ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.80
Committed: Fri Nov 9 15:30:59 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.79: +18 -17 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.59 #ifndef EV_STANDALONE
32 root 1.29 # include "config.h"
33 root 1.60
34     # if HAVE_CLOCK_GETTIME
35     # define EV_USE_MONOTONIC 1
36     # define EV_USE_REALTIME 1
37     # endif
38    
39     # if HAVE_SELECT && HAVE_SYS_SELECT_H
40     # define EV_USE_SELECT 1
41     # endif
42    
43     # if HAVE_POLL && HAVE_POLL_H
44     # define EV_USE_POLL 1
45     # endif
46    
47     # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48     # define EV_USE_EPOLL 1
49     # endif
50    
51     # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52     # define EV_USE_KQUEUE 1
53     # endif
54    
55 root 1.29 #endif
56 root 1.17
57 root 1.1 #include <math.h>
58     #include <stdlib.h>
59 root 1.7 #include <fcntl.h>
60 root 1.16 #include <stddef.h>
61 root 1.1
62     #include <stdio.h>
63    
64 root 1.4 #include <assert.h>
65 root 1.1 #include <errno.h>
66 root 1.22 #include <sys/types.h>
67 root 1.71 #include <time.h>
68    
69 root 1.72 #include <signal.h>
70 root 1.71
71 root 1.45 #ifndef WIN32
72 root 1.71 # include <unistd.h>
73     # include <sys/time.h>
74 root 1.45 # include <sys/wait.h>
75     #endif
76 root 1.40 /**/
77    
78 root 1.29 #ifndef EV_USE_MONOTONIC
79 root 1.37 # define EV_USE_MONOTONIC 1
80     #endif
81    
82 root 1.29 #ifndef EV_USE_SELECT
83     # define EV_USE_SELECT 1
84 root 1.10 #endif
85    
86 root 1.59 #ifndef EV_USE_POLL
87     # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88 root 1.41 #endif
89    
90 root 1.29 #ifndef EV_USE_EPOLL
91     # define EV_USE_EPOLL 0
92 root 1.10 #endif
93    
94 root 1.44 #ifndef EV_USE_KQUEUE
95     # define EV_USE_KQUEUE 0
96     #endif
97    
98 root 1.62 #ifndef EV_USE_WIN32
99     # ifdef WIN32
100 root 1.71 # define EV_USE_WIN32 0 /* it does not exist, use select */
101     # undef EV_USE_SELECT
102     # define EV_USE_SELECT 1
103 root 1.62 # else
104     # define EV_USE_WIN32 0
105     # endif
106     #endif
107    
108 root 1.40 #ifndef EV_USE_REALTIME
109     # define EV_USE_REALTIME 1
110     #endif
111    
112     /**/
113    
114     #ifndef CLOCK_MONOTONIC
115     # undef EV_USE_MONOTONIC
116     # define EV_USE_MONOTONIC 0
117     #endif
118    
119 root 1.31 #ifndef CLOCK_REALTIME
120 root 1.40 # undef EV_USE_REALTIME
121 root 1.31 # define EV_USE_REALTIME 0
122     #endif
123 root 1.40
124     /**/
125 root 1.1
126 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 root 1.1
131 root 1.59 #include "ev.h"
132 root 1.1
133 root 1.40 #if __GNUC__ >= 3
134     # define expect(expr,value) __builtin_expect ((expr),(value))
135     # define inline inline
136     #else
137     # define expect(expr,value) (expr)
138     # define inline static
139     #endif
140    
141     #define expect_false(expr) expect ((expr) != 0, 0)
142     #define expect_true(expr) expect ((expr) != 0, 1)
143    
144 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
146    
147 root 1.10 typedef struct ev_watcher *W;
148     typedef struct ev_watcher_list *WL;
149 root 1.12 typedef struct ev_watcher_time *WT;
150 root 1.10
151 root 1.54 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152    
153 root 1.73 #include "ev_win32.c"
154 root 1.67
155 root 1.53 /*****************************************************************************/
156 root 1.1
157 root 1.70 static void (*syserr_cb)(const char *msg);
158 root 1.69
159 root 1.70 void ev_set_syserr_cb (void (*cb)(const char *msg))
160 root 1.69 {
161     syserr_cb = cb;
162     }
163    
164     static void
165 root 1.70 syserr (const char *msg)
166 root 1.69 {
167 root 1.70 if (!msg)
168     msg = "(libev) system error";
169    
170 root 1.69 if (syserr_cb)
171 root 1.70 syserr_cb (msg);
172 root 1.69 else
173     {
174 root 1.70 perror (msg);
175 root 1.69 abort ();
176     }
177     }
178    
179     static void *(*alloc)(void *ptr, long size);
180    
181     void ev_set_allocator (void *(*cb)(void *ptr, long size))
182     {
183     alloc = cb;
184     }
185    
186     static void *
187     ev_realloc (void *ptr, long size)
188     {
189     ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190    
191     if (!ptr && size)
192     {
193     fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194     abort ();
195     }
196    
197     return ptr;
198     }
199    
200     #define ev_malloc(size) ev_realloc (0, (size))
201     #define ev_free(ptr) ev_realloc ((ptr), 0)
202    
203     /*****************************************************************************/
204    
205 root 1.53 typedef struct
206     {
207 root 1.68 WL head;
208 root 1.53 unsigned char events;
209     unsigned char reify;
210     } ANFD;
211 root 1.1
212 root 1.53 typedef struct
213     {
214     W w;
215     int events;
216     } ANPENDING;
217 root 1.51
218 root 1.55 #if EV_MULTIPLICITY
219 root 1.54
220 root 1.80 struct ev_loop
221     {
222     #define VAR(name,decl) decl;
223     #include "ev_vars.h"
224     #undef VAR
225     };
226     #include "ev_wrap.h"
227    
228     struct ev_loop default_loop_struct;
229     static struct ev_loop *default_loop;
230 root 1.54
231 root 1.53 #else
232 root 1.54
233 root 1.80 #define VAR(name,decl) static decl;
234     #include "ev_vars.h"
235     #undef VAR
236    
237     static int default_loop;
238 root 1.54
