ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.67
Committed: Mon Nov 5 16:42:15 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.66: +22 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.59 #ifndef EV_STANDALONE
32 root 1.29 # include "config.h"
33 root 1.60
34     # if HAVE_CLOCK_GETTIME
35     # define EV_USE_MONOTONIC 1
36     # define EV_USE_REALTIME 1
37     # endif
38    
39     # if HAVE_SELECT && HAVE_SYS_SELECT_H
40     # define EV_USE_SELECT 1
41     # endif
42    
43     # if HAVE_POLL && HAVE_POLL_H
44     # define EV_USE_POLL 1
45     # endif
46    
47     # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48     # define EV_USE_EPOLL 1
49     # endif
50    
51     # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52     # define EV_USE_KQUEUE 1
53     # endif
54    
55 root 1.29 #endif
56 root 1.17
57 root 1.1 #include <math.h>
58     #include <stdlib.h>
59 root 1.7 #include <unistd.h>
60     #include <fcntl.h>
61     #include <signal.h>
62 root 1.16 #include <stddef.h>
63 root 1.1
64     #include <stdio.h>
65    
66 root 1.4 #include <assert.h>
67 root 1.1 #include <errno.h>
68 root 1.22 #include <sys/types.h>
69 root 1.45 #ifndef WIN32
70     # include <sys/wait.h>
71     #endif
72 root 1.1 #include <sys/time.h>
73     #include <time.h>
74    
75 root 1.40 /**/
76    
77 root 1.29 #ifndef EV_USE_MONOTONIC
78 root 1.37 # define EV_USE_MONOTONIC 1
79     #endif
80    
81 root 1.29 #ifndef EV_USE_SELECT
82     # define EV_USE_SELECT 1
83 root 1.10 #endif
84    
85 root 1.59 #ifndef EV_USE_POLL
86     # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87 root 1.41 #endif
88    
89 root 1.29 #ifndef EV_USE_EPOLL
90     # define EV_USE_EPOLL 0
91 root 1.10 #endif
92    
93 root 1.44 #ifndef EV_USE_KQUEUE
94     # define EV_USE_KQUEUE 0
95     #endif
96    
97 root 1.62 #ifndef EV_USE_WIN32
98     # ifdef WIN32
99     # define EV_USE_WIN32 1
100     # else
101     # define EV_USE_WIN32 0
102     # endif
103     #endif
104    
105 root 1.40 #ifndef EV_USE_REALTIME
106     # define EV_USE_REALTIME 1
107     #endif
108    
109     /**/
110    
111     #ifndef CLOCK_MONOTONIC
112     # undef EV_USE_MONOTONIC
113     # define EV_USE_MONOTONIC 0
114     #endif
115    
116 root 1.31 #ifndef CLOCK_REALTIME
117 root 1.40 # undef EV_USE_REALTIME
118 root 1.31 # define EV_USE_REALTIME 0
119     #endif
120 root 1.40
121     /**/
122 root 1.1
123 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 root 1.1
128 root 1.59 #include "ev.h"
129 root 1.1
130 root 1.40 #if __GNUC__ >= 3
131     # define expect(expr,value) __builtin_expect ((expr),(value))
132     # define inline inline
133     #else
134     # define expect(expr,value) (expr)
135     # define inline static
136     #endif
137    
138     #define expect_false(expr) expect ((expr) != 0, 0)
139     #define expect_true(expr) expect ((expr) != 0, 1)
140    
141 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
143    
144 root 1.10 typedef struct ev_watcher *W;
145     typedef struct ev_watcher_list *WL;
146 root 1.12 typedef struct ev_watcher_time *WT;
147 root 1.10
148 root 1.54 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149    
150 root 1.67 #if WIN32
151     /* note: the comment below could not be substantiated, but what would I care */
152     /* MSDN says this is required to handle SIGFPE */
153     volatile double SIGFPE_REQ = 0.0f;
154     #endif
155    
156 root 1.53 /*****************************************************************************/
157 root 1.1
158 root 1.53 typedef struct
159     {
160     struct ev_watcher_list *head;
161     unsigned char events;
162     unsigned char reify;
163     } ANFD;
164 root 1.1
165 root 1.53 typedef struct
166     {
167     W w;
168     int events;
169     } ANPENDING;
170 root 1.51
171 root 1.55 #if EV_MULTIPLICITY
172 root 1.54
173 root 1.53 struct ev_loop
174     {
175 root 1.54 # define VAR(name,decl) decl;
176 root 1.53 # include "ev_vars.h"
177     };
178 root 1.54 # undef VAR
179     # include "ev_wrap.h"
180    
181 root 1.53 #else
182 root 1.54
183     # define VAR(name,decl) static decl;
184 root 1.53 # include "ev_vars.h"
185 root 1.54 # undef VAR
186    
187 root 1.51 #endif
188 root 1.1
189 root 1.8 /*****************************************************************************/
190    
191 root 1.51 inline ev_tstamp
192 root 1.1 ev_time (void)
193     {
194 root 1.29 #if EV_USE_REALTIME
195 root 1.1 struct timespec ts;
196     clock_gettime (CLOCK_REALTIME, &ts);
197     return ts.tv_sec + ts.tv_nsec * 1e-9;
198     #else
199     struct timeval tv;
200     gettimeofday (&tv, 0);
201     return tv.tv_sec + tv.tv_usec * 1e-6;
202     #endif
203     }
204    
205 root 1.51 inline ev_tstamp
206 root 1.1 get_clock (void)
207     {
208 root 1.29 #if EV_USE_MONOTONIC
209 root 1.40 if (expect_true (have_monotonic))
210 root 1.1 {
211     struct timespec ts;
212     clock_gettime (CLOCK_MONOTONIC, &ts);
213     return ts.tv_sec + ts.tv_nsec * 1e-9;
