ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.61
Committed: Sun Nov 4 19:45:09 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.60: +4 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.59 #ifndef EV_STANDALONE
32 root 1.29 # include "config.h"
33 root 1.60
34     # if HAVE_CLOCK_GETTIME
35     # define EV_USE_MONOTONIC 1
36     # define EV_USE_REALTIME 1
37     # endif
38    
39     # if HAVE_SELECT && HAVE_SYS_SELECT_H
40     # define EV_USE_SELECT 1
41     # endif
42    
43     # if HAVE_POLL && HAVE_POLL_H
44     # define EV_USE_POLL 1
45     # endif
46    
47     # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48     # define EV_USE_EPOLL 1
49     # endif
50    
51     # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52     # define EV_USE_KQUEUE 1
53     # endif
54    
55 root 1.29 #endif
56 root 1.17
57 root 1.1 #include <math.h>
58     #include <stdlib.h>
59 root 1.7 #include <unistd.h>
60     #include <fcntl.h>
61     #include <signal.h>
62 root 1.16 #include <stddef.h>
63 root 1.1
64     #include <stdio.h>
65    
66 root 1.4 #include <assert.h>
67 root 1.1 #include <errno.h>
68 root 1.22 #include <sys/types.h>
69 root 1.45 #ifndef WIN32
70     # include <sys/wait.h>
71     #endif
72 root 1.1 #include <sys/time.h>
73     #include <time.h>
74    
75 root 1.40 /**/
76    
77 root 1.29 #ifndef EV_USE_MONOTONIC
78 root 1.37 # define EV_USE_MONOTONIC 1
79     #endif
80    
81 root 1.29 #ifndef EV_USE_SELECT
82     # define EV_USE_SELECT 1
83 root 1.10 #endif
84    
85 root 1.59 #ifndef EV_USE_POLL
86     # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87 root 1.41 #endif
88    
89 root 1.29 #ifndef EV_USE_EPOLL
90     # define EV_USE_EPOLL 0
91 root 1.10 #endif
92    
93 root 1.44 #ifndef EV_USE_KQUEUE
94     # define EV_USE_KQUEUE 0
95     #endif
96    
97 root 1.40 #ifndef EV_USE_REALTIME
98     # define EV_USE_REALTIME 1
99     #endif
100    
101     /**/
102    
103     #ifndef CLOCK_MONOTONIC
104     # undef EV_USE_MONOTONIC
105     # define EV_USE_MONOTONIC 0
106     #endif
107    
108 root 1.31 #ifndef CLOCK_REALTIME
109 root 1.40 # undef EV_USE_REALTIME
110 root 1.31 # define EV_USE_REALTIME 0
111     #endif
112 root 1.40
113     /**/
114 root 1.1
115 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
117 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
119 root 1.1
120 root 1.59 #include "ev.h"
121 root 1.1
122 root 1.40 #if __GNUC__ >= 3
123     # define expect(expr,value) __builtin_expect ((expr),(value))
124     # define inline inline
125     #else
126     # define expect(expr,value) (expr)
127     # define inline static
128     #endif
129    
130     #define expect_false(expr) expect ((expr) != 0, 0)
131     #define expect_true(expr) expect ((expr) != 0, 1)
132    
133 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
135    
136 root 1.10 typedef struct ev_watcher *W;
137     typedef struct ev_watcher_list *WL;
138 root 1.12 typedef struct ev_watcher_time *WT;
139 root 1.10
140 root 1.54 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141    
142 root 1.53 /*****************************************************************************/
143 root 1.1
144 root 1.53 typedef struct
145     {
146     struct ev_watcher_list *head;
147     unsigned char events;
148     unsigned char reify;
149     } ANFD;
150 root 1.1
151 root 1.53 typedef struct
152     {
153     W w;
154     int events;
155     } ANPENDING;
156 root 1.51
157 root 1.55 #if EV_MULTIPLICITY
158 root 1.54
159 root 1.53 struct ev_loop
160     {
161 root 1.54 # define VAR(name,decl) decl;
162 root 1.53 # include "ev_vars.h"
163     };
164 root 1.54 # undef VAR
165     # include "ev_wrap.h"
166    
167 root 1.53 #else
168 root 1.54
169     # define VAR(name,decl) static decl;
170 root 1.53 # include "ev_vars.h"
171 root 1.54 # undef VAR
172    
173 root 1.51 #endif
174 root 1.1
175 root 1.8 /*****************************************************************************/
176    
177 root 1.51 inline ev_tstamp
178 root 1.1 ev_time (void)
179     {
180 root 1.29 #if EV_USE_REALTIME
181 root 1.1 struct timespec ts;
182     clock_gettime (CLOCK_REALTIME, &ts);
183     return ts.tv_sec + ts.tv_nsec * 1e-9;
184     #else
185     struct timeval tv;
186     gettimeofday (&tv, 0);
187     return tv.tv_sec + tv.tv_usec * 1e-6;
188     #endif
189     }
190    
191 root 1.51 inline ev_tstamp
192 root 1.1 get_clock (void)
193     {
194 root 1.29 #if EV_USE_MONOTONIC
195 root 1.40 if (expect_true (have_monotonic))
196 root 1.1 {
197     struct timespec ts;
198     clock_gettime (CLOCK_MONOTONIC, &ts);
199     return ts.tv_sec + ts.tv_nsec * 1e-9;
200     }
201     #endif
202    
203     return ev_time ();
204     }