239 root 1.51 #endif
240 root 1.1
241 root 1.8 /*****************************************************************************/
242    
243 root 1.51 inline ev_tstamp
244 root 1.1 ev_time (void)
245     {
246 root 1.29 #if EV_USE_REALTIME
247 root 1.1 struct timespec ts;
248     clock_gettime (CLOCK_REALTIME, &ts);
249     return ts.tv_sec + ts.tv_nsec * 1e-9;
250     #else
251     struct timeval tv;
252     gettimeofday (&tv, 0);
253     return tv.tv_sec + tv.tv_usec * 1e-6;
254     #endif
255     }
256    
257 root 1.51 inline ev_tstamp
258 root 1.1 get_clock (void)
259     {
260 root 1.29 #if EV_USE_MONOTONIC
261 root 1.40 if (expect_true (have_monotonic))
262 root 1.1 {
263     struct timespec ts;
264     clock_gettime (CLOCK_MONOTONIC, &ts);
265     return ts.tv_sec + ts.tv_nsec * 1e-9;
266     }
267     #endif
268    
269     return ev_time ();
270     }
271    
272 root 1.51 ev_tstamp
273     ev_now (EV_P)
274     {
275     return rt_now;
276     }
277    
278 root 1.74 #define array_roundsize(type,n) ((n) | 4 & ~3)
279 root 1.29
280 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
281 root 1.69 if (expect_false ((cnt) > cur)) \
282     { \
283     int newcnt = cur; \
284     do \
285     { \
286 root 1.74 newcnt = array_roundsize (type, newcnt << 1); \
287 root 1.69 } \
288     while ((cnt) > newcnt); \
289     \
290 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
291 root 1.69 init (base + cur, newcnt - cur); \
292     cur = newcnt; \
293 root 1.1 }
294    
295 root 1.74 #define array_slim(type,stem) \
296 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
297     { \
298     stem ## max = array_roundsize (stem ## cnt >> 1); \
299 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
300 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
301     }
302    
303 root 1.71 /* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
304     /* bringing us everlasting joy in form of stupid extra macros that are not required in C */
305     #define array_free_microshit(stem) \
306     ev_free (stem ## s); stem ## cnt = stem ## max = 0;
307    
308 root 1.65 #define array_free(stem, idx) \
309 root 1.69 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
310 root 1.65
311 root 1.8 /*****************************************************************************/
312    
313 root 1.1 static void
314     anfds_init (ANFD *base, int count)
315     {
316     while (count--)
317     {
318 root 1.27 base->head = 0;
319     base->events = EV_NONE;
320 root 1.33 base->reify = 0;
321    
322 root 1.1 ++base;
323     }
324     }
325    
326 root 1.78 void
327     ev_feed_event (EV_P_ void *w, int revents)
328 root 1.1 {
329 root 1.78 W w_ = (W)w;
330    
331     if (w_->pending)
332 root 1.32 {
333 root 1.78 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
334 root 1.32 return;
335     }
336    
337 root 1.78 w_->pending = ++pendingcnt [ABSPRI (w_)];
338     array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
339     pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
340     pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
341 root 1.1 }
342    
343     static void
344 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
345 root 1.27 {
346     int i;
347    
348     for (i = 0; i < eventcnt; ++i)
349 root 1.78 ev_feed_event (EV_A_ events [i], type);
350 root 1.27 }
351    
352 root 1.79 inline void
353     fd_event (EV_P_ int fd, int revents)
354 root 1.1 {
355     ANFD *anfd = anfds + fd;
356     struct ev_io *w;
357    
358 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
359 root 1.1 {
360 root 1.79 int ev = w->events & revents;
361 root 1.1
362     if (ev)
363 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
364 root 1.1 }
365     }
366    
367 root 1.79 void
368     ev_feed_fd_event (EV_P_ int fd, int revents)
369     {
370     fd_event (EV_A_ fd, revents);
371     }
372    
373 root 1.27 /*****************************************************************************/
374    
375 root 1.9 static void
376 root 1.51 fd_reify (EV_P)
377 root 1.9 {
378     int i;
379    
380 root 1.27 for (i = 0; i < fdchangecnt; ++i)
381     {
382     int fd = fdchanges [i];
383     ANFD *anfd = anfds + fd;
384     struct ev_io *w;
385    
386     int events = 0;
387    
388 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
389 root 1.27 events |= w->events;
390    
391 root 1.33 anfd->reify = 0;
392 root 1.27
393 root 1.64 method_modify (EV_A_ fd, anfd->events, events);
394     anfd->events = events;
395 root 1.27 }
396    
397     fdchangecnt = 0;
398     }
399    
400     static void
401 root 1.51 fd_change (EV_P_ int fd)
402 root 1.27 {
403 root 1.70 if (anfds [fd].reify)
404 root 1.27 return;
405    
406 root 1.33 anfds [fd].reify = 1;
407 root 1.27
408     ++fdchangecnt;
409 root 1.74 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
410 root 1.27 fdchanges [fdchangecnt - 1] = fd;
411 root 1.9 }
412    
413 root 1.41 static void
414 root 1.51 fd_kill (EV_P_ int fd)
415 root 1.41 {
416     struct ev_io *w;
417    
418 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
419 root 1.41 {
420 root 1.51 ev_io_stop (EV_A_ w);
421 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
422 root 1.41 }
423     }
424    
425 root 1.71 static int
426     fd_valid (int fd)
427     {
428     #ifdef WIN32
429     return !!win32_get_osfhandle (fd);
430     #else
431     return fcntl (fd, F_GETFD) != -1;
432     #endif
433     }
434    
