (EV_A_ (W)w);
1201 root 1.20 if (ev_is_active (w))
1202     return;
1203    
1204     prepares [w->active - 1] = prepares [--preparecnt];
1205 root 1.51 ev_stop (EV_A_ (W)w);
1206 root 1.20 }
1207    
1208 root 1.28 void
1209 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1210 root 1.9 {
1211     if (ev_is_active (w))
1212     return;
1213    
1214 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1215 root 1.9 array_needsize (checks, checkmax, checkcnt, );
1216     checks [checkcnt - 1] = w;
1217     }
1218    
1219 root 1.28 void
1220 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1221 root 1.9 {
1222 root 1.51 ev_clear_pending (EV_A_ (W)w);
1223 root 1.16 if (ev_is_active (w))
1224     return;
1225    
1226 root 1.9 checks [w->active - 1] = checks [--checkcnt];
1227 root 1.51 ev_stop (EV_A_ (W)w);
1228 root 1.9 }
1229    
1230 root 1.56 #ifndef SA_RESTART
1231     # define SA_RESTART 0
1232     #endif
1233    
1234     void
1235     ev_signal_start (EV_P_ struct ev_signal *w)
1236     {
1237     #if EV_MULTIPLICITY
1238     assert (("signal watchers are only supported in the default loop", loop == default_loop));
1239     #endif
1240     if (ev_is_active (w))
1241     return;
1242    
1243     assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1244    
1245     ev_start (EV_A_ (W)w, 1);
1246     array_needsize (signals, signalmax, w->signum, signals_init);
1247     wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1248    
1249     if (!w->next)
1250     {
1251     struct sigaction sa;
1252     sa.sa_handler = sighandler;
1253     sigfillset (&sa.sa_mask);
1254     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1255     sigaction (w->signum, &sa, 0);
1256     }
1257     }
1258    
1259     void
1260     ev_signal_stop (EV_P_ struct ev_signal *w)
1261     {
1262     ev_clear_pending (EV_A_ (W)w);
1263     if (!ev_is_active (w))
1264     return;
1265    
1266     wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1267     ev_stop (EV_A_ (W)w);
1268    
1269     if (!signals [w->signum - 1].head)
1270     signal (w->signum, SIG_DFL);
1271     }
1272    
1273 root 1.28 void
1274 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1275 root 1.22 {
1276 root 1.56 #if EV_MULTIPLICITY
1277     assert (("child watchers are only supported in the default loop", loop == default_loop));
1278     #endif
1279 root 1.22 if (ev_is_active (w))
1280     return;
1281    
1282 root 1.51 ev_start (EV_A_ (W)w, 1);
1283 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1284     }
1285    
1286 root 1.28 void
1287 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1288 root 1.22 {
1289 root 1.51 ev_clear_pending (EV_A_ (W)w);
1290 root 1.22 if (ev_is_active (w))
1291     return;
1292    
1293     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1294 root 1.51 ev_stop (EV_A_ (W)w);
1295 root 1.22 }
1296    
1297 root 1.1 /*****************************************************************************/
1298 root 1.10
1299 root 1.16 struct ev_once
1300     {
1301     struct ev_io io;
1302     struct ev_timer to;
1303     void (*cb)(int revents, void *arg);
1304     void *arg;
1305     };
1306    
1307     static void
1308 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1309 root 1.16 {
1310     void (*cb)(int revents, void *arg) = once->cb;
1311     void *arg = once->arg;
1312    
1313 root 1.51 ev_io_stop (EV_A_ &once->io);
1314     ev_timer_stop (EV_A_ &once->to);
1315 root 1.16 free (once);
1316    
1317     cb (revents, arg);
1318     }
1319    
1320     static void
1321 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1322 root 1.16 {
1323 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1324 root 1.16 }
1325    
1326     static void
1327 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1328 root 1.16 {
1329 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1330 root 1.16 }
1331    
1332     void
1333 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1334 root 1.16 {
1335     struct ev_once *once = malloc (sizeof (struct ev_once));
1336    
1337     if (!once)
1338 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1339 root 1.16 else
1340     {
1341     once->cb = cb;
1342     once->arg = arg;
1343    
1344 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1345 root 1.16 if (fd >= 0)
1346     {
1347 root 1.28 ev_io_set (&once->io, fd, events);
1348 root 1.51 ev_io_start (EV_A_ &once->io);
1349 root 1.16 }
1350    
1351 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1352 root 1.16 if (timeout >= 0.)
1353     {
1354 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1355 root 1.51 ev_timer_start (EV_A_ &once->to);
1356 root 1.16 }
1357     }
1358     }
1359