214     }
215     #endif
216    
217     return ev_time ();
218     }
219    
220 root 1.51 ev_tstamp
221     ev_now (EV_P)
222     {
223     return rt_now;
224     }
225    
226 root 1.30 #define array_roundsize(base,n) ((n) | 4 & ~3)
227 root 1.29
228 root 1.1 #define array_needsize(base,cur,cnt,init) \
229 root 1.40 if (expect_false ((cnt) > cur)) \
230 root 1.1 { \
231 root 1.23 int newcnt = cur; \
232     do \
233     { \
234 root 1.30 newcnt = array_roundsize (base, newcnt << 1); \
235 root 1.23 } \
236     while ((cnt) > newcnt); \
237     \
238 root 1.1 base = realloc (base, sizeof (*base) * (newcnt)); \
239     init (base + cur, newcnt - cur); \
240     cur = newcnt; \
241     }
242    
243 root 1.67 #define array_slim(stem) \
244     if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245     { \
246     stem ## max = array_roundsize (stem ## cnt >> 1); \
247     base = realloc (base, sizeof (*base) * (stem ## max)); \
248     fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249     }
250    
251 root 1.65 #define array_free(stem, idx) \
252     free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253    
254 root 1.8 /*****************************************************************************/
255    
256 root 1.1 static void
257     anfds_init (ANFD *base, int count)
258     {
259     while (count--)
260     {
261 root 1.27 base->head = 0;
262     base->events = EV_NONE;
263 root 1.33 base->reify = 0;
264    
265 root 1.1 ++base;
266     }
267     }
268    
269     static void
270 root 1.51 event (EV_P_ W w, int events)
271 root 1.1 {
272 root 1.32 if (w->pending)
273     {
274 root 1.42 pendings [ABSPRI (w)][w->pending - 1].events |= events;
275 root 1.32 return;
276     }
277    
278 root 1.42 w->pending = ++pendingcnt [ABSPRI (w)];
279     array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
280     pendings [ABSPRI (w)][w->pending - 1].w = w;
281     pendings [ABSPRI (w)][w->pending - 1].events = events;
282 root 1.1 }
283    
284     static void
285 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
286 root 1.27 {
287     int i;
288    
289     for (i = 0; i < eventcnt; ++i)
290 root 1.51 event (EV_A_ events [i], type);
291 root 1.27 }
292    
293     static void
294 root 1.51 fd_event (EV_P_ int fd, int events)
295 root 1.1 {
296     ANFD *anfd = anfds + fd;
297     struct ev_io *w;
298    
299 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
300 root 1.1 {
301     int ev = w->events & events;
302    
303     if (ev)
304 root 1.51 event (EV_A_ (W)w, ev);
305 root 1.1 }
306     }
307    
308 root 1.27 /*****************************************************************************/
309    
310 root 1.9 static void
311 root 1.51 fd_reify (EV_P)
312 root 1.9 {
313     int i;
314    
315 root 1.27 for (i = 0; i < fdchangecnt; ++i)
316     {
317     int fd = fdchanges [i];
318     ANFD *anfd = anfds + fd;
319     struct ev_io *w;
320    
321     int events = 0;
322    
323 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
324 root 1.27 events |= w->events;
325    
326 root 1.33 anfd->reify = 0;
327 root 1.27
328 root 1.64 method_modify (EV_A_ fd, anfd->events, events);
329     anfd->events = events;
330 root 1.27 }
331    
332     fdchangecnt = 0;
333     }
334    
335     static void
336 root 1.51 fd_change (EV_P_ int fd)
337 root 1.27 {
338 root 1.33 if (anfds [fd].reify || fdchangecnt < 0)
339 root 1.27 return;
340    
341 root 1.33 anfds [fd].reify = 1;
342 root 1.27
343     ++fdchangecnt;
344     array_needsize (fdchanges, fdchangemax, fdchangecnt, );
345     fdchanges [fdchangecnt - 1] = fd;
346 root 1.9 }
347    
348 root 1.41 static void
349 root 1.51 fd_kill (EV_P_ int fd)
350 root 1.41 {
351     struct ev_io *w;
352    
353 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
354 root 1.41 {
355 root 1.51 ev_io_stop (EV_A_ w);
356     event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 root 1.41 }
358     }
359    
360 root 1.19 /* called on EBADF to verify fds */
361     static void
362 root 1.51 fd_ebadf (EV_P)
363 root 1.19 {
364     int fd;
365    
366     for (fd = 0; fd < anfdmax; ++fd)
367 root 1.27 if (anfds [fd].events)
368 root 1.19 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
369 root 1.51 fd_kill (EV_A_ fd);
370 root 1.41 }
371    
372     /* called on ENOMEM in select/poll to kill some fds and retry */
373     static void
374 root 1.51 fd_enomem (EV_P)
375 root 1.41 {
376 root 1.62 int fd;
377 root 1.41
378 root 1.62 for (fd = anfdmax; fd--; )
379 root 1.41 if (anfds [fd].events)
380     {
381     close (fd);
382 root 1.51 fd_kill (EV_A_ fd);
383 root 1.41 return;
384     }
385 root 1.19 }
386    
387 root 1.56 /* susually called after fork if method needs to re-arm all fds from scratch */
388     static void
389     fd_rearm_all (EV_P)
390     {
391     int fd;
392    
393     /* this should be highly optimised to not do anything but set a flag */
394     for (fd = 0; fd < anfdmax; ++fd)
