ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.70
Committed: Tue Nov 6 00:52:32 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.69: +38 -22 lines
Log Message:
better fork

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.59 #ifndef EV_STANDALONE
32 root 1.29 # include "config.h"
33 root 1.60
34     # if HAVE_CLOCK_GETTIME
35     # define EV_USE_MONOTONIC 1
36     # define EV_USE_REALTIME 1
37     # endif
38    
39     # if HAVE_SELECT && HAVE_SYS_SELECT_H
40     # define EV_USE_SELECT 1
41     # endif
42    
43     # if HAVE_POLL && HAVE_POLL_H
44     # define EV_USE_POLL 1
45     # endif
46    
47     # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48     # define EV_USE_EPOLL 1
49     # endif
50    
51     # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52     # define EV_USE_KQUEUE 1
53     # endif
54    
55 root 1.29 #endif
56 root 1.17
57 root 1.1 #include <math.h>
58     #include <stdlib.h>
59 root 1.7 #include <unistd.h>
60     #include <fcntl.h>
61     #include <signal.h>
62 root 1.16 #include <stddef.h>
63 root 1.1
64     #include <stdio.h>
65    
66 root 1.4 #include <assert.h>
67 root 1.1 #include <errno.h>
68 root 1.22 #include <sys/types.h>
69 root 1.45 #ifndef WIN32
70     # include <sys/wait.h>
71     #endif
72 root 1.1 #include <sys/time.h>
73     #include <time.h>
74    
75 root 1.40 /**/
76    
77 root 1.29 #ifndef EV_USE_MONOTONIC
78 root 1.37 # define EV_USE_MONOTONIC 1
79     #endif
80    
81 root 1.29 #ifndef EV_USE_SELECT
82     # define EV_USE_SELECT 1
83 root 1.10 #endif
84    
85 root 1.59 #ifndef EV_USE_POLL
86     # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87 root 1.41 #endif
88    
89 root 1.29 #ifndef EV_USE_EPOLL
90     # define EV_USE_EPOLL 0
91 root 1.10 #endif
92    
93 root 1.44 #ifndef EV_USE_KQUEUE
94     # define EV_USE_KQUEUE 0
95     #endif
96    
97 root 1.62 #ifndef EV_USE_WIN32
98     # ifdef WIN32
99     # define EV_USE_WIN32 1
100     # else
101     # define EV_USE_WIN32 0
102     # endif
103     #endif
104    
105 root 1.40 #ifndef EV_USE_REALTIME
106     # define EV_USE_REALTIME 1
107     #endif
108    
109     /**/
110    
111     #ifndef CLOCK_MONOTONIC
112     # undef EV_USE_MONOTONIC
113     # define EV_USE_MONOTONIC 0
114     #endif
115    
116 root 1.31 #ifndef CLOCK_REALTIME
117 root 1.40 # undef EV_USE_REALTIME
118 root 1.31 # define EV_USE_REALTIME 0
119     #endif
120 root 1.40
121     /**/
122 root 1.1
123 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 root 1.1
128 root 1.59 #include "ev.h"
129 root 1.1
130 root 1.40 #if __GNUC__ >= 3
131     # define expect(expr,value) __builtin_expect ((expr),(value))
132     # define inline inline
133     #else
134     # define expect(expr,value) (expr)
135     # define inline static
136     #endif
137    
138     #define expect_false(expr) expect ((expr) != 0, 0)
139     #define expect_true(expr) expect ((expr) != 0, 1)
140    
141 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
143    
144 root 1.10 typedef struct ev_watcher *W;
145     typedef struct ev_watcher_list *WL;
146 root 1.12 typedef struct ev_watcher_time *WT;
147 root 1.10
148 root 1.54 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149    
150 root 1.67 #if WIN32
151     /* note: the comment below could not be substantiated, but what would I care */
152     /* MSDN says this is required to handle SIGFPE */
153     volatile double SIGFPE_REQ = 0.0f;
154     #endif
155    
156 root 1.53 /*****************************************************************************/
157 root 1.1
158 root 1.70 static void (*syserr_cb)(const char *msg);
159 root 1.69
160 root 1.70 void ev_set_syserr_cb (void (*cb)(const char *msg))
161 root 1.69 {
162     syserr_cb = cb;
163     }
164    
165     static void
166 root 1.70 syserr (const char *msg)
167 root 1.69 {
168 root 1.70 if (!msg)
169     msg = "(libev) system error";
170    
171 root 1.69 if (syserr_cb)
172 root 1.70 syserr_cb (msg);
173 root 1.69 else
174     {
175 root 1.70 perror (msg);
176 root 1.69 abort ();
177     }
178     }
179    
180     static void *(*alloc)(void *ptr, long size);
181    
182     void ev_set_allocator (void *(*cb)(void *ptr, long size))
183     {
184     alloc = cb;
185     }
186    
187     static void *
188     ev_realloc (void *ptr, long size)
189     {
190     ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
191    
192     if (!ptr && size)
193     {
194     fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
195     abort ();
196     }
197    
198     return ptr;
199     }
200    
201     #define ev_malloc(size) ev_realloc (0, (size))
202     #define ev_free(ptr) ev_realloc ((ptr), 0)
203    
204     /*****************************************************************************/
205    
206 root 1.53 typedef struct
207     {
208 root 1.68 WL head;
209 root 1.53 unsigned char events;
210     unsigned char reify;
211     } ANFD;
212 root 1.1
213 root 1.53 typedef struct
214     {
215     W w;
216     int events;
217     } ANPENDING;
218 root 1.51
219 root 1.55 #if EV_MULTIPLICITY
220 root 1.54
221 root 1.53 struct ev_loop
222     {
223 root 1.54 # define VAR(name,decl) decl;
