ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.71
Committed: Tue Nov 6 13:17:55 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.70: +45 -21 lines
Log Message:
now port to microsofts goddamn broken pseudo-c-we-do-it-different-to-spite-you so-called c compiler

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.59 #ifndef EV_STANDALONE
32 root 1.29 # include "config.h"
33 root 1.60
34     # if HAVE_CLOCK_GETTIME
35     # define EV_USE_MONOTONIC 1
36     # define EV_USE_REALTIME 1
37     # endif
38    
39     # if HAVE_SELECT && HAVE_SYS_SELECT_H
40     # define EV_USE_SELECT 1
41     # endif
42    
43     # if HAVE_POLL && HAVE_POLL_H
44     # define EV_USE_POLL 1
45     # endif
46    
47     # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48     # define EV_USE_EPOLL 1
49     # endif
50    
51     # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52     # define EV_USE_KQUEUE 1
53     # endif
54    
55 root 1.29 #endif
56 root 1.17
57 root 1.1 #include <math.h>
58     #include <stdlib.h>
59 root 1.7 #include <fcntl.h>
60 root 1.16 #include <stddef.h>
61 root 1.1
62     #include <stdio.h>
63    
64 root 1.4 #include <assert.h>
65 root 1.1 #include <errno.h>
66 root 1.22 #include <sys/types.h>
67 root 1.71 #include <time.h>
68    
69     #ifndef PERL
70     # include <signal.h>
71     #endif
72    
73 root 1.45 #ifndef WIN32
74 root 1.71 # include <unistd.h>
75     # include <sys/time.h>
76 root 1.45 # include <sys/wait.h>
77     #endif
78 root 1.40 /**/
79    
80 root 1.29 #ifndef EV_USE_MONOTONIC
81 root 1.37 # define EV_USE_MONOTONIC 1
82     #endif
83    
84 root 1.29 #ifndef EV_USE_SELECT
85     # define EV_USE_SELECT 1
86 root 1.10 #endif
87    
88 root 1.59 #ifndef EV_USE_POLL
89     # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
90 root 1.41 #endif
91    
92 root 1.29 #ifndef EV_USE_EPOLL
93     # define EV_USE_EPOLL 0
94 root 1.10 #endif
95    
96 root 1.44 #ifndef EV_USE_KQUEUE
97     # define EV_USE_KQUEUE 0
98     #endif
99    
100 root 1.62 #ifndef EV_USE_WIN32
101     # ifdef WIN32
102 root 1.71 # define EV_USE_WIN32 0 /* it does not exist, use select */
103     # undef EV_USE_SELECT
104     # define EV_USE_SELECT 1
105 root 1.62 # else
106     # define EV_USE_WIN32 0
107     # endif
108     #endif
109    
110 root 1.40 #ifndef EV_USE_REALTIME
111     # define EV_USE_REALTIME 1
112     #endif
113    
114     /**/
115    
116     #ifndef CLOCK_MONOTONIC
117     # undef EV_USE_MONOTONIC
118     # define EV_USE_MONOTONIC 0
119     #endif
120    
121 root 1.31 #ifndef CLOCK_REALTIME
122 root 1.40 # undef EV_USE_REALTIME
123 root 1.31 # define EV_USE_REALTIME 0
124     #endif
125 root 1.40
126     /**/
127 root 1.1
128 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
129 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
130 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
131 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
132 root 1.1
133 root 1.59 #include "ev.h"
134 root 1.1
135 root 1.40 #if __GNUC__ >= 3
136     # define expect(expr,value) __builtin_expect ((expr),(value))
137     # define inline inline
138     #else
139     # define expect(expr,value) (expr)
140     # define inline static
141     #endif
142    
143     #define expect_false(expr) expect ((expr) != 0, 0)
144     #define expect_true(expr) expect ((expr) != 0, 1)
145    
146 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
147     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
148    
149 root 1.10 typedef struct ev_watcher *W;
150     typedef struct ev_watcher_list *WL;
151 root 1.12 typedef struct ev_watcher_time *WT;
152 root 1.10
153 root 1.54 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
154    
155 root 1.67 #if WIN32
156     /* note: the comment below could not be substantiated, but what would I care */
157     /* MSDN says this is required to handle SIGFPE */
158     volatile double SIGFPE_REQ = 0.0f;
159     #endif
160    
161 root 1.53 /*****************************************************************************/
162 root 1.1
163 root 1.70 static void (*syserr_cb)(const char *msg);
164 root 1.69
165 root 1.70 void ev_set_syserr_cb (void (*cb)(const char *msg))
166 root 1.69 {
167     syserr_cb = cb;
168     }
169    
170     static void
171 root 1.70 syserr (const char *msg)
172 root 1.69 {
173 root 1.70 if (!msg)
174     msg = "(libev) system error";
175    
176 root 1.69 if (syserr_cb)
177 root 1.70 syserr_cb (msg);
178 root 1.69 else
179     {
180 root 1.70 perror (msg);
181 root 1.69 abort ();
182     }
183     }
184    
185     static void *(*alloc)(void *ptr, long size);
186    
187     void ev_set_allocator (void *(*cb)(void *ptr, long size))
188     {
189     alloc = cb;
190     }
191    
192     static void *
193     ev_realloc (void *ptr, long size)
194     {
195     ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
196    
197     if (!ptr && size)
198     {
199     fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
200     abort ();
201     }
202    
203     return ptr;
204     }
205    
206     #define ev_malloc(size) ev_realloc (0, (size))
207     #define ev_free(ptr) ev_realloc ((ptr), 0)
208    
209     /*****************************************************************************/
210    
211 root 1.53 typedef struct
212     {
213 root 1.68 WL head;
