ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.292
Committed: Mon Jun 29 07:22:56 2009 UTC (14 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.291: +2 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_SYSCALL
53 # ifndef EV_USE_CLOCK_SYSCALL
54 # define EV_USE_CLOCK_SYSCALL 1
55 # ifndef EV_USE_REALTIME
56 # define EV_USE_REALTIME 0
57 # endif
58 # ifndef EV_USE_MONOTONIC
59 # define EV_USE_MONOTONIC 1
60 # endif
61 # endif
62 # elif !defined(EV_USE_CLOCK_SYSCALL)
63 # define EV_USE_CLOCK_SYSCALL 0
64 # endif
65
66 # if HAVE_CLOCK_GETTIME
67 # ifndef EV_USE_MONOTONIC
68 # define EV_USE_MONOTONIC 1
69 # endif
70 # ifndef EV_USE_REALTIME
71 # define EV_USE_REALTIME 0
72 # endif
73 # else
74 # ifndef EV_USE_MONOTONIC
75 # define EV_USE_MONOTONIC 0
76 # endif
77 # ifndef EV_USE_REALTIME
78 # define EV_USE_REALTIME 0
79 # endif
80 # endif
81
82 # ifndef EV_USE_NANOSLEEP
83 # if HAVE_NANOSLEEP
84 # define EV_USE_NANOSLEEP 1
85 # else
86 # define EV_USE_NANOSLEEP 0
87 # endif
88 # endif
89
90 # ifndef EV_USE_SELECT
91 # if HAVE_SELECT && HAVE_SYS_SELECT_H
92 # define EV_USE_SELECT 1
93 # else
94 # define EV_USE_SELECT 0
95 # endif
96 # endif
97
98 # ifndef EV_USE_POLL
99 # if HAVE_POLL && HAVE_POLL_H
100 # define EV_USE_POLL 1
101 # else
102 # define EV_USE_POLL 0
103 # endif
104 # endif
105
106 # ifndef EV_USE_EPOLL
107 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108 # define EV_USE_EPOLL 1
109 # else
110 # define EV_USE_EPOLL 0
111 # endif
112 # endif
113
114 # ifndef EV_USE_KQUEUE
115 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116 # define EV_USE_KQUEUE 1
117 # else
118 # define EV_USE_KQUEUE 0
119 # endif
120 # endif
121
122 # ifndef EV_USE_PORT
123 # if HAVE_PORT_H && HAVE_PORT_CREATE
124 # define EV_USE_PORT 1
125 # else
126 # define EV_USE_PORT 0
127 # endif
128 # endif
129
130 # ifndef EV_USE_INOTIFY
131 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132 # define EV_USE_INOTIFY 1
133 # else
134 # define EV_USE_INOTIFY 0
135 # endif
136 # endif
137
138 # ifndef EV_USE_EVENTFD
139 # if HAVE_EVENTFD
140 # define EV_USE_EVENTFD 1
141 # else
142 # define EV_USE_EVENTFD 0
143 # endif
144 # endif
145
146 #endif
147
148 #include <math.h>
149 #include <stdlib.h>
150 #include <fcntl.h>
151 #include <stddef.h>
152
153 #include <stdio.h>
154
155 #include <assert.h>
156 #include <errno.h>
157 #include <sys/types.h>
158 #include <time.h>
159
160 #include <signal.h>
161
162 #ifdef EV_H
163 # include EV_H
164 #else
165 # include "ev.h"
166 #endif
167
168 #ifndef _WIN32
169 # include <sys/time.h>
170 # include <sys/wait.h>
171 # include <unistd.h>
172 #else
173 # include <io.h>
174 # define WIN32_LEAN_AND_MEAN
175 # include <windows.h>
176 # ifndef EV_SELECT_IS_WINSOCKET
177 # define EV_SELECT_IS_WINSOCKET 1
178 # endif
179 #endif
180
181 /* this block tries to deduce configuration from header-defined symbols and defaults */
182
183 #ifndef EV_USE_CLOCK_SYSCALL
184 # if __linux && __GLIBC__ >= 2
185 # define EV_USE_CLOCK_SYSCALL 1
186 # else
187 # define EV_USE_CLOCK_SYSCALL 0
