ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.79
Committed: Fri Nov 9 15:15:20 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.78: +28 -9 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.59 #ifndef EV_STANDALONE
32 root 1.29 # include "config.h"
33 root 1.60
34     # if HAVE_CLOCK_GETTIME
35     # define EV_USE_MONOTONIC 1
36     # define EV_USE_REALTIME 1
37     # endif
38    
39     # if HAVE_SELECT && HAVE_SYS_SELECT_H
40     # define EV_USE_SELECT 1
41     # endif
42    
43     # if HAVE_POLL && HAVE_POLL_H
44     # define EV_USE_POLL 1
45     # endif
46    
47     # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48     # define EV_USE_EPOLL 1
49     # endif
50    
51     # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52     # define EV_USE_KQUEUE 1
53     # endif
54    
55 root 1.29 #endif
56 root 1.17
57 root 1.1 #include <math.h>
58     #include <stdlib.h>
59 root 1.7 #include <fcntl.h>
60 root 1.16 #include <stddef.h>
61 root 1.1
62     #include <stdio.h>
63    
64 root 1.4 #include <assert.h>
65 root 1.1 #include <errno.h>
66 root 1.22 #include <sys/types.h>
67 root 1.71 #include <time.h>
68    
69 root 1.72 #include <signal.h>
70 root 1.71
71 root 1.45 #ifndef WIN32
72 root 1.71 # include <unistd.h>
73     # include <sys/time.h>
74 root 1.45 # include <sys/wait.h>
75     #endif
76 root 1.40 /**/
77    
78 root 1.29 #ifndef EV_USE_MONOTONIC
79 root 1.37 # define EV_USE_MONOTONIC 1
80     #endif
81    
82 root 1.29 #ifndef EV_USE_SELECT
83     # define EV_USE_SELECT 1
84 root 1.10 #endif
85    
86 root 1.59 #ifndef EV_USE_POLL
87     # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88 root 1.41 #endif
89    
90 root 1.29 #ifndef EV_USE_EPOLL
91     # define EV_USE_EPOLL 0
92 root 1.10 #endif
93    
94 root 1.44 #ifndef EV_USE_KQUEUE
95     # define EV_USE_KQUEUE 0
96     #endif
97    
98 root 1.62 #ifndef EV_USE_WIN32
99     # ifdef WIN32
100 root 1.71 # define EV_USE_WIN32 0 /* it does not exist, use select */
101     # undef EV_USE_SELECT
102     # define EV_USE_SELECT 1
103 root 1.62 # else
104     # define EV_USE_WIN32 0
105     # endif
106     #endif
107    
108 root 1.40 #ifndef EV_USE_REALTIME
109     # define EV_USE_REALTIME 1
110     #endif
111    
112     /**/
113    
114     #ifndef CLOCK_MONOTONIC
115     # undef EV_USE_MONOTONIC
116     # define EV_USE_MONOTONIC 0
117     #endif
118    
119 root 1.31 #ifndef CLOCK_REALTIME
120 root 1.40 # undef EV_USE_REALTIME
121 root 1.31 # define EV_USE_REALTIME 0
122     #endif
123 root 1.40
124     /**/
125 root 1.1
126 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 root 1.1
131 root 1.59 #include "ev.h"
132 root 1.1
133 root 1.40 #if __GNUC__ >= 3
134     # define expect(expr,value) __builtin_expect ((expr),(value))
135     # define inline inline
136     #else
137     # define expect(expr,value) (expr)
138     # define inline static
139     #endif
140    
141     #define expect_false(expr) expect ((expr) != 0, 0)
142     #define expect_true(expr) expect ((expr) != 0, 1)
143    
144 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
146    
147 root 1.10 typedef struct ev_watcher *W;
148     typedef struct ev_watcher_list *WL;
149 root 1.12 typedef struct ev_watcher_time *WT;
150 root 1.10
151 root 1.54 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152    
153 root 1.73 #include "ev_win32.c"
154 root 1.67
155 root 1.53 /*****************************************************************************/
156 root 1.1
157 root 1.70 static void (*syserr_cb)(const char *msg);
158 root 1.69
159 root 1.70 void ev_set_syserr_cb (void (*cb)(const char *msg))
160 root 1.69 {
161     syserr_cb = cb;
162     }
163    
164     static void
165 root 1.70 syserr (const char *msg)
166 root 1.69 {
167 root 1.70 if (!msg)
168     msg = "(libev) system error";
169    
170 root 1.69 if (syserr_cb)
171 root 1.70 syserr_cb (msg);
172 root 1.69 else
173     {
174 root 1.70 perror (msg);
175 root 1.69 abort ();
176     }
177     }
178    
179     static void *(*alloc)(void *ptr, long size);
180    
181     void ev_set_allocator (void *(*cb)(void *ptr, long size))
182     {
183     alloc = cb;
184     }
185    
186     static void *
187     ev_realloc (void *ptr, long size)
188     {
189     ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190    
191     if (!ptr && size)
192     {
193     fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194     abort ();
195     }
196    
197     return ptr;
198     }
199    
200     #define ev_malloc(size) ev_realloc (0, (size))
201     #define ev_free(ptr) ev_realloc ((ptr), 0)
202    
203     /*****************************************************************************/
204    
205 root 1.53 typedef struct
206     {
207 root 1.68 WL head;
208 root 1.53 unsigned char events;
209     unsigned char reify;
210     } ANFD;
211 root 1.1
212 root 1.53 typedef struct
213     {
214     W w;
215     int events;
216     } ANPENDING;
217 root 1.51
218 root 1.55 #if EV_MULTIPLICITY
219 root 1.54
220 root 1.53 struct ev_loop
221     {
222 root 1.54 # define VAR(name,decl) decl;
223 root 1.53 # include "ev_vars.h"
224     };
225 root 1.54 # undef VAR
226     # include "ev_wrap.h"
227    
228 root 1.53 #else
229 root 1.54
230     # define VAR(name,decl) static decl;
231 root 1.53 # include "ev_vars.h"
232 root 1.54 # undef VAR
233    
234 root 1.51 #endif
235 root 1.1
236 root 1.8 /*****************************************************************************/