214 root 1.53 unsigned char events;
215     unsigned char reify;
216     } ANFD;
217 root 1.1
218 root 1.53 typedef struct
219     {
220     W w;
221     int events;
222     } ANPENDING;
223 root 1.51
224 root 1.55 #if EV_MULTIPLICITY
225 root 1.54
226 root 1.53 struct ev_loop
227     {
228 root 1.54 # define VAR(name,decl) decl;
229 root 1.53 # include "ev_vars.h"
230     };
231 root 1.54 # undef VAR
232     # include "ev_wrap.h"
233    
234 root 1.53 #else
235 root 1.54
236     # define VAR(name,decl) static decl;
237 root 1.53 # include "ev_vars.h"
238 root 1.54 # undef VAR
239    
240 root 1.51 #endif
241 root 1.1
242 root 1.8 /*****************************************************************************/
243    
244 root 1.51 inline ev_tstamp
245 root 1.1 ev_time (void)
246     {
247 root 1.29 #if EV_USE_REALTIME
248 root 1.1 struct timespec ts;
249     clock_gettime (CLOCK_REALTIME, &ts);
250     return ts.tv_sec + ts.tv_nsec * 1e-9;
251     #else
252     struct timeval tv;
253     gettimeofday (&tv, 0);
254     return tv.tv_sec + tv.tv_usec * 1e-6;
255     #endif
256     }
257    
258 root 1.51 inline ev_tstamp
259 root 1.1 get_clock (void)
260     {
261 root 1.29 #if EV_USE_MONOTONIC
262 root 1.40 if (expect_true (have_monotonic))
263 root 1.1 {
264     struct timespec ts;
265     clock_gettime (CLOCK_MONOTONIC, &ts);
266     return ts.tv_sec + ts.tv_nsec * 1e-9;
267     }
268     #endif
269    
270     return ev_time ();
271     }
272    
273 root 1.51 ev_tstamp
274     ev_now (EV_P)
275     {
276     return rt_now;
277     }
278    
279 root 1.30 #define array_roundsize(base,n) ((n) | 4 & ~3)
280 root 1.29
281 root 1.69 #define array_needsize(base,cur,cnt,init) \
282     if (expect_false ((cnt) > cur)) \
283     { \
284     int newcnt = cur; \
285     do \
286     { \
287     newcnt = array_roundsize (base, newcnt << 1); \
288     } \
289     while ((cnt) > newcnt); \
290     \
291     base = ev_realloc (base, sizeof (*base) * (newcnt)); \
292     init (base + cur, newcnt - cur); \
293     cur = newcnt; \
294 root 1.1 }
295    
296 root 1.67 #define array_slim(stem) \
297     if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
298     { \
299     stem ## max = array_roundsize (stem ## cnt >> 1); \
300 root 1.69 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
301 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
302     }
303    
304 root 1.71 /* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
305     /* bringing us everlasting joy in form of stupid extra macros that are not required in C */
306     #define array_free_microshit(stem) \
307     ev_free (stem ## s); stem ## cnt = stem ## max = 0;
308    
309 root 1.65 #define array_free(stem, idx) \
310 root 1.69 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
311 root 1.65
312 root 1.8 /*****************************************************************************/
313    
314 root 1.1 static void
315     anfds_init (ANFD *base, int count)
316     {
317     while (count--)
318     {
319 root 1.27 base->head = 0;
320     base->events = EV_NONE;
321 root 1.33 base->reify = 0;
322    
323 root 1.1 ++base;
324     }
325     }
326    
327     static void
328 root 1.51 event (EV_P_ W w, int events)
329 root 1.1 {
330 root 1.32 if (w->pending)
331     {
332 root 1.42 pendings [ABSPRI (w)][w->pending - 1].events |= events;
333 root 1.32 return;
334     }
335    
336 root 1.42 w->pending = ++pendingcnt [ABSPRI (w)];
337 root 1.71 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
338 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = w;
339     pendings [ABSPRI (w)][w->pending - 1].events = events;
340 root 1.1 }
341    
342     static void
343 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
344 root 1.27 {
345     int i;
346    
347     for (i = 0; i < eventcnt; ++i)
348 root 1.51 event (EV_A_ events [i], type);
349 root 1.27 }
350    
351     static void
352 root 1.51 fd_event (EV_P_ int fd, int events)
353 root 1.1 {
354     ANFD *anfd = anfds + fd;
355     struct ev_io *w;
356    
357 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
358 root 1.1 {
359     int ev = w->events & events;
360    
361     if (ev)
362 root 1.51 event (EV_A_ (W)w, ev);
363 root 1.1 }
364     }
365    
366 root 1.27 /*****************************************************************************/
367    
368 root 1.9 static void
369 root 1.51 fd_reify (EV_P)
370 root 1.9 {
371     int i;
372    
373 root 1.27 for (i = 0; i < fdchangecnt; ++i)
374     {
375     int fd = fdchanges [i];
376     ANFD *anfd = anfds + fd;
377     struct ev_io *w;
378    
379     int events = 0;
380    
381 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
382 root 1.27 events |= w->events;
383    
384 root 1.33 anfd->reify = 0;
385 root 1.27
386 root 1.64 method_modify (EV_A_ fd, anfd->events, events);
387     anfd->events = events;
388 root 1.27 }
389    
390     fdchangecnt = 0;
391     }
392    
393     static void
394 root 1.51 fd_change (EV_P_ int fd)
395 root 1.27 {
396 root 1.70 if (anfds [fd].reify)
397 root 1.27 return;
398    
399 root 1.33 anfds [fd].reify = 1;
400 root 1.27
401     ++fdchangecnt;
402 root 1.71 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void));
403 root 1.27 fdchanges [fdchangecnt - 1] = fd;
404 root 1.9 }
405    
406 root 1.41 static void
