ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.78
Committed: Thu Nov 8 21:08:56 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.77: +18 -16 lines
Log Message:
add ev_feed_event

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.59 #ifndef EV_STANDALONE
32 root 1.29 # include "config.h"
33 root 1.60
34     # if HAVE_CLOCK_GETTIME
35     # define EV_USE_MONOTONIC 1
36     # define EV_USE_REALTIME 1
37     # endif
38    
39     # if HAVE_SELECT && HAVE_SYS_SELECT_H
40     # define EV_USE_SELECT 1
41     # endif
42    
43     # if HAVE_POLL && HAVE_POLL_H
44     # define EV_USE_POLL 1
45     # endif
46    
47     # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48     # define EV_USE_EPOLL 1
49     # endif
50    
51     # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52     # define EV_USE_KQUEUE 1
53     # endif
54    
55 root 1.29 #endif
56 root 1.17
57 root 1.1 #include <math.h>
58     #include <stdlib.h>
59 root 1.7 #include <fcntl.h>
60 root 1.16 #include <stddef.h>
61 root 1.1
62     #include <stdio.h>
63    
64 root 1.4 #include <assert.h>
65 root 1.1 #include <errno.h>
66 root 1.22 #include <sys/types.h>
67 root 1.71 #include <time.h>
68    
69 root 1.72 #include <signal.h>
70 root 1.71
71 root 1.45 #ifndef WIN32
72 root 1.71 # include <unistd.h>
73     # include <sys/time.h>
74 root 1.45 # include <sys/wait.h>
75     #endif
76 root 1.40 /**/
77    
78 root 1.29 #ifndef EV_USE_MONOTONIC
79 root 1.37 # define EV_USE_MONOTONIC 1
80     #endif
81    
82 root 1.29 #ifndef EV_USE_SELECT
83     # define EV_USE_SELECT 1
84 root 1.10 #endif
85    
86 root 1.59 #ifndef EV_USE_POLL
87     # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88 root 1.41 #endif
89    
90 root 1.29 #ifndef EV_USE_EPOLL
91     # define EV_USE_EPOLL 0
92 root 1.10 #endif
93    
94 root 1.44 #ifndef EV_USE_KQUEUE
95     # define EV_USE_KQUEUE 0
96     #endif
97    
98 root 1.62 #ifndef EV_USE_WIN32
99     # ifdef WIN32
100 root 1.71 # define EV_USE_WIN32 0 /* it does not exist, use select */
101     # undef EV_USE_SELECT
102     # define EV_USE_SELECT 1
103 root 1.62 # else
104     # define EV_USE_WIN32 0
105     # endif
106     #endif
107    
108 root 1.40 #ifndef EV_USE_REALTIME
109     # define EV_USE_REALTIME 1
110     #endif
111    
112     /**/
113    
114     #ifndef CLOCK_MONOTONIC
115     # undef EV_USE_MONOTONIC
116     # define EV_USE_MONOTONIC 0
117     #endif
118    
119 root 1.31 #ifndef CLOCK_REALTIME
120 root 1.40 # undef EV_USE_REALTIME
121 root 1.31 # define EV_USE_REALTIME 0
122     #endif
123 root 1.40
124     /**/
125 root 1.1
126 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 root 1.1
131 root 1.59 #include "ev.h"
132 root 1.1
133 root 1.40 #if __GNUC__ >= 3
134     # define expect(expr,value) __builtin_expect ((expr),(value))
135     # define inline inline
136     #else
137     # define expect(expr,value) (expr)
138     # define inline static
139     #endif
140    
141     #define expect_false(expr) expect ((expr) != 0, 0)
142     #define expect_true(expr) expect ((expr) != 0, 1)
143    
144 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
146    
147 root 1.10 typedef struct ev_watcher *W;
148     typedef struct ev_watcher_list *WL;
149 root 1.12 typedef struct ev_watcher_time *WT;
150 root 1.10
151 root 1.54 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152    
153 root 1.73 #include "ev_win32.c"
154 root 1.67
155 root 1.53 /*****************************************************************************/
156 root 1.1
157 root 1.70 static void (*syserr_cb)(const char *msg);
158 root 1.69
159 root 1.70 void ev_set_syserr_cb (void (*cb)(const char *msg))
160 root 1.69 {
161     syserr_cb = cb;
162     }
163    
164     static void
165 root 1.70 syserr (const char *msg)
166 root 1.69 {
167 root 1.70 if (!msg)
168     msg = "(libev) system error";
169    
170 root 1.69 if (syserr_cb)
171 root 1.70 syserr_cb (msg);
172 root 1.69 else
173     {
174 root 1.70 perror (msg);
175 root 1.69 abort ();
176     }
177     }
178    
179     static void *(*alloc)(void *ptr, long size);
180    
181     void ev_set_allocator (void *(*cb)(void *ptr, long size))
182     {
183     alloc = cb;
184     }
185    
186     static void *
187     ev_realloc (void *ptr, long size)
188     {
189     ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190    
191     if (!ptr && size)
192     {
193     fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194     abort ();
195     }
196    
197     return ptr;
198     }
199    
200     #define ev_malloc(size) ev_realloc (0, (size))
201     #define ev_free(ptr) ev_realloc ((ptr), 0)
202    
203     /*****************************************************************************/
204    
205 root 1.53 typedef struct
206     {
207 root 1.68 WL head;
208 root 1.53 unsigned char events;
209     unsigned char reify;
210     } ANFD;
211 root 1.1
212 root 1.53 typedef struct
213     {
214     W w;
215     int events;
216     } ANPENDING;
217 root 1.51
218 root 1.55 #if EV_MULTIPLICITY
219 root 1.54
220 root 1.53 struct ev_loop
221     {
222 root 1.54 # define VAR(name,decl) decl;
223 root 1.53 # include "ev_vars.h"
224     };
225 root 1.54 # undef VAR
226     # include "ev_wrap.h"
227    
228 root 1.53 #else
229 root 1.54
230     # define VAR(name,decl) static decl;
231 root 1.53 # include "ev_vars.h"
232 root 1.54 # undef VAR
233    
