ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.72
Committed: Tue Nov 6 16:09:37 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.71: +56 -5 lines
Log Message:
big win32 check-in

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.59 #ifndef EV_STANDALONE
32 root 1.29 # include "config.h"
33 root 1.60
34     # if HAVE_CLOCK_GETTIME
35     # define EV_USE_MONOTONIC 1
36     # define EV_USE_REALTIME 1
37     # endif
38    
39     # if HAVE_SELECT && HAVE_SYS_SELECT_H
40     # define EV_USE_SELECT 1
41     # endif
42    
43     # if HAVE_POLL && HAVE_POLL_H
44     # define EV_USE_POLL 1
45     # endif
46    
47     # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48     # define EV_USE_EPOLL 1
49     # endif
50    
51     # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52     # define EV_USE_KQUEUE 1
53     # endif
54    
55 root 1.29 #endif
56 root 1.17
57 root 1.1 #include <math.h>
58     #include <stdlib.h>
59 root 1.7 #include <fcntl.h>
60 root 1.16 #include <stddef.h>
61 root 1.1
62     #include <stdio.h>
63    
64 root 1.4 #include <assert.h>
65 root 1.1 #include <errno.h>
66 root 1.22 #include <sys/types.h>
67 root 1.71 #include <time.h>
68    
69 root 1.72 #include <signal.h>
70 root 1.71
71 root 1.45 #ifndef WIN32
72 root 1.71 # include <unistd.h>
73     # include <sys/time.h>
74 root 1.45 # include <sys/wait.h>
75     #endif
76 root 1.40 /**/
77    
78 root 1.29 #ifndef EV_USE_MONOTONIC
79 root 1.37 # define EV_USE_MONOTONIC 1
80     #endif
81    
82 root 1.29 #ifndef EV_USE_SELECT
83     # define EV_USE_SELECT 1
84 root 1.10 #endif
85    
86 root 1.59 #ifndef EV_USE_POLL
87     # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88 root 1.41 #endif
89    
90 root 1.29 #ifndef EV_USE_EPOLL
91     # define EV_USE_EPOLL 0
92 root 1.10 #endif
93    
94 root 1.44 #ifndef EV_USE_KQUEUE
95     # define EV_USE_KQUEUE 0
96     #endif
97    
98 root 1.62 #ifndef EV_USE_WIN32
99     # ifdef WIN32
100 root 1.71 # define EV_USE_WIN32 0 /* it does not exist, use select */
101     # undef EV_USE_SELECT
102     # define EV_USE_SELECT 1
103 root 1.62 # else
104     # define EV_USE_WIN32 0
105     # endif
106     #endif
107    
108 root 1.40 #ifndef EV_USE_REALTIME
109     # define EV_USE_REALTIME 1
110     #endif
111    
112     /**/
113    
114     #ifndef CLOCK_MONOTONIC
115     # undef EV_USE_MONOTONIC
116     # define EV_USE_MONOTONIC 0
117     #endif
118    
119 root 1.31 #ifndef CLOCK_REALTIME
120 root 1.40 # undef EV_USE_REALTIME
121 root 1.31 # define EV_USE_REALTIME 0
122     #endif
123 root 1.40
124     /**/
125 root 1.1
126 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 root 1.1
131 root 1.59 #include "ev.h"
132 root 1.1
133 root 1.40 #if __GNUC__ >= 3
134     # define expect(expr,value) __builtin_expect ((expr),(value))
135     # define inline inline
136     #else
137     # define expect(expr,value) (expr)
138     # define inline static
139     #endif
140    
141     #define expect_false(expr) expect ((expr) != 0, 0)
142     #define expect_true(expr) expect ((expr) != 0, 1)
143    
144 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
146    
147 root 1.10 typedef struct ev_watcher *W;
148     typedef struct ev_watcher_list *WL;
149 root 1.12 typedef struct ev_watcher_time *WT;
150 root 1.10
151 root 1.54 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152    
153 root 1.67 #if WIN32
154     /* note: the comment below could not be substantiated, but what would I care */
155     /* MSDN says this is required to handle SIGFPE */
156     volatile double SIGFPE_REQ = 0.0f;
157 root 1.72
158     static int
159     ev_socketpair_tcp (int filedes [2])
160     {
161     struct sockaddr_in addr = { 0 };
162     int addr_size = sizeof (addr);
163     SOCKET listener;
164     SOCKET sock [2] = { -1, -1 };
165    
166     if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
167     return -1;
168    
169     addr.sin_family = AF_INET;
170     addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
171     addr.sin_port = 0;
172    
173     if (bind (listener, (struct sockaddr *)&addr, addr_size))
174     goto fail;
175    
176     if (getsockname(listener, (struct sockaddr *)&addr, &addr_size))
177     goto fail;
178    
179     if (listen (listener, 1))
180     goto fail;
181    
182     if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183     goto fail;
184    
185     if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186     goto fail;
187    
188     if ((sock[1] = accept (listener, 0, 0)) < 0)
189     goto fail;
190    
191     closesocket (listener);
192    
193     filedes [0] = sock [0];
194     filedes [1] = sock [1];
195    
196     return 0;
197    
198     fail:
199     closesocket (listener);
200    
201     if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202     if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203    
204     return -1;
205     }
206    
207     # define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208     #else
209     # define ev_pipe(filedes) pipe (filedes)
210 root 1.67 #endif
211    
212 root 1.53 /*****************************************************************************/
213 root 1.1
214 root 1.70 static void (*syserr_cb)(const char *msg);
215 root 1.69
216 root 1.70 void ev_set_syserr_cb (void (*cb)(const char *msg))
217 root 1.69 {
218     syserr_cb = cb;
219     }
220    
221     static void
222 root 1.70 syserr (const char *msg)
223 root 1.69 {
224 root 1.70 if (!msg)