237    
238 root 1.51 inline ev_tstamp
239 root 1.1 ev_time (void)
240     {
241 root 1.29 #if EV_USE_REALTIME
242 root 1.1 struct timespec ts;
243     clock_gettime (CLOCK_REALTIME, &ts);
244     return ts.tv_sec + ts.tv_nsec * 1e-9;
245     #else
246     struct timeval tv;
247     gettimeofday (&tv, 0);
248     return tv.tv_sec + tv.tv_usec * 1e-6;
249     #endif
250     }
251    
252 root 1.51 inline ev_tstamp
253 root 1.1 get_clock (void)
254     {
255 root 1.29 #if EV_USE_MONOTONIC
256 root 1.40 if (expect_true (have_monotonic))
257 root 1.1 {
258     struct timespec ts;
259     clock_gettime (CLOCK_MONOTONIC, &ts);
260     return ts.tv_sec + ts.tv_nsec * 1e-9;
261     }
262     #endif
263    
264     return ev_time ();
265     }
266    
267 root 1.51 ev_tstamp
268     ev_now (EV_P)
269     {
270     return rt_now;
271     }
272    
273 root 1.74 #define array_roundsize(type,n) ((n) | 4 & ~3)
274 root 1.29
275 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
276 root 1.69 if (expect_false ((cnt) > cur)) \
277     { \
278     int newcnt = cur; \
279     do \
280     { \
281 root 1.74 newcnt = array_roundsize (type, newcnt << 1); \
282 root 1.69 } \
283     while ((cnt) > newcnt); \
284     \
285 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 root 1.69 init (base + cur, newcnt - cur); \
287     cur = newcnt; \
288 root 1.1 }
289    
290 root 1.74 #define array_slim(type,stem) \
291 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292     { \
293     stem ## max = array_roundsize (stem ## cnt >> 1); \
294 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296     }
297    
298 root 1.71 /* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299     /* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300     #define array_free_microshit(stem) \
301     ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302    
303 root 1.65 #define array_free(stem, idx) \
304 root 1.69 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305 root 1.65
306 root 1.8 /*****************************************************************************/
307    
308 root 1.1 static void
309     anfds_init (ANFD *base, int count)
310     {
311     while (count--)
312     {
313 root 1.27 base->head = 0;
314     base->events = EV_NONE;
315 root 1.33 base->reify = 0;
316    
317 root 1.1 ++base;
318     }
319     }
320    
321 root 1.78 void
322     ev_feed_event (EV_P_ void *w, int revents)
323 root 1.1 {
324 root 1.78 W w_ = (W)w;
325    
326     if (w_->pending)
327 root 1.32 {
328 root 1.78 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
329 root 1.32 return;
330     }
331    
332 root 1.78 w_->pending = ++pendingcnt [ABSPRI (w_)];
333     array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
334     pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
335     pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
336 root 1.1 }
337    
338     static void
339 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
340 root 1.27 {
341     int i;
342    
343     for (i = 0; i < eventcnt; ++i)
344 root 1.78 ev_feed_event (EV_A_ events [i], type);
345 root 1.27 }
346    
347 root 1.79 inline void
348     fd_event (EV_P_ int fd, int revents)
349 root 1.1 {
350     ANFD *anfd = anfds + fd;
351     struct ev_io *w;
352    
353 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
354 root 1.1 {
355 root 1.79 int ev = w->events & revents;
356 root 1.1
357     if (ev)
358 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
359 root 1.1 }
360     }
361    
362 root 1.79 void
363     ev_feed_fd_event (EV_P_ int fd, int revents)
364     {
365     fd_event (EV_A_ fd, revents);
366     }
367    
368 root 1.27 /*****************************************************************************/
369    
370 root 1.9 static void
371 root 1.51 fd_reify (EV_P)
372 root 1.9 {
373     int i;
374    
375 root 1.27 for (i = 0; i < fdchangecnt; ++i)
376     {
377     int fd = fdchanges [i];
378     ANFD *anfd = anfds + fd;
379     struct ev_io *w;
380    
381     int events = 0;
382    
383 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
384 root 1.27 events |= w->events;
385    
386 root 1.33 anfd->reify = 0;
387 root 1.27
388 root 1.64 method_modify (EV_A_ fd, anfd->events, events);
389     anfd->events = events;
390 root 1.27 }
391    
392     fdchangecnt = 0;
393     }
394    
395     static void
396 root 1.51 fd_change (EV_P_ int fd)
397 root 1.27 {
398 root 1.70 if (anfds [fd].reify)
399 root 1.27 return;
400    
401 root 1.33 anfds [fd].reify = 1;
402 root 1.27
403     ++fdchangecnt;
404 root 1.74 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
405 root 1.27 fdchanges [fdchangecnt - 1] = fd;
406 root 1.9 }
407    
408 root 1.41 static void
409 root 1.51 fd_kill (EV_P_ int fd)
410 root 1.41 {
411     struct ev_io *w;
412    
413 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
414 root 1.41 {
415 root 1.51 ev_io_stop (EV_A_ w);
416 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
417 root 1.41 }
418     }
419    
420 root 1.71 static int
421     fd_valid (int fd)
422     {
423     #ifdef WIN32
424     return !!win32_get_osfhandle (fd);
425     #else
426     return fcntl (fd, F_GETFD) != -1;
427     #endif
428     }
429    
430 root 1.19 /* called on EBADF to verify fds */
431     static void
432 root 1.51 fd_ebadf (EV_P)
433 root 1.19 {
434     int fd;
435    
436     for (fd = 0; fd < anfdmax; ++fd)
437 root 1.27 if (anfds [fd].events)