234 root 1.51 #endif
235 root 1.1
236 root 1.8 /*****************************************************************************/
237    
238 root 1.51 inline ev_tstamp
239 root 1.1 ev_time (void)
240     {
241 root 1.29 #if EV_USE_REALTIME
242 root 1.1 struct timespec ts;
243     clock_gettime (CLOCK_REALTIME, &ts);
244     return ts.tv_sec + ts.tv_nsec * 1e-9;
245     #else
246     struct timeval tv;
247     gettimeofday (&tv, 0);
248     return tv.tv_sec + tv.tv_usec * 1e-6;
249     #endif
250     }
251    
252 root 1.51 inline ev_tstamp
253 root 1.1 get_clock (void)
254     {
255 root 1.29 #if EV_USE_MONOTONIC
256 root 1.40 if (expect_true (have_monotonic))
257 root 1.1 {
258     struct timespec ts;
259     clock_gettime (CLOCK_MONOTONIC, &ts);
260     return ts.tv_sec + ts.tv_nsec * 1e-9;
261     }
262     #endif
263    
264     return ev_time ();
265     }
266    
267 root 1.51 ev_tstamp
268     ev_now (EV_P)
269     {
270     return rt_now;
271     }
272    
273 root 1.74 #define array_roundsize(type,n) ((n) | 4 & ~3)
274 root 1.29
275 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
276 root 1.69 if (expect_false ((cnt) > cur)) \
277     { \
278     int newcnt = cur; \
279     do \
280     { \
281 root 1.74 newcnt = array_roundsize (type, newcnt << 1); \
282 root 1.69 } \
283     while ((cnt) > newcnt); \
284     \
285 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 root 1.69 init (base + cur, newcnt - cur); \
287     cur = newcnt; \
288 root 1.1 }
289    
290 root 1.74 #define array_slim(type,stem) \
291 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292     { \
293     stem ## max = array_roundsize (stem ## cnt >> 1); \
294 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296     }
297    
298 root 1.71 /* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299     /* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300     #define array_free_microshit(stem) \
301     ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302    
303 root 1.65 #define array_free(stem, idx) \
304 root 1.69 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305 root 1.65
306 root 1.8 /*****************************************************************************/
307    
308 root 1.1 static void
309     anfds_init (ANFD *base, int count)
310     {
311     while (count--)
312     {
313 root 1.27 base->head = 0;
314     base->events = EV_NONE;
315 root 1.33 base->reify = 0;
316    
317 root 1.1 ++base;
318     }
319     }
320    
321 root 1.78 void
322     ev_feed_event (EV_P_ void *w, int revents)
323 root 1.1 {
324 root 1.78 W w_ = (W)w;
325    
326     if (w_->pending)
327 root 1.32 {
328 root 1.78 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
329 root 1.32 return;
330     }
331    
332 root 1.78 w_->pending = ++pendingcnt [ABSPRI (w_)];
333     array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
334     pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
335     pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
336 root 1.1 }
337    
338     static void
339 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
340 root 1.27 {
341     int i;
342    
343     for (i = 0; i < eventcnt; ++i)
344 root 1.78 ev_feed_event (EV_A_ events [i], type);
345 root 1.27 }
346    
347     static void
348 root 1.51 fd_event (EV_P_ int fd, int events)
349 root 1.1 {
350     ANFD *anfd = anfds + fd;
351     struct ev_io *w;
352    
353 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
354 root 1.1 {
355     int ev = w->events & events;
356    
357     if (ev)
358 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
359 root 1.1 }
360     }
361    
362 root 1.27 /*****************************************************************************/
363    
364 root 1.9 static void
365 root 1.51 fd_reify (EV_P)
366 root 1.9 {
367     int i;
368    
369 root 1.27 for (i = 0; i < fdchangecnt; ++i)
370     {
371     int fd = fdchanges [i];
372     ANFD *anfd = anfds + fd;
373     struct ev_io *w;
374    
375     int events = 0;
376    
377 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
378 root 1.27 events |= w->events;
379    
380 root 1.33 anfd->reify = 0;
381 root 1.27
382 root 1.64 method_modify (EV_A_ fd, anfd->events, events);
383     anfd->events = events;
384 root 1.27 }
385    
386     fdchangecnt = 0;
387     }
388    
389     static void
390 root 1.51 fd_change (EV_P_ int fd)
391 root 1.27 {
392 root 1.70 if (anfds [fd].reify)
393 root 1.27 return;
394    
395 root 1.33 anfds [fd].reify = 1;
396 root 1.27
397     ++fdchangecnt;
398 root 1.74 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
399 root 1.27 fdchanges [fdchangecnt - 1] = fd;
400 root 1.9 }
401    
402 root 1.41 static void
403 root 1.51 fd_kill (EV_P_ int fd)
404 root 1.41 {
405     struct ev_io *w;
406    
407 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
408 root 1.41 {
409 root 1.51 ev_io_stop (EV_A_ w);
410 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
411 root 1.41 }
412     }
413    
414 root 1.71 static int
415     fd_valid (int fd)
416     {
417     #ifdef WIN32
418     return !!win32_get_osfhandle (fd);
419     #else
420     return fcntl (fd, F_GETFD) != -1;
421     #endif
422     }
423    
424 root 1.19 /* called on EBADF to verify fds */
425     static void
426 root 1.51 fd_ebadf (EV_P)
427 root 1.19 {
428     int fd;
429    
430     for (fd = 0; fd < anfdmax; ++fd)
