ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.86
Committed: Sat Nov 10 03:19:21 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.85: +2 -0 lines
Log Message:
optimise ev_now when \!MULTIPLICITY

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.59 #ifndef EV_STANDALONE
32 root 1.29 # include "config.h"
33 root 1.60
34     # if HAVE_CLOCK_GETTIME
35     # define EV_USE_MONOTONIC 1
36     # define EV_USE_REALTIME 1
37     # endif
38    
39     # if HAVE_SELECT && HAVE_SYS_SELECT_H
40     # define EV_USE_SELECT 1
41     # endif
42    
43     # if HAVE_POLL && HAVE_POLL_H
44     # define EV_USE_POLL 1
45     # endif
46    
47     # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48     # define EV_USE_EPOLL 1
49     # endif
50    
51     # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52     # define EV_USE_KQUEUE 1
53     # endif
54    
55 root 1.29 #endif
56 root 1.17
57 root 1.1 #include <math.h>
58     #include <stdlib.h>
59 root 1.7 #include <fcntl.h>
60 root 1.16 #include <stddef.h>
61 root 1.1
62     #include <stdio.h>
63    
64 root 1.4 #include <assert.h>
65 root 1.1 #include <errno.h>
66 root 1.22 #include <sys/types.h>
67 root 1.71 #include <time.h>
68    
69 root 1.72 #include <signal.h>
70 root 1.71
71 root 1.45 #ifndef WIN32
72 root 1.71 # include <unistd.h>
73     # include <sys/time.h>
74 root 1.45 # include <sys/wait.h>
75     #endif
76 root 1.40 /**/
77    
78 root 1.29 #ifndef EV_USE_MONOTONIC
79 root 1.37 # define EV_USE_MONOTONIC 1
80     #endif
81    
82 root 1.29 #ifndef EV_USE_SELECT
83     # define EV_USE_SELECT 1
84 root 1.10 #endif
85    
86 root 1.59 #ifndef EV_USE_POLL
87     # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88 root 1.41 #endif
89    
90 root 1.29 #ifndef EV_USE_EPOLL
91     # define EV_USE_EPOLL 0
92 root 1.10 #endif
93    
94 root 1.44 #ifndef EV_USE_KQUEUE
95     # define EV_USE_KQUEUE 0
96     #endif
97    
98 root 1.62 #ifndef EV_USE_WIN32
99     # ifdef WIN32
100 root 1.71 # define EV_USE_WIN32 0 /* it does not exist, use select */
101     # undef EV_USE_SELECT
102     # define EV_USE_SELECT 1
103 root 1.62 # else
104     # define EV_USE_WIN32 0
105     # endif
106     #endif
107    
108 root 1.40 #ifndef EV_USE_REALTIME
109     # define EV_USE_REALTIME 1
110     #endif
111    
112     /**/
113    
114     #ifndef CLOCK_MONOTONIC
115     # undef EV_USE_MONOTONIC
116     # define EV_USE_MONOTONIC 0
117     #endif
118    
119 root 1.31 #ifndef CLOCK_REALTIME
120 root 1.40 # undef EV_USE_REALTIME
121 root 1.31 # define EV_USE_REALTIME 0
122     #endif
123 root 1.40
124     /**/
125 root 1.1
126 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 root 1.1
131 root 1.81 #ifdef EV_H
132     # include EV_H
133     #else
134     # include "ev.h"
135     #endif
136 root 1.1
137 root 1.40 #if __GNUC__ >= 3
138     # define expect(expr,value) __builtin_expect ((expr),(value))
139     # define inline inline
140     #else
141     # define expect(expr,value) (expr)
142     # define inline static
143     #endif
144    
145     #define expect_false(expr) expect ((expr) != 0, 0)
146     #define expect_true(expr) expect ((expr) != 0, 1)
147    
148 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
149     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
150    
151 root 1.10 typedef struct ev_watcher *W;
152     typedef struct ev_watcher_list *WL;
153 root 1.12 typedef struct ev_watcher_time *WT;
154 root 1.10
155 root 1.54 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
156    
157 root 1.73 #include "ev_win32.c"
158 root 1.67
159 root 1.53 /*****************************************************************************/
160 root 1.1
161 root 1.70 static void (*syserr_cb)(const char *msg);
162 root 1.69
163 root 1.70 void ev_set_syserr_cb (void (*cb)(const char *msg))
164 root 1.69 {
165     syserr_cb = cb;
166     }
167    
168     static void
169 root 1.70 syserr (const char *msg)
170 root 1.69 {
171 root 1.70 if (!msg)
172     msg = "(libev) system error";
173    
174 root 1.69 if (syserr_cb)
175 root 1.70 syserr_cb (msg);
176 root 1.69 else
177     {
178 root 1.70 perror (msg);
179 root 1.69 abort ();
180     }
181     }
182    
183     static void *(*alloc)(void *ptr, long size);
184    
185     void ev_set_allocator (void *(*cb)(void *ptr, long size))
186     {
187     alloc = cb;
188     }
189    
190     static void *
191     ev_realloc (void *ptr, long size)
192     {
193     ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194    
195     if (!ptr && size)
196     {
197     fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198     abort ();
199     }
200    
201     return ptr;
202     }
203    
204     #define ev_malloc(size) ev_realloc (0, (size))
205     #define ev_free(ptr) ev_realloc ((ptr), 0)
206    
207     /*****************************************************************************/
208    
209 root 1.53 typedef struct
210     {
211 root 1.68 WL head;
212 root 1.53 unsigned char events;
213     unsigned char reify;
214     } ANFD;
215 root 1.1
216 root 1.53 typedef struct
217     {
218     W w;
219     int events;
220     } ANPENDING;
221 root 1.51
222 root 1.55 #if EV_MULTIPLICITY
223 root 1.54
224 root 1.80 struct ev_loop
225     {
226 root 1.86 ev_tstamp ev_rt_now;
227 root 1.80 #define VAR(name,decl) decl;
228     #include "ev_vars.h"
229     #undef VAR
230     };
231     #include "ev_wrap.h"
232    
233     struct ev_loop default_loop_struct;
234     static struct ev_loop *default_loop;
235 root 1.54
236 root 1.53 #else
237 root 1.54