188 # endif
189 #endif
190
191 #ifndef EV_USE_MONOTONIC
192 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193 # define EV_USE_MONOTONIC 1
194 # else
195 # define EV_USE_MONOTONIC 0
196 # endif
197 #endif
198
199 #ifndef EV_USE_REALTIME
200 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201 #endif
202
203 #ifndef EV_USE_NANOSLEEP
204 # if _POSIX_C_SOURCE >= 199309L
205 # define EV_USE_NANOSLEEP 1
206 # else
207 # define EV_USE_NANOSLEEP 0
208 # endif
209 #endif
210
211 #ifndef EV_USE_SELECT
212 # define EV_USE_SELECT 1
213 #endif
214
215 #ifndef EV_USE_POLL
216 # ifdef _WIN32
217 # define EV_USE_POLL 0
218 # else
219 # define EV_USE_POLL 1
220 # endif
221 #endif
222
223 #ifndef EV_USE_EPOLL
224 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225 # define EV_USE_EPOLL 1
226 # else
227 # define EV_USE_EPOLL 0
228 # endif
229 #endif
230
231 #ifndef EV_USE_KQUEUE
232 # define EV_USE_KQUEUE 0
233 #endif
234
235 #ifndef EV_USE_PORT
236 # define EV_USE_PORT 0
237 #endif
238
239 #ifndef EV_USE_INOTIFY
240 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241 # define EV_USE_INOTIFY 1
242 # else
243 # define EV_USE_INOTIFY 0
244 # endif
245 #endif
246
247 #ifndef EV_PID_HASHSIZE
248 # if EV_MINIMAL
249 # define EV_PID_HASHSIZE 1
250 # else
251 # define EV_PID_HASHSIZE 16
252 # endif
253 #endif
254
255 #ifndef EV_INOTIFY_HASHSIZE
256 # if EV_MINIMAL
257 # define EV_INOTIFY_HASHSIZE 1
258 # else
259 # define EV_INOTIFY_HASHSIZE 16
260 # endif
261 #endif
262
263 #ifndef EV_USE_EVENTFD
264 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265 # define EV_USE_EVENTFD 1
266 # else
267 # define EV_USE_EVENTFD 0
268 # endif
269 #endif
270
271 #if 0 /* debugging */
272 # define EV_VERIFY 3
273 # define EV_USE_4HEAP 1
274 # define EV_HEAP_CACHE_AT 1
275 #endif
276
277 #ifndef EV_VERIFY
278 # define EV_VERIFY !EV_MINIMAL
279 #endif
280
281 #ifndef EV_USE_4HEAP
282 # define EV_USE_4HEAP !EV_MINIMAL
283 #endif
284
285 #ifndef EV_HEAP_CACHE_AT
286 # define EV_HEAP_CACHE_AT !EV_MINIMAL
287 #endif
288
289 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290 /* which makes programs even slower. might work on other unices, too. */
291 #if EV_USE_CLOCK_SYSCALL
292 # include <syscall.h>
293 # ifdef SYS_clock_gettime
294 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295 # undef EV_USE_MONOTONIC
296 # define EV_USE_MONOTONIC 1
297 # else
298 # undef EV_USE_CLOCK_SYSCALL
299 # define EV_USE_CLOCK_SYSCALL 0
300 # endif
301 #endif
302
303 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
304
305 #ifndef CLOCK_MONOTONIC
306 # undef EV_USE_MONOTONIC
307 # define EV_USE_MONOTONIC 0
308 #endif
309
310 #ifndef CLOCK_REALTIME
311 # undef EV_USE_REALTIME
312 # define EV_USE_REALTIME 0
313 #endif
314
315 #if !EV_STAT_ENABLE
316 # undef EV_USE_INOTIFY
317 # define EV_USE_INOTIFY 0
318 #endif
319
320 #if !EV_USE_NANOSLEEP
321 # ifndef _WIN32
322 # include <sys/select.h>
323 # endif
324 #endif
325
326 #if EV_USE_INOTIFY
327 # include <sys/utsname.h>
328 # include <sys/statfs.h>
329 # include <sys/inotify.h>