395     if (anfds [fd].events)
396     {
397     anfds [fd].events = 0;
398 root 1.60 fd_change (EV_A_ fd);
399 root 1.56 }
400     }
401    
402 root 1.8 /*****************************************************************************/
403    
404 root 1.1 static void
405 root 1.54 upheap (WT *heap, int k)
406 root 1.1 {
407 root 1.54 WT w = heap [k];
408 root 1.1
409 root 1.54 while (k && heap [k >> 1]->at > w->at)
410 root 1.1 {
411 root 1.54 heap [k] = heap [k >> 1];
412 root 1.62 ((W)heap [k])->active = k + 1;
413 root 1.1 k >>= 1;
414     }
415    
416 root 1.54 heap [k] = w;
417 root 1.62 ((W)heap [k])->active = k + 1;
418 root 1.1
419     }
420    
421     static void
422 root 1.54 downheap (WT *heap, int N, int k)
423 root 1.1 {
424 root 1.54 WT w = heap [k];
425 root 1.1
426 root 1.4 while (k < (N >> 1))
427 root 1.1 {
428     int j = k << 1;
429    
430 root 1.54 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
431 root 1.1 ++j;
432    
433 root 1.54 if (w->at <= heap [j]->at)
434 root 1.1 break;
435    
436 root 1.54 heap [k] = heap [j];
437 root 1.62 ((W)heap [k])->active = k + 1;
438 root 1.1 k = j;
439     }
440    
441 root 1.54 heap [k] = w;
442 root 1.62 ((W)heap [k])->active = k + 1;
443 root 1.1 }
444    
445 root 1.8 /*****************************************************************************/
446    
447 root 1.7 typedef struct
448     {
449 root 1.50 struct ev_watcher_list *head;
450 root 1.34 sig_atomic_t volatile gotsig;
451 root 1.7 } ANSIG;
452    
453     static ANSIG *signals;
454 root 1.4 static int signalmax;
455 root 1.1
456 root 1.7 static int sigpipe [2];
457 root 1.34 static sig_atomic_t volatile gotsig;
458 root 1.59 static struct ev_io sigev;
459 root 1.7
460 root 1.1 static void
461 root 1.7 signals_init (ANSIG *base, int count)
462 root 1.1 {
463     while (count--)
464 root 1.7 {
465     base->head = 0;
466     base->gotsig = 0;
467 root 1.33
468 root 1.7 ++base;
469     }
470     }
471    
472     static void
473     sighandler (int signum)
474     {
475 root 1.67 #if WIN32
476     signal (signum, sighandler);
477     #endif
478    
479 root 1.7 signals [signum - 1].gotsig = 1;
480    
481     if (!gotsig)
482     {
483 root 1.48 int old_errno = errno;
484 root 1.7 gotsig = 1;
485 root 1.34 write (sigpipe [1], &signum, 1);
486 root 1.48 errno = old_errno;
487 root 1.7 }
488     }
489    
490     static void
491 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
492 root 1.7 {
493 root 1.50 struct ev_watcher_list *w;
494 root 1.38 int signum;
495 root 1.7
496 root 1.34 read (sigpipe [0], &revents, 1);
497 root 1.7 gotsig = 0;
498    
499 root 1.38 for (signum = signalmax; signum--; )
500     if (signals [signum].gotsig)
501 root 1.7 {
502 root 1.38 signals [signum].gotsig = 0;
503 root 1.7
504 root 1.38 for (w = signals [signum].head; w; w = w->next)
505 root 1.51 event (EV_A_ (W)w, EV_SIGNAL);
506 root 1.7 }
507     }
508    
509     static void
510 root 1.51 siginit (EV_P)
511 root 1.7 {
512 root 1.45 #ifndef WIN32
513 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
514     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
515    
516     /* rather than sort out wether we really need nb, set it */
517     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
518     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
519 root 1.45 #endif
520 root 1.7
521 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
522 root 1.54 ev_io_start (EV_A_ &sigev);
523 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
524 root 1.1 }
525    
526 root 1.8 /*****************************************************************************/
527    
528 root 1.45 #ifndef WIN32
529    
530 root 1.59 static struct ev_child *childs [PID_HASHSIZE];
531     static struct ev_signal childev;
532    
533 root 1.22 #ifndef WCONTINUED
534     # define WCONTINUED 0
535     #endif
536    
537     static void
538 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
539 root 1.47 {
540     struct ev_child *w;
541    
542 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
543 root 1.47 if (w->pid == pid || !w->pid)
544     {
545 root 1.63 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546     w->rpid = pid;
547     w->rstatus = status;
548 root 1.51 event (EV_A_ (W)w, EV_CHILD);
549 root 1.47 }
550     }
551    
552     static void
553 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
554 root 1.22 {
555     int pid, status;
556    
557 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
558     {
559     /* make sure we are called again until all childs have been reaped */
560 root 1.51 event (EV_A_ (W)sw, EV_SIGNAL);
561 root 1.47
562 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
563     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
564 root 1.47 }
565 root 1.22 }
566    
567 root 1.45 #endif
568    
569 root 1.22 /*****************************************************************************/