238 root 1.86 ev_tstamp ev_rt_now;
239 root 1.80 #define VAR(name,decl) static decl;
240     #include "ev_vars.h"
241     #undef VAR
242    
243     static int default_loop;
244 root 1.54
245 root 1.51 #endif
246 root 1.1
247 root 1.8 /*****************************************************************************/
248    
249 root 1.51 inline ev_tstamp
250 root 1.1 ev_time (void)
251     {
252 root 1.29 #if EV_USE_REALTIME
253 root 1.1 struct timespec ts;
254     clock_gettime (CLOCK_REALTIME, &ts);
255     return ts.tv_sec + ts.tv_nsec * 1e-9;
256     #else
257     struct timeval tv;
258     gettimeofday (&tv, 0);
259     return tv.tv_sec + tv.tv_usec * 1e-6;
260     #endif
261     }
262    
263 root 1.51 inline ev_tstamp
264 root 1.1 get_clock (void)
265     {
266 root 1.29 #if EV_USE_MONOTONIC
267 root 1.40 if (expect_true (have_monotonic))
268 root 1.1 {
269     struct timespec ts;
270     clock_gettime (CLOCK_MONOTONIC, &ts);
271     return ts.tv_sec + ts.tv_nsec * 1e-9;
272     }
273     #endif
274    
275     return ev_time ();
276     }
277    
278 root 1.85 #if EV_MULTIPLICITY
279 root 1.51 ev_tstamp
280     ev_now (EV_P)
281     {
282 root 1.85 return ev_rt_now;
283 root 1.51 }
284 root 1.85 #endif
285 root 1.51
286 root 1.74 #define array_roundsize(type,n) ((n) | 4 & ~3)
287 root 1.29
288 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
289 root 1.69 if (expect_false ((cnt) > cur)) \
290     { \
291     int newcnt = cur; \
292     do \
293     { \
294 root 1.74 newcnt = array_roundsize (type, newcnt << 1); \
295 root 1.69 } \
296     while ((cnt) > newcnt); \
297     \
298 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
299 root 1.69 init (base + cur, newcnt - cur); \
300     cur = newcnt; \
301 root 1.1 }
302    
303 root 1.74 #define array_slim(type,stem) \
304 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
305     { \
306     stem ## max = array_roundsize (stem ## cnt >> 1); \
307 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
308 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
309     }
310    
311 root 1.71 /* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
312     /* bringing us everlasting joy in form of stupid extra macros that are not required in C */
313     #define array_free_microshit(stem) \
314     ev_free (stem ## s); stem ## cnt = stem ## max = 0;
315    
316 root 1.65 #define array_free(stem, idx) \
317 root 1.69 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
318 root 1.65
319 root 1.8 /*****************************************************************************/
320    
321 root 1.1 static void
322     anfds_init (ANFD *base, int count)
323     {
324     while (count--)
325     {
326 root 1.27 base->head = 0;
327     base->events = EV_NONE;
328 root 1.33 base->reify = 0;
329    
330 root 1.1 ++base;
331     }
332     }
333    
334 root 1.78 void
335     ev_feed_event (EV_P_ void *w, int revents)
336 root 1.1 {
337 root 1.78 W w_ = (W)w;
338    
339     if (w_->pending)
340 root 1.32 {
341 root 1.78 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
342 root 1.32 return;
343     }
344    
345 root 1.78 w_->pending = ++pendingcnt [ABSPRI (w_)];
346     array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
347     pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
348     pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
349 root 1.1 }
350    
351     static void
352 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
353 root 1.27 {
354     int i;
355    
356     for (i = 0; i < eventcnt; ++i)
357 root 1.78 ev_feed_event (EV_A_ events [i], type);
358 root 1.27 }
359    
360 root 1.79 inline void
361     fd_event (EV_P_ int fd, int revents)
362 root 1.1 {
363     ANFD *anfd = anfds + fd;
364     struct ev_io *w;
365    
366 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
367 root 1.1 {
368 root 1.79 int ev = w->events & revents;
369 root 1.1
370     if (ev)
371 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
372 root 1.1 }
373     }
374    
375 root 1.79 void
376     ev_feed_fd_event (EV_P_ int fd, int revents)
377     {
378     fd_event (EV_A_ fd, revents);
379     }
380    
381 root 1.27 /*****************************************************************************/
382    
383 root 1.9 static void
384 root 1.51 fd_reify (EV_P)
385 root 1.9 {
386     int i;
387    
388 root 1.27 for (i = 0; i < fdchangecnt; ++i)
389     {
390     int fd = fdchanges [i];
391     ANFD *anfd = anfds + fd;
392     struct ev_io *w;
393    
394     int events = 0;
395    
396 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
397 root 1.27 events |= w->events;
398    
399 root 1.33 anfd->reify = 0;
400 root 1.27
401 root 1.64 method_modify (EV_A_ fd, anfd->events, events);
402     anfd->events = events;
403 root 1.27 }
404    
405     fdchangecnt = 0;
406     }
407    
408     static void
409 root 1.51 fd_change (EV_P_ int fd)
410 root 1.27 {
411 root 1.70 if (anfds [fd].reify)
412 root 1.27 return;
413    
414 root 1.33 anfds [fd].reify = 1;
415 root 1.27
416     ++fdchangecnt;
417 root 1.74 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
418 root 1.27 fdchanges [fdchangecnt - 1] = fd;
419 root 1.9 }
420    
421 root 1.41 static void
422 root 1.51 fd_kill (EV_P_ int fd)
423 root 1.41 {
424     struct ev_io *w;
425    
426 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
427 root 1.41 {
428 root 1.51 ev_io_stop (EV_A_ w);
429 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
430 root 1.41 }
431     }
432    
433 root 1.71 static int
434     fd_valid (int fd)
435     {
