ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.63
Committed: Sun Nov 4 22:03:17 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.62: +19 -18 lines
Log Message:
bugfixes

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.59 #ifndef EV_STANDALONE
32 root 1.29 # include "config.h"
33 root 1.60
34     # if HAVE_CLOCK_GETTIME
35     # define EV_USE_MONOTONIC 1
36     # define EV_USE_REALTIME 1
37     # endif
38    
39     # if HAVE_SELECT && HAVE_SYS_SELECT_H
40     # define EV_USE_SELECT 1
41     # endif
42    
43     # if HAVE_POLL && HAVE_POLL_H
44     # define EV_USE_POLL 1
45     # endif
46    
47     # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48     # define EV_USE_EPOLL 1
49     # endif
50    
51     # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52     # define EV_USE_KQUEUE 1
53     # endif
54    
55 root 1.29 #endif
56 root 1.17
57 root 1.1 #include <math.h>
58     #include <stdlib.h>
59 root 1.7 #include <unistd.h>
60     #include <fcntl.h>
61     #include <signal.h>
62 root 1.16 #include <stddef.h>
63 root 1.1
64     #include <stdio.h>
65    
66 root 1.4 #include <assert.h>
67 root 1.1 #include <errno.h>
68 root 1.22 #include <sys/types.h>
69 root 1.45 #ifndef WIN32
70     # include <sys/wait.h>
71     #endif
72 root 1.1 #include <sys/time.h>
73     #include <time.h>
74    
75 root 1.40 /**/
76    
77 root 1.29 #ifndef EV_USE_MONOTONIC
78 root 1.37 # define EV_USE_MONOTONIC 1
79     #endif
80    
81 root 1.29 #ifndef EV_USE_SELECT
82     # define EV_USE_SELECT 1
83 root 1.10 #endif
84    
85 root 1.59 #ifndef EV_USE_POLL
86     # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87 root 1.41 #endif
88    
89 root 1.29 #ifndef EV_USE_EPOLL
90     # define EV_USE_EPOLL 0
91 root 1.10 #endif
92    
93 root 1.44 #ifndef EV_USE_KQUEUE
94     # define EV_USE_KQUEUE 0
95     #endif
96    
97 root 1.62 #ifndef EV_USE_WIN32
98     # ifdef WIN32
99     # define EV_USE_WIN32 1
100     # else
101     # define EV_USE_WIN32 0
102     # endif
103     #endif
104    
105 root 1.40 #ifndef EV_USE_REALTIME
106     # define EV_USE_REALTIME 1
107     #endif
108    
109     /**/
110    
111     #ifndef CLOCK_MONOTONIC
112     # undef EV_USE_MONOTONIC
113     # define EV_USE_MONOTONIC 0
114     #endif
115    
116 root 1.31 #ifndef CLOCK_REALTIME
117 root 1.40 # undef EV_USE_REALTIME
118 root 1.31 # define EV_USE_REALTIME 0
119     #endif
120 root 1.40
121     /**/
122 root 1.1
123 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 root 1.1
128 root 1.59 #include "ev.h"
129 root 1.1
130 root 1.40 #if __GNUC__ >= 3
131     # define expect(expr,value) __builtin_expect ((expr),(value))
132     # define inline inline
133     #else
134     # define expect(expr,value) (expr)
135     # define inline static
136     #endif
137    
138     #define expect_false(expr) expect ((expr) != 0, 0)
139     #define expect_true(expr) expect ((expr) != 0, 1)
140    
141 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
143    
144 root 1.10 typedef struct ev_watcher *W;
145     typedef struct ev_watcher_list *WL;
146 root 1.12 typedef struct ev_watcher_time *WT;
147 root 1.10
148 root 1.54 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149    
150 root 1.53 /*****************************************************************************/
151 root 1.1
152 root 1.53 typedef struct
153     {
154     struct ev_watcher_list *head;
155     unsigned char events;
156     unsigned char reify;
157     } ANFD;
158 root 1.1
159 root 1.53 typedef struct
160     {
161     W w;
162     int events;
163     } ANPENDING;
164 root 1.51
165 root 1.55 #if EV_MULTIPLICITY
166 root 1.54
167 root 1.53 struct ev_loop
168     {
169 root 1.54 # define VAR(name,decl) decl;
170 root 1.53 # include "ev_vars.h"
171     };
172 root 1.54 # undef VAR
173     # include "ev_wrap.h"
174    
175 root 1.53 #else
176 root 1.54
177     # define VAR(name,decl) static decl;
178 root 1.53 # include "ev_vars.h"
179 root 1.54 # undef VAR
180    
181 root 1.51 #endif
182 root 1.1
183 root 1.8 /*****************************************************************************/
184    
185 root 1.51 inline ev_tstamp
186 root 1.1 ev_time (void)
187     {
188 root 1.29 #if EV_USE_REALTIME
189 root 1.1 struct timespec ts;
190     clock_gettime (CLOCK_REALTIME, &ts);
191     return ts.tv_sec + ts.tv_nsec * 1e-9;
192     #else
193     struct timeval tv;
194     gettimeofday (&tv, 0);
195     return tv.tv_sec + tv.tv_usec * 1e-6;
196     #endif
197     }
198    
199 root 1.51 inline ev_tstamp
200 root 1.1 get_clock (void)
201     {
202 root 1.29 #if EV_USE_MONOTONIC
203 root 1.40 if (expect_true (have_monotonic))
204 root 1.1 {
205     struct timespec ts;
206     clock_gettime (CLOCK_MONOTONIC, &ts);
207     return ts.tv_sec + ts.tv_nsec * 1e-9;
208     }
209     #endif
210    