570    
571 root 1.44 #if EV_USE_KQUEUE
572     # include "ev_kqueue.c"
573     #endif
574 root 1.29 #if EV_USE_EPOLL
575 root 1.1 # include "ev_epoll.c"
576     #endif
577 root 1.59 #if EV_USE_POLL
578 root 1.41 # include "ev_poll.c"
579     #endif
580 root 1.29 #if EV_USE_SELECT
581 root 1.1 # include "ev_select.c"
582     #endif
583    
584 root 1.24 int
585     ev_version_major (void)
586     {
587     return EV_VERSION_MAJOR;
588     }
589    
590     int
591     ev_version_minor (void)
592     {
593     return EV_VERSION_MINOR;
594     }
595    
596 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
597 root 1.41 static int
598 root 1.51 enable_secure (void)
599 root 1.41 {
600 root 1.49 #ifdef WIN32
601     return 0;
602     #else
603 root 1.41 return getuid () != geteuid ()
604     || getgid () != getegid ();
605 root 1.49 #endif
606 root 1.41 }
607    
608 root 1.51 int
609     ev_method (EV_P)
610 root 1.1 {
611 root 1.51 return method;
612     }
613    
614 root 1.56 static void
615 root 1.54 loop_init (EV_P_ int methods)
616 root 1.51 {
617     if (!method)
618 root 1.23 {
619 root 1.29 #if EV_USE_MONOTONIC
620 root 1.23 {
621     struct timespec ts;
622     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
623     have_monotonic = 1;
624     }
625 root 1.1 #endif
626    
627 root 1.51 rt_now = ev_time ();
628     mn_now = get_clock ();
629     now_floor = mn_now;
630 root 1.54 rtmn_diff = rt_now - mn_now;
631 root 1.1
632 root 1.41 if (methods == EVMETHOD_AUTO)
633 root 1.56 if (!enable_secure () && getenv ("LIBEV_METHODS"))
634     methods = atoi (getenv ("LIBEV_METHODS"));
635 root 1.50 else
636     methods = EVMETHOD_ANY;
637 root 1.41
638 root 1.51 method = 0;
639 root 1.62 #if EV_USE_WIN32
640     if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
641     #endif
642 root 1.44 #if EV_USE_KQUEUE
643 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
644 root 1.44 #endif
645 root 1.29 #if EV_USE_EPOLL
646 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
647 root 1.41 #endif
648 root 1.59 #if EV_USE_POLL
649 root 1.51 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
650 root 1.1 #endif
651 root 1.29 #if EV_USE_SELECT
652 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
653 root 1.1 #endif
654 root 1.56 }
655     }
656    
657     void
658     loop_destroy (EV_P)
659     {
660 root 1.65 int i;
661    
662 root 1.62 #if EV_USE_WIN32
663     if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
664     #endif
665 root 1.56 #if EV_USE_KQUEUE
666     if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
667     #endif
668     #if EV_USE_EPOLL
669     if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
670     #endif
671 root 1.59 #if EV_USE_POLL
672 root 1.56 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
673     #endif
674     #if EV_USE_SELECT
675     if (method == EVMETHOD_SELECT) select_destroy (EV_A);
676     #endif
677 root 1.1
678 root 1.65 for (i = NUMPRI; i--; )
679     array_free (pending, [i]);
680    
681     array_free (fdchange, );
682     array_free (timer, );
683     array_free (periodic, );
684     array_free (idle, );
685     array_free (prepare, );
686     array_free (check, );
687    
688 root 1.56 method = 0;
689     /*TODO*/
690     }
691 root 1.22
692 root 1.56 void
693     loop_fork (EV_P)
694     {
695     /*TODO*/
696     #if EV_USE_EPOLL
697     if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
698     #endif
699     #if EV_USE_KQUEUE
700     if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
701 root 1.45 #endif
702 root 1.1 }
703    
704 root 1.55 #if EV_MULTIPLICITY
705 root 1.54 struct ev_loop *
706     ev_loop_new (int methods)
707     {
708     struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
709    
710 root 1.56 loop_init (EV_A_ methods);
711    
712 root 1.60 if (ev_method (EV_A))
713 root 1.55 return loop;
714 root 1.54
715 root 1.55 return 0;
716 root 1.54 }
717    
718     void
719 root 1.56 ev_loop_destroy (EV_P)
720 root 1.54 {
721 root 1.56 loop_destroy (EV_A);
722 root 1.54 free (loop);
723     }
724    
725 root 1.56 void
726     ev_loop_fork (EV_P)
727     {
728     loop_fork (EV_A);
729     }
730    
731     #endif
732    
733     #if EV_MULTIPLICITY
734     struct ev_loop default_loop_struct;
735     static struct ev_loop *default_loop;
736    
737     struct ev_loop *
738 root 1.54 #else
739 root 1.56 static int default_loop;
740 root 1.54
741     int
742 root 1.56 #endif
743     ev_default_loop (int methods)
744 root 1.54 {
745 root 1.56 if (sigpipe [0] == sigpipe [1])
746     if (pipe (sigpipe))
747     return 0;
748 root 1.54
749 root 1.56 if (!default_loop)
750     {
751     #if EV_MULTIPLICITY
752     struct ev_loop *loop = default_loop = &default_loop_struct;
753     #else
754     default_loop = 1;
755 root 1.54 #endif
756    
757 root 1.56 loop_init (EV_A_ methods);
758    
759     if (ev_method (EV_A))
760     {
761     ev_watcher_init (&sigev, sigcb);
