ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.288
Committed: Sat Apr 25 14:12:48 2009 UTC (15 years ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-3_6
Changes since 1.287: +66 -27 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_SYSCALL
53 # ifndef EV_USE_CLOCK_SYSCALL
54 # define EV_USE_CLOCK_SYSCALL 1
55 # ifndef EV_USE_REALTIME
56 # define EV_USE_REALTIME 0
57 # endif
58 # ifndef EV_USE_MONOTONIC
59 # define EV_USE_MONOTONIC 1
60 # endif
61 # endif
62 # endif
63
64 # if HAVE_CLOCK_GETTIME
65 # ifndef EV_USE_MONOTONIC
66 # define EV_USE_MONOTONIC 1
67 # endif
68 # ifndef EV_USE_REALTIME
69 # define EV_USE_REALTIME 0
70 # endif
71 # else
72 # ifndef EV_USE_MONOTONIC
73 # define EV_USE_MONOTONIC 0
74 # endif
75 # ifndef EV_USE_REALTIME
76 # define EV_USE_REALTIME 0
77 # endif
78 # endif
79
80 # ifndef EV_USE_NANOSLEEP
81 # if HAVE_NANOSLEEP
82 # define EV_USE_NANOSLEEP 1
83 # else
84 # define EV_USE_NANOSLEEP 0
85 # endif
86 # endif
87
88 # ifndef EV_USE_SELECT
89 # if HAVE_SELECT && HAVE_SYS_SELECT_H
90 # define EV_USE_SELECT 1
91 # else
92 # define EV_USE_SELECT 0
93 # endif
94 # endif
95
96 # ifndef EV_USE_POLL
97 # if HAVE_POLL && HAVE_POLL_H
98 # define EV_USE_POLL 1
99 # else
100 # define EV_USE_POLL 0
101 # endif
102 # endif
103
104 # ifndef EV_USE_EPOLL
105 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106 # define EV_USE_EPOLL 1
107 # else
108 # define EV_USE_EPOLL 0
109 # endif
110 # endif
111
112 # ifndef EV_USE_KQUEUE
113 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
114 # define EV_USE_KQUEUE 1
115 # else
116 # define EV_USE_KQUEUE 0
117 # endif
118 # endif
119
120 # ifndef EV_USE_PORT
121 # if HAVE_PORT_H && HAVE_PORT_CREATE
122 # define EV_USE_PORT 1
123 # else
124 # define EV_USE_PORT 0
125 # endif
126 # endif
127
128 # ifndef EV_USE_INOTIFY
129 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130 # define EV_USE_INOTIFY 1
131 # else
132 # define EV_USE_INOTIFY 0
133 # endif
134 # endif
135
136 # ifndef EV_USE_EVENTFD
137 # if HAVE_EVENTFD
138 # define EV_USE_EVENTFD 1
139 # else
140 # define EV_USE_EVENTFD 0
141 # endif
142 # endif
143
144 #endif
145
146 #include <math.h>
147 #include <stdlib.h>
148 #include <fcntl.h>
149 #include <stddef.h>
150
151 #include <stdio.h>
152
153 #include <assert.h>
154 #include <errno.h>
155 #include <sys/types.h>
156 #include <time.h>
157
158 #include <signal.h>
159
160 #ifdef EV_H
161 # include EV_H
162 #else
163 # include "ev.h"
164 #endif
165
166 #ifndef _WIN32
167 # include <sys/time.h>
168 # include <sys/wait.h>
169 # include <unistd.h>
170 #else
171 # include <io.h>
172 # define WIN32_LEAN_AND_MEAN
173 # include <windows.h>
174 # ifndef EV_SELECT_IS_WINSOCKET
175 # define EV_SELECT_IS_WINSOCKET 1
176 # endif
177 #endif
178
179 /* this block tries to deduce configuration from header-defined symbols and defaults */
180
181 #ifndef EV_USE_CLOCK_SYSCALL
182 # if __linux && __GLIBC__ >= 2
183 # define EV_USE_CLOCK_SYSCALL 1
184 # else
185 # define EV_USE_CLOCK_SYSCALL 0
186 # endif
187 #endif
188
189 #ifndef EV_USE_MONOTONIC
190 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191 # define EV_USE_MONOTONIC 1
192 # else
193 # define EV_USE_MONOTONIC 0
194 # endif
195 #endif
196
197 #ifndef EV_USE_REALTIME
198 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199 #endif
200
201 #ifndef EV_USE_NANOSLEEP
202 # if _POSIX_C_SOURCE >= 199309L
203 # define EV_USE_NANOSLEEP 1
204 # else
205 # define EV_USE_NANOSLEEP 0
206 # endif
207 #endif
208
209 #ifndef EV_USE_SELECT
210 # define EV_USE_SELECT 1
211 #endif
212
213 #ifndef EV_USE_POLL
214 # ifdef _WIN32
215 # define EV_USE_POLL 0
216 # else
217 # define EV_USE_POLL 1
218 # endif
219 #endif
220
221 #ifndef EV_USE_EPOLL
222 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223 # define EV_USE_EPOLL 1
224 # else
225 # define EV_USE_EPOLL 0
226 # endif
227 #endif
228
229 #ifndef EV_USE_KQUEUE
230 # define EV_USE_KQUEUE 0
231 #endif
232
233 #ifndef EV_USE_PORT
234 # define EV_USE_PORT 0
235 #endif
236
237 #ifndef EV_USE_INOTIFY
238 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239 # define EV_USE_INOTIFY 1
240 # else
241 # define EV_USE_INOTIFY 0
242 # endif
243 #endif
244
245 #ifndef EV_PID_HASHSIZE
246 # if EV_MINIMAL
247 # define EV_PID_HASHSIZE 1
248 # else
249 # define EV_PID_HASHSIZE 16
250 # endif
251 #endif
252
253 #ifndef EV_INOTIFY_HASHSIZE
254 # if EV_MINIMAL
255 # define EV_INOTIFY_HASHSIZE 1
256 # else
257 # define EV_INOTIFY_HASHSIZE 16
258 # endif
259 #endif
260
261 #ifndef EV_USE_EVENTFD
262 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263 # define EV_USE_EVENTFD 1
264 # else
265 # define EV_USE_EVENTFD 0
266 # endif
267 #endif
268
269 #if 0 /* debugging */
270 # define EV_VERIFY 3
271 # define EV_USE_4HEAP 1
272 # define EV_HEAP_CACHE_AT 1
273 #endif
274
275 #ifndef EV_VERIFY
276 # define EV_VERIFY !EV_MINIMAL
277 #endif
278
279 #ifndef EV_USE_4HEAP
280 # define EV_USE_4HEAP !EV_MINIMAL
281 #endif
282
283 #ifndef EV_HEAP_CACHE_AT
284 # define EV_HEAP_CACHE_AT !EV_MINIMAL
285 #endif
286
287 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
288
289 #ifndef CLOCK_MONOTONIC
290 # undef EV_USE_MONOTONIC
291 # define EV_USE_MONOTONIC 0
292 #endif
293
294 #ifndef CLOCK_REALTIME
295 # undef EV_USE_REALTIME
296 # define EV_USE_REALTIME 0
297 #endif
298
299 #if !EV_STAT_ENABLE
300 # undef EV_USE_INOTIFY
301 # define EV_USE_INOTIFY 0
302 #endif
303
304 #if !EV_USE_NANOSLEEP
305 # ifndef _WIN32
306 # include <sys/select.h>
307 # endif
308 #endif
309
310 #if EV_USE_INOTIFY
311 # include <sys/utsname.h>
312 # include <sys/statfs.h>
313 # include <sys/inotify.h>
314 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315 # ifndef IN_DONT_FOLLOW
316 # undef EV_USE_INOTIFY
317 # define EV_USE_INOTIFY 0
318 # endif
319 #endif
320
321 #if EV_SELECT_IS_WINSOCKET
322 # include <winsock.h>
323 #endif
324
325 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326 /* which makes programs even slower. might work on other unices, too. */
327 #if EV_USE_CLOCK_SYSCALL
328 # include <syscall.h>
329 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330 # undef EV_USE_MONOTONIC
331 # define EV_USE_MONOTONIC 1
332 #endif
333
334 #if EV_USE_EVENTFD
335 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336 # include <stdint.h>
337 # ifdef __cplusplus
338 extern "C" {
339 # endif
340 int eventfd (unsigned int initval, int flags);
341 # ifdef __cplusplus
342 }
343 # endif
344 #endif
345
346 /**/
347
348 #if EV_VERIFY >= 3
349 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350 #else
351 # define EV_FREQUENT_CHECK do { } while (0)
352 #endif
353
354 /*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363
364 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367
368 #if __GNUC__ >= 4
369 # define expect(expr,value) __builtin_expect ((expr),(value))
370 # define noinline __attribute__ ((noinline))
371 #else
372 # define expect(expr,value) (expr)
373 # define noinline
374 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375 # define inline
376 # endif
377 #endif
378
379 #define expect_false(expr) expect ((expr) != 0, 0)
380 #define expect_true(expr) expect ((expr) != 0, 1)
381 #define inline_size static inline
382
383 #if EV_MINIMAL
384 # define inline_speed static noinline
385 #else
386 # define inline_speed static inline
387 #endif
388
389 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390 #define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
391
392 #define EMPTY /* required for microsofts broken pseudo-c compiler */
393 #define EMPTY2(a,b) /* used to suppress some warnings */
394
395 typedef ev_watcher *W;
396 typedef ev_watcher_list *WL;
397 typedef ev_watcher_time *WT;
398
399 #define ev_active(w) ((W)(w))->active
400 #define ev_at(w) ((WT)(w))->at
401
402 #if EV_USE_REALTIME
403 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
404 /* giving it a reasonably high chance of working on typical architetcures */
405 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406 #endif
407
408 #if EV_USE_MONOTONIC
409 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410 #endif
411
412 #ifdef _WIN32
413 # include "ev_win32.c"
414 #endif
415
416 /*****************************************************************************/
417
418 static void (*syserr_cb)(const char *msg);
419
420 void
421 ev_set_syserr_cb (void (*cb)(const char *msg))
422 {
423 syserr_cb = cb;
424 }
425
426 static void noinline
427 ev_syserr (const char *msg)
428 {
429 if (!msg)
430 msg = "(libev) system error";
431
432 if (syserr_cb)
433 syserr_cb (msg);
434 else
435 {
436 perror (msg);
437 abort ();
438 }
439 }
440
441 static void *
442 ev_realloc_emul (void *ptr, long size)
443 {
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454 }
455
456 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
457
458 void
459 ev_set_allocator (void *(*cb)(void *ptr, long size))
460 {
461 alloc = cb;
462 }
463
464 inline_speed void *
465 ev_realloc (void *ptr, long size)
466 {
467 ptr = alloc (ptr, size);
468
469 if (!ptr && size)
470 {
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
472 abort ();
473 }
474
475 return ptr;
476 }
477
478 #define ev_malloc(size) ev_realloc (0, (size))
479 #define ev_free(ptr) ev_realloc ((ptr), 0)
480
481 /*****************************************************************************/
482
483 /* file descriptor info structure */
484 typedef struct
485 {
486 WL head;
487 unsigned char events; /* the events watched for */