211     return ev_time ();
212     }
213    
214 root 1.51 ev_tstamp
215     ev_now (EV_P)
216     {
217     return rt_now;
218     }
219    
220 root 1.30 #define array_roundsize(base,n) ((n) | 4 & ~3)
221 root 1.29
222 root 1.1 #define array_needsize(base,cur,cnt,init) \
223 root 1.40 if (expect_false ((cnt) > cur)) \
224 root 1.1 { \
225 root 1.23 int newcnt = cur; \
226     do \
227     { \
228 root 1.30 newcnt = array_roundsize (base, newcnt << 1); \
229 root 1.23 } \
230     while ((cnt) > newcnt); \
231     \
232 root 1.1 base = realloc (base, sizeof (*base) * (newcnt)); \
233     init (base + cur, newcnt - cur); \
234     cur = newcnt; \
235     }
236    
237 root 1.8 /*****************************************************************************/
238    
239 root 1.1 static void
240     anfds_init (ANFD *base, int count)
241     {
242     while (count--)
243     {
244 root 1.27 base->head = 0;
245     base->events = EV_NONE;
246 root 1.33 base->reify = 0;
247    
248 root 1.1 ++base;
249     }
250     }
251    
252     static void
253 root 1.51 event (EV_P_ W w, int events)
254 root 1.1 {
255 root 1.32 if (w->pending)
256     {
257 root 1.42 pendings [ABSPRI (w)][w->pending - 1].events |= events;
258 root 1.32 return;
259     }
260    
261 root 1.42 w->pending = ++pendingcnt [ABSPRI (w)];
262     array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
263     pendings [ABSPRI (w)][w->pending - 1].w = w;
264     pendings [ABSPRI (w)][w->pending - 1].events = events;
265 root 1.1 }
266    
267     static void
268 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
269 root 1.27 {
270     int i;
271    
272     for (i = 0; i < eventcnt; ++i)
273 root 1.51 event (EV_A_ events [i], type);
274 root 1.27 }
275    
276     static void
277 root 1.51 fd_event (EV_P_ int fd, int events)
278 root 1.1 {
279     ANFD *anfd = anfds + fd;
280     struct ev_io *w;
281    
282 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
283 root 1.1 {
284     int ev = w->events & events;
285    
286     if (ev)
287 root 1.51 event (EV_A_ (W)w, ev);
288 root 1.1 }
289     }
290    
291 root 1.27 /*****************************************************************************/
292    
293 root 1.9 static void
294 root 1.51 fd_reify (EV_P)
295 root 1.9 {
296     int i;
297    
298 root 1.27 for (i = 0; i < fdchangecnt; ++i)
299     {
300     int fd = fdchanges [i];
301     ANFD *anfd = anfds + fd;
302     struct ev_io *w;
303    
304     int events = 0;
305    
306 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 root 1.27 events |= w->events;
308    
309 root 1.33 anfd->reify = 0;
310 root 1.27
311     if (anfd->events != events)
312     {
313 root 1.51 method_modify (EV_A_ fd, anfd->events, events);
314 root 1.27 anfd->events = events;
315     }
316     }
317    
318     fdchangecnt = 0;
319     }
320    
321     static void
322 root 1.51 fd_change (EV_P_ int fd)
323 root 1.27 {
324 root 1.33 if (anfds [fd].reify || fdchangecnt < 0)
325 root 1.27 return;
326    
327 root 1.33 anfds [fd].reify = 1;
328 root 1.27
329     ++fdchangecnt;
330     array_needsize (fdchanges, fdchangemax, fdchangecnt, );
331     fdchanges [fdchangecnt - 1] = fd;
332 root 1.9 }
333    
334 root 1.41 static void
335 root 1.51 fd_kill (EV_P_ int fd)
336 root 1.41 {
337     struct ev_io *w;
338    
339 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
340 root 1.41 {
341 root 1.51 ev_io_stop (EV_A_ w);
342     event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 root 1.41 }
344     }
345    
346 root 1.19 /* called on EBADF to verify fds */
347     static void
348 root 1.51 fd_ebadf (EV_P)
349 root 1.19 {
350     int fd;
351    
352     for (fd = 0; fd < anfdmax; ++fd)
353 root 1.27 if (anfds [fd].events)
354 root 1.19 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
355 root 1.51 fd_kill (EV_A_ fd);
356 root 1.41 }
357    
358     /* called on ENOMEM in select/poll to kill some fds and retry */
359     static void
360 root 1.51 fd_enomem (EV_P)
361 root 1.41 {
362 root 1.62 int fd;
363 root 1.41
364 root 1.62 for (fd = anfdmax; fd--; )
365 root 1.41 if (anfds [fd].events)
366     {
367     close (fd);
368 root 1.51 fd_kill (EV_A_ fd);
369 root 1.41 return;
370     }
371 root 1.19 }
372    
373 root 1.56 /* susually called after fork if method needs to re-arm all fds from scratch */
374     static void
375     fd_rearm_all (EV_P)
376     {
377     int fd;
378    
379     /* this should be highly optimised to not do anything but set a flag */
380     for (fd = 0; fd < anfdmax; ++fd)
381     if (anfds [fd].events)
382     {
383     anfds [fd].events = 0;
384 root 1.60 fd_change (EV_A_ fd);
385 root 1.56 }
386     }
387    
388 root 1.8 /*****************************************************************************/
389    
390 root 1.1 static void