762     ev_set_priority (&sigev, EV_MAXPRI);
763     siginit (EV_A);
764    
765     #ifndef WIN32
766     ev_signal_init (&childev, childcb, SIGCHLD);
767     ev_set_priority (&childev, EV_MAXPRI);
768     ev_signal_start (EV_A_ &childev);
769     ev_unref (EV_A); /* child watcher should not keep loop alive */
770     #endif
771     }
772     else
773     default_loop = 0;
774     }
775 root 1.8
776 root 1.56 return default_loop;
777 root 1.1 }
778    
779 root 1.24 void
780 root 1.56 ev_default_destroy (void)
781 root 1.1 {
782 root 1.57 #if EV_MULTIPLICITY
783 root 1.56 struct ev_loop *loop = default_loop;
784 root 1.57 #endif
785 root 1.56
786     ev_ref (EV_A); /* child watcher */
787     ev_signal_stop (EV_A_ &childev);
788    
789     ev_ref (EV_A); /* signal watcher */
790     ev_io_stop (EV_A_ &sigev);
791    
792     close (sigpipe [0]); sigpipe [0] = 0;
793     close (sigpipe [1]); sigpipe [1] = 0;
794    
795     loop_destroy (EV_A);
796 root 1.1 }
797    
798 root 1.24 void
799 root 1.60 ev_default_fork (void)
800 root 1.1 {
801 root 1.60 #if EV_MULTIPLICITY
802     struct ev_loop *loop = default_loop;
803     #endif
804    
805 root 1.56 loop_fork (EV_A);
806 root 1.7
807 root 1.54 ev_io_stop (EV_A_ &sigev);
808 root 1.7 close (sigpipe [0]);
809     close (sigpipe [1]);
810     pipe (sigpipe);
811 root 1.56
812     ev_ref (EV_A); /* signal watcher */
813 root 1.54 siginit (EV_A);
814 root 1.1 }
815    
816 root 1.8 /*****************************************************************************/
817    
818 root 1.1 static void
819 root 1.51 call_pending (EV_P)
820 root 1.1 {
821 root 1.42 int pri;
822    
823     for (pri = NUMPRI; pri--; )
824     while (pendingcnt [pri])
825     {
826     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
827 root 1.1
828 root 1.42 if (p->w)
829     {
830     p->w->pending = 0;
831 root 1.66 p->w->cb (EV_A_ p->w, p->events);
832 root 1.42 }
833     }
834 root 1.1 }
835    
836     static void
837 root 1.51 timers_reify (EV_P)
838 root 1.1 {
839 root 1.63 while (timercnt && ((WT)timers [0])->at <= mn_now)
840 root 1.1 {
841     struct ev_timer *w = timers [0];
842    
843 root 1.61 assert (("inactive timer on timer heap detected", ev_is_active (w)));
844    
845 root 1.4 /* first reschedule or stop timer */
846 root 1.1 if (w->repeat)
847     {
848 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
849 root 1.63 ((WT)w)->at = mn_now + w->repeat;
850 root 1.12 downheap ((WT *)timers, timercnt, 0);
851     }
852     else
853 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
854 root 1.30
855 root 1.54 event (EV_A_ (W)w, EV_TIMEOUT);
856 root 1.12 }
857     }
858 root 1.4
859 root 1.12 static void
860 root 1.51 periodics_reify (EV_P)
861 root 1.12 {
862 root 1.63 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
863 root 1.12 {
864     struct ev_periodic *w = periodics [0];
865 root 1.1
866 root 1.61 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
867    
868 root 1.12 /* first reschedule or stop timer */
869     if (w->interval)
870     {
871 root 1.63 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
872     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
873 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
874 root 1.1 }
875     else
876 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
877 root 1.12
878 root 1.51 event (EV_A_ (W)w, EV_PERIODIC);
879 root 1.12 }
880     }
881    
882     static void
883 root 1.54 periodics_reschedule (EV_P)
884 root 1.12 {
885     int i;
886    
887 root 1.13 /* adjust periodics after time jump */
888 root 1.12 for (i = 0; i < periodiccnt; ++i)
889     {
890     struct ev_periodic *w = periodics [i];
891    
892     if (w->interval)
893 root 1.4 {
894 root 1.63 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
895 root 1.12
896     if (fabs (diff) >= 1e-4)
897     {
898 root 1.51 ev_periodic_stop (EV_A_ w);
899     ev_periodic_start (EV_A_ w);
900 root 1.12
901     i = 0; /* restart loop, inefficient, but time jumps should be rare */
902     }
903 root 1.4 }
904 root 1.12 }
905 root 1.1 }
906    
907 root 1.51 inline int
908     time_update_monotonic (EV_P)
909 root 1.40 {
910 root 1.51 mn_now = get_clock ();
911 root 1.40
912 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
913 root 1.40 {
914 root 1.54 rt_now = rtmn_diff + mn_now;
915 root 1.40 return 0;
916     }
917     else
918     {
919 root 1.51 now_floor = mn_now;
920     rt_now = ev_time ();
921 root 1.40 return 1;
922     }
923     }
924    
925 root 1.4 static void
926 root 1.51 time_update (EV_P)
927 root 1.4 {
928     int i;
929 root 1.12
930 root 1.40 #if EV_USE_MONOTONIC
931     if (expect_true (have_monotonic))
932     {
933 root 1.51 if (time_update_monotonic (EV_A))
934 root 1.40 {
935 root 1.54 ev_tstamp odiff = rtmn_diff;
936 root 1.4
937 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
938     {
939 root 1.54 rtmn_diff = rt_now - mn_now;
940 root 1.4
