ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.85
Committed: Sat Nov 10 03:13:50 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.84: +26 -24 lines
Log Message:
optimise ev_now when \!MULTIPLICITY

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.59 #ifndef EV_STANDALONE
32 root 1.29 # include "config.h"
33 root 1.60
34     # if HAVE_CLOCK_GETTIME
35     # define EV_USE_MONOTONIC 1
36     # define EV_USE_REALTIME 1
37     # endif
38    
39     # if HAVE_SELECT && HAVE_SYS_SELECT_H
40     # define EV_USE_SELECT 1
41     # endif
42    
43     # if HAVE_POLL && HAVE_POLL_H
44     # define EV_USE_POLL 1
45     # endif
46    
47     # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48     # define EV_USE_EPOLL 1
49     # endif
50    
51     # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52     # define EV_USE_KQUEUE 1
53     # endif
54    
55 root 1.29 #endif
56 root 1.17
57 root 1.1 #include <math.h>
58     #include <stdlib.h>
59 root 1.7 #include <fcntl.h>
60 root 1.16 #include <stddef.h>
61 root 1.1
62     #include <stdio.h>
63    
64 root 1.4 #include <assert.h>
65 root 1.1 #include <errno.h>
66 root 1.22 #include <sys/types.h>
67 root 1.71 #include <time.h>
68    
69 root 1.72 #include <signal.h>
70 root 1.71
71 root 1.45 #ifndef WIN32
72 root 1.71 # include <unistd.h>
73     # include <sys/time.h>
74 root 1.45 # include <sys/wait.h>
75     #endif
76 root 1.40 /**/
77    
78 root 1.29 #ifndef EV_USE_MONOTONIC
79 root 1.37 # define EV_USE_MONOTONIC 1
80     #endif
81    
82 root 1.29 #ifndef EV_USE_SELECT
83     # define EV_USE_SELECT 1
84 root 1.10 #endif
85    
86 root 1.59 #ifndef EV_USE_POLL
87     # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88 root 1.41 #endif
89    
90 root 1.29 #ifndef EV_USE_EPOLL
91     # define EV_USE_EPOLL 0
92 root 1.10 #endif
93    
94 root 1.44 #ifndef EV_USE_KQUEUE
95     # define EV_USE_KQUEUE 0
96     #endif
97    
98 root 1.62 #ifndef EV_USE_WIN32
99     # ifdef WIN32
100 root 1.71 # define EV_USE_WIN32 0 /* it does not exist, use select */
101     # undef EV_USE_SELECT
102     # define EV_USE_SELECT 1
103 root 1.62 # else
104     # define EV_USE_WIN32 0
105     # endif
106     #endif
107    
108 root 1.40 #ifndef EV_USE_REALTIME
109     # define EV_USE_REALTIME 1
110     #endif
111    
112     /**/
113    
114     #ifndef CLOCK_MONOTONIC
115     # undef EV_USE_MONOTONIC
116     # define EV_USE_MONOTONIC 0
117     #endif
118    
119 root 1.31 #ifndef CLOCK_REALTIME
120 root 1.40 # undef EV_USE_REALTIME
121 root 1.31 # define EV_USE_REALTIME 0
122     #endif
123 root 1.40
124     /**/
125 root 1.1
126 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 root 1.1
131 root 1.81 #ifdef EV_H
132     # include EV_H
133     #else
134     # include "ev.h"
135     #endif
136 root 1.1
137 root 1.40 #if __GNUC__ >= 3
138     # define expect(expr,value) __builtin_expect ((expr),(value))
139     # define inline inline
140     #else
141     # define expect(expr,value) (expr)
142     # define inline static
143     #endif
144    
145     #define expect_false(expr) expect ((expr) != 0, 0)
146     #define expect_true(expr) expect ((expr) != 0, 1)
147    
148 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
149     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
150    
151 root 1.10 typedef struct ev_watcher *W;
152     typedef struct ev_watcher_list *WL;
153 root 1.12 typedef struct ev_watcher_time *WT;
154 root 1.10
155 root 1.54 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
156    
157 root 1.73 #include "ev_win32.c"
158 root 1.67
159 root 1.53 /*****************************************************************************/
160 root 1.1
161 root 1.70 static void (*syserr_cb)(const char *msg);
162 root 1.69
163 root 1.70 void ev_set_syserr_cb (void (*cb)(const char *msg))
164 root 1.69 {
165     syserr_cb = cb;
166     }
167    
168     static void
169 root 1.70 syserr (const char *msg)
170 root 1.69 {
171 root 1.70 if (!msg)
172     msg = "(libev) system error";
173    
174 root 1.69 if (syserr_cb)
175 root 1.70 syserr_cb (msg);
176 root 1.69 else
177     {
178 root 1.70 perror (msg);
179 root 1.69 abort ();
180     }
181     }
182    
183     static void *(*alloc)(void *ptr, long size);
184    
185     void ev_set_allocator (void *(*cb)(void *ptr, long size))
186     {
187     alloc = cb;
188     }
189    
190     static void *
191     ev_realloc (void *ptr, long size)
192     {
193     ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194    
195     if (!ptr && size)
196     {
197     fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198     abort ();
199     }
200    
201     return ptr;
202     }
203    
204     #define ev_malloc(size) ev_realloc (0, (size))
205     #define ev_free(ptr) ev_realloc ((ptr), 0)
206    
207     /*****************************************************************************/
208    
209 root 1.53 typedef struct
210     {
211 root 1.68 WL head;
212 root 1.53 unsigned char events;
213     unsigned char reify;
214     } ANFD;
215 root 1.1
216 root 1.53 typedef struct
217     {
218     W w;
219     int events;
220     } ANPENDING;
221 root 1.51
222 root 1.55 #if EV_MULTIPLICITY
223 root 1.54
224 root 1.80 struct ev_loop
225     {
226     #define VAR(name,decl) decl;
227     #include "ev_vars.h"
228     #undef VAR
229     };
230     #include "ev_wrap.h"
231    
232     struct ev_loop default_loop_struct;
233     static struct ev_loop *default_loop;
234 root 1.54
235 root 1.53 #else
236 root 1.54
237 root 1.80 #define VAR(name,decl) static decl;