407 root 1.51 fd_kill (EV_P_ int fd)
408 root 1.41 {
409     struct ev_io *w;
410    
411 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
412 root 1.41 {
413 root 1.51 ev_io_stop (EV_A_ w);
414     event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
415 root 1.41 }
416     }
417    
418 root 1.71 static int
419     fd_valid (int fd)
420     {
421     #ifdef WIN32
422     return !!win32_get_osfhandle (fd);
423     #else
424     return fcntl (fd, F_GETFD) != -1;
425     #endif
426     }
427    
428 root 1.19 /* called on EBADF to verify fds */
429     static void
430 root 1.51 fd_ebadf (EV_P)
431 root 1.19 {
432     int fd;
433    
434     for (fd = 0; fd < anfdmax; ++fd)
435 root 1.27 if (anfds [fd].events)
436 root 1.71 if (!fd_valid (fd) == -1 && errno == EBADF)
437 root 1.51 fd_kill (EV_A_ fd);
438 root 1.41 }
439    
440     /* called on ENOMEM in select/poll to kill some fds and retry */
441     static void
442 root 1.51 fd_enomem (EV_P)
443 root 1.41 {
444 root 1.62 int fd;
445 root 1.41
446 root 1.62 for (fd = anfdmax; fd--; )
447 root 1.41 if (anfds [fd].events)
448     {
449 root 1.51 fd_kill (EV_A_ fd);
450 root 1.41 return;
451     }
452 root 1.19 }
453    
454 root 1.70 /* usually called after fork if method needs to re-arm all fds from scratch */
455 root 1.56 static void
456     fd_rearm_all (EV_P)
457     {
458     int fd;
459    
460     /* this should be highly optimised to not do anything but set a flag */
461     for (fd = 0; fd < anfdmax; ++fd)
462     if (anfds [fd].events)
463     {
464     anfds [fd].events = 0;
465 root 1.60 fd_change (EV_A_ fd);
466 root 1.56 }
467     }
468    
469 root 1.8 /*****************************************************************************/
470    
471 root 1.1 static void
472 root 1.54 upheap (WT *heap, int k)
473 root 1.1 {
474 root 1.54 WT w = heap [k];
475 root 1.1
476 root 1.54 while (k && heap [k >> 1]->at > w->at)
477 root 1.1 {
478 root 1.54 heap [k] = heap [k >> 1];
479 root 1.62 ((W)heap [k])->active = k + 1;
480 root 1.1 k >>= 1;
481     }
482    
483 root 1.54 heap [k] = w;
484 root 1.62 ((W)heap [k])->active = k + 1;
485 root 1.1
486     }
487    
488     static void
489 root 1.54 downheap (WT *heap, int N, int k)
490 root 1.1 {
491 root 1.54 WT w = heap [k];
492 root 1.1
493 root 1.4 while (k < (N >> 1))
494 root 1.1 {
495     int j = k << 1;
496    
497 root 1.54 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
498 root 1.1 ++j;
499    
500 root 1.54 if (w->at <= heap [j]->at)
501 root 1.1 break;
502    
503 root 1.54 heap [k] = heap [j];
504 root 1.62 ((W)heap [k])->active = k + 1;
505 root 1.1 k = j;
506     }
507    
508 root 1.54 heap [k] = w;
509 root 1.62 ((W)heap [k])->active = k + 1;
510 root 1.1 }
511    
512 root 1.8 /*****************************************************************************/
513    
514 root 1.7 typedef struct
515     {
516 root 1.68 WL head;
517 root 1.34 sig_atomic_t volatile gotsig;
518 root 1.7 } ANSIG;
519    
520     static ANSIG *signals;
521 root 1.4 static int signalmax;
522 root 1.1
523 root 1.7 static int sigpipe [2];
524 root 1.34 static sig_atomic_t volatile gotsig;
525 root 1.59 static struct ev_io sigev;
526 root 1.7
527 root 1.1 static void
528 root 1.7 signals_init (ANSIG *base, int count)
529 root 1.1 {
530     while (count--)
531 root 1.7 {
532     base->head = 0;
533     base->gotsig = 0;
534 root 1.33
535 root 1.7 ++base;
536     }
537     }
538    
539     static void
540     sighandler (int signum)
541     {
542 root 1.67 #if WIN32
543     signal (signum, sighandler);
544     #endif
545    
546 root 1.7 signals [signum - 1].gotsig = 1;
547    
548     if (!gotsig)
549     {
550 root 1.48 int old_errno = errno;
551 root 1.7 gotsig = 1;
552 root 1.34 write (sigpipe [1], &signum, 1);
553 root 1.48 errno = old_errno;
554 root 1.7 }
555     }
556    
557     static void
558 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
559 root 1.7 {
560 root 1.68 WL w;
561 root 1.38 int signum;
562 root 1.7
563 root 1.34 read (sigpipe [0], &revents, 1);
564 root 1.7 gotsig = 0;
565    
566 root 1.38 for (signum = signalmax; signum--; )
567     if (signals [signum].gotsig)
568 root 1.7 {
569 root 1.38 signals [signum].gotsig = 0;
570 root 1.7
571 root 1.38 for (w = signals [signum].head; w; w = w->next)
572 root 1.51 event (EV_A_ (W)w, EV_SIGNAL);
573 root 1.7 }
574     }
575    
576     static void
577 root 1.51 siginit (EV_P)
578 root 1.7 {
579 root 1.45 #ifndef WIN32
580 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
581     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
582    
583     /* rather than sort out wether we really need nb, set it */
584     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
585     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
586 root 1.45 #endif
587 root 1.7
588 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
589 root 1.54 ev_io_start (EV_A_ &sigev);
590 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
591 root 1.1 }
592    
593 root 1.8 /*****************************************************************************/
594    
595 root 1.71 static struct ev_child *childs [PID_HASHSIZE];
596    
597 root 1.45 #ifndef WIN32
598    
599 root 1.59 static struct ev_signal childev;
600    
601 root 1.22 #ifndef WCONTINUED
602     # define WCONTINUED 0