941 root 1.54 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
942 root 1.40 return; /* all is well */
943 root 1.4
944 root 1.51 rt_now = ev_time ();
945     mn_now = get_clock ();
946     now_floor = mn_now;
947 root 1.40 }
948 root 1.4
949 root 1.54 periodics_reschedule (EV_A);
950 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
951 root 1.54 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
952 root 1.4 }
953     }
954     else
955 root 1.40 #endif
956 root 1.4 {
957 root 1.51 rt_now = ev_time ();
958 root 1.40
959 root 1.51 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
960 root 1.13 {
961 root 1.54 periodics_reschedule (EV_A);
962 root 1.13
963     /* adjust timers. this is easy, as the offset is the same for all */
964     for (i = 0; i < timercnt; ++i)
965 root 1.63 ((WT)timers [i])->at += rt_now - mn_now;
966 root 1.13 }
967 root 1.4
968 root 1.51 mn_now = rt_now;
969 root 1.4 }
970     }
971    
972 root 1.51 void
973     ev_ref (EV_P)
974     {
975     ++activecnt;
976     }
977 root 1.1
978 root 1.51 void
979     ev_unref (EV_P)
980     {
981     --activecnt;
982     }
983    
984     static int loop_done;
985    
986     void
987     ev_loop (EV_P_ int flags)
988 root 1.1 {
989     double block;
990 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
991 root 1.1
992 root 1.20 do
993 root 1.9 {
994 root 1.20 /* queue check watchers (and execute them) */
995 root 1.40 if (expect_false (preparecnt))
996 root 1.20 {
997 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
998     call_pending (EV_A);
999 root 1.20 }
1000 root 1.9
1001 root 1.1 /* update fd-related kernel structures */
1002 root 1.51 fd_reify (EV_A);
1003 root 1.1
1004     /* calculate blocking time */
1005 root 1.12
1006 root 1.21 /* we only need this for !monotonic clockor timers, but as we basically
1007     always have timers, we just calculate it always */
1008 root 1.40 #if EV_USE_MONOTONIC
1009     if (expect_true (have_monotonic))
1010 root 1.51 time_update_monotonic (EV_A);
1011 root 1.40 else
1012     #endif
1013     {
1014 root 1.51 rt_now = ev_time ();
1015     mn_now = rt_now;
1016 root 1.40 }
1017 root 1.12
1018 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
1019 root 1.1 block = 0.;
1020     else
1021     {
1022 root 1.4 block = MAX_BLOCKTIME;
1023    
1024 root 1.12 if (timercnt)
1025 root 1.4 {
1026 root 1.63 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1027 root 1.4 if (block > to) block = to;
1028     }
1029    
1030 root 1.12 if (periodiccnt)
1031 root 1.4 {
1032 root 1.63 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1033 root 1.4 if (block > to) block = to;
1034     }
1035    
1036 root 1.1 if (block < 0.) block = 0.;
1037     }
1038    
1039 root 1.51 method_poll (EV_A_ block);
1040 root 1.1
1041 root 1.51 /* update rt_now, do magic */
1042     time_update (EV_A);
1043 root 1.4
1044 root 1.9 /* queue pending timers and reschedule them */
1045 root 1.51 timers_reify (EV_A); /* relative timers called last */
1046     periodics_reify (EV_A); /* absolute timers called first */
1047 root 1.1
1048 root 1.9 /* queue idle watchers unless io or timers are pending */
1049     if (!pendingcnt)
1050 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1051 root 1.9
1052 root 1.20 /* queue check watchers, to be executed first */
1053     if (checkcnt)
1054 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1055 root 1.9
1056 root 1.51 call_pending (EV_A);
1057 root 1.1 }
1058 root 1.51 while (activecnt && !loop_done);
1059 root 1.13
1060 root 1.51 if (loop_done != 2)
1061     loop_done = 0;
1062     }
1063    
1064     void
1065     ev_unloop (EV_P_ int how)
1066     {
1067     loop_done = how;
1068 root 1.1 }
1069    
1070 root 1.8 /*****************************************************************************/
1071    
1072 root 1.51 inline void
1073 root 1.10 wlist_add (WL *head, WL elem)
1074 root 1.1 {
1075     elem->next = *head;
1076     *head = elem;
1077     }
1078    
1079 root 1.51 inline void
1080 root 1.10 wlist_del (WL *head, WL elem)
1081 root 1.1 {
1082     while (*head)
1083     {
1084     if (*head == elem)
1085     {
1086     *head = elem->next;
1087     return;
1088     }
1089    
1090     head = &(*head)->next;
1091     }
1092     }
1093    
1094 root 1.51 inline void
1095     ev_clear_pending (EV_P_ W w)
1096 root 1.16 {
1097     if (w->pending)
1098     {
1099 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1100 root 1.16 w->pending = 0;
1101     }
1102     }
1103    
1104 root 1.51 inline void
1105     ev_start (EV_P_ W w, int active)
1106 root 1.1 {
1107 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1108     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1109    
1110 root 1.1 w->active = active;
1111 root 1.51 ev_ref (EV_A);
1112 root 1.1 }
1113    
1114 root 1.51 inline void
1115     ev_stop (EV_P_ W w)
1116 root 1.1 {
1117 root 1.51 ev_unref (EV_A);
1118 root 1.1 w->active = 0;
1119     }
1120    