438 root 1.71 if (!fd_valid (fd) == -1 && errno == EBADF)
439 root 1.51 fd_kill (EV_A_ fd);
440 root 1.41 }
441    
442     /* called on ENOMEM in select/poll to kill some fds and retry */
443     static void
444 root 1.51 fd_enomem (EV_P)
445 root 1.41 {
446 root 1.62 int fd;
447 root 1.41
448 root 1.62 for (fd = anfdmax; fd--; )
449 root 1.41 if (anfds [fd].events)
450     {
451 root 1.51 fd_kill (EV_A_ fd);
452 root 1.41 return;
453     }
454 root 1.19 }
455    
456 root 1.70 /* usually called after fork if method needs to re-arm all fds from scratch */
457 root 1.56 static void
458     fd_rearm_all (EV_P)
459     {
460     int fd;
461    
462     /* this should be highly optimised to not do anything but set a flag */
463     for (fd = 0; fd < anfdmax; ++fd)
464     if (anfds [fd].events)
465     {
466     anfds [fd].events = 0;
467 root 1.60 fd_change (EV_A_ fd);
468 root 1.56 }
469     }
470    
471 root 1.8 /*****************************************************************************/
472    
473 root 1.1 static void
474 root 1.54 upheap (WT *heap, int k)
475 root 1.1 {
476 root 1.54 WT w = heap [k];
477 root 1.1
478 root 1.54 while (k && heap [k >> 1]->at > w->at)
479 root 1.1 {
480 root 1.54 heap [k] = heap [k >> 1];
481 root 1.62 ((W)heap [k])->active = k + 1;
482 root 1.1 k >>= 1;
483     }
484    
485 root 1.54 heap [k] = w;
486 root 1.62 ((W)heap [k])->active = k + 1;
487 root 1.1
488     }
489    
490     static void
491 root 1.54 downheap (WT *heap, int N, int k)
492 root 1.1 {
493 root 1.54 WT w = heap [k];
494 root 1.1
495 root 1.4 while (k < (N >> 1))
496 root 1.1 {
497     int j = k << 1;
498    
499 root 1.54 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
500 root 1.1 ++j;
501    
502 root 1.54 if (w->at <= heap [j]->at)
503 root 1.1 break;
504    
505 root 1.54 heap [k] = heap [j];
506 root 1.62 ((W)heap [k])->active = k + 1;
507 root 1.1 k = j;
508     }
509    
510 root 1.54 heap [k] = w;
511 root 1.62 ((W)heap [k])->active = k + 1;
512 root 1.1 }
513    
514 root 1.8 /*****************************************************************************/
515    
516 root 1.7 typedef struct
517     {
518 root 1.68 WL head;
519 root 1.34 sig_atomic_t volatile gotsig;
520 root 1.7 } ANSIG;
521    
522     static ANSIG *signals;
523 root 1.4 static int signalmax;
524 root 1.1
525 root 1.7 static int sigpipe [2];
526 root 1.34 static sig_atomic_t volatile gotsig;
527 root 1.59 static struct ev_io sigev;
528 root 1.7
529 root 1.1 static void
530 root 1.7 signals_init (ANSIG *base, int count)
531 root 1.1 {
532     while (count--)
533 root 1.7 {
534     base->head = 0;
535     base->gotsig = 0;
536 root 1.33
537 root 1.7 ++base;
538     }
539     }
540    
541     static void
542     sighandler (int signum)
543     {
544 root 1.67 #if WIN32
545     signal (signum, sighandler);
546     #endif
547    
548 root 1.7 signals [signum - 1].gotsig = 1;
549    
550     if (!gotsig)
551     {
552 root 1.48 int old_errno = errno;
553 root 1.7 gotsig = 1;
554 root 1.75 #ifdef WIN32
555     send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
556     #else
557 root 1.34 write (sigpipe [1], &signum, 1);
558 root 1.75 #endif
559 root 1.48 errno = old_errno;
560 root 1.7 }
561     }
562    
563 root 1.79 void
564     ev_feed_signal_event (EV_P_ int signum)
565     {
566     #if EV_MULTIPLICITY
567     assert (("feeding signal events is only supported in the default loop", loop == default_loop));
568     #endif
569    
570     --signum;
571    
572     if (signum < 0 || signum >= signalmax)
573     return;
574    
575     signals [signum].gotsig = 0;
576    
577     for (w = signals [signum].head; w; w = w->next)
578     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
579     }
580    
581 root 1.7 static void
582 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
583 root 1.7 {
584 root 1.68 WL w;
585 root 1.38 int signum;
586 root 1.7
587 root 1.75 #ifdef WIN32
588     recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
589     #else
590 root 1.34 read (sigpipe [0], &revents, 1);
591 root 1.75 #endif
592 root 1.7 gotsig = 0;
593    
594 root 1.38 for (signum = signalmax; signum--; )
595     if (signals [signum].gotsig)
596 root 1.79 sigevent (EV_A_ signum + 1);
597 root 1.7 }
598    
599     static void
600 root 1.51 siginit (EV_P)
601 root 1.7 {
602 root 1.45 #ifndef WIN32
603 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
604     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
605    
606     /* rather than sort out wether we really need nb, set it */
607     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
608     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
609 root 1.45 #endif
610 root 1.7
611 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
612 root 1.54 ev_io_start (EV_A_ &sigev);
613 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
614 root 1.1 }
615    
616 root 1.8 /*****************************************************************************/
617    
618 root 1.71 static struct ev_child *childs [PID_HASHSIZE];
619    
620 root 1.45 #ifndef WIN32
621    
622 root 1.59 static struct ev_signal childev;
623    
624 root 1.22 #ifndef WCONTINUED
625     # define WCONTINUED 0
626     #endif
627    
628     static void
629 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
630 root 1.47 {
631     struct ev_child *w;
632    
633 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