225     msg = "(libev) system error";
226    
227 root 1.69 if (syserr_cb)
228 root 1.70 syserr_cb (msg);
229 root 1.69 else
230     {
231 root 1.70 perror (msg);
232 root 1.69 abort ();
233     }
234     }
235    
236     static void *(*alloc)(void *ptr, long size);
237    
238     void ev_set_allocator (void *(*cb)(void *ptr, long size))
239     {
240     alloc = cb;
241     }
242    
243     static void *
244     ev_realloc (void *ptr, long size)
245     {
246     ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
247    
248     if (!ptr && size)
249     {
250     fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
251     abort ();
252     }
253    
254     return ptr;
255     }
256    
257     #define ev_malloc(size) ev_realloc (0, (size))
258     #define ev_free(ptr) ev_realloc ((ptr), 0)
259    
260     /*****************************************************************************/
261    
262 root 1.53 typedef struct
263     {
264 root 1.68 WL head;
265 root 1.53 unsigned char events;
266     unsigned char reify;
267     } ANFD;
268 root 1.1
269 root 1.53 typedef struct
270     {
271     W w;
272     int events;
273     } ANPENDING;
274 root 1.51
275 root 1.55 #if EV_MULTIPLICITY
276 root 1.54
277 root 1.53 struct ev_loop
278     {
279 root 1.54 # define VAR(name,decl) decl;
280 root 1.53 # include "ev_vars.h"
281     };
282 root 1.54 # undef VAR
283     # include "ev_wrap.h"
284    
285 root 1.53 #else
286 root 1.54
287     # define VAR(name,decl) static decl;
288 root 1.53 # include "ev_vars.h"
289 root 1.54 # undef VAR
290    
291 root 1.51 #endif
292 root 1.1
293 root 1.8 /*****************************************************************************/
294    
295 root 1.51 inline ev_tstamp
296 root 1.1 ev_time (void)
297     {
298 root 1.29 #if EV_USE_REALTIME
299 root 1.1 struct timespec ts;
300     clock_gettime (CLOCK_REALTIME, &ts);
301     return ts.tv_sec + ts.tv_nsec * 1e-9;
302     #else
303     struct timeval tv;
304     gettimeofday (&tv, 0);
305     return tv.tv_sec + tv.tv_usec * 1e-6;
306     #endif
307     }
308    
309 root 1.51 inline ev_tstamp
310 root 1.1 get_clock (void)
311     {
312 root 1.29 #if EV_USE_MONOTONIC
313 root 1.40 if (expect_true (have_monotonic))
314 root 1.1 {
315     struct timespec ts;
316     clock_gettime (CLOCK_MONOTONIC, &ts);
317     return ts.tv_sec + ts.tv_nsec * 1e-9;
318     }
319     #endif
320    
321     return ev_time ();
322     }
323    
324 root 1.51 ev_tstamp
325     ev_now (EV_P)
326     {
327     return rt_now;
328     }
329    
330 root 1.30 #define array_roundsize(base,n) ((n) | 4 & ~3)
331 root 1.29
332 root 1.69 #define array_needsize(base,cur,cnt,init) \
333     if (expect_false ((cnt) > cur)) \
334     { \
335     int newcnt = cur; \
336     do \
337     { \
338     newcnt = array_roundsize (base, newcnt << 1); \
339     } \
340     while ((cnt) > newcnt); \
341     \
342     base = ev_realloc (base, sizeof (*base) * (newcnt)); \
343     init (base + cur, newcnt - cur); \
344     cur = newcnt; \
345 root 1.1 }
346    
347 root 1.67 #define array_slim(stem) \
348     if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349     { \
350     stem ## max = array_roundsize (stem ## cnt >> 1); \
351 root 1.69 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
352 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353     }
354    
355 root 1.71 /* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356     /* bringing us everlasting joy in form of stupid extra macros that are not required in C */
357     #define array_free_microshit(stem) \
358     ev_free (stem ## s); stem ## cnt = stem ## max = 0;
359    
360 root 1.65 #define array_free(stem, idx) \
361 root 1.69 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
362 root 1.65
363 root 1.8 /*****************************************************************************/
364    
365 root 1.1 static void
366     anfds_init (ANFD *base, int count)
367     {
368     while (count--)
369     {
370 root 1.27 base->head = 0;
371     base->events = EV_NONE;
372 root 1.33 base->reify = 0;
373    
374 root 1.1 ++base;
375     }
376     }
377    
378     static void
379 root 1.51 event (EV_P_ W w, int events)
380 root 1.1 {
381 root 1.32 if (w->pending)
382     {
383 root 1.42 pendings [ABSPRI (w)][w->pending - 1].events |= events;
384 root 1.32 return;
385     }
386    
387 root 1.42 w->pending = ++pendingcnt [ABSPRI (w)];
388 root 1.71 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
389 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = w;
390     pendings [ABSPRI (w)][w->pending - 1].events = events;
391 root 1.1 }
392    
393     static void
394 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
395 root 1.27 {
396     int i;
397    
398     for (i = 0; i < eventcnt; ++i)
399 root 1.51 event (EV_A_ events [i], type);
400 root 1.27 }
401    
402     static void
403 root 1.51 fd_event (EV_P_ int fd, int events)
404 root 1.1 {
405     ANFD *anfd = anfds + fd;
406     struct ev_io *w;
407    
408 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
409 root 1.1 {
410     int ev = w->events & events;
411    
412     if (ev)
413 root 1.51 event (EV_A_ (W)w, ev);
414 root 1.1 }
415     }
416    
417 root 1.27 /*****************************************************************************/
418    
419 root 1.9 static void
420 root 1.51 fd_reify (EV_P)
421 root 1.9 {
422     int i;
423    
424 root 1.27 for (i = 0; i < fdchangecnt; ++i)