238     #include "ev_vars.h"
239     #undef VAR
240    
241     static int default_loop;
242 root 1.54
243 root 1.51 #endif
244 root 1.1
245 root 1.8 /*****************************************************************************/
246    
247 root 1.51 inline ev_tstamp
248 root 1.1 ev_time (void)
249     {
250 root 1.29 #if EV_USE_REALTIME
251 root 1.1 struct timespec ts;
252     clock_gettime (CLOCK_REALTIME, &ts);
253     return ts.tv_sec + ts.tv_nsec * 1e-9;
254     #else
255     struct timeval tv;
256     gettimeofday (&tv, 0);
257     return tv.tv_sec + tv.tv_usec * 1e-6;
258     #endif
259     }
260    
261 root 1.51 inline ev_tstamp
262 root 1.1 get_clock (void)
263     {
264 root 1.29 #if EV_USE_MONOTONIC
265 root 1.40 if (expect_true (have_monotonic))
266 root 1.1 {
267     struct timespec ts;
268     clock_gettime (CLOCK_MONOTONIC, &ts);
269     return ts.tv_sec + ts.tv_nsec * 1e-9;
270     }
271     #endif
272    
273     return ev_time ();
274     }
275    
276 root 1.85 #if EV_MULTIPLICITY
277 root 1.51 ev_tstamp
278     ev_now (EV_P)
279     {
280 root 1.85 return ev_rt_now;
281 root 1.51 }
282 root 1.85 #endif
283 root 1.51
284 root 1.74 #define array_roundsize(type,n) ((n) | 4 & ~3)
285 root 1.29
286 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
287 root 1.69 if (expect_false ((cnt) > cur)) \
288     { \
289     int newcnt = cur; \
290     do \
291     { \
292 root 1.74 newcnt = array_roundsize (type, newcnt << 1); \
293 root 1.69 } \
294     while ((cnt) > newcnt); \
295     \
296 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
297 root 1.69 init (base + cur, newcnt - cur); \
298     cur = newcnt; \
299 root 1.1 }
300    
301 root 1.74 #define array_slim(type,stem) \
302 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
303     { \
304     stem ## max = array_roundsize (stem ## cnt >> 1); \
305 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
306 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
307     }
308    
309 root 1.71 /* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
310     /* bringing us everlasting joy in form of stupid extra macros that are not required in C */
311     #define array_free_microshit(stem) \
312     ev_free (stem ## s); stem ## cnt = stem ## max = 0;
313    
314 root 1.65 #define array_free(stem, idx) \
315 root 1.69 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
316 root 1.65
317 root 1.8 /*****************************************************************************/
318    
319 root 1.1 static void
320     anfds_init (ANFD *base, int count)
321     {
322     while (count--)
323     {
324 root 1.27 base->head = 0;
325     base->events = EV_NONE;
326 root 1.33 base->reify = 0;
327    
328 root 1.1 ++base;
329     }
330     }
331    
332 root 1.78 void
333     ev_feed_event (EV_P_ void *w, int revents)
334 root 1.1 {
335 root 1.78 W w_ = (W)w;
336    
337     if (w_->pending)
338 root 1.32 {
339 root 1.78 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
340 root 1.32 return;
341     }
342    
343 root 1.78 w_->pending = ++pendingcnt [ABSPRI (w_)];
344     array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
345     pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
346     pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
347 root 1.1 }
348    
349     static void
350 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
351 root 1.27 {
352     int i;
353    
354     for (i = 0; i < eventcnt; ++i)
355 root 1.78 ev_feed_event (EV_A_ events [i], type);
356 root 1.27 }
357    
358 root 1.79 inline void
359     fd_event (EV_P_ int fd, int revents)
360 root 1.1 {
361     ANFD *anfd = anfds + fd;
362     struct ev_io *w;
363    
364 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
365 root 1.1 {
366 root 1.79 int ev = w->events & revents;
367 root 1.1
368     if (ev)
369 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
370 root 1.1 }
371     }
372    
373 root 1.79 void
374     ev_feed_fd_event (EV_P_ int fd, int revents)
375     {
376     fd_event (EV_A_ fd, revents);
377     }
378    
379 root 1.27 /*****************************************************************************/
380    
381 root 1.9 static void
382 root 1.51 fd_reify (EV_P)
383 root 1.9 {
384     int i;
385    
386 root 1.27 for (i = 0; i < fdchangecnt; ++i)
387     {
388     int fd = fdchanges [i];
389     ANFD *anfd = anfds + fd;
390     struct ev_io *w;
391    
392     int events = 0;
393    
394 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
395 root 1.27 events |= w->events;
396    
397 root 1.33 anfd->reify = 0;
398 root 1.27
399 root 1.64 method_modify (EV_A_ fd, anfd->events, events);
400     anfd->events = events;
401 root 1.27 }
402    
403     fdchangecnt = 0;
404     }
405    
406     static void
407 root 1.51 fd_change (EV_P_ int fd)
408 root 1.27 {
409 root 1.70 if (anfds [fd].reify)
410 root 1.27 return;
411    
412 root 1.33 anfds [fd].reify = 1;
413 root 1.27
414     ++fdchangecnt;
415 root 1.74 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
416 root 1.27 fdchanges [fdchangecnt - 1] = fd;
417 root 1.9 }
418    
419 root 1.41 static void
420 root 1.51 fd_kill (EV_P_ int fd)
421 root 1.41 {
422     struct ev_io *w;
423    
424 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
425 root 1.41 {
426 root 1.51 ev_io_stop (EV_A_ w);
427 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
428 root 1.41 }
429     }
430    
431 root 1.71 static int
432     fd_valid (int fd)
433     {
434     #ifdef WIN32
435     return !!win32_get_osfhandle (fd);