391 root 1.54 upheap (WT *heap, int k)
392 root 1.1 {
393 root 1.54 WT w = heap [k];
394 root 1.1
395 root 1.54 while (k && heap [k >> 1]->at > w->at)
396 root 1.1 {
397 root 1.54 heap [k] = heap [k >> 1];
398 root 1.62 ((W)heap [k])->active = k + 1;
399 root 1.1 k >>= 1;
400     }
401    
402 root 1.54 heap [k] = w;
403 root 1.62 ((W)heap [k])->active = k + 1;
404 root 1.1
405     }
406    
407     static void
408 root 1.54 downheap (WT *heap, int N, int k)
409 root 1.1 {
410 root 1.54 WT w = heap [k];
411 root 1.1
412 root 1.4 while (k < (N >> 1))
413 root 1.1 {
414     int j = k << 1;
415    
416 root 1.54 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
417 root 1.1 ++j;
418    
419 root 1.54 if (w->at <= heap [j]->at)
420 root 1.1 break;
421    
422 root 1.54 heap [k] = heap [j];
423 root 1.62 ((W)heap [k])->active = k + 1;
424 root 1.1 k = j;
425     }
426    
427 root 1.54 heap [k] = w;
428 root 1.62 ((W)heap [k])->active = k + 1;
429 root 1.1 }
430    
431 root 1.8 /*****************************************************************************/
432    
433 root 1.7 typedef struct
434     {
435 root 1.50 struct ev_watcher_list *head;
436 root 1.34 sig_atomic_t volatile gotsig;
437 root 1.7 } ANSIG;
438    
439     static ANSIG *signals;
440 root 1.4 static int signalmax;
441 root 1.1
442 root 1.7 static int sigpipe [2];
443 root 1.34 static sig_atomic_t volatile gotsig;
444 root 1.59 static struct ev_io sigev;
445 root 1.7
446 root 1.1 static void
447 root 1.7 signals_init (ANSIG *base, int count)
448 root 1.1 {
449     while (count--)
450 root 1.7 {
451     base->head = 0;
452     base->gotsig = 0;
453 root 1.33
454 root 1.7 ++base;
455     }
456     }
457    
458     static void
459     sighandler (int signum)
460     {
461     signals [signum - 1].gotsig = 1;
462    
463     if (!gotsig)
464     {
465 root 1.48 int old_errno = errno;
466 root 1.7 gotsig = 1;
467 root 1.34 write (sigpipe [1], &signum, 1);
468 root 1.48 errno = old_errno;
469 root 1.7 }
470     }
471    
472     static void
473 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
474 root 1.7 {
475 root 1.50 struct ev_watcher_list *w;
476 root 1.38 int signum;
477 root 1.7
478 root 1.34 read (sigpipe [0], &revents, 1);
479 root 1.7 gotsig = 0;
480    
481 root 1.38 for (signum = signalmax; signum--; )
482     if (signals [signum].gotsig)
483 root 1.7 {
484 root 1.38 signals [signum].gotsig = 0;
485 root 1.7
486 root 1.38 for (w = signals [signum].head; w; w = w->next)
487 root 1.51 event (EV_A_ (W)w, EV_SIGNAL);
488 root 1.7 }
489     }
490    
491     static void
492 root 1.51 siginit (EV_P)
493 root 1.7 {
494 root 1.45 #ifndef WIN32
495 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
496     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497    
498     /* rather than sort out wether we really need nb, set it */
499     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501 root 1.45 #endif
502 root 1.7
503 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 root 1.54 ev_io_start (EV_A_ &sigev);
505 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
506 root 1.1 }
507    
508 root 1.8 /*****************************************************************************/
509    
510 root 1.45 #ifndef WIN32
511    
512 root 1.59 static struct ev_child *childs [PID_HASHSIZE];
513     static struct ev_signal childev;
514    
515 root 1.22 #ifndef WCONTINUED
516     # define WCONTINUED 0
517     #endif
518    
519     static void
520 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521 root 1.47 {
522     struct ev_child *w;
523    
524 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 root 1.47 if (w->pid == pid || !w->pid)
526     {
527 root 1.63 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528     w->rpid = pid;
529     w->rstatus = status;
530 root 1.51 event (EV_A_ (W)w, EV_CHILD);
531 root 1.47 }
532     }
533    
534     static void
535 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
536 root 1.22 {
537     int pid, status;
538    
539 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540     {
541     /* make sure we are called again until all childs have been reaped */
542 root 1.51 event (EV_A_ (W)sw, EV_SIGNAL);
543 root 1.47
544 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
545     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 root 1.47 }
547 root 1.22 }
548    
549 root 1.45 #endif
550    
551 root 1.22 /*****************************************************************************/
552    
553 root 1.44 #if EV_USE_KQUEUE
554     # include "ev_kqueue.c"
555     #endif
556 root 1.29 #if EV_USE_EPOLL
557 root 1.1 # include "ev_epoll.c"
558     #endif
559 root 1.59 #if EV_USE_POLL
560 root 1.41 # include "ev_poll.c"
561     #endif
562 root 1.29 #if EV_USE_SELECT
563 root 1.1 # include "ev_select.c"
