ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.69
Committed: Tue Nov 6 00:10:04 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.68: +66 -19 lines
Log Message:
better error handling

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.59 #ifndef EV_STANDALONE
32 root 1.29 # include "config.h"
33 root 1.60
34     # if HAVE_CLOCK_GETTIME
35     # define EV_USE_MONOTONIC 1
36     # define EV_USE_REALTIME 1
37     # endif
38    
39     # if HAVE_SELECT && HAVE_SYS_SELECT_H
40     # define EV_USE_SELECT 1
41     # endif
42    
43     # if HAVE_POLL && HAVE_POLL_H
44     # define EV_USE_POLL 1
45     # endif
46    
47     # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48     # define EV_USE_EPOLL 1
49     # endif
50    
51     # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52     # define EV_USE_KQUEUE 1
53     # endif
54    
55 root 1.29 #endif
56 root 1.17
57 root 1.1 #include <math.h>
58     #include <stdlib.h>
59 root 1.7 #include <unistd.h>
60     #include <fcntl.h>
61     #include <signal.h>
62 root 1.16 #include <stddef.h>
63 root 1.1
64     #include <stdio.h>
65    
66 root 1.4 #include <assert.h>
67 root 1.1 #include <errno.h>
68 root 1.22 #include <sys/types.h>
69 root 1.45 #ifndef WIN32
70     # include <sys/wait.h>
71     #endif
72 root 1.1 #include <sys/time.h>
73     #include <time.h>
74    
75 root 1.40 /**/
76    
77 root 1.29 #ifndef EV_USE_MONOTONIC
78 root 1.37 # define EV_USE_MONOTONIC 1
79     #endif
80    
81 root 1.29 #ifndef EV_USE_SELECT
82     # define EV_USE_SELECT 1
83 root 1.10 #endif
84    
85 root 1.59 #ifndef EV_USE_POLL
86     # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87 root 1.41 #endif
88    
89 root 1.29 #ifndef EV_USE_EPOLL
90     # define EV_USE_EPOLL 0
91 root 1.10 #endif
92    
93 root 1.44 #ifndef EV_USE_KQUEUE
94     # define EV_USE_KQUEUE 0
95     #endif
96    
97 root 1.62 #ifndef EV_USE_WIN32
98     # ifdef WIN32
99     # define EV_USE_WIN32 1
100     # else
101     # define EV_USE_WIN32 0
102     # endif
103     #endif
104    
105 root 1.40 #ifndef EV_USE_REALTIME
106     # define EV_USE_REALTIME 1
107     #endif
108    
109     /**/
110    
111     #ifndef CLOCK_MONOTONIC
112     # undef EV_USE_MONOTONIC
113     # define EV_USE_MONOTONIC 0
114     #endif
115    
116 root 1.31 #ifndef CLOCK_REALTIME
117 root 1.40 # undef EV_USE_REALTIME
118 root 1.31 # define EV_USE_REALTIME 0
119     #endif
120 root 1.40
121     /**/
122 root 1.1
123 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 root 1.1
128 root 1.59 #include "ev.h"
129 root 1.1
130 root 1.40 #if __GNUC__ >= 3
131     # define expect(expr,value) __builtin_expect ((expr),(value))
132     # define inline inline
133     #else
134     # define expect(expr,value) (expr)
135     # define inline static
136     #endif
137    
138     #define expect_false(expr) expect ((expr) != 0, 0)
139     #define expect_true(expr) expect ((expr) != 0, 1)
140    
141 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
143    
144 root 1.10 typedef struct ev_watcher *W;
145     typedef struct ev_watcher_list *WL;
146 root 1.12 typedef struct ev_watcher_time *WT;
147 root 1.10
148 root 1.54 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149    
150 root 1.67 #if WIN32
151     /* note: the comment below could not be substantiated, but what would I care */
152     /* MSDN says this is required to handle SIGFPE */
153     volatile double SIGFPE_REQ = 0.0f;
154     #endif
155    
156 root 1.53 /*****************************************************************************/
157 root 1.1
158 root 1.69 static void (*syserr_cb)(void);
159    
160     void ev_set_syserr_cb (void (*cb)(void))
161     {
162     syserr_cb = cb;
163     }
164    
165     static void
166     syserr (void)
167     {
168     if (syserr_cb)
169     syserr_cb ();
170     else
171     {
172     perror ("libev");
173     abort ();
174     }
175     }
176    
177     static void *(*alloc)(void *ptr, long size);
178    
179     void ev_set_allocator (void *(*cb)(void *ptr, long size))
180     {
181     alloc = cb;
182     }
183    
184     static void *
185     ev_realloc (void *ptr, long size)
186     {
187     ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
188    
189     if (!ptr && size)
190     {
191     fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
192     abort ();
193     }
194    
195     return ptr;
196     }
197    
198     #define ev_malloc(size) ev_realloc (0, (size))
199     #define ev_free(ptr) ev_realloc ((ptr), 0)
200    
201     /*****************************************************************************/
202    
203 root 1.53 typedef struct
204     {
205 root 1.68 WL head;
206 root 1.53 unsigned char events;
207     unsigned char reify;
208     } ANFD;
209 root 1.1
210 root 1.53 typedef struct
211     {
212     W w;
213     int events;
214     } ANPENDING;
215 root 1.51
216 root 1.55 #if EV_MULTIPLICITY
217 root 1.54
218 root 1.53 struct ev_loop
219     {
220 root 1.54 # define VAR(name,decl) decl;
221 root 1.53 # include "ev_vars.h"
222     };
223 root 1.54 # undef VAR
224     # include "ev_wrap.h"