436     #ifdef WIN32
437     return !!win32_get_osfhandle (fd);
438     #else
439     return fcntl (fd, F_GETFD) != -1;
440     #endif
441     }
442    
443 root 1.19 /* called on EBADF to verify fds */
444     static void
445 root 1.51 fd_ebadf (EV_P)
446 root 1.19 {
447     int fd;
448    
449     for (fd = 0; fd < anfdmax; ++fd)
450 root 1.27 if (anfds [fd].events)
451 root 1.71 if (!fd_valid (fd) == -1 && errno == EBADF)
452 root 1.51 fd_kill (EV_A_ fd);
453 root 1.41 }
454    
455     /* called on ENOMEM in select/poll to kill some fds and retry */
456     static void
457 root 1.51 fd_enomem (EV_P)
458 root 1.41 {
459 root 1.62 int fd;
460 root 1.41
461 root 1.62 for (fd = anfdmax; fd--; )
462 root 1.41 if (anfds [fd].events)
463     {
464 root 1.51 fd_kill (EV_A_ fd);
465 root 1.41 return;
466     }
467 root 1.19 }
468    
469 root 1.70 /* usually called after fork if method needs to re-arm all fds from scratch */
470 root 1.56 static void
471     fd_rearm_all (EV_P)
472     {
473     int fd;
474    
475     /* this should be highly optimised to not do anything but set a flag */
476     for (fd = 0; fd < anfdmax; ++fd)
477     if (anfds [fd].events)
478     {
479     anfds [fd].events = 0;
480 root 1.60 fd_change (EV_A_ fd);
481 root 1.56 }
482     }
483    
484 root 1.8 /*****************************************************************************/
485    
486 root 1.1 static void
487 root 1.54 upheap (WT *heap, int k)
488 root 1.1 {
489 root 1.54 WT w = heap [k];
490 root 1.1
491 root 1.54 while (k && heap [k >> 1]->at > w->at)
492 root 1.1 {
493 root 1.54 heap [k] = heap [k >> 1];
494 root 1.62 ((W)heap [k])->active = k + 1;
495 root 1.1 k >>= 1;
496     }
497    
498 root 1.54 heap [k] = w;
499 root 1.62 ((W)heap [k])->active = k + 1;
500 root 1.1
501     }
502    
503     static void
504 root 1.54 downheap (WT *heap, int N, int k)
505 root 1.1 {
506 root 1.54 WT w = heap [k];
507 root 1.1
508 root 1.4 while (k < (N >> 1))
509 root 1.1 {
510     int j = k << 1;
511    
512 root 1.54 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
513 root 1.1 ++j;
514    
515 root 1.54 if (w->at <= heap [j]->at)
516 root 1.1 break;
517    
518 root 1.54 heap [k] = heap [j];
519 root 1.62 ((W)heap [k])->active = k + 1;
520 root 1.1 k = j;
521     }
522    
523 root 1.54 heap [k] = w;
524 root 1.62 ((W)heap [k])->active = k + 1;
525 root 1.1 }
526    
527 root 1.84 inline void
528     adjustheap (WT *heap, int N, int k, ev_tstamp at)
529     {
530     ev_tstamp old_at = heap [k]->at;
531     heap [k]->at = at;
532    
533     if (old_at < at)
534     downheap (heap, N, k);
535     else
536     upheap (heap, k);
537     }
538    
539 root 1.8 /*****************************************************************************/
540    
541 root 1.7 typedef struct
542     {
543 root 1.68 WL head;
544 root 1.34 sig_atomic_t volatile gotsig;
545 root 1.7 } ANSIG;
546    
547     static ANSIG *signals;
548 root 1.4 static int signalmax;
549 root 1.1
550 root 1.7 static int sigpipe [2];
551 root 1.34 static sig_atomic_t volatile gotsig;
552 root 1.59 static struct ev_io sigev;
553 root 1.7
554 root 1.1 static void
555 root 1.7 signals_init (ANSIG *base, int count)
556 root 1.1 {
557     while (count--)
558 root 1.7 {
559     base->head = 0;
560     base->gotsig = 0;
561 root 1.33
562 root 1.7 ++base;
563     }
564     }
565    
566     static void
567     sighandler (int signum)
568     {
569 root 1.67 #if WIN32
570     signal (signum, sighandler);
571     #endif
572    
573 root 1.7 signals [signum - 1].gotsig = 1;
574    
575     if (!gotsig)
576     {
577 root 1.48 int old_errno = errno;
578 root 1.7 gotsig = 1;
579 root 1.75 #ifdef WIN32
580     send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
581     #else
582 root 1.34 write (sigpipe [1], &signum, 1);
583 root 1.75 #endif
584 root 1.48 errno = old_errno;
585 root 1.7 }
586     }
587    
588 root 1.79 void
589     ev_feed_signal_event (EV_P_ int signum)
590     {
591 root 1.80 WL w;
592    
593 root 1.79 #if EV_MULTIPLICITY
594     assert (("feeding signal events is only supported in the default loop", loop == default_loop));
595     #endif
596    
597     --signum;
598    
599     if (signum < 0 || signum >= signalmax)
600     return;
601    
602     signals [signum].gotsig = 0;
603    
604     for (w = signals [signum].head; w; w = w->next)
605     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
606     }
607    
608 root 1.7 static void
609 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
610 root 1.7 {
611 root 1.38 int signum;
612 root 1.7
613 root 1.75 #ifdef WIN32
614     recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
615     #else
616 root 1.34 read (sigpipe [0], &revents, 1);
617 root 1.75 #endif
618 root 1.7 gotsig = 0;
619    
620 root 1.38 for (signum = signalmax; signum--; )
621     if (signals [signum].gotsig)
622 root 1.80 ev_feed_signal_event (EV_A_ signum + 1);
623 root 1.7 }
624    
625     static void
626 root 1.51 siginit (EV_P)
627 root 1.7 {
628 root 1.45 #ifndef WIN32
629 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
630     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
631    
632     /* rather than sort out wether we really need nb, set it */
633     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
634     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
635 root 1.45 #endif
636 root 1.7
637 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
638 root 1.54 ev_io_start (EV_A_ &sigev);
639 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