425     {
426     int fd = fdchanges [i];
427     ANFD *anfd = anfds + fd;
428     struct ev_io *w;
429    
430     int events = 0;
431    
432 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
433 root 1.27 events |= w->events;
434    
435 root 1.33 anfd->reify = 0;
436 root 1.27
437 root 1.64 method_modify (EV_A_ fd, anfd->events, events);
438     anfd->events = events;
439 root 1.27 }
440    
441     fdchangecnt = 0;
442     }
443    
444     static void
445 root 1.51 fd_change (EV_P_ int fd)
446 root 1.27 {
447 root 1.70 if (anfds [fd].reify)
448 root 1.27 return;
449    
450 root 1.33 anfds [fd].reify = 1;
451 root 1.27
452     ++fdchangecnt;
453 root 1.71 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void));
454 root 1.27 fdchanges [fdchangecnt - 1] = fd;
455 root 1.9 }
456    
457 root 1.41 static void
458 root 1.51 fd_kill (EV_P_ int fd)
459 root 1.41 {
460     struct ev_io *w;
461    
462 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
463 root 1.41 {
464 root 1.51 ev_io_stop (EV_A_ w);
465     event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
466 root 1.41 }
467     }
468    
469 root 1.71 static int
470     fd_valid (int fd)
471     {
472     #ifdef WIN32
473     return !!win32_get_osfhandle (fd);
474     #else
475     return fcntl (fd, F_GETFD) != -1;
476     #endif
477     }
478    
479 root 1.19 /* called on EBADF to verify fds */
480     static void
481 root 1.51 fd_ebadf (EV_P)
482 root 1.19 {
483     int fd;
484    
485     for (fd = 0; fd < anfdmax; ++fd)
486 root 1.27 if (anfds [fd].events)
487 root 1.71 if (!fd_valid (fd) == -1 && errno == EBADF)
488 root 1.51 fd_kill (EV_A_ fd);
489 root 1.41 }
490    
491     /* called on ENOMEM in select/poll to kill some fds and retry */
492     static void
493 root 1.51 fd_enomem (EV_P)
494 root 1.41 {
495 root 1.62 int fd;
496 root 1.41
497 root 1.62 for (fd = anfdmax; fd--; )
498 root 1.41 if (anfds [fd].events)
499     {
500 root 1.51 fd_kill (EV_A_ fd);
501 root 1.41 return;
502     }
503 root 1.19 }
504    
505 root 1.70 /* usually called after fork if method needs to re-arm all fds from scratch */
506 root 1.56 static void
507     fd_rearm_all (EV_P)
508     {
509     int fd;
510    
511     /* this should be highly optimised to not do anything but set a flag */
512     for (fd = 0; fd < anfdmax; ++fd)
513     if (anfds [fd].events)
514     {
515     anfds [fd].events = 0;
516 root 1.60 fd_change (EV_A_ fd);
517 root 1.56 }
518     }
519    
520 root 1.8 /*****************************************************************************/
521    
522 root 1.1 static void
523 root 1.54 upheap (WT *heap, int k)
524 root 1.1 {
525 root 1.54 WT w = heap [k];
526 root 1.1
527 root 1.54 while (k && heap [k >> 1]->at > w->at)
528 root 1.1 {
529 root 1.54 heap [k] = heap [k >> 1];
530 root 1.62 ((W)heap [k])->active = k + 1;
531 root 1.1 k >>= 1;
532     }
533    
534 root 1.54 heap [k] = w;
535 root 1.62 ((W)heap [k])->active = k + 1;
536 root 1.1
537     }
538    
539     static void
540 root 1.54 downheap (WT *heap, int N, int k)
541 root 1.1 {
542 root 1.54 WT w = heap [k];
543 root 1.1
544 root 1.4 while (k < (N >> 1))
545 root 1.1 {
546     int j = k << 1;
547    
548 root 1.54 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
549 root 1.1 ++j;
550    
551 root 1.54 if (w->at <= heap [j]->at)
552 root 1.1 break;
553    
554 root 1.54 heap [k] = heap [j];
555 root 1.62 ((W)heap [k])->active = k + 1;
556 root 1.1 k = j;
557     }
558    
559 root 1.54 heap [k] = w;
560 root 1.62 ((W)heap [k])->active = k + 1;
561 root 1.1 }
562    
563 root 1.8 /*****************************************************************************/
564    
565 root 1.7 typedef struct
566     {
567 root 1.68 WL head;
568 root 1.34 sig_atomic_t volatile gotsig;
569 root 1.7 } ANSIG;
570    
571     static ANSIG *signals;
572 root 1.4 static int signalmax;
573 root 1.1
574 root 1.7 static int sigpipe [2];
575 root 1.34 static sig_atomic_t volatile gotsig;
576 root 1.59 static struct ev_io sigev;
577 root 1.7
578 root 1.1 static void
579 root 1.7 signals_init (ANSIG *base, int count)
580 root 1.1 {
581     while (count--)
582 root 1.7 {
583     base->head = 0;
584     base->gotsig = 0;
585 root 1.33
586 root 1.7 ++base;
587     }
588     }
589    
590     static void
591     sighandler (int signum)
592     {
593 root 1.67 #if WIN32
594     signal (signum, sighandler);
595     #endif
596    
597 root 1.7 signals [signum - 1].gotsig = 1;
598    
599     if (!gotsig)
600     {
601 root 1.48 int old_errno = errno;
602 root 1.7 gotsig = 1;
603 root 1.34 write (sigpipe [1], &signum, 1);
604 root 1.48 errno = old_errno;
605 root 1.7 }
606     }
607    
608     static void
609 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
610 root 1.7 {
611 root 1.68 WL w;
612 root 1.38 int signum;
613 root 1.7
614 root 1.34 read (sigpipe [0], &revents, 1);
615 root 1.7 gotsig = 0;
616    
617 root 1.38 for (signum = signalmax; signum--; )
618     if (signals [signum].gotsig)
619 root 1.7 {
620 root 1.38 signals [signum].gotsig = 0;
621 root 1.7
622 root 1.38 for (w = signals [signum].head; w; w = w->next)
623 root 1.51 event (EV_A_ (W)w, EV_SIGNAL);
624 root 1.7 }
625     }
626    
627     static void
628 root 1.51 siginit (EV_P)
629 root 1.7 {
630 root 1.45 #ifndef WIN32
631 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
632     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
633    
634     /* rather than sort out wether we really need nb, set it */