564     #endif
565    
566 root 1.24 int
567     ev_version_major (void)
568     {
569     return EV_VERSION_MAJOR;
570     }
571    
572     int
573     ev_version_minor (void)
574     {
575     return EV_VERSION_MINOR;
576     }
577    
578 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
579 root 1.41 static int
580 root 1.51 enable_secure (void)
581 root 1.41 {
582 root 1.49 #ifdef WIN32
583     return 0;
584     #else
585 root 1.41 return getuid () != geteuid ()
586     || getgid () != getegid ();
587 root 1.49 #endif
588 root 1.41 }
589    
590 root 1.51 int
591     ev_method (EV_P)
592 root 1.1 {
593 root 1.51 return method;
594     }
595    
596 root 1.56 static void
597 root 1.54 loop_init (EV_P_ int methods)
598 root 1.51 {
599     if (!method)
600 root 1.23 {
601 root 1.29 #if EV_USE_MONOTONIC
602 root 1.23 {
603     struct timespec ts;
604     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605     have_monotonic = 1;
606     }
607 root 1.1 #endif
608    
609 root 1.51 rt_now = ev_time ();
610     mn_now = get_clock ();
611     now_floor = mn_now;
612 root 1.54 rtmn_diff = rt_now - mn_now;
613 root 1.1
614 root 1.41 if (methods == EVMETHOD_AUTO)
615 root 1.56 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616     methods = atoi (getenv ("LIBEV_METHODS"));
617 root 1.50 else
618     methods = EVMETHOD_ANY;
619 root 1.41
620 root 1.51 method = 0;
621 root 1.62 #if EV_USE_WIN32
622     if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623     #endif
624 root 1.44 #if EV_USE_KQUEUE
625 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626 root 1.44 #endif
627 root 1.29 #if EV_USE_EPOLL
628 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629 root 1.41 #endif
630 root 1.59 #if EV_USE_POLL
631 root 1.51 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632 root 1.1 #endif
633 root 1.29 #if EV_USE_SELECT
634 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635 root 1.1 #endif
636 root 1.56 }
637     }
638    
639     void
640     loop_destroy (EV_P)
641     {
642 root 1.62 #if EV_USE_WIN32
643     if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644     #endif
645 root 1.56 #if EV_USE_KQUEUE
646     if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647     #endif
648     #if EV_USE_EPOLL
649     if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
650     #endif
651 root 1.59 #if EV_USE_POLL
652 root 1.56 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
653     #endif
654     #if EV_USE_SELECT
655     if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656     #endif
657 root 1.1
658 root 1.56 method = 0;
659     /*TODO*/
660     }
661 root 1.22
662 root 1.56 void
663     loop_fork (EV_P)
664     {
665     /*TODO*/
666     #if EV_USE_EPOLL
667     if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668     #endif
669     #if EV_USE_KQUEUE
670     if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671 root 1.45 #endif
672 root 1.1 }
673    
674 root 1.55 #if EV_MULTIPLICITY
675 root 1.54 struct ev_loop *
676     ev_loop_new (int methods)
677     {
678     struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
679    
680 root 1.56 loop_init (EV_A_ methods);
681    
682 root 1.60 if (ev_method (EV_A))
683 root 1.55 return loop;
684 root 1.54
685 root 1.55 return 0;
686 root 1.54 }
687    
688     void
689 root 1.56 ev_loop_destroy (EV_P)
690 root 1.54 {
691 root 1.56 loop_destroy (EV_A);
692 root 1.54 free (loop);
693     }
694    
695 root 1.56 void
696     ev_loop_fork (EV_P)
697     {
698     loop_fork (EV_A);
699     }
700    
701     #endif
702    
703     #if EV_MULTIPLICITY
704     struct ev_loop default_loop_struct;
705     static struct ev_loop *default_loop;
706    
707     struct ev_loop *
708 root 1.54 #else
709 root 1.56 static int default_loop;
710 root 1.54
711     int
712 root 1.56 #endif
713     ev_default_loop (int methods)
714 root 1.54 {
715 root 1.56 if (sigpipe [0] == sigpipe [1])
716     if (pipe (sigpipe))
717     return 0;
718 root 1.54
719 root 1.56 if (!default_loop)
720     {
721     #if EV_MULTIPLICITY
722     struct ev_loop *loop = default_loop = &default_loop_struct;
723     #else
724     default_loop = 1;
725 root 1.54 #endif
726    
727 root 1.56 loop_init (EV_A_ methods);
728    
729     if (ev_method (EV_A))
730     {
731     ev_watcher_init (&sigev, sigcb);
732     ev_set_priority (&sigev, EV_MAXPRI);
733     siginit (EV_A);
734    
735     #ifndef WIN32
736     ev_signal_init (&childev, childcb, SIGCHLD);
737     ev_set_priority (&childev, EV_MAXPRI);
738     ev_signal_start (EV_A_ &childev);
739     ev_unref (EV_A); /* child watcher should not keep loop alive */
740     #endif
741     }
742     else
743     default_loop = 0;
744     }
745 root 1.8
746 root 1.56 return default_loop;
747 root 1.1 }
748    
749 root 1.24 void