431 root 1.27 if (anfds [fd].events)
432 root 1.71 if (!fd_valid (fd) == -1 && errno == EBADF)
433 root 1.51 fd_kill (EV_A_ fd);
434 root 1.41 }
435    
436     /* called on ENOMEM in select/poll to kill some fds and retry */
437     static void
438 root 1.51 fd_enomem (EV_P)
439 root 1.41 {
440 root 1.62 int fd;
441 root 1.41
442 root 1.62 for (fd = anfdmax; fd--; )
443 root 1.41 if (anfds [fd].events)
444     {
445 root 1.51 fd_kill (EV_A_ fd);
446 root 1.41 return;
447     }
448 root 1.19 }
449    
450 root 1.70 /* usually called after fork if method needs to re-arm all fds from scratch */
451 root 1.56 static void
452     fd_rearm_all (EV_P)
453     {
454     int fd;
455    
456     /* this should be highly optimised to not do anything but set a flag */
457     for (fd = 0; fd < anfdmax; ++fd)
458     if (anfds [fd].events)
459     {
460     anfds [fd].events = 0;
461 root 1.60 fd_change (EV_A_ fd);
462 root 1.56 }
463     }
464    
465 root 1.8 /*****************************************************************************/
466    
467 root 1.1 static void
468 root 1.54 upheap (WT *heap, int k)
469 root 1.1 {
470 root 1.54 WT w = heap [k];
471 root 1.1
472 root 1.54 while (k && heap [k >> 1]->at > w->at)
473 root 1.1 {
474 root 1.54 heap [k] = heap [k >> 1];
475 root 1.62 ((W)heap [k])->active = k + 1;
476 root 1.1 k >>= 1;
477     }
478    
479 root 1.54 heap [k] = w;
480 root 1.62 ((W)heap [k])->active = k + 1;
481 root 1.1
482     }
483    
484     static void
485 root 1.54 downheap (WT *heap, int N, int k)
486 root 1.1 {
487 root 1.54 WT w = heap [k];
488 root 1.1
489 root 1.4 while (k < (N >> 1))
490 root 1.1 {
491     int j = k << 1;
492    
493 root 1.54 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
494 root 1.1 ++j;
495    
496 root 1.54 if (w->at <= heap [j]->at)
497 root 1.1 break;
498    
499 root 1.54 heap [k] = heap [j];
500 root 1.62 ((W)heap [k])->active = k + 1;
501 root 1.1 k = j;
502     }
503    
504 root 1.54 heap [k] = w;
505 root 1.62 ((W)heap [k])->active = k + 1;
506 root 1.1 }
507    
508 root 1.8 /*****************************************************************************/
509    
510 root 1.7 typedef struct
511     {
512 root 1.68 WL head;
513 root 1.34 sig_atomic_t volatile gotsig;
514 root 1.7 } ANSIG;
515    
516     static ANSIG *signals;
517 root 1.4 static int signalmax;
518 root 1.1
519 root 1.7 static int sigpipe [2];
520 root 1.34 static sig_atomic_t volatile gotsig;
521 root 1.59 static struct ev_io sigev;
522 root 1.7
523 root 1.1 static void
524 root 1.7 signals_init (ANSIG *base, int count)
525 root 1.1 {
526     while (count--)
527 root 1.7 {
528     base->head = 0;
529     base->gotsig = 0;
530 root 1.33
531 root 1.7 ++base;
532     }
533     }
534    
535     static void
536     sighandler (int signum)
537     {
538 root 1.67 #if WIN32
539     signal (signum, sighandler);
540     #endif
541    
542 root 1.7 signals [signum - 1].gotsig = 1;
543    
544     if (!gotsig)
545     {
546 root 1.48 int old_errno = errno;
547 root 1.7 gotsig = 1;
548 root 1.75 #ifdef WIN32
549     send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
550     #else
551 root 1.34 write (sigpipe [1], &signum, 1);
552 root 1.75 #endif
553 root 1.48 errno = old_errno;
554 root 1.7 }
555     }
556    
557     static void
558 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
559 root 1.7 {
560 root 1.68 WL w;
561 root 1.38 int signum;
562 root 1.7
563 root 1.75 #ifdef WIN32
564     recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
565     #else
566 root 1.34 read (sigpipe [0], &revents, 1);
567 root 1.75 #endif
568 root 1.7 gotsig = 0;
569    
570 root 1.38 for (signum = signalmax; signum--; )
571     if (signals [signum].gotsig)
572 root 1.7 {
573 root 1.38 signals [signum].gotsig = 0;
574 root 1.7
575 root 1.38 for (w = signals [signum].head; w; w = w->next)
576 root 1.78 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
577 root 1.7 }
578     }
579    
580     static void
581 root 1.51 siginit (EV_P)
582 root 1.7 {
583 root 1.45 #ifndef WIN32
584 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
585     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
586    
587     /* rather than sort out wether we really need nb, set it */
588     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
589     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
590 root 1.45 #endif
591 root 1.7
592 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
593 root 1.54 ev_io_start (EV_A_ &sigev);
594 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
595 root 1.1 }
596    
597 root 1.8 /*****************************************************************************/
598    
599 root 1.71 static struct ev_child *childs [PID_HASHSIZE];
600    
601 root 1.45 #ifndef WIN32
602    
603 root 1.59 static struct ev_signal childev;
604    
605 root 1.22 #ifndef WCONTINUED
606     # define WCONTINUED 0
607     #endif
608    
609     static void
610 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
611 root 1.47 {
612     struct ev_child *w;
613    
614 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
615 root 1.47 if (w->pid == pid || !w->pid)
616     {
617 root 1.63 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
618     w->rpid = pid;
619     w->rstatus = status;
620 root 1.78 ev_feed_event (EV_A_ (W)w, EV_CHILD);
621 root 1.47 }
622     }
623    
624     static void