635     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
636     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
637 root 1.45 #endif
638 root 1.7
639 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
640 root 1.54 ev_io_start (EV_A_ &sigev);
641 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
642 root 1.1 }
643    
644 root 1.8 /*****************************************************************************/
645    
646 root 1.71 static struct ev_child *childs [PID_HASHSIZE];
647    
648 root 1.45 #ifndef WIN32
649    
650 root 1.59 static struct ev_signal childev;
651    
652 root 1.22 #ifndef WCONTINUED
653     # define WCONTINUED 0
654     #endif
655    
656     static void
657 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
658 root 1.47 {
659     struct ev_child *w;
660    
661 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
662 root 1.47 if (w->pid == pid || !w->pid)
663     {
664 root 1.63 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
665     w->rpid = pid;
666     w->rstatus = status;
667 root 1.51 event (EV_A_ (W)w, EV_CHILD);
668 root 1.47 }
669     }
670    
671     static void
672 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
673 root 1.22 {
674     int pid, status;
675    
676 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
677     {
678     /* make sure we are called again until all childs have been reaped */
679 root 1.51 event (EV_A_ (W)sw, EV_SIGNAL);
680 root 1.47
681 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
682     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
683 root 1.47 }
684 root 1.22 }
685    
686 root 1.45 #endif
687    
688 root 1.22 /*****************************************************************************/
689    
690 root 1.44 #if EV_USE_KQUEUE
691     # include "ev_kqueue.c"
692     #endif
693 root 1.29 #if EV_USE_EPOLL
694 root 1.1 # include "ev_epoll.c"
695     #endif
696 root 1.59 #if EV_USE_POLL
697 root 1.41 # include "ev_poll.c"
698     #endif
699 root 1.29 #if EV_USE_SELECT
700 root 1.1 # include "ev_select.c"
701     #endif
702    
703 root 1.24 int
704     ev_version_major (void)
705     {
706     return EV_VERSION_MAJOR;
707     }
708    
709     int
710     ev_version_minor (void)
711     {
712     return EV_VERSION_MINOR;
713     }
714    
715 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
716 root 1.41 static int
717 root 1.51 enable_secure (void)
718 root 1.41 {
719 root 1.49 #ifdef WIN32
720     return 0;
721     #else
722 root 1.41 return getuid () != geteuid ()
723     || getgid () != getegid ();
724 root 1.49 #endif
725 root 1.41 }
726    
727 root 1.51 int
728     ev_method (EV_P)
729 root 1.1 {
730 root 1.51 return method;
731     }
732    
733 root 1.56 static void
734 root 1.54 loop_init (EV_P_ int methods)
735 root 1.51 {
736     if (!method)
737 root 1.23 {
738 root 1.29 #if EV_USE_MONOTONIC
739 root 1.23 {
740     struct timespec ts;
741     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
742     have_monotonic = 1;
743     }
744 root 1.1 #endif
745    
746 root 1.51 rt_now = ev_time ();
747     mn_now = get_clock ();
748     now_floor = mn_now;
749 root 1.54 rtmn_diff = rt_now - mn_now;
750 root 1.1
751 root 1.41 if (methods == EVMETHOD_AUTO)
752 root 1.56 if (!enable_secure () && getenv ("LIBEV_METHODS"))
753     methods = atoi (getenv ("LIBEV_METHODS"));
754 root 1.50 else
755     methods = EVMETHOD_ANY;
756 root 1.41
757 root 1.51 method = 0;
758 root 1.62 #if EV_USE_WIN32
759     if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
760     #endif
761 root 1.44 #if EV_USE_KQUEUE
762 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
763 root 1.44 #endif
764 root 1.29 #if EV_USE_EPOLL
765 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
766 root 1.41 #endif
767 root 1.59 #if EV_USE_POLL
768 root 1.51 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
769 root 1.1 #endif
770 root 1.29 #if EV_USE_SELECT
771 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
772 root 1.1 #endif
773 root 1.70
774     ev_watcher_init (&sigev, sigcb);
775     ev_set_priority (&sigev, EV_MAXPRI);
776 root 1.56 }
777     }
778    
779     void
780     loop_destroy (EV_P)
781     {
782 root 1.65 int i;
783    
784 root 1.62 #if EV_USE_WIN32
785     if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
786     #endif
787 root 1.56 #if EV_USE_KQUEUE
788     if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
789     #endif
790     #if EV_USE_EPOLL
791     if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
792     #endif
793 root 1.59 #if EV_USE_POLL
794 root 1.56 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
795     #endif
796     #if EV_USE_SELECT
797     if (method == EVMETHOD_SELECT) select_destroy (EV_A);
798     #endif
799 root 1.1
800 root 1.65 for (i = NUMPRI; i--; )
801     array_free (pending, [i]);
802    
803 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
804     array_free_microshit (fdchange);
805     array_free_microshit (timer);
806     array_free_microshit (periodic);
807     array_free_microshit (idle);
808     array_free_microshit (prepare);
809     array_free_microshit (check);
810 root 1.65
811 root 1.56 method = 0;
812     }
813 root 1.22
814 root 1.70 static void
815 root 1.56 loop_fork (EV_P)
816     {
817     #if EV_USE_EPOLL
818     if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
819     #endif
820     #if EV_USE_KQUEUE
821     if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