488 unsigned char reify; /* flag set when this ANFD needs reification */
489 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
490 unsigned char unused;
491 #if EV_USE_EPOLL
492 unsigned int egen; /* generation counter to counter epoll bugs */
493 #endif
494 #if EV_SELECT_IS_WINSOCKET
495 SOCKET handle;
496 #endif
497 } ANFD;
498
499 /* stores the pending event set for a given watcher */
500 typedef struct
501 {
502 W w;
503 int events; /* the pending event set for the given watcher */
504 } ANPENDING;
505
506 #if EV_USE_INOTIFY
507 /* hash table entry per inotify-id */
508 typedef struct
509 {
510 WL head;
511 } ANFS;
512 #endif
513
514 /* Heap Entry */
515 #if EV_HEAP_CACHE_AT
516 /* a heap element */
517 typedef struct {
518 ev_tstamp at;
519 WT w;
520 } ANHE;
521
522 #define ANHE_w(he) (he).w /* access watcher, read-write */
523 #define ANHE_at(he) (he).at /* access cached at, read-only */
524 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
525 #else
526 /* a heap element */
527 typedef WT ANHE;
528
529 #define ANHE_w(he) (he)
530 #define ANHE_at(he) (he)->at
531 #define ANHE_at_cache(he)
532 #endif
533
534 #if EV_MULTIPLICITY
535
536 struct ev_loop
537 {
538 ev_tstamp ev_rt_now;
539 #define ev_rt_now ((loop)->ev_rt_now)
540 #define VAR(name,decl) decl;
541 #include "ev_vars.h"
542 #undef VAR
543 };
544 #include "ev_wrap.h"
545
546 static struct ev_loop default_loop_struct;
547 struct ev_loop *ev_default_loop_ptr;
548
549 #else
550
551 ev_tstamp ev_rt_now;
552 #define VAR(name,decl) static decl;
553 #include "ev_vars.h"
554 #undef VAR
555
556 static int ev_default_loop_ptr;
557
558 #endif
559
560 /*****************************************************************************/
561
562 ev_tstamp
563 ev_time (void)
564 {
565 #if EV_USE_REALTIME
566 if (expect_true (have_realtime))
567 {
568 struct timespec ts;
569 clock_gettime (CLOCK_REALTIME, &ts);
570 return ts.tv_sec + ts.tv_nsec * 1e-9;
571 }
572 #endif
573
574 struct timeval tv;
575 gettimeofday (&tv, 0);
576 return tv.tv_sec + tv.tv_usec * 1e-6;
577 }
578
579 inline_size ev_tstamp
580 get_clock (void)
581 {
582 #if EV_USE_MONOTONIC
583 if (expect_true (have_monotonic))
584 {
585 struct timespec ts;
586 clock_gettime (CLOCK_MONOTONIC, &ts);
587 return ts.tv_sec + ts.tv_nsec * 1e-9;
588 }
589 #endif
590
591 return ev_time ();
592 }
593
594 #if EV_MULTIPLICITY
595 ev_tstamp
596 ev_now (EV_P)
597 {
598 return ev_rt_now;
599 }
600 #endif
601
602 void
603 ev_sleep (ev_tstamp delay)
604 {
605 if (delay > 0.)
606 {
607 #if EV_USE_NANOSLEEP
608 struct timespec ts;
609
610 ts.tv_sec = (time_t)delay;
611 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
612
613 nanosleep (&ts, 0);
614 #elif defined(_WIN32)
615 Sleep ((unsigned long)(delay * 1e3));
616 #else
617 struct timeval tv;
618
619 tv.tv_sec = (time_t)delay;
620 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
621
622 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
623 /* somehting nto guaranteed by newer posix versions, but guaranteed */
624 /* by older ones */
625 select (0, 0, 0, 0, &tv);
626 #endif
627 }
628 }
629
630 /*****************************************************************************/
631
632 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
633
634 /* find a suitable new size for the given array, */
635 /* hopefully by rounding to a ncie-to-malloc size */
636 inline_size int
637 array_nextsize (int elem, int cur, int cnt)
638 {
639 int ncur = cur + 1;
640
641 do
642 ncur <<= 1;
643 while (cnt > ncur);
644
645 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
646 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
647 {
648 ncur *= elem;
649 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
650 ncur = ncur - sizeof (void *) * 4;
651 ncur /= elem;
652 }
653
654 return ncur;
655 }
656
657 static noinline void *
658 array_realloc (int elem, void *base, int *cur, int cnt)
659 {
660 *cur = array_nextsize (elem, *cur, cnt);
661 return ev_realloc (base, elem * *cur);
662 }
663
664 #define array_init_zero(base,count) \
665 memset ((void *)(base), 0, sizeof (*(base)) * (count))
666
667 #define array_needsize(type,base,cur,cnt,init) \
668 if (expect_false ((cnt) > (cur))) \
669 { \
670 int ocur_ = (cur); \
671 (base) = (type *)array_realloc \
672 (sizeof (type), (base), &(cur), (cnt)); \
673 init ((base) + (ocur_), (cur) - ocur_); \
674 }
675
676 #if 0
677 #define array_slim(type,stem) \
678 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
679 { \
680 stem ## max = array_roundsize (stem ## cnt >> 1); \
681 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
682 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
683 }
684 #endif
685
686 #define array_free(stem, idx) \
687 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
688
689 /*****************************************************************************/
690
691 /* dummy callback for pending events */
692 static void noinline
693 pendingcb (EV_P_ ev_prepare *w, int revents)
694 {
695 }
696
697 void noinline
698 ev_feed_event (EV_P_ void *w, int revents)
699 {
700 W w_ = (W)w;
701 int pri = ABSPRI (w_);
702
703 if (expect_false (w_->pending))
704 pendings [pri][w_->pending - 1].events |= revents;
705 else
706 {
707 w_->pending = ++pendingcnt [pri];
708 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
709 pendings [pri][w_->pending - 1].w = w_;
710 pendings [pri][w_->pending - 1].events = revents;
711 }
712 }
713
714 inline_speed void
715 feed_reverse (EV_P_ W w)
716 {
717 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718 rfeeds [rfeedcnt++] = w;
719 }
720
721 inline_size void
722 feed_reverse_done (EV_P_ int revents)
723 {
724 do
725 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726 while (rfeedcnt);
727 }
728
729 inline_speed void
730 queue_events (EV_P_ W *events, int eventcnt, int type)
731 {
732 int i;
733
734 for (i = 0; i < eventcnt; ++i)
735 ev_feed_event (EV_A_ events [i], type);
736 }
737
738 /*****************************************************************************/
739
740 inline_speed void
741 fd_event (EV_P_ int fd, int revents)
742 {
743 ANFD *anfd = anfds + fd;
744 ev_io *w;
745
746 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
747 {
748 int ev = w->events & revents;
749
750 if (ev)
751 ev_feed_event (EV_A_ (W)w, ev);
752 }
753 }
754
755 void
756 ev_feed_fd_event (EV_P_ int fd, int revents)
757 {
758 if (fd >= 0 && fd < anfdmax)
759 fd_event (EV_A_ fd, revents);
760 }
761
762 /* make sure the external fd watch events are in-sync */
763 /* with the kernel/libev internal state */
764 inline_size void
765 fd_reify (EV_P)
766 {
767 int i;
768
769 for (i = 0; i < fdchangecnt; ++i)
770 {
771 int fd = fdchanges [i];
772 ANFD *anfd = anfds + fd;
773 ev_io *w;
774
775 unsigned char events = 0;
776
777 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
778 events |= (unsigned char)w->events;
779
780 #if EV_SELECT_IS_WINSOCKET
781 if (events)
782 {
783 unsigned long arg;
784 #ifdef EV_FD_TO_WIN32_HANDLE
785 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
786 #else
787 anfd->handle = _get_osfhandle (fd);
788 #endif
789 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
790 }
791 #endif
792
793 {
794 unsigned char o_events = anfd->events;
795 unsigned char o_reify = anfd->reify;
796
797 anfd->reify = 0;
798 anfd->events = events;
799
800 if (o_events != events || o_reify & EV__IOFDSET)
801 backend_modify (EV_A_ fd, o_events, events);
802 }
803 }
804
805 fdchangecnt = 0;
806 }
807
808 /* something about the given fd changed */
809 inline_size void
810 fd_change (EV_P_ int fd, int flags)
811 {
812 unsigned char reify = anfds [fd].reify;
813 anfds [fd].reify |= flags;
814
815 if (expect_true (!reify))
816 {
817 ++fdchangecnt;
818 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
819 fdchanges [fdchangecnt - 1] = fd;
820 }
821 }
822
823 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824 inline_speed void
825 fd_kill (EV_P_ int fd)
826 {
827 ev_io *w;
828
829 while ((w = (ev_io *)anfds [fd].head))
830 {
831 ev_io_stop (EV_A_ w);
832 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
833 }
834 }
835
836 /* check whether the given fd is atcually valid, for error recovery */
837 inline_size int
838 fd_valid (int fd)
839 {
840 #ifdef _WIN32
841 return _get_osfhandle (fd) != -1;
842 #else
843 return fcntl (fd, F_GETFD) != -1;
844 #endif
845 }
846
847 /* called on EBADF to verify fds */
848 static void noinline
849 fd_ebadf (EV_P)
850 {
851 int fd;
852
853 for (fd = 0; fd < anfdmax; ++fd)
854 if (anfds [fd].events)
855 if (!fd_valid (fd) && errno == EBADF)
856 fd_kill (EV_A_ fd);
857 }
858
859 /* called on ENOMEM in select/poll to kill some fds and retry */
860 static void noinline
861 fd_enomem (EV_P)
862 {
863 int fd;
864
865 for (fd = anfdmax; fd--; )
866 if (anfds [fd].events)
867 {
868 fd_kill (EV_A_ fd);
869 return;
870 }
871 }
872
873 /* usually called after fork if backend needs to re-arm all fds from scratch */
874 static void noinline
875 fd_rearm_all (EV_P)
876 {
877 int fd;
878
879 for (fd = 0; fd < anfdmax; ++fd)
880 if (anfds [fd].events)
881 {
882 anfds [fd].events = 0;
883 anfds [fd].emask = 0;
884 fd_change (EV_A_ fd, EV__IOFDSET | 1);
885 }
886 }
887
888 /*****************************************************************************/
889
890 /*
891 * the heap functions want a real array index. array index 0 uis guaranteed to not
892 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
893 * the branching factor of the d-tree.