330 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331 # ifndef IN_DONT_FOLLOW
332 # undef EV_USE_INOTIFY
333 # define EV_USE_INOTIFY 0
334 # endif
335 #endif
336
337 #if EV_SELECT_IS_WINSOCKET
338 # include <winsock.h>
339 #endif
340
341 #if EV_USE_EVENTFD
342 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343 # include <stdint.h>
344 # ifdef __cplusplus
345 extern "C" {
346 # endif
347 int eventfd (unsigned int initval, int flags);
348 # ifdef __cplusplus
349 }
350 # endif
351 #endif
352
353 /**/
354
355 #if EV_VERIFY >= 3
356 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357 #else
358 # define EV_FREQUENT_CHECK do { } while (0)
359 #endif
360
361 /*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370
371 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
372 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
373 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
374
375 #if __GNUC__ >= 4
376 # define expect(expr,value) __builtin_expect ((expr),(value))
377 # define noinline __attribute__ ((noinline))
378 #else
379 # define expect(expr,value) (expr)
380 # define noinline
381 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382 # define inline
383 # endif
384 #endif
385
386 #define expect_false(expr) expect ((expr) != 0, 0)
387 #define expect_true(expr) expect ((expr) != 0, 1)
388 #define inline_size static inline
389
390 #if EV_MINIMAL
391 # define inline_speed static noinline
392 #else
393 # define inline_speed static inline
394 #endif
395
396 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397 #define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
398
399 #define EMPTY /* required for microsofts broken pseudo-c compiler */
400 #define EMPTY2(a,b) /* used to suppress some warnings */
401
402 typedef ev_watcher *W;
403 typedef ev_watcher_list *WL;
404 typedef ev_watcher_time *WT;
405
406 #define ev_active(w) ((W)(w))->active
407 #define ev_at(w) ((WT)(w))->at
408
409 #if EV_USE_REALTIME
410 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
411 /* giving it a reasonably high chance of working on typical architetcures */
412 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413 #endif
414
415 #if EV_USE_MONOTONIC
416 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
417 #endif
418
419 #ifdef _WIN32
420 # include "ev_win32.c"
421 #endif
422
423 /*****************************************************************************/
424
425 static void (*syserr_cb)(const char *msg);
426
427 void
428 ev_set_syserr_cb (void (*cb)(const char *msg))
429 {
430 syserr_cb = cb;
431 }
432
433 static void noinline
434 ev_syserr (const char *msg)
435 {
436 if (!msg)
437 msg = "(libev) system error";
438
439 if (syserr_cb)
440 syserr_cb (msg);
441 else
442 {
443 perror (msg);
444 abort ();
445 }
446 }
447
448 static void *
449 ev_realloc_emul (void *ptr, long size)
450 {
451 /* some systems, notably openbsd and darwin, fail to properly
452 * implement realloc (x, 0) (as required by both ansi c-98 and
453 * the single unix specification, so work around them here.