750 root 1.56 ev_default_destroy (void)
751 root 1.1 {
752 root 1.57 #if EV_MULTIPLICITY
753 root 1.56 struct ev_loop *loop = default_loop;
754 root 1.57 #endif
755 root 1.56
756     ev_ref (EV_A); /* child watcher */
757     ev_signal_stop (EV_A_ &childev);
758    
759     ev_ref (EV_A); /* signal watcher */
760     ev_io_stop (EV_A_ &sigev);
761    
762     close (sigpipe [0]); sigpipe [0] = 0;
763     close (sigpipe [1]); sigpipe [1] = 0;
764    
765     loop_destroy (EV_A);
766 root 1.1 }
767    
768 root 1.24 void
769 root 1.60 ev_default_fork (void)
770 root 1.1 {
771 root 1.60 #if EV_MULTIPLICITY
772     struct ev_loop *loop = default_loop;
773     #endif
774    
775 root 1.56 loop_fork (EV_A);
776 root 1.7
777 root 1.54 ev_io_stop (EV_A_ &sigev);
778 root 1.7 close (sigpipe [0]);
779     close (sigpipe [1]);
780     pipe (sigpipe);
781 root 1.56
782     ev_ref (EV_A); /* signal watcher */
783 root 1.54 siginit (EV_A);
784 root 1.1 }
785    
786 root 1.8 /*****************************************************************************/
787    
788 root 1.1 static void
789 root 1.51 call_pending (EV_P)
790 root 1.1 {
791 root 1.42 int pri;
792    
793     for (pri = NUMPRI; pri--; )
794     while (pendingcnt [pri])
795     {
796     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
797 root 1.1
798 root 1.42 if (p->w)
799     {
800     p->w->pending = 0;
801 root 1.63
802     (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
803 root 1.42 }
804     }
805 root 1.1 }
806    
807     static void
808 root 1.51 timers_reify (EV_P)
809 root 1.1 {
810 root 1.63 while (timercnt && ((WT)timers [0])->at <= mn_now)
811 root 1.1 {
812     struct ev_timer *w = timers [0];
813    
814 root 1.61 assert (("inactive timer on timer heap detected", ev_is_active (w)));
815    
816 root 1.4 /* first reschedule or stop timer */
817 root 1.1 if (w->repeat)
818     {
819 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
820 root 1.63 ((WT)w)->at = mn_now + w->repeat;
821 root 1.12 downheap ((WT *)timers, timercnt, 0);
822     }
823     else
824 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
825 root 1.30
826 root 1.54 event (EV_A_ (W)w, EV_TIMEOUT);
827 root 1.12 }
828     }
829 root 1.4
830 root 1.12 static void
831 root 1.51 periodics_reify (EV_P)
832 root 1.12 {
833 root 1.63 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
834 root 1.12 {
835     struct ev_periodic *w = periodics [0];
836 root 1.1
837 root 1.61 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
838    
839 root 1.12 /* first reschedule or stop timer */
840     if (w->interval)
841     {
842 root 1.63 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
843     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
844 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
845 root 1.1 }
846     else
847 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
848 root 1.12
849 root 1.51 event (EV_A_ (W)w, EV_PERIODIC);
850 root 1.12 }
851     }
852    
853     static void
854 root 1.54 periodics_reschedule (EV_P)
855 root 1.12 {
856     int i;
857    
858 root 1.13 /* adjust periodics after time jump */
859 root 1.12 for (i = 0; i < periodiccnt; ++i)
860     {
861     struct ev_periodic *w = periodics [i];
862    
863     if (w->interval)
864 root 1.4 {
865 root 1.63 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
866 root 1.12
867     if (fabs (diff) >= 1e-4)
868     {
869 root 1.51 ev_periodic_stop (EV_A_ w);
870     ev_periodic_start (EV_A_ w);
871 root 1.12
872     i = 0; /* restart loop, inefficient, but time jumps should be rare */
873     }
874 root 1.4 }
875 root 1.12 }
876 root 1.1 }
877    
878 root 1.51 inline int
879     time_update_monotonic (EV_P)
880 root 1.40 {
881 root 1.51 mn_now = get_clock ();
882 root 1.40
883 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
884 root 1.40 {
885 root 1.54 rt_now = rtmn_diff + mn_now;
886 root 1.40 return 0;
887     }
888     else
889     {
890 root 1.51 now_floor = mn_now;
891     rt_now = ev_time ();
892 root 1.40 return 1;
893     }
894     }
895    
896 root 1.4 static void
897 root 1.51 time_update (EV_P)
898 root 1.4 {
899     int i;
900 root 1.12
901 root 1.40 #if EV_USE_MONOTONIC
902     if (expect_true (have_monotonic))
903     {
904 root 1.51 if (time_update_monotonic (EV_A))
905 root 1.40 {
906 root 1.54 ev_tstamp odiff = rtmn_diff;
907 root 1.4
908 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
909     {
910 root 1.54 rtmn_diff = rt_now - mn_now;
911 root 1.4
912 root 1.54 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
913 root 1.40 return; /* all is well */
914 root 1.4
915 root 1.51 rt_now = ev_time ();
916     mn_now = get_clock ();
917     now_floor = mn_now;
918 root 1.40 }
919 root 1.4
920 root 1.54 periodics_reschedule (EV_A);
921 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