894 */
895
896 /*
897 * at the moment we allow libev the luxury of two heaps,
898 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
899 * which is more cache-efficient.
900 * the difference is about 5% with 50000+ watchers.
901 */
902 #if EV_USE_4HEAP
903
904 #define DHEAP 4
905 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
906 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
907 #define UPHEAP_DONE(p,k) ((p) == (k))
908
909 /* away from the root */
910 inline_speed void
911 downheap (ANHE *heap, int N, int k)
912 {
913 ANHE he = heap [k];
914 ANHE *E = heap + N + HEAP0;
915
916 for (;;)
917 {
918 ev_tstamp minat;
919 ANHE *minpos;
920 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
921
922 /* find minimum child */
923 if (expect_true (pos + DHEAP - 1 < E))
924 {
925 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
926 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
927 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
928 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
929 }
930 else if (pos < E)
931 {
932 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
933 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else
938 break;
939
940 if (ANHE_at (he) <= minat)
941 break;
942
943 heap [k] = *minpos;
944 ev_active (ANHE_w (*minpos)) = k;
945
946 k = minpos - heap;
947 }
948
949 heap [k] = he;
950 ev_active (ANHE_w (he)) = k;
951 }
952
953 #else /* 4HEAP */
954
955 #define HEAP0 1
956 #define HPARENT(k) ((k) >> 1)
957 #define UPHEAP_DONE(p,k) (!(p))
958
959 /* away from the root */
960 inline_speed void
961 downheap (ANHE *heap, int N, int k)
962 {
963 ANHE he = heap [k];
964
965 for (;;)
966 {
967 int c = k << 1;
968
969 if (c > N + HEAP0 - 1)
970 break;
971
972 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
973 ? 1 : 0;
974
975 if (ANHE_at (he) <= ANHE_at (heap [c]))
976 break;
977
978 heap [k] = heap [c];
979 ev_active (ANHE_w (heap [k])) = k;
980
981 k = c;
982 }
983
984 heap [k] = he;
985 ev_active (ANHE_w (he)) = k;
986 }
987 #endif
988
989 /* towards the root */
990 inline_speed void
991 upheap (ANHE *heap, int k)
992 {
993 ANHE he = heap [k];
994
995 for (;;)
996 {
997 int p = HPARENT (k);
998
999 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1000 break;
1001
1002 heap [k] = heap [p];
1003 ev_active (ANHE_w (heap [k])) = k;
1004 k = p;
1005 }
1006
1007 heap [k] = he;
1008 ev_active (ANHE_w (he)) = k;
1009 }
1010
1011 /* move an element suitably so it is in a correct place */
1012 inline_size void
1013 adjustheap (ANHE *heap, int N, int k)
1014 {
1015 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1016 upheap (heap, k);
1017 else
1018 downheap (heap, N, k);
1019 }
1020
1021 /* rebuild the heap: this function is used only once and executed rarely */
1022 inline_size void
1023 reheap (ANHE *heap, int N)
1024 {
1025 int i;
1026
1027 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1028 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1029 for (i = 0; i < N; ++i)
1030 upheap (heap, i + HEAP0);
1031 }
1032
1033 /*****************************************************************************/
1034
1035 /* associate signal watchers to a signal signal */
1036 typedef struct
1037 {
1038 WL head;
1039 EV_ATOMIC_T gotsig;
1040 } ANSIG;
1041
1042 static ANSIG *signals;
1043 static int signalmax;
1044
1045 static EV_ATOMIC_T gotsig;
1046
1047 /*****************************************************************************/
1048
1049 /* used to prepare libev internal fd's */
1050 /* this is not fork-safe */
1051 inline_speed void
1052 fd_intern (int fd)
1053 {
1054 #ifdef _WIN32
1055 unsigned long arg = 1;
1056 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1057 #else
1058 fcntl (fd, F_SETFD, FD_CLOEXEC);
1059 fcntl (fd, F_SETFL, O_NONBLOCK);
1060 #endif
1061 }
1062
1063 static void noinline
1064 evpipe_init (EV_P)
1065 {
1066 if (!ev_is_active (&pipe_w))
1067 {
1068 #if EV_USE_EVENTFD
1069 if ((evfd = eventfd (0, 0)) >= 0)
1070 {
1071 evpipe [0] = -1;
1072 fd_intern (evfd);
1073 ev_io_set (&pipe_w, evfd, EV_READ);
1074 }
1075 else
1076 #endif
1077 {
1078 while (pipe (evpipe))
1079 ev_syserr ("(libev) error creating signal/async pipe");
1080
1081 fd_intern (evpipe [0]);
1082 fd_intern (evpipe [1]);
1083 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1084 }
1085
1086 ev_io_start (EV_A_ &pipe_w);
1087 ev_unref (EV_A); /* watcher should not keep loop alive */
1088 }
1089 }
1090
1091 inline_size void
1092 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1093 {
1094 if (!*flag)
1095 {
1096 int old_errno = errno; /* save errno because write might clobber it */
1097
1098 *flag = 1;
1099
1100 #if EV_USE_EVENTFD
1101 if (evfd >= 0)
1102 {
1103 uint64_t counter = 1;
1104 write (evfd, &counter, sizeof (uint64_t));
1105 }
1106 else
1107 #endif
1108 write (evpipe [1], &old_errno, 1);
1109
1110 errno = old_errno;
1111 }
1112 }
1113
1114 /* called whenever the libev signal pipe */
1115 /* got some events (signal, async) */
1116 static void
1117 pipecb (EV_P_ ev_io *iow, int revents)
1118 {
1119 #if EV_USE_EVENTFD
1120 if (evfd >= 0)
1121 {
1122 uint64_t counter;
1123 read (evfd, &counter, sizeof (uint64_t));
1124 }
1125 else
1126 #endif
1127 {
1128 char dummy;
1129 read (evpipe [0], &dummy, 1);
1130 }
1131
1132 if (gotsig && ev_is_default_loop (EV_A))
1133 {
1134 int signum;
1135 gotsig = 0;
1136
1137 for (signum = signalmax; signum--; )
1138 if (signals [signum].gotsig)
1139 ev_feed_signal_event (EV_A_ signum + 1);
1140 }
1141
1142 #if EV_ASYNC_ENABLE
1143 if (gotasync)
1144 {
1145 int i;
1146 gotasync = 0;
1147
1148 for (i = asynccnt; i--; )
1149 if (asyncs [i]->sent)
1150 {
1151 asyncs [i]->sent = 0;
1152 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1153 }
1154 }
1155 #endif
1156 }
1157
1158 /*****************************************************************************/
1159
1160 static void
1161 ev_sighandler (int signum)
1162 {
1163 #if EV_MULTIPLICITY
1164 struct ev_loop *loop = &default_loop_struct;
1165 #endif
1166
1167 #if _WIN32
1168 signal (signum, ev_sighandler);
1169 #endif
1170
1171 signals [signum - 1].gotsig = 1;
1172 evpipe_write (EV_A_ &gotsig);
1173 }
1174
1175 void noinline
1176 ev_feed_signal_event (EV_P_ int signum)
1177 {
1178 WL w;
1179
1180 #if EV_MULTIPLICITY
1181 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1182 #endif
1183
1184 --signum;
1185
1186 if (signum < 0 || signum >= signalmax)
1187 return;
1188
1189 signals [signum].gotsig = 0;
1190
1191 for (w = signals [signum].head; w; w = w->next)
1192 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1193 }
1194
1195 /*****************************************************************************/
1196
1197 static WL childs [EV_PID_HASHSIZE];
1198
1199 #ifndef _WIN32
1200
1201 static ev_signal childev;
1202
1203 #ifndef WIFCONTINUED
1204 # define WIFCONTINUED(status) 0
1205 #endif
1206
1207 /* handle a single child status event */
1208 inline_speed void
1209 child_reap (EV_P_ int chain, int pid, int status)
1210 {
1211 ev_child *w;
1212 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1213
1214 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1215 {
1216 if ((w->pid == pid || !w->pid)
1217 && (!traced || (w->flags & 1)))
1218 {
1219 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1220 w->rpid = pid;
1221 w->rstatus = status;
1222 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1223 }
1224 }
1225 }
1226
1227 #ifndef WCONTINUED
1228 # define WCONTINUED 0
1229 #endif
1230
1231 /* called on sigchld etc., calls waitpid */
1232 static void
1233 childcb (EV_P_ ev_signal *sw, int revents)
1234 {
1235 int pid, status;
1236
1237 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1238 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1239 if (!WCONTINUED
1240 || errno != EINVAL
1241 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1242 return;
1243
1244 /* make sure we are called again until all children have been reaped */
1245 /* we need to do it this way so that the callback gets called before we continue */
1246 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1247
1248 child_reap (EV_A_ pid, pid, status);
1249 if (EV_PID_HASHSIZE > 1)
1250 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1251 }
1252
1253 #endif
1254
1255 /*****************************************************************************/
1256
1257 #if EV_USE_PORT
1258 # include "ev_port.c"
1259 #endif
1260 #if EV_USE_KQUEUE
1261 # include "ev_kqueue.c"
1262 #endif
1263 #if EV_USE_EPOLL
1264 # include "ev_epoll.c"
1265 #endif
1266 #if EV_USE_POLL
1267 # include "ev_poll.c"
1268 #endif
1269 #if EV_USE_SELECT
1270 # include "ev_select.c"
1271 #endif
1272
1273 int
1274 ev_version_major (void)
1275 {
1276 return EV_VERSION_MAJOR;
1277 }
1278
1279 int
1280 ev_version_minor (void)
1281 {
1282 return EV_VERSION_MINOR;
1283 }
1284
1285 /* return true if we are running with elevated privileges and should ignore env variables */
1286 int inline_size
1287 enable_secure (void)
1288 {
1289 #ifdef _WIN32
1290 return 0;
1291 #else
1292 return getuid () != geteuid ()
1293 || getgid () != getegid ();
1294 #endif
1295 }
1296
1297 unsigned int
1298 ev_supported_backends (void)
1299 {
1300 unsigned int flags = 0;
1301
1302 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1303 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1304 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1305 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1306 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1307