625 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
626 root 1.22 {
627     int pid, status;
628    
629 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
630     {
631     /* make sure we are called again until all childs have been reaped */
632 root 1.78 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
633 root 1.47
634 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
635     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
636 root 1.47 }
637 root 1.22 }
638    
639 root 1.45 #endif
640    
641 root 1.22 /*****************************************************************************/
642    
643 root 1.44 #if EV_USE_KQUEUE
644     # include "ev_kqueue.c"
645     #endif
646 root 1.29 #if EV_USE_EPOLL
647 root 1.1 # include "ev_epoll.c"
648     #endif
649 root 1.59 #if EV_USE_POLL
650 root 1.41 # include "ev_poll.c"
651     #endif
652 root 1.29 #if EV_USE_SELECT
653 root 1.1 # include "ev_select.c"
654     #endif
655    
656 root 1.24 int
657     ev_version_major (void)
658     {
659     return EV_VERSION_MAJOR;
660     }
661    
662     int
663     ev_version_minor (void)
664     {
665     return EV_VERSION_MINOR;
666     }
667    
668 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
669 root 1.41 static int
670 root 1.51 enable_secure (void)
671 root 1.41 {
672 root 1.49 #ifdef WIN32
673     return 0;
674     #else
675 root 1.41 return getuid () != geteuid ()
676     || getgid () != getegid ();
677 root 1.49 #endif
678 root 1.41 }
679    
680 root 1.51 int
681     ev_method (EV_P)
682 root 1.1 {
683 root 1.51 return method;
684     }
685    
686 root 1.56 static void
687 root 1.54 loop_init (EV_P_ int methods)
688 root 1.51 {
689     if (!method)
690 root 1.23 {
691 root 1.29 #if EV_USE_MONOTONIC
692 root 1.23 {
693     struct timespec ts;
694     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
695     have_monotonic = 1;
696     }
697 root 1.1 #endif
698    
699 root 1.51 rt_now = ev_time ();
700     mn_now = get_clock ();
701     now_floor = mn_now;
702 root 1.54 rtmn_diff = rt_now - mn_now;
703 root 1.1
704 root 1.41 if (methods == EVMETHOD_AUTO)
705 root 1.56 if (!enable_secure () && getenv ("LIBEV_METHODS"))
706     methods = atoi (getenv ("LIBEV_METHODS"));
707 root 1.50 else
708     methods = EVMETHOD_ANY;
709 root 1.41
710 root 1.51 method = 0;
711 root 1.62 #if EV_USE_WIN32
712     if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
713     #endif
714 root 1.44 #if EV_USE_KQUEUE
715 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
716 root 1.44 #endif
717 root 1.29 #if EV_USE_EPOLL
718 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
719 root 1.41 #endif
720 root 1.59 #if EV_USE_POLL
721 root 1.51 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
722 root 1.1 #endif
723 root 1.29 #if EV_USE_SELECT
724 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
725 root 1.1 #endif
726 root 1.70
727     ev_watcher_init (&sigev, sigcb);
728     ev_set_priority (&sigev, EV_MAXPRI);
729 root 1.56 }
730     }
731    
732     void
733     loop_destroy (EV_P)
734     {
735 root 1.65 int i;
736    
737 root 1.62 #if EV_USE_WIN32
738     if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
739     #endif
740 root 1.56 #if EV_USE_KQUEUE
741     if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
742     #endif
743     #if EV_USE_EPOLL
744     if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
745     #endif
746 root 1.59 #if EV_USE_POLL
747 root 1.56 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
748     #endif
749     #if EV_USE_SELECT
750     if (method == EVMETHOD_SELECT) select_destroy (EV_A);
751     #endif
752 root 1.1
753 root 1.65 for (i = NUMPRI; i--; )
754     array_free (pending, [i]);
755    
756 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
757     array_free_microshit (fdchange);
758     array_free_microshit (timer);
759     array_free_microshit (periodic);
760     array_free_microshit (idle);
761     array_free_microshit (prepare);
762     array_free_microshit (check);
763 root 1.65
764 root 1.56 method = 0;
765     }
766 root 1.22
767 root 1.70 static void
768 root 1.56 loop_fork (EV_P)
769     {
770     #if EV_USE_EPOLL
771     if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
772     #endif
773     #if EV_USE_KQUEUE
774     if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
775 root 1.45 #endif
776 root 1.70
777     if (ev_is_active (&sigev))
778     {
779     /* default loop */
780    
781     ev_ref (EV_A);
782     ev_io_stop (EV_A_ &sigev);
783     close (sigpipe [0]);
784     close (sigpipe [1]);
785    
786 root 1.73 while (pipe (sigpipe))
787 root 1.70 syserr ("(libev) error creating pipe");
788    
789     siginit (EV_A);
790     }
791    
792     postfork = 0;
793 root 1.1 }
794    
795 root 1.55 #if EV_MULTIPLICITY
796 root 1.54 struct ev_loop *
797     ev_loop_new (int methods)
798     {
799 root 1.69 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
800    
801     memset (loop, 0, sizeof (struct ev_loop));
802 root 1.54
803 root 1.56 loop_init (EV_A_ methods);
804    
805 root 1.60 if (ev_method (EV_A))
806 root 1.55 return loop;
807 root 1.54
808 root 1.55 return 0;
809 root 1.54 }
810    
811     void
812 root 1.56 ev_loop_destroy (EV_P)
813 root 1.54 {
814 root 1.56 loop_destroy (EV_A);
815 root 1.69 ev_free (loop);
816 root 1.54 }
817    
818 root 1.56 void