436     #else
437     return fcntl (fd, F_GETFD) != -1;
438     #endif
439     }
440    
441 root 1.19 /* called on EBADF to verify fds */
442     static void
443 root 1.51 fd_ebadf (EV_P)
444 root 1.19 {
445     int fd;
446    
447     for (fd = 0; fd < anfdmax; ++fd)
448 root 1.27 if (anfds [fd].events)
449 root 1.71 if (!fd_valid (fd) == -1 && errno == EBADF)
450 root 1.51 fd_kill (EV_A_ fd);
451 root 1.41 }
452    
453     /* called on ENOMEM in select/poll to kill some fds and retry */
454     static void
455 root 1.51 fd_enomem (EV_P)
456 root 1.41 {
457 root 1.62 int fd;
458 root 1.41
459 root 1.62 for (fd = anfdmax; fd--; )
460 root 1.41 if (anfds [fd].events)
461     {
462 root 1.51 fd_kill (EV_A_ fd);
463 root 1.41 return;
464     }
465 root 1.19 }
466    
467 root 1.70 /* usually called after fork if method needs to re-arm all fds from scratch */
468 root 1.56 static void
469     fd_rearm_all (EV_P)
470     {
471     int fd;
472    
473     /* this should be highly optimised to not do anything but set a flag */
474     for (fd = 0; fd < anfdmax; ++fd)
475     if (anfds [fd].events)
476     {
477     anfds [fd].events = 0;
478 root 1.60 fd_change (EV_A_ fd);
479 root 1.56 }
480     }
481    
482 root 1.8 /*****************************************************************************/
483    
484 root 1.1 static void
485 root 1.54 upheap (WT *heap, int k)
486 root 1.1 {
487 root 1.54 WT w = heap [k];
488 root 1.1
489 root 1.54 while (k && heap [k >> 1]->at > w->at)
490 root 1.1 {
491 root 1.54 heap [k] = heap [k >> 1];
492 root 1.62 ((W)heap [k])->active = k + 1;
493 root 1.1 k >>= 1;
494     }
495    
496 root 1.54 heap [k] = w;
497 root 1.62 ((W)heap [k])->active = k + 1;
498 root 1.1
499     }
500    
501     static void
502 root 1.54 downheap (WT *heap, int N, int k)
503 root 1.1 {
504 root 1.54 WT w = heap [k];
505 root 1.1
506 root 1.4 while (k < (N >> 1))
507 root 1.1 {
508     int j = k << 1;
509    
510 root 1.54 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
511 root 1.1 ++j;
512    
513 root 1.54 if (w->at <= heap [j]->at)
514 root 1.1 break;
515    
516 root 1.54 heap [k] = heap [j];
517 root 1.62 ((W)heap [k])->active = k + 1;
518 root 1.1 k = j;
519     }
520    
521 root 1.54 heap [k] = w;
522 root 1.62 ((W)heap [k])->active = k + 1;
523 root 1.1 }
524    
525 root 1.84 inline void
526     adjustheap (WT *heap, int N, int k, ev_tstamp at)
527     {
528     ev_tstamp old_at = heap [k]->at;
529     heap [k]->at = at;
530    
531     if (old_at < at)
532     downheap (heap, N, k);
533     else
534     upheap (heap, k);
535     }
536    
537 root 1.8 /*****************************************************************************/
538    
539 root 1.7 typedef struct
540     {
541 root 1.68 WL head;
542 root 1.34 sig_atomic_t volatile gotsig;
543 root 1.7 } ANSIG;
544    
545     static ANSIG *signals;
546 root 1.4 static int signalmax;
547 root 1.1
548 root 1.7 static int sigpipe [2];
549 root 1.34 static sig_atomic_t volatile gotsig;
550 root 1.59 static struct ev_io sigev;
551 root 1.7
552 root 1.1 static void
553 root 1.7 signals_init (ANSIG *base, int count)
554 root 1.1 {
555     while (count--)
556 root 1.7 {
557     base->head = 0;
558     base->gotsig = 0;
559 root 1.33
560 root 1.7 ++base;
561     }
562     }
563    
564     static void
565     sighandler (int signum)
566     {
567 root 1.67 #if WIN32
568     signal (signum, sighandler);
569     #endif
570    
571 root 1.7 signals [signum - 1].gotsig = 1;
572    
573     if (!gotsig)
574     {
575 root 1.48 int old_errno = errno;
576 root 1.7 gotsig = 1;
577 root 1.75 #ifdef WIN32
578     send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
579     #else
580 root 1.34 write (sigpipe [1], &signum, 1);
581 root 1.75 #endif
582 root 1.48 errno = old_errno;
583 root 1.7 }
584     }
585    
586 root 1.79 void
587     ev_feed_signal_event (EV_P_ int signum)
588     {
589 root 1.80 WL w;
590    
591 root 1.79 #if EV_MULTIPLICITY
592     assert (("feeding signal events is only supported in the default loop", loop == default_loop));
593     #endif
594    
595     --signum;
596    
597     if (signum < 0 || signum >= signalmax)
598     return;
599    
600     signals [signum].gotsig = 0;
601    
602     for (w = signals [signum].head; w; w = w->next)
603     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
604     }
605    
606 root 1.7 static void
607 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
608 root 1.7 {
609 root 1.38 int signum;
610 root 1.7
611 root 1.75 #ifdef WIN32
612     recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
613     #else
614 root 1.34 read (sigpipe [0], &revents, 1);
615 root 1.75 #endif
616 root 1.7 gotsig = 0;
617    
618 root 1.38 for (signum = signalmax; signum--; )
619     if (signals [signum].gotsig)
620 root 1.80 ev_feed_signal_event (EV_A_ signum + 1);
621 root 1.7 }
622    
623     static void
624 root 1.51 siginit (EV_P)
625 root 1.7 {
626 root 1.45 #ifndef WIN32
627 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
628     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
629    
630     /* rather than sort out wether we really need nb, set it */
631     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
632     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
633 root 1.45 #endif
634 root 1.7
635 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
636 root 1.54 ev_io_start (EV_A_ &sigev);
637 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
638 root 1.1 }
639    