603     #endif
604    
605     static void
606 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
607 root 1.47 {
608     struct ev_child *w;
609    
610 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
611 root 1.47 if (w->pid == pid || !w->pid)
612     {
613 root 1.63 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
614     w->rpid = pid;
615     w->rstatus = status;
616 root 1.51 event (EV_A_ (W)w, EV_CHILD);
617 root 1.47 }
618     }
619    
620     static void
621 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
622 root 1.22 {
623     int pid, status;
624    
625 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
626     {
627     /* make sure we are called again until all childs have been reaped */
628 root 1.51 event (EV_A_ (W)sw, EV_SIGNAL);
629 root 1.47
630 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
631     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
632 root 1.47 }
633 root 1.22 }
634    
635 root 1.45 #endif
636    
637 root 1.22 /*****************************************************************************/
638    
639 root 1.44 #if EV_USE_KQUEUE
640     # include "ev_kqueue.c"
641     #endif
642 root 1.29 #if EV_USE_EPOLL
643 root 1.1 # include "ev_epoll.c"
644     #endif
645 root 1.59 #if EV_USE_POLL
646 root 1.41 # include "ev_poll.c"
647     #endif
648 root 1.29 #if EV_USE_SELECT
649 root 1.1 # include "ev_select.c"
650     #endif
651    
652 root 1.24 int
653     ev_version_major (void)
654     {
655     return EV_VERSION_MAJOR;
656     }
657    
658     int
659     ev_version_minor (void)
660     {
661     return EV_VERSION_MINOR;
662     }
663    
664 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
665 root 1.41 static int
666 root 1.51 enable_secure (void)
667 root 1.41 {
668 root 1.49 #ifdef WIN32
669     return 0;
670     #else
671 root 1.41 return getuid () != geteuid ()
672     || getgid () != getegid ();
673 root 1.49 #endif
674 root 1.41 }
675    
676 root 1.51 int
677     ev_method (EV_P)
678 root 1.1 {
679 root 1.51 return method;
680     }
681    
682 root 1.56 static void
683 root 1.54 loop_init (EV_P_ int methods)
684 root 1.51 {
685     if (!method)
686 root 1.23 {
687 root 1.29 #if EV_USE_MONOTONIC
688 root 1.23 {
689     struct timespec ts;
690     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
691     have_monotonic = 1;
692     }
693 root 1.1 #endif
694    
695 root 1.51 rt_now = ev_time ();
696     mn_now = get_clock ();
697     now_floor = mn_now;
698 root 1.54 rtmn_diff = rt_now - mn_now;
699 root 1.1
700 root 1.41 if (methods == EVMETHOD_AUTO)
701 root 1.56 if (!enable_secure () && getenv ("LIBEV_METHODS"))
702     methods = atoi (getenv ("LIBEV_METHODS"));
703 root 1.50 else
704     methods = EVMETHOD_ANY;
705 root 1.41
706 root 1.51 method = 0;
707 root 1.62 #if EV_USE_WIN32
708     if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
709     #endif
710 root 1.44 #if EV_USE_KQUEUE
711 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
712 root 1.44 #endif
713 root 1.29 #if EV_USE_EPOLL
714 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
715 root 1.41 #endif
716 root 1.59 #if EV_USE_POLL
717 root 1.51 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
718 root 1.1 #endif
719 root 1.29 #if EV_USE_SELECT
720 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
721 root 1.1 #endif
722 root 1.70
723     ev_watcher_init (&sigev, sigcb);
724     ev_set_priority (&sigev, EV_MAXPRI);
725 root 1.56 }
726     }
727    
728     void
729     loop_destroy (EV_P)
730     {
731 root 1.65 int i;
732    
733 root 1.62 #if EV_USE_WIN32
734     if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
735     #endif
736 root 1.56 #if EV_USE_KQUEUE
737     if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
738     #endif
739     #if EV_USE_EPOLL
740     if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
741     #endif
742 root 1.59 #if EV_USE_POLL
743 root 1.56 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
744     #endif
745     #if EV_USE_SELECT
746     if (method == EVMETHOD_SELECT) select_destroy (EV_A);
747     #endif
748 root 1.1
749 root 1.65 for (i = NUMPRI; i--; )
750     array_free (pending, [i]);
751    
752 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
753     array_free_microshit (fdchange);
754     array_free_microshit (timer);
755     array_free_microshit (periodic);
756     array_free_microshit (idle);
757     array_free_microshit (prepare);
758     array_free_microshit (check);
759 root 1.65
760 root 1.56 method = 0;
761     }
762 root 1.22
763 root 1.70 static void
764 root 1.56 loop_fork (EV_P)
765     {
766     #if EV_USE_EPOLL
767     if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
768     #endif
769     #if EV_USE_KQUEUE
770     if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
771 root 1.45 #endif
772 root 1.70
773     if (ev_is_active (&sigev))
774     {
775     /* default loop */
776    
777     ev_ref (EV_A);
778     ev_io_stop (EV_A_ &sigev);
779     close (sigpipe [0]);
780     close (sigpipe [1]);
781    
782     while (pipe (sigpipe))
783     syserr ("(libev) error creating pipe");
784    
785     siginit (EV_A);
786     }
787    
788     postfork = 0;
789 root 1.1 }
790    
791 root 1.55 #if EV_MULTIPLICITY
792 root 1.54 struct ev_loop *
793     ev_loop_new (int methods)