819     ev_loop_fork (EV_P)
820     {
821 root 1.70 postfork = 1;
822 root 1.56 }
823    
824     #endif
825    
826     #if EV_MULTIPLICITY
827     struct ev_loop default_loop_struct;
828     static struct ev_loop *default_loop;
829    
830     struct ev_loop *
831 root 1.54 #else
832 root 1.56 static int default_loop;
833 root 1.54
834     int
835 root 1.56 #endif
836     ev_default_loop (int methods)
837 root 1.54 {
838 root 1.56 if (sigpipe [0] == sigpipe [1])
839 root 1.73 if (pipe (sigpipe))
840 root 1.56 return 0;
841 root 1.54
842 root 1.56 if (!default_loop)
843     {
844     #if EV_MULTIPLICITY
845     struct ev_loop *loop = default_loop = &default_loop_struct;
846     #else
847     default_loop = 1;
848 root 1.54 #endif
849    
850 root 1.56 loop_init (EV_A_ methods);
851    
852     if (ev_method (EV_A))
853     {
854     siginit (EV_A);
855    
856     #ifndef WIN32
857     ev_signal_init (&childev, childcb, SIGCHLD);
858     ev_set_priority (&childev, EV_MAXPRI);
859     ev_signal_start (EV_A_ &childev);
860     ev_unref (EV_A); /* child watcher should not keep loop alive */
861     #endif
862     }
863     else
864     default_loop = 0;
865     }
866 root 1.8
867 root 1.56 return default_loop;
868 root 1.1 }
869    
870 root 1.24 void
871 root 1.56 ev_default_destroy (void)
872 root 1.1 {
873 root 1.57 #if EV_MULTIPLICITY
874 root 1.56 struct ev_loop *loop = default_loop;
875 root 1.57 #endif
876 root 1.56
877 root 1.71 #ifndef WIN32
878 root 1.56 ev_ref (EV_A); /* child watcher */
879     ev_signal_stop (EV_A_ &childev);
880 root 1.71 #endif
881 root 1.56
882     ev_ref (EV_A); /* signal watcher */
883     ev_io_stop (EV_A_ &sigev);
884    
885     close (sigpipe [0]); sigpipe [0] = 0;
886     close (sigpipe [1]); sigpipe [1] = 0;
887    
888     loop_destroy (EV_A);
889 root 1.1 }
890    
891 root 1.24 void
892 root 1.60 ev_default_fork (void)
893 root 1.1 {
894 root 1.60 #if EV_MULTIPLICITY
895     struct ev_loop *loop = default_loop;
896     #endif
897    
898 root 1.70 if (method)
899     postfork = 1;
900 root 1.1 }
901    
902 root 1.8 /*****************************************************************************/
903    
904 root 1.76 static int
905     any_pending (EV_P)
906     {
907     int pri;
908    
909     for (pri = NUMPRI; pri--; )
910     if (pendingcnt [pri])
911     return 1;
912    
913     return 0;
914     }
915    
916 root 1.1 static void
917 root 1.51 call_pending (EV_P)
918 root 1.1 {
919 root 1.42 int pri;
920    
921     for (pri = NUMPRI; pri--; )
922     while (pendingcnt [pri])
923     {
924     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
925 root 1.1
926 root 1.42 if (p->w)
927     {
928     p->w->pending = 0;
929 root 1.66 p->w->cb (EV_A_ p->w, p->events);
930 root 1.42 }
931     }
932 root 1.1 }
933    
934     static void
935 root 1.51 timers_reify (EV_P)
936 root 1.1 {
937 root 1.63 while (timercnt && ((WT)timers [0])->at <= mn_now)
938 root 1.1 {
939     struct ev_timer *w = timers [0];
940    
941 root 1.61 assert (("inactive timer on timer heap detected", ev_is_active (w)));
942    
943 root 1.4 /* first reschedule or stop timer */
944 root 1.1 if (w->repeat)
945     {
946 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
947 root 1.63 ((WT)w)->at = mn_now + w->repeat;
948 root 1.12 downheap ((WT *)timers, timercnt, 0);
949     }
950     else
951 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
952 root 1.30
953 root 1.78 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
954 root 1.12 }
955     }
956 root 1.4
957 root 1.12 static void
958 root 1.51 periodics_reify (EV_P)
959 root 1.12 {
960 root 1.63 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
961 root 1.12 {
962     struct ev_periodic *w = periodics [0];
963 root 1.1
964 root 1.61 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
965    
966 root 1.12 /* first reschedule or stop timer */
967 root 1.77 if (w->reschedule_cb)
968     {
969     ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
970    
971     assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
972     downheap ((WT *)periodics, periodiccnt, 0);
973     }
974     else if (w->interval)
975 root 1.12 {
976 root 1.63 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
977     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
978 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
979 root 1.1 }
980     else
981 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
982 root 1.12
983 root 1.78 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
984 root 1.12 }
985     }
986    
987     static void
988 root 1.54 periodics_reschedule (EV_P)
989 root 1.12 {
990     int i;
991    
992 root 1.13 /* adjust periodics after time jump */
993 root 1.12 for (i = 0; i < periodiccnt; ++i)
994     {
995     struct ev_periodic *w = periodics [i];
996    
997 root 1.77 if (w->reschedule_cb)
998     ((WT)w)->at = w->reschedule_cb (w, rt_now);
999     else if (w->interval)
1000     ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1001     }
1002 root 1.12
1003 root 1.77 /* now rebuild the heap */
1004     for (i = periodiccnt >> 1; i--; )
1005     downheap ((WT *)periodics, periodiccnt, i);
1006 root 1.1 }
1007    
1008 root 1.51 inline int
1009     time_update_monotonic (EV_P)
1010 root 1.40 {
1011 root 1.51 mn_now = get_clock ();
1012 root 1.40
1013 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1014 root 1.40 {