454 */
455
456 if (size)
457 return realloc (ptr, size);
458
459 free (ptr);
460 return 0;
461 }
462
463 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
464
465 void
466 ev_set_allocator (void *(*cb)(void *ptr, long size))
467 {
468 alloc = cb;
469 }
470
471 inline_speed void *
472 ev_realloc (void *ptr, long size)
473 {
474 ptr = alloc (ptr, size);
475
476 if (!ptr && size)
477 {
478 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
479 abort ();
480 }
481
482 return ptr;
483 }
484
485 #define ev_malloc(size) ev_realloc (0, (size))
486 #define ev_free(ptr) ev_realloc ((ptr), 0)
487
488 /*****************************************************************************/
489
490 /* file descriptor info structure */
491 typedef struct
492 {
493 WL head;
494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
497 unsigned char unused;
498 #if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500 #endif
501 #if EV_SELECT_IS_WINSOCKET
502 SOCKET handle;
503 #endif
504 } ANFD;
505
506 /* stores the pending event set for a given watcher */
507 typedef struct
508 {
509 W w;
510 int events; /* the pending event set for the given watcher */
511 } ANPENDING;
512
513 #if EV_USE_INOTIFY
514 /* hash table entry per inotify-id */
515 typedef struct
516 {
517 WL head;
518 } ANFS;
519 #endif
520
521 /* Heap Entry */
522 #if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532 #else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
539 #endif
540
541 #if EV_MULTIPLICITY
542
543 struct ev_loop
544 {
545 ev_tstamp ev_rt_now;
546 #define ev_rt_now ((loop)->ev_rt_now)
547 #define VAR(name,decl) decl;
548 #include "ev_vars.h"
549 #undef VAR
550 };
551 #include "ev_wrap.h"
552
553 static struct ev_loop default_loop_struct;
554 struct ev_loop *ev_default_loop_ptr;
555
556 #else
557
558 ev_tstamp ev_rt_now;
559 #define VAR(name,decl) static decl;
560 #include "ev_vars.h"
561 #undef VAR
562
563 static int ev_default_loop_ptr;
564
565 #endif
566
567 /*****************************************************************************/
568
569 #ifndef EV_HAVE_EV_TIME
570 ev_tstamp
571 ev_time (void)
572 {
573 #if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
576 struct timespec ts;
577 clock_gettime (CLOCK_REALTIME, &ts);
578 return ts.tv_sec + ts.tv_nsec * 1e-9;
579 }
580 #endif
581
582 struct timeval tv;
583 gettimeofday (&tv, 0);
584 return tv.tv_sec + tv.tv_usec * 1e-6;
585 }
586 #endif
587
588 inline_size ev_tstamp
589 get_clock (void)
590 {
591 #if EV_USE_MONOTONIC
592 if (expect_true (have_monotonic))
593 {
594 struct timespec ts;
595 clock_gettime (CLOCK_MONOTONIC, &ts);
596 return ts.tv_sec + ts.tv_nsec * 1e-9;
597 }
598 #endif
599
600 return ev_time ();
601 }
602
603 #if EV_MULTIPLICITY
604 ev_tstamp
605 ev_now (EV_P)
606 {
607 return ev_rt_now;
608 }
609 #endif
610
611 void
612 ev_sleep (ev_tstamp delay)
613 {
614 if (delay > 0.)