822 root 1.45 #endif
823 root 1.70
824     if (ev_is_active (&sigev))
825     {
826     /* default loop */
827    
828     ev_ref (EV_A);
829     ev_io_stop (EV_A_ &sigev);
830     close (sigpipe [0]);
831     close (sigpipe [1]);
832    
833 root 1.72 while (ev_pipe (sigpipe))
834 root 1.70 syserr ("(libev) error creating pipe");
835    
836     siginit (EV_A);
837     }
838    
839     postfork = 0;
840 root 1.1 }
841    
842 root 1.55 #if EV_MULTIPLICITY
843 root 1.54 struct ev_loop *
844     ev_loop_new (int methods)
845     {
846 root 1.69 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
847    
848     memset (loop, 0, sizeof (struct ev_loop));
849 root 1.54
850 root 1.56 loop_init (EV_A_ methods);
851    
852 root 1.60 if (ev_method (EV_A))
853 root 1.55 return loop;
854 root 1.54
855 root 1.55 return 0;
856 root 1.54 }
857    
858     void
859 root 1.56 ev_loop_destroy (EV_P)
860 root 1.54 {
861 root 1.56 loop_destroy (EV_A);
862 root 1.69 ev_free (loop);
863 root 1.54 }
864    
865 root 1.56 void
866     ev_loop_fork (EV_P)
867     {
868 root 1.70 postfork = 1;
869 root 1.56 }
870    
871     #endif
872    
873     #if EV_MULTIPLICITY
874     struct ev_loop default_loop_struct;
875     static struct ev_loop *default_loop;
876    
877     struct ev_loop *
878 root 1.54 #else
879 root 1.56 static int default_loop;
880 root 1.54
881     int
882 root 1.56 #endif
883     ev_default_loop (int methods)
884 root 1.54 {
885 root 1.56 if (sigpipe [0] == sigpipe [1])
886 root 1.72 if (ev_pipe (sigpipe))
887 root 1.56 return 0;
888 root 1.54
889 root 1.56 if (!default_loop)
890     {
891     #if EV_MULTIPLICITY
892     struct ev_loop *loop = default_loop = &default_loop_struct;
893     #else
894     default_loop = 1;
895 root 1.54 #endif
896    
897 root 1.56 loop_init (EV_A_ methods);
898    
899     if (ev_method (EV_A))
900     {
901     siginit (EV_A);
902    
903     #ifndef WIN32
904     ev_signal_init (&childev, childcb, SIGCHLD);
905     ev_set_priority (&childev, EV_MAXPRI);
906     ev_signal_start (EV_A_ &childev);
907     ev_unref (EV_A); /* child watcher should not keep loop alive */
908     #endif
909     }
910     else
911     default_loop = 0;
912     }
913 root 1.8
914 root 1.56 return default_loop;
915 root 1.1 }
916    
917 root 1.24 void
918 root 1.56 ev_default_destroy (void)
919 root 1.1 {
920 root 1.57 #if EV_MULTIPLICITY
921 root 1.56 struct ev_loop *loop = default_loop;
922 root 1.57 #endif
923 root 1.56
924 root 1.71 #ifndef WIN32
925 root 1.56 ev_ref (EV_A); /* child watcher */
926     ev_signal_stop (EV_A_ &childev);
927 root 1.71 #endif
928 root 1.56
929     ev_ref (EV_A); /* signal watcher */
930     ev_io_stop (EV_A_ &sigev);
931    
932     close (sigpipe [0]); sigpipe [0] = 0;
933     close (sigpipe [1]); sigpipe [1] = 0;
934    
935     loop_destroy (EV_A);
936 root 1.1 }
937    
938 root 1.24 void
939 root 1.60 ev_default_fork (void)
940 root 1.1 {
941 root 1.60 #if EV_MULTIPLICITY
942     struct ev_loop *loop = default_loop;
943     #endif
944    
945 root 1.70 if (method)
946     postfork = 1;
947 root 1.1 }
948    
949 root 1.8 /*****************************************************************************/
950    
951 root 1.1 static void
952 root 1.51 call_pending (EV_P)
953 root 1.1 {
954 root 1.42 int pri;
955    
956     for (pri = NUMPRI; pri--; )
957     while (pendingcnt [pri])
958     {
959     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
960 root 1.1
961 root 1.42 if (p->w)
962     {
963     p->w->pending = 0;
964 root 1.66 p->w->cb (EV_A_ p->w, p->events);
965 root 1.42 }
966     }
967 root 1.1 }
968    
969     static void
970 root 1.51 timers_reify (EV_P)
971 root 1.1 {
972 root 1.63 while (timercnt && ((WT)timers [0])->at <= mn_now)
973 root 1.1 {
974     struct ev_timer *w = timers [0];
975    
976 root 1.61 assert (("inactive timer on timer heap detected", ev_is_active (w)));
977    
978 root 1.4 /* first reschedule or stop timer */
979 root 1.1 if (w->repeat)
980     {
981 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
982 root 1.63 ((WT)w)->at = mn_now + w->repeat;
983 root 1.12 downheap ((WT *)timers, timercnt, 0);
984     }
985     else
986 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
987 root 1.30
988 root 1.54 event (EV_A_ (W)w, EV_TIMEOUT);
989 root 1.12 }
990     }
991 root 1.4
992 root 1.12 static void
993 root 1.51 periodics_reify (EV_P)
994 root 1.12 {
995 root 1.63 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
996 root 1.12 {
997     struct ev_periodic *w = periodics [0];
998 root 1.1
999 root 1.61 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1000    
1001 root 1.12 /* first reschedule or stop timer */
1002     if (w->interval)
1003     {
1004 root 1.63 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1005     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
1006 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
1007 root 1.1 }
1008     else
1009 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1010 root 1.12
1011 root 1.51 event (EV_A_ (W)w, EV_PERIODIC);
1012 root 1.12 }
1013     }
1014    
1015     static void
1016 root 1.54 periodics_reschedule (EV_P)
1017 root 1.12 {
1018     int i;
1019    
1020 root 1.13 /* adjust periodics after time jump */
1021 root 1.12 for (i = 0; i < periodiccnt; ++i)
1022     {
1023     struct ev_periodic *w = periodics [i];
1024    
1025     if (w->interval)
1026 root 1.4 {