1308 return flags;
1309 }
1310
1311 unsigned int
1312 ev_recommended_backends (void)
1313 {
1314 unsigned int flags = ev_supported_backends ();
1315
1316 #ifndef __NetBSD__
1317 /* kqueue is borked on everything but netbsd apparently */
1318 /* it usually doesn't work correctly on anything but sockets and pipes */
1319 flags &= ~EVBACKEND_KQUEUE;
1320 #endif
1321 #ifdef __APPLE__
1322 /* only select works correctly on that "unix-certified" platform */
1323 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1324 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1325 #endif
1326
1327 return flags;
1328 }
1329
1330 unsigned int
1331 ev_embeddable_backends (void)
1332 {
1333 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1334
1335 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1336 /* please fix it and tell me how to detect the fix */
1337 flags &= ~EVBACKEND_EPOLL;
1338
1339 return flags;
1340 }
1341
1342 unsigned int
1343 ev_backend (EV_P)
1344 {
1345 return backend;
1346 }
1347
1348 unsigned int
1349 ev_loop_count (EV_P)
1350 {
1351 return loop_count;
1352 }
1353
1354 void
1355 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1356 {
1357 io_blocktime = interval;
1358 }
1359
1360 void
1361 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1362 {
1363 timeout_blocktime = interval;
1364 }
1365
1366 /* initialise a loop structure, must be zero-initialised */
1367 static void noinline
1368 loop_init (EV_P_ unsigned int flags)
1369 {
1370 if (!backend)
1371 {
1372 #if EV_USE_REALTIME
1373 if (!have_realtime)
1374 {
1375 struct timespec ts;
1376
1377 if (!clock_gettime (CLOCK_REALTIME, &ts))
1378 have_realtime = 1;
1379 }
1380 #endif
1381
1382 #if EV_USE_MONOTONIC
1383 if (!have_monotonic)
1384 {
1385 struct timespec ts;
1386
1387 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1388 have_monotonic = 1;
1389 }
1390 #endif
1391
1392 ev_rt_now = ev_time ();
1393 mn_now = get_clock ();
1394 now_floor = mn_now;
1395 rtmn_diff = ev_rt_now - mn_now;
1396
1397 io_blocktime = 0.;
1398 timeout_blocktime = 0.;
1399 backend = 0;
1400 backend_fd = -1;
1401 gotasync = 0;
1402 #if EV_USE_INOTIFY
1403 fs_fd = -2;
1404 #endif
1405
1406 /* pid check not overridable via env */
1407 #ifndef _WIN32
1408 if (flags & EVFLAG_FORKCHECK)
1409 curpid = getpid ();
1410 #endif
1411
1412 if (!(flags & EVFLAG_NOENV)
1413 && !enable_secure ()
1414 && getenv ("LIBEV_FLAGS"))
1415 flags = atoi (getenv ("LIBEV_FLAGS"));
1416
1417 if (!(flags & 0x0000ffffU))
1418 flags |= ev_recommended_backends ();
1419
1420 #if EV_USE_PORT
1421 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1422 #endif
1423 #if EV_USE_KQUEUE
1424 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1425 #endif
1426 #if EV_USE_EPOLL
1427 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1428 #endif
1429 #if EV_USE_POLL
1430 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1431 #endif
1432 #if EV_USE_SELECT
1433 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1434 #endif
1435
1436 ev_prepare_init (&pending_w, pendingcb);
1437
1438 ev_init (&pipe_w, pipecb);
1439 ev_set_priority (&pipe_w, EV_MAXPRI);
1440 }
1441 }
1442
1443 /* free up a loop structure */
1444 static void noinline
1445 loop_destroy (EV_P)
1446 {
1447 int i;
1448
1449 if (ev_is_active (&pipe_w))
1450 {
1451 ev_ref (EV_A); /* signal watcher */
1452 ev_io_stop (EV_A_ &pipe_w);
1453
1454 #if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457 #endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1461 close (evpipe [0]);
1462 close (evpipe [1]);
1463 }
1464 }
1465
1466 #if EV_USE_INOTIFY
1467 if (fs_fd >= 0)
1468 close (fs_fd);
1469 #endif
1470
1471 if (backend_fd >= 0)
1472 close (backend_fd);
1473
1474 #if EV_USE_PORT
1475 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1476 #endif
1477 #if EV_USE_KQUEUE
1478 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1479 #endif
1480 #if EV_USE_EPOLL
1481 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1482 #endif
1483 #if EV_USE_POLL
1484 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1485 #endif
1486 #if EV_USE_SELECT
1487 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1488 #endif
1489
1490 for (i = NUMPRI; i--; )
1491 {
1492 array_free (pending, [i]);
1493 #if EV_IDLE_ENABLE
1494 array_free (idle, [i]);
1495 #endif
1496 }
1497
1498 ev_free (anfds); anfdmax = 0;
1499
1500 /* have to use the microsoft-never-gets-it-right macro */
1501 array_free (rfeed, EMPTY);
1502 array_free (fdchange, EMPTY);
1503 array_free (timer, EMPTY);
1504 #if EV_PERIODIC_ENABLE
1505 array_free (periodic, EMPTY);
1506 #endif
1507 #if EV_FORK_ENABLE
1508 array_free (fork, EMPTY);
1509 #endif
1510 array_free (prepare, EMPTY);
1511 array_free (check, EMPTY);
1512 #if EV_ASYNC_ENABLE
1513 array_free (async, EMPTY);
1514 #endif
1515
1516 backend = 0;
1517 }
1518
1519 #if EV_USE_INOTIFY
1520 inline_size void infy_fork (EV_P);
1521 #endif
1522
1523 inline_size void
1524 loop_fork (EV_P)
1525 {
1526 #if EV_USE_PORT
1527 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1528 #endif
1529 #if EV_USE_KQUEUE
1530 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1531 #endif
1532 #if EV_USE_EPOLL
1533 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1534 #endif
1535 #if EV_USE_INOTIFY
1536 infy_fork (EV_A);
1537 #endif
1538
1539 if (ev_is_active (&pipe_w))
1540 {
1541 /* this "locks" the handlers against writing to the pipe */
1542 /* while we modify the fd vars */
1543 gotsig = 1;
1544 #if EV_ASYNC_ENABLE
1545 gotasync = 1;
1546 #endif
1547
1548 ev_ref (EV_A);
1549 ev_io_stop (EV_A_ &pipe_w);
1550
1551 #if EV_USE_EVENTFD
1552 if (evfd >= 0)
1553 close (evfd);
1554 #endif
1555
1556 if (evpipe [0] >= 0)
1557 {
1558 close (evpipe [0]);
1559 close (evpipe [1]);
1560 }
1561
1562 evpipe_init (EV_A);
1563 /* now iterate over everything, in case we missed something */
1564 pipecb (EV_A_ &pipe_w, EV_READ);
1565 }
1566
1567 postfork = 0;
1568 }
1569
1570 #if EV_MULTIPLICITY
1571
1572 struct ev_loop *
1573 ev_loop_new (unsigned int flags)
1574 {
1575 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1576
1577 memset (loop, 0, sizeof (struct ev_loop));
1578
1579 loop_init (EV_A_ flags);
1580
1581 if (ev_backend (EV_A))
1582 return loop;
1583
1584 return 0;
1585 }
1586
1587 void
1588 ev_loop_destroy (EV_P)
1589 {
1590 loop_destroy (EV_A);
1591 ev_free (loop);
1592 }
1593
1594 void
1595 ev_loop_fork (EV_P)
1596 {
1597 postfork = 1; /* must be in line with ev_default_fork */
1598 }
1599
1600 #if EV_VERIFY
1601 static void noinline
1602 verify_watcher (EV_P_ W w)
1603 {
1604 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1605
1606 if (w->pending)
1607 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1608 }
1609
1610 static void noinline
1611 verify_heap (EV_P_ ANHE *heap, int N)
1612 {
1613 int i;
1614
1615 for (i = HEAP0; i < N + HEAP0; ++i)
1616 {
1617 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1618 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1619 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1620
1621 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1622 }
1623 }
1624
1625 static void noinline
1626 array_verify (EV_P_ W *ws, int cnt)
1627 {
1628 while (cnt--)
1629 {
1630 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1631 verify_watcher (EV_A_ ws [cnt]);
1632 }
1633 }
1634 #endif
1635
1636 void
1637 ev_loop_verify (EV_P)
1638 {
1639 #if EV_VERIFY
1640 int i;
1641 WL w;
1642
1643 assert (activecnt >= -1);
1644
1645 assert (fdchangemax >= fdchangecnt);
1646 for (i = 0; i < fdchangecnt; ++i)
1647 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1648
1649 assert (anfdmax >= 0);
1650 for (i = 0; i < anfdmax; ++i)
1651 for (w = anfds [i].head; w; w = w->next)
1652 {
1653 verify_watcher (EV_A_ (W)w);
1654 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1655 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1656 }
1657
1658 assert (timermax >= timercnt);
1659 verify_heap (EV_A_ timers, timercnt);
1660
1661 #if EV_PERIODIC_ENABLE
1662 assert (periodicmax >= periodiccnt);
1663 verify_heap (EV_A_ periodics, periodiccnt);
1664 #endif
1665
1666 for (i = NUMPRI; i--; )
1667 {
1668 assert (pendingmax [i] >= pendingcnt [i]);
1669 #if EV_IDLE_ENABLE
1670 assert (idleall >= 0);
1671 assert (idlemax [i] >= idlecnt [i]);
1672 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1673 #endif
1674 }
1675
1676 #if EV_FORK_ENABLE
1677 assert (forkmax >= forkcnt);
1678 array_verify (EV_A_ (W *)forks, forkcnt);
1679 #endif
1680
1681 #if EV_ASYNC_ENABLE
1682 assert (asyncmax >= asynccnt);
1683 array_verify (EV_A_ (W *)asyncs, asynccnt);
1684 #endif
1685
1686 assert (preparemax >= preparecnt);
1687 array_verify (EV_A_ (W *)prepares, preparecnt);
1688
1689 assert (checkmax >= checkcnt);
1690 array_verify (EV_A_ (W *)checks, checkcnt);
1691
1692 # if 0
1693 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1694 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1695 # endif
1696 #endif
1697 }
1698
1699 #endif /* multiplicity */
1700
1701 #if EV_MULTIPLICITY
1702 struct ev_loop *
1703 ev_default_loop_init (unsigned int flags)
1704 #else
1705 int
1706 ev_default_loop (unsigned int flags)
1707 #endif
1708 {
1709 if (!ev_default_loop_ptr)
1710 {
1711 #if EV_MULTIPLICITY
1712 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1713 #else
1714 ev_default_loop_ptr = 1;