205    
206 root 1.51 ev_tstamp
207     ev_now (EV_P)
208     {
209     return rt_now;
210     }
211    
212 root 1.30 #define array_roundsize(base,n) ((n) | 4 & ~3)
213 root 1.29
214 root 1.1 #define array_needsize(base,cur,cnt,init) \
215 root 1.40 if (expect_false ((cnt) > cur)) \
216 root 1.1 { \
217 root 1.23 int newcnt = cur; \
218     do \
219     { \
220 root 1.30 newcnt = array_roundsize (base, newcnt << 1); \
221 root 1.23 } \
222     while ((cnt) > newcnt); \
223     \
224 root 1.1 base = realloc (base, sizeof (*base) * (newcnt)); \
225     init (base + cur, newcnt - cur); \
226     cur = newcnt; \
227     }
228    
229 root 1.8 /*****************************************************************************/
230    
231 root 1.1 static void
232     anfds_init (ANFD *base, int count)
233     {
234     while (count--)
235     {
236 root 1.27 base->head = 0;
237     base->events = EV_NONE;
238 root 1.33 base->reify = 0;
239    
240 root 1.1 ++base;
241     }
242     }
243    
244     static void
245 root 1.51 event (EV_P_ W w, int events)
246 root 1.1 {
247 root 1.32 if (w->pending)
248     {
249 root 1.42 pendings [ABSPRI (w)][w->pending - 1].events |= events;
250 root 1.32 return;
251     }
252    
253 root 1.42 w->pending = ++pendingcnt [ABSPRI (w)];
254     array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
255     pendings [ABSPRI (w)][w->pending - 1].w = w;
256     pendings [ABSPRI (w)][w->pending - 1].events = events;
257 root 1.1 }
258    
259     static void
260 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
261 root 1.27 {
262     int i;
263    
264     for (i = 0; i < eventcnt; ++i)
265 root 1.51 event (EV_A_ events [i], type);
266 root 1.27 }
267    
268     static void
269 root 1.51 fd_event (EV_P_ int fd, int events)
270 root 1.1 {
271     ANFD *anfd = anfds + fd;
272     struct ev_io *w;
273    
274 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
275 root 1.1 {
276     int ev = w->events & events;
277    
278     if (ev)
279 root 1.51 event (EV_A_ (W)w, ev);
280 root 1.1 }
281     }
282    
283 root 1.27 /*****************************************************************************/
284    
285 root 1.9 static void
286 root 1.51 fd_reify (EV_P)
287 root 1.9 {
288     int i;
289    
290 root 1.27 for (i = 0; i < fdchangecnt; ++i)
291     {
292     int fd = fdchanges [i];
293     ANFD *anfd = anfds + fd;
294     struct ev_io *w;
295    
296     int events = 0;
297    
298 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 root 1.27 events |= w->events;
300    
301 root 1.33 anfd->reify = 0;
302 root 1.27
303     if (anfd->events != events)
304     {
305 root 1.51 method_modify (EV_A_ fd, anfd->events, events);
306 root 1.27 anfd->events = events;
307     }
308     }
309    
310     fdchangecnt = 0;
311     }
312    
313     static void
314 root 1.51 fd_change (EV_P_ int fd)
315 root 1.27 {
316 root 1.33 if (anfds [fd].reify || fdchangecnt < 0)
317 root 1.27 return;
318    
319 root 1.33 anfds [fd].reify = 1;
320 root 1.27
321     ++fdchangecnt;
322     array_needsize (fdchanges, fdchangemax, fdchangecnt, );
323     fdchanges [fdchangecnt - 1] = fd;
324 root 1.9 }
325    
326 root 1.41 static void
327 root 1.51 fd_kill (EV_P_ int fd)
328 root 1.41 {
329     struct ev_io *w;
330    
331 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
332 root 1.41 {
333 root 1.51 ev_io_stop (EV_A_ w);
334     event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 root 1.41 }
336     }
337    
338 root 1.19 /* called on EBADF to verify fds */
339     static void
340 root 1.51 fd_ebadf (EV_P)
341 root 1.19 {
342     int fd;
343    
344     for (fd = 0; fd < anfdmax; ++fd)
345 root 1.27 if (anfds [fd].events)
346 root 1.19 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
347 root 1.51 fd_kill (EV_A_ fd);
348 root 1.41 }
349    
350     /* called on ENOMEM in select/poll to kill some fds and retry */
351     static void
352 root 1.51 fd_enomem (EV_P)
353 root 1.41 {
354     int fd = anfdmax;
355    
356     while (fd--)
357     if (anfds [fd].events)
358     {
359     close (fd);
360 root 1.51 fd_kill (EV_A_ fd);
361 root 1.41 return;
362     }
363 root 1.19 }
364    
365 root 1.56 /* susually called after fork if method needs to re-arm all fds from scratch */
366     static void
367     fd_rearm_all (EV_P)
368     {
369     int fd;
370    
371     /* this should be highly optimised to not do anything but set a flag */
372     for (fd = 0; fd < anfdmax; ++fd)
373     if (anfds [fd].events)
374     {
375     anfds [fd].events = 0;
376 root 1.60 fd_change (EV_A_ fd);
377 root 1.56 }
378     }
379    
380 root 1.8 /*****************************************************************************/