794     {
795 root 1.69 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
796    
797     memset (loop, 0, sizeof (struct ev_loop));
798 root 1.54
799 root 1.56 loop_init (EV_A_ methods);
800    
801 root 1.60 if (ev_method (EV_A))
802 root 1.55 return loop;
803 root 1.54
804 root 1.55 return 0;
805 root 1.54 }
806    
807     void
808 root 1.56 ev_loop_destroy (EV_P)
809 root 1.54 {
810 root 1.56 loop_destroy (EV_A);
811 root 1.69 ev_free (loop);
812 root 1.54 }
813    
814 root 1.56 void
815     ev_loop_fork (EV_P)
816     {
817 root 1.70 postfork = 1;
818 root 1.56 }
819    
820     #endif
821    
822     #if EV_MULTIPLICITY
823     struct ev_loop default_loop_struct;
824     static struct ev_loop *default_loop;
825    
826     struct ev_loop *
827 root 1.54 #else
828 root 1.56 static int default_loop;
829 root 1.54
830     int
831 root 1.56 #endif
832     ev_default_loop (int methods)
833 root 1.54 {
834 root 1.56 if (sigpipe [0] == sigpipe [1])
835     if (pipe (sigpipe))
836     return 0;
837 root 1.54
838 root 1.56 if (!default_loop)
839     {
840     #if EV_MULTIPLICITY
841     struct ev_loop *loop = default_loop = &default_loop_struct;
842     #else
843     default_loop = 1;
844 root 1.54 #endif
845    
846 root 1.56 loop_init (EV_A_ methods);
847    
848     if (ev_method (EV_A))
849     {
850     siginit (EV_A);
851    
852     #ifndef WIN32
853     ev_signal_init (&childev, childcb, SIGCHLD);
854     ev_set_priority (&childev, EV_MAXPRI);
855     ev_signal_start (EV_A_ &childev);
856     ev_unref (EV_A); /* child watcher should not keep loop alive */
857     #endif
858     }
859     else
860     default_loop = 0;
861     }
862 root 1.8
863 root 1.56 return default_loop;
864 root 1.1 }
865    
866 root 1.24 void
867 root 1.56 ev_default_destroy (void)
868 root 1.1 {
869 root 1.57 #if EV_MULTIPLICITY
870 root 1.56 struct ev_loop *loop = default_loop;
871 root 1.57 #endif
872 root 1.56
873 root 1.71 #ifndef WIN32
874 root 1.56 ev_ref (EV_A); /* child watcher */
875     ev_signal_stop (EV_A_ &childev);
876 root 1.71 #endif
877 root 1.56
878     ev_ref (EV_A); /* signal watcher */
879     ev_io_stop (EV_A_ &sigev);
880    
881     close (sigpipe [0]); sigpipe [0] = 0;
882     close (sigpipe [1]); sigpipe [1] = 0;
883    
884     loop_destroy (EV_A);
885 root 1.1 }
886    
887 root 1.24 void
888 root 1.60 ev_default_fork (void)
889 root 1.1 {
890 root 1.60 #if EV_MULTIPLICITY
891     struct ev_loop *loop = default_loop;
892     #endif
893    
894 root 1.70 if (method)
895     postfork = 1;
896 root 1.1 }
897    
898 root 1.8 /*****************************************************************************/
899    
900 root 1.1 static void
901 root 1.51 call_pending (EV_P)
902 root 1.1 {
903 root 1.42 int pri;
904    
905     for (pri = NUMPRI; pri--; )
906     while (pendingcnt [pri])
907     {
908     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
909 root 1.1
910 root 1.42 if (p->w)
911     {
912     p->w->pending = 0;
913 root 1.66 p->w->cb (EV_A_ p->w, p->events);
914 root 1.42 }
915     }
916 root 1.1 }
917    
918     static void
919 root 1.51 timers_reify (EV_P)
920 root 1.1 {
921 root 1.63 while (timercnt && ((WT)timers [0])->at <= mn_now)
922 root 1.1 {
923     struct ev_timer *w = timers [0];
924    
925 root 1.61 assert (("inactive timer on timer heap detected", ev_is_active (w)));
926    
927 root 1.4 /* first reschedule or stop timer */
928 root 1.1 if (w->repeat)
929     {
930 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
931 root 1.63 ((WT)w)->at = mn_now + w->repeat;
932 root 1.12 downheap ((WT *)timers, timercnt, 0);
933     }
934     else
935 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
936 root 1.30
937 root 1.54 event (EV_A_ (W)w, EV_TIMEOUT);
938 root 1.12 }
939     }
940 root 1.4
941 root 1.12 static void
942 root 1.51 periodics_reify (EV_P)
943 root 1.12 {
944 root 1.63 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
945 root 1.12 {
946     struct ev_periodic *w = periodics [0];
947 root 1.1
948 root 1.61 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
949    
950 root 1.12 /* first reschedule or stop timer */
951     if (w->interval)
952     {
953 root 1.63 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
954     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
955 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
956 root 1.1 }
957     else
958 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
959 root 1.12
960 root 1.51 event (EV_A_ (W)w, EV_PERIODIC);
961 root 1.12 }
962     }
963    
964     static void
965 root 1.54 periodics_reschedule (EV_P)
966 root 1.12 {
967     int i;
968    
969 root 1.13 /* adjust periodics after time jump */
970 root 1.12 for (i = 0; i < periodiccnt; ++i)
971     {
972     struct ev_periodic *w = periodics [i];
973    
974     if (w->interval)
975 root 1.4 {
976 root 1.63 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
977 root 1.12
978     if (fabs (diff) >= 1e-4)
979     {
980 root 1.51 ev_periodic_stop (EV_A_ w);
981     ev_periodic_start (EV_A_ w);
982 root 1.12
983     i = 0; /* restart loop, inefficient, but time jumps should be rare */
984     }
985 root 1.4 }
986 root 1.12 }
987 root 1.1 }
988    
989 root 1.51 inline int
990     time_update_monotonic (EV_P)
991 root 1.40 {