1121 root 1.8 /*****************************************************************************/
1122    
1123 root 1.1 void
1124 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
1125 root 1.1 {
1126 root 1.37 int fd = w->fd;
1127    
1128 root 1.1 if (ev_is_active (w))
1129     return;
1130    
1131 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
1132    
1133 root 1.51 ev_start (EV_A_ (W)w, 1);
1134 root 1.1 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1135 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1136 root 1.1
1137 root 1.51 fd_change (EV_A_ fd);
1138 root 1.1 }
1139    
1140     void
1141 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
1142 root 1.1 {
1143 root 1.51 ev_clear_pending (EV_A_ (W)w);
1144 root 1.1 if (!ev_is_active (w))
1145     return;
1146    
1147 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1148 root 1.51 ev_stop (EV_A_ (W)w);
1149 root 1.1
1150 root 1.51 fd_change (EV_A_ w->fd);
1151 root 1.1 }
1152    
1153     void
1154 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1155 root 1.1 {
1156     if (ev_is_active (w))
1157     return;
1158    
1159 root 1.63 ((WT)w)->at += mn_now;
1160 root 1.12
1161 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1162 root 1.13
1163 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1164 root 1.12 array_needsize (timers, timermax, timercnt, );
1165     timers [timercnt - 1] = w;
1166     upheap ((WT *)timers, timercnt - 1);
1167 root 1.62
1168     assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1169 root 1.12 }
1170    
1171     void
1172 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1173 root 1.12 {
1174 root 1.51 ev_clear_pending (EV_A_ (W)w);
1175 root 1.12 if (!ev_is_active (w))
1176     return;
1177    
1178 root 1.62 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1179    
1180     if (((W)w)->active < timercnt--)
1181 root 1.1 {
1182 root 1.62 timers [((W)w)->active - 1] = timers [timercnt];
1183     downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1184 root 1.12 }
1185 root 1.4
1186 root 1.63 ((WT)w)->at = w->repeat;
1187 root 1.14
1188 root 1.51 ev_stop (EV_A_ (W)w);
1189 root 1.12 }
1190 root 1.4
1191 root 1.12 void
1192 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1193 root 1.14 {
1194     if (ev_is_active (w))
1195     {
1196     if (w->repeat)
1197     {
1198 root 1.63 ((WT)w)->at = mn_now + w->repeat;
1199 root 1.62 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1200 root 1.14 }
1201     else
1202 root 1.51 ev_timer_stop (EV_A_ w);
1203 root 1.14 }
1204     else if (w->repeat)
1205 root 1.51 ev_timer_start (EV_A_ w);
1206 root 1.14 }
1207    
1208     void
1209 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1210 root 1.12 {
1211     if (ev_is_active (w))
1212     return;
1213 root 1.1
1214 root 1.33 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1215 root 1.13
1216 root 1.12 /* this formula differs from the one in periodic_reify because we do not always round up */
1217     if (w->interval)
1218 root 1.63 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1219 root 1.12
1220 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1221 root 1.12 array_needsize (periodics, periodicmax, periodiccnt, );
1222     periodics [periodiccnt - 1] = w;
1223     upheap ((WT *)periodics, periodiccnt - 1);
1224 root 1.62
1225     assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1226 root 1.1 }
1227    
1228     void
1229 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1230 root 1.1 {
1231 root 1.51 ev_clear_pending (EV_A_ (W)w);
1232 root 1.1 if (!ev_is_active (w))
1233     return;
1234    
1235 root 1.62 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1236    
1237     if (((W)w)->active < periodiccnt--)
1238 root 1.2 {
1239 root 1.62 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1240     downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1241 root 1.2 }
1242    
1243 root 1.51 ev_stop (EV_A_ (W)w);
1244 root 1.1 }
1245    
1246 root 1.28 void
1247 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1248 root 1.9 {
1249     if (ev_is_active (w))
1250     return;
1251    
1252 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1253 root 1.9 array_needsize (idles, idlemax, idlecnt, );
1254     idles [idlecnt - 1] = w;
1255     }
1256    
1257 root 1.28 void
1258 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1259 root 1.9 {
1260 root 1.51 ev_clear_pending (EV_A_ (W)w);
1261 root 1.16 if (ev_is_active (w))
1262     return;
1263    
1264 root 1.62 idles [((W)w)->active - 1] = idles [--idlecnt];
1265 root 1.51 ev_stop (EV_A_ (W)w);
1266 root 1.9 }
1267    
1268 root 1.28 void
1269 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1270 root 1.20 {
1271     if (ev_is_active (w))
1272     return;
1273    
1274 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1275 root 1.20 array_needsize (prepares, preparemax, preparecnt, );
1276     prepares [preparecnt - 1] = w;
1277     }
1278    