640 root 1.8 /*****************************************************************************/
641    
642 root 1.71 static struct ev_child *childs [PID_HASHSIZE];
643    
644 root 1.45 #ifndef WIN32
645    
646 root 1.59 static struct ev_signal childev;
647    
648 root 1.22 #ifndef WCONTINUED
649     # define WCONTINUED 0
650     #endif
651    
652     static void
653 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
654 root 1.47 {
655     struct ev_child *w;
656    
657 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
658 root 1.47 if (w->pid == pid || !w->pid)
659     {
660 root 1.63 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
661     w->rpid = pid;
662     w->rstatus = status;
663 root 1.78 ev_feed_event (EV_A_ (W)w, EV_CHILD);
664 root 1.47 }
665     }
666    
667     static void
668 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
669 root 1.22 {
670     int pid, status;
671    
672 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
673     {
674     /* make sure we are called again until all childs have been reaped */
675 root 1.78 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
676 root 1.47
677 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
678     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
679 root 1.47 }
680 root 1.22 }
681    
682 root 1.45 #endif
683    
684 root 1.22 /*****************************************************************************/
685    
686 root 1.44 #if EV_USE_KQUEUE
687     # include "ev_kqueue.c"
688     #endif
689 root 1.29 #if EV_USE_EPOLL
690 root 1.1 # include "ev_epoll.c"
691     #endif
692 root 1.59 #if EV_USE_POLL
693 root 1.41 # include "ev_poll.c"
694     #endif
695 root 1.29 #if EV_USE_SELECT
696 root 1.1 # include "ev_select.c"
697     #endif
698    
699 root 1.24 int
700     ev_version_major (void)
701     {
702     return EV_VERSION_MAJOR;
703     }
704    
705     int
706     ev_version_minor (void)
707     {
708     return EV_VERSION_MINOR;
709     }
710    
711 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
712 root 1.41 static int
713 root 1.51 enable_secure (void)
714 root 1.41 {
715 root 1.49 #ifdef WIN32
716     return 0;
717     #else
718 root 1.41 return getuid () != geteuid ()
719     || getgid () != getegid ();
720 root 1.49 #endif
721 root 1.41 }
722    
723 root 1.51 int
724     ev_method (EV_P)
725 root 1.1 {
726 root 1.51 return method;
727     }
728    
729 root 1.56 static void
730 root 1.54 loop_init (EV_P_ int methods)
731 root 1.51 {
732     if (!method)
733 root 1.23 {
734 root 1.29 #if EV_USE_MONOTONIC
735 root 1.23 {
736     struct timespec ts;
737     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
738     have_monotonic = 1;
739     }
740 root 1.1 #endif
741    
742 root 1.85 ev_rt_now = ev_time ();
743 root 1.51 mn_now = get_clock ();
744     now_floor = mn_now;
745 root 1.85 rtmn_diff = ev_rt_now - mn_now;
746 root 1.1
747 root 1.41 if (methods == EVMETHOD_AUTO)
748 root 1.56 if (!enable_secure () && getenv ("LIBEV_METHODS"))
749     methods = atoi (getenv ("LIBEV_METHODS"));
750 root 1.50 else
751     methods = EVMETHOD_ANY;
752 root 1.41
753 root 1.51 method = 0;
754 root 1.62 #if EV_USE_WIN32
755     if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
756     #endif
757 root 1.44 #if EV_USE_KQUEUE
758 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
759 root 1.44 #endif
760 root 1.29 #if EV_USE_EPOLL
761 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
762 root 1.41 #endif
763 root 1.59 #if EV_USE_POLL
764 root 1.51 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
765 root 1.1 #endif
766 root 1.29 #if EV_USE_SELECT
767 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
768 root 1.1 #endif
769 root 1.70
770 root 1.83 ev_init (&sigev, sigcb);
771 root 1.70 ev_set_priority (&sigev, EV_MAXPRI);
772 root 1.56 }
773     }
774    
775     void
776     loop_destroy (EV_P)
777     {
778 root 1.65 int i;
779    
780 root 1.62 #if EV_USE_WIN32
781     if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
782     #endif
783 root 1.56 #if EV_USE_KQUEUE
784     if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
785     #endif
786     #if EV_USE_EPOLL
787     if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
788     #endif
789 root 1.59 #if EV_USE_POLL
790 root 1.56 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
791     #endif
792     #if EV_USE_SELECT
793     if (method == EVMETHOD_SELECT) select_destroy (EV_A);
794     #endif
795 root 1.1
796 root 1.65 for (i = NUMPRI; i--; )
797     array_free (pending, [i]);
798    
799 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
800     array_free_microshit (fdchange);
801     array_free_microshit (timer);
802     array_free_microshit (periodic);
803     array_free_microshit (idle);
804     array_free_microshit (prepare);
805     array_free_microshit (check);
806 root 1.65
807 root 1.56 method = 0;
808     }
809 root 1.22
810 root 1.70 static void
811 root 1.56 loop_fork (EV_P)
812     {
813     #if EV_USE_EPOLL
814     if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
815     #endif
816     #if EV_USE_KQUEUE
817     if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
818 root 1.45 #endif
819 root 1.70
820     if (ev_is_active (&sigev))
821     {
822     /* default loop */
823    
824     ev_ref (EV_A);
825     ev_io_stop (EV_A_ &sigev);
826     close (sigpipe [0]);
827     close (sigpipe [1]);
828    
829 root 1.73 while (pipe (sigpipe))
830 root 1.70 syserr ("(libev) error creating pipe");
831    
832     siginit (EV_A);
833     }
834    