224 root 1.53 # include "ev_vars.h"
225     };
226 root 1.54 # undef VAR
227     # include "ev_wrap.h"
228    
229 root 1.53 #else
230 root 1.54
231     # define VAR(name,decl) static decl;
232 root 1.53 # include "ev_vars.h"
233 root 1.54 # undef VAR
234    
235 root 1.51 #endif
236 root 1.1
237 root 1.8 /*****************************************************************************/
238    
239 root 1.51 inline ev_tstamp
240 root 1.1 ev_time (void)
241     {
242 root 1.29 #if EV_USE_REALTIME
243 root 1.1 struct timespec ts;
244     clock_gettime (CLOCK_REALTIME, &ts);
245     return ts.tv_sec + ts.tv_nsec * 1e-9;
246     #else
247     struct timeval tv;
248     gettimeofday (&tv, 0);
249     return tv.tv_sec + tv.tv_usec * 1e-6;
250     #endif
251     }
252    
253 root 1.51 inline ev_tstamp
254 root 1.1 get_clock (void)
255     {
256 root 1.29 #if EV_USE_MONOTONIC
257 root 1.40 if (expect_true (have_monotonic))
258 root 1.1 {
259     struct timespec ts;
260     clock_gettime (CLOCK_MONOTONIC, &ts);
261     return ts.tv_sec + ts.tv_nsec * 1e-9;
262     }
263     #endif
264    
265     return ev_time ();
266     }
267    
268 root 1.51 ev_tstamp
269     ev_now (EV_P)
270     {
271     return rt_now;
272     }
273    
274 root 1.30 #define array_roundsize(base,n) ((n) | 4 & ~3)
275 root 1.29
276 root 1.69 #define array_needsize(base,cur,cnt,init) \
277     if (expect_false ((cnt) > cur)) \
278     { \
279     int newcnt = cur; \
280     do \
281     { \
282     newcnt = array_roundsize (base, newcnt << 1); \
283     } \
284     while ((cnt) > newcnt); \
285     \
286     base = ev_realloc (base, sizeof (*base) * (newcnt)); \
287     init (base + cur, newcnt - cur); \
288     cur = newcnt; \
289 root 1.1 }
290    
291 root 1.67 #define array_slim(stem) \
292     if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
293     { \
294     stem ## max = array_roundsize (stem ## cnt >> 1); \
295 root 1.69 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
296 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
297     }
298    
299 root 1.65 #define array_free(stem, idx) \
300 root 1.69 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
301 root 1.65
302 root 1.8 /*****************************************************************************/
303    
304 root 1.1 static void
305     anfds_init (ANFD *base, int count)
306     {
307     while (count--)
308     {
309 root 1.27 base->head = 0;
310     base->events = EV_NONE;
311 root 1.33 base->reify = 0;
312    
313 root 1.1 ++base;
314     }
315     }
316    
317     static void
318 root 1.51 event (EV_P_ W w, int events)
319 root 1.1 {
320 root 1.32 if (w->pending)
321     {
322 root 1.42 pendings [ABSPRI (w)][w->pending - 1].events |= events;
323 root 1.32 return;
324     }
325    
326 root 1.42 w->pending = ++pendingcnt [ABSPRI (w)];
327     array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
328     pendings [ABSPRI (w)][w->pending - 1].w = w;
329     pendings [ABSPRI (w)][w->pending - 1].events = events;
330 root 1.1 }
331    
332     static void
333 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
334 root 1.27 {
335     int i;
336    
337     for (i = 0; i < eventcnt; ++i)
338 root 1.51 event (EV_A_ events [i], type);
339 root 1.27 }
340    
341     static void
342 root 1.51 fd_event (EV_P_ int fd, int events)
343 root 1.1 {
344     ANFD *anfd = anfds + fd;
345     struct ev_io *w;
346    
347 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
348 root 1.1 {
349     int ev = w->events & events;
350    
351     if (ev)
352 root 1.51 event (EV_A_ (W)w, ev);
353 root 1.1 }
354     }
355    
356 root 1.27 /*****************************************************************************/
357    
358 root 1.9 static void
359 root 1.51 fd_reify (EV_P)
360 root 1.9 {
361     int i;
362    
363 root 1.27 for (i = 0; i < fdchangecnt; ++i)
364     {
365     int fd = fdchanges [i];
366     ANFD *anfd = anfds + fd;
367     struct ev_io *w;
368    
369     int events = 0;
370    
371 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
372 root 1.27 events |= w->events;
373    
374 root 1.33 anfd->reify = 0;
375 root 1.27
376 root 1.64 method_modify (EV_A_ fd, anfd->events, events);
377     anfd->events = events;
378 root 1.27 }
379    
380     fdchangecnt = 0;
381     }
382    
383     static void
384 root 1.51 fd_change (EV_P_ int fd)
385 root 1.27 {
386 root 1.70 if (anfds [fd].reify)
387 root 1.27 return;
388    
389 root 1.33 anfds [fd].reify = 1;
390 root 1.27
391     ++fdchangecnt;
392     array_needsize (fdchanges, fdchangemax, fdchangecnt, );
393     fdchanges [fdchangecnt - 1] = fd;
394 root 1.9 }
395    
396 root 1.41 static void
397 root 1.51 fd_kill (EV_P_ int fd)
398 root 1.41 {
399     struct ev_io *w;
400    
401 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
402 root 1.41 {
403 root 1.51 ev_io_stop (EV_A_ w);
404     event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
405 root 1.41 }
406     }
407    
408 root 1.19 /* called on EBADF to verify fds */
409     static void
410 root 1.51 fd_ebadf (EV_P)
411 root 1.19 {
412     int fd;
413    
414     for (fd = 0; fd < anfdmax; ++fd)