922 root 1.54 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
923 root 1.4 }
924     }
925     else
926 root 1.40 #endif
927 root 1.4 {
928 root 1.51 rt_now = ev_time ();
929 root 1.40
930 root 1.51 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
931 root 1.13 {
932 root 1.54 periodics_reschedule (EV_A);
933 root 1.13
934     /* adjust timers. this is easy, as the offset is the same for all */
935     for (i = 0; i < timercnt; ++i)
936 root 1.63 ((WT)timers [i])->at += rt_now - mn_now;
937 root 1.13 }
938 root 1.4
939 root 1.51 mn_now = rt_now;
940 root 1.4 }
941     }
942    
943 root 1.51 void
944     ev_ref (EV_P)
945     {
946     ++activecnt;
947     }
948 root 1.1
949 root 1.51 void
950     ev_unref (EV_P)
951     {
952     --activecnt;
953     }
954    
955     static int loop_done;
956    
957     void
958     ev_loop (EV_P_ int flags)
959 root 1.1 {
960     double block;
961 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
962 root 1.1
963 root 1.20 do
964 root 1.9 {
965 root 1.20 /* queue check watchers (and execute them) */
966 root 1.40 if (expect_false (preparecnt))
967 root 1.20 {
968 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
969     call_pending (EV_A);
970 root 1.20 }
971 root 1.9
972 root 1.1 /* update fd-related kernel structures */
973 root 1.51 fd_reify (EV_A);
974 root 1.1
975     /* calculate blocking time */
976 root 1.12
977 root 1.21 /* we only need this for !monotonic clockor timers, but as we basically
978     always have timers, we just calculate it always */
979 root 1.40 #if EV_USE_MONOTONIC
980     if (expect_true (have_monotonic))
981 root 1.51 time_update_monotonic (EV_A);
982 root 1.40 else
983     #endif
984     {
985 root 1.51 rt_now = ev_time ();
986     mn_now = rt_now;
987 root 1.40 }
988 root 1.12
989 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
990 root 1.1 block = 0.;
991     else
992     {
993 root 1.4 block = MAX_BLOCKTIME;
994    
995 root 1.12 if (timercnt)
996 root 1.4 {
997 root 1.63 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
998 root 1.4 if (block > to) block = to;
999     }
1000    
1001 root 1.12 if (periodiccnt)
1002 root 1.4 {
1003 root 1.63 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1004 root 1.4 if (block > to) block = to;
1005     }
1006    
1007 root 1.1 if (block < 0.) block = 0.;
1008     }
1009    
1010 root 1.51 method_poll (EV_A_ block);
1011 root 1.1
1012 root 1.51 /* update rt_now, do magic */
1013     time_update (EV_A);
1014 root 1.4
1015 root 1.9 /* queue pending timers and reschedule them */
1016 root 1.51 timers_reify (EV_A); /* relative timers called last */
1017     periodics_reify (EV_A); /* absolute timers called first */
1018 root 1.1
1019 root 1.9 /* queue idle watchers unless io or timers are pending */
1020     if (!pendingcnt)
1021 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1022 root 1.9
1023 root 1.20 /* queue check watchers, to be executed first */
1024     if (checkcnt)
1025 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1026 root 1.9
1027 root 1.51 call_pending (EV_A);
1028 root 1.1 }
1029 root 1.51 while (activecnt && !loop_done);
1030 root 1.13
1031 root 1.51 if (loop_done != 2)
1032     loop_done = 0;
1033     }
1034    
1035     void
1036     ev_unloop (EV_P_ int how)
1037     {
1038     loop_done = how;
1039 root 1.1 }
1040    
1041 root 1.8 /*****************************************************************************/
1042    
1043 root 1.51 inline void
1044 root 1.10 wlist_add (WL *head, WL elem)
1045 root 1.1 {
1046     elem->next = *head;
1047     *head = elem;
1048     }
1049    
1050 root 1.51 inline void
1051 root 1.10 wlist_del (WL *head, WL elem)
1052 root 1.1 {
1053     while (*head)
1054     {
1055     if (*head == elem)
1056     {
1057     *head = elem->next;
1058     return;
1059     }
1060    
1061     head = &(*head)->next;
1062     }
1063     }
1064    
1065 root 1.51 inline void
1066     ev_clear_pending (EV_P_ W w)
1067 root 1.16 {
1068     if (w->pending)
1069     {
1070 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1071 root 1.16 w->pending = 0;
1072     }
1073     }
1074    
1075 root 1.51 inline void
1076     ev_start (EV_P_ W w, int active)
1077 root 1.1 {
1078 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1079     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1080    
1081 root 1.1 w->active = active;
1082 root 1.51 ev_ref (EV_A);
1083 root 1.1 }
1084    
1085 root 1.51 inline void
1086     ev_stop (EV_P_ W w)
1087 root 1.1 {
1088 root 1.51 ev_unref (EV_A);
1089 root 1.1 w->active = 0;
1090     }
1091    
1092 root 1.8 /*****************************************************************************/
1093    
1094 root 1.1 void
1095 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
1096 root 1.1 {