835     postfork = 0;
836 root 1.1 }
837    
838 root 1.55 #if EV_MULTIPLICITY
839 root 1.54 struct ev_loop *
840     ev_loop_new (int methods)
841     {
842 root 1.69 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
843    
844     memset (loop, 0, sizeof (struct ev_loop));
845 root 1.54
846 root 1.56 loop_init (EV_A_ methods);
847    
848 root 1.60 if (ev_method (EV_A))
849 root 1.55 return loop;
850 root 1.54
851 root 1.55 return 0;
852 root 1.54 }
853    
854     void
855 root 1.56 ev_loop_destroy (EV_P)
856 root 1.54 {
857 root 1.56 loop_destroy (EV_A);
858 root 1.69 ev_free (loop);
859 root 1.54 }
860    
861 root 1.56 void
862     ev_loop_fork (EV_P)
863     {
864 root 1.70 postfork = 1;
865 root 1.56 }
866    
867     #endif
868    
869     #if EV_MULTIPLICITY
870     struct ev_loop *
871 root 1.54 #else
872     int
873 root 1.56 #endif
874     ev_default_loop (int methods)
875 root 1.54 {
876 root 1.56 if (sigpipe [0] == sigpipe [1])
877 root 1.73 if (pipe (sigpipe))
878 root 1.56 return 0;
879 root 1.54
880 root 1.56 if (!default_loop)
881     {
882     #if EV_MULTIPLICITY
883     struct ev_loop *loop = default_loop = &default_loop_struct;
884     #else
885     default_loop = 1;
886 root 1.54 #endif
887    
888 root 1.56 loop_init (EV_A_ methods);
889    
890     if (ev_method (EV_A))
891     {
892     siginit (EV_A);
893    
894     #ifndef WIN32
895     ev_signal_init (&childev, childcb, SIGCHLD);
896     ev_set_priority (&childev, EV_MAXPRI);
897     ev_signal_start (EV_A_ &childev);
898     ev_unref (EV_A); /* child watcher should not keep loop alive */
899     #endif
900     }
901     else
902     default_loop = 0;
903     }
904 root 1.8
905 root 1.56 return default_loop;
906 root 1.1 }
907    
908 root 1.24 void
909 root 1.56 ev_default_destroy (void)
910 root 1.1 {
911 root 1.57 #if EV_MULTIPLICITY
912 root 1.56 struct ev_loop *loop = default_loop;
913 root 1.57 #endif
914 root 1.56
915 root 1.71 #ifndef WIN32
916 root 1.56 ev_ref (EV_A); /* child watcher */
917     ev_signal_stop (EV_A_ &childev);
918 root 1.71 #endif
919 root 1.56
920     ev_ref (EV_A); /* signal watcher */
921     ev_io_stop (EV_A_ &sigev);
922    
923     close (sigpipe [0]); sigpipe [0] = 0;
924     close (sigpipe [1]); sigpipe [1] = 0;
925    
926     loop_destroy (EV_A);
927 root 1.1 }
928    
929 root 1.24 void
930 root 1.60 ev_default_fork (void)
931 root 1.1 {
932 root 1.60 #if EV_MULTIPLICITY
933     struct ev_loop *loop = default_loop;
934     #endif
935    
936 root 1.70 if (method)
937     postfork = 1;
938 root 1.1 }
939    
940 root 1.8 /*****************************************************************************/
941    
942 root 1.76 static int
943     any_pending (EV_P)
944     {
945     int pri;
946    
947     for (pri = NUMPRI; pri--; )
948     if (pendingcnt [pri])
949     return 1;
950    
951     return 0;
952     }
953    
954 root 1.1 static void
955 root 1.51 call_pending (EV_P)
956 root 1.1 {
957 root 1.42 int pri;
958    
959     for (pri = NUMPRI; pri--; )
960     while (pendingcnt [pri])
961     {
962     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
963 root 1.1
964 root 1.42 if (p->w)
965     {
966     p->w->pending = 0;
967 root 1.82 EV_CB_INVOKE (p->w, p->events);
968 root 1.42 }
969     }
970 root 1.1 }
971    
972     static void
973 root 1.51 timers_reify (EV_P)
974 root 1.1 {
975 root 1.63 while (timercnt && ((WT)timers [0])->at <= mn_now)
976 root 1.1 {
977     struct ev_timer *w = timers [0];
978    
979 root 1.61 assert (("inactive timer on timer heap detected", ev_is_active (w)));
980    
981 root 1.4 /* first reschedule or stop timer */
982 root 1.1 if (w->repeat)
983     {
984 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
985 root 1.63 ((WT)w)->at = mn_now + w->repeat;
986 root 1.12 downheap ((WT *)timers, timercnt, 0);
987     }
988     else
989 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
990 root 1.30
991 root 1.78 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
992 root 1.12 }
993     }
994 root 1.4
995 root 1.12 static void
996 root 1.51 periodics_reify (EV_P)
997 root 1.12 {
998 root 1.85 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
999 root 1.12 {
1000     struct ev_periodic *w = periodics [0];
1001 root 1.1
1002 root 1.61 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1003    
1004 root 1.12 /* first reschedule or stop timer */
1005 root 1.77 if (w->reschedule_cb)
1006     {
1007 root 1.85 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1008 root 1.77
1009 root 1.85 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1010 root 1.77 downheap ((WT *)periodics, periodiccnt, 0);
1011     }
1012     else if (w->interval)
1013 root 1.12 {
1014 root 1.85 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1015     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1016 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
1017 root 1.1 }
1018     else
1019 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1020 root 1.12
1021 root 1.78 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1022 root 1.12 }
1023     }
1024    
1025     static void
1026 root 1.54 periodics_reschedule (EV_P)
1027 root 1.12 {
1028     int i;
1029    
1030 root 1.13 /* adjust periodics after time jump */
1031 root 1.12 for (i = 0; i < periodiccnt; ++i)
1032     {
1033     struct ev_periodic *w = periodics [i];
1034    
1035 root 1.77 if (w->reschedule_cb)
1036 root 1.85 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1037 root 1.77 else if (w->interval)