225    
226 root 1.53 #else
227 root 1.54
228     # define VAR(name,decl) static decl;
229 root 1.53 # include "ev_vars.h"
230 root 1.54 # undef VAR
231    
232 root 1.51 #endif
233 root 1.1
234 root 1.8 /*****************************************************************************/
235    
236 root 1.51 inline ev_tstamp
237 root 1.1 ev_time (void)
238     {
239 root 1.29 #if EV_USE_REALTIME
240 root 1.1 struct timespec ts;
241     clock_gettime (CLOCK_REALTIME, &ts);
242     return ts.tv_sec + ts.tv_nsec * 1e-9;
243     #else
244     struct timeval tv;
245     gettimeofday (&tv, 0);
246     return tv.tv_sec + tv.tv_usec * 1e-6;
247     #endif
248     }
249    
250 root 1.51 inline ev_tstamp
251 root 1.1 get_clock (void)
252     {
253 root 1.29 #if EV_USE_MONOTONIC
254 root 1.40 if (expect_true (have_monotonic))
255 root 1.1 {
256     struct timespec ts;
257     clock_gettime (CLOCK_MONOTONIC, &ts);
258     return ts.tv_sec + ts.tv_nsec * 1e-9;
259     }
260     #endif
261    
262     return ev_time ();
263     }
264    
265 root 1.51 ev_tstamp
266     ev_now (EV_P)
267     {
268     return rt_now;
269     }
270    
271 root 1.30 #define array_roundsize(base,n) ((n) | 4 & ~3)
272 root 1.29
273 root 1.69 #define array_needsize(base,cur,cnt,init) \
274     if (expect_false ((cnt) > cur)) \
275     { \
276     int newcnt = cur; \
277     do \
278     { \
279     newcnt = array_roundsize (base, newcnt << 1); \
280     } \
281     while ((cnt) > newcnt); \
282     \
283     base = ev_realloc (base, sizeof (*base) * (newcnt)); \
284     init (base + cur, newcnt - cur); \
285     cur = newcnt; \
286 root 1.1 }
287    
288 root 1.67 #define array_slim(stem) \
289     if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290     { \
291     stem ## max = array_roundsize (stem ## cnt >> 1); \
292 root 1.69 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
293 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294     }
295    
296 root 1.65 #define array_free(stem, idx) \
297 root 1.69 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
298 root 1.65
299 root 1.8 /*****************************************************************************/
300    
301 root 1.1 static void
302     anfds_init (ANFD *base, int count)
303     {
304     while (count--)
305     {
306 root 1.27 base->head = 0;
307     base->events = EV_NONE;
308 root 1.33 base->reify = 0;
309    
310 root 1.1 ++base;
311     }
312     }
313    
314     static void
315 root 1.51 event (EV_P_ W w, int events)
316 root 1.1 {
317 root 1.32 if (w->pending)
318     {
319 root 1.42 pendings [ABSPRI (w)][w->pending - 1].events |= events;
320 root 1.32 return;
321     }
322    
323 root 1.42 w->pending = ++pendingcnt [ABSPRI (w)];
324     array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
325     pendings [ABSPRI (w)][w->pending - 1].w = w;
326     pendings [ABSPRI (w)][w->pending - 1].events = events;
327 root 1.1 }
328    
329     static void
330 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
331 root 1.27 {
332     int i;
333    
334     for (i = 0; i < eventcnt; ++i)
335 root 1.51 event (EV_A_ events [i], type);
336 root 1.27 }
337    
338     static void
339 root 1.51 fd_event (EV_P_ int fd, int events)
340 root 1.1 {
341     ANFD *anfd = anfds + fd;
342     struct ev_io *w;
343    
344 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
345 root 1.1 {
346     int ev = w->events & events;
347    
348     if (ev)
349 root 1.51 event (EV_A_ (W)w, ev);
350 root 1.1 }
351     }
352    
353 root 1.27 /*****************************************************************************/
354    
355 root 1.9 static void
356 root 1.51 fd_reify (EV_P)
357 root 1.9 {
358     int i;
359    
360 root 1.27 for (i = 0; i < fdchangecnt; ++i)
361     {
362     int fd = fdchanges [i];
363     ANFD *anfd = anfds + fd;
364     struct ev_io *w;
365    
366     int events = 0;
367    
368 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
369 root 1.27 events |= w->events;
370    
371 root 1.33 anfd->reify = 0;
372 root 1.27
373 root 1.64 method_modify (EV_A_ fd, anfd->events, events);
374     anfd->events = events;
375 root 1.27 }
376    
377     fdchangecnt = 0;
378     }
379    
380     static void
381 root 1.51 fd_change (EV_P_ int fd)
382 root 1.27 {
383 root 1.33 if (anfds [fd].reify || fdchangecnt < 0)
384 root 1.27 return;
385    
386 root 1.33 anfds [fd].reify = 1;
387 root 1.27
388     ++fdchangecnt;
389     array_needsize (fdchanges, fdchangemax, fdchangecnt, );
390     fdchanges [fdchangecnt - 1] = fd;
391 root 1.9 }
392    
393 root 1.41 static void
394 root 1.51 fd_kill (EV_P_ int fd)
395 root 1.41 {
396     struct ev_io *w;
397    
398 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
399 root 1.41 {
400 root 1.51 ev_io_stop (EV_A_ w);
401     event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 root 1.41 }
403     }
404    
405 root 1.19 /* called on EBADF to verify fds */
406     static void
407 root 1.51 fd_ebadf (EV_P)
408 root 1.19 {
409     int fd;
410    
411     for (fd = 0; fd < anfdmax; ++fd)
412 root 1.27 if (anfds [fd].events)