640 root 1.1 }
641    
642 root 1.8 /*****************************************************************************/
643    
644 root 1.71 static struct ev_child *childs [PID_HASHSIZE];
645    
646 root 1.45 #ifndef WIN32
647    
648 root 1.59 static struct ev_signal childev;
649    
650 root 1.22 #ifndef WCONTINUED
651     # define WCONTINUED 0
652     #endif
653    
654     static void
655 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
656 root 1.47 {
657     struct ev_child *w;
658    
659 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
660 root 1.47 if (w->pid == pid || !w->pid)
661     {
662 root 1.63 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
663     w->rpid = pid;
664     w->rstatus = status;
665 root 1.78 ev_feed_event (EV_A_ (W)w, EV_CHILD);
666 root 1.47 }
667     }
668    
669     static void
670 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
671 root 1.22 {
672     int pid, status;
673    
674 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
675     {
676     /* make sure we are called again until all childs have been reaped */
677 root 1.78 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
678 root 1.47
679 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
680     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
681 root 1.47 }
682 root 1.22 }
683    
684 root 1.45 #endif
685    
686 root 1.22 /*****************************************************************************/
687    
688 root 1.44 #if EV_USE_KQUEUE
689     # include "ev_kqueue.c"
690     #endif
691 root 1.29 #if EV_USE_EPOLL
692 root 1.1 # include "ev_epoll.c"
693     #endif
694 root 1.59 #if EV_USE_POLL
695 root 1.41 # include "ev_poll.c"
696     #endif
697 root 1.29 #if EV_USE_SELECT
698 root 1.1 # include "ev_select.c"
699     #endif
700    
701 root 1.24 int
702     ev_version_major (void)
703     {
704     return EV_VERSION_MAJOR;
705     }
706    
707     int
708     ev_version_minor (void)
709     {
710     return EV_VERSION_MINOR;
711     }
712    
713 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
714 root 1.41 static int
715 root 1.51 enable_secure (void)
716 root 1.41 {
717 root 1.49 #ifdef WIN32
718     return 0;
719     #else
720 root 1.41 return getuid () != geteuid ()
721     || getgid () != getegid ();
722 root 1.49 #endif
723 root 1.41 }
724    
725 root 1.51 int
726     ev_method (EV_P)
727 root 1.1 {
728 root 1.51 return method;
729     }
730    
731 root 1.56 static void
732 root 1.54 loop_init (EV_P_ int methods)
733 root 1.51 {
734     if (!method)
735 root 1.23 {
736 root 1.29 #if EV_USE_MONOTONIC
737 root 1.23 {
738     struct timespec ts;
739     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
740     have_monotonic = 1;
741     }
742 root 1.1 #endif
743    
744 root 1.85 ev_rt_now = ev_time ();
745 root 1.51 mn_now = get_clock ();
746     now_floor = mn_now;
747 root 1.85 rtmn_diff = ev_rt_now - mn_now;
748 root 1.1
749 root 1.41 if (methods == EVMETHOD_AUTO)
750 root 1.56 if (!enable_secure () && getenv ("LIBEV_METHODS"))
751     methods = atoi (getenv ("LIBEV_METHODS"));
752 root 1.50 else
753     methods = EVMETHOD_ANY;
754 root 1.41
755 root 1.51 method = 0;
756 root 1.62 #if EV_USE_WIN32
757     if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
758     #endif
759 root 1.44 #if EV_USE_KQUEUE
760 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
761 root 1.44 #endif
762 root 1.29 #if EV_USE_EPOLL
763 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
764 root 1.41 #endif
765 root 1.59 #if EV_USE_POLL
766 root 1.51 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
767 root 1.1 #endif
768 root 1.29 #if EV_USE_SELECT
769 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
770 root 1.1 #endif
771 root 1.70
772 root 1.83 ev_init (&sigev, sigcb);
773 root 1.70 ev_set_priority (&sigev, EV_MAXPRI);
774 root 1.56 }
775     }
776    
777     void
778     loop_destroy (EV_P)
779     {
780 root 1.65 int i;
781    
782 root 1.62 #if EV_USE_WIN32
783     if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
784     #endif
785 root 1.56 #if EV_USE_KQUEUE
786     if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
787     #endif
788     #if EV_USE_EPOLL
789     if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
790     #endif
791 root 1.59 #if EV_USE_POLL
792 root 1.56 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
793     #endif
794     #if EV_USE_SELECT
795     if (method == EVMETHOD_SELECT) select_destroy (EV_A);
796     #endif
797 root 1.1
798 root 1.65 for (i = NUMPRI; i--; )
799     array_free (pending, [i]);
800    
801 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
802     array_free_microshit (fdchange);
803     array_free_microshit (timer);
804     array_free_microshit (periodic);
805     array_free_microshit (idle);
806     array_free_microshit (prepare);
807     array_free_microshit (check);
808 root 1.65
809 root 1.56 method = 0;
810     }
811 root 1.22
812 root 1.70 static void
813 root 1.56 loop_fork (EV_P)
814     {
815     #if EV_USE_EPOLL
816     if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
817     #endif
818     #if EV_USE_KQUEUE
819     if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
820 root 1.45 #endif
821 root 1.70
822     if (ev_is_active (&sigev))
823     {
824     /* default loop */
825    
826     ev_ref (EV_A);
827     ev_io_stop (EV_A_ &sigev);
828     close (sigpipe [0]);
829     close (sigpipe [1]);
830    
831 root 1.73 while (pipe (sigpipe))
832 root 1.70 syserr ("(libev) error creating pipe");
833    