1015 root 1.54 rt_now = rtmn_diff + mn_now;
1016 root 1.40 return 0;
1017     }
1018     else
1019     {
1020 root 1.51 now_floor = mn_now;
1021     rt_now = ev_time ();
1022 root 1.40 return 1;
1023     }
1024     }
1025    
1026 root 1.4 static void
1027 root 1.51 time_update (EV_P)
1028 root 1.4 {
1029     int i;
1030 root 1.12
1031 root 1.40 #if EV_USE_MONOTONIC
1032     if (expect_true (have_monotonic))
1033     {
1034 root 1.51 if (time_update_monotonic (EV_A))
1035 root 1.40 {
1036 root 1.54 ev_tstamp odiff = rtmn_diff;
1037 root 1.4
1038 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1039     {
1040 root 1.54 rtmn_diff = rt_now - mn_now;
1041 root 1.4
1042 root 1.54 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1043 root 1.40 return; /* all is well */
1044 root 1.4
1045 root 1.51 rt_now = ev_time ();
1046     mn_now = get_clock ();
1047     now_floor = mn_now;
1048 root 1.40 }
1049 root 1.4
1050 root 1.54 periodics_reschedule (EV_A);
1051 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
1052 root 1.54 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1053 root 1.4 }
1054     }
1055     else
1056 root 1.40 #endif
1057 root 1.4 {
1058 root 1.51 rt_now = ev_time ();
1059 root 1.40
1060 root 1.51 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1061 root 1.13 {
1062 root 1.54 periodics_reschedule (EV_A);
1063 root 1.13
1064     /* adjust timers. this is easy, as the offset is the same for all */
1065     for (i = 0; i < timercnt; ++i)
1066 root 1.63 ((WT)timers [i])->at += rt_now - mn_now;
1067 root 1.13 }
1068 root 1.4
1069 root 1.51 mn_now = rt_now;
1070 root 1.4 }
1071     }
1072    
1073 root 1.51 void
1074     ev_ref (EV_P)
1075     {
1076     ++activecnt;
1077     }
1078 root 1.1
1079 root 1.51 void
1080     ev_unref (EV_P)
1081     {
1082     --activecnt;
1083     }
1084    
1085     static int loop_done;
1086    
1087     void
1088     ev_loop (EV_P_ int flags)
1089 root 1.1 {
1090     double block;
1091 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1092 root 1.1
1093 root 1.20 do
1094 root 1.9 {
1095 root 1.20 /* queue check watchers (and execute them) */
1096 root 1.40 if (expect_false (preparecnt))
1097 root 1.20 {
1098 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1099     call_pending (EV_A);
1100 root 1.20 }
1101 root 1.9
1102 root 1.70 /* we might have forked, so reify kernel state if necessary */
1103     if (expect_false (postfork))
1104     loop_fork (EV_A);
1105    
1106 root 1.1 /* update fd-related kernel structures */
1107 root 1.51 fd_reify (EV_A);
1108 root 1.1
1109     /* calculate blocking time */
1110 root 1.12
1111 root 1.76 /* we only need this for !monotonic clock or timers, but as we basically
1112 root 1.21 always have timers, we just calculate it always */
1113 root 1.40 #if EV_USE_MONOTONIC
1114     if (expect_true (have_monotonic))
1115 root 1.51 time_update_monotonic (EV_A);
1116 root 1.40 else
1117     #endif
1118     {
1119 root 1.51 rt_now = ev_time ();
1120     mn_now = rt_now;
1121 root 1.40 }
1122 root 1.12
1123 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
1124 root 1.1 block = 0.;
1125     else
1126     {
1127 root 1.4 block = MAX_BLOCKTIME;
1128    
1129 root 1.12 if (timercnt)
1130 root 1.4 {
1131 root 1.63 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1132 root 1.4 if (block > to) block = to;
1133     }
1134    
1135 root 1.12 if (periodiccnt)
1136 root 1.4 {
1137 root 1.63 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1138 root 1.4 if (block > to) block = to;
1139     }
1140    
1141 root 1.1 if (block < 0.) block = 0.;
1142     }
1143    
1144 root 1.51 method_poll (EV_A_ block);
1145 root 1.1
1146 root 1.51 /* update rt_now, do magic */
1147     time_update (EV_A);
1148 root 1.4
1149 root 1.9 /* queue pending timers and reschedule them */
1150 root 1.51 timers_reify (EV_A); /* relative timers called last */
1151     periodics_reify (EV_A); /* absolute timers called first */
1152 root 1.1
1153 root 1.9 /* queue idle watchers unless io or timers are pending */
1154 root 1.76 if (idlecnt && !any_pending (EV_A))
1155 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1156 root 1.9
1157 root 1.20 /* queue check watchers, to be executed first */
1158     if (checkcnt)
1159 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1160 root 1.9
1161 root 1.51 call_pending (EV_A);
1162 root 1.1 }
1163 root 1.51 while (activecnt && !loop_done);
1164 root 1.13
1165 root 1.51 if (loop_done != 2)
1166     loop_done = 0;
1167     }
1168    
1169     void
1170     ev_unloop (EV_P_ int how)
1171     {
1172     loop_done = how;
1173 root 1.1 }
1174    
1175 root 1.8 /*****************************************************************************/
1176    
1177 root 1.51 inline void
1178 root 1.10 wlist_add (WL *head, WL elem)
1179 root 1.1 {
1180     elem->next = *head;
1181     *head = elem;
1182     }
1183    
1184 root 1.51 inline void
1185 root 1.10 wlist_del (WL *head, WL elem)
1186 root 1.1 {
1187     while (*head)
1188     {
1189     if (*head == elem)
1190     {
1191     *head = elem->next;
1192     return;
1193     }
1194    
1195     head = &(*head)->next;
1196     }
1197     }
1198    
1199 root 1.51 inline void
1200     ev_clear_pending (EV_P_ W w)
1201 root 1.16 {
1202     if (w->pending)
1203     {
1204 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1205 root 1.16 w->pending = 0;