413 root 1.19 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
414 root 1.51 fd_kill (EV_A_ fd);
415 root 1.41 }
416    
417     /* called on ENOMEM in select/poll to kill some fds and retry */
418     static void
419 root 1.51 fd_enomem (EV_P)
420 root 1.41 {
421 root 1.62 int fd;
422 root 1.41
423 root 1.62 for (fd = anfdmax; fd--; )
424 root 1.41 if (anfds [fd].events)
425     {
426 root 1.51 fd_kill (EV_A_ fd);
427 root 1.41 return;
428     }
429 root 1.19 }
430    
431 root 1.56 /* susually called after fork if method needs to re-arm all fds from scratch */
432     static void
433     fd_rearm_all (EV_P)
434     {
435     int fd;
436    
437     /* this should be highly optimised to not do anything but set a flag */
438     for (fd = 0; fd < anfdmax; ++fd)
439     if (anfds [fd].events)
440     {
441     anfds [fd].events = 0;
442 root 1.60 fd_change (EV_A_ fd);
443 root 1.56 }
444     }
445    
446 root 1.8 /*****************************************************************************/
447    
448 root 1.1 static void
449 root 1.54 upheap (WT *heap, int k)
450 root 1.1 {
451 root 1.54 WT w = heap [k];
452 root 1.1
453 root 1.54 while (k && heap [k >> 1]->at > w->at)
454 root 1.1 {
455 root 1.54 heap [k] = heap [k >> 1];
456 root 1.62 ((W)heap [k])->active = k + 1;
457 root 1.1 k >>= 1;
458     }
459    
460 root 1.54 heap [k] = w;
461 root 1.62 ((W)heap [k])->active = k + 1;
462 root 1.1
463     }
464    
465     static void
466 root 1.54 downheap (WT *heap, int N, int k)
467 root 1.1 {
468 root 1.54 WT w = heap [k];
469 root 1.1
470 root 1.4 while (k < (N >> 1))
471 root 1.1 {
472     int j = k << 1;
473    
474 root 1.54 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
475 root 1.1 ++j;
476    
477 root 1.54 if (w->at <= heap [j]->at)
478 root 1.1 break;
479    
480 root 1.54 heap [k] = heap [j];
481 root 1.62 ((W)heap [k])->active = k + 1;
482 root 1.1 k = j;
483     }
484    
485 root 1.54 heap [k] = w;
486 root 1.62 ((W)heap [k])->active = k + 1;
487 root 1.1 }
488    
489 root 1.8 /*****************************************************************************/
490    
491 root 1.7 typedef struct
492     {
493 root 1.68 WL head;
494 root 1.34 sig_atomic_t volatile gotsig;
495 root 1.7 } ANSIG;
496    
497     static ANSIG *signals;
498 root 1.4 static int signalmax;
499 root 1.1
500 root 1.7 static int sigpipe [2];
501 root 1.34 static sig_atomic_t volatile gotsig;
502 root 1.59 static struct ev_io sigev;
503 root 1.7
504 root 1.1 static void
505 root 1.7 signals_init (ANSIG *base, int count)
506 root 1.1 {
507     while (count--)
508 root 1.7 {
509     base->head = 0;
510     base->gotsig = 0;
511 root 1.33
512 root 1.7 ++base;
513     }
514     }
515    
516     static void
517     sighandler (int signum)
518     {
519 root 1.67 #if WIN32
520     signal (signum, sighandler);
521     #endif
522    
523 root 1.7 signals [signum - 1].gotsig = 1;
524    
525     if (!gotsig)
526     {
527 root 1.48 int old_errno = errno;
528 root 1.7 gotsig = 1;
529 root 1.34 write (sigpipe [1], &signum, 1);
530 root 1.48 errno = old_errno;
531 root 1.7 }
532     }
533    
534     static void
535 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
536 root 1.7 {
537 root 1.68 WL w;
538 root 1.38 int signum;
539 root 1.7
540 root 1.34 read (sigpipe [0], &revents, 1);
541 root 1.7 gotsig = 0;
542    
543 root 1.38 for (signum = signalmax; signum--; )
544     if (signals [signum].gotsig)
545 root 1.7 {
546 root 1.38 signals [signum].gotsig = 0;
547 root 1.7
548 root 1.38 for (w = signals [signum].head; w; w = w->next)
549 root 1.51 event (EV_A_ (W)w, EV_SIGNAL);
550 root 1.7 }
551     }
552    
553     static void
554 root 1.51 siginit (EV_P)
555 root 1.7 {
556 root 1.45 #ifndef WIN32
557 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
558     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
559    
560     /* rather than sort out wether we really need nb, set it */
561     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
562     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
563 root 1.45 #endif
564 root 1.7
565 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
566 root 1.54 ev_io_start (EV_A_ &sigev);
567 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
568 root 1.1 }
569    
570 root 1.8 /*****************************************************************************/
571    
572 root 1.45 #ifndef WIN32
573    
574 root 1.59 static struct ev_child *childs [PID_HASHSIZE];
575     static struct ev_signal childev;
576    
577 root 1.22 #ifndef WCONTINUED
578     # define WCONTINUED 0
579     #endif
580    
581     static void
582 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
583 root 1.47 {
584     struct ev_child *w;
585    
586 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
587 root 1.47 if (w->pid == pid || !w->pid)
588     {
589 root 1.63 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590     w->rpid = pid;
591     w->rstatus = status;
592 root 1.51 event (EV_A_ (W)w, EV_CHILD);
593 root 1.47 }
594     }
595    
596     static void