1715 #endif
1716
1717 loop_init (EV_A_ flags);
1718
1719 if (ev_backend (EV_A))
1720 {
1721 #ifndef _WIN32
1722 ev_signal_init (&childev, childcb, SIGCHLD);
1723 ev_set_priority (&childev, EV_MAXPRI);
1724 ev_signal_start (EV_A_ &childev);
1725 ev_unref (EV_A); /* child watcher should not keep loop alive */
1726 #endif
1727 }
1728 else
1729 ev_default_loop_ptr = 0;
1730 }
1731
1732 return ev_default_loop_ptr;
1733 }
1734
1735 void
1736 ev_default_destroy (void)
1737 {
1738 #if EV_MULTIPLICITY
1739 struct ev_loop *loop = ev_default_loop_ptr;
1740 #endif
1741
1742 ev_default_loop_ptr = 0;
1743
1744 #ifndef _WIN32
1745 ev_ref (EV_A); /* child watcher */
1746 ev_signal_stop (EV_A_ &childev);
1747 #endif
1748
1749 loop_destroy (EV_A);
1750 }
1751
1752 void
1753 ev_default_fork (void)
1754 {
1755 #if EV_MULTIPLICITY
1756 struct ev_loop *loop = ev_default_loop_ptr;
1757 #endif
1758
1759 postfork = 1; /* must be in line with ev_loop_fork */
1760 }
1761
1762 /*****************************************************************************/
1763
1764 void
1765 ev_invoke (EV_P_ void *w, int revents)
1766 {
1767 EV_CB_INVOKE ((W)w, revents);
1768 }
1769
1770 inline_speed void
1771 call_pending (EV_P)
1772 {
1773 int pri;
1774
1775 for (pri = NUMPRI; pri--; )
1776 while (pendingcnt [pri])
1777 {
1778 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1779
1780 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1781 /* ^ this is no longer true, as pending_w could be here */
1782
1783 p->w->pending = 0;
1784 EV_CB_INVOKE (p->w, p->events);
1785 EV_FREQUENT_CHECK;
1786 }
1787 }
1788
1789 #if EV_IDLE_ENABLE
1790 /* make idle watchers pending. this handles the "call-idle */
1791 /* only when higher priorities are idle" logic */
1792 inline_size void
1793 idle_reify (EV_P)
1794 {
1795 if (expect_false (idleall))
1796 {
1797 int pri;
1798
1799 for (pri = NUMPRI; pri--; )
1800 {
1801 if (pendingcnt [pri])
1802 break;
1803
1804 if (idlecnt [pri])
1805 {
1806 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1807 break;
1808 }
1809 }
1810 }
1811 }
1812 #endif
1813
1814 /* make timers pending */
1815 inline_size void
1816 timers_reify (EV_P)
1817 {
1818 EV_FREQUENT_CHECK;
1819
1820 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1821 {
1822 do
1823 {
1824 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825
1826 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827
1828 /* first reschedule or stop timer */
1829 if (w->repeat)
1830 {
1831 ev_at (w) += w->repeat;
1832 if (ev_at (w) < mn_now)
1833 ev_at (w) = mn_now;
1834
1835 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1836
1837 ANHE_at_cache (timers [HEAP0]);
1838 downheap (timers, timercnt, HEAP0);
1839 }
1840 else
1841 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842
1843 EV_FREQUENT_CHECK;
1844 feed_reverse (EV_A_ (W)w);
1845 }
1846 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1847
1848 feed_reverse_done (EV_A_ EV_TIMEOUT);
1849 }
1850 }
1851
1852 #if EV_PERIODIC_ENABLE
1853 /* make periodics pending */
1854 inline_size void
1855 periodics_reify (EV_P)
1856 {
1857 EV_FREQUENT_CHECK;
1858
1859 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1860 {
1861 int feed_count = 0;
1862
1863 do
1864 {
1865 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866
1867 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1868
1869 /* first reschedule or stop timer */
1870 if (w->reschedule_cb)
1871 {
1872 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1873
1874 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1875
1876 ANHE_at_cache (periodics [HEAP0]);
1877 downheap (periodics, periodiccnt, HEAP0);
1878 }
1879 else if (w->interval)
1880 {
1881 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882 /* if next trigger time is not sufficiently in the future, put it there */
1883 /* this might happen because of floating point inexactness */
1884 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885 {
1886 ev_at (w) += w->interval;
1887
1888 /* if interval is unreasonably low we might still have a time in the past */
1889 /* so correct this. this will make the periodic very inexact, but the user */
1890 /* has effectively asked to get triggered more often than possible */
1891 if (ev_at (w) < ev_rt_now)
1892 ev_at (w) = ev_rt_now;
1893 }
1894
1895 ANHE_at_cache (periodics [HEAP0]);
1896 downheap (periodics, periodiccnt, HEAP0);
1897 }
1898 else
1899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900
1901 EV_FREQUENT_CHECK;
1902 feed_reverse (EV_A_ (W)w);
1903 }
1904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1905
1906 feed_reverse_done (EV_A_ EV_PERIODIC);
1907 }
1908 }
1909
1910 /* simply recalculate all periodics */
1911 /* TODO: maybe ensure that at leats one event happens when jumping forward? */
1912 static void noinline
1913 periodics_reschedule (EV_P)
1914 {
1915 int i;
1916
1917 /* adjust periodics after time jump */
1918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1919 {
1920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1921
1922 if (w->reschedule_cb)
1923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1924 else if (w->interval)
1925 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1926
1927 ANHE_at_cache (periodics [i]);
1928 }
1929
1930 reheap (periodics, periodiccnt);
1931 }
1932 #endif
1933
1934 /* adjust all timers by a given offset */
1935 static void noinline
1936 timers_reschedule (EV_P_ ev_tstamp adjust)
1937 {
1938 int i;
1939
1940 for (i = 0; i < timercnt; ++i)
1941 {
1942 ANHE *he = timers + i + HEAP0;
1943 ANHE_w (*he)->at += adjust;
1944 ANHE_at_cache (*he);
1945 }
1946 }
1947
1948 /* fetch new monotonic and realtime times from the kernel */
1949 /* also detetc if there was a timejump, and act accordingly */
1950 inline_speed void
1951 time_update (EV_P_ ev_tstamp max_block)
1952 {
1953 int i;
1954
1955 #if EV_USE_MONOTONIC
1956 if (expect_true (have_monotonic))
1957 {
1958 ev_tstamp odiff = rtmn_diff;
1959
1960 mn_now = get_clock ();
1961
1962 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1963 /* interpolate in the meantime */
1964 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1965 {
1966 ev_rt_now = rtmn_diff + mn_now;
1967 return;
1968 }
1969
1970 now_floor = mn_now;
1971 ev_rt_now = ev_time ();
1972
1973 /* loop a few times, before making important decisions.
1974 * on the choice of "4": one iteration isn't enough,
1975 * in case we get preempted during the calls to
1976 * ev_time and get_clock. a second call is almost guaranteed
1977 * to succeed in that case, though. and looping a few more times
1978 * doesn't hurt either as we only do this on time-jumps or
1979 * in the unlikely event of having been preempted here.
1980 */
1981 for (i = 4; --i; )
1982 {
1983 rtmn_diff = ev_rt_now - mn_now;
1984
1985 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1986 return; /* all is well */
1987
1988 ev_rt_now = ev_time ();
1989 mn_now = get_clock ();
1990 now_floor = mn_now;
1991 }
1992
1993 /* no timer adjustment, as the monotonic clock doesn't jump */
1994 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1995 # if EV_PERIODIC_ENABLE
1996 periodics_reschedule (EV_A);
1997 # endif
1998 }
1999 else
2000 #endif
2001 {
2002 ev_rt_now = ev_time ();
2003
2004 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2005 {
2006 /* adjust timers. this is easy, as the offset is the same for all of them */
2007 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2008 #if EV_PERIODIC_ENABLE
2009 periodics_reschedule (EV_A);
2010 #endif
2011 }
2012
2013 mn_now = ev_rt_now;
2014 }
2015 }
2016
2017 static int loop_done;
2018
2019 void
2020 ev_loop (EV_P_ int flags)
2021 {
2022 loop_done = EVUNLOOP_CANCEL;
2023
2024 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
2025
2026 do
2027 {
2028 #if EV_VERIFY >= 2
2029 ev_loop_verify (EV_A);
2030 #endif
2031
2032 #ifndef _WIN32
2033 if (expect_false (curpid)) /* penalise the forking check even more */
2034 if (expect_false (getpid () != curpid))
2035 {
2036 curpid = getpid ();
2037 postfork = 1;
2038 }
2039 #endif
2040
2041 #if EV_FORK_ENABLE
2042 /* we might have forked, so queue fork handlers */
2043 if (expect_false (postfork))
2044 if (forkcnt)
2045 {
2046 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2047 call_pending (EV_A);
2048 }
2049 #endif
2050
2051 /* queue prepare watchers (and execute them) */
2052 if (expect_false (preparecnt))
2053 {
2054 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2055 call_pending (EV_A);
2056 }
2057
2058 /* we might have forked, so reify kernel state if necessary */
2059 if (expect_false (postfork))
2060 loop_fork (EV_A);
2061
2062 /* update fd-related kernel structures */
2063 fd_reify (EV_A);
2064
2065 /* calculate blocking time */
2066 {
2067 ev_tstamp waittime = 0.;
2068 ev_tstamp sleeptime = 0.;
2069
2070 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2071 {
2072 /* update time to cancel out callback processing overhead */
2073 time_update (EV_A_ 1e100);
2074
2075 waittime = MAX_BLOCKTIME;
2076
2077 if (timercnt)
2078 {
2079 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2080 if (waittime > to) waittime = to;
2081 }
2082
2083 #if EV_PERIODIC_ENABLE
2084 if (periodiccnt)
2085 {
2086 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2087 if (waittime > to) waittime = to;
2088 }
2089 #endif
2090
2091 if (expect_false (waittime < timeout_blocktime))
2092 waittime = timeout_blocktime;
2093