381    
382 root 1.1 static void
383 root 1.54 upheap (WT *heap, int k)
384 root 1.1 {
385 root 1.54 WT w = heap [k];
386 root 1.1
387 root 1.54 while (k && heap [k >> 1]->at > w->at)
388 root 1.1 {
389 root 1.54 heap [k] = heap [k >> 1];
390     heap [k]->active = k + 1;
391 root 1.1 k >>= 1;
392     }
393    
394 root 1.54 heap [k] = w;
395     heap [k]->active = k + 1;
396 root 1.1
397     }
398    
399     static void
400 root 1.54 downheap (WT *heap, int N, int k)
401 root 1.1 {
402 root 1.54 WT w = heap [k];
403 root 1.1
404 root 1.4 while (k < (N >> 1))
405 root 1.1 {
406     int j = k << 1;
407    
408 root 1.54 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
409 root 1.1 ++j;
410    
411 root 1.54 if (w->at <= heap [j]->at)
412 root 1.1 break;
413    
414 root 1.54 heap [k] = heap [j];
415     heap [k]->active = k + 1;
416 root 1.1 k = j;
417     }
418    
419 root 1.54 heap [k] = w;
420     heap [k]->active = k + 1;
421 root 1.1 }
422    
423 root 1.8 /*****************************************************************************/
424    
425 root 1.7 typedef struct
426     {
427 root 1.50 struct ev_watcher_list *head;
428 root 1.34 sig_atomic_t volatile gotsig;
429 root 1.7 } ANSIG;
430    
431     static ANSIG *signals;
432 root 1.4 static int signalmax;
433 root 1.1
434 root 1.7 static int sigpipe [2];
435 root 1.34 static sig_atomic_t volatile gotsig;
436 root 1.59 static struct ev_io sigev;
437 root 1.7
438 root 1.1 static void
439 root 1.7 signals_init (ANSIG *base, int count)
440 root 1.1 {
441     while (count--)
442 root 1.7 {
443     base->head = 0;
444     base->gotsig = 0;
445 root 1.33
446 root 1.7 ++base;
447     }
448     }
449    
450     static void
451     sighandler (int signum)
452     {
453     signals [signum - 1].gotsig = 1;
454    
455     if (!gotsig)
456     {
457 root 1.48 int old_errno = errno;
458 root 1.7 gotsig = 1;
459 root 1.34 write (sigpipe [1], &signum, 1);
460 root 1.48 errno = old_errno;
461 root 1.7 }
462     }
463    
464     static void
465 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
466 root 1.7 {
467 root 1.50 struct ev_watcher_list *w;
468 root 1.38 int signum;
469 root 1.7
470 root 1.34 read (sigpipe [0], &revents, 1);
471 root 1.7 gotsig = 0;
472    
473 root 1.38 for (signum = signalmax; signum--; )
474     if (signals [signum].gotsig)
475 root 1.7 {
476 root 1.38 signals [signum].gotsig = 0;
477 root 1.7
478 root 1.38 for (w = signals [signum].head; w; w = w->next)
479 root 1.51 event (EV_A_ (W)w, EV_SIGNAL);
480 root 1.7 }
481     }
482    
483     static void
484 root 1.51 siginit (EV_P)
485 root 1.7 {
486 root 1.45 #ifndef WIN32
487 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
488     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
489    
490     /* rather than sort out wether we really need nb, set it */
491     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
492     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493 root 1.45 #endif
494 root 1.7
495 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
496 root 1.54 ev_io_start (EV_A_ &sigev);
497 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
498 root 1.1 }
499    
500 root 1.8 /*****************************************************************************/
501    
502 root 1.45 #ifndef WIN32
503    
504 root 1.59 static struct ev_child *childs [PID_HASHSIZE];
505     static struct ev_signal childev;
506    
507 root 1.22 #ifndef WCONTINUED
508     # define WCONTINUED 0
509     #endif
510    
511     static void
512 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
513 root 1.47 {
514     struct ev_child *w;
515    
516 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 root 1.47 if (w->pid == pid || !w->pid)
518     {
519     w->priority = sw->priority; /* need to do it *now* */
520     w->rpid = pid;
521     w->rstatus = status;
522 root 1.51 event (EV_A_ (W)w, EV_CHILD);
523 root 1.47 }
524     }
525    
526     static void
527 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
528 root 1.22 {
529     int pid, status;
530    
531 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532     {
533     /* make sure we are called again until all childs have been reaped */
534 root 1.51 event (EV_A_ (W)sw, EV_SIGNAL);
535 root 1.47
536 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
537     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 root 1.47 }
539 root 1.22 }
540    
541 root 1.45 #endif
542    
543 root 1.22 /*****************************************************************************/
544    
545 root 1.44 #if EV_USE_KQUEUE
546     # include "ev_kqueue.c"
547     #endif
548 root 1.29 #if EV_USE_EPOLL
549 root 1.1 # include "ev_epoll.c"