615 {
616 #if EV_USE_NANOSLEEP
617 struct timespec ts;
618
619 ts.tv_sec = (time_t)delay;
620 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
621
622 nanosleep (&ts, 0);
623 #elif defined(_WIN32)
624 Sleep ((unsigned long)(delay * 1e3));
625 #else
626 struct timeval tv;
627
628 tv.tv_sec = (time_t)delay;
629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
630
631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632 /* somehting nto guaranteed by newer posix versions, but guaranteed */
633 /* by older ones */
634 select (0, 0, 0, 0, &tv);
635 #endif
636 }
637 }
638
639 /*****************************************************************************/
640
641 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
642
643 /* find a suitable new size for the given array, */
644 /* hopefully by rounding to a ncie-to-malloc size */
645 inline_size int
646 array_nextsize (int elem, int cur, int cnt)
647 {
648 int ncur = cur + 1;
649
650 do
651 ncur <<= 1;
652 while (cnt > ncur);
653
654 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
655 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
656 {
657 ncur *= elem;
658 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
659 ncur = ncur - sizeof (void *) * 4;
660 ncur /= elem;
661 }
662
663 return ncur;
664 }
665
666 static noinline void *
667 array_realloc (int elem, void *base, int *cur, int cnt)
668 {
669 *cur = array_nextsize (elem, *cur, cnt);
670 return ev_realloc (base, elem * *cur);
671 }
672
673 #define array_init_zero(base,count) \
674 memset ((void *)(base), 0, sizeof (*(base)) * (count))
675
676 #define array_needsize(type,base,cur,cnt,init) \
677 if (expect_false ((cnt) > (cur))) \
678 { \
679 int ocur_ = (cur); \
680 (base) = (type *)array_realloc \
681 (sizeof (type), (base), &(cur), (cnt)); \
682 init ((base) + (ocur_), (cur) - ocur_); \
683 }
684
685 #if 0
686 #define array_slim(type,stem) \
687 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
688 { \
689 stem ## max = array_roundsize (stem ## cnt >> 1); \
690 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
692 }
693 #endif
694
695 #define array_free(stem, idx) \
696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
697
698 /*****************************************************************************/
699
700 /* dummy callback for pending events */
701 static void noinline
702 pendingcb (EV_P_ ev_prepare *w, int revents)
703 {
704 }
705
706 void noinline
707 ev_feed_event (EV_P_ void *w, int revents)
708 {
709 W w_ = (W)w;
710 int pri = ABSPRI (w_);
711
712 if (expect_false (w_->pending))
713 pendings [pri][w_->pending - 1].events |= revents;
714 else
715 {
716 w_->pending = ++pendingcnt [pri];
717 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
718 pendings [pri][w_->pending - 1].w = w_;
719 pendings [pri][w_->pending - 1].events = revents;
720 }
721 }
722
723 inline_speed void
724 feed_reverse (EV_P_ W w)
725 {
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728 }
729
730 inline_size void
731 feed_reverse_done (EV_P_ int revents)
732 {
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736 }
737
738 inline_speed void
739 queue_events (EV_P_ W *events, int eventcnt, int type)
740 {
741 int i;
742
743 for (i = 0; i < eventcnt; ++i)
744 ev_feed_event (EV_A_ events [i], type);
745 }
746
747 /*****************************************************************************/
748
749 inline_speed void
750 fd_event (EV_P_ int fd, int revents)
751 {
752 ANFD *anfd = anfds + fd;
753 ev_io *w;
754
755 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
756 {
757 int ev = w->events & revents;
758
759 if (ev)
760 ev_feed_event (EV_A_ (W)w, ev);
761 }
762 }
763
764 void
765 ev_feed_fd_event (EV_P_ int fd, int revents)
766 {
767 if (fd >= 0 && fd < anfdmax)
768 fd_event (EV_A_ fd, revents);
769 }
770
771 /* make sure the external fd watch events are in-sync */