634 root 1.47 if (w->pid == pid || !w->pid)
635     {
636 root 1.63 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
637     w->rpid = pid;
638     w->rstatus = status;
639 root 1.78 ev_feed_event (EV_A_ (W)w, EV_CHILD);
640 root 1.47 }
641     }
642    
643     static void
644 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
645 root 1.22 {
646     int pid, status;
647    
648 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
649     {
650     /* make sure we are called again until all childs have been reaped */
651 root 1.78 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
652 root 1.47
653 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
654     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
655 root 1.47 }
656 root 1.22 }
657    
658 root 1.45 #endif
659    
660 root 1.22 /*****************************************************************************/
661    
662 root 1.44 #if EV_USE_KQUEUE
663     # include "ev_kqueue.c"
664     #endif
665 root 1.29 #if EV_USE_EPOLL
666 root 1.1 # include "ev_epoll.c"
667     #endif
668 root 1.59 #if EV_USE_POLL
669 root 1.41 # include "ev_poll.c"
670     #endif
671 root 1.29 #if EV_USE_SELECT
672 root 1.1 # include "ev_select.c"
673     #endif
674    
675 root 1.24 int
676     ev_version_major (void)
677     {
678     return EV_VERSION_MAJOR;
679     }
680    
681     int
682     ev_version_minor (void)
683     {
684     return EV_VERSION_MINOR;
685     }
686    
687 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
688 root 1.41 static int
689 root 1.51 enable_secure (void)
690 root 1.41 {
691 root 1.49 #ifdef WIN32
692     return 0;
693     #else
694 root 1.41 return getuid () != geteuid ()
695     || getgid () != getegid ();
696 root 1.49 #endif
697 root 1.41 }
698    
699 root 1.51 int
700     ev_method (EV_P)
701 root 1.1 {
702 root 1.51 return method;
703     }
704    
705 root 1.56 static void
706 root 1.54 loop_init (EV_P_ int methods)
707 root 1.51 {
708     if (!method)
709 root 1.23 {
710 root 1.29 #if EV_USE_MONOTONIC
711 root 1.23 {
712     struct timespec ts;
713     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
714     have_monotonic = 1;
715     }
716 root 1.1 #endif
717    
718 root 1.51 rt_now = ev_time ();
719     mn_now = get_clock ();
720     now_floor = mn_now;
721 root 1.54 rtmn_diff = rt_now - mn_now;
722 root 1.1
723 root 1.41 if (methods == EVMETHOD_AUTO)
724 root 1.56 if (!enable_secure () && getenv ("LIBEV_METHODS"))
725     methods = atoi (getenv ("LIBEV_METHODS"));
726 root 1.50 else
727     methods = EVMETHOD_ANY;
728 root 1.41
729 root 1.51 method = 0;
730 root 1.62 #if EV_USE_WIN32
731     if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
732     #endif
733 root 1.44 #if EV_USE_KQUEUE
734 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
735 root 1.44 #endif
736 root 1.29 #if EV_USE_EPOLL
737 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
738 root 1.41 #endif
739 root 1.59 #if EV_USE_POLL
740 root 1.51 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
741 root 1.1 #endif
742 root 1.29 #if EV_USE_SELECT
743 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
744 root 1.1 #endif
745 root 1.70
746     ev_watcher_init (&sigev, sigcb);
747     ev_set_priority (&sigev, EV_MAXPRI);
748 root 1.56 }
749     }
750    
751     void
752     loop_destroy (EV_P)
753     {
754 root 1.65 int i;
755    
756 root 1.62 #if EV_USE_WIN32
757     if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
758     #endif
759 root 1.56 #if EV_USE_KQUEUE
760     if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
761     #endif
762     #if EV_USE_EPOLL
763     if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
764     #endif
765 root 1.59 #if EV_USE_POLL
766 root 1.56 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
767     #endif
768     #if EV_USE_SELECT
769     if (method == EVMETHOD_SELECT) select_destroy (EV_A);
770     #endif
771 root 1.1
772 root 1.65 for (i = NUMPRI; i--; )
773     array_free (pending, [i]);
774    
775 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
776     array_free_microshit (fdchange);
777     array_free_microshit (timer);
778     array_free_microshit (periodic);
779     array_free_microshit (idle);
780     array_free_microshit (prepare);
781     array_free_microshit (check);
782 root 1.65
783 root 1.56 method = 0;
784     }
785 root 1.22
786 root 1.70 static void
787 root 1.56 loop_fork (EV_P)
788     {
789     #if EV_USE_EPOLL
790     if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
791     #endif
792     #if EV_USE_KQUEUE
793     if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
794 root 1.45 #endif
795 root 1.70
796     if (ev_is_active (&sigev))
797     {
798     /* default loop */
799    
800     ev_ref (EV_A);
801     ev_io_stop (EV_A_ &sigev);
802     close (sigpipe [0]);
803     close (sigpipe [1]);
804    
805 root 1.73 while (pipe (sigpipe))
806 root 1.70 syserr ("(libev) error creating pipe");
807    
808     siginit (EV_A);
809     }
810    
811     postfork = 0;
812 root 1.1 }
813    
814 root 1.55 #if EV_MULTIPLICITY
815 root 1.54 struct ev_loop *
816     ev_loop_new (int methods)
817     {
818 root 1.69 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
819    
820     memset (loop, 0, sizeof (struct ev_loop));
821 root 1.54
822 root 1.56 loop_init (EV_A_ methods);
823    
824 root 1.60 if (ev_method (EV_A))
825 root 1.55 return loop;
826 root 1.54