992 root 1.51 mn_now = get_clock ();
993 root 1.40
994 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
995 root 1.40 {
996 root 1.54 rt_now = rtmn_diff + mn_now;
997 root 1.40 return 0;
998     }
999     else
1000     {
1001 root 1.51 now_floor = mn_now;
1002     rt_now = ev_time ();
1003 root 1.40 return 1;
1004     }
1005     }
1006    
1007 root 1.4 static void
1008 root 1.51 time_update (EV_P)
1009 root 1.4 {
1010     int i;
1011 root 1.12
1012 root 1.40 #if EV_USE_MONOTONIC
1013     if (expect_true (have_monotonic))
1014     {
1015 root 1.51 if (time_update_monotonic (EV_A))
1016 root 1.40 {
1017 root 1.54 ev_tstamp odiff = rtmn_diff;
1018 root 1.4
1019 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1020     {
1021 root 1.54 rtmn_diff = rt_now - mn_now;
1022 root 1.4
1023 root 1.54 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1024 root 1.40 return; /* all is well */
1025 root 1.4
1026 root 1.51 rt_now = ev_time ();
1027     mn_now = get_clock ();
1028     now_floor = mn_now;
1029 root 1.40 }
1030 root 1.4
1031 root 1.54 periodics_reschedule (EV_A);
1032 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
1033 root 1.54 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1034 root 1.4 }
1035     }
1036     else
1037 root 1.40 #endif
1038 root 1.4 {
1039 root 1.51 rt_now = ev_time ();
1040 root 1.40
1041 root 1.51 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1042 root 1.13 {
1043 root 1.54 periodics_reschedule (EV_A);
1044 root 1.13
1045     /* adjust timers. this is easy, as the offset is the same for all */
1046     for (i = 0; i < timercnt; ++i)
1047 root 1.63 ((WT)timers [i])->at += rt_now - mn_now;
1048 root 1.13 }
1049 root 1.4
1050 root 1.51 mn_now = rt_now;
1051 root 1.4 }
1052     }
1053    
1054 root 1.51 void
1055     ev_ref (EV_P)
1056     {
1057     ++activecnt;
1058     }
1059 root 1.1
1060 root 1.51 void
1061     ev_unref (EV_P)
1062     {
1063     --activecnt;
1064     }
1065    
1066     static int loop_done;
1067    
1068     void
1069     ev_loop (EV_P_ int flags)
1070 root 1.1 {
1071     double block;
1072 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1073 root 1.1
1074 root 1.20 do
1075 root 1.9 {
1076 root 1.20 /* queue check watchers (and execute them) */
1077 root 1.40 if (expect_false (preparecnt))
1078 root 1.20 {
1079 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1080     call_pending (EV_A);
1081 root 1.20 }
1082 root 1.9
1083 root 1.70 /* we might have forked, so reify kernel state if necessary */
1084     if (expect_false (postfork))
1085     loop_fork (EV_A);
1086    
1087 root 1.1 /* update fd-related kernel structures */
1088 root 1.51 fd_reify (EV_A);
1089 root 1.1
1090     /* calculate blocking time */
1091 root 1.12
1092 root 1.21 /* we only need this for !monotonic clockor timers, but as we basically
1093     always have timers, we just calculate it always */
1094 root 1.40 #if EV_USE_MONOTONIC
1095     if (expect_true (have_monotonic))
1096 root 1.51 time_update_monotonic (EV_A);
1097 root 1.40 else
1098     #endif
1099     {
1100 root 1.51 rt_now = ev_time ();
1101     mn_now = rt_now;
1102 root 1.40 }
1103 root 1.12
1104 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
1105 root 1.1 block = 0.;
1106     else
1107     {
1108 root 1.4 block = MAX_BLOCKTIME;
1109    
1110 root 1.12 if (timercnt)
1111 root 1.4 {
1112 root 1.63 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1113 root 1.4 if (block > to) block = to;
1114     }
1115    
1116 root 1.12 if (periodiccnt)
1117 root 1.4 {
1118 root 1.63 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1119 root 1.4 if (block > to) block = to;
1120     }
1121    
1122 root 1.1 if (block < 0.) block = 0.;
1123     }
1124    
1125 root 1.51 method_poll (EV_A_ block);
1126 root 1.1
1127 root 1.51 /* update rt_now, do magic */
1128     time_update (EV_A);
1129 root 1.4
1130 root 1.9 /* queue pending timers and reschedule them */
1131 root 1.51 timers_reify (EV_A); /* relative timers called last */
1132     periodics_reify (EV_A); /* absolute timers called first */
1133 root 1.1
1134 root 1.9 /* queue idle watchers unless io or timers are pending */
1135     if (!pendingcnt)
1136 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1137 root 1.9
1138 root 1.20 /* queue check watchers, to be executed first */
1139     if (checkcnt)
1140 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1141 root 1.9
1142 root 1.51 call_pending (EV_A);
1143 root 1.1 }
1144 root 1.51 while (activecnt && !loop_done);
1145 root 1.13
1146 root 1.51 if (loop_done != 2)
1147     loop_done = 0;
1148     }
1149    
1150     void
1151     ev_unloop (EV_P_ int how)
1152     {
1153     loop_done = how;
1154 root 1.1 }
1155    
1156 root 1.8 /*****************************************************************************/
1157    
1158 root 1.51 inline void
1159 root 1.10 wlist_add (WL *head, WL elem)
1160 root 1.1 {
1161     elem->next = *head;
1162     *head = elem;
1163     }
1164    
1165 root 1.51 inline void
1166 root 1.10 wlist_del (WL *head, WL elem)
1167 root 1.1 {
1168     while (*head)
1169     {
1170     if (*head == elem)
1171     {
1172     *head = elem->next;
1173     return;
1174     }
1175    
1176     head = &(*head)->next;
1177     }
1178     }
1179    
1180 root 1.51 inline void
1181     ev_clear_pending (EV_P_ W w)