1097 root 1.37 int fd = w->fd;
1098    
1099 root 1.1 if (ev_is_active (w))
1100     return;
1101    
1102 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
1103    
1104 root 1.51 ev_start (EV_A_ (W)w, 1);
1105 root 1.1 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1106 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1107 root 1.1
1108 root 1.51 fd_change (EV_A_ fd);
1109 root 1.1 }
1110    
1111     void
1112 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
1113 root 1.1 {
1114 root 1.51 ev_clear_pending (EV_A_ (W)w);
1115 root 1.1 if (!ev_is_active (w))
1116     return;
1117    
1118 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1119 root 1.51 ev_stop (EV_A_ (W)w);
1120 root 1.1
1121 root 1.51 fd_change (EV_A_ w->fd);
1122 root 1.1 }
1123    
1124     void
1125 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1126 root 1.1 {
1127     if (ev_is_active (w))
1128     return;
1129    
1130 root 1.63 ((WT)w)->at += mn_now;
1131 root 1.12
1132 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1133 root 1.13
1134 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1135 root 1.12 array_needsize (timers, timermax, timercnt, );
1136     timers [timercnt - 1] = w;
1137     upheap ((WT *)timers, timercnt - 1);
1138 root 1.62
1139     assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1140 root 1.12 }
1141    
1142     void
1143 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1144 root 1.12 {
1145 root 1.51 ev_clear_pending (EV_A_ (W)w);
1146 root 1.12 if (!ev_is_active (w))
1147     return;
1148    
1149 root 1.62 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1150    
1151     if (((W)w)->active < timercnt--)
1152 root 1.1 {
1153 root 1.62 timers [((W)w)->active - 1] = timers [timercnt];
1154     downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1155 root 1.12 }
1156 root 1.4
1157 root 1.63 ((WT)w)->at = w->repeat;
1158 root 1.14
1159 root 1.51 ev_stop (EV_A_ (W)w);
1160 root 1.12 }
1161 root 1.4
1162 root 1.12 void
1163 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1164 root 1.14 {
1165     if (ev_is_active (w))
1166     {
1167     if (w->repeat)
1168     {
1169 root 1.63 ((WT)w)->at = mn_now + w->repeat;
1170 root 1.62 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1171 root 1.14 }
1172     else
1173 root 1.51 ev_timer_stop (EV_A_ w);
1174 root 1.14 }
1175     else if (w->repeat)
1176 root 1.51 ev_timer_start (EV_A_ w);
1177 root 1.14 }
1178    
1179     void
1180 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1181 root 1.12 {
1182     if (ev_is_active (w))
1183     return;
1184 root 1.1
1185 root 1.33 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1186 root 1.13
1187 root 1.12 /* this formula differs from the one in periodic_reify because we do not always round up */
1188     if (w->interval)
1189 root 1.63 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1190 root 1.12
1191 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1192 root 1.12 array_needsize (periodics, periodicmax, periodiccnt, );
1193     periodics [periodiccnt - 1] = w;
1194     upheap ((WT *)periodics, periodiccnt - 1);
1195 root 1.62
1196     assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1197 root 1.1 }
1198    
1199     void
1200 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1201 root 1.1 {
1202 root 1.51 ev_clear_pending (EV_A_ (W)w);
1203 root 1.1 if (!ev_is_active (w))
1204     return;
1205    
1206 root 1.62 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1207    
1208     if (((W)w)->active < periodiccnt--)
1209 root 1.2 {
1210 root 1.62 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1211     downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1212 root 1.2 }
1213    
1214 root 1.51 ev_stop (EV_A_ (W)w);
1215 root 1.1 }
1216    
1217 root 1.28 void
1218 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1219 root 1.9 {
1220     if (ev_is_active (w))
1221     return;
1222    
1223 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1224 root 1.9 array_needsize (idles, idlemax, idlecnt, );
1225     idles [idlecnt - 1] = w;
1226     }
1227    
1228 root 1.28 void
1229 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1230 root 1.9 {
1231 root 1.51 ev_clear_pending (EV_A_ (W)w);
1232 root 1.16 if (ev_is_active (w))
1233     return;
1234    
1235 root 1.62 idles [((W)w)->active - 1] = idles [--idlecnt];
1236 root 1.51 ev_stop (EV_A_ (W)w);
1237 root 1.9 }
1238    
1239 root 1.28 void
1240 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1241 root 1.20 {
1242     if (ev_is_active (w))
1243     return;
1244    
1245 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1246 root 1.20 array_needsize (prepares, preparemax, preparecnt, );
1247     prepares [preparecnt - 1] = w;
1248     }
1249    
1250 root 1.28 void