827 root 1.55 return 0;
828 root 1.54 }
829    
830     void
831 root 1.56 ev_loop_destroy (EV_P)
832 root 1.54 {
833 root 1.56 loop_destroy (EV_A);
834 root 1.69 ev_free (loop);
835 root 1.54 }
836    
837 root 1.56 void
838     ev_loop_fork (EV_P)
839     {
840 root 1.70 postfork = 1;
841 root 1.56 }
842    
843     #endif
844    
845     #if EV_MULTIPLICITY
846     struct ev_loop default_loop_struct;
847     static struct ev_loop *default_loop;
848    
849     struct ev_loop *
850 root 1.54 #else
851 root 1.56 static int default_loop;
852 root 1.54
853     int
854 root 1.56 #endif
855     ev_default_loop (int methods)
856 root 1.54 {
857 root 1.56 if (sigpipe [0] == sigpipe [1])
858 root 1.73 if (pipe (sigpipe))
859 root 1.56 return 0;
860 root 1.54
861 root 1.56 if (!default_loop)
862     {
863     #if EV_MULTIPLICITY
864     struct ev_loop *loop = default_loop = &default_loop_struct;
865     #else
866     default_loop = 1;
867 root 1.54 #endif
868    
869 root 1.56 loop_init (EV_A_ methods);
870    
871     if (ev_method (EV_A))
872     {
873     siginit (EV_A);
874    
875     #ifndef WIN32
876     ev_signal_init (&childev, childcb, SIGCHLD);
877     ev_set_priority (&childev, EV_MAXPRI);
878     ev_signal_start (EV_A_ &childev);
879     ev_unref (EV_A); /* child watcher should not keep loop alive */
880     #endif
881     }
882     else
883     default_loop = 0;
884     }
885 root 1.8
886 root 1.56 return default_loop;
887 root 1.1 }
888    
889 root 1.24 void
890 root 1.56 ev_default_destroy (void)
891 root 1.1 {
892 root 1.57 #if EV_MULTIPLICITY
893 root 1.56 struct ev_loop *loop = default_loop;
894 root 1.57 #endif
895 root 1.56
896 root 1.71 #ifndef WIN32
897 root 1.56 ev_ref (EV_A); /* child watcher */
898     ev_signal_stop (EV_A_ &childev);
899 root 1.71 #endif
900 root 1.56
901     ev_ref (EV_A); /* signal watcher */
902     ev_io_stop (EV_A_ &sigev);
903    
904     close (sigpipe [0]); sigpipe [0] = 0;
905     close (sigpipe [1]); sigpipe [1] = 0;
906    
907     loop_destroy (EV_A);
908 root 1.1 }
909    
910 root 1.24 void
911 root 1.60 ev_default_fork (void)
912 root 1.1 {
913 root 1.60 #if EV_MULTIPLICITY
914     struct ev_loop *loop = default_loop;
915     #endif
916    
917 root 1.70 if (method)
918     postfork = 1;
919 root 1.1 }
920    
921 root 1.8 /*****************************************************************************/
922    
923 root 1.76 static int
924     any_pending (EV_P)
925     {
926     int pri;
927    
928     for (pri = NUMPRI; pri--; )
929     if (pendingcnt [pri])
930     return 1;
931    
932     return 0;
933     }
934    
935 root 1.1 static void
936 root 1.51 call_pending (EV_P)
937 root 1.1 {
938 root 1.42 int pri;
939    
940     for (pri = NUMPRI; pri--; )
941     while (pendingcnt [pri])
942     {
943     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
944 root 1.1
945 root 1.42 if (p->w)
946     {
947     p->w->pending = 0;
948 root 1.66 p->w->cb (EV_A_ p->w, p->events);
949 root 1.42 }
950     }
951 root 1.1 }
952    
953     static void
954 root 1.51 timers_reify (EV_P)
955 root 1.1 {
956 root 1.63 while (timercnt && ((WT)timers [0])->at <= mn_now)
957 root 1.1 {
958     struct ev_timer *w = timers [0];
959    
960 root 1.61 assert (("inactive timer on timer heap detected", ev_is_active (w)));
961    
962 root 1.4 /* first reschedule or stop timer */
963 root 1.1 if (w->repeat)
964     {
965 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
966 root 1.63 ((WT)w)->at = mn_now + w->repeat;
967 root 1.12 downheap ((WT *)timers, timercnt, 0);
968     }
969     else
970 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
971 root 1.30
972 root 1.78 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
973 root 1.12 }
974     }
975 root 1.4
976 root 1.12 static void
977 root 1.51 periodics_reify (EV_P)
978 root 1.12 {
979 root 1.63 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
980 root 1.12 {
981     struct ev_periodic *w = periodics [0];
982 root 1.1
983 root 1.61 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
984    
985 root 1.12 /* first reschedule or stop timer */
986 root 1.77 if (w->reschedule_cb)
987     {
988     ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
989    
990     assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
991     downheap ((WT *)periodics, periodiccnt, 0);
992     }
993     else if (w->interval)
994 root 1.12 {
995 root 1.63 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
996     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
997 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
998 root 1.1 }
999     else
1000 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1001 root 1.12
1002 root 1.78 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1003 root 1.12 }
1004     }
1005    
1006     static void
1007 root 1.54 periodics_reschedule (EV_P)
1008 root 1.12 {
1009     int i;
1010    
1011 root 1.13 /* adjust periodics after time jump */
1012 root 1.12 for (i = 0; i < periodiccnt; ++i)
1013     {
1014     struct ev_periodic *w = periodics [i];
1015    
1016 root 1.77 if (w->reschedule_cb)
1017     ((WT)w)->at = w->reschedule_cb (w, rt_now);
1018     else if (w->interval)
1019     ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1020     }
1021 root 1.12
1022 root 1.77 /* now rebuild the heap */
1023     for (i = periodiccnt >> 1; i--; )
1024     downheap ((WT *)periodics, periodiccnt, i);
1025 root 1.1 }
1026    