2094 sleeptime = waittime - backend_fudge;
2095
2096 if (expect_true (sleeptime > io_blocktime))
2097 sleeptime = io_blocktime;
2098
2099 if (sleeptime)
2100 {
2101 ev_sleep (sleeptime);
2102 waittime -= sleeptime;
2103 }
2104 }
2105
2106 ++loop_count;
2107 backend_poll (EV_A_ waittime);
2108
2109 /* update ev_rt_now, do magic */
2110 time_update (EV_A_ waittime + sleeptime);
2111 }
2112
2113 /* queue pending timers and reschedule them */
2114 timers_reify (EV_A); /* relative timers called last */
2115 #if EV_PERIODIC_ENABLE
2116 periodics_reify (EV_A); /* absolute timers called first */
2117 #endif
2118
2119 #if EV_IDLE_ENABLE
2120 /* queue idle watchers unless other events are pending */
2121 idle_reify (EV_A);
2122 #endif
2123
2124 /* queue check watchers, to be executed first */
2125 if (expect_false (checkcnt))
2126 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2127
2128 call_pending (EV_A);
2129 }
2130 while (expect_true (
2131 activecnt
2132 && !loop_done
2133 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2134 ));
2135
2136 if (loop_done == EVUNLOOP_ONE)
2137 loop_done = EVUNLOOP_CANCEL;
2138 }
2139
2140 void
2141 ev_unloop (EV_P_ int how)
2142 {
2143 loop_done = how;
2144 }
2145
2146 void
2147 ev_ref (EV_P)
2148 {
2149 ++activecnt;
2150 }
2151
2152 void
2153 ev_unref (EV_P)
2154 {
2155 --activecnt;
2156 }
2157
2158 void
2159 ev_now_update (EV_P)
2160 {
2161 time_update (EV_A_ 1e100);
2162 }
2163
2164 void
2165 ev_suspend (EV_P)
2166 {
2167 ev_now_update (EV_A);
2168 }
2169
2170 void
2171 ev_resume (EV_P)
2172 {
2173 ev_tstamp mn_prev = mn_now;
2174
2175 ev_now_update (EV_A);
2176 timers_reschedule (EV_A_ mn_now - mn_prev);
2177 #if EV_PERIODIC_ENABLE
2178 /* TODO: really do this? */
2179 periodics_reschedule (EV_A);
2180 #endif
2181 }
2182
2183 /*****************************************************************************/
2184 /* singly-linked list management, used when the expected list length is short */
2185
2186 inline_size void
2187 wlist_add (WL *head, WL elem)
2188 {
2189 elem->next = *head;
2190 *head = elem;
2191 }
2192
2193 inline_size void
2194 wlist_del (WL *head, WL elem)
2195 {
2196 while (*head)
2197 {
2198 if (*head == elem)
2199 {
2200 *head = elem->next;
2201 return;
2202 }
2203
2204 head = &(*head)->next;
2205 }
2206 }
2207
2208 /* internal, faster, version of ev_clear_pending */
2209 inline_speed void
2210 clear_pending (EV_P_ W w)
2211 {
2212 if (w->pending)
2213 {
2214 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2215 w->pending = 0;
2216 }
2217 }
2218
2219 int
2220 ev_clear_pending (EV_P_ void *w)
2221 {
2222 W w_ = (W)w;
2223 int pending = w_->pending;
2224
2225 if (expect_true (pending))
2226 {
2227 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2228 p->w = (W)&pending_w;
2229 w_->pending = 0;
2230 return p->events;
2231 }
2232 else
2233 return 0;
2234 }
2235
2236 inline_size void
2237 pri_adjust (EV_P_ W w)
2238 {
2239 int pri = w->priority;
2240 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2241 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2242 w->priority = pri;
2243 }
2244
2245 inline_speed void
2246 ev_start (EV_P_ W w, int active)
2247 {
2248 pri_adjust (EV_A_ w);
2249 w->active = active;
2250 ev_ref (EV_A);
2251 }
2252
2253 inline_size void
2254 ev_stop (EV_P_ W w)
2255 {
2256 ev_unref (EV_A);
2257 w->active = 0;
2258 }
2259
2260 /*****************************************************************************/
2261
2262 void noinline
2263 ev_io_start (EV_P_ ev_io *w)
2264 {
2265 int fd = w->fd;
2266
2267 if (expect_false (ev_is_active (w)))
2268 return;
2269
2270 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2271 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2272
2273 EV_FREQUENT_CHECK;
2274
2275 ev_start (EV_A_ (W)w, 1);
2276 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2277 wlist_add (&anfds[fd].head, (WL)w);
2278
2279 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2280 w->events &= ~EV__IOFDSET;
2281
2282 EV_FREQUENT_CHECK;
2283 }
2284
2285 void noinline
2286 ev_io_stop (EV_P_ ev_io *w)
2287 {
2288 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w)))
2290 return;
2291
2292 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2293
2294 EV_FREQUENT_CHECK;
2295
2296 wlist_del (&anfds[w->fd].head, (WL)w);
2297 ev_stop (EV_A_ (W)w);
2298
2299 fd_change (EV_A_ w->fd, 1);
2300
2301 EV_FREQUENT_CHECK;
2302 }
2303
2304 void noinline
2305 ev_timer_start (EV_P_ ev_timer *w)
2306 {
2307 if (expect_false (ev_is_active (w)))
2308 return;
2309
2310 ev_at (w) += mn_now;
2311
2312 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2313
2314 EV_FREQUENT_CHECK;
2315
2316 ++timercnt;
2317 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2318 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2319 ANHE_w (timers [ev_active (w)]) = (WT)w;
2320 ANHE_at_cache (timers [ev_active (w)]);
2321 upheap (timers, ev_active (w));
2322
2323 EV_FREQUENT_CHECK;
2324
2325 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2326 }
2327
2328 void noinline
2329 ev_timer_stop (EV_P_ ev_timer *w)
2330 {
2331 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w)))
2333 return;
2334
2335 EV_FREQUENT_CHECK;
2336
2337 {
2338 int active = ev_active (w);
2339
2340 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2341
2342 --timercnt;
2343
2344 if (expect_true (active < timercnt + HEAP0))
2345 {
2346 timers [active] = timers [timercnt + HEAP0];
2347 adjustheap (timers, timercnt, active);
2348 }
2349 }
2350
2351 EV_FREQUENT_CHECK;
2352
2353 ev_at (w) -= mn_now;
2354
2355 ev_stop (EV_A_ (W)w);
2356 }
2357
2358 void noinline
2359 ev_timer_again (EV_P_ ev_timer *w)
2360 {
2361 EV_FREQUENT_CHECK;
2362
2363 if (ev_is_active (w))
2364 {
2365 if (w->repeat)
2366 {
2367 ev_at (w) = mn_now + w->repeat;
2368 ANHE_at_cache (timers [ev_active (w)]);
2369 adjustheap (timers, timercnt, ev_active (w));
2370 }
2371 else
2372 ev_timer_stop (EV_A_ w);
2373 }
2374 else if (w->repeat)
2375 {
2376 ev_at (w) = w->repeat;
2377 ev_timer_start (EV_A_ w);
2378 }
2379
2380 EV_FREQUENT_CHECK;
2381 }
2382
2383 #if EV_PERIODIC_ENABLE
2384 void noinline
2385 ev_periodic_start (EV_P_ ev_periodic *w)
2386 {
2387 if (expect_false (ev_is_active (w)))
2388 return;
2389
2390 if (w->reschedule_cb)
2391 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2392 else if (w->interval)
2393 {
2394 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2395 /* this formula differs from the one in periodic_reify because we do not always round up */
2396 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2397 }
2398 else
2399 ev_at (w) = w->offset;
2400
2401 EV_FREQUENT_CHECK;
2402
2403 ++periodiccnt;
2404 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2405 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2406 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2407 ANHE_at_cache (periodics [ev_active (w)]);
2408 upheap (periodics, ev_active (w));
2409
2410 EV_FREQUENT_CHECK;
2411
2412 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2413 }
2414
2415 void noinline
2416 ev_periodic_stop (EV_P_ ev_periodic *w)
2417 {
2418 clear_pending (EV_A_ (W)w);
2419 if (expect_false (!ev_is_active (w)))
2420 return;
2421
2422 EV_FREQUENT_CHECK;
2423
2424 {
2425 int active = ev_active (w);
2426
2427 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2428
2429 --periodiccnt;
2430
2431 if (expect_true (active < periodiccnt + HEAP0))
2432 {
2433 periodics [active] = periodics [periodiccnt + HEAP0];
2434 adjustheap (periodics, periodiccnt, active);
2435 }
2436 }
2437
2438 EV_FREQUENT_CHECK;
2439
2440 ev_stop (EV_A_ (W)w);
2441 }
2442
2443 void noinline
2444 ev_periodic_again (EV_P_ ev_periodic *w)
2445 {
2446 /* TODO: use adjustheap and recalculation */
2447 ev_periodic_stop (EV_A_ w);
2448 ev_periodic_start (EV_A_ w);
2449 }
2450 #endif
2451
2452 #ifndef SA_RESTART
2453 # define SA_RESTART 0
2454 #endif
2455
2456 void noinline
2457 ev_signal_start (EV_P_ ev_signal *w)
2458 {
2459 #if EV_MULTIPLICITY
2460 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2461 #endif
2462 if (expect_false (ev_is_active (w)))
2463 return;
2464
2465 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2466
2467 evpipe_init (EV_A);
2468
2469 EV_FREQUENT_CHECK;
2470
2471 {
2472 #ifndef _WIN32
2473 sigset_t full, prev;
2474 sigfillset (&full);
2475 sigprocmask (SIG_SETMASK, &full, &prev);
2476 #endif
2477
2478 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2479
2480 #ifndef _WIN32
2481 sigprocmask (SIG_SETMASK, &prev, 0);
2482 #endif
2483 }
2484
2485 ev_start (EV_A_ (W)w, 1);
2486 wlist_add (&signals [w->signum - 1].head, (WL)w);
2487
2488 if (!((WL)w)->next)
2489 {
2490 #if _WIN32
2491 signal (w->signum, ev_sighandler);
2492 #else
2493 struct sigaction sa;
2494 sa.sa_handler = ev_sighandler;
2495 sigfillset (&sa.sa_mask);
2496 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2497 sigaction (w->signum, &sa, 0);
2498 #endif
2499 }
2500
2501 EV_FREQUENT_CHECK;
2502 }
2503
2504 void noinline
2505 ev_signal_stop (EV_P_ ev_signal *w)
2506 {
2507 clear_pending (EV_A_ (W)w);
2508 if (expect_false (!ev_is_active (w)))
2509 return;
2510
2511 EV_FREQUENT_CHECK;
2512
2513 wlist_del (&signals [w->signum - 1].head, (WL)w);
2514 ev_stop (EV_A_ (W)w);
2515
2516 if (!signals [w->signum - 1].head)
2517 signal (w->signum, SIG_DFL);
2518
2519 EV_FREQUENT_CHECK;
2520 }
2521
2522 void
2523 ev_child_start (EV_P_ ev_child *w)
2524 {