550     #endif
551 root 1.59 #if EV_USE_POLL
552 root 1.41 # include "ev_poll.c"
553     #endif
554 root 1.29 #if EV_USE_SELECT
555 root 1.1 # include "ev_select.c"
556     #endif
557    
558 root 1.24 int
559     ev_version_major (void)
560     {
561     return EV_VERSION_MAJOR;
562     }
563    
564     int
565     ev_version_minor (void)
566     {
567     return EV_VERSION_MINOR;
568     }
569    
570 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
571 root 1.41 static int
572 root 1.51 enable_secure (void)
573 root 1.41 {
574 root 1.49 #ifdef WIN32
575     return 0;
576     #else
577 root 1.41 return getuid () != geteuid ()
578     || getgid () != getegid ();
579 root 1.49 #endif
580 root 1.41 }
581    
582 root 1.51 int
583     ev_method (EV_P)
584 root 1.1 {
585 root 1.51 return method;
586     }
587    
588 root 1.56 static void
589 root 1.54 loop_init (EV_P_ int methods)
590 root 1.51 {
591     if (!method)
592 root 1.23 {
593 root 1.29 #if EV_USE_MONOTONIC
594 root 1.23 {
595     struct timespec ts;
596     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597     have_monotonic = 1;
598     }
599 root 1.1 #endif
600    
601 root 1.51 rt_now = ev_time ();
602     mn_now = get_clock ();
603     now_floor = mn_now;
604 root 1.54 rtmn_diff = rt_now - mn_now;
605 root 1.1
606 root 1.41 if (methods == EVMETHOD_AUTO)
607 root 1.56 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608     methods = atoi (getenv ("LIBEV_METHODS"));
609 root 1.50 else
610     methods = EVMETHOD_ANY;
611 root 1.41
612 root 1.51 method = 0;
613 root 1.44 #if EV_USE_KQUEUE
614 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615 root 1.44 #endif
616 root 1.29 #if EV_USE_EPOLL
617 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
618 root 1.41 #endif
619 root 1.59 #if EV_USE_POLL
620 root 1.51 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621 root 1.1 #endif
622 root 1.29 #if EV_USE_SELECT
623 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624 root 1.1 #endif
625 root 1.56 }
626     }
627    
628     void
629     loop_destroy (EV_P)
630     {
631     #if EV_USE_KQUEUE
632     if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633     #endif
634     #if EV_USE_EPOLL
635     if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
636     #endif
637 root 1.59 #if EV_USE_POLL
638 root 1.56 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
639     #endif
640     #if EV_USE_SELECT
641     if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642     #endif
643 root 1.1
644 root 1.56 method = 0;
645     /*TODO*/
646     }
647 root 1.22
648 root 1.56 void
649     loop_fork (EV_P)
650     {
651     /*TODO*/
652     #if EV_USE_EPOLL
653     if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654     #endif
655     #if EV_USE_KQUEUE
656     if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657 root 1.45 #endif
658 root 1.1 }
659    
660 root 1.55 #if EV_MULTIPLICITY
661 root 1.54 struct ev_loop *
662     ev_loop_new (int methods)
663     {
664     struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
665    
666 root 1.56 loop_init (EV_A_ methods);
667    
668 root 1.60 if (ev_method (EV_A))
669 root 1.55 return loop;
670 root 1.54
671 root 1.55 return 0;
672 root 1.54 }
673    
674     void
675 root 1.56 ev_loop_destroy (EV_P)
676 root 1.54 {
677 root 1.56 loop_destroy (EV_A);
678 root 1.54 free (loop);
679     }
680    
681 root 1.56 void
682     ev_loop_fork (EV_P)
683     {
684     loop_fork (EV_A);
685     }
686    
687     #endif
688    
689     #if EV_MULTIPLICITY
690     struct ev_loop default_loop_struct;
691     static struct ev_loop *default_loop;
692    
693     struct ev_loop *
694 root 1.54 #else
695 root 1.56 static int default_loop;
696 root 1.54
697     int
698 root 1.56 #endif
699     ev_default_loop (int methods)
700 root 1.54 {
701 root 1.56 if (sigpipe [0] == sigpipe [1])
702     if (pipe (sigpipe))
703     return 0;
704 root 1.54
705 root 1.56 if (!default_loop)
706     {
707     #if EV_MULTIPLICITY
708     struct ev_loop *loop = default_loop = &default_loop_struct;
709     #else
710     default_loop = 1;
711 root 1.54 #endif
712    
713 root 1.56 loop_init (EV_A_ methods);
714    
715     if (ev_method (EV_A))
716     {
717     ev_watcher_init (&sigev, sigcb);
718     ev_set_priority (&sigev, EV_MAXPRI);
719     siginit (EV_A);
720    
721     #ifndef WIN32
722     ev_signal_init (&childev, childcb, SIGCHLD);
723     ev_set_priority (&childev, EV_MAXPRI);
724     ev_signal_start (EV_A_ &childev);
725     ev_unref (EV_A); /* child watcher should not keep loop alive */
726     #endif
727     }
728     else
729     default_loop = 0;
730     }
731 root 1.8
732 root 1.56 return default_loop;