597 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
598 root 1.22 {
599     int pid, status;
600    
601 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
602     {
603     /* make sure we are called again until all childs have been reaped */
604 root 1.51 event (EV_A_ (W)sw, EV_SIGNAL);
605 root 1.47
606 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
607     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
608 root 1.47 }
609 root 1.22 }
610    
611 root 1.45 #endif
612    
613 root 1.22 /*****************************************************************************/
614    
615 root 1.44 #if EV_USE_KQUEUE
616     # include "ev_kqueue.c"
617     #endif
618 root 1.29 #if EV_USE_EPOLL
619 root 1.1 # include "ev_epoll.c"
620     #endif
621 root 1.59 #if EV_USE_POLL
622 root 1.41 # include "ev_poll.c"
623     #endif
624 root 1.29 #if EV_USE_SELECT
625 root 1.1 # include "ev_select.c"
626     #endif
627    
628 root 1.24 int
629     ev_version_major (void)
630     {
631     return EV_VERSION_MAJOR;
632     }
633    
634     int
635     ev_version_minor (void)
636     {
637     return EV_VERSION_MINOR;
638     }
639    
640 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
641 root 1.41 static int
642 root 1.51 enable_secure (void)
643 root 1.41 {
644 root 1.49 #ifdef WIN32
645     return 0;
646     #else
647 root 1.41 return getuid () != geteuid ()
648     || getgid () != getegid ();
649 root 1.49 #endif
650 root 1.41 }
651    
652 root 1.51 int
653     ev_method (EV_P)
654 root 1.1 {
655 root 1.51 return method;
656     }
657    
658 root 1.56 static void
659 root 1.54 loop_init (EV_P_ int methods)
660 root 1.51 {
661     if (!method)
662 root 1.23 {
663 root 1.29 #if EV_USE_MONOTONIC
664 root 1.23 {
665     struct timespec ts;
666     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
667     have_monotonic = 1;
668     }
669 root 1.1 #endif
670    
671 root 1.51 rt_now = ev_time ();
672     mn_now = get_clock ();
673     now_floor = mn_now;
674 root 1.54 rtmn_diff = rt_now - mn_now;
675 root 1.1
676 root 1.41 if (methods == EVMETHOD_AUTO)
677 root 1.56 if (!enable_secure () && getenv ("LIBEV_METHODS"))
678     methods = atoi (getenv ("LIBEV_METHODS"));
679 root 1.50 else
680     methods = EVMETHOD_ANY;
681 root 1.41
682 root 1.51 method = 0;
683 root 1.62 #if EV_USE_WIN32
684     if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
685     #endif
686 root 1.44 #if EV_USE_KQUEUE
687 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
688 root 1.44 #endif
689 root 1.29 #if EV_USE_EPOLL
690 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
691 root 1.41 #endif
692 root 1.59 #if EV_USE_POLL
693 root 1.51 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
694 root 1.1 #endif
695 root 1.29 #if EV_USE_SELECT
696 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
697 root 1.1 #endif
698 root 1.56 }
699     }
700    
701     void
702     loop_destroy (EV_P)
703     {
704 root 1.65 int i;
705    
706 root 1.62 #if EV_USE_WIN32
707     if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
708     #endif
709 root 1.56 #if EV_USE_KQUEUE
710     if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
711     #endif
712     #if EV_USE_EPOLL
713     if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
714     #endif
715 root 1.59 #if EV_USE_POLL
716 root 1.56 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
717     #endif
718     #if EV_USE_SELECT
719     if (method == EVMETHOD_SELECT) select_destroy (EV_A);
720     #endif
721 root 1.1
722 root 1.65 for (i = NUMPRI; i--; )
723     array_free (pending, [i]);
724    
725     array_free (fdchange, );
726     array_free (timer, );
727     array_free (periodic, );
728     array_free (idle, );
729     array_free (prepare, );
730     array_free (check, );
731    
732 root 1.56 method = 0;
733     /*TODO*/
734     }
735 root 1.22
736 root 1.56 void
737     loop_fork (EV_P)
738     {
739     /*TODO*/
740     #if EV_USE_EPOLL
741     if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742     #endif
743     #if EV_USE_KQUEUE
744     if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745 root 1.45 #endif
746 root 1.1 }
747    
748 root 1.55 #if EV_MULTIPLICITY
749 root 1.54 struct ev_loop *
750     ev_loop_new (int methods)
751     {
752 root 1.69 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
753    
754     memset (loop, 0, sizeof (struct ev_loop));
755 root 1.54
756 root 1.56 loop_init (EV_A_ methods);
757    
758 root 1.60 if (ev_method (EV_A))
759 root 1.55 return loop;
760 root 1.54
761 root 1.55 return 0;
762 root 1.54 }
763    
764     void
765 root 1.56 ev_loop_destroy (EV_P)
766 root 1.54 {
767 root 1.56 loop_destroy (EV_A);
768 root 1.69 ev_free (loop);
769 root 1.54 }
770    
771 root 1.56 void
772     ev_loop_fork (EV_P)
773     {
774     loop_fork (EV_A);
775     }
776    
777     #endif
778    
779     #if EV_MULTIPLICITY
780     struct ev_loop default_loop_struct;
781     static struct ev_loop *default_loop;
782    
783     struct ev_loop *
784 root 1.54 #else
785 root 1.56 static int default_loop;
786 root 1.54
787     int