2525 #if EV_MULTIPLICITY
2526 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2527 #endif
2528 if (expect_false (ev_is_active (w)))
2529 return;
2530
2531 EV_FREQUENT_CHECK;
2532
2533 ev_start (EV_A_ (W)w, 1);
2534 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2535
2536 EV_FREQUENT_CHECK;
2537 }
2538
2539 void
2540 ev_child_stop (EV_P_ ev_child *w)
2541 {
2542 clear_pending (EV_A_ (W)w);
2543 if (expect_false (!ev_is_active (w)))
2544 return;
2545
2546 EV_FREQUENT_CHECK;
2547
2548 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2549 ev_stop (EV_A_ (W)w);
2550
2551 EV_FREQUENT_CHECK;
2552 }
2553
2554 #if EV_STAT_ENABLE
2555
2556 # ifdef _WIN32
2557 # undef lstat
2558 # define lstat(a,b) _stati64 (a,b)
2559 # endif
2560
2561 #define DEF_STAT_INTERVAL 5.0074891
2562 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2563 #define MIN_STAT_INTERVAL 0.1074891
2564
2565 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2566
2567 #if EV_USE_INOTIFY
2568 # define EV_INOTIFY_BUFSIZE 8192
2569
2570 static void noinline
2571 infy_add (EV_P_ ev_stat *w)
2572 {
2573 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2574
2575 if (w->wd < 0)
2576 {
2577 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2578 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2579
2580 /* monitor some parent directory for speedup hints */
2581 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2582 /* but an efficiency issue only */
2583 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2584 {
2585 char path [4096];
2586 strcpy (path, w->path);
2587
2588 do
2589 {
2590 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2591 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2592
2593 char *pend = strrchr (path, '/');
2594
2595 if (!pend || pend == path)
2596 break;
2597
2598 *pend = 0;
2599 w->wd = inotify_add_watch (fs_fd, path, mask);
2600 }
2601 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2602 }
2603 }
2604
2605 if (w->wd >= 0)
2606 {
2607 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2608
2609 /* now local changes will be tracked by inotify, but remote changes won't */
2610 /* unless the filesystem it known to be local, we therefore still poll */
2611 /* also do poll on <2.6.25, but with normal frequency */
2612 struct statfs sfs;
2613
2614 if (fs_2625 && !statfs (w->path, &sfs))
2615 if (sfs.f_type == 0x1373 /* devfs */
2616 || sfs.f_type == 0xEF53 /* ext2/3 */
2617 || sfs.f_type == 0x3153464a /* jfs */
2618 || sfs.f_type == 0x52654973 /* reiser3 */
2619 || sfs.f_type == 0x01021994 /* tempfs */
2620 || sfs.f_type == 0x58465342 /* xfs */)
2621 return;
2622
2623 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2624 ev_timer_again (EV_A_ &w->timer);
2625 }
2626 }
2627
2628 static void noinline
2629 infy_del (EV_P_ ev_stat *w)
2630 {
2631 int slot;
2632 int wd = w->wd;
2633
2634 if (wd < 0)
2635 return;
2636
2637 w->wd = -2;
2638 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2639 wlist_del (&fs_hash [slot].head, (WL)w);
2640
2641 /* remove this watcher, if others are watching it, they will rearm */
2642 inotify_rm_watch (fs_fd, wd);
2643 }
2644
2645 static void noinline
2646 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2647 {
2648 if (slot < 0)
2649 /* overflow, need to check for all hash slots */
2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2651 infy_wd (EV_A_ slot, wd, ev);
2652 else
2653 {
2654 WL w_;
2655
2656 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2657 {
2658 ev_stat *w = (ev_stat *)w_;
2659 w_ = w_->next; /* lets us remove this watcher and all before it */
2660
2661 if (w->wd == wd || wd == -1)
2662 {
2663 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2664 {
2665 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2666 w->wd = -1;
2667 infy_add (EV_A_ w); /* re-add, no matter what */
2668 }
2669
2670 stat_timer_cb (EV_A_ &w->timer, 0);
2671 }
2672 }
2673 }
2674 }
2675
2676 static void
2677 infy_cb (EV_P_ ev_io *w, int revents)
2678 {
2679 char buf [EV_INOTIFY_BUFSIZE];
2680 struct inotify_event *ev = (struct inotify_event *)buf;
2681 int ofs;
2682 int len = read (fs_fd, buf, sizeof (buf));
2683
2684 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2685 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2686 }
2687
2688 inline_size void
2689 check_2625 (EV_P)
2690 {
2691 /* kernels < 2.6.25 are borked
2692 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2693 */
2694 struct utsname buf;
2695 int major, minor, micro;
2696
2697 if (uname (&buf))
2698 return;
2699
2700 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2701 return;
2702
2703 if (major < 2
2704 || (major == 2 && minor < 6)
2705 || (major == 2 && minor == 6 && micro < 25))
2706 return;
2707
2708 fs_2625 = 1;
2709 }
2710
2711 inline_size void
2712 infy_init (EV_P)
2713 {
2714 if (fs_fd != -2)
2715 return;
2716
2717 fs_fd = -1;
2718
2719 check_2625 (EV_A);
2720
2721 fs_fd = inotify_init ();
2722
2723 if (fs_fd >= 0)
2724 {
2725 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2726 ev_set_priority (&fs_w, EV_MAXPRI);
2727 ev_io_start (EV_A_ &fs_w);
2728 }
2729 }
2730
2731 inline_size void
2732 infy_fork (EV_P)
2733 {
2734 int slot;
2735
2736 if (fs_fd < 0)
2737 return;
2738
2739 close (fs_fd);
2740 fs_fd = inotify_init ();
2741
2742 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2743 {
2744 WL w_ = fs_hash [slot].head;
2745 fs_hash [slot].head = 0;
2746
2747 while (w_)
2748 {
2749 ev_stat *w = (ev_stat *)w_;
2750 w_ = w_->next; /* lets us add this watcher */
2751
2752 w->wd = -1;
2753
2754 if (fs_fd >= 0)
2755 infy_add (EV_A_ w); /* re-add, no matter what */
2756 else
2757 ev_timer_again (EV_A_ &w->timer);
2758 }
2759 }
2760 }
2761
2762 #endif
2763
2764 #ifdef _WIN32
2765 # define EV_LSTAT(p,b) _stati64 (p, b)
2766 #else
2767 # define EV_LSTAT(p,b) lstat (p, b)
2768 #endif
2769
2770 void
2771 ev_stat_stat (EV_P_ ev_stat *w)
2772 {
2773 if (lstat (w->path, &w->attr) < 0)
2774 w->attr.st_nlink = 0;
2775 else if (!w->attr.st_nlink)
2776 w->attr.st_nlink = 1;
2777 }
2778
2779 static void noinline
2780 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2781 {
2782 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2783
2784 /* we copy this here each the time so that */
2785 /* prev has the old value when the callback gets invoked */
2786 w->prev = w->attr;
2787 ev_stat_stat (EV_A_ w);
2788
2789 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2790 if (
2791 w->prev.st_dev != w->attr.st_dev
2792 || w->prev.st_ino != w->attr.st_ino
2793 || w->prev.st_mode != w->attr.st_mode
2794 || w->prev.st_nlink != w->attr.st_nlink
2795 || w->prev.st_uid != w->attr.st_uid
2796 || w->prev.st_gid != w->attr.st_gid
2797 || w->prev.st_rdev != w->attr.st_rdev
2798 || w->prev.st_size != w->attr.st_size
2799 || w->prev.st_atime != w->attr.st_atime
2800 || w->prev.st_mtime != w->attr.st_mtime
2801 || w->prev.st_ctime != w->attr.st_ctime
2802 ) {
2803 #if EV_USE_INOTIFY
2804 if (fs_fd >= 0)
2805 {
2806 infy_del (EV_A_ w);
2807 infy_add (EV_A_ w);
2808 ev_stat_stat (EV_A_ w); /* avoid race... */
2809 }
2810 #endif
2811
2812 ev_feed_event (EV_A_ w, EV_STAT);
2813 }
2814 }
2815
2816 void
2817 ev_stat_start (EV_P_ ev_stat *w)
2818 {
2819 if (expect_false (ev_is_active (w)))
2820 return;
2821
2822 ev_stat_stat (EV_A_ w);
2823
2824 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2825 w->interval = MIN_STAT_INTERVAL;
2826
2827 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2828 ev_set_priority (&w->timer, ev_priority (w));
2829
2830 #if EV_USE_INOTIFY
2831 infy_init (EV_A);
2832
2833 if (fs_fd >= 0)
2834 infy_add (EV_A_ w);
2835 else
2836 #endif
2837 ev_timer_again (EV_A_ &w->timer);
2838
2839 ev_start (EV_A_ (W)w, 1);
2840
2841 EV_FREQUENT_CHECK;
2842 }
2843
2844 void
2845 ev_stat_stop (EV_P_ ev_stat *w)
2846 {
2847 clear_pending (EV_A_ (W)w);
2848 if (expect_false (!ev_is_active (w)))
2849 return;
2850
2851 EV_FREQUENT_CHECK;
2852
2853 #if EV_USE_INOTIFY
2854 infy_del (EV_A_ w);
2855 #endif
2856 ev_timer_stop (EV_A_ &w->timer);
2857
2858 ev_stop (EV_A_ (W)w);
2859
2860 EV_FREQUENT_CHECK;
2861 }
2862 #endif
2863
2864 #if EV_IDLE_ENABLE
2865 void
2866 ev_idle_start (EV_P_ ev_idle *w)
2867 {
2868 if (expect_false (ev_is_active (w)))
2869 return;
2870
2871 pri_adjust (EV_A_ (W)w);
2872
2873 EV_FREQUENT_CHECK;
2874
2875 {
2876 int active = ++idlecnt [ABSPRI (w)];
2877
2878 ++idleall;
2879 ev_start (EV_A_ (W)w, active);
2880
2881 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2882 idles [ABSPRI (w)][active - 1] = w;
2883 }
2884
2885 EV_FREQUENT_CHECK;
2886 }
2887
2888 void
2889 ev_idle_stop (EV_P_ ev_idle *w)
2890 {
2891 clear_pending (EV_A_ (W)w);
2892 if (expect_false (!ev_is_active (w)))
2893 return;
2894
2895 EV_FREQUENT_CHECK;
2896
2897 {
2898 int active = ev_active (w);
2899
2900 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2901 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2902
2903 ev_stop (EV_A_ (W)w);
2904 --idleall;
2905 }
2906
2907 EV_FREQUENT_CHECK;
2908 }
2909 #endif
2910
2911 void
2912 ev_prepare_start (EV_P_ ev_prepare *w)
2913 {
2914 if (expect_false (ev_is_active (w)))
2915 return;
2916
2917 EV_FREQUENT_CHECK;
2918
2919 ev_start (EV_A_ (W)w, ++preparecnt);
2920 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2921 prepares [preparecnt - 1] = w;
2922
2923 EV_FREQUENT_CHECK;
2924 }
2925
2926 void
2927 ev_prepare_stop (EV_P_ ev_prepare *w)
2928 {
2929 clear_pending (EV_A_ (W)w);