834     siginit (EV_A);
835     }
836    
837     postfork = 0;
838 root 1.1 }
839    
840 root 1.55 #if EV_MULTIPLICITY
841 root 1.54 struct ev_loop *
842     ev_loop_new (int methods)
843     {
844 root 1.69 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
845    
846     memset (loop, 0, sizeof (struct ev_loop));
847 root 1.54
848 root 1.56 loop_init (EV_A_ methods);
849    
850 root 1.60 if (ev_method (EV_A))
851 root 1.55 return loop;
852 root 1.54
853 root 1.55 return 0;
854 root 1.54 }
855    
856     void
857 root 1.56 ev_loop_destroy (EV_P)
858 root 1.54 {
859 root 1.56 loop_destroy (EV_A);
860 root 1.69 ev_free (loop);
861 root 1.54 }
862    
863 root 1.56 void
864     ev_loop_fork (EV_P)
865     {
866 root 1.70 postfork = 1;
867 root 1.56 }
868    
869     #endif
870    
871     #if EV_MULTIPLICITY
872     struct ev_loop *
873 root 1.54 #else
874     int
875 root 1.56 #endif
876     ev_default_loop (int methods)
877 root 1.54 {
878 root 1.56 if (sigpipe [0] == sigpipe [1])
879 root 1.73 if (pipe (sigpipe))
880 root 1.56 return 0;
881 root 1.54
882 root 1.56 if (!default_loop)
883     {
884     #if EV_MULTIPLICITY
885     struct ev_loop *loop = default_loop = &default_loop_struct;
886     #else
887     default_loop = 1;
888 root 1.54 #endif
889    
890 root 1.56 loop_init (EV_A_ methods);
891    
892     if (ev_method (EV_A))
893     {
894     siginit (EV_A);
895    
896     #ifndef WIN32
897     ev_signal_init (&childev, childcb, SIGCHLD);
898     ev_set_priority (&childev, EV_MAXPRI);
899     ev_signal_start (EV_A_ &childev);
900     ev_unref (EV_A); /* child watcher should not keep loop alive */
901     #endif
902     }
903     else
904     default_loop = 0;
905     }
906 root 1.8
907 root 1.56 return default_loop;
908 root 1.1 }
909    
910 root 1.24 void
911 root 1.56 ev_default_destroy (void)
912 root 1.1 {
913 root 1.57 #if EV_MULTIPLICITY
914 root 1.56 struct ev_loop *loop = default_loop;
915 root 1.57 #endif
916 root 1.56
917 root 1.71 #ifndef WIN32
918 root 1.56 ev_ref (EV_A); /* child watcher */
919     ev_signal_stop (EV_A_ &childev);
920 root 1.71 #endif
921 root 1.56
922     ev_ref (EV_A); /* signal watcher */
923     ev_io_stop (EV_A_ &sigev);
924    
925     close (sigpipe [0]); sigpipe [0] = 0;
926     close (sigpipe [1]); sigpipe [1] = 0;
927    
928     loop_destroy (EV_A);
929 root 1.1 }
930    
931 root 1.24 void
932 root 1.60 ev_default_fork (void)
933 root 1.1 {
934 root 1.60 #if EV_MULTIPLICITY
935     struct ev_loop *loop = default_loop;
936     #endif
937    
938 root 1.70 if (method)
939     postfork = 1;
940 root 1.1 }
941    
942 root 1.8 /*****************************************************************************/
943    
944 root 1.76 static int
945     any_pending (EV_P)
946     {
947     int pri;
948    
949     for (pri = NUMPRI; pri--; )
950     if (pendingcnt [pri])
951     return 1;
952    
953     return 0;
954     }
955    
956 root 1.1 static void
957 root 1.51 call_pending (EV_P)
958 root 1.1 {
959 root 1.42 int pri;
960    
961     for (pri = NUMPRI; pri--; )
962     while (pendingcnt [pri])
963     {
964     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
965 root 1.1
966 root 1.42 if (p->w)
967     {
968     p->w->pending = 0;
969 root 1.82 EV_CB_INVOKE (p->w, p->events);
970 root 1.42 }
971     }
972 root 1.1 }
973    
974     static void
975 root 1.51 timers_reify (EV_P)
976 root 1.1 {
977 root 1.63 while (timercnt && ((WT)timers [0])->at <= mn_now)
978 root 1.1 {
979     struct ev_timer *w = timers [0];
980    
981 root 1.61 assert (("inactive timer on timer heap detected", ev_is_active (w)));
982    
983 root 1.4 /* first reschedule or stop timer */
984 root 1.1 if (w->repeat)
985     {
986 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
987 root 1.63 ((WT)w)->at = mn_now + w->repeat;
988 root 1.12 downheap ((WT *)timers, timercnt, 0);
989     }
990     else
991 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
992 root 1.30
993 root 1.78 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
994 root 1.12 }
995     }
996 root 1.4
997 root 1.12 static void
998 root 1.51 periodics_reify (EV_P)
999 root 1.12 {
1000 root 1.85 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1001 root 1.12 {
1002     struct ev_periodic *w = periodics [0];
1003 root 1.1
1004 root 1.61 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1005    
1006 root 1.12 /* first reschedule or stop timer */
1007 root 1.77 if (w->reschedule_cb)
1008     {
1009 root 1.85 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1010 root 1.77
1011 root 1.85 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1012 root 1.77 downheap ((WT *)periodics, periodiccnt, 0);
1013     }
1014     else if (w->interval)
1015 root 1.12 {
1016 root 1.85 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1017     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1018 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
1019 root 1.1 }
1020     else
1021 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1022 root 1.12
1023 root 1.78 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1024 root 1.12 }
1025     }
1026    
1027     static void
1028 root 1.54 periodics_reschedule (EV_P)
1029 root 1.12 {
1030     int i;
1031    
1032 root 1.13 /* adjust periodics after time jump */
1033 root 1.12 for (i = 0; i < periodiccnt; ++i)
1034     {
1035     struct ev_periodic *w = periodics [i];
1036    
1037 root 1.77 if (w->reschedule_cb)
1038 root 1.85 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1039 root 1.77 else if (w->interval)