415 root 1.27 if (anfds [fd].events)
416 root 1.19 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
417 root 1.51 fd_kill (EV_A_ fd);
418 root 1.41 }
419    
420     /* called on ENOMEM in select/poll to kill some fds and retry */
421     static void
422 root 1.51 fd_enomem (EV_P)
423 root 1.41 {
424 root 1.62 int fd;
425 root 1.41
426 root 1.62 for (fd = anfdmax; fd--; )
427 root 1.41 if (anfds [fd].events)
428     {
429 root 1.51 fd_kill (EV_A_ fd);
430 root 1.41 return;
431     }
432 root 1.19 }
433    
434 root 1.70 /* usually called after fork if method needs to re-arm all fds from scratch */
435 root 1.56 static void
436     fd_rearm_all (EV_P)
437     {
438     int fd;
439    
440     /* this should be highly optimised to not do anything but set a flag */
441     for (fd = 0; fd < anfdmax; ++fd)
442     if (anfds [fd].events)
443     {
444     anfds [fd].events = 0;
445 root 1.60 fd_change (EV_A_ fd);
446 root 1.56 }
447     }
448    
449 root 1.8 /*****************************************************************************/
450    
451 root 1.1 static void
452 root 1.54 upheap (WT *heap, int k)
453 root 1.1 {
454 root 1.54 WT w = heap [k];
455 root 1.1
456 root 1.54 while (k && heap [k >> 1]->at > w->at)
457 root 1.1 {
458 root 1.54 heap [k] = heap [k >> 1];
459 root 1.62 ((W)heap [k])->active = k + 1;
460 root 1.1 k >>= 1;
461     }
462    
463 root 1.54 heap [k] = w;
464 root 1.62 ((W)heap [k])->active = k + 1;
465 root 1.1
466     }
467    
468     static void
469 root 1.54 downheap (WT *heap, int N, int k)
470 root 1.1 {
471 root 1.54 WT w = heap [k];
472 root 1.1
473 root 1.4 while (k < (N >> 1))
474 root 1.1 {
475     int j = k << 1;
476    
477 root 1.54 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
478 root 1.1 ++j;
479    
480 root 1.54 if (w->at <= heap [j]->at)
481 root 1.1 break;
482    
483 root 1.54 heap [k] = heap [j];
484 root 1.62 ((W)heap [k])->active = k + 1;
485 root 1.1 k = j;
486     }
487    
488 root 1.54 heap [k] = w;
489 root 1.62 ((W)heap [k])->active = k + 1;
490 root 1.1 }
491    
492 root 1.8 /*****************************************************************************/
493    
494 root 1.7 typedef struct
495     {
496 root 1.68 WL head;
497 root 1.34 sig_atomic_t volatile gotsig;
498 root 1.7 } ANSIG;
499    
500     static ANSIG *signals;
501 root 1.4 static int signalmax;
502 root 1.1
503 root 1.7 static int sigpipe [2];
504 root 1.34 static sig_atomic_t volatile gotsig;
505 root 1.59 static struct ev_io sigev;
506 root 1.7
507 root 1.1 static void
508 root 1.7 signals_init (ANSIG *base, int count)
509 root 1.1 {
510     while (count--)
511 root 1.7 {
512     base->head = 0;
513     base->gotsig = 0;
514 root 1.33
515 root 1.7 ++base;
516     }
517     }
518    
519     static void
520     sighandler (int signum)
521     {
522 root 1.67 #if WIN32
523     signal (signum, sighandler);
524     #endif
525    
526 root 1.7 signals [signum - 1].gotsig = 1;
527    
528     if (!gotsig)
529     {
530 root 1.48 int old_errno = errno;
531 root 1.7 gotsig = 1;
532 root 1.34 write (sigpipe [1], &signum, 1);
533 root 1.48 errno = old_errno;
534 root 1.7 }
535     }
536    
537     static void
538 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
539 root 1.7 {
540 root 1.68 WL w;
541 root 1.38 int signum;
542 root 1.7
543 root 1.34 read (sigpipe [0], &revents, 1);
544 root 1.7 gotsig = 0;
545    
546 root 1.38 for (signum = signalmax; signum--; )
547     if (signals [signum].gotsig)
548 root 1.7 {
549 root 1.38 signals [signum].gotsig = 0;
550 root 1.7
551 root 1.38 for (w = signals [signum].head; w; w = w->next)
552 root 1.51 event (EV_A_ (W)w, EV_SIGNAL);
553 root 1.7 }
554     }
555    
556     static void
557 root 1.51 siginit (EV_P)
558 root 1.7 {
559 root 1.45 #ifndef WIN32
560 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
561     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
562    
563     /* rather than sort out wether we really need nb, set it */
564     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
565     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
566 root 1.45 #endif
567 root 1.7
568 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
569 root 1.54 ev_io_start (EV_A_ &sigev);
570 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
571 root 1.1 }
572    
573 root 1.8 /*****************************************************************************/
574    
575 root 1.45 #ifndef WIN32
576    
577 root 1.59 static struct ev_child *childs [PID_HASHSIZE];
578     static struct ev_signal childev;
579    
580 root 1.22 #ifndef WCONTINUED
581     # define WCONTINUED 0
582     #endif
583    
584     static void
585 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
586 root 1.47 {
587     struct ev_child *w;
588    
589 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
590 root 1.47 if (w->pid == pid || !w->pid)
591     {
592 root 1.63 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
593     w->rpid = pid;
594     w->rstatus = status;
595 root 1.51 event (EV_A_ (W)w, EV_CHILD);
596 root 1.47 }
597     }
598    
599     static void
600 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