772 /* with the kernel/libev internal state */
773 inline_size void
774 fd_reify (EV_P)
775 {
776 int i;
777
778 for (i = 0; i < fdchangecnt; ++i)
779 {
780 int fd = fdchanges [i];
781 ANFD *anfd = anfds + fd;
782 ev_io *w;
783
784 unsigned char events = 0;
785
786 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
787 events |= (unsigned char)w->events;
788
789 #if EV_SELECT_IS_WINSOCKET
790 if (events)
791 {
792 unsigned long arg;
793 #ifdef EV_FD_TO_WIN32_HANDLE
794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
795 #else
796 anfd->handle = _get_osfhandle (fd);
797 #endif
798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
799 }
800 #endif
801
802 {
803 unsigned char o_events = anfd->events;
804 unsigned char o_reify = anfd->reify;
805
806 anfd->reify = 0;
807 anfd->events = events;
808
809 if (o_events != events || o_reify & EV__IOFDSET)
810 backend_modify (EV_A_ fd, o_events, events);
811 }
812 }
813
814 fdchangecnt = 0;
815 }
816
817 /* something about the given fd changed */
818 inline_size void
819 fd_change (EV_P_ int fd, int flags)
820 {
821 unsigned char reify = anfds [fd].reify;
822 anfds [fd].reify |= flags;
823
824 if (expect_true (!reify))
825 {
826 ++fdchangecnt;
827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
828 fdchanges [fdchangecnt - 1] = fd;
829 }
830 }
831
832 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833 inline_speed void
834 fd_kill (EV_P_ int fd)
835 {
836 ev_io *w;
837
838 while ((w = (ev_io *)anfds [fd].head))
839 {
840 ev_io_stop (EV_A_ w);
841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
842 }
843 }
844
845 /* check whether the given fd is atcually valid, for error recovery */
846 inline_size int
847 fd_valid (int fd)
848 {
849 #ifdef _WIN32
850 return _get_osfhandle (fd) != -1;
851 #else
852 return fcntl (fd, F_GETFD) != -1;
853 #endif
854 }
855
856 /* called on EBADF to verify fds */
857 static void noinline
858 fd_ebadf (EV_P)
859 {
860 int fd;
861
862 for (fd = 0; fd < anfdmax; ++fd)
863 if (anfds [fd].events)
864 if (!fd_valid (fd) && errno == EBADF)
865 fd_kill (EV_A_ fd);
866 }
867
868 /* called on ENOMEM in select/poll to kill some fds and retry */
869 static void noinline
870 fd_enomem (EV_P)
871 {
872 int fd;
873
874 for (fd = anfdmax; fd--; )
875 if (anfds [fd].events)
876 {
877 fd_kill (EV_A_ fd);
878 return;
879 }
880 }
881
882 /* usually called after fork if backend needs to re-arm all fds from scratch */
883 static void noinline
884 fd_rearm_all (EV_P)
885 {
886 int fd;
887
888 for (fd = 0; fd < anfdmax; ++fd)
889 if (anfds [fd].events)
890 {
891 anfds [fd].events = 0;
892 anfds [fd].emask = 0;
893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
894 }
895 }
896
897 /*****************************************************************************/
898
899 /*
900 * the heap functions want a real array index. array index 0 uis guaranteed to not
901 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
902 * the branching factor of the d-tree.
903 */
904
905 /*
906 * at the moment we allow libev the luxury of two heaps,
907 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
908 * which is more cache-efficient.
909 * the difference is about 5% with 50000+ watchers.
910 */
911 #if EV_USE_4HEAP
912
913 #define DHEAP 4
914 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
915 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
916 #define UPHEAP_DONE(p,k) ((p) == (k))
917
918 /* away from the root */
919 inline_speed void
920 downheap (ANHE *heap, int N, int k)
921 {
922 ANHE he = heap [k];
923 ANHE *E = heap + N + HEAP0;
924
925 for (;;)
926 {
927 ev_tstamp minat;
928 ANHE *minpos;
929 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
930
931 /* find minimum child */
932 if (expect_true (pos + DHEAP - 1 < E))
933 {
934 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