1027 root 1.63 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1028 root 1.12
1029     if (fabs (diff) >= 1e-4)
1030     {
1031 root 1.51 ev_periodic_stop (EV_A_ w);
1032     ev_periodic_start (EV_A_ w);
1033 root 1.12
1034     i = 0; /* restart loop, inefficient, but time jumps should be rare */
1035     }
1036 root 1.4 }
1037 root 1.12 }
1038 root 1.1 }
1039    
1040 root 1.51 inline int
1041     time_update_monotonic (EV_P)
1042 root 1.40 {
1043 root 1.51 mn_now = get_clock ();
1044 root 1.40
1045 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1046 root 1.40 {
1047 root 1.54 rt_now = rtmn_diff + mn_now;
1048 root 1.40 return 0;
1049     }
1050     else
1051     {
1052 root 1.51 now_floor = mn_now;
1053     rt_now = ev_time ();
1054 root 1.40 return 1;
1055     }
1056     }
1057    
1058 root 1.4 static void
1059 root 1.51 time_update (EV_P)
1060 root 1.4 {
1061     int i;
1062 root 1.12
1063 root 1.40 #if EV_USE_MONOTONIC
1064     if (expect_true (have_monotonic))
1065     {
1066 root 1.51 if (time_update_monotonic (EV_A))
1067 root 1.40 {
1068 root 1.54 ev_tstamp odiff = rtmn_diff;
1069 root 1.4
1070 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1071     {
1072 root 1.54 rtmn_diff = rt_now - mn_now;
1073 root 1.4
1074 root 1.54 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1075 root 1.40 return; /* all is well */
1076 root 1.4
1077 root 1.51 rt_now = ev_time ();
1078     mn_now = get_clock ();
1079     now_floor = mn_now;
1080 root 1.40 }
1081 root 1.4
1082 root 1.54 periodics_reschedule (EV_A);
1083 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
1084 root 1.54 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1085 root 1.4 }
1086     }
1087     else
1088 root 1.40 #endif
1089 root 1.4 {
1090 root 1.51 rt_now = ev_time ();
1091 root 1.40
1092 root 1.51 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1093 root 1.13 {
1094 root 1.54 periodics_reschedule (EV_A);
1095 root 1.13
1096     /* adjust timers. this is easy, as the offset is the same for all */
1097     for (i = 0; i < timercnt; ++i)
1098 root 1.63 ((WT)timers [i])->at += rt_now - mn_now;
1099 root 1.13 }
1100 root 1.4
1101 root 1.51 mn_now = rt_now;
1102 root 1.4 }
1103     }
1104    
1105 root 1.51 void
1106     ev_ref (EV_P)
1107     {
1108     ++activecnt;
1109     }
1110 root 1.1
1111 root 1.51 void
1112     ev_unref (EV_P)
1113     {
1114     --activecnt;
1115     }
1116    
1117     static int loop_done;
1118    
1119     void
1120     ev_loop (EV_P_ int flags)
1121 root 1.1 {
1122     double block;
1123 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1124 root 1.1
1125 root 1.20 do
1126 root 1.9 {
1127 root 1.20 /* queue check watchers (and execute them) */
1128 root 1.40 if (expect_false (preparecnt))
1129 root 1.20 {
1130 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1131     call_pending (EV_A);
1132 root 1.20 }
1133 root 1.9
1134 root 1.70 /* we might have forked, so reify kernel state if necessary */
1135     if (expect_false (postfork))
1136     loop_fork (EV_A);
1137    
1138 root 1.1 /* update fd-related kernel structures */
1139 root 1.51 fd_reify (EV_A);
1140 root 1.1
1141     /* calculate blocking time */
1142 root 1.12
1143 root 1.21 /* we only need this for !monotonic clockor timers, but as we basically
1144     always have timers, we just calculate it always */
1145 root 1.40 #if EV_USE_MONOTONIC
1146     if (expect_true (have_monotonic))
1147 root 1.51 time_update_monotonic (EV_A);
1148 root 1.40 else
1149     #endif
1150     {
1151 root 1.51 rt_now = ev_time ();
1152     mn_now = rt_now;
1153 root 1.40 }
1154 root 1.12
1155 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
1156 root 1.1 block = 0.;
1157     else
1158     {
1159 root 1.4 block = MAX_BLOCKTIME;
1160    
1161 root 1.12 if (timercnt)
1162 root 1.4 {
1163 root 1.63 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1164 root 1.4 if (block > to) block = to;
1165     }
1166    
1167 root 1.12 if (periodiccnt)
1168 root 1.4 {
1169 root 1.63 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1170 root 1.4 if (block > to) block = to;
1171     }
1172    
1173 root 1.1 if (block < 0.) block = 0.;
1174     }
1175    
1176 root 1.51 method_poll (EV_A_ block);
1177 root 1.1
1178 root 1.51 /* update rt_now, do magic */
1179     time_update (EV_A);
1180 root 1.4
1181 root 1.9 /* queue pending timers and reschedule them */
1182 root 1.51 timers_reify (EV_A); /* relative timers called last */
1183     periodics_reify (EV_A); /* absolute timers called first */
1184 root 1.1
1185 root 1.9 /* queue idle watchers unless io or timers are pending */
1186     if (!pendingcnt)
1187 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1188 root 1.9
1189 root 1.20 /* queue check watchers, to be executed first */
1190     if (checkcnt)
1191 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1192 root 1.9
1193 root 1.51 call_pending (EV_A);
1194 root 1.1 }
1195 root 1.51 while (activecnt && !loop_done);
1196 root 1.13
1197 root 1.51 if (loop_done != 2)
1198     loop_done = 0;
1199     }
1200    
1201     void
1202     ev_unloop (EV_P_ int how)
1203     {
1204     loop_done = how;
1205 root 1.1 }
1206    
1207 root 1.8 /*****************************************************************************/
1208    
1209 root 1.51 inline void
1210 root 1.10 wlist_add (WL *head, WL elem)
1211 root 1.1 {
1212     elem->next = *head;
1213     *head = elem;
1214     }
1215    
1216 root 1.51 inline void
1217 root 1.10 wlist_del (WL *head, WL elem)