601 root 1.22 {
602     int pid, status;
603    
604 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
605     {
606     /* make sure we are called again until all childs have been reaped */
607 root 1.51 event (EV_A_ (W)sw, EV_SIGNAL);
608 root 1.47
609 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
610     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
611 root 1.47 }
612 root 1.22 }
613    
614 root 1.45 #endif
615    
616 root 1.22 /*****************************************************************************/
617    
618 root 1.44 #if EV_USE_KQUEUE
619     # include "ev_kqueue.c"
620     #endif
621 root 1.29 #if EV_USE_EPOLL
622 root 1.1 # include "ev_epoll.c"
623     #endif
624 root 1.59 #if EV_USE_POLL
625 root 1.41 # include "ev_poll.c"
626     #endif
627 root 1.29 #if EV_USE_SELECT
628 root 1.1 # include "ev_select.c"
629     #endif
630    
631 root 1.24 int
632     ev_version_major (void)
633     {
634     return EV_VERSION_MAJOR;
635     }
636    
637     int
638     ev_version_minor (void)
639     {
640     return EV_VERSION_MINOR;
641     }
642    
643 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
644 root 1.41 static int
645 root 1.51 enable_secure (void)
646 root 1.41 {
647 root 1.49 #ifdef WIN32
648     return 0;
649     #else
650 root 1.41 return getuid () != geteuid ()
651     || getgid () != getegid ();
652 root 1.49 #endif
653 root 1.41 }
654    
655 root 1.51 int
656     ev_method (EV_P)
657 root 1.1 {
658 root 1.51 return method;
659     }
660    
661 root 1.56 static void
662 root 1.54 loop_init (EV_P_ int methods)
663 root 1.51 {
664     if (!method)
665 root 1.23 {
666 root 1.29 #if EV_USE_MONOTONIC
667 root 1.23 {
668     struct timespec ts;
669     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
670     have_monotonic = 1;
671     }
672 root 1.1 #endif
673    
674 root 1.51 rt_now = ev_time ();
675     mn_now = get_clock ();
676     now_floor = mn_now;
677 root 1.54 rtmn_diff = rt_now - mn_now;
678 root 1.1
679 root 1.41 if (methods == EVMETHOD_AUTO)
680 root 1.56 if (!enable_secure () && getenv ("LIBEV_METHODS"))
681     methods = atoi (getenv ("LIBEV_METHODS"));
682 root 1.50 else
683     methods = EVMETHOD_ANY;
684 root 1.41
685 root 1.51 method = 0;
686 root 1.62 #if EV_USE_WIN32
687     if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
688     #endif
689 root 1.44 #if EV_USE_KQUEUE
690 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
691 root 1.44 #endif
692 root 1.29 #if EV_USE_EPOLL
693 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
694 root 1.41 #endif
695 root 1.59 #if EV_USE_POLL
696 root 1.51 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
697 root 1.1 #endif
698 root 1.29 #if EV_USE_SELECT
699 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
700 root 1.1 #endif
701 root 1.70
702     ev_watcher_init (&sigev, sigcb);
703     ev_set_priority (&sigev, EV_MAXPRI);
704 root 1.56 }
705     }
706    
707     void
708     loop_destroy (EV_P)
709     {
710 root 1.65 int i;
711    
712 root 1.62 #if EV_USE_WIN32
713     if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
714     #endif
715 root 1.56 #if EV_USE_KQUEUE
716     if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
717     #endif
718     #if EV_USE_EPOLL
719     if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
720     #endif
721 root 1.59 #if EV_USE_POLL
722 root 1.56 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
723     #endif
724     #if EV_USE_SELECT
725     if (method == EVMETHOD_SELECT) select_destroy (EV_A);
726     #endif
727 root 1.1
728 root 1.65 for (i = NUMPRI; i--; )
729     array_free (pending, [i]);
730    
731     array_free (fdchange, );
732     array_free (timer, );
733     array_free (periodic, );
734     array_free (idle, );
735     array_free (prepare, );
736     array_free (check, );
737    
738 root 1.56 method = 0;
739     }
740 root 1.22
741 root 1.70 static void
742 root 1.56 loop_fork (EV_P)
743     {
744     #if EV_USE_EPOLL
745     if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
746     #endif
747     #if EV_USE_KQUEUE
748     if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
749 root 1.45 #endif
750 root 1.70
751     if (ev_is_active (&sigev))
752     {
753     /* default loop */
754    
755     ev_ref (EV_A);
756     ev_io_stop (EV_A_ &sigev);
757     close (sigpipe [0]);
758     close (sigpipe [1]);
759    
760     while (pipe (sigpipe))
761     syserr ("(libev) error creating pipe");
762    
763     siginit (EV_A);
764     }
765    
766     postfork = 0;
767 root 1.1 }
768    
769 root 1.55 #if EV_MULTIPLICITY
770 root 1.54 struct ev_loop *
771     ev_loop_new (int methods)
772     {
773 root 1.69 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
774    
775     memset (loop, 0, sizeof (struct ev_loop));
776 root 1.54
777 root 1.56 loop_init (EV_A_ methods);
778    
779 root 1.60 if (ev_method (EV_A))
780 root 1.55 return loop;
781 root 1.54
782 root 1.55 return 0;
783 root 1.54 }
784    
785     void
786 root 1.56 ev_loop_destroy (EV_P)
787 root 1.54 {
788 root 1.56 loop_destroy (EV_A);
789 root 1.69 ev_free (loop);
790 root 1.54 }
791    