1027 root 1.51 inline int
1028     time_update_monotonic (EV_P)
1029 root 1.40 {
1030 root 1.51 mn_now = get_clock ();
1031 root 1.40
1032 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1033 root 1.40 {
1034 root 1.54 rt_now = rtmn_diff + mn_now;
1035 root 1.40 return 0;
1036     }
1037     else
1038     {
1039 root 1.51 now_floor = mn_now;
1040     rt_now = ev_time ();
1041 root 1.40 return 1;
1042     }
1043     }
1044    
1045 root 1.4 static void
1046 root 1.51 time_update (EV_P)
1047 root 1.4 {
1048     int i;
1049 root 1.12
1050 root 1.40 #if EV_USE_MONOTONIC
1051     if (expect_true (have_monotonic))
1052     {
1053 root 1.51 if (time_update_monotonic (EV_A))
1054 root 1.40 {
1055 root 1.54 ev_tstamp odiff = rtmn_diff;
1056 root 1.4
1057 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1058     {
1059 root 1.54 rtmn_diff = rt_now - mn_now;
1060 root 1.4
1061 root 1.54 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1062 root 1.40 return; /* all is well */
1063 root 1.4
1064 root 1.51 rt_now = ev_time ();
1065     mn_now = get_clock ();
1066     now_floor = mn_now;
1067 root 1.40 }
1068 root 1.4
1069 root 1.54 periodics_reschedule (EV_A);
1070 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
1071 root 1.54 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1072 root 1.4 }
1073     }
1074     else
1075 root 1.40 #endif
1076 root 1.4 {
1077 root 1.51 rt_now = ev_time ();
1078 root 1.40
1079 root 1.51 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1080 root 1.13 {
1081 root 1.54 periodics_reschedule (EV_A);
1082 root 1.13
1083     /* adjust timers. this is easy, as the offset is the same for all */
1084     for (i = 0; i < timercnt; ++i)
1085 root 1.63 ((WT)timers [i])->at += rt_now - mn_now;
1086 root 1.13 }
1087 root 1.4
1088 root 1.51 mn_now = rt_now;
1089 root 1.4 }
1090     }
1091    
1092 root 1.51 void
1093     ev_ref (EV_P)
1094     {
1095     ++activecnt;
1096     }
1097 root 1.1
1098 root 1.51 void
1099     ev_unref (EV_P)
1100     {
1101     --activecnt;
1102     }
1103    
1104     static int loop_done;
1105    
1106     void
1107     ev_loop (EV_P_ int flags)
1108 root 1.1 {
1109     double block;
1110 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1111 root 1.1
1112 root 1.20 do
1113 root 1.9 {
1114 root 1.20 /* queue check watchers (and execute them) */
1115 root 1.40 if (expect_false (preparecnt))
1116 root 1.20 {
1117 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1118     call_pending (EV_A);
1119 root 1.20 }
1120 root 1.9
1121 root 1.70 /* we might have forked, so reify kernel state if necessary */
1122     if (expect_false (postfork))
1123     loop_fork (EV_A);
1124    
1125 root 1.1 /* update fd-related kernel structures */
1126 root 1.51 fd_reify (EV_A);
1127 root 1.1
1128     /* calculate blocking time */
1129 root 1.12
1130 root 1.76 /* we only need this for !monotonic clock or timers, but as we basically
1131 root 1.21 always have timers, we just calculate it always */
1132 root 1.40 #if EV_USE_MONOTONIC
1133     if (expect_true (have_monotonic))
1134 root 1.51 time_update_monotonic (EV_A);
1135 root 1.40 else
1136     #endif
1137     {
1138 root 1.51 rt_now = ev_time ();
1139     mn_now = rt_now;
1140 root 1.40 }
1141 root 1.12
1142 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
1143 root 1.1 block = 0.;
1144     else
1145     {
1146 root 1.4 block = MAX_BLOCKTIME;
1147    
1148 root 1.12 if (timercnt)
1149 root 1.4 {
1150 root 1.63 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1151 root 1.4 if (block > to) block = to;
1152     }
1153    
1154 root 1.12 if (periodiccnt)
1155 root 1.4 {
1156 root 1.63 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1157 root 1.4 if (block > to) block = to;
1158     }
1159    
1160 root 1.1 if (block < 0.) block = 0.;
1161     }
1162    
1163 root 1.51 method_poll (EV_A_ block);
1164 root 1.1
1165 root 1.51 /* update rt_now, do magic */
1166     time_update (EV_A);
1167 root 1.4
1168 root 1.9 /* queue pending timers and reschedule them */
1169 root 1.51 timers_reify (EV_A); /* relative timers called last */
1170     periodics_reify (EV_A); /* absolute timers called first */
1171 root 1.1
1172 root 1.9 /* queue idle watchers unless io or timers are pending */
1173 root 1.76 if (idlecnt && !any_pending (EV_A))
1174 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1175 root 1.9
1176 root 1.20 /* queue check watchers, to be executed first */
1177     if (checkcnt)
1178 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1179 root 1.9
1180 root 1.51 call_pending (EV_A);
1181 root 1.1 }
1182 root 1.51 while (activecnt && !loop_done);
1183 root 1.13
1184 root 1.51 if (loop_done != 2)
1185     loop_done = 0;
1186     }
1187    
1188     void
1189     ev_unloop (EV_P_ int how)
1190     {
1191     loop_done = how;
1192 root 1.1 }
1193    
1194 root 1.8 /*****************************************************************************/
1195    
1196 root 1.51 inline void
1197 root 1.10 wlist_add (WL *head, WL elem)
1198 root 1.1 {
1199     elem->next = *head;
1200     *head = elem;
1201     }
1202    
1203 root 1.51 inline void
1204 root 1.10 wlist_del (WL *head, WL elem)
1205 root 1.1 {
1206     while (*head)
1207     {
1208     if (*head == elem)
1209     {
1210     *head = elem->next;
1211     return;
1212     }
1213    
1214     head = &(*head)->next;
1215     }
1216     }
1217    
1218 root 1.51 inline void
1219     ev_clear_pending (EV_P_ W w)