1206     }
1207     }
1208    
1209 root 1.51 inline void
1210     ev_start (EV_P_ W w, int active)
1211 root 1.1 {
1212 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1213     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1214    
1215 root 1.1 w->active = active;
1216 root 1.51 ev_ref (EV_A);
1217 root 1.1 }
1218    
1219 root 1.51 inline void
1220     ev_stop (EV_P_ W w)
1221 root 1.1 {
1222 root 1.51 ev_unref (EV_A);
1223 root 1.1 w->active = 0;
1224     }
1225    
1226 root 1.8 /*****************************************************************************/
1227    
1228 root 1.1 void
1229 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
1230 root 1.1 {
1231 root 1.37 int fd = w->fd;
1232    
1233 root 1.1 if (ev_is_active (w))
1234     return;
1235    
1236 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
1237    
1238 root 1.51 ev_start (EV_A_ (W)w, 1);
1239 root 1.74 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1240 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1241 root 1.1
1242 root 1.51 fd_change (EV_A_ fd);
1243 root 1.1 }
1244    
1245     void
1246 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
1247 root 1.1 {
1248 root 1.51 ev_clear_pending (EV_A_ (W)w);
1249 root 1.1 if (!ev_is_active (w))
1250     return;
1251    
1252 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1253 root 1.51 ev_stop (EV_A_ (W)w);
1254 root 1.1
1255 root 1.51 fd_change (EV_A_ w->fd);
1256 root 1.1 }
1257    
1258     void
1259 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1260 root 1.1 {
1261     if (ev_is_active (w))
1262     return;
1263    
1264 root 1.63 ((WT)w)->at += mn_now;
1265 root 1.12
1266 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1267 root 1.13
1268 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1269 root 1.74 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1270 root 1.12 timers [timercnt - 1] = w;
1271     upheap ((WT *)timers, timercnt - 1);
1272 root 1.62
1273     assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1274 root 1.12 }
1275    
1276     void
1277 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1278 root 1.12 {
1279 root 1.51 ev_clear_pending (EV_A_ (W)w);
1280 root 1.12 if (!ev_is_active (w))
1281     return;
1282    
1283 root 1.62 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1284    
1285     if (((W)w)->active < timercnt--)
1286 root 1.1 {
1287 root 1.62 timers [((W)w)->active - 1] = timers [timercnt];
1288     downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1289 root 1.12 }
1290 root 1.4
1291 root 1.63 ((WT)w)->at = w->repeat;
1292 root 1.14
1293 root 1.51 ev_stop (EV_A_ (W)w);
1294 root 1.12 }
1295 root 1.4
1296 root 1.12 void
1297 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1298 root 1.14 {
1299     if (ev_is_active (w))
1300     {
1301     if (w->repeat)
1302     {
1303 root 1.63 ((WT)w)->at = mn_now + w->repeat;
1304 root 1.62 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1305 root 1.14 }
1306     else
1307 root 1.51 ev_timer_stop (EV_A_ w);
1308 root 1.14 }
1309     else if (w->repeat)
1310 root 1.51 ev_timer_start (EV_A_ w);
1311 root 1.14 }
1312    
1313     void
1314 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1315 root 1.12 {
1316     if (ev_is_active (w))
1317     return;
1318 root 1.1
1319 root 1.77 if (w->reschedule_cb)
1320     ((WT)w)->at = w->reschedule_cb (w, rt_now);
1321     else if (w->interval)
1322     {
1323     assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1324     /* this formula differs from the one in periodic_reify because we do not always round up */
1325     ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1326     }
1327 root 1.12
1328 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1329 root 1.74 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1330 root 1.12 periodics [periodiccnt - 1] = w;
1331     upheap ((WT *)periodics, periodiccnt - 1);
1332 root 1.62
1333     assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1334 root 1.1 }
1335    
1336     void
1337 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1338 root 1.1 {
1339 root 1.51 ev_clear_pending (EV_A_ (W)w);
1340 root 1.1 if (!ev_is_active (w))
1341     return;
1342    
1343 root 1.62 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1344    
1345     if (((W)w)->active < periodiccnt--)
1346 root 1.2 {
1347 root 1.62 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1348     downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1349 root 1.2 }
1350    
1351 root 1.51 ev_stop (EV_A_ (W)w);
1352 root 1.1 }
1353    
1354 root 1.28 void
1355 root 1.77 ev_periodic_again (EV_P_ struct ev_periodic *w)
1356     {
1357     ev_periodic_stop (EV_A_ w);
1358     ev_periodic_start (EV_A_ w);
1359     }
1360    
1361     void
1362 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1363 root 1.9 {
1364     if (ev_is_active (w))
1365     return;
1366    
1367 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1368 root 1.74 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1369 root 1.9 idles [idlecnt - 1] = w;
1370     }
1371    
1372 root 1.28 void
1373 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1374 root 1.9 {
1375 root 1.51 ev_clear_pending (EV_A_ (W)w);
1376 root 1.16 if (ev_is_active (w))
1377     return;
1378    
1379 root 1.62 idles [((W)w)->active - 1] = idles [--idlecnt];