2930 if (expect_false (!ev_is_active (w)))
2931 return;
2932
2933 EV_FREQUENT_CHECK;
2934
2935 {
2936 int active = ev_active (w);
2937
2938 prepares [active - 1] = prepares [--preparecnt];
2939 ev_active (prepares [active - 1]) = active;
2940 }
2941
2942 ev_stop (EV_A_ (W)w);
2943
2944 EV_FREQUENT_CHECK;
2945 }
2946
2947 void
2948 ev_check_start (EV_P_ ev_check *w)
2949 {
2950 if (expect_false (ev_is_active (w)))
2951 return;
2952
2953 EV_FREQUENT_CHECK;
2954
2955 ev_start (EV_A_ (W)w, ++checkcnt);
2956 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2957 checks [checkcnt - 1] = w;
2958
2959 EV_FREQUENT_CHECK;
2960 }
2961
2962 void
2963 ev_check_stop (EV_P_ ev_check *w)
2964 {
2965 clear_pending (EV_A_ (W)w);
2966 if (expect_false (!ev_is_active (w)))
2967 return;
2968
2969 EV_FREQUENT_CHECK;
2970
2971 {
2972 int active = ev_active (w);
2973
2974 checks [active - 1] = checks [--checkcnt];
2975 ev_active (checks [active - 1]) = active;
2976 }
2977
2978 ev_stop (EV_A_ (W)w);
2979
2980 EV_FREQUENT_CHECK;
2981 }
2982
2983 #if EV_EMBED_ENABLE
2984 void noinline
2985 ev_embed_sweep (EV_P_ ev_embed *w)
2986 {
2987 ev_loop (w->other, EVLOOP_NONBLOCK);
2988 }
2989
2990 static void
2991 embed_io_cb (EV_P_ ev_io *io, int revents)
2992 {
2993 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2994
2995 if (ev_cb (w))
2996 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2997 else
2998 ev_loop (w->other, EVLOOP_NONBLOCK);
2999 }
3000
3001 static void
3002 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3003 {
3004 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3005
3006 {
3007 struct ev_loop *loop = w->other;
3008
3009 while (fdchangecnt)
3010 {
3011 fd_reify (EV_A);
3012 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3013 }
3014 }
3015 }
3016
3017 static void
3018 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3019 {
3020 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3021
3022 ev_embed_stop (EV_A_ w);
3023
3024 {
3025 struct ev_loop *loop = w->other;
3026
3027 ev_loop_fork (EV_A);
3028 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3029 }
3030
3031 ev_embed_start (EV_A_ w);
3032 }
3033
3034 #if 0
3035 static void
3036 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3037 {
3038 ev_idle_stop (EV_A_ idle);
3039 }
3040 #endif
3041
3042 void
3043 ev_embed_start (EV_P_ ev_embed *w)
3044 {
3045 if (expect_false (ev_is_active (w)))
3046 return;
3047
3048 {
3049 struct ev_loop *loop = w->other;
3050 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3051 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3052 }
3053
3054 EV_FREQUENT_CHECK;
3055
3056 ev_set_priority (&w->io, ev_priority (w));
3057 ev_io_start (EV_A_ &w->io);
3058
3059 ev_prepare_init (&w->prepare, embed_prepare_cb);
3060 ev_set_priority (&w->prepare, EV_MINPRI);
3061 ev_prepare_start (EV_A_ &w->prepare);
3062
3063 ev_fork_init (&w->fork, embed_fork_cb);
3064 ev_fork_start (EV_A_ &w->fork);
3065
3066 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3067
3068 ev_start (EV_A_ (W)w, 1);
3069
3070 EV_FREQUENT_CHECK;
3071 }
3072
3073 void
3074 ev_embed_stop (EV_P_ ev_embed *w)
3075 {
3076 clear_pending (EV_A_ (W)w);
3077 if (expect_false (!ev_is_active (w)))
3078 return;
3079
3080 EV_FREQUENT_CHECK;
3081
3082 ev_io_stop (EV_A_ &w->io);
3083 ev_prepare_stop (EV_A_ &w->prepare);
3084 ev_fork_stop (EV_A_ &w->fork);
3085
3086 EV_FREQUENT_CHECK;
3087 }
3088 #endif
3089
3090 #if EV_FORK_ENABLE
3091 void
3092 ev_fork_start (EV_P_ ev_fork *w)
3093 {
3094 if (expect_false (ev_is_active (w)))
3095 return;
3096
3097 EV_FREQUENT_CHECK;
3098
3099 ev_start (EV_A_ (W)w, ++forkcnt);
3100 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3101 forks [forkcnt - 1] = w;
3102
3103 EV_FREQUENT_CHECK;
3104 }
3105
3106 void
3107 ev_fork_stop (EV_P_ ev_fork *w)
3108 {
3109 clear_pending (EV_A_ (W)w);
3110 if (expect_false (!ev_is_active (w)))
3111 return;
3112
3113 EV_FREQUENT_CHECK;
3114
3115 {
3116 int active = ev_active (w);
3117
3118 forks [active - 1] = forks [--forkcnt];
3119 ev_active (forks [active - 1]) = active;
3120 }
3121
3122 ev_stop (EV_A_ (W)w);
3123
3124 EV_FREQUENT_CHECK;
3125 }
3126 #endif
3127
3128 #if EV_ASYNC_ENABLE
3129 void
3130 ev_async_start (EV_P_ ev_async *w)
3131 {
3132 if (expect_false (ev_is_active (w)))
3133 return;
3134
3135 evpipe_init (EV_A);
3136
3137 EV_FREQUENT_CHECK;
3138
3139 ev_start (EV_A_ (W)w, ++asynccnt);
3140 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3141 asyncs [asynccnt - 1] = w;
3142
3143 EV_FREQUENT_CHECK;
3144 }
3145
3146 void
3147 ev_async_stop (EV_P_ ev_async *w)
3148 {
3149 clear_pending (EV_A_ (W)w);
3150 if (expect_false (!ev_is_active (w)))
3151 return;
3152
3153 EV_FREQUENT_CHECK;
3154
3155 {
3156 int active = ev_active (w);
3157
3158 asyncs [active - 1] = asyncs [--asynccnt];
3159 ev_active (asyncs [active - 1]) = active;
3160 }
3161
3162 ev_stop (EV_A_ (W)w);
3163
3164 EV_FREQUENT_CHECK;
3165 }
3166
3167 void
3168 ev_async_send (EV_P_ ev_async *w)
3169 {
3170 w->sent = 1;
3171 evpipe_write (EV_A_ &gotasync);
3172 }
3173 #endif
3174
3175 /*****************************************************************************/
3176
3177 struct ev_once
3178 {
3179 ev_io io;
3180 ev_timer to;
3181 void (*cb)(int revents, void *arg);
3182 void *arg;
3183 };
3184
3185 static void
3186 once_cb (EV_P_ struct ev_once *once, int revents)
3187 {
3188 void (*cb)(int revents, void *arg) = once->cb;
3189 void *arg = once->arg;
3190
3191 ev_io_stop (EV_A_ &once->io);
3192 ev_timer_stop (EV_A_ &once->to);
3193 ev_free (once);
3194
3195 cb (revents, arg);
3196 }
3197
3198 static void
3199 once_cb_io (EV_P_ ev_io *w, int revents)
3200 {
3201 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3202
3203 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3204 }
3205
3206 static void
3207 once_cb_to (EV_P_ ev_timer *w, int revents)
3208 {
3209 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3210
3211 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3212 }
3213
3214 void
3215 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3216 {
3217 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3218
3219 if (expect_false (!once))
3220 {
3221 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3222 return;
3223 }
3224
3225 once->cb = cb;
3226 once->arg = arg;
3227
3228 ev_init (&once->io, once_cb_io);
3229 if (fd >= 0)
3230 {
3231 ev_io_set (&once->io, fd, events);
3232 ev_io_start (EV_A_ &once->io);
3233 }
3234
3235 ev_init (&once->to, once_cb_to);
3236 if (timeout >= 0.)
3237 {
3238 ev_timer_set (&once->to, timeout, 0.);
3239 ev_timer_start (EV_A_ &once->to);
3240 }
3241 }
3242
3243 /*****************************************************************************/
3244
3245 #if EV_WALK_ENABLE
3246 void
3247 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3248 {
3249 int i, j;
3250 ev_watcher_list *wl, *wn;
3251
3252 if (types & (EV_IO | EV_EMBED))
3253 for (i = 0; i < anfdmax; ++i)
3254 for (wl = anfds [i].head; wl; )
3255 {
3256 wn = wl->next;
3257
3258 #if EV_EMBED_ENABLE
3259 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3260 {
3261 if (types & EV_EMBED)
3262 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3263 }
3264 else
3265 #endif
3266 #if EV_USE_INOTIFY
3267 if (ev_cb ((ev_io *)wl) == infy_cb)
3268 ;
3269 else
3270 #endif
3271 if ((ev_io *)wl != &pipe_w)
3272 if (types & EV_IO)
3273 cb (EV_A_ EV_IO, wl);
3274
3275 wl = wn;
3276 }
3277
3278 if (types & (EV_TIMER | EV_STAT))
3279 for (i = timercnt + HEAP0; i-- > HEAP0; )
3280 #if EV_STAT_ENABLE
3281 /*TODO: timer is not always active*/
3282 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3283 {
3284 if (types & EV_STAT)
3285 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3286 }
3287 else
3288 #endif
3289 if (types & EV_TIMER)
3290 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3291
3292 #if EV_PERIODIC_ENABLE
3293 if (types & EV_PERIODIC)
3294 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3295 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3296 #endif
3297
3298 #if EV_IDLE_ENABLE
3299 if (types & EV_IDLE)
3300 for (j = NUMPRI; i--; )
3301 for (i = idlecnt [j]; i--; )
3302 cb (EV_A_ EV_IDLE, idles [j][i]);
3303 #endif
3304
3305 #if EV_FORK_ENABLE
3306 if (types & EV_FORK)
3307 for (i = forkcnt; i--; )
3308 if (ev_cb (forks [i]) != embed_fork_cb)
3309 cb (EV_A_ EV_FORK, forks [i]);
3310 #endif
3311
3312 #if EV_ASYNC_ENABLE
3313 if (types & EV_ASYNC)
3314 for (i = asynccnt; i--; )
3315 cb (EV_A_ EV_ASYNC, asyncs [i]);
3316 #endif
3317
3318 if (types & EV_PREPARE)
3319 for (i = preparecnt; i--; )
3320 #if EV_EMBED_ENABLE
3321 if (ev_cb (prepares [i]) != embed_prepare_cb)
3322 #endif
3323 cb (EV_A_ EV_PREPARE, prepares [i]);
3324
3325 if (types & EV_CHECK)
3326 for (i = checkcnt; i--; )
3327 cb (EV_A_ EV_CHECK, checks [i]);
3328
3329 if (types & EV_SIGNAL)
3330 for (i = 0; i < signalmax; ++i)
3331 for (wl = signals [i].head; wl; )
3332 {
3333 wn = wl->next;
3334 cb (EV_A_ EV_SIGNAL, wl);
3335 wl = wn;
3336 }
3337
3338 if (types & EV_CHILD)
3339 for (i = EV_PID_HASHSIZE; i--; )
3340 for (wl = childs [i]; wl; )
3341 {
3342 wn = wl->next;
3343 cb (EV_A_ EV_CHILD, wl);
3344 wl = wn;
3345 }
3346 /* EV_STAT 0x00001000 /* stat data changed */
3347 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3348 }
3349 #endif
3350
3351 #if EV_MULTIPLICITY
3352 #include "ev_wrap.h"
3353 #endif
3354
3355 #ifdef __cplusplus
3356 }
3357 #endif
3358