733 root 1.1 }
734    
735 root 1.24 void
736 root 1.56 ev_default_destroy (void)
737 root 1.1 {
738 root 1.57 #if EV_MULTIPLICITY
739 root 1.56 struct ev_loop *loop = default_loop;
740 root 1.57 #endif
741 root 1.56
742     ev_ref (EV_A); /* child watcher */
743     ev_signal_stop (EV_A_ &childev);
744    
745     ev_ref (EV_A); /* signal watcher */
746     ev_io_stop (EV_A_ &sigev);
747    
748     close (sigpipe [0]); sigpipe [0] = 0;
749     close (sigpipe [1]); sigpipe [1] = 0;
750    
751     loop_destroy (EV_A);
752 root 1.1 }
753    
754 root 1.24 void
755 root 1.60 ev_default_fork (void)
756 root 1.1 {
757 root 1.60 #if EV_MULTIPLICITY
758     struct ev_loop *loop = default_loop;
759     #endif
760    
761 root 1.56 loop_fork (EV_A);
762 root 1.7
763 root 1.54 ev_io_stop (EV_A_ &sigev);
764 root 1.7 close (sigpipe [0]);
765     close (sigpipe [1]);
766     pipe (sigpipe);
767 root 1.56
768     ev_ref (EV_A); /* signal watcher */
769 root 1.54 siginit (EV_A);
770 root 1.1 }
771    
772 root 1.8 /*****************************************************************************/
773    
774 root 1.1 static void
775 root 1.51 call_pending (EV_P)
776 root 1.1 {
777 root 1.42 int pri;
778    
779     for (pri = NUMPRI; pri--; )
780     while (pendingcnt [pri])
781     {
782     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783 root 1.1
784 root 1.42 if (p->w)
785     {
786     p->w->pending = 0;
787 root 1.51 p->w->cb (EV_A_ p->w, p->events);
788 root 1.42 }
789     }
790 root 1.1 }
791    
792     static void
793 root 1.51 timers_reify (EV_P)
794 root 1.1 {
795 root 1.51 while (timercnt && timers [0]->at <= mn_now)
796 root 1.1 {
797     struct ev_timer *w = timers [0];
798    
799 root 1.61 assert (("inactive timer on timer heap detected", ev_is_active (w)));
800    
801 root 1.4 /* first reschedule or stop timer */
802 root 1.1 if (w->repeat)
803     {
804 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
805 root 1.51 w->at = mn_now + w->repeat;
806 root 1.12 downheap ((WT *)timers, timercnt, 0);
807     }
808     else
809 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
810 root 1.30
811 root 1.54 event (EV_A_ (W)w, EV_TIMEOUT);
812 root 1.12 }
813     }
814 root 1.4
815 root 1.12 static void
816 root 1.51 periodics_reify (EV_P)
817 root 1.12 {
818 root 1.51 while (periodiccnt && periodics [0]->at <= rt_now)
819 root 1.12 {
820     struct ev_periodic *w = periodics [0];
821 root 1.1
822 root 1.61 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
823    
824 root 1.12 /* first reschedule or stop timer */
825     if (w->interval)
826     {
827 root 1.51 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
828     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
829 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
830 root 1.1 }
831     else
832 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
833 root 1.12
834 root 1.51 event (EV_A_ (W)w, EV_PERIODIC);
835 root 1.12 }
836     }
837    
838     static void
839 root 1.54 periodics_reschedule (EV_P)
840 root 1.12 {
841     int i;
842    
843 root 1.13 /* adjust periodics after time jump */
844 root 1.12 for (i = 0; i < periodiccnt; ++i)
845     {
846     struct ev_periodic *w = periodics [i];
847    
848     if (w->interval)
849 root 1.4 {
850 root 1.51 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
851 root 1.12
852     if (fabs (diff) >= 1e-4)
853     {
854 root 1.51 ev_periodic_stop (EV_A_ w);
855     ev_periodic_start (EV_A_ w);
856 root 1.12
857     i = 0; /* restart loop, inefficient, but time jumps should be rare */
858     }
859 root 1.4 }
860 root 1.12 }
861 root 1.1 }
862    
863 root 1.51 inline int
864     time_update_monotonic (EV_P)
865 root 1.40 {
866 root 1.51 mn_now = get_clock ();
867 root 1.40
868 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
869 root 1.40 {
870 root 1.54 rt_now = rtmn_diff + mn_now;
871 root 1.40 return 0;
872     }
873     else
874     {
875 root 1.51 now_floor = mn_now;
876     rt_now = ev_time ();
877 root 1.40 return 1;
878     }
879     }
880    
881 root 1.4 static void
882 root 1.51 time_update (EV_P)
883 root 1.4 {
884     int i;
885 root 1.12
886 root 1.40 #if EV_USE_MONOTONIC
887     if (expect_true (have_monotonic))
888     {
889 root 1.51 if (time_update_monotonic (EV_A))
890 root 1.40 {
891 root 1.54 ev_tstamp odiff = rtmn_diff;
892 root 1.4
893 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
894     {
895 root 1.54 rtmn_diff = rt_now - mn_now;
896 root 1.4
897 root 1.54 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
898 root 1.40 return; /* all is well */
899 root 1.4
900 root 1.51 rt_now = ev_time ();
901     mn_now = get_clock ();
902     now_floor = mn_now;