1040 root 1.85 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1041 root 1.77 }
1042 root 1.12
1043 root 1.77 /* now rebuild the heap */
1044     for (i = periodiccnt >> 1; i--; )
1045     downheap ((WT *)periodics, periodiccnt, i);
1046 root 1.1 }
1047    
1048 root 1.51 inline int
1049     time_update_monotonic (EV_P)
1050 root 1.40 {
1051 root 1.51 mn_now = get_clock ();
1052 root 1.40
1053 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1054 root 1.40 {
1055 root 1.85 ev_rt_now = rtmn_diff + mn_now;
1056 root 1.40 return 0;
1057     }
1058     else
1059     {
1060 root 1.51 now_floor = mn_now;
1061 root 1.85 ev_rt_now = ev_time ();
1062 root 1.40 return 1;
1063     }
1064     }
1065    
1066 root 1.4 static void
1067 root 1.51 time_update (EV_P)
1068 root 1.4 {
1069     int i;
1070 root 1.12
1071 root 1.40 #if EV_USE_MONOTONIC
1072     if (expect_true (have_monotonic))
1073     {
1074 root 1.51 if (time_update_monotonic (EV_A))
1075 root 1.40 {
1076 root 1.54 ev_tstamp odiff = rtmn_diff;
1077 root 1.4
1078 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1079     {
1080 root 1.85 rtmn_diff = ev_rt_now - mn_now;
1081 root 1.4
1082 root 1.54 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1083 root 1.40 return; /* all is well */
1084 root 1.4
1085 root 1.85 ev_rt_now = ev_time ();
1086 root 1.51 mn_now = get_clock ();
1087     now_floor = mn_now;
1088 root 1.40 }
1089 root 1.4
1090 root 1.54 periodics_reschedule (EV_A);
1091 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
1092 root 1.54 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1093 root 1.4 }
1094     }
1095     else
1096 root 1.40 #endif
1097 root 1.4 {
1098 root 1.85 ev_rt_now = ev_time ();
1099 root 1.40
1100 root 1.85 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1101 root 1.13 {
1102 root 1.54 periodics_reschedule (EV_A);
1103 root 1.13
1104     /* adjust timers. this is easy, as the offset is the same for all */
1105     for (i = 0; i < timercnt; ++i)
1106 root 1.85 ((WT)timers [i])->at += ev_rt_now - mn_now;
1107 root 1.13 }
1108 root 1.4
1109 root 1.85 mn_now = ev_rt_now;
1110 root 1.4 }
1111     }
1112    
1113 root 1.51 void
1114     ev_ref (EV_P)
1115     {
1116     ++activecnt;
1117     }
1118 root 1.1
1119 root 1.51 void
1120     ev_unref (EV_P)
1121     {
1122     --activecnt;
1123     }
1124    
1125     static int loop_done;
1126    
1127     void
1128     ev_loop (EV_P_ int flags)
1129 root 1.1 {
1130     double block;
1131 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1132 root 1.1
1133 root 1.20 do
1134 root 1.9 {
1135 root 1.20 /* queue check watchers (and execute them) */
1136 root 1.40 if (expect_false (preparecnt))
1137 root 1.20 {
1138 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1139     call_pending (EV_A);
1140 root 1.20 }
1141 root 1.9
1142 root 1.70 /* we might have forked, so reify kernel state if necessary */
1143     if (expect_false (postfork))
1144     loop_fork (EV_A);
1145    
1146 root 1.1 /* update fd-related kernel structures */
1147 root 1.51 fd_reify (EV_A);
1148 root 1.1
1149     /* calculate blocking time */
1150 root 1.12
1151 root 1.76 /* we only need this for !monotonic clock or timers, but as we basically
1152 root 1.21 always have timers, we just calculate it always */
1153 root 1.40 #if EV_USE_MONOTONIC
1154     if (expect_true (have_monotonic))
1155 root 1.51 time_update_monotonic (EV_A);
1156 root 1.40 else
1157     #endif
1158     {
1159 root 1.85 ev_rt_now = ev_time ();
1160     mn_now = ev_rt_now;
1161 root 1.40 }
1162 root 1.12
1163 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
1164 root 1.1 block = 0.;
1165     else
1166     {
1167 root 1.4 block = MAX_BLOCKTIME;
1168    
1169 root 1.12 if (timercnt)
1170 root 1.4 {
1171 root 1.63 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1172 root 1.4 if (block > to) block = to;
1173     }
1174    
1175 root 1.12 if (periodiccnt)
1176 root 1.4 {
1177 root 1.85 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1178 root 1.4 if (block > to) block = to;
1179     }
1180    
1181 root 1.1 if (block < 0.) block = 0.;
1182     }
1183    
1184 root 1.51 method_poll (EV_A_ block);
1185 root 1.1
1186 root 1.85 /* update ev_rt_now, do magic */
1187 root 1.51 time_update (EV_A);
1188 root 1.4
1189 root 1.9 /* queue pending timers and reschedule them */
1190 root 1.51 timers_reify (EV_A); /* relative timers called last */
1191     periodics_reify (EV_A); /* absolute timers called first */
1192 root 1.1
1193 root 1.9 /* queue idle watchers unless io or timers are pending */
1194 root 1.76 if (idlecnt && !any_pending (EV_A))
1195 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1196 root 1.9
1197 root 1.20 /* queue check watchers, to be executed first */
1198     if (checkcnt)
1199 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1200 root 1.9
1201 root 1.51 call_pending (EV_A);
1202 root 1.1 }
1203 root 1.51 while (activecnt && !loop_done);
1204 root 1.13
1205 root 1.51 if (loop_done != 2)
1206     loop_done = 0;
1207     }
1208    
1209     void
1210     ev_unloop (EV_P_ int how)
1211     {
1212     loop_done = how;
1213 root 1.1 }
1214    
1215 root 1.8 /*****************************************************************************/
1216    
1217 root 1.51 inline void
1218 root 1.10 wlist_add (WL *head, WL elem)
1219 root 1.1 {
1220     elem->next = *head;
1221     *head = elem;
1222     }
1223    
1224 root 1.51 inline void
1225 root 1.10 wlist_del (WL *head, WL elem)
1226 root 1.1 {
1227     while (*head)
1228     {
1229     if (*head == elem)