1182 root 1.16 {
1183     if (w->pending)
1184     {
1185 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1186 root 1.16 w->pending = 0;
1187     }
1188     }
1189    
1190 root 1.51 inline void
1191     ev_start (EV_P_ W w, int active)
1192 root 1.1 {
1193 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1194     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1195    
1196 root 1.1 w->active = active;
1197 root 1.51 ev_ref (EV_A);
1198 root 1.1 }
1199    
1200 root 1.51 inline void
1201     ev_stop (EV_P_ W w)
1202 root 1.1 {
1203 root 1.51 ev_unref (EV_A);
1204 root 1.1 w->active = 0;
1205     }
1206    
1207 root 1.8 /*****************************************************************************/
1208    
1209 root 1.1 void
1210 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
1211 root 1.1 {
1212 root 1.37 int fd = w->fd;
1213    
1214 root 1.1 if (ev_is_active (w))
1215     return;
1216    
1217 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
1218    
1219 root 1.51 ev_start (EV_A_ (W)w, 1);
1220 root 1.1 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1221 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1222 root 1.1
1223 root 1.51 fd_change (EV_A_ fd);
1224 root 1.1 }
1225    
1226     void
1227 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
1228 root 1.1 {
1229 root 1.51 ev_clear_pending (EV_A_ (W)w);
1230 root 1.1 if (!ev_is_active (w))
1231     return;
1232    
1233 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1234 root 1.51 ev_stop (EV_A_ (W)w);
1235 root 1.1
1236 root 1.51 fd_change (EV_A_ w->fd);
1237 root 1.1 }
1238    
1239     void
1240 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1241 root 1.1 {
1242     if (ev_is_active (w))
1243     return;
1244    
1245 root 1.63 ((WT)w)->at += mn_now;
1246 root 1.12
1247 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1248 root 1.13
1249 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1250 root 1.71 array_needsize (timers, timermax, timercnt, (void));
1251 root 1.12 timers [timercnt - 1] = w;
1252     upheap ((WT *)timers, timercnt - 1);
1253 root 1.62
1254     assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1255 root 1.12 }
1256    
1257     void
1258 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1259 root 1.12 {
1260 root 1.51 ev_clear_pending (EV_A_ (W)w);
1261 root 1.12 if (!ev_is_active (w))
1262     return;
1263    
1264 root 1.62 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1265    
1266     if (((W)w)->active < timercnt--)
1267 root 1.1 {
1268 root 1.62 timers [((W)w)->active - 1] = timers [timercnt];
1269     downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1270 root 1.12 }
1271 root 1.4
1272 root 1.63 ((WT)w)->at = w->repeat;
1273 root 1.14
1274 root 1.51 ev_stop (EV_A_ (W)w);
1275 root 1.12 }
1276 root 1.4
1277 root 1.12 void
1278 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1279 root 1.14 {
1280     if (ev_is_active (w))
1281     {
1282     if (w->repeat)
1283     {
1284 root 1.63 ((WT)w)->at = mn_now + w->repeat;
1285 root 1.62 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1286 root 1.14 }
1287     else
1288 root 1.51 ev_timer_stop (EV_A_ w);
1289 root 1.14 }
1290     else if (w->repeat)
1291 root 1.51 ev_timer_start (EV_A_ w);
1292 root 1.14 }
1293    
1294     void
1295 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1296 root 1.12 {
1297     if (ev_is_active (w))
1298     return;
1299 root 1.1
1300 root 1.33 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1301 root 1.13
1302 root 1.12 /* this formula differs from the one in periodic_reify because we do not always round up */
1303     if (w->interval)
1304 root 1.63 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1305 root 1.12
1306 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1307 root 1.71 array_needsize (periodics, periodicmax, periodiccnt, (void));
1308 root 1.12 periodics [periodiccnt - 1] = w;
1309     upheap ((WT *)periodics, periodiccnt - 1);
1310 root 1.62
1311     assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1312 root 1.1 }
1313    
1314     void
1315 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1316 root 1.1 {
1317 root 1.51 ev_clear_pending (EV_A_ (W)w);
1318 root 1.1 if (!ev_is_active (w))
1319     return;
1320    
1321 root 1.62 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1322    
1323     if (((W)w)->active < periodiccnt--)
1324 root 1.2 {
1325 root 1.62 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1326     downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1327 root 1.2 }
1328    
1329 root 1.51 ev_stop (EV_A_ (W)w);
1330 root 1.1 }
1331    
1332 root 1.28 void
1333 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1334 root 1.9 {
1335     if (ev_is_active (w))
1336     return;
1337    
1338 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1339 root 1.71 array_needsize (idles, idlemax, idlecnt, (void));
1340 root 1.9 idles [idlecnt - 1] = w;
1341     }
1342    
1343 root 1.28 void
1344 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1345 root 1.9 {
1346 root 1.51 ev_clear_pending (EV_A_ (W)w);
1347 root 1.16 if (ev_is_active (w))
1348     return;
1349    
1350 root 1.62 idles [((W)w)->active - 1] = idles [--idlecnt];
1351 root 1.51 ev_stop (EV_A_ (W)w);
1352 root 1.9 }
1353    
1354 root 1.28 void