788 root 1.56 #endif
789     ev_default_loop (int methods)
790 root 1.54 {
791 root 1.56 if (sigpipe [0] == sigpipe [1])
792     if (pipe (sigpipe))
793     return 0;
794 root 1.54
795 root 1.56 if (!default_loop)
796     {
797     #if EV_MULTIPLICITY
798     struct ev_loop *loop = default_loop = &default_loop_struct;
799     #else
800     default_loop = 1;
801 root 1.54 #endif
802    
803 root 1.56 loop_init (EV_A_ methods);
804    
805     if (ev_method (EV_A))
806     {
807     ev_watcher_init (&sigev, sigcb);
808     ev_set_priority (&sigev, EV_MAXPRI);
809     siginit (EV_A);
810    
811     #ifndef WIN32
812     ev_signal_init (&childev, childcb, SIGCHLD);
813     ev_set_priority (&childev, EV_MAXPRI);
814     ev_signal_start (EV_A_ &childev);
815     ev_unref (EV_A); /* child watcher should not keep loop alive */
816     #endif
817     }
818     else
819     default_loop = 0;
820     }
821 root 1.8
822 root 1.56 return default_loop;
823 root 1.1 }
824    
825 root 1.24 void
826 root 1.56 ev_default_destroy (void)
827 root 1.1 {
828 root 1.57 #if EV_MULTIPLICITY
829 root 1.56 struct ev_loop *loop = default_loop;
830 root 1.57 #endif
831 root 1.56
832     ev_ref (EV_A); /* child watcher */
833     ev_signal_stop (EV_A_ &childev);
834    
835     ev_ref (EV_A); /* signal watcher */
836     ev_io_stop (EV_A_ &sigev);
837    
838     close (sigpipe [0]); sigpipe [0] = 0;
839     close (sigpipe [1]); sigpipe [1] = 0;
840    
841     loop_destroy (EV_A);
842 root 1.1 }
843    
844 root 1.24 void
845 root 1.60 ev_default_fork (void)
846 root 1.1 {
847 root 1.60 #if EV_MULTIPLICITY
848     struct ev_loop *loop = default_loop;
849     #endif
850    
851 root 1.56 loop_fork (EV_A);
852 root 1.7
853 root 1.54 ev_io_stop (EV_A_ &sigev);
854 root 1.7 close (sigpipe [0]);
855     close (sigpipe [1]);
856     pipe (sigpipe);
857 root 1.56
858     ev_ref (EV_A); /* signal watcher */
859 root 1.54 siginit (EV_A);
860 root 1.1 }
861    
862 root 1.8 /*****************************************************************************/
863    
864 root 1.1 static void
865 root 1.51 call_pending (EV_P)
866 root 1.1 {
867 root 1.42 int pri;
868    
869     for (pri = NUMPRI; pri--; )
870     while (pendingcnt [pri])
871     {
872     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
873 root 1.1
874 root 1.42 if (p->w)
875     {
876     p->w->pending = 0;
877 root 1.66 p->w->cb (EV_A_ p->w, p->events);
878 root 1.42 }
879     }
880 root 1.1 }
881    
882     static void
883 root 1.51 timers_reify (EV_P)
884 root 1.1 {
885 root 1.63 while (timercnt && ((WT)timers [0])->at <= mn_now)
886 root 1.1 {
887     struct ev_timer *w = timers [0];
888    
889 root 1.61 assert (("inactive timer on timer heap detected", ev_is_active (w)));
890    
891 root 1.4 /* first reschedule or stop timer */
892 root 1.1 if (w->repeat)
893     {
894 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
895 root 1.63 ((WT)w)->at = mn_now + w->repeat;
896 root 1.12 downheap ((WT *)timers, timercnt, 0);
897     }
898     else
899 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
900 root 1.30
901 root 1.54 event (EV_A_ (W)w, EV_TIMEOUT);
902 root 1.12 }
903     }
904 root 1.4
905 root 1.12 static void
906 root 1.51 periodics_reify (EV_P)
907 root 1.12 {
908 root 1.63 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
909 root 1.12 {
910     struct ev_periodic *w = periodics [0];
911 root 1.1
912 root 1.61 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
913    
914 root 1.12 /* first reschedule or stop timer */
915     if (w->interval)
916     {
917 root 1.63 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
918     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
919 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
920 root 1.1 }
921     else
922 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
923 root 1.12
924 root 1.51 event (EV_A_ (W)w, EV_PERIODIC);
925 root 1.12 }
926     }
927    
928     static void
929 root 1.54 periodics_reschedule (EV_P)
930 root 1.12 {
931     int i;
932    
933 root 1.13 /* adjust periodics after time jump */
934 root 1.12 for (i = 0; i < periodiccnt; ++i)
935     {
936     struct ev_periodic *w = periodics [i];
937    
938     if (w->interval)
939 root 1.4 {
940 root 1.63 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
941 root 1.12
942     if (fabs (diff) >= 1e-4)
943     {
944 root 1.51 ev_periodic_stop (EV_A_ w);
945     ev_periodic_start (EV_A_ w);
946 root 1.12
947     i = 0; /* restart loop, inefficient, but time jumps should be rare */
948     }
949 root 1.4 }
950 root 1.12 }
951 root 1.1 }
952    
953 root 1.51 inline int
954     time_update_monotonic (EV_P)
955 root 1.40 {
956 root 1.51 mn_now = get_clock ();
957 root 1.40
958 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
959 root 1.40 {
960 root 1.54 rt_now = rtmn_diff + mn_now;
961 root 1.40 return 0;
962     }
963     else
964     {
965 root 1.51 now_floor = mn_now;
966     rt_now = ev_time ();
967 root 1.40 return 1;
968     }
969     }
970    
971 root 1.4 static void
972 root 1.51 time_update (EV_P)
973 root 1.4 {