1230     {
1231     *head = elem->next;
1232     return;
1233     }
1234    
1235     head = &(*head)->next;
1236     }
1237     }
1238    
1239 root 1.51 inline void
1240     ev_clear_pending (EV_P_ W w)
1241 root 1.16 {
1242     if (w->pending)
1243     {
1244 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1245 root 1.16 w->pending = 0;
1246     }
1247     }
1248    
1249 root 1.51 inline void
1250     ev_start (EV_P_ W w, int active)
1251 root 1.1 {
1252 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1253     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1254    
1255 root 1.1 w->active = active;
1256 root 1.51 ev_ref (EV_A);
1257 root 1.1 }
1258    
1259 root 1.51 inline void
1260     ev_stop (EV_P_ W w)
1261 root 1.1 {
1262 root 1.51 ev_unref (EV_A);
1263 root 1.1 w->active = 0;
1264     }
1265    
1266 root 1.8 /*****************************************************************************/
1267    
1268 root 1.1 void
1269 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
1270 root 1.1 {
1271 root 1.37 int fd = w->fd;
1272    
1273 root 1.1 if (ev_is_active (w))
1274     return;
1275    
1276 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
1277    
1278 root 1.51 ev_start (EV_A_ (W)w, 1);
1279 root 1.74 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1280 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1281 root 1.1
1282 root 1.51 fd_change (EV_A_ fd);
1283 root 1.1 }
1284    
1285     void
1286 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
1287 root 1.1 {
1288 root 1.51 ev_clear_pending (EV_A_ (W)w);
1289 root 1.1 if (!ev_is_active (w))
1290     return;
1291    
1292 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1293 root 1.51 ev_stop (EV_A_ (W)w);
1294 root 1.1
1295 root 1.51 fd_change (EV_A_ w->fd);
1296 root 1.1 }
1297    
1298     void
1299 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1300 root 1.1 {
1301     if (ev_is_active (w))
1302     return;
1303    
1304 root 1.63 ((WT)w)->at += mn_now;
1305 root 1.12
1306 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1307 root 1.13
1308 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1309 root 1.74 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1310 root 1.12 timers [timercnt - 1] = w;
1311     upheap ((WT *)timers, timercnt - 1);
1312 root 1.62
1313     assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1314 root 1.12 }
1315    
1316     void
1317 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1318 root 1.12 {
1319 root 1.51 ev_clear_pending (EV_A_ (W)w);
1320 root 1.12 if (!ev_is_active (w))
1321     return;
1322    
1323 root 1.62 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1324    
1325     if (((W)w)->active < timercnt--)
1326 root 1.1 {
1327 root 1.62 timers [((W)w)->active - 1] = timers [timercnt];
1328     downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1329 root 1.12 }
1330 root 1.4
1331 root 1.63 ((WT)w)->at = w->repeat;
1332 root 1.14
1333 root 1.51 ev_stop (EV_A_ (W)w);
1334 root 1.12 }
1335 root 1.4
1336 root 1.12 void
1337 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1338 root 1.14 {
1339     if (ev_is_active (w))
1340     {
1341     if (w->repeat)
1342 root 1.84 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1343 root 1.14 else
1344 root 1.51 ev_timer_stop (EV_A_ w);
1345 root 1.14 }
1346     else if (w->repeat)
1347 root 1.51 ev_timer_start (EV_A_ w);
1348 root 1.14 }
1349    
1350     void
1351 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1352 root 1.12 {
1353     if (ev_is_active (w))
1354     return;
1355 root 1.1
1356 root 1.77 if (w->reschedule_cb)
1357 root 1.85 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1358 root 1.77 else if (w->interval)
1359     {
1360     assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1361     /* this formula differs from the one in periodic_reify because we do not always round up */
1362 root 1.85 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1363 root 1.77 }
1364 root 1.12
1365 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1366 root 1.74 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1367 root 1.12 periodics [periodiccnt - 1] = w;
1368     upheap ((WT *)periodics, periodiccnt - 1);
1369 root 1.62
1370     assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1371 root 1.1 }
1372    
1373     void
1374 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1375 root 1.1 {
1376 root 1.51 ev_clear_pending (EV_A_ (W)w);
1377 root 1.1 if (!ev_is_active (w))
1378     return;
1379    
1380 root 1.62 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1381    
1382     if (((W)w)->active < periodiccnt--)
1383 root 1.2 {
1384 root 1.62 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1385     downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1386 root 1.2 }
1387    
1388 root 1.51 ev_stop (EV_A_ (W)w);
1389 root 1.1 }
1390    
1391 root 1.28 void
1392 root 1.77 ev_periodic_again (EV_P_ struct ev_periodic *w)
1393     {
1394 root 1.84 /* TODO: use adjustheap and recalculation */
1395 root 1.77 ev_periodic_stop (EV_A_ w);
1396     ev_periodic_start (EV_A_ w);
1397     }
1398    
1399     void
1400 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1401 root 1.9 {
1402     if (ev_is_active (w))
1403     return;
1404    
1405 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1406 root 1.74 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1407 root 1.9 idles [idlecnt - 1] = w;
1408     }
1409    
1410 root 1.28 void
1411 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1412 root 1.9 {