1355 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1356 root 1.20 {
1357     if (ev_is_active (w))
1358     return;
1359    
1360 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1361 root 1.71 array_needsize (prepares, preparemax, preparecnt, (void));
1362 root 1.20 prepares [preparecnt - 1] = w;
1363     }
1364    
1365 root 1.28 void
1366 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1367 root 1.20 {
1368 root 1.51 ev_clear_pending (EV_A_ (W)w);
1369 root 1.20 if (ev_is_active (w))
1370     return;
1371    
1372 root 1.62 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1373 root 1.51 ev_stop (EV_A_ (W)w);
1374 root 1.20 }
1375    
1376 root 1.28 void
1377 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1378 root 1.9 {
1379     if (ev_is_active (w))
1380     return;
1381    
1382 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1383 root 1.71 array_needsize (checks, checkmax, checkcnt, (void));
1384 root 1.9 checks [checkcnt - 1] = w;
1385     }
1386    
1387 root 1.28 void
1388 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1389 root 1.9 {
1390 root 1.51 ev_clear_pending (EV_A_ (W)w);
1391 root 1.16 if (ev_is_active (w))
1392     return;
1393    
1394 root 1.62 checks [((W)w)->active - 1] = checks [--checkcnt];
1395 root 1.51 ev_stop (EV_A_ (W)w);
1396 root 1.9 }
1397    
1398 root 1.56 #ifndef SA_RESTART
1399     # define SA_RESTART 0
1400     #endif
1401    
1402     void
1403     ev_signal_start (EV_P_ struct ev_signal *w)
1404     {
1405     #if EV_MULTIPLICITY
1406     assert (("signal watchers are only supported in the default loop", loop == default_loop));
1407     #endif
1408     if (ev_is_active (w))
1409     return;
1410    
1411     assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1412    
1413     ev_start (EV_A_ (W)w, 1);
1414     array_needsize (signals, signalmax, w->signum, signals_init);
1415     wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1416    
1417 root 1.63 if (!((WL)w)->next)
1418 root 1.56 {
1419 root 1.67 #if WIN32
1420     signal (w->signum, sighandler);
1421     #else
1422 root 1.56 struct sigaction sa;
1423     sa.sa_handler = sighandler;
1424     sigfillset (&sa.sa_mask);
1425     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1426     sigaction (w->signum, &sa, 0);
1427 root 1.67 #endif
1428 root 1.56 }
1429     }
1430    
1431     void
1432     ev_signal_stop (EV_P_ struct ev_signal *w)
1433     {
1434     ev_clear_pending (EV_A_ (W)w);
1435     if (!ev_is_active (w))
1436     return;
1437    
1438     wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1439     ev_stop (EV_A_ (W)w);
1440    
1441     if (!signals [w->signum - 1].head)
1442     signal (w->signum, SIG_DFL);
1443     }
1444    
1445 root 1.28 void
1446 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1447 root 1.22 {
1448 root 1.56 #if EV_MULTIPLICITY
1449     assert (("child watchers are only supported in the default loop", loop == default_loop));
1450     #endif
1451 root 1.22 if (ev_is_active (w))
1452     return;
1453    
1454 root 1.51 ev_start (EV_A_ (W)w, 1);
1455 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1456     }
1457    
1458 root 1.28 void
1459 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1460 root 1.22 {
1461 root 1.51 ev_clear_pending (EV_A_ (W)w);
1462 root 1.22 if (ev_is_active (w))
1463     return;
1464    
1465     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1466 root 1.51 ev_stop (EV_A_ (W)w);
1467 root 1.22 }
1468    
1469 root 1.1 /*****************************************************************************/
1470 root 1.10
1471 root 1.16 struct ev_once
1472     {
1473     struct ev_io io;
1474     struct ev_timer to;
1475     void (*cb)(int revents, void *arg);
1476     void *arg;
1477     };
1478    
1479     static void
1480 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1481 root 1.16 {
1482     void (*cb)(int revents, void *arg) = once->cb;
1483     void *arg = once->arg;
1484    
1485 root 1.51 ev_io_stop (EV_A_ &once->io);
1486     ev_timer_stop (EV_A_ &once->to);
1487 root 1.69 ev_free (once);
1488 root 1.16
1489     cb (revents, arg);
1490     }
1491    
1492     static void
1493 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1494 root 1.16 {
1495 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1496 root 1.16 }
1497    
1498     static void
1499 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1500 root 1.16 {
1501 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1502 root 1.16 }
1503    
1504     void
1505 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1506 root 1.16 {
1507 root 1.69 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1508 root 1.16
1509     if (!once)
1510 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1511 root 1.16 else
1512     {
1513     once->cb = cb;
1514     once->arg = arg;
1515    
1516 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1517 root 1.16 if (fd >= 0)
1518     {
1519 root 1.28 ev_io_set (&once->io, fd, events);
1520 root 1.51 ev_io_start (EV_A_ &once->io);
1521 root 1.16 }
1522    
1523 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1524 root 1.16 if (timeout >= 0.)
1525     {
1526 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1527 root 1.51 ev_timer_start (EV_A_ &once->to);
1528 root 1.16 }
1529     }
1530     }
1531