792 root 1.56 void
793     ev_loop_fork (EV_P)
794     {
795 root 1.70 postfork = 1;
796 root 1.56 }
797    
798     #endif
799    
800     #if EV_MULTIPLICITY
801     struct ev_loop default_loop_struct;
802     static struct ev_loop *default_loop;
803    
804     struct ev_loop *
805 root 1.54 #else
806 root 1.56 static int default_loop;
807 root 1.54
808     int
809 root 1.56 #endif
810     ev_default_loop (int methods)
811 root 1.54 {
812 root 1.56 if (sigpipe [0] == sigpipe [1])
813     if (pipe (sigpipe))
814     return 0;
815 root 1.54
816 root 1.56 if (!default_loop)
817     {
818     #if EV_MULTIPLICITY
819     struct ev_loop *loop = default_loop = &default_loop_struct;
820     #else
821     default_loop = 1;
822 root 1.54 #endif
823    
824 root 1.56 loop_init (EV_A_ methods);
825    
826     if (ev_method (EV_A))
827     {
828     siginit (EV_A);
829    
830     #ifndef WIN32
831     ev_signal_init (&childev, childcb, SIGCHLD);
832     ev_set_priority (&childev, EV_MAXPRI);
833     ev_signal_start (EV_A_ &childev);
834     ev_unref (EV_A); /* child watcher should not keep loop alive */
835     #endif
836     }
837     else
838     default_loop = 0;
839     }
840 root 1.8
841 root 1.56 return default_loop;
842 root 1.1 }
843    
844 root 1.24 void
845 root 1.56 ev_default_destroy (void)
846 root 1.1 {
847 root 1.57 #if EV_MULTIPLICITY
848 root 1.56 struct ev_loop *loop = default_loop;
849 root 1.57 #endif
850 root 1.56
851     ev_ref (EV_A); /* child watcher */
852     ev_signal_stop (EV_A_ &childev);
853    
854     ev_ref (EV_A); /* signal watcher */
855     ev_io_stop (EV_A_ &sigev);
856    
857     close (sigpipe [0]); sigpipe [0] = 0;
858     close (sigpipe [1]); sigpipe [1] = 0;
859    
860     loop_destroy (EV_A);
861 root 1.1 }
862    
863 root 1.24 void
864 root 1.60 ev_default_fork (void)
865 root 1.1 {
866 root 1.60 #if EV_MULTIPLICITY
867     struct ev_loop *loop = default_loop;
868     #endif
869    
870 root 1.70 if (method)
871     postfork = 1;
872 root 1.1 }
873    
874 root 1.8 /*****************************************************************************/
875    
876 root 1.1 static void
877 root 1.51 call_pending (EV_P)
878 root 1.1 {
879 root 1.42 int pri;
880    
881     for (pri = NUMPRI; pri--; )
882     while (pendingcnt [pri])
883     {
884     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
885 root 1.1
886 root 1.42 if (p->w)
887     {
888     p->w->pending = 0;
889 root 1.66 p->w->cb (EV_A_ p->w, p->events);
890 root 1.42 }
891     }
892 root 1.1 }
893    
894     static void
895 root 1.51 timers_reify (EV_P)
896 root 1.1 {
897 root 1.63 while (timercnt && ((WT)timers [0])->at <= mn_now)
898 root 1.1 {
899     struct ev_timer *w = timers [0];
900    
901 root 1.61 assert (("inactive timer on timer heap detected", ev_is_active (w)));
902    
903 root 1.4 /* first reschedule or stop timer */
904 root 1.1 if (w->repeat)
905     {
906 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
907 root 1.63 ((WT)w)->at = mn_now + w->repeat;
908 root 1.12 downheap ((WT *)timers, timercnt, 0);
909     }
910     else
911 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
912 root 1.30
913 root 1.54 event (EV_A_ (W)w, EV_TIMEOUT);
914 root 1.12 }
915     }
916 root 1.4
917 root 1.12 static void
918 root 1.51 periodics_reify (EV_P)
919 root 1.12 {
920 root 1.63 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
921 root 1.12 {
922     struct ev_periodic *w = periodics [0];
923 root 1.1
924 root 1.61 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
925    
926 root 1.12 /* first reschedule or stop timer */
927     if (w->interval)
928     {
929 root 1.63 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
930     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
931 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
932 root 1.1 }
933     else
934 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
935 root 1.12
936 root 1.51 event (EV_A_ (W)w, EV_PERIODIC);
937 root 1.12 }
938     }
939    
940     static void
941 root 1.54 periodics_reschedule (EV_P)
942 root 1.12 {
943     int i;
944    
945 root 1.13 /* adjust periodics after time jump */
946 root 1.12 for (i = 0; i < periodiccnt; ++i)
947     {
948     struct ev_periodic *w = periodics [i];
949    
950     if (w->interval)
951 root 1.4 {
952 root 1.63 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
953 root 1.12
954     if (fabs (diff) >= 1e-4)
955     {
956 root 1.51 ev_periodic_stop (EV_A_ w);
957     ev_periodic_start (EV_A_ w);
958 root 1.12
959     i = 0; /* restart loop, inefficient, but time jumps should be rare */
960     }
961 root 1.4 }
962 root 1.12 }
963 root 1.1 }
964    
965 root 1.51 inline int
966     time_update_monotonic (EV_P)
967 root 1.40 {
968 root 1.51 mn_now = get_clock ();
969 root 1.40
970 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
971 root 1.40 {
972 root 1.54 rt_now = rtmn_diff + mn_now;
973 root 1.40 return 0;
974     }
975     else
976     {
977 root 1.51 now_floor = mn_now;
978     rt_now = ev_time ();
979 root 1.40 return 1;
980     }
981     }
982    
983 root 1.4 static void
984 root 1.51 time_update (EV_P)
985 root 1.4 {