1220 root 1.16 {
1221     if (w->pending)
1222     {
1223 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1224 root 1.16 w->pending = 0;
1225     }
1226     }
1227    
1228 root 1.51 inline void
1229     ev_start (EV_P_ W w, int active)
1230 root 1.1 {
1231 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1232     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1233    
1234 root 1.1 w->active = active;
1235 root 1.51 ev_ref (EV_A);
1236 root 1.1 }
1237    
1238 root 1.51 inline void
1239     ev_stop (EV_P_ W w)
1240 root 1.1 {
1241 root 1.51 ev_unref (EV_A);
1242 root 1.1 w->active = 0;
1243     }
1244    
1245 root 1.8 /*****************************************************************************/
1246    
1247 root 1.1 void
1248 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
1249 root 1.1 {
1250 root 1.37 int fd = w->fd;
1251    
1252 root 1.1 if (ev_is_active (w))
1253     return;
1254    
1255 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
1256    
1257 root 1.51 ev_start (EV_A_ (W)w, 1);
1258 root 1.74 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1259 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1260 root 1.1
1261 root 1.51 fd_change (EV_A_ fd);
1262 root 1.1 }
1263    
1264     void
1265 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
1266 root 1.1 {
1267 root 1.51 ev_clear_pending (EV_A_ (W)w);
1268 root 1.1 if (!ev_is_active (w))
1269     return;
1270    
1271 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1272 root 1.51 ev_stop (EV_A_ (W)w);
1273 root 1.1
1274 root 1.51 fd_change (EV_A_ w->fd);
1275 root 1.1 }
1276    
1277     void
1278 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1279 root 1.1 {
1280     if (ev_is_active (w))
1281     return;
1282    
1283 root 1.63 ((WT)w)->at += mn_now;
1284 root 1.12
1285 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1286 root 1.13
1287 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1288 root 1.74 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1289 root 1.12 timers [timercnt - 1] = w;
1290     upheap ((WT *)timers, timercnt - 1);
1291 root 1.62
1292     assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1293 root 1.12 }
1294    
1295     void
1296 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1297 root 1.12 {
1298 root 1.51 ev_clear_pending (EV_A_ (W)w);
1299 root 1.12 if (!ev_is_active (w))
1300     return;
1301    
1302 root 1.62 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1303    
1304     if (((W)w)->active < timercnt--)
1305 root 1.1 {
1306 root 1.62 timers [((W)w)->active - 1] = timers [timercnt];
1307     downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1308 root 1.12 }
1309 root 1.4
1310 root 1.63 ((WT)w)->at = w->repeat;
1311 root 1.14
1312 root 1.51 ev_stop (EV_A_ (W)w);
1313 root 1.12 }
1314 root 1.4
1315 root 1.12 void
1316 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1317 root 1.14 {
1318     if (ev_is_active (w))
1319     {
1320     if (w->repeat)
1321     {
1322 root 1.63 ((WT)w)->at = mn_now + w->repeat;
1323 root 1.62 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1324 root 1.14 }
1325     else
1326 root 1.51 ev_timer_stop (EV_A_ w);
1327 root 1.14 }
1328     else if (w->repeat)
1329 root 1.51 ev_timer_start (EV_A_ w);
1330 root 1.14 }
1331    
1332     void
1333 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1334 root 1.12 {
1335     if (ev_is_active (w))
1336     return;
1337 root 1.1
1338 root 1.77 if (w->reschedule_cb)
1339     ((WT)w)->at = w->reschedule_cb (w, rt_now);
1340     else if (w->interval)
1341     {
1342     assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1343     /* this formula differs from the one in periodic_reify because we do not always round up */
1344     ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1345     }
1346 root 1.12
1347 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1348 root 1.74 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1349 root 1.12 periodics [periodiccnt - 1] = w;
1350     upheap ((WT *)periodics, periodiccnt - 1);
1351 root 1.62
1352     assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1353 root 1.1 }
1354    
1355     void
1356 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1357 root 1.1 {
1358 root 1.51 ev_clear_pending (EV_A_ (W)w);
1359 root 1.1 if (!ev_is_active (w))
1360     return;
1361    
1362 root 1.62 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363    
1364     if (((W)w)->active < periodiccnt--)
1365 root 1.2 {
1366 root 1.62 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1367     downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1368 root 1.2 }
1369    
1370 root 1.51 ev_stop (EV_A_ (W)w);
1371 root 1.1 }
1372    
1373 root 1.28 void
1374 root 1.77 ev_periodic_again (EV_P_ struct ev_periodic *w)
1375     {
1376     ev_periodic_stop (EV_A_ w);
1377     ev_periodic_start (EV_A_ w);
1378     }
1379    
1380     void
1381 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1382 root 1.9 {
1383     if (ev_is_active (w))
1384     return;
1385    
1386 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1387 root 1.74 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1388 root 1.9 idles [idlecnt - 1] = w;
1389     }
1390    
1391 root 1.28 void
1392 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1393 root 1.9 {
1394 root 1.51 ev_clear_pending (EV_A_ (W)w);
1395 root 1.16 if (ev_is_active (w))
1396     return;
1397    