1279 root 1.28 void
1280 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1281 root 1.20 {
1282 root 1.51 ev_clear_pending (EV_A_ (W)w);
1283 root 1.20 if (ev_is_active (w))
1284     return;
1285    
1286 root 1.62 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1287 root 1.51 ev_stop (EV_A_ (W)w);
1288 root 1.20 }
1289    
1290 root 1.28 void
1291 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1292 root 1.9 {
1293     if (ev_is_active (w))
1294     return;
1295    
1296 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1297 root 1.9 array_needsize (checks, checkmax, checkcnt, );
1298     checks [checkcnt - 1] = w;
1299     }
1300    
1301 root 1.28 void
1302 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1303 root 1.9 {
1304 root 1.51 ev_clear_pending (EV_A_ (W)w);
1305 root 1.16 if (ev_is_active (w))
1306     return;
1307    
1308 root 1.62 checks [((W)w)->active - 1] = checks [--checkcnt];
1309 root 1.51 ev_stop (EV_A_ (W)w);
1310 root 1.9 }
1311    
1312 root 1.56 #ifndef SA_RESTART
1313     # define SA_RESTART 0
1314     #endif
1315    
1316     void
1317     ev_signal_start (EV_P_ struct ev_signal *w)
1318     {
1319     #if EV_MULTIPLICITY
1320     assert (("signal watchers are only supported in the default loop", loop == default_loop));
1321     #endif
1322     if (ev_is_active (w))
1323     return;
1324    
1325     assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1326    
1327     ev_start (EV_A_ (W)w, 1);
1328     array_needsize (signals, signalmax, w->signum, signals_init);
1329     wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1330    
1331 root 1.63 if (!((WL)w)->next)
1332 root 1.56 {
1333 root 1.67 #if WIN32
1334     signal (w->signum, sighandler);
1335     #else
1336 root 1.56 struct sigaction sa;
1337     sa.sa_handler = sighandler;
1338     sigfillset (&sa.sa_mask);
1339     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1340     sigaction (w->signum, &sa, 0);
1341 root 1.67 #endif
1342 root 1.56 }
1343     }
1344    
1345     void
1346     ev_signal_stop (EV_P_ struct ev_signal *w)
1347     {
1348     ev_clear_pending (EV_A_ (W)w);
1349     if (!ev_is_active (w))
1350     return;
1351    
1352     wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1353     ev_stop (EV_A_ (W)w);
1354    
1355     if (!signals [w->signum - 1].head)
1356     signal (w->signum, SIG_DFL);
1357     }
1358    
1359 root 1.28 void
1360 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1361 root 1.22 {
1362 root 1.56 #if EV_MULTIPLICITY
1363     assert (("child watchers are only supported in the default loop", loop == default_loop));
1364     #endif
1365 root 1.22 if (ev_is_active (w))
1366     return;
1367    
1368 root 1.51 ev_start (EV_A_ (W)w, 1);
1369 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1370     }
1371    
1372 root 1.28 void
1373 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1374 root 1.22 {
1375 root 1.51 ev_clear_pending (EV_A_ (W)w);
1376 root 1.22 if (ev_is_active (w))
1377     return;
1378    
1379     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1380 root 1.51 ev_stop (EV_A_ (W)w);
1381 root 1.22 }
1382    
1383 root 1.1 /*****************************************************************************/
1384 root 1.10
1385 root 1.16 struct ev_once
1386     {
1387     struct ev_io io;
1388     struct ev_timer to;
1389     void (*cb)(int revents, void *arg);
1390     void *arg;
1391     };
1392    
1393     static void
1394 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1395 root 1.16 {
1396     void (*cb)(int revents, void *arg) = once->cb;
1397     void *arg = once->arg;
1398    
1399 root 1.51 ev_io_stop (EV_A_ &once->io);
1400     ev_timer_stop (EV_A_ &once->to);
1401 root 1.16 free (once);
1402    
1403     cb (revents, arg);
1404     }
1405    
1406     static void
1407 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1408 root 1.16 {
1409 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1410 root 1.16 }
1411    
1412     static void
1413 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1414 root 1.16 {
1415 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1416 root 1.16 }
1417    
1418     void
1419 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1420 root 1.16 {
1421     struct ev_once *once = malloc (sizeof (struct ev_once));
1422    
1423     if (!once)
1424 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1425 root 1.16 else
1426     {
1427     once->cb = cb;
1428     once->arg = arg;
1429    
1430 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1431 root 1.16 if (fd >= 0)
1432     {
1433 root 1.28 ev_io_set (&once->io, fd, events);
1434 root 1.51 ev_io_start (EV_A_ &once->io);
1435 root 1.16 }
1436    
1437 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1438 root 1.16 if (timeout >= 0.)
1439     {
1440 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1441 root 1.51 ev_timer_start (EV_A_ &once->to);
1442 root 1.16 }
1443     }
1444     }
1445