903 root 1.40 }
904 root 1.4
905 root 1.54 periodics_reschedule (EV_A);
906 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
907 root 1.54 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
908 root 1.4 }
909     }
910     else
911 root 1.40 #endif
912 root 1.4 {
913 root 1.51 rt_now = ev_time ();
914 root 1.40
915 root 1.51 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
916 root 1.13 {
917 root 1.54 periodics_reschedule (EV_A);
918 root 1.13
919     /* adjust timers. this is easy, as the offset is the same for all */
920     for (i = 0; i < timercnt; ++i)
921 root 1.54 timers [i]->at += rt_now - mn_now;
922 root 1.13 }
923 root 1.4
924 root 1.51 mn_now = rt_now;
925 root 1.4 }
926     }
927    
928 root 1.51 void
929     ev_ref (EV_P)
930     {
931     ++activecnt;
932     }
933 root 1.1
934 root 1.51 void
935     ev_unref (EV_P)
936     {
937     --activecnt;
938     }
939    
940     static int loop_done;
941    
942     void
943     ev_loop (EV_P_ int flags)
944 root 1.1 {
945     double block;
946 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
947 root 1.1
948 root 1.20 do
949 root 1.9 {
950 root 1.20 /* queue check watchers (and execute them) */
951 root 1.40 if (expect_false (preparecnt))
952 root 1.20 {
953 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
954     call_pending (EV_A);
955 root 1.20 }
956 root 1.9
957 root 1.1 /* update fd-related kernel structures */
958 root 1.51 fd_reify (EV_A);
959 root 1.1
960     /* calculate blocking time */
961 root 1.12
962 root 1.21 /* we only need this for !monotonic clockor timers, but as we basically
963     always have timers, we just calculate it always */
964 root 1.40 #if EV_USE_MONOTONIC
965     if (expect_true (have_monotonic))
966 root 1.51 time_update_monotonic (EV_A);
967 root 1.40 else
968     #endif
969     {
970 root 1.51 rt_now = ev_time ();
971     mn_now = rt_now;
972 root 1.40 }
973 root 1.12
974 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
975 root 1.1 block = 0.;
976     else
977     {
978 root 1.4 block = MAX_BLOCKTIME;
979    
980 root 1.12 if (timercnt)
981 root 1.4 {
982 root 1.51 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
983 root 1.4 if (block > to) block = to;
984     }
985    
986 root 1.12 if (periodiccnt)
987 root 1.4 {
988 root 1.51 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
989 root 1.4 if (block > to) block = to;
990     }
991    
992 root 1.1 if (block < 0.) block = 0.;
993     }
994    
995 root 1.51 method_poll (EV_A_ block);
996 root 1.1
997 root 1.51 /* update rt_now, do magic */
998     time_update (EV_A);
999 root 1.4
1000 root 1.9 /* queue pending timers and reschedule them */
1001 root 1.51 timers_reify (EV_A); /* relative timers called last */
1002     periodics_reify (EV_A); /* absolute timers called first */
1003 root 1.1
1004 root 1.9 /* queue idle watchers unless io or timers are pending */
1005     if (!pendingcnt)
1006 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1007 root 1.9
1008 root 1.20 /* queue check watchers, to be executed first */
1009     if (checkcnt)
1010 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1011 root 1.9
1012 root 1.51 call_pending (EV_A);
1013 root 1.1 }
1014 root 1.51 while (activecnt && !loop_done);
1015 root 1.13
1016 root 1.51 if (loop_done != 2)
1017     loop_done = 0;
1018     }
1019    
1020     void
1021     ev_unloop (EV_P_ int how)
1022     {
1023     loop_done = how;
1024 root 1.1 }
1025    
1026 root 1.8 /*****************************************************************************/
1027    
1028 root 1.51 inline void
1029 root 1.10 wlist_add (WL *head, WL elem)
1030 root 1.1 {
1031     elem->next = *head;
1032     *head = elem;
1033     }
1034    
1035 root 1.51 inline void
1036 root 1.10 wlist_del (WL *head, WL elem)
1037 root 1.1 {
1038     while (*head)
1039     {
1040     if (*head == elem)
1041     {
1042     *head = elem->next;
1043     return;
1044     }
1045    
1046     head = &(*head)->next;
1047     }
1048     }
1049    
1050 root 1.51 inline void
1051     ev_clear_pending (EV_P_ W w)
1052 root 1.16 {
1053     if (w->pending)
1054     {
1055 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1056 root 1.16 w->pending = 0;
1057     }
1058     }
1059    
1060 root 1.51 inline void
1061     ev_start (EV_P_ W w, int active)
1062 root 1.1 {
1063 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1064     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1065    
1066 root 1.1 w->active = active;
1067 root 1.51 ev_ref (EV_A);
1068 root 1.1 }
1069    
1070 root 1.51 inline void
1071     ev_stop (EV_P_ W w)
1072 root 1.1 {
1073 root 1.51 ev_unref (EV_A);
1074 root 1.1 w->active = 0;
1075     }