1218 root 1.1 {
1219     while (*head)
1220     {
1221     if (*head == elem)
1222     {
1223     *head = elem->next;
1224     return;
1225     }
1226    
1227     head = &(*head)->next;
1228     }
1229     }
1230    
1231 root 1.51 inline void
1232     ev_clear_pending (EV_P_ W w)
1233 root 1.16 {
1234     if (w->pending)
1235     {
1236 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1237 root 1.16 w->pending = 0;
1238     }
1239     }
1240    
1241 root 1.51 inline void
1242     ev_start (EV_P_ W w, int active)
1243 root 1.1 {
1244 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1245     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1246    
1247 root 1.1 w->active = active;
1248 root 1.51 ev_ref (EV_A);
1249 root 1.1 }
1250    
1251 root 1.51 inline void
1252     ev_stop (EV_P_ W w)
1253 root 1.1 {
1254 root 1.51 ev_unref (EV_A);
1255 root 1.1 w->active = 0;
1256     }
1257    
1258 root 1.8 /*****************************************************************************/
1259    
1260 root 1.1 void
1261 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
1262 root 1.1 {
1263 root 1.37 int fd = w->fd;
1264    
1265 root 1.1 if (ev_is_active (w))
1266     return;
1267    
1268 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
1269    
1270 root 1.51 ev_start (EV_A_ (W)w, 1);
1271 root 1.1 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1272 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1273 root 1.1
1274 root 1.51 fd_change (EV_A_ fd);
1275 root 1.1 }
1276    
1277     void
1278 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
1279 root 1.1 {
1280 root 1.51 ev_clear_pending (EV_A_ (W)w);
1281 root 1.1 if (!ev_is_active (w))
1282     return;
1283    
1284 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1285 root 1.51 ev_stop (EV_A_ (W)w);
1286 root 1.1
1287 root 1.51 fd_change (EV_A_ w->fd);
1288 root 1.1 }
1289    
1290     void
1291 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1292 root 1.1 {
1293     if (ev_is_active (w))
1294     return;
1295    
1296 root 1.63 ((WT)w)->at += mn_now;
1297 root 1.12
1298 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1299 root 1.13
1300 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1301 root 1.71 array_needsize (timers, timermax, timercnt, (void));
1302 root 1.12 timers [timercnt - 1] = w;
1303     upheap ((WT *)timers, timercnt - 1);
1304 root 1.62
1305     assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1306 root 1.12 }
1307    
1308     void
1309 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1310 root 1.12 {
1311 root 1.51 ev_clear_pending (EV_A_ (W)w);
1312 root 1.12 if (!ev_is_active (w))
1313     return;
1314    
1315 root 1.62 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1316    
1317     if (((W)w)->active < timercnt--)
1318 root 1.1 {
1319 root 1.62 timers [((W)w)->active - 1] = timers [timercnt];
1320     downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1321 root 1.12 }
1322 root 1.4
1323 root 1.63 ((WT)w)->at = w->repeat;
1324 root 1.14
1325 root 1.51 ev_stop (EV_A_ (W)w);
1326 root 1.12 }
1327 root 1.4
1328 root 1.12 void
1329 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1330 root 1.14 {
1331     if (ev_is_active (w))
1332     {
1333     if (w->repeat)
1334     {
1335 root 1.63 ((WT)w)->at = mn_now + w->repeat;
1336 root 1.62 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1337 root 1.14 }
1338     else
1339 root 1.51 ev_timer_stop (EV_A_ w);
1340 root 1.14 }
1341     else if (w->repeat)
1342 root 1.51 ev_timer_start (EV_A_ w);
1343 root 1.14 }
1344    
1345     void
1346 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1347 root 1.12 {
1348     if (ev_is_active (w))
1349     return;
1350 root 1.1
1351 root 1.33 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1352 root 1.13
1353 root 1.12 /* this formula differs from the one in periodic_reify because we do not always round up */
1354     if (w->interval)
1355 root 1.63 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1356 root 1.12
1357 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1358 root 1.71 array_needsize (periodics, periodicmax, periodiccnt, (void));
1359 root 1.12 periodics [periodiccnt - 1] = w;
1360     upheap ((WT *)periodics, periodiccnt - 1);
1361 root 1.62
1362     assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363 root 1.1 }
1364    
1365     void
1366 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1367 root 1.1 {
1368 root 1.51 ev_clear_pending (EV_A_ (W)w);
1369 root 1.1 if (!ev_is_active (w))
1370     return;
1371    
1372 root 1.62 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1373    
1374     if (((W)w)->active < periodiccnt--)
1375 root 1.2 {
1376 root 1.62 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1377     downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1378 root 1.2 }
1379    
1380 root 1.51 ev_stop (EV_A_ (W)w);
1381 root 1.1 }
1382    
1383 root 1.28 void
1384 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1385 root 1.9 {
1386     if (ev_is_active (w))
1387     return;
1388    
1389 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1390 root 1.71 array_needsize (idles, idlemax, idlecnt, (void));
1391 root 1.9 idles [idlecnt - 1] = w;
1392     }
1393    
1394 root 1.28 void
1395 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1396 root 1.9 {
1397 root 1.51 ev_clear_pending (EV_A_ (W)w);
1398 root 1.16 if (ev_is_active (w))
1399     return;
1400    