1380 root 1.51 ev_stop (EV_A_ (W)w);
1381 root 1.9 }
1382    
1383 root 1.28 void
1384 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1385 root 1.20 {
1386     if (ev_is_active (w))
1387     return;
1388    
1389 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1390 root 1.74 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1391 root 1.20 prepares [preparecnt - 1] = w;
1392     }
1393    
1394 root 1.28 void
1395 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1396 root 1.20 {
1397 root 1.51 ev_clear_pending (EV_A_ (W)w);
1398 root 1.20 if (ev_is_active (w))
1399     return;
1400    
1401 root 1.62 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1402 root 1.51 ev_stop (EV_A_ (W)w);
1403 root 1.20 }
1404    
1405 root 1.28 void
1406 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1407 root 1.9 {
1408     if (ev_is_active (w))
1409     return;
1410    
1411 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1412 root 1.74 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1413 root 1.9 checks [checkcnt - 1] = w;
1414     }
1415    
1416 root 1.28 void
1417 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1418 root 1.9 {
1419 root 1.51 ev_clear_pending (EV_A_ (W)w);
1420 root 1.16 if (ev_is_active (w))
1421     return;
1422    
1423 root 1.62 checks [((W)w)->active - 1] = checks [--checkcnt];
1424 root 1.51 ev_stop (EV_A_ (W)w);
1425 root 1.9 }
1426    
1427 root 1.56 #ifndef SA_RESTART
1428     # define SA_RESTART 0
1429     #endif
1430    
1431     void
1432     ev_signal_start (EV_P_ struct ev_signal *w)
1433     {
1434     #if EV_MULTIPLICITY
1435     assert (("signal watchers are only supported in the default loop", loop == default_loop));
1436     #endif
1437     if (ev_is_active (w))
1438     return;
1439    
1440     assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1441    
1442     ev_start (EV_A_ (W)w, 1);
1443 root 1.74 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1444 root 1.56 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1445    
1446 root 1.63 if (!((WL)w)->next)
1447 root 1.56 {
1448 root 1.67 #if WIN32
1449     signal (w->signum, sighandler);
1450     #else
1451 root 1.56 struct sigaction sa;
1452     sa.sa_handler = sighandler;
1453     sigfillset (&sa.sa_mask);
1454     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1455     sigaction (w->signum, &sa, 0);
1456 root 1.67 #endif
1457 root 1.56 }
1458     }
1459    
1460     void
1461     ev_signal_stop (EV_P_ struct ev_signal *w)
1462     {
1463     ev_clear_pending (EV_A_ (W)w);
1464     if (!ev_is_active (w))
1465     return;
1466    
1467     wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1468     ev_stop (EV_A_ (W)w);
1469    
1470     if (!signals [w->signum - 1].head)
1471     signal (w->signum, SIG_DFL);
1472     }
1473    
1474 root 1.28 void
1475 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1476 root 1.22 {
1477 root 1.56 #if EV_MULTIPLICITY
1478     assert (("child watchers are only supported in the default loop", loop == default_loop));
1479     #endif
1480 root 1.22 if (ev_is_active (w))
1481     return;
1482    
1483 root 1.51 ev_start (EV_A_ (W)w, 1);
1484 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1485     }
1486    
1487 root 1.28 void
1488 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1489 root 1.22 {
1490 root 1.51 ev_clear_pending (EV_A_ (W)w);
1491 root 1.22 if (ev_is_active (w))
1492     return;
1493    
1494     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1495 root 1.51 ev_stop (EV_A_ (W)w);
1496 root 1.22 }
1497    
1498 root 1.1 /*****************************************************************************/
1499 root 1.10
1500 root 1.16 struct ev_once
1501     {
1502     struct ev_io io;
1503     struct ev_timer to;
1504     void (*cb)(int revents, void *arg);
1505     void *arg;
1506     };
1507    
1508     static void
1509 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1510 root 1.16 {
1511     void (*cb)(int revents, void *arg) = once->cb;
1512     void *arg = once->arg;
1513    
1514 root 1.51 ev_io_stop (EV_A_ &once->io);
1515     ev_timer_stop (EV_A_ &once->to);
1516 root 1.69 ev_free (once);
1517 root 1.16
1518     cb (revents, arg);
1519     }
1520    
1521     static void
1522 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1523 root 1.16 {
1524 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1525 root 1.16 }
1526    
1527     static void
1528 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1529 root 1.16 {
1530 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1531 root 1.16 }
1532    
1533     void
1534 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1535 root 1.16 {
1536 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1537 root 1.16
1538     if (!once)
1539 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1540 root 1.16 else
1541     {
1542     once->cb = cb;
1543     once->arg = arg;
1544    
1545 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1546 root 1.16 if (fd >= 0)
1547     {
1548 root 1.28 ev_io_set (&once->io, fd, events);
1549 root 1.51 ev_io_start (EV_A_ &once->io);
1550 root 1.16 }
1551    
1552 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1553 root 1.16 if (timeout >= 0.)
1554     {
1555 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1556 root 1.51 ev_timer_start (EV_A_ &once->to);
1557 root 1.16 }
1558     }
1559     }
1560