1038 root 1.85 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1039 root 1.77 }
1040 root 1.12
1041 root 1.77 /* now rebuild the heap */
1042     for (i = periodiccnt >> 1; i--; )
1043     downheap ((WT *)periodics, periodiccnt, i);
1044 root 1.1 }
1045    
1046 root 1.51 inline int
1047     time_update_monotonic (EV_P)
1048 root 1.40 {
1049 root 1.51 mn_now = get_clock ();
1050 root 1.40
1051 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1052 root 1.40 {
1053 root 1.85 ev_rt_now = rtmn_diff + mn_now;
1054 root 1.40 return 0;
1055     }
1056     else
1057     {
1058 root 1.51 now_floor = mn_now;
1059 root 1.85 ev_rt_now = ev_time ();
1060 root 1.40 return 1;
1061     }
1062     }
1063    
1064 root 1.4 static void
1065 root 1.51 time_update (EV_P)
1066 root 1.4 {
1067     int i;
1068 root 1.12
1069 root 1.40 #if EV_USE_MONOTONIC
1070     if (expect_true (have_monotonic))
1071     {
1072 root 1.51 if (time_update_monotonic (EV_A))
1073 root 1.40 {
1074 root 1.54 ev_tstamp odiff = rtmn_diff;
1075 root 1.4
1076 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1077     {
1078 root 1.85 rtmn_diff = ev_rt_now - mn_now;
1079 root 1.4
1080 root 1.54 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1081 root 1.40 return; /* all is well */
1082 root 1.4
1083 root 1.85 ev_rt_now = ev_time ();
1084 root 1.51 mn_now = get_clock ();
1085     now_floor = mn_now;
1086 root 1.40 }
1087 root 1.4
1088 root 1.54 periodics_reschedule (EV_A);
1089 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
1090 root 1.54 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1091 root 1.4 }
1092     }
1093     else
1094 root 1.40 #endif
1095 root 1.4 {
1096 root 1.85 ev_rt_now = ev_time ();
1097 root 1.40
1098 root 1.85 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1099 root 1.13 {
1100 root 1.54 periodics_reschedule (EV_A);
1101 root 1.13
1102     /* adjust timers. this is easy, as the offset is the same for all */
1103     for (i = 0; i < timercnt; ++i)
1104 root 1.85 ((WT)timers [i])->at += ev_rt_now - mn_now;
1105 root 1.13 }
1106 root 1.4
1107 root 1.85 mn_now = ev_rt_now;
1108 root 1.4 }
1109     }
1110    
1111 root 1.51 void
1112     ev_ref (EV_P)
1113     {
1114     ++activecnt;
1115     }
1116 root 1.1
1117 root 1.51 void
1118     ev_unref (EV_P)
1119     {
1120     --activecnt;
1121     }
1122    
1123     static int loop_done;
1124    
1125     void
1126     ev_loop (EV_P_ int flags)
1127 root 1.1 {
1128     double block;
1129 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1130 root 1.1
1131 root 1.20 do
1132 root 1.9 {
1133 root 1.20 /* queue check watchers (and execute them) */
1134 root 1.40 if (expect_false (preparecnt))
1135 root 1.20 {
1136 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1137     call_pending (EV_A);
1138 root 1.20 }
1139 root 1.9
1140 root 1.70 /* we might have forked, so reify kernel state if necessary */
1141     if (expect_false (postfork))
1142     loop_fork (EV_A);
1143    
1144 root 1.1 /* update fd-related kernel structures */
1145 root 1.51 fd_reify (EV_A);
1146 root 1.1
1147     /* calculate blocking time */
1148 root 1.12
1149 root 1.76 /* we only need this for !monotonic clock or timers, but as we basically
1150 root 1.21 always have timers, we just calculate it always */
1151 root 1.40 #if EV_USE_MONOTONIC
1152     if (expect_true (have_monotonic))
1153 root 1.51 time_update_monotonic (EV_A);
1154 root 1.40 else
1155     #endif
1156     {
1157 root 1.85 ev_rt_now = ev_time ();
1158     mn_now = ev_rt_now;
1159 root 1.40 }
1160 root 1.12
1161 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
1162 root 1.1 block = 0.;
1163     else
1164     {
1165 root 1.4 block = MAX_BLOCKTIME;
1166    
1167 root 1.12 if (timercnt)
1168 root 1.4 {
1169 root 1.63 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1170 root 1.4 if (block > to) block = to;
1171     }
1172    
1173 root 1.12 if (periodiccnt)
1174 root 1.4 {
1175 root 1.85 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1176 root 1.4 if (block > to) block = to;
1177     }
1178    
1179 root 1.1 if (block < 0.) block = 0.;
1180     }
1181    
1182 root 1.51 method_poll (EV_A_ block);
1183 root 1.1
1184 root 1.85 /* update ev_rt_now, do magic */
1185 root 1.51 time_update (EV_A);
1186 root 1.4
1187 root 1.9 /* queue pending timers and reschedule them */
1188 root 1.51 timers_reify (EV_A); /* relative timers called last */
1189     periodics_reify (EV_A); /* absolute timers called first */
1190 root 1.1
1191 root 1.9 /* queue idle watchers unless io or timers are pending */
1192 root 1.76 if (idlecnt && !any_pending (EV_A))
1193 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1194 root 1.9
1195 root 1.20 /* queue check watchers, to be executed first */
1196     if (checkcnt)
1197 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1198 root 1.9
1199 root 1.51 call_pending (EV_A);
1200 root 1.1 }
1201 root 1.51 while (activecnt && !loop_done);
1202 root 1.13
1203 root 1.51 if (loop_done != 2)
1204     loop_done = 0;
1205     }
1206    
1207     void
1208     ev_unloop (EV_P_ int how)
1209     {
1210     loop_done = how;
1211 root 1.1 }
1212    
1213 root 1.8 /*****************************************************************************/
1214    
1215 root 1.51 inline void
1216 root 1.10 wlist_add (WL *head, WL elem)
1217 root 1.1 {
1218     elem->next = *head;
1219     *head = elem;
1220     }
1221    
1222 root 1.51 inline void
1223 root 1.10 wlist_del (WL *head, WL elem)
1224 root 1.1 {
1225     while (*head)
1226     {
1227     if (*head == elem)
1228     {