1398 root 1.62 idles [((W)w)->active - 1] = idles [--idlecnt];
1399 root 1.51 ev_stop (EV_A_ (W)w);
1400 root 1.9 }
1401    
1402 root 1.28 void
1403 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1404 root 1.20 {
1405     if (ev_is_active (w))
1406     return;
1407    
1408 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1409 root 1.74 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1410 root 1.20 prepares [preparecnt - 1] = w;
1411     }
1412    
1413 root 1.28 void
1414 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1415 root 1.20 {
1416 root 1.51 ev_clear_pending (EV_A_ (W)w);
1417 root 1.20 if (ev_is_active (w))
1418     return;
1419    
1420 root 1.62 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1421 root 1.51 ev_stop (EV_A_ (W)w);
1422 root 1.20 }
1423    
1424 root 1.28 void
1425 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1426 root 1.9 {
1427     if (ev_is_active (w))
1428     return;
1429    
1430 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1431 root 1.74 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1432 root 1.9 checks [checkcnt - 1] = w;
1433     }
1434    
1435 root 1.28 void
1436 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1437 root 1.9 {
1438 root 1.51 ev_clear_pending (EV_A_ (W)w);
1439 root 1.16 if (ev_is_active (w))
1440     return;
1441    
1442 root 1.62 checks [((W)w)->active - 1] = checks [--checkcnt];
1443 root 1.51 ev_stop (EV_A_ (W)w);
1444 root 1.9 }
1445    
1446 root 1.56 #ifndef SA_RESTART
1447     # define SA_RESTART 0
1448     #endif
1449    
1450     void
1451     ev_signal_start (EV_P_ struct ev_signal *w)
1452     {
1453     #if EV_MULTIPLICITY
1454     assert (("signal watchers are only supported in the default loop", loop == default_loop));
1455     #endif
1456     if (ev_is_active (w))
1457     return;
1458    
1459     assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1460    
1461     ev_start (EV_A_ (W)w, 1);
1462 root 1.74 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1463 root 1.56 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1464    
1465 root 1.63 if (!((WL)w)->next)
1466 root 1.56 {
1467 root 1.67 #if WIN32
1468     signal (w->signum, sighandler);
1469     #else
1470 root 1.56 struct sigaction sa;
1471     sa.sa_handler = sighandler;
1472     sigfillset (&sa.sa_mask);
1473     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1474     sigaction (w->signum, &sa, 0);
1475 root 1.67 #endif
1476 root 1.56 }
1477     }
1478    
1479     void
1480     ev_signal_stop (EV_P_ struct ev_signal *w)
1481     {
1482     ev_clear_pending (EV_A_ (W)w);
1483     if (!ev_is_active (w))
1484     return;
1485    
1486     wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1487     ev_stop (EV_A_ (W)w);
1488    
1489     if (!signals [w->signum - 1].head)
1490     signal (w->signum, SIG_DFL);
1491     }
1492    
1493 root 1.28 void
1494 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1495 root 1.22 {
1496 root 1.56 #if EV_MULTIPLICITY
1497     assert (("child watchers are only supported in the default loop", loop == default_loop));
1498     #endif
1499 root 1.22 if (ev_is_active (w))
1500     return;
1501    
1502 root 1.51 ev_start (EV_A_ (W)w, 1);
1503 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1504     }
1505    
1506 root 1.28 void
1507 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1508 root 1.22 {
1509 root 1.51 ev_clear_pending (EV_A_ (W)w);
1510 root 1.22 if (ev_is_active (w))
1511     return;
1512    
1513     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1514 root 1.51 ev_stop (EV_A_ (W)w);
1515 root 1.22 }
1516    
1517 root 1.1 /*****************************************************************************/
1518 root 1.10
1519 root 1.16 struct ev_once
1520     {
1521     struct ev_io io;
1522     struct ev_timer to;
1523     void (*cb)(int revents, void *arg);
1524     void *arg;
1525     };
1526    
1527     static void
1528 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1529 root 1.16 {
1530     void (*cb)(int revents, void *arg) = once->cb;
1531     void *arg = once->arg;
1532    
1533 root 1.51 ev_io_stop (EV_A_ &once->io);
1534     ev_timer_stop (EV_A_ &once->to);
1535 root 1.69 ev_free (once);
1536 root 1.16
1537     cb (revents, arg);
1538     }
1539    
1540     static void
1541 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1542 root 1.16 {
1543 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1544 root 1.16 }
1545    
1546     static void
1547 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1548 root 1.16 {
1549 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1550 root 1.16 }
1551    
1552     void
1553 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1554 root 1.16 {
1555 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1556 root 1.16
1557     if (!once)
1558 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1559 root 1.16 else
1560     {
1561     once->cb = cb;
1562     once->arg = arg;
1563    
1564 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1565 root 1.16 if (fd >= 0)
1566     {
1567 root 1.28 ev_io_set (&once->io, fd, events);
1568 root 1.51 ev_io_start (EV_A_ &once->io);
1569 root 1.16 }
1570    
1571 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1572 root 1.16 if (timeout >= 0.)
1573     {
1574 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1575 root 1.51 ev_timer_start (EV_A_ &once->to);
1576 root 1.16 }
1577     }
1578     }
1579