435 root 1.19 /* called on EBADF to verify fds */
436     static void
437 root 1.51 fd_ebadf (EV_P)
438 root 1.19 {
439     int fd;
440    
441     for (fd = 0; fd < anfdmax; ++fd)
442 root 1.27 if (anfds [fd].events)
443 root 1.71 if (!fd_valid (fd) == -1 && errno == EBADF)
444 root 1.51 fd_kill (EV_A_ fd);
445 root 1.41 }
446    
447     /* called on ENOMEM in select/poll to kill some fds and retry */
448     static void
449 root 1.51 fd_enomem (EV_P)
450 root 1.41 {
451 root 1.62 int fd;
452 root 1.41
453 root 1.62 for (fd = anfdmax; fd--; )
454 root 1.41 if (anfds [fd].events)
455     {
456 root 1.51 fd_kill (EV_A_ fd);
457 root 1.41 return;
458     }
459 root 1.19 }
460    
461 root 1.70 /* usually called after fork if method needs to re-arm all fds from scratch */
462 root 1.56 static void
463     fd_rearm_all (EV_P)
464     {
465     int fd;
466    
467     /* this should be highly optimised to not do anything but set a flag */
468     for (fd = 0; fd < anfdmax; ++fd)
469     if (anfds [fd].events)
470     {
471     anfds [fd].events = 0;
472 root 1.60 fd_change (EV_A_ fd);
473 root 1.56 }
474     }
475    
476 root 1.8 /*****************************************************************************/
477    
478 root 1.1 static void
479 root 1.54 upheap (WT *heap, int k)
480 root 1.1 {
481 root 1.54 WT w = heap [k];
482 root 1.1
483 root 1.54 while (k && heap [k >> 1]->at > w->at)
484 root 1.1 {
485 root 1.54 heap [k] = heap [k >> 1];
486 root 1.62 ((W)heap [k])->active = k + 1;
487 root 1.1 k >>= 1;
488     }
489    
490 root 1.54 heap [k] = w;
491 root 1.62 ((W)heap [k])->active = k + 1;
492 root 1.1
493     }
494    
495     static void
496 root 1.54 downheap (WT *heap, int N, int k)
497 root 1.1 {
498 root 1.54 WT w = heap [k];
499 root 1.1
500 root 1.4 while (k < (N >> 1))
501 root 1.1 {
502     int j = k << 1;
503    
504 root 1.54 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
505 root 1.1 ++j;
506    
507 root 1.54 if (w->at <= heap [j]->at)
508 root 1.1 break;
509    
510 root 1.54 heap [k] = heap [j];
511 root 1.62 ((W)heap [k])->active = k + 1;
512 root 1.1 k = j;
513     }
514    
515 root 1.54 heap [k] = w;
516 root 1.62 ((W)heap [k])->active = k + 1;
517 root 1.1 }
518    
519 root 1.8 /*****************************************************************************/
520    
521 root 1.7 typedef struct
522     {
523 root 1.68 WL head;
524 root 1.34 sig_atomic_t volatile gotsig;
525 root 1.7 } ANSIG;
526    
527     static ANSIG *signals;
528 root 1.4 static int signalmax;
529 root 1.1
530 root 1.7 static int sigpipe [2];
531 root 1.34 static sig_atomic_t volatile gotsig;
532 root 1.59 static struct ev_io sigev;
533 root 1.7
534 root 1.1 static void
535 root 1.7 signals_init (ANSIG *base, int count)
536 root 1.1 {
537     while (count--)
538 root 1.7 {
539     base->head = 0;
540     base->gotsig = 0;
541 root 1.33
542 root 1.7 ++base;
543     }
544     }
545    
546     static void
547     sighandler (int signum)
548     {
549 root 1.67 #if WIN32
550     signal (signum, sighandler);
551     #endif
552    
553 root 1.7 signals [signum - 1].gotsig = 1;
554    
555     if (!gotsig)
556     {
557 root 1.48 int old_errno = errno;
558 root 1.7 gotsig = 1;
559 root 1.75 #ifdef WIN32
560     send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
561     #else
562 root 1.34 write (sigpipe [1], &signum, 1);
563 root 1.75 #endif
564 root 1.48 errno = old_errno;
565 root 1.7 }
566     }
567    
568 root 1.79 void
569     ev_feed_signal_event (EV_P_ int signum)
570     {
571 root 1.80 WL w;
572    
573 root 1.79 #if EV_MULTIPLICITY
574     assert (("feeding signal events is only supported in the default loop", loop == default_loop));
575     #endif
576    
577     --signum;
578    
579     if (signum < 0 || signum >= signalmax)
580     return;
581    
582     signals [signum].gotsig = 0;
583    
584     for (w = signals [signum].head; w; w = w->next)
585     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
586     }
587    
588 root 1.7 static void
589 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
590 root 1.7 {
591 root 1.38 int signum;
592 root 1.7
593 root 1.75 #ifdef WIN32
594     recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
595     #else
596 root 1.34 read (sigpipe [0], &revents, 1);
597 root 1.75 #endif
598 root 1.7 gotsig = 0;
599    
600 root 1.38 for (signum = signalmax; signum--; )
601     if (signals [signum].gotsig)
602 root 1.80 ev_feed_signal_event (EV_A_ signum + 1);
603 root 1.7 }
604    
605     static void
606 root 1.51 siginit (EV_P)
607 root 1.7 {
608 root 1.45 #ifndef WIN32
609 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
610     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
611    
612     /* rather than sort out wether we really need nb, set it */
613     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
614     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
615 root 1.45 #endif
616 root 1.7
617 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
618 root 1.54 ev_io_start (EV_A_ &sigev);
619 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
620 root 1.1 }
621    
622 root 1.8 /*****************************************************************************/
623    
624 root 1.71 static struct ev_child *childs [PID_HASHSIZE];
625    
626 root 1.45 #ifndef WIN32
627    
628 root 1.59 static struct ev_signal childev;
629    
630 root 1.22 #ifndef WCONTINUED
631     # define WCONTINUED 0