1229     *head = elem->next;
1230     return;
1231     }
1232    
1233     head = &(*head)->next;
1234     }
1235     }
1236    
1237 root 1.51 inline void
1238     ev_clear_pending (EV_P_ W w)
1239 root 1.16 {
1240     if (w->pending)
1241     {
1242 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1243 root 1.16 w->pending = 0;
1244     }
1245     }
1246    
1247 root 1.51 inline void
1248     ev_start (EV_P_ W w, int active)
1249 root 1.1 {
1250 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1251     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1252    
1253 root 1.1 w->active = active;
1254 root 1.51 ev_ref (EV_A);
1255 root 1.1 }
1256    
1257 root 1.51 inline void
1258     ev_stop (EV_P_ W w)
1259 root 1.1 {
1260 root 1.51 ev_unref (EV_A);
1261 root 1.1 w->active = 0;
1262     }
1263    
1264 root 1.8 /*****************************************************************************/
1265    
1266 root 1.1 void
1267 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
1268 root 1.1 {
1269 root 1.37 int fd = w->fd;
1270    
1271 root 1.1 if (ev_is_active (w))
1272     return;
1273    
1274 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
1275    
1276 root 1.51 ev_start (EV_A_ (W)w, 1);
1277 root 1.74 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1278 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1279 root 1.1
1280 root 1.51 fd_change (EV_A_ fd);
1281 root 1.1 }
1282    
1283     void
1284 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
1285 root 1.1 {
1286 root 1.51 ev_clear_pending (EV_A_ (W)w);
1287 root 1.1 if (!ev_is_active (w))
1288     return;
1289    
1290 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1291 root 1.51 ev_stop (EV_A_ (W)w);
1292 root 1.1
1293 root 1.51 fd_change (EV_A_ w->fd);
1294 root 1.1 }
1295    
1296     void
1297 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1298 root 1.1 {
1299     if (ev_is_active (w))
1300     return;
1301    
1302 root 1.63 ((WT)w)->at += mn_now;
1303 root 1.12
1304 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1305 root 1.13
1306 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1307 root 1.74 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1308 root 1.12 timers [timercnt - 1] = w;
1309     upheap ((WT *)timers, timercnt - 1);
1310 root 1.62
1311     assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1312 root 1.12 }
1313    
1314     void
1315 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1316 root 1.12 {
1317 root 1.51 ev_clear_pending (EV_A_ (W)w);
1318 root 1.12 if (!ev_is_active (w))
1319     return;
1320    
1321 root 1.62 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1322    
1323     if (((W)w)->active < timercnt--)
1324 root 1.1 {
1325 root 1.62 timers [((W)w)->active - 1] = timers [timercnt];
1326     downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1327 root 1.12 }
1328 root 1.4
1329 root 1.63 ((WT)w)->at = w->repeat;
1330 root 1.14
1331 root 1.51 ev_stop (EV_A_ (W)w);
1332 root 1.12 }
1333 root 1.4
1334 root 1.12 void
1335 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1336 root 1.14 {
1337     if (ev_is_active (w))
1338     {
1339     if (w->repeat)
1340 root 1.84 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1341 root 1.14 else
1342 root 1.51 ev_timer_stop (EV_A_ w);
1343 root 1.14 }
1344     else if (w->repeat)
1345 root 1.51 ev_timer_start (EV_A_ w);
1346 root 1.14 }
1347    
1348     void
1349 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1350 root 1.12 {
1351     if (ev_is_active (w))
1352     return;
1353 root 1.1
1354 root 1.77 if (w->reschedule_cb)
1355 root 1.85 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1356 root 1.77 else if (w->interval)
1357     {
1358     assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1359     /* this formula differs from the one in periodic_reify because we do not always round up */
1360 root 1.85 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1361 root 1.77 }
1362 root 1.12
1363 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1364 root 1.74 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1365 root 1.12 periodics [periodiccnt - 1] = w;
1366     upheap ((WT *)periodics, periodiccnt - 1);
1367 root 1.62
1368     assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1369 root 1.1 }
1370    
1371     void
1372 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1373 root 1.1 {
1374 root 1.51 ev_clear_pending (EV_A_ (W)w);
1375 root 1.1 if (!ev_is_active (w))
1376     return;
1377    
1378 root 1.62 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1379    
1380     if (((W)w)->active < periodiccnt--)
1381 root 1.2 {
1382 root 1.62 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1383     downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1384 root 1.2 }
1385    
1386 root 1.51 ev_stop (EV_A_ (W)w);
1387 root 1.1 }
1388    
1389 root 1.28 void
1390 root 1.77 ev_periodic_again (EV_P_ struct ev_periodic *w)
1391     {
1392 root 1.84 /* TODO: use adjustheap and recalculation */
1393 root 1.77 ev_periodic_stop (EV_A_ w);
1394     ev_periodic_start (EV_A_ w);
1395     }
1396    
1397     void
1398 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1399 root 1.9 {
1400     if (ev_is_active (w))
1401     return;
1402    
1403 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1404 root 1.74 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1405 root 1.9 idles [idlecnt - 1] = w;
1406     }
1407    
1408 root 1.28 void
1409 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1410 root 1.9 {