1251 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1252 root 1.20 {
1253 root 1.51 ev_clear_pending (EV_A_ (W)w);
1254 root 1.20 if (ev_is_active (w))
1255     return;
1256    
1257 root 1.62 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1258 root 1.51 ev_stop (EV_A_ (W)w);
1259 root 1.20 }
1260    
1261 root 1.28 void
1262 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1263 root 1.9 {
1264     if (ev_is_active (w))
1265     return;
1266    
1267 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1268 root 1.9 array_needsize (checks, checkmax, checkcnt, );
1269     checks [checkcnt - 1] = w;
1270     }
1271    
1272 root 1.28 void
1273 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1274 root 1.9 {
1275 root 1.51 ev_clear_pending (EV_A_ (W)w);
1276 root 1.16 if (ev_is_active (w))
1277     return;
1278    
1279 root 1.62 checks [((W)w)->active - 1] = checks [--checkcnt];
1280 root 1.51 ev_stop (EV_A_ (W)w);
1281 root 1.9 }
1282    
1283 root 1.56 #ifndef SA_RESTART
1284     # define SA_RESTART 0
1285     #endif
1286    
1287     void
1288     ev_signal_start (EV_P_ struct ev_signal *w)
1289     {
1290     #if EV_MULTIPLICITY
1291     assert (("signal watchers are only supported in the default loop", loop == default_loop));
1292     #endif
1293     if (ev_is_active (w))
1294     return;
1295    
1296     assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1297    
1298     ev_start (EV_A_ (W)w, 1);
1299     array_needsize (signals, signalmax, w->signum, signals_init);
1300     wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1301    
1302 root 1.63 if (!((WL)w)->next)
1303 root 1.56 {
1304     struct sigaction sa;
1305     sa.sa_handler = sighandler;
1306     sigfillset (&sa.sa_mask);
1307     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1308     sigaction (w->signum, &sa, 0);
1309     }
1310     }
1311    
1312     void
1313     ev_signal_stop (EV_P_ struct ev_signal *w)
1314     {
1315     ev_clear_pending (EV_A_ (W)w);
1316     if (!ev_is_active (w))
1317     return;
1318    
1319     wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1320     ev_stop (EV_A_ (W)w);
1321    
1322     if (!signals [w->signum - 1].head)
1323     signal (w->signum, SIG_DFL);
1324     }
1325    
1326 root 1.28 void
1327 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1328 root 1.22 {
1329 root 1.56 #if EV_MULTIPLICITY
1330     assert (("child watchers are only supported in the default loop", loop == default_loop));
1331     #endif
1332 root 1.22 if (ev_is_active (w))
1333     return;
1334    
1335 root 1.51 ev_start (EV_A_ (W)w, 1);
1336 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1337     }
1338    
1339 root 1.28 void
1340 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1341 root 1.22 {
1342 root 1.51 ev_clear_pending (EV_A_ (W)w);
1343 root 1.22 if (ev_is_active (w))
1344     return;
1345    
1346     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1347 root 1.51 ev_stop (EV_A_ (W)w);
1348 root 1.22 }
1349    
1350 root 1.1 /*****************************************************************************/
1351 root 1.10
1352 root 1.16 struct ev_once
1353     {
1354     struct ev_io io;
1355     struct ev_timer to;
1356     void (*cb)(int revents, void *arg);
1357     void *arg;
1358     };
1359    
1360     static void
1361 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1362 root 1.16 {
1363     void (*cb)(int revents, void *arg) = once->cb;
1364     void *arg = once->arg;
1365    
1366 root 1.51 ev_io_stop (EV_A_ &once->io);
1367     ev_timer_stop (EV_A_ &once->to);
1368 root 1.16 free (once);
1369    
1370     cb (revents, arg);
1371     }
1372    
1373     static void
1374 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1375 root 1.16 {
1376 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1377 root 1.16 }
1378    
1379     static void
1380 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1381 root 1.16 {
1382 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1383 root 1.16 }
1384    
1385     void
1386 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1387 root 1.16 {
1388     struct ev_once *once = malloc (sizeof (struct ev_once));
1389    
1390     if (!once)
1391 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1392 root 1.16 else
1393     {
1394     once->cb = cb;
1395     once->arg = arg;
1396    
1397 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1398 root 1.16 if (fd >= 0)
1399     {
1400 root 1.28 ev_io_set (&once->io, fd, events);
1401 root 1.51 ev_io_start (EV_A_ &once->io);
1402 root 1.16 }
1403    
1404 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1405 root 1.16 if (timeout >= 0.)
1406     {
1407 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1408 root 1.51 ev_timer_start (EV_A_ &once->to);
1409 root 1.16 }
1410     }
1411     }
1412