632     #endif
633    
634     static void
635 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
636 root 1.47 {
637     struct ev_child *w;
638    
639 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
640 root 1.47 if (w->pid == pid || !w->pid)
641     {
642 root 1.63 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
643     w->rpid = pid;
644     w->rstatus = status;
645 root 1.78 ev_feed_event (EV_A_ (W)w, EV_CHILD);
646 root 1.47 }
647     }
648    
649     static void
650 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
651 root 1.22 {
652     int pid, status;
653    
654 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
655     {
656     /* make sure we are called again until all childs have been reaped */
657 root 1.78 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
658 root 1.47
659 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
660     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
661 root 1.47 }
662 root 1.22 }
663    
664 root 1.45 #endif
665    
666 root 1.22 /*****************************************************************************/
667    
668 root 1.44 #if EV_USE_KQUEUE
669     # include "ev_kqueue.c"
670     #endif
671 root 1.29 #if EV_USE_EPOLL
672 root 1.1 # include "ev_epoll.c"
673     #endif
674 root 1.59 #if EV_USE_POLL
675 root 1.41 # include "ev_poll.c"
676     #endif
677 root 1.29 #if EV_USE_SELECT
678 root 1.1 # include "ev_select.c"
679     #endif
680    
681 root 1.24 int
682     ev_version_major (void)
683     {
684     return EV_VERSION_MAJOR;
685     }
686    
687     int
688     ev_version_minor (void)
689     {
690     return EV_VERSION_MINOR;
691     }
692    
693 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
694 root 1.41 static int
695 root 1.51 enable_secure (void)
696 root 1.41 {
697 root 1.49 #ifdef WIN32
698     return 0;
699     #else
700 root 1.41 return getuid () != geteuid ()
701     || getgid () != getegid ();
702 root 1.49 #endif
703 root 1.41 }
704    
705 root 1.51 int
706     ev_method (EV_P)
707 root 1.1 {
708 root 1.51 return method;
709     }
710    
711 root 1.56 static void
712 root 1.54 loop_init (EV_P_ int methods)
713 root 1.51 {
714     if (!method)
715 root 1.23 {
716 root 1.29 #if EV_USE_MONOTONIC
717 root 1.23 {
718     struct timespec ts;
719     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
720     have_monotonic = 1;
721     }
722 root 1.1 #endif
723    
724 root 1.51 rt_now = ev_time ();
725     mn_now = get_clock ();
726     now_floor = mn_now;
727 root 1.54 rtmn_diff = rt_now - mn_now;
728 root 1.1
729 root 1.41 if (methods == EVMETHOD_AUTO)
730 root 1.56 if (!enable_secure () && getenv ("LIBEV_METHODS"))
731     methods = atoi (getenv ("LIBEV_METHODS"));
732 root 1.50 else
733     methods = EVMETHOD_ANY;
734 root 1.41
735 root 1.51 method = 0;
736 root 1.62 #if EV_USE_WIN32
737     if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
738     #endif
739 root 1.44 #if EV_USE_KQUEUE
740 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
741 root 1.44 #endif
742 root 1.29 #if EV_USE_EPOLL
743 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
744 root 1.41 #endif
745 root 1.59 #if EV_USE_POLL
746 root 1.51 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
747 root 1.1 #endif
748 root 1.29 #if EV_USE_SELECT
749 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
750 root 1.1 #endif
751 root 1.70
752     ev_watcher_init (&sigev, sigcb);
753     ev_set_priority (&sigev, EV_MAXPRI);
754 root 1.56 }
755     }
756    
757     void
758     loop_destroy (EV_P)
759     {
760 root 1.65 int i;
761    
762 root 1.62 #if EV_USE_WIN32
763     if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
764     #endif
765 root 1.56 #if EV_USE_KQUEUE
766     if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
767     #endif
768     #if EV_USE_EPOLL
769     if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
770     #endif
771 root 1.59 #if EV_USE_POLL
772 root 1.56 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
773     #endif
774     #if EV_USE_SELECT
775     if (method == EVMETHOD_SELECT) select_destroy (EV_A);
776     #endif
777 root 1.1
778 root 1.65 for (i = NUMPRI; i--; )
779     array_free (pending, [i]);
780    
781 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
782     array_free_microshit (fdchange);
783     array_free_microshit (timer);
784     array_free_microshit (periodic);
785     array_free_microshit (idle);
786     array_free_microshit (prepare);
787     array_free_microshit (check);
788 root 1.65
789 root 1.56 method = 0;
790     }
791 root 1.22
792 root 1.70 static void
793 root 1.56 loop_fork (EV_P)
794     {
795     #if EV_USE_EPOLL
796     if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
797     #endif
798     #if EV_USE_KQUEUE
799     if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
800 root 1.45 #endif
801 root 1.70
802     if (ev_is_active (&sigev))
803     {
804     /* default loop */
805    
806     ev_ref (EV_A);
807     ev_io_stop (EV_A_ &sigev);
808     close (sigpipe [0]);
809     close (sigpipe [1]);
810    
811 root 1.73 while (pipe (sigpipe))
812 root 1.70 syserr ("(libev) error creating pipe");
813    
814     siginit (EV_A);
815     }
816    
817     postfork = 0;
818 root 1.1 }
819    
820 root 1.55 #if EV_MULTIPLICITY
821 root 1.54 struct ev_loop *
822     ev_loop_new (int methods)
823     {
824 root 1.69 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
825    