1411 root 1.51 ev_clear_pending (EV_A_ (W)w);
1412 root 1.16 if (ev_is_active (w))
1413     return;
1414    
1415 root 1.62 idles [((W)w)->active - 1] = idles [--idlecnt];
1416 root 1.51 ev_stop (EV_A_ (W)w);
1417 root 1.9 }
1418    
1419 root 1.28 void
1420 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1421 root 1.20 {
1422     if (ev_is_active (w))
1423     return;
1424    
1425 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1426 root 1.74 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1427 root 1.20 prepares [preparecnt - 1] = w;
1428     }
1429    
1430 root 1.28 void
1431 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1432 root 1.20 {
1433 root 1.51 ev_clear_pending (EV_A_ (W)w);
1434 root 1.20 if (ev_is_active (w))
1435     return;
1436    
1437 root 1.62 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1438 root 1.51 ev_stop (EV_A_ (W)w);
1439 root 1.20 }
1440    
1441 root 1.28 void
1442 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1443 root 1.9 {
1444     if (ev_is_active (w))
1445     return;
1446    
1447 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1448 root 1.74 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1449 root 1.9 checks [checkcnt - 1] = w;
1450     }
1451    
1452 root 1.28 void
1453 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1454 root 1.9 {
1455 root 1.51 ev_clear_pending (EV_A_ (W)w);
1456 root 1.16 if (ev_is_active (w))
1457     return;
1458    
1459 root 1.62 checks [((W)w)->active - 1] = checks [--checkcnt];
1460 root 1.51 ev_stop (EV_A_ (W)w);
1461 root 1.9 }
1462    
1463 root 1.56 #ifndef SA_RESTART
1464     # define SA_RESTART 0
1465     #endif
1466    
1467     void
1468     ev_signal_start (EV_P_ struct ev_signal *w)
1469     {
1470     #if EV_MULTIPLICITY
1471     assert (("signal watchers are only supported in the default loop", loop == default_loop));
1472     #endif
1473     if (ev_is_active (w))
1474     return;
1475    
1476     assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1477    
1478     ev_start (EV_A_ (W)w, 1);
1479 root 1.74 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1480 root 1.56 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1481    
1482 root 1.63 if (!((WL)w)->next)
1483 root 1.56 {
1484 root 1.67 #if WIN32
1485     signal (w->signum, sighandler);
1486     #else
1487 root 1.56 struct sigaction sa;
1488     sa.sa_handler = sighandler;
1489     sigfillset (&sa.sa_mask);
1490     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1491     sigaction (w->signum, &sa, 0);
1492 root 1.67 #endif
1493 root 1.56 }
1494     }
1495    
1496     void
1497     ev_signal_stop (EV_P_ struct ev_signal *w)
1498     {
1499     ev_clear_pending (EV_A_ (W)w);
1500     if (!ev_is_active (w))
1501     return;
1502    
1503     wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1504     ev_stop (EV_A_ (W)w);
1505    
1506     if (!signals [w->signum - 1].head)
1507     signal (w->signum, SIG_DFL);
1508     }
1509    
1510 root 1.28 void
1511 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1512 root 1.22 {
1513 root 1.56 #if EV_MULTIPLICITY
1514     assert (("child watchers are only supported in the default loop", loop == default_loop));
1515     #endif
1516 root 1.22 if (ev_is_active (w))
1517     return;
1518    
1519 root 1.51 ev_start (EV_A_ (W)w, 1);
1520 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1521     }
1522    
1523 root 1.28 void
1524 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1525 root 1.22 {
1526 root 1.51 ev_clear_pending (EV_A_ (W)w);
1527 root 1.22 if (ev_is_active (w))
1528     return;
1529    
1530     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1531 root 1.51 ev_stop (EV_A_ (W)w);
1532 root 1.22 }
1533    
1534 root 1.1 /*****************************************************************************/
1535 root 1.10
1536 root 1.16 struct ev_once
1537     {
1538     struct ev_io io;
1539     struct ev_timer to;
1540     void (*cb)(int revents, void *arg);
1541     void *arg;
1542     };
1543    
1544     static void
1545 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1546 root 1.16 {
1547     void (*cb)(int revents, void *arg) = once->cb;
1548     void *arg = once->arg;
1549    
1550 root 1.51 ev_io_stop (EV_A_ &once->io);
1551     ev_timer_stop (EV_A_ &once->to);
1552 root 1.69 ev_free (once);
1553 root 1.16
1554     cb (revents, arg);
1555     }
1556    
1557     static void
1558 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1559 root 1.16 {
1560 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1561 root 1.16 }
1562    
1563     static void
1564 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1565 root 1.16 {
1566 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1567 root 1.16 }
1568    
1569     void
1570 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1571 root 1.16 {
1572 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1573 root 1.16
1574     if (!once)
1575 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1576 root 1.16 else
1577     {
1578     once->cb = cb;
1579     once->arg = arg;
1580    
1581 root 1.83 ev_init (&once->io, once_cb_io);
1582 root 1.16 if (fd >= 0)
1583     {
1584 root 1.28 ev_io_set (&once->io, fd, events);
1585 root 1.51 ev_io_start (EV_A_ &once->io);
1586 root 1.16 }
1587    
1588 root 1.83 ev_init (&once->to, once_cb_to);
1589 root 1.16 if (timeout >= 0.)
1590     {
1591 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1592 root 1.51 ev_timer_start (EV_A_ &once->to);
1593 root 1.16 }
1594     }
1595     }
1596