1413 root 1.51 ev_clear_pending (EV_A_ (W)w);
1414 root 1.16 if (ev_is_active (w))
1415     return;
1416    
1417 root 1.62 idles [((W)w)->active - 1] = idles [--idlecnt];
1418 root 1.51 ev_stop (EV_A_ (W)w);
1419 root 1.9 }
1420    
1421 root 1.28 void
1422 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1423 root 1.20 {
1424     if (ev_is_active (w))
1425     return;
1426    
1427 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1428 root 1.74 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1429 root 1.20 prepares [preparecnt - 1] = w;
1430     }
1431    
1432 root 1.28 void
1433 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1434 root 1.20 {
1435 root 1.51 ev_clear_pending (EV_A_ (W)w);
1436 root 1.20 if (ev_is_active (w))
1437     return;
1438    
1439 root 1.62 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1440 root 1.51 ev_stop (EV_A_ (W)w);
1441 root 1.20 }
1442    
1443 root 1.28 void
1444 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1445 root 1.9 {
1446     if (ev_is_active (w))
1447     return;
1448    
1449 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1450 root 1.74 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1451 root 1.9 checks [checkcnt - 1] = w;
1452     }
1453    
1454 root 1.28 void
1455 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1456 root 1.9 {
1457 root 1.51 ev_clear_pending (EV_A_ (W)w);
1458 root 1.16 if (ev_is_active (w))
1459     return;
1460    
1461 root 1.62 checks [((W)w)->active - 1] = checks [--checkcnt];
1462 root 1.51 ev_stop (EV_A_ (W)w);
1463 root 1.9 }
1464    
1465 root 1.56 #ifndef SA_RESTART
1466     # define SA_RESTART 0
1467     #endif
1468    
1469     void
1470     ev_signal_start (EV_P_ struct ev_signal *w)
1471     {
1472     #if EV_MULTIPLICITY
1473     assert (("signal watchers are only supported in the default loop", loop == default_loop));
1474     #endif
1475     if (ev_is_active (w))
1476     return;
1477    
1478     assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1479    
1480     ev_start (EV_A_ (W)w, 1);
1481 root 1.74 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1482 root 1.56 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1483    
1484 root 1.63 if (!((WL)w)->next)
1485 root 1.56 {
1486 root 1.67 #if WIN32
1487     signal (w->signum, sighandler);
1488     #else
1489 root 1.56 struct sigaction sa;
1490     sa.sa_handler = sighandler;
1491     sigfillset (&sa.sa_mask);
1492     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1493     sigaction (w->signum, &sa, 0);
1494 root 1.67 #endif
1495 root 1.56 }
1496     }
1497    
1498     void
1499     ev_signal_stop (EV_P_ struct ev_signal *w)
1500     {
1501     ev_clear_pending (EV_A_ (W)w);
1502     if (!ev_is_active (w))
1503     return;
1504    
1505     wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1506     ev_stop (EV_A_ (W)w);
1507    
1508     if (!signals [w->signum - 1].head)
1509     signal (w->signum, SIG_DFL);
1510     }
1511    
1512 root 1.28 void
1513 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1514 root 1.22 {
1515 root 1.56 #if EV_MULTIPLICITY
1516     assert (("child watchers are only supported in the default loop", loop == default_loop));
1517     #endif
1518 root 1.22 if (ev_is_active (w))
1519     return;
1520    
1521 root 1.51 ev_start (EV_A_ (W)w, 1);
1522 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1523     }
1524    
1525 root 1.28 void
1526 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1527 root 1.22 {
1528 root 1.51 ev_clear_pending (EV_A_ (W)w);
1529 root 1.22 if (ev_is_active (w))
1530     return;
1531    
1532     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1533 root 1.51 ev_stop (EV_A_ (W)w);
1534 root 1.22 }
1535    
1536 root 1.1 /*****************************************************************************/
1537 root 1.10
1538 root 1.16 struct ev_once
1539     {
1540     struct ev_io io;
1541     struct ev_timer to;
1542     void (*cb)(int revents, void *arg);
1543     void *arg;
1544     };
1545    
1546     static void
1547 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1548 root 1.16 {
1549     void (*cb)(int revents, void *arg) = once->cb;
1550     void *arg = once->arg;
1551    
1552 root 1.51 ev_io_stop (EV_A_ &once->io);
1553     ev_timer_stop (EV_A_ &once->to);
1554 root 1.69 ev_free (once);
1555 root 1.16
1556     cb (revents, arg);
1557     }
1558    
1559     static void
1560 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1561 root 1.16 {
1562 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1563 root 1.16 }
1564    
1565     static void
1566 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1567 root 1.16 {
1568 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1569 root 1.16 }
1570    
1571     void
1572 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1573 root 1.16 {
1574 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1575 root 1.16
1576     if (!once)
1577 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1578 root 1.16 else
1579     {
1580     once->cb = cb;
1581     once->arg = arg;
1582    
1583 root 1.83 ev_init (&once->io, once_cb_io);
1584 root 1.16 if (fd >= 0)
1585     {
1586 root 1.28 ev_io_set (&once->io, fd, events);
1587 root 1.51 ev_io_start (EV_A_ &once->io);
1588 root 1.16 }
1589    
1590 root 1.83 ev_init (&once->to, once_cb_to);
1591 root 1.16 if (timeout >= 0.)
1592     {
1593 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1594 root 1.51 ev_timer_start (EV_A_ &once->to);
1595 root 1.16 }
1596     }
1597     }
1598