826     memset (loop, 0, sizeof (struct ev_loop));
827 root 1.54
828 root 1.56 loop_init (EV_A_ methods);
829    
830 root 1.60 if (ev_method (EV_A))
831 root 1.55 return loop;
832 root 1.54
833 root 1.55 return 0;
834 root 1.54 }
835    
836     void
837 root 1.56 ev_loop_destroy (EV_P)
838 root 1.54 {
839 root 1.56 loop_destroy (EV_A);
840 root 1.69 ev_free (loop);
841 root 1.54 }
842    
843 root 1.56 void
844     ev_loop_fork (EV_P)
845     {
846 root 1.70 postfork = 1;
847 root 1.56 }
848    
849     #endif
850    
851     #if EV_MULTIPLICITY
852     struct ev_loop *
853 root 1.54 #else
854     int
855 root 1.56 #endif
856     ev_default_loop (int methods)
857 root 1.54 {
858 root 1.56 if (sigpipe [0] == sigpipe [1])
859 root 1.73 if (pipe (sigpipe))
860 root 1.56 return 0;
861 root 1.54
862 root 1.56 if (!default_loop)
863     {
864     #if EV_MULTIPLICITY
865     struct ev_loop *loop = default_loop = &default_loop_struct;
866     #else
867     default_loop = 1;
868 root 1.54 #endif
869    
870 root 1.56 loop_init (EV_A_ methods);
871    
872     if (ev_method (EV_A))
873     {
874     siginit (EV_A);
875    
876     #ifndef WIN32
877     ev_signal_init (&childev, childcb, SIGCHLD);
878     ev_set_priority (&childev, EV_MAXPRI);
879     ev_signal_start (EV_A_ &childev);
880     ev_unref (EV_A); /* child watcher should not keep loop alive */
881     #endif
882     }
883     else
884     default_loop = 0;
885     }
886 root 1.8
887 root 1.56 return default_loop;
888 root 1.1 }
889    
890 root 1.24 void
891 root 1.56 ev_default_destroy (void)
892 root 1.1 {
893 root 1.57 #if EV_MULTIPLICITY
894 root 1.56 struct ev_loop *loop = default_loop;
895 root 1.57 #endif
896 root 1.56
897 root 1.71 #ifndef WIN32
898 root 1.56 ev_ref (EV_A); /* child watcher */
899     ev_signal_stop (EV_A_ &childev);
900 root 1.71 #endif
901 root 1.56
902     ev_ref (EV_A); /* signal watcher */
903     ev_io_stop (EV_A_ &sigev);
904    
905     close (sigpipe [0]); sigpipe [0] = 0;
906     close (sigpipe [1]); sigpipe [1] = 0;
907    
908     loop_destroy (EV_A);
909 root 1.1 }
910    
911 root 1.24 void
912 root 1.60 ev_default_fork (void)
913 root 1.1 {
914 root 1.60 #if EV_MULTIPLICITY
915     struct ev_loop *loop = default_loop;
916     #endif
917    
918 root 1.70 if (method)
919     postfork = 1;
920 root 1.1 }
921    
922 root 1.8 /*****************************************************************************/
923    
924 root 1.76 static int
925     any_pending (EV_P)
926     {
927     int pri;
928    
929     for (pri = NUMPRI; pri--; )
930     if (pendingcnt [pri])
931     return 1;
932    
933     return 0;
934     }
935    
936 root 1.1 static void
937 root 1.51 call_pending (EV_P)
938 root 1.1 {
939 root 1.42 int pri;
940    
941     for (pri = NUMPRI; pri--; )
942     while (pendingcnt [pri])
943     {
944     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
945 root 1.1
946 root 1.42 if (p->w)
947     {
948     p->w->pending = 0;
949 root 1.66 p->w->cb (EV_A_ p->w, p->events);
950 root 1.42 }
951     }
952 root 1.1 }
953    
954     static void
955 root 1.51 timers_reify (EV_P)
956 root 1.1 {
957 root 1.63 while (timercnt && ((WT)timers [0])->at <= mn_now)
958 root 1.1 {
959     struct ev_timer *w = timers [0];
960    
961 root 1.61 assert (("inactive timer on timer heap detected", ev_is_active (w)));
962    
963 root 1.4 /* first reschedule or stop timer */
964 root 1.1 if (w->repeat)
965     {
966 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
967 root 1.63 ((WT)w)->at = mn_now + w->repeat;
968 root 1.12 downheap ((WT *)timers, timercnt, 0);
969     }
970     else
971 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
972 root 1.30
973 root 1.78 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
974 root 1.12 }
975     }
976 root 1.4
977 root 1.12 static void
978 root 1.51 periodics_reify (EV_P)
979 root 1.12 {
980 root 1.63 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
981 root 1.12 {
982     struct ev_periodic *w = periodics [0];
983 root 1.1
984 root 1.61 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
985    
986 root 1.12 /* first reschedule or stop timer */
987 root 1.77 if (w->reschedule_cb)
988     {
989     ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
990    
991     assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
992     downheap ((WT *)periodics, periodiccnt, 0);
993     }
994     else if (w->interval)
995 root 1.12 {
996 root 1.63 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
997     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
998 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
999 root 1.1 }
1000     else
1001 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1002 root 1.12
1003 root 1.78 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1004 root 1.12 }
1005     }
1006    
1007     static void
1008 root 1.54 periodics_reschedule (EV_P)
1009 root 1.12 {
1010     int i;
1011    
1012 root 1.13 /* adjust periodics after time jump */
1013 root 1.12 for (i = 0; i < periodiccnt; ++i)
1014     {
1015     struct ev_periodic *w = periodics [i];
1016    
1017 root 1.77 if (w->reschedule_cb)
1018     ((WT)w)->at = w->reschedule_cb (w, rt_now);
1019     else if (w->interval)
1020     ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1021     }
1022 root 1.12
1023 root 1.77 /* now rebuild the heap */
1024     for (i = periodiccnt >> 1; i--; )
1025     downheap ((WT *)periodics, periodiccnt, i);