935 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
936 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
937 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
938 }
939 else if (pos < E)
940 {
941 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
942 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
943 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
944 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
945 }
946 else
947 break;
948
949 if (ANHE_at (he) <= minat)
950 break;
951
952 heap [k] = *minpos;
953 ev_active (ANHE_w (*minpos)) = k;
954
955 k = minpos - heap;
956 }
957
958 heap [k] = he;
959 ev_active (ANHE_w (he)) = k;
960 }
961
962 #else /* 4HEAP */
963
964 #define HEAP0 1
965 #define HPARENT(k) ((k) >> 1)
966 #define UPHEAP_DONE(p,k) (!(p))
967
968 /* away from the root */
969 inline_speed void
970 downheap (ANHE *heap, int N, int k)
971 {
972 ANHE he = heap [k];
973
974 for (;;)
975 {
976 int c = k << 1;
977
978 if (c > N + HEAP0 - 1)
979 break;
980
981 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
982 ? 1 : 0;
983
984 if (ANHE_at (he) <= ANHE_at (heap [c]))
985 break;
986
987 heap [k] = heap [c];
988 ev_active (ANHE_w (heap [k])) = k;
989
990 k = c;
991 }
992
993 heap [k] = he;
994 ev_active (ANHE_w (he)) = k;
995 }
996 #endif
997
998 /* towards the root */
999 inline_speed void
1000 upheap (ANHE *heap, int k)
1001 {
1002 ANHE he = heap [k];
1003
1004 for (;;)
1005 {
1006 int p = HPARENT (k);
1007
1008 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1009 break;
1010
1011 heap [k] = heap [p];
1012 ev_active (ANHE_w (heap [k])) = k;
1013 k = p;
1014 }
1015
1016 heap [k] = he;
1017 ev_active (ANHE_w (he)) = k;
1018 }
1019
1020 /* move an element suitably so it is in a correct place */
1021 inline_size void
1022 adjustheap (ANHE *heap, int N, int k)
1023 {
1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1025 upheap (heap, k);
1026 else
1027 downheap (heap, N, k);
1028 }
1029
1030 /* rebuild the heap: this function is used only once and executed rarely */
1031 inline_size void
1032 reheap (ANHE *heap, int N)
1033 {
1034 int i;
1035
1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038 for (i = 0; i < N; ++i)
1039 upheap (heap, i + HEAP0);
1040 }
1041
1042 /*****************************************************************************/
1043
1044 /* associate signal watchers to a signal signal */
1045 typedef struct
1046 {
1047 WL head;
1048 EV_ATOMIC_T gotsig;
1049 } ANSIG;
1050
1051 static ANSIG *signals;
1052 static int signalmax;
1053
1054 static EV_ATOMIC_T gotsig;
1055
1056 /*****************************************************************************/
1057
1058 /* used to prepare libev internal fd's */
1059 /* this is not fork-safe */
1060 inline_speed void
1061 fd_intern (int fd)
1062 {
1063 #ifdef _WIN32
1064 unsigned long arg = 1;
1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1066 #else
1067 fcntl (fd, F_SETFD, FD_CLOEXEC);
1068 fcntl (fd, F_SETFL, O_NONBLOCK);
1069 #endif
1070 }
1071
1072 static void noinline
1073 evpipe_init (EV_P)
1074 {
1075 if (!ev_is_active (&pipe_w))
1076 {
1077 #if EV_USE_EVENTFD
1078 if ((evfd = eventfd (0, 0)) >= 0)
1079 {
1080 evpipe [0] = -1;
1081 fd_intern (evfd);
1082 ev_io_set (&pipe_w, evfd, EV_READ);
1083 }
1084 else
1085 #endif
1086 {
1087 while (pipe (evpipe))
1088 ev_syserr ("(libev) error creating signal/async pipe");
1089
1090 fd_intern (evpipe [0]);
1091 fd_intern (evpipe [1]);
1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1093 }
1094
1095 ev_io_start (EV_A_ &pipe_w);
1096 ev_unref (EV_A); /* watcher should not keep loop alive */
1097 }
1098 }
1099
1100 inline_size void
1101 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1102 {
1103 if (!*flag)
1104 {
1105 int old_errno = errno; /* save errno because write might clobber it */
1106
1107 *flag = 1;
1108