1076    
1077 root 1.8 /*****************************************************************************/
1078    
1079 root 1.1 void
1080 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
1081 root 1.1 {
1082 root 1.37 int fd = w->fd;
1083    
1084 root 1.1 if (ev_is_active (w))
1085     return;
1086    
1087 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
1088    
1089 root 1.51 ev_start (EV_A_ (W)w, 1);
1090 root 1.1 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1091 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1092 root 1.1
1093 root 1.51 fd_change (EV_A_ fd);
1094 root 1.1 }
1095    
1096     void
1097 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
1098 root 1.1 {
1099 root 1.51 ev_clear_pending (EV_A_ (W)w);
1100 root 1.1 if (!ev_is_active (w))
1101     return;
1102    
1103 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1104 root 1.51 ev_stop (EV_A_ (W)w);
1105 root 1.1
1106 root 1.51 fd_change (EV_A_ w->fd);
1107 root 1.1 }
1108    
1109     void
1110 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1111 root 1.1 {
1112     if (ev_is_active (w))
1113     return;
1114    
1115 root 1.51 w->at += mn_now;
1116 root 1.12
1117 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1118 root 1.13
1119 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1120 root 1.12 array_needsize (timers, timermax, timercnt, );
1121     timers [timercnt - 1] = w;
1122     upheap ((WT *)timers, timercnt - 1);
1123     }
1124    
1125     void
1126 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1127 root 1.12 {
1128 root 1.51 ev_clear_pending (EV_A_ (W)w);
1129 root 1.12 if (!ev_is_active (w))
1130     return;
1131    
1132     if (w->active < timercnt--)
1133 root 1.1 {
1134 root 1.12 timers [w->active - 1] = timers [timercnt];
1135     downheap ((WT *)timers, timercnt, w->active - 1);
1136     }
1137 root 1.4
1138 root 1.14 w->at = w->repeat;
1139    
1140 root 1.51 ev_stop (EV_A_ (W)w);
1141 root 1.12 }
1142 root 1.4
1143 root 1.12 void
1144 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1145 root 1.14 {
1146     if (ev_is_active (w))
1147     {
1148     if (w->repeat)
1149     {
1150 root 1.51 w->at = mn_now + w->repeat;
1151 root 1.14 downheap ((WT *)timers, timercnt, w->active - 1);
1152     }
1153     else
1154 root 1.51 ev_timer_stop (EV_A_ w);
1155 root 1.14 }
1156     else if (w->repeat)
1157 root 1.51 ev_timer_start (EV_A_ w);
1158 root 1.14 }
1159    
1160     void
1161 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1162 root 1.12 {
1163     if (ev_is_active (w))
1164     return;
1165 root 1.1
1166 root 1.33 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1167 root 1.13
1168 root 1.12 /* this formula differs from the one in periodic_reify because we do not always round up */
1169     if (w->interval)
1170 root 1.51 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1171 root 1.12
1172 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1173 root 1.12 array_needsize (periodics, periodicmax, periodiccnt, );
1174     periodics [periodiccnt - 1] = w;
1175     upheap ((WT *)periodics, periodiccnt - 1);
1176 root 1.1 }
1177    
1178     void
1179 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1180 root 1.1 {
1181 root 1.51 ev_clear_pending (EV_A_ (W)w);
1182 root 1.1 if (!ev_is_active (w))
1183     return;
1184    
1185 root 1.12 if (w->active < periodiccnt--)
1186 root 1.2 {
1187 root 1.12 periodics [w->active - 1] = periodics [periodiccnt];
1188     downheap ((WT *)periodics, periodiccnt, w->active - 1);
1189 root 1.2 }
1190    
1191 root 1.51 ev_stop (EV_A_ (W)w);
1192 root 1.1 }
1193    
1194 root 1.28 void
1195 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1196 root 1.9 {
1197     if (ev_is_active (w))
1198     return;
1199    
1200 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1201 root 1.9 array_needsize (idles, idlemax, idlecnt, );
1202     idles [idlecnt - 1] = w;
1203     }
1204    
1205 root 1.28 void
1206 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1207 root 1.9 {
1208 root 1.51 ev_clear_pending (EV_A_ (W)w);
1209 root 1.16 if (ev_is_active (w))
1210     return;
1211    
1212 root 1.9 idles [w->active - 1] = idles [--idlecnt];
1213 root 1.51 ev_stop (EV_A_ (W)w);
1214 root 1.9 }
1215    
1216 root 1.28 void
1217 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1218 root 1.20 {
1219     if (ev_is_active (w))
1220     return;
1221    
1222 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1223 root 1.20 array_needsize (prepares, preparemax, preparecnt, );
1224     prepares [preparecnt - 1] = w;
1225     }
1226    
1227 root 1.28 void
1228 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1229 root 1.20 {