1026 root 1.1 }
1027    
1028 root 1.51 inline int
1029     time_update_monotonic (EV_P)
1030 root 1.40 {
1031 root 1.51 mn_now = get_clock ();
1032 root 1.40
1033 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1034 root 1.40 {
1035 root 1.54 rt_now = rtmn_diff + mn_now;
1036 root 1.40 return 0;
1037     }
1038     else
1039     {
1040 root 1.51 now_floor = mn_now;
1041     rt_now = ev_time ();
1042 root 1.40 return 1;
1043     }
1044     }
1045    
1046 root 1.4 static void
1047 root 1.51 time_update (EV_P)
1048 root 1.4 {
1049     int i;
1050 root 1.12
1051 root 1.40 #if EV_USE_MONOTONIC
1052     if (expect_true (have_monotonic))
1053     {
1054 root 1.51 if (time_update_monotonic (EV_A))
1055 root 1.40 {
1056 root 1.54 ev_tstamp odiff = rtmn_diff;
1057 root 1.4
1058 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1059     {
1060 root 1.54 rtmn_diff = rt_now - mn_now;
1061 root 1.4
1062 root 1.54 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1063 root 1.40 return; /* all is well */
1064 root 1.4
1065 root 1.51 rt_now = ev_time ();
1066     mn_now = get_clock ();
1067     now_floor = mn_now;
1068 root 1.40 }
1069 root 1.4
1070 root 1.54 periodics_reschedule (EV_A);
1071 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
1072 root 1.54 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1073 root 1.4 }
1074     }
1075     else
1076 root 1.40 #endif
1077 root 1.4 {
1078 root 1.51 rt_now = ev_time ();
1079 root 1.40
1080 root 1.51 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1081 root 1.13 {
1082 root 1.54 periodics_reschedule (EV_A);
1083 root 1.13
1084     /* adjust timers. this is easy, as the offset is the same for all */
1085     for (i = 0; i < timercnt; ++i)
1086 root 1.63 ((WT)timers [i])->at += rt_now - mn_now;
1087 root 1.13 }
1088 root 1.4
1089 root 1.51 mn_now = rt_now;
1090 root 1.4 }
1091     }
1092    
1093 root 1.51 void
1094     ev_ref (EV_P)
1095     {
1096     ++activecnt;
1097     }
1098 root 1.1
1099 root 1.51 void
1100     ev_unref (EV_P)
1101     {
1102     --activecnt;
1103     }
1104    
1105     static int loop_done;
1106    
1107     void
1108     ev_loop (EV_P_ int flags)
1109 root 1.1 {
1110     double block;
1111 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1112 root 1.1
1113 root 1.20 do
1114 root 1.9 {
1115 root 1.20 /* queue check watchers (and execute them) */
1116 root 1.40 if (expect_false (preparecnt))
1117 root 1.20 {
1118 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1119     call_pending (EV_A);
1120 root 1.20 }
1121 root 1.9
1122 root 1.70 /* we might have forked, so reify kernel state if necessary */
1123     if (expect_false (postfork))
1124     loop_fork (EV_A);
1125    
1126 root 1.1 /* update fd-related kernel structures */
1127 root 1.51 fd_reify (EV_A);
1128 root 1.1
1129     /* calculate blocking time */
1130 root 1.12
1131 root 1.76 /* we only need this for !monotonic clock or timers, but as we basically
1132 root 1.21 always have timers, we just calculate it always */
1133 root 1.40 #if EV_USE_MONOTONIC
1134     if (expect_true (have_monotonic))
1135 root 1.51 time_update_monotonic (EV_A);
1136 root 1.40 else
1137     #endif
1138     {
1139 root 1.51 rt_now = ev_time ();
1140     mn_now = rt_now;
1141 root 1.40 }
1142 root 1.12
1143 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
1144 root 1.1 block = 0.;
1145     else
1146     {
1147 root 1.4 block = MAX_BLOCKTIME;
1148    
1149 root 1.12 if (timercnt)
1150 root 1.4 {
1151 root 1.63 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1152 root 1.4 if (block > to) block = to;
1153     }
1154    
1155 root 1.12 if (periodiccnt)
1156 root 1.4 {
1157 root 1.63 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1158 root 1.4 if (block > to) block = to;
1159     }
1160    
1161 root 1.1 if (block < 0.) block = 0.;
1162     }
1163    
1164 root 1.51 method_poll (EV_A_ block);
1165 root 1.1
1166 root 1.51 /* update rt_now, do magic */
1167     time_update (EV_A);
1168 root 1.4
1169 root 1.9 /* queue pending timers and reschedule them */
1170 root 1.51 timers_reify (EV_A); /* relative timers called last */
1171     periodics_reify (EV_A); /* absolute timers called first */
1172 root 1.1
1173 root 1.9 /* queue idle watchers unless io or timers are pending */
1174 root 1.76 if (idlecnt && !any_pending (EV_A))
1175 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1176 root 1.9
1177 root 1.20 /* queue check watchers, to be executed first */
1178     if (checkcnt)
1179 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1180 root 1.9
1181 root 1.51 call_pending (EV_A);
1182 root 1.1 }
1183 root 1.51 while (activecnt && !loop_done);
1184 root 1.13
1185 root 1.51 if (loop_done != 2)
1186     loop_done = 0;
1187     }
1188    
1189     void
1190     ev_unloop (EV_P_ int how)
1191     {
1192     loop_done = how;
1193 root 1.1 }
1194    
1195 root 1.8 /*****************************************************************************/
1196    
1197 root 1.51 inline void
1198 root 1.10 wlist_add (WL *head, WL elem)
1199 root 1.1 {
1200     elem->next = *head;
1201     *head = elem;
1202     }
1203    
1204 root 1.51 inline void
1205 root 1.10 wlist_del (WL *head, WL elem)
1206 root 1.1 {
1207     while (*head)
1208     {
1209     if (*head == elem)
1210     {
1211     *head = elem->next;
1212     return;
1213     }
1214    
1215     head = &(*head)->next;
1216     }
1217     }
1218    
1219 root 1.51 inline void