986     int i;
987 root 1.12
988 root 1.40 #if EV_USE_MONOTONIC
989     if (expect_true (have_monotonic))
990     {
991 root 1.51 if (time_update_monotonic (EV_A))
992 root 1.40 {
993 root 1.54 ev_tstamp odiff = rtmn_diff;
994 root 1.4
995 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
996     {
997 root 1.54 rtmn_diff = rt_now - mn_now;
998 root 1.4
999 root 1.54 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1000 root 1.40 return; /* all is well */
1001 root 1.4
1002 root 1.51 rt_now = ev_time ();
1003     mn_now = get_clock ();
1004     now_floor = mn_now;
1005 root 1.40 }
1006 root 1.4
1007 root 1.54 periodics_reschedule (EV_A);
1008 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
1009 root 1.54 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1010 root 1.4 }
1011     }
1012     else
1013 root 1.40 #endif
1014 root 1.4 {
1015 root 1.51 rt_now = ev_time ();
1016 root 1.40
1017 root 1.51 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1018 root 1.13 {
1019 root 1.54 periodics_reschedule (EV_A);
1020 root 1.13
1021     /* adjust timers. this is easy, as the offset is the same for all */
1022     for (i = 0; i < timercnt; ++i)
1023 root 1.63 ((WT)timers [i])->at += rt_now - mn_now;
1024 root 1.13 }
1025 root 1.4
1026 root 1.51 mn_now = rt_now;
1027 root 1.4 }
1028     }
1029    
1030 root 1.51 void
1031     ev_ref (EV_P)
1032     {
1033     ++activecnt;
1034     }
1035 root 1.1
1036 root 1.51 void
1037     ev_unref (EV_P)
1038     {
1039     --activecnt;
1040     }
1041    
1042     static int loop_done;
1043    
1044     void
1045     ev_loop (EV_P_ int flags)
1046 root 1.1 {
1047     double block;
1048 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1049 root 1.1
1050 root 1.20 do
1051 root 1.9 {
1052 root 1.20 /* queue check watchers (and execute them) */
1053 root 1.40 if (expect_false (preparecnt))
1054 root 1.20 {
1055 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1056     call_pending (EV_A);
1057 root 1.20 }
1058 root 1.9
1059 root 1.70 /* we might have forked, so reify kernel state if necessary */
1060     if (expect_false (postfork))
1061     loop_fork (EV_A);
1062    
1063 root 1.1 /* update fd-related kernel structures */
1064 root 1.51 fd_reify (EV_A);
1065 root 1.1
1066     /* calculate blocking time */
1067 root 1.12
1068 root 1.21 /* we only need this for !monotonic clockor timers, but as we basically
1069     always have timers, we just calculate it always */
1070 root 1.40 #if EV_USE_MONOTONIC
1071     if (expect_true (have_monotonic))
1072 root 1.51 time_update_monotonic (EV_A);
1073 root 1.40 else
1074     #endif
1075     {
1076 root 1.51 rt_now = ev_time ();
1077     mn_now = rt_now;
1078 root 1.40 }
1079 root 1.12
1080 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
1081 root 1.1 block = 0.;
1082     else
1083     {
1084 root 1.4 block = MAX_BLOCKTIME;
1085    
1086 root 1.12 if (timercnt)
1087 root 1.4 {
1088 root 1.63 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1089 root 1.4 if (block > to) block = to;
1090     }
1091    
1092 root 1.12 if (periodiccnt)
1093 root 1.4 {
1094 root 1.63 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1095 root 1.4 if (block > to) block = to;
1096     }
1097    
1098 root 1.1 if (block < 0.) block = 0.;
1099     }
1100    
1101 root 1.51 method_poll (EV_A_ block);
1102 root 1.1
1103 root 1.51 /* update rt_now, do magic */
1104     time_update (EV_A);
1105 root 1.4
1106 root 1.9 /* queue pending timers and reschedule them */
1107 root 1.51 timers_reify (EV_A); /* relative timers called last */
1108     periodics_reify (EV_A); /* absolute timers called first */
1109 root 1.1
1110 root 1.9 /* queue idle watchers unless io or timers are pending */
1111     if (!pendingcnt)
1112 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1113 root 1.9
1114 root 1.20 /* queue check watchers, to be executed first */
1115     if (checkcnt)
1116 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1117 root 1.9
1118 root 1.51 call_pending (EV_A);
1119 root 1.1 }
1120 root 1.51 while (activecnt && !loop_done);
1121 root 1.13
1122 root 1.51 if (loop_done != 2)
1123     loop_done = 0;
1124     }
1125    
1126     void
1127     ev_unloop (EV_P_ int how)
1128     {
1129     loop_done = how;
1130 root 1.1 }
1131    
1132 root 1.8 /*****************************************************************************/
1133    
1134 root 1.51 inline void
1135 root 1.10 wlist_add (WL *head, WL elem)
1136 root 1.1 {
1137     elem->next = *head;
1138     *head = elem;
1139     }
1140    
1141 root 1.51 inline void
1142 root 1.10 wlist_del (WL *head, WL elem)
1143 root 1.1 {
1144     while (*head)
1145     {
1146     if (*head == elem)
1147     {
1148     *head = elem->next;
1149     return;
1150     }
1151    
1152     head = &(*head)->next;
1153     }
1154     }
1155    
1156 root 1.51 inline void
1157     ev_clear_pending (EV_P_ W w)
1158 root 1.16 {
1159     if (w->pending)
1160     {
1161 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1162 root 1.16 w->pending = 0;
1163     }
1164     }
1165    
1166 root 1.51 inline void
1167     ev_start (EV_P_ W w, int active)
1168 root 1.1 {