1401 root 1.62 idles [((W)w)->active - 1] = idles [--idlecnt];
1402 root 1.51 ev_stop (EV_A_ (W)w);
1403 root 1.9 }
1404    
1405 root 1.28 void
1406 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1407 root 1.20 {
1408     if (ev_is_active (w))
1409     return;
1410    
1411 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1412 root 1.71 array_needsize (prepares, preparemax, preparecnt, (void));
1413 root 1.20 prepares [preparecnt - 1] = w;
1414     }
1415    
1416 root 1.28 void
1417 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1418 root 1.20 {
1419 root 1.51 ev_clear_pending (EV_A_ (W)w);
1420 root 1.20 if (ev_is_active (w))
1421     return;
1422    
1423 root 1.62 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1424 root 1.51 ev_stop (EV_A_ (W)w);
1425 root 1.20 }
1426    
1427 root 1.28 void
1428 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1429 root 1.9 {
1430     if (ev_is_active (w))
1431     return;
1432    
1433 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1434 root 1.71 array_needsize (checks, checkmax, checkcnt, (void));
1435 root 1.9 checks [checkcnt - 1] = w;
1436     }
1437    
1438 root 1.28 void
1439 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1440 root 1.9 {
1441 root 1.51 ev_clear_pending (EV_A_ (W)w);
1442 root 1.16 if (ev_is_active (w))
1443     return;
1444    
1445 root 1.62 checks [((W)w)->active - 1] = checks [--checkcnt];
1446 root 1.51 ev_stop (EV_A_ (W)w);
1447 root 1.9 }
1448    
1449 root 1.56 #ifndef SA_RESTART
1450     # define SA_RESTART 0
1451     #endif
1452    
1453     void
1454     ev_signal_start (EV_P_ struct ev_signal *w)
1455     {
1456     #if EV_MULTIPLICITY
1457     assert (("signal watchers are only supported in the default loop", loop == default_loop));
1458     #endif
1459     if (ev_is_active (w))
1460     return;
1461    
1462     assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1463    
1464     ev_start (EV_A_ (W)w, 1);
1465     array_needsize (signals, signalmax, w->signum, signals_init);
1466     wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1467    
1468 root 1.63 if (!((WL)w)->next)
1469 root 1.56 {
1470 root 1.67 #if WIN32
1471     signal (w->signum, sighandler);
1472     #else
1473 root 1.56 struct sigaction sa;
1474     sa.sa_handler = sighandler;
1475     sigfillset (&sa.sa_mask);
1476     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1477     sigaction (w->signum, &sa, 0);
1478 root 1.67 #endif
1479 root 1.56 }
1480     }
1481    
1482     void
1483     ev_signal_stop (EV_P_ struct ev_signal *w)
1484     {
1485     ev_clear_pending (EV_A_ (W)w);
1486     if (!ev_is_active (w))
1487     return;
1488    
1489     wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1490     ev_stop (EV_A_ (W)w);
1491    
1492     if (!signals [w->signum - 1].head)
1493     signal (w->signum, SIG_DFL);
1494     }
1495    
1496 root 1.28 void
1497 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1498 root 1.22 {
1499 root 1.56 #if EV_MULTIPLICITY
1500     assert (("child watchers are only supported in the default loop", loop == default_loop));
1501     #endif
1502 root 1.22 if (ev_is_active (w))
1503     return;
1504    
1505 root 1.51 ev_start (EV_A_ (W)w, 1);
1506 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1507     }
1508    
1509 root 1.28 void
1510 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1511 root 1.22 {
1512 root 1.51 ev_clear_pending (EV_A_ (W)w);
1513 root 1.22 if (ev_is_active (w))
1514     return;
1515    
1516     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1517 root 1.51 ev_stop (EV_A_ (W)w);
1518 root 1.22 }
1519    
1520 root 1.1 /*****************************************************************************/
1521 root 1.10
1522 root 1.16 struct ev_once
1523     {
1524     struct ev_io io;
1525     struct ev_timer to;
1526     void (*cb)(int revents, void *arg);
1527     void *arg;
1528     };
1529    
1530     static void
1531 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1532 root 1.16 {
1533     void (*cb)(int revents, void *arg) = once->cb;
1534     void *arg = once->arg;
1535    
1536 root 1.51 ev_io_stop (EV_A_ &once->io);
1537     ev_timer_stop (EV_A_ &once->to);
1538 root 1.69 ev_free (once);
1539 root 1.16
1540     cb (revents, arg);
1541     }
1542    
1543     static void
1544 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1545 root 1.16 {
1546 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1547 root 1.16 }
1548    
1549     static void
1550 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1551 root 1.16 {
1552 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1553 root 1.16 }
1554    
1555     void
1556 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1557 root 1.16 {
1558 root 1.69 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1559 root 1.16
1560     if (!once)
1561 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1562 root 1.16 else
1563     {
1564     once->cb = cb;
1565     once->arg = arg;
1566    
1567 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1568 root 1.16 if (fd >= 0)
1569     {
1570 root 1.28 ev_io_set (&once->io, fd, events);
1571 root 1.51 ev_io_start (EV_A_ &once->io);
1572 root 1.16 }
1573    
1574 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1575 root 1.16 if (timeout >= 0.)
1576     {
1577 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1578 root 1.51 ev_timer_start (EV_A_ &once->to);
1579 root 1.16 }
1580     }
1581     }
1582