974     int i;
975 root 1.12
976 root 1.40 #if EV_USE_MONOTONIC
977     if (expect_true (have_monotonic))
978     {
979 root 1.51 if (time_update_monotonic (EV_A))
980 root 1.40 {
981 root 1.54 ev_tstamp odiff = rtmn_diff;
982 root 1.4
983 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
984     {
985 root 1.54 rtmn_diff = rt_now - mn_now;
986 root 1.4
987 root 1.54 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
988 root 1.40 return; /* all is well */
989 root 1.4
990 root 1.51 rt_now = ev_time ();
991     mn_now = get_clock ();
992     now_floor = mn_now;
993 root 1.40 }
994 root 1.4
995 root 1.54 periodics_reschedule (EV_A);
996 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
997 root 1.54 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
998 root 1.4 }
999     }
1000     else
1001 root 1.40 #endif
1002 root 1.4 {
1003 root 1.51 rt_now = ev_time ();
1004 root 1.40
1005 root 1.51 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1006 root 1.13 {
1007 root 1.54 periodics_reschedule (EV_A);
1008 root 1.13
1009     /* adjust timers. this is easy, as the offset is the same for all */
1010     for (i = 0; i < timercnt; ++i)
1011 root 1.63 ((WT)timers [i])->at += rt_now - mn_now;
1012 root 1.13 }
1013 root 1.4
1014 root 1.51 mn_now = rt_now;
1015 root 1.4 }
1016     }
1017    
1018 root 1.51 void
1019     ev_ref (EV_P)
1020     {
1021     ++activecnt;
1022     }
1023 root 1.1
1024 root 1.51 void
1025     ev_unref (EV_P)
1026     {
1027     --activecnt;
1028     }
1029    
1030     static int loop_done;
1031    
1032     void
1033     ev_loop (EV_P_ int flags)
1034 root 1.1 {
1035     double block;
1036 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1037 root 1.1
1038 root 1.20 do
1039 root 1.9 {
1040 root 1.20 /* queue check watchers (and execute them) */
1041 root 1.40 if (expect_false (preparecnt))
1042 root 1.20 {
1043 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1044     call_pending (EV_A);
1045 root 1.20 }
1046 root 1.9
1047 root 1.1 /* update fd-related kernel structures */
1048 root 1.51 fd_reify (EV_A);
1049 root 1.1
1050     /* calculate blocking time */
1051 root 1.12
1052 root 1.21 /* we only need this for !monotonic clockor timers, but as we basically
1053     always have timers, we just calculate it always */
1054 root 1.40 #if EV_USE_MONOTONIC
1055     if (expect_true (have_monotonic))
1056 root 1.51 time_update_monotonic (EV_A);
1057 root 1.40 else
1058     #endif
1059     {
1060 root 1.51 rt_now = ev_time ();
1061     mn_now = rt_now;
1062 root 1.40 }
1063 root 1.12
1064 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
1065 root 1.1 block = 0.;
1066     else
1067     {
1068 root 1.4 block = MAX_BLOCKTIME;
1069    
1070 root 1.12 if (timercnt)
1071 root 1.4 {
1072 root 1.63 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1073 root 1.4 if (block > to) block = to;
1074     }
1075    
1076 root 1.12 if (periodiccnt)
1077 root 1.4 {
1078 root 1.63 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1079 root 1.4 if (block > to) block = to;
1080     }
1081    
1082 root 1.1 if (block < 0.) block = 0.;
1083     }
1084    
1085 root 1.51 method_poll (EV_A_ block);
1086 root 1.1
1087 root 1.51 /* update rt_now, do magic */
1088     time_update (EV_A);
1089 root 1.4
1090 root 1.9 /* queue pending timers and reschedule them */
1091 root 1.51 timers_reify (EV_A); /* relative timers called last */
1092     periodics_reify (EV_A); /* absolute timers called first */
1093 root 1.1
1094 root 1.9 /* queue idle watchers unless io or timers are pending */
1095     if (!pendingcnt)
1096 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1097 root 1.9
1098 root 1.20 /* queue check watchers, to be executed first */
1099     if (checkcnt)
1100 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1101 root 1.9
1102 root 1.51 call_pending (EV_A);
1103 root 1.1 }
1104 root 1.51 while (activecnt && !loop_done);
1105 root 1.13
1106 root 1.51 if (loop_done != 2)
1107     loop_done = 0;
1108     }
1109    
1110     void
1111     ev_unloop (EV_P_ int how)
1112     {
1113     loop_done = how;
1114 root 1.1 }
1115    
1116 root 1.8 /*****************************************************************************/
1117    
1118 root 1.51 inline void
1119 root 1.10 wlist_add (WL *head, WL elem)
1120 root 1.1 {
1121     elem->next = *head;
1122     *head = elem;
1123     }
1124    
1125 root 1.51 inline void
1126 root 1.10 wlist_del (WL *head, WL elem)
1127 root 1.1 {
1128     while (*head)
1129     {
1130     if (*head == elem)
1131     {
1132     *head = elem->next;
1133     return;
1134     }
1135    
1136     head = &(*head)->next;
1137     }
1138     }
1139    
1140 root 1.51 inline void
1141     ev_clear_pending (EV_P_ W w)
1142 root 1.16 {
1143     if (w->pending)
1144     {
1145 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1146 root 1.16 w->pending = 0;
1147     }
1148     }
1149    
1150 root 1.51 inline void
1151     ev_start (EV_P_ W w, int active)
1152 root 1.1 {
1153 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1154     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1155    