1169 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1170     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1171    
1172 root 1.1 w->active = active;
1173 root 1.51 ev_ref (EV_A);
1174 root 1.1 }
1175    
1176 root 1.51 inline void
1177     ev_stop (EV_P_ W w)
1178 root 1.1 {
1179 root 1.51 ev_unref (EV_A);
1180 root 1.1 w->active = 0;
1181     }
1182    
1183 root 1.8 /*****************************************************************************/
1184    
1185 root 1.1 void
1186 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
1187 root 1.1 {
1188 root 1.37 int fd = w->fd;
1189    
1190 root 1.1 if (ev_is_active (w))
1191     return;
1192    
1193 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
1194    
1195 root 1.51 ev_start (EV_A_ (W)w, 1);
1196 root 1.1 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1197 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1198 root 1.1
1199 root 1.51 fd_change (EV_A_ fd);
1200 root 1.1 }
1201    
1202     void
1203 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
1204 root 1.1 {
1205 root 1.51 ev_clear_pending (EV_A_ (W)w);
1206 root 1.1 if (!ev_is_active (w))
1207     return;
1208    
1209 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1210 root 1.51 ev_stop (EV_A_ (W)w);
1211 root 1.1
1212 root 1.51 fd_change (EV_A_ w->fd);
1213 root 1.1 }
1214    
1215     void
1216 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1217 root 1.1 {
1218     if (ev_is_active (w))
1219     return;
1220    
1221 root 1.63 ((WT)w)->at += mn_now;
1222 root 1.12
1223 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1224 root 1.13
1225 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1226 root 1.12 array_needsize (timers, timermax, timercnt, );
1227     timers [timercnt - 1] = w;
1228     upheap ((WT *)timers, timercnt - 1);
1229 root 1.62
1230     assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1231 root 1.12 }
1232    
1233     void
1234 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1235 root 1.12 {
1236 root 1.51 ev_clear_pending (EV_A_ (W)w);
1237 root 1.12 if (!ev_is_active (w))
1238     return;
1239    
1240 root 1.62 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1241    
1242     if (((W)w)->active < timercnt--)
1243 root 1.1 {
1244 root 1.62 timers [((W)w)->active - 1] = timers [timercnt];
1245     downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1246 root 1.12 }
1247 root 1.4
1248 root 1.63 ((WT)w)->at = w->repeat;
1249 root 1.14
1250 root 1.51 ev_stop (EV_A_ (W)w);
1251 root 1.12 }
1252 root 1.4
1253 root 1.12 void
1254 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1255 root 1.14 {
1256     if (ev_is_active (w))
1257     {
1258     if (w->repeat)
1259     {
1260 root 1.63 ((WT)w)->at = mn_now + w->repeat;
1261 root 1.62 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1262 root 1.14 }
1263     else
1264 root 1.51 ev_timer_stop (EV_A_ w);
1265 root 1.14 }
1266     else if (w->repeat)
1267 root 1.51 ev_timer_start (EV_A_ w);
1268 root 1.14 }
1269    
1270     void
1271 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1272 root 1.12 {
1273     if (ev_is_active (w))
1274     return;
1275 root 1.1
1276 root 1.33 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1277 root 1.13
1278 root 1.12 /* this formula differs from the one in periodic_reify because we do not always round up */
1279     if (w->interval)
1280 root 1.63 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1281 root 1.12
1282 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1283 root 1.12 array_needsize (periodics, periodicmax, periodiccnt, );
1284     periodics [periodiccnt - 1] = w;
1285     upheap ((WT *)periodics, periodiccnt - 1);
1286 root 1.62
1287     assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1288 root 1.1 }
1289    
1290     void
1291 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1292 root 1.1 {
1293 root 1.51 ev_clear_pending (EV_A_ (W)w);
1294 root 1.1 if (!ev_is_active (w))
1295     return;
1296    
1297 root 1.62 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1298    
1299     if (((W)w)->active < periodiccnt--)
1300 root 1.2 {
1301 root 1.62 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1302     downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1303 root 1.2 }
1304    
1305 root 1.51 ev_stop (EV_A_ (W)w);
1306 root 1.1 }
1307    
1308 root 1.28 void
1309 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1310 root 1.9 {
1311     if (ev_is_active (w))
1312     return;
1313    
1314 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1315 root 1.9 array_needsize (idles, idlemax, idlecnt, );
1316     idles [idlecnt - 1] = w;
1317     }
1318    
1319 root 1.28 void
1320 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1321 root 1.9 {
1322 root 1.51 ev_clear_pending (EV_A_ (W)w);
1323 root 1.16 if (ev_is_active (w))
1324     return;
1325    
1326 root 1.62 idles [((W)w)->active - 1] = idles [--idlecnt];
1327 root 1.51 ev_stop (EV_A_ (W)w);
1328 root 1.9 }
1329    
1330 root 1.28 void
1331 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1332 root 1.20 {
1333     if (ev_is_active (w))
1334     return;
1335    