1230 root 1.51 ev_clear_pending (EV_A_ (W)w);
1231 root 1.20 if (ev_is_active (w))
1232     return;
1233    
1234     prepares [w->active - 1] = prepares [--preparecnt];
1235 root 1.51 ev_stop (EV_A_ (W)w);
1236 root 1.20 }
1237    
1238 root 1.28 void
1239 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1240 root 1.9 {
1241     if (ev_is_active (w))
1242     return;
1243    
1244 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1245 root 1.9 array_needsize (checks, checkmax, checkcnt, );
1246     checks [checkcnt - 1] = w;
1247     }
1248    
1249 root 1.28 void
1250 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1251 root 1.9 {
1252 root 1.51 ev_clear_pending (EV_A_ (W)w);
1253 root 1.16 if (ev_is_active (w))
1254     return;
1255    
1256 root 1.9 checks [w->active - 1] = checks [--checkcnt];
1257 root 1.51 ev_stop (EV_A_ (W)w);
1258 root 1.9 }
1259    
1260 root 1.56 #ifndef SA_RESTART
1261     # define SA_RESTART 0
1262     #endif
1263    
1264     void
1265     ev_signal_start (EV_P_ struct ev_signal *w)
1266     {
1267     #if EV_MULTIPLICITY
1268     assert (("signal watchers are only supported in the default loop", loop == default_loop));
1269     #endif
1270     if (ev_is_active (w))
1271     return;
1272    
1273     assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1274    
1275     ev_start (EV_A_ (W)w, 1);
1276     array_needsize (signals, signalmax, w->signum, signals_init);
1277     wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1278    
1279     if (!w->next)
1280     {
1281     struct sigaction sa;
1282     sa.sa_handler = sighandler;
1283     sigfillset (&sa.sa_mask);
1284     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1285     sigaction (w->signum, &sa, 0);
1286     }
1287     }
1288    
1289     void
1290     ev_signal_stop (EV_P_ struct ev_signal *w)
1291     {
1292     ev_clear_pending (EV_A_ (W)w);
1293     if (!ev_is_active (w))
1294     return;
1295    
1296     wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1297     ev_stop (EV_A_ (W)w);
1298    
1299     if (!signals [w->signum - 1].head)
1300     signal (w->signum, SIG_DFL);
1301     }
1302    
1303 root 1.28 void
1304 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1305 root 1.22 {
1306 root 1.56 #if EV_MULTIPLICITY
1307     assert (("child watchers are only supported in the default loop", loop == default_loop));
1308     #endif
1309 root 1.22 if (ev_is_active (w))
1310     return;
1311    
1312 root 1.51 ev_start (EV_A_ (W)w, 1);
1313 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1314     }
1315    
1316 root 1.28 void
1317 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1318 root 1.22 {
1319 root 1.51 ev_clear_pending (EV_A_ (W)w);
1320 root 1.22 if (ev_is_active (w))
1321     return;
1322    
1323     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1324 root 1.51 ev_stop (EV_A_ (W)w);
1325 root 1.22 }
1326    
1327 root 1.1 /*****************************************************************************/
1328 root 1.10
1329 root 1.16 struct ev_once
1330     {
1331     struct ev_io io;
1332     struct ev_timer to;
1333     void (*cb)(int revents, void *arg);
1334     void *arg;
1335     };
1336    
1337     static void
1338 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1339 root 1.16 {
1340     void (*cb)(int revents, void *arg) = once->cb;
1341     void *arg = once->arg;
1342    
1343 root 1.51 ev_io_stop (EV_A_ &once->io);
1344     ev_timer_stop (EV_A_ &once->to);
1345 root 1.16 free (once);
1346    
1347     cb (revents, arg);
1348     }
1349    
1350     static void
1351 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1352 root 1.16 {
1353 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1354 root 1.16 }
1355    
1356     static void
1357 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1358 root 1.16 {
1359 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1360 root 1.16 }
1361    
1362     void
1363 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1364 root 1.16 {
1365     struct ev_once *once = malloc (sizeof (struct ev_once));
1366    
1367     if (!once)
1368 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1369 root 1.16 else
1370     {
1371     once->cb = cb;
1372     once->arg = arg;
1373    
1374 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1375 root 1.16 if (fd >= 0)
1376     {
1377 root 1.28 ev_io_set (&once->io, fd, events);
1378 root 1.51 ev_io_start (EV_A_ &once->io);
1379 root 1.16 }
1380    
1381 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1382 root 1.16 if (timeout >= 0.)
1383     {
1384 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1385 root 1.51 ev_timer_start (EV_A_ &once->to);
1386 root 1.16 }
1387     }
1388     }
1389