1156 root 1.1 w->active = active;
1157 root 1.51 ev_ref (EV_A);
1158 root 1.1 }
1159    
1160 root 1.51 inline void
1161     ev_stop (EV_P_ W w)
1162 root 1.1 {
1163 root 1.51 ev_unref (EV_A);
1164 root 1.1 w->active = 0;
1165     }
1166    
1167 root 1.8 /*****************************************************************************/
1168    
1169 root 1.1 void
1170 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
1171 root 1.1 {
1172 root 1.37 int fd = w->fd;
1173    
1174 root 1.1 if (ev_is_active (w))
1175     return;
1176    
1177 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
1178    
1179 root 1.51 ev_start (EV_A_ (W)w, 1);
1180 root 1.1 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1181 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1182 root 1.1
1183 root 1.51 fd_change (EV_A_ fd);
1184 root 1.1 }
1185    
1186     void
1187 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
1188 root 1.1 {
1189 root 1.51 ev_clear_pending (EV_A_ (W)w);
1190 root 1.1 if (!ev_is_active (w))
1191     return;
1192    
1193 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1194 root 1.51 ev_stop (EV_A_ (W)w);
1195 root 1.1
1196 root 1.51 fd_change (EV_A_ w->fd);
1197 root 1.1 }
1198    
1199     void
1200 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1201 root 1.1 {
1202     if (ev_is_active (w))
1203     return;
1204    
1205 root 1.63 ((WT)w)->at += mn_now;
1206 root 1.12
1207 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1208 root 1.13
1209 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1210 root 1.12 array_needsize (timers, timermax, timercnt, );
1211     timers [timercnt - 1] = w;
1212     upheap ((WT *)timers, timercnt - 1);
1213 root 1.62
1214     assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215 root 1.12 }
1216    
1217     void
1218 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1219 root 1.12 {
1220 root 1.51 ev_clear_pending (EV_A_ (W)w);
1221 root 1.12 if (!ev_is_active (w))
1222     return;
1223    
1224 root 1.62 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1225    
1226     if (((W)w)->active < timercnt--)
1227 root 1.1 {
1228 root 1.62 timers [((W)w)->active - 1] = timers [timercnt];
1229     downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1230 root 1.12 }
1231 root 1.4
1232 root 1.63 ((WT)w)->at = w->repeat;
1233 root 1.14
1234 root 1.51 ev_stop (EV_A_ (W)w);
1235 root 1.12 }
1236 root 1.4
1237 root 1.12 void
1238 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1239 root 1.14 {
1240     if (ev_is_active (w))
1241     {
1242     if (w->repeat)
1243     {
1244 root 1.63 ((WT)w)->at = mn_now + w->repeat;
1245 root 1.62 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1246 root 1.14 }
1247     else
1248 root 1.51 ev_timer_stop (EV_A_ w);
1249 root 1.14 }
1250     else if (w->repeat)
1251 root 1.51 ev_timer_start (EV_A_ w);
1252 root 1.14 }
1253    
1254     void
1255 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1256 root 1.12 {
1257     if (ev_is_active (w))
1258     return;
1259 root 1.1
1260 root 1.33 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1261 root 1.13
1262 root 1.12 /* this formula differs from the one in periodic_reify because we do not always round up */
1263     if (w->interval)
1264 root 1.63 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1265 root 1.12
1266 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1267 root 1.12 array_needsize (periodics, periodicmax, periodiccnt, );
1268     periodics [periodiccnt - 1] = w;
1269     upheap ((WT *)periodics, periodiccnt - 1);
1270 root 1.62
1271     assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272 root 1.1 }
1273    
1274     void
1275 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1276 root 1.1 {
1277 root 1.51 ev_clear_pending (EV_A_ (W)w);
1278 root 1.1 if (!ev_is_active (w))
1279     return;
1280    
1281 root 1.62 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1282    
1283     if (((W)w)->active < periodiccnt--)
1284 root 1.2 {
1285 root 1.62 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1286     downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1287 root 1.2 }
1288    
1289 root 1.51 ev_stop (EV_A_ (W)w);
1290 root 1.1 }
1291    
1292 root 1.28 void
1293 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1294 root 1.9 {
1295     if (ev_is_active (w))
1296     return;
1297    
1298 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1299 root 1.9 array_needsize (idles, idlemax, idlecnt, );
1300     idles [idlecnt - 1] = w;
1301     }
1302    
1303 root 1.28 void
1304 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1305 root 1.9 {
1306 root 1.51 ev_clear_pending (EV_A_ (W)w);
1307 root 1.16 if (ev_is_active (w))
1308     return;
1309    
1310 root 1.62 idles [((W)w)->active - 1] = idles [--idlecnt];
1311 root 1.51 ev_stop (EV_A_ (W)w);
1312 root 1.9 }
1313    
1314 root 1.28 void
1315 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1316 root 1.20 {
1317     if (ev_is_active (w))
1318     return;
1319    
1320 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1321 root 1.20 array_needsize (prepares, preparemax, preparecnt, );