1336 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1337 root 1.20 array_needsize (prepares, preparemax, preparecnt, );
1338     prepares [preparecnt - 1] = w;
1339     }
1340    
1341 root 1.28 void
1342 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1343 root 1.20 {
1344 root 1.51 ev_clear_pending (EV_A_ (W)w);
1345 root 1.20 if (ev_is_active (w))
1346     return;
1347    
1348 root 1.62 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1349 root 1.51 ev_stop (EV_A_ (W)w);
1350 root 1.20 }
1351    
1352 root 1.28 void
1353 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1354 root 1.9 {
1355     if (ev_is_active (w))
1356     return;
1357    
1358 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1359 root 1.9 array_needsize (checks, checkmax, checkcnt, );
1360     checks [checkcnt - 1] = w;
1361     }
1362    
1363 root 1.28 void
1364 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1365 root 1.9 {
1366 root 1.51 ev_clear_pending (EV_A_ (W)w);
1367 root 1.16 if (ev_is_active (w))
1368     return;
1369    
1370 root 1.62 checks [((W)w)->active - 1] = checks [--checkcnt];
1371 root 1.51 ev_stop (EV_A_ (W)w);
1372 root 1.9 }
1373    
1374 root 1.56 #ifndef SA_RESTART
1375     # define SA_RESTART 0
1376     #endif
1377    
1378     void
1379     ev_signal_start (EV_P_ struct ev_signal *w)
1380     {
1381     #if EV_MULTIPLICITY
1382     assert (("signal watchers are only supported in the default loop", loop == default_loop));
1383     #endif
1384     if (ev_is_active (w))
1385     return;
1386    
1387     assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1388    
1389     ev_start (EV_A_ (W)w, 1);
1390     array_needsize (signals, signalmax, w->signum, signals_init);
1391     wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1392    
1393 root 1.63 if (!((WL)w)->next)
1394 root 1.56 {
1395 root 1.67 #if WIN32
1396     signal (w->signum, sighandler);
1397     #else
1398 root 1.56 struct sigaction sa;
1399     sa.sa_handler = sighandler;
1400     sigfillset (&sa.sa_mask);
1401     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1402     sigaction (w->signum, &sa, 0);
1403 root 1.67 #endif
1404 root 1.56 }
1405     }
1406    
1407     void
1408     ev_signal_stop (EV_P_ struct ev_signal *w)
1409     {
1410     ev_clear_pending (EV_A_ (W)w);
1411     if (!ev_is_active (w))
1412     return;
1413    
1414     wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1415     ev_stop (EV_A_ (W)w);
1416    
1417     if (!signals [w->signum - 1].head)
1418     signal (w->signum, SIG_DFL);
1419     }
1420    
1421 root 1.28 void
1422 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1423 root 1.22 {
1424 root 1.56 #if EV_MULTIPLICITY
1425     assert (("child watchers are only supported in the default loop", loop == default_loop));
1426     #endif
1427 root 1.22 if (ev_is_active (w))
1428     return;
1429    
1430 root 1.51 ev_start (EV_A_ (W)w, 1);
1431 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1432     }
1433    
1434 root 1.28 void
1435 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1436 root 1.22 {
1437 root 1.51 ev_clear_pending (EV_A_ (W)w);
1438 root 1.22 if (ev_is_active (w))
1439     return;
1440    
1441     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1442 root 1.51 ev_stop (EV_A_ (W)w);
1443 root 1.22 }
1444    
1445 root 1.1 /*****************************************************************************/
1446 root 1.10
1447 root 1.16 struct ev_once
1448     {
1449     struct ev_io io;
1450     struct ev_timer to;
1451     void (*cb)(int revents, void *arg);
1452     void *arg;
1453     };
1454    
1455     static void
1456 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1457 root 1.16 {
1458     void (*cb)(int revents, void *arg) = once->cb;
1459     void *arg = once->arg;
1460    
1461 root 1.51 ev_io_stop (EV_A_ &once->io);
1462     ev_timer_stop (EV_A_ &once->to);
1463 root 1.69 ev_free (once);
1464 root 1.16
1465     cb (revents, arg);
1466     }
1467    
1468     static void
1469 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1470 root 1.16 {
1471 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1472 root 1.16 }
1473    
1474     static void
1475 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1476 root 1.16 {
1477 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1478 root 1.16 }
1479    
1480     void
1481 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1482 root 1.16 {
1483 root 1.69 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1484 root 1.16
1485     if (!once)
1486 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1487 root 1.16 else
1488     {
1489     once->cb = cb;
1490     once->arg = arg;
1491    
1492 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1493 root 1.16 if (fd >= 0)
1494     {
1495 root 1.28 ev_io_set (&once->io, fd, events);
1496 root 1.51 ev_io_start (EV_A_ &once->io);
1497 root 1.16 }
1498    
1499 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1500 root 1.16 if (timeout >= 0.)
1501     {
1502 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1503 root 1.51 ev_timer_start (EV_A_ &once->to);
1504 root 1.16 }
1505     }
1506     }
1507