1220     ev_clear_pending (EV_P_ W w)
1221 root 1.16 {
1222     if (w->pending)
1223     {
1224 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1225 root 1.16 w->pending = 0;
1226     }
1227     }
1228    
1229 root 1.51 inline void
1230     ev_start (EV_P_ W w, int active)
1231 root 1.1 {
1232 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1233     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1234    
1235 root 1.1 w->active = active;
1236 root 1.51 ev_ref (EV_A);
1237 root 1.1 }
1238    
1239 root 1.51 inline void
1240     ev_stop (EV_P_ W w)
1241 root 1.1 {
1242 root 1.51 ev_unref (EV_A);
1243 root 1.1 w->active = 0;
1244     }
1245    
1246 root 1.8 /*****************************************************************************/
1247    
1248 root 1.1 void
1249 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
1250 root 1.1 {
1251 root 1.37 int fd = w->fd;
1252    
1253 root 1.1 if (ev_is_active (w))
1254     return;
1255    
1256 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
1257    
1258 root 1.51 ev_start (EV_A_ (W)w, 1);
1259 root 1.74 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1260 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1261 root 1.1
1262 root 1.51 fd_change (EV_A_ fd);
1263 root 1.1 }
1264    
1265     void
1266 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
1267 root 1.1 {
1268 root 1.51 ev_clear_pending (EV_A_ (W)w);
1269 root 1.1 if (!ev_is_active (w))
1270     return;
1271    
1272 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1273 root 1.51 ev_stop (EV_A_ (W)w);
1274 root 1.1
1275 root 1.51 fd_change (EV_A_ w->fd);
1276 root 1.1 }
1277    
1278     void
1279 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1280 root 1.1 {
1281     if (ev_is_active (w))
1282     return;
1283    
1284 root 1.63 ((WT)w)->at += mn_now;
1285 root 1.12
1286 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1287 root 1.13
1288 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1289 root 1.74 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1290 root 1.12 timers [timercnt - 1] = w;
1291     upheap ((WT *)timers, timercnt - 1);
1292 root 1.62
1293     assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1294 root 1.12 }
1295    
1296     void
1297 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1298 root 1.12 {
1299 root 1.51 ev_clear_pending (EV_A_ (W)w);
1300 root 1.12 if (!ev_is_active (w))
1301     return;
1302    
1303 root 1.62 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1304    
1305     if (((W)w)->active < timercnt--)
1306 root 1.1 {
1307 root 1.62 timers [((W)w)->active - 1] = timers [timercnt];
1308     downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1309 root 1.12 }
1310 root 1.4
1311 root 1.63 ((WT)w)->at = w->repeat;
1312 root 1.14
1313 root 1.51 ev_stop (EV_A_ (W)w);
1314 root 1.12 }
1315 root 1.4
1316 root 1.12 void
1317 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1318 root 1.14 {
1319     if (ev_is_active (w))
1320     {
1321     if (w->repeat)
1322     {
1323 root 1.63 ((WT)w)->at = mn_now + w->repeat;
1324 root 1.62 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1325 root 1.14 }
1326     else
1327 root 1.51 ev_timer_stop (EV_A_ w);
1328 root 1.14 }
1329     else if (w->repeat)
1330 root 1.51 ev_timer_start (EV_A_ w);
1331 root 1.14 }
1332    
1333     void
1334 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1335 root 1.12 {
1336     if (ev_is_active (w))
1337     return;
1338 root 1.1
1339 root 1.77 if (w->reschedule_cb)
1340     ((WT)w)->at = w->reschedule_cb (w, rt_now);
1341     else if (w->interval)
1342     {
1343     assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1344     /* this formula differs from the one in periodic_reify because we do not always round up */
1345     ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1346     }
1347 root 1.12
1348 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1349 root 1.74 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1350 root 1.12 periodics [periodiccnt - 1] = w;
1351     upheap ((WT *)periodics, periodiccnt - 1);
1352 root 1.62
1353     assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1354 root 1.1 }
1355    
1356     void
1357 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1358 root 1.1 {
1359 root 1.51 ev_clear_pending (EV_A_ (W)w);
1360 root 1.1 if (!ev_is_active (w))
1361     return;
1362    
1363 root 1.62 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1364    
1365     if (((W)w)->active < periodiccnt--)
1366 root 1.2 {
1367 root 1.62 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1368     downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1369 root 1.2 }
1370    
1371 root 1.51 ev_stop (EV_A_ (W)w);
1372 root 1.1 }
1373    
1374 root 1.28 void
1375 root 1.77 ev_periodic_again (EV_P_ struct ev_periodic *w)
1376     {
1377     ev_periodic_stop (EV_A_ w);
1378     ev_periodic_start (EV_A_ w);
1379     }
1380    
1381     void
1382 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1383 root 1.9 {
1384     if (ev_is_active (w))
1385     return;
1386    
1387 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1388 root 1.74 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1389 root 1.9 idles [idlecnt - 1] = w;
1390     }
1391    
1392 root 1.28 void
1393 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1394 root 1.9 {
1395 root 1.51 ev_clear_pending (EV_A_ (W)w);
1396 root 1.16 if (ev_is_active (w))
1397     return;
1398    