1322     prepares [preparecnt - 1] = w;
1323     }
1324    
1325 root 1.28 void
1326 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1327 root 1.20 {
1328 root 1.51 ev_clear_pending (EV_A_ (W)w);
1329 root 1.20 if (ev_is_active (w))
1330     return;
1331    
1332 root 1.62 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1333 root 1.51 ev_stop (EV_A_ (W)w);
1334 root 1.20 }
1335    
1336 root 1.28 void
1337 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1338 root 1.9 {
1339     if (ev_is_active (w))
1340     return;
1341    
1342 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1343 root 1.9 array_needsize (checks, checkmax, checkcnt, );
1344     checks [checkcnt - 1] = w;
1345     }
1346    
1347 root 1.28 void
1348 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1349 root 1.9 {
1350 root 1.51 ev_clear_pending (EV_A_ (W)w);
1351 root 1.16 if (ev_is_active (w))
1352     return;
1353    
1354 root 1.62 checks [((W)w)->active - 1] = checks [--checkcnt];
1355 root 1.51 ev_stop (EV_A_ (W)w);
1356 root 1.9 }
1357    
1358 root 1.56 #ifndef SA_RESTART
1359     # define SA_RESTART 0
1360     #endif
1361    
1362     void
1363     ev_signal_start (EV_P_ struct ev_signal *w)
1364     {
1365     #if EV_MULTIPLICITY
1366     assert (("signal watchers are only supported in the default loop", loop == default_loop));
1367     #endif
1368     if (ev_is_active (w))
1369     return;
1370    
1371     assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1372    
1373     ev_start (EV_A_ (W)w, 1);
1374     array_needsize (signals, signalmax, w->signum, signals_init);
1375     wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1376    
1377 root 1.63 if (!((WL)w)->next)
1378 root 1.56 {
1379 root 1.67 #if WIN32
1380     signal (w->signum, sighandler);
1381     #else
1382 root 1.56 struct sigaction sa;
1383     sa.sa_handler = sighandler;
1384     sigfillset (&sa.sa_mask);
1385     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1386     sigaction (w->signum, &sa, 0);
1387 root 1.67 #endif
1388 root 1.56 }
1389     }
1390    
1391     void
1392     ev_signal_stop (EV_P_ struct ev_signal *w)
1393     {
1394     ev_clear_pending (EV_A_ (W)w);
1395     if (!ev_is_active (w))
1396     return;
1397    
1398     wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1399     ev_stop (EV_A_ (W)w);
1400    
1401     if (!signals [w->signum - 1].head)
1402     signal (w->signum, SIG_DFL);
1403     }
1404    
1405 root 1.28 void
1406 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1407 root 1.22 {
1408 root 1.56 #if EV_MULTIPLICITY
1409     assert (("child watchers are only supported in the default loop", loop == default_loop));
1410     #endif
1411 root 1.22 if (ev_is_active (w))
1412     return;
1413    
1414 root 1.51 ev_start (EV_A_ (W)w, 1);
1415 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1416     }
1417    
1418 root 1.28 void
1419 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1420 root 1.22 {
1421 root 1.51 ev_clear_pending (EV_A_ (W)w);
1422 root 1.22 if (ev_is_active (w))
1423     return;
1424    
1425     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1426 root 1.51 ev_stop (EV_A_ (W)w);
1427 root 1.22 }
1428    
1429 root 1.1 /*****************************************************************************/
1430 root 1.10
1431 root 1.16 struct ev_once
1432     {
1433     struct ev_io io;
1434     struct ev_timer to;
1435     void (*cb)(int revents, void *arg);
1436     void *arg;
1437     };
1438    
1439     static void
1440 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1441 root 1.16 {
1442     void (*cb)(int revents, void *arg) = once->cb;
1443     void *arg = once->arg;
1444    
1445 root 1.51 ev_io_stop (EV_A_ &once->io);
1446     ev_timer_stop (EV_A_ &once->to);
1447 root 1.69 ev_free (once);
1448 root 1.16
1449     cb (revents, arg);
1450     }
1451    
1452     static void
1453 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1454 root 1.16 {
1455 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1456 root 1.16 }
1457    
1458     static void
1459 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1460 root 1.16 {
1461 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1462 root 1.16 }
1463    
1464     void
1465 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1466 root 1.16 {
1467 root 1.69 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1468 root 1.16
1469     if (!once)
1470 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1471 root 1.16 else
1472     {
1473     once->cb = cb;
1474     once->arg = arg;
1475    
1476 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1477 root 1.16 if (fd >= 0)
1478     {
1479 root 1.28 ev_io_set (&once->io, fd, events);
1480 root 1.51 ev_io_start (EV_A_ &once->io);
1481 root 1.16 }
1482    
1483 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1484 root 1.16 if (timeout >= 0.)
1485     {
1486 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1487 root 1.51 ev_timer_start (EV_A_ &once->to);
1488 root 1.16 }
1489     }
1490     }
1491