1399 root 1.62 idles [((W)w)->active - 1] = idles [--idlecnt];
1400 root 1.51 ev_stop (EV_A_ (W)w);
1401 root 1.9 }
1402    
1403 root 1.28 void
1404 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1405 root 1.20 {
1406     if (ev_is_active (w))
1407     return;
1408    
1409 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1410 root 1.74 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1411 root 1.20 prepares [preparecnt - 1] = w;
1412     }
1413    
1414 root 1.28 void
1415 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1416 root 1.20 {
1417 root 1.51 ev_clear_pending (EV_A_ (W)w);
1418 root 1.20 if (ev_is_active (w))
1419     return;
1420    
1421 root 1.62 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1422 root 1.51 ev_stop (EV_A_ (W)w);
1423 root 1.20 }
1424    
1425 root 1.28 void
1426 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1427 root 1.9 {
1428     if (ev_is_active (w))
1429     return;
1430    
1431 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1432 root 1.74 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1433 root 1.9 checks [checkcnt - 1] = w;
1434     }
1435    
1436 root 1.28 void
1437 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1438 root 1.9 {
1439 root 1.51 ev_clear_pending (EV_A_ (W)w);
1440 root 1.16 if (ev_is_active (w))
1441     return;
1442    
1443 root 1.62 checks [((W)w)->active - 1] = checks [--checkcnt];
1444 root 1.51 ev_stop (EV_A_ (W)w);
1445 root 1.9 }
1446    
1447 root 1.56 #ifndef SA_RESTART
1448     # define SA_RESTART 0
1449     #endif
1450    
1451     void
1452     ev_signal_start (EV_P_ struct ev_signal *w)
1453     {
1454     #if EV_MULTIPLICITY
1455     assert (("signal watchers are only supported in the default loop", loop == default_loop));
1456     #endif
1457     if (ev_is_active (w))
1458     return;
1459    
1460     assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1461    
1462     ev_start (EV_A_ (W)w, 1);
1463 root 1.74 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1464 root 1.56 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1465    
1466 root 1.63 if (!((WL)w)->next)
1467 root 1.56 {
1468 root 1.67 #if WIN32
1469     signal (w->signum, sighandler);
1470     #else
1471 root 1.56 struct sigaction sa;
1472     sa.sa_handler = sighandler;
1473     sigfillset (&sa.sa_mask);
1474     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1475     sigaction (w->signum, &sa, 0);
1476 root 1.67 #endif
1477 root 1.56 }
1478     }
1479    
1480     void
1481     ev_signal_stop (EV_P_ struct ev_signal *w)
1482     {
1483     ev_clear_pending (EV_A_ (W)w);
1484     if (!ev_is_active (w))
1485     return;
1486    
1487     wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1488     ev_stop (EV_A_ (W)w);
1489    
1490     if (!signals [w->signum - 1].head)
1491     signal (w->signum, SIG_DFL);
1492     }
1493    
1494 root 1.28 void
1495 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1496 root 1.22 {
1497 root 1.56 #if EV_MULTIPLICITY
1498     assert (("child watchers are only supported in the default loop", loop == default_loop));
1499     #endif
1500 root 1.22 if (ev_is_active (w))
1501     return;
1502    
1503 root 1.51 ev_start (EV_A_ (W)w, 1);
1504 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1505     }
1506    
1507 root 1.28 void
1508 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1509 root 1.22 {
1510 root 1.51 ev_clear_pending (EV_A_ (W)w);
1511 root 1.22 if (ev_is_active (w))
1512     return;
1513    
1514     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1515 root 1.51 ev_stop (EV_A_ (W)w);
1516 root 1.22 }
1517    
1518 root 1.1 /*****************************************************************************/
1519 root 1.10
1520 root 1.16 struct ev_once
1521     {
1522     struct ev_io io;
1523     struct ev_timer to;
1524     void (*cb)(int revents, void *arg);
1525     void *arg;
1526     };
1527    
1528     static void
1529 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1530 root 1.16 {
1531     void (*cb)(int revents, void *arg) = once->cb;
1532     void *arg = once->arg;
1533    
1534 root 1.51 ev_io_stop (EV_A_ &once->io);
1535     ev_timer_stop (EV_A_ &once->to);
1536 root 1.69 ev_free (once);
1537 root 1.16
1538     cb (revents, arg);
1539     }
1540    
1541     static void
1542 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1543 root 1.16 {
1544 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1545 root 1.16 }
1546    
1547     static void
1548 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1549 root 1.16 {
1550 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1551 root 1.16 }
1552    
1553     void
1554 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1555 root 1.16 {
1556 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1557 root 1.16
1558     if (!once)
1559 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1560 root 1.16 else
1561     {
1562     once->cb = cb;
1563     once->arg = arg;
1564    
1565 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1566 root 1.16 if (fd >= 0)
1567     {
1568 root 1.28 ev_io_set (&once->io, fd, events);
1569 root 1.51 ev_io_start (EV_A_ &once->io);
1570 root 1.16 }
1571    
1572 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1573 root 1.16 if (timeout >= 0.)
1574     {
1575 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1576 root 1.51 ev_timer_start (EV_A_ &once->to);
1577 root 1.16 }
1578     }
1579     }
1580