1109 #if EV_USE_EVENTFD
1110 if (evfd >= 0)
1111 {
1112 uint64_t counter = 1;
1113 write (evfd, &counter, sizeof (uint64_t));
1114 }
1115 else
1116 #endif
1117 write (evpipe [1], &old_errno, 1);
1118
1119 errno = old_errno;
1120 }
1121 }
1122
1123 /* called whenever the libev signal pipe */
1124 /* got some events (signal, async) */
1125 static void
1126 pipecb (EV_P_ ev_io *iow, int revents)
1127 {
1128 #if EV_USE_EVENTFD
1129 if (evfd >= 0)
1130 {
1131 uint64_t counter;
1132 read (evfd, &counter, sizeof (uint64_t));
1133 }
1134 else
1135 #endif
1136 {
1137 char dummy;
1138 read (evpipe [0], &dummy, 1);
1139 }
1140
1141 if (gotsig && ev_is_default_loop (EV_A))
1142 {
1143 int signum;
1144 gotsig = 0;
1145
1146 for (signum = signalmax; signum--; )
1147 if (signals [signum].gotsig)
1148 ev_feed_signal_event (EV_A_ signum + 1);
1149 }
1150
1151 #if EV_ASYNC_ENABLE
1152 if (gotasync)
1153 {
1154 int i;
1155 gotasync = 0;
1156
1157 for (i = asynccnt; i--; )
1158 if (asyncs [i]->sent)
1159 {
1160 asyncs [i]->sent = 0;
1161 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1162 }
1163 }
1164 #endif
1165 }
1166
1167 /*****************************************************************************/
1168
1169 static void
1170 ev_sighandler (int signum)
1171 {
1172 #if EV_MULTIPLICITY
1173 struct ev_loop *loop = &default_loop_struct;
1174 #endif
1175
1176 #if _WIN32
1177 signal (signum, ev_sighandler);
1178 #endif
1179
1180 signals [signum - 1].gotsig = 1;
1181 evpipe_write (EV_A_ &gotsig);
1182 }
1183
1184 void noinline
1185 ev_feed_signal_event (EV_P_ int signum)
1186 {
1187 WL w;
1188
1189 #if EV_MULTIPLICITY
1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1191 #endif
1192
1193 --signum;
1194
1195 if (signum < 0 || signum >= signalmax)
1196 return;
1197
1198 signals [signum].gotsig = 0;
1199
1200 for (w = signals [signum].head; w; w = w->next)
1201 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1202 }
1203
1204 /*****************************************************************************/
1205
1206 static WL childs [EV_PID_HASHSIZE];
1207
1208 #ifndef _WIN32
1209
1210 static ev_signal childev;
1211
1212 #ifndef WIFCONTINUED
1213 # define WIFCONTINUED(status) 0
1214 #endif
1215
1216 /* handle a single child status event */
1217 inline_speed void
1218 child_reap (EV_P_ int chain, int pid, int status)
1219 {
1220 ev_child *w;
1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1222
1223 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1224 {
1225 if ((w->pid == pid || !w->pid)
1226 && (!traced || (w->flags & 1)))
1227 {
1228 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1229 w->rpid = pid;
1230 w->rstatus = status;
1231 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1232 }
1233 }
1234 }
1235
1236 #ifndef WCONTINUED
1237 # define WCONTINUED 0
1238 #endif
1239
1240 /* called on sigchld etc., calls waitpid */
1241 static void
1242 childcb (EV_P_ ev_signal *sw, int revents)
1243 {
1244 int pid, status;
1245
1246 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1247 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1248 if (!WCONTINUED
1249 || errno != EINVAL
1250 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1251 return;
1252
1253 /* make sure we are called again until all children have been reaped */
1254 /* we need to do it this way so that the callback gets called before we continue */
1255 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1256
1257 child_reap (EV_A_ pid, pid, status);
1258 if (EV_PID_HASHSIZE > 1)
1259 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1260 }
1261
1262 #endif
1263
1264 /*****************************************************************************/
1265
1266 #if EV_USE_PORT
1267 # include "ev_port.c"
1268 #endif
1269 #if EV_USE_KQUEUE
1270 # include "ev_kqueue.c"
1271 #endif
1272 #if EV_USE_EPOLL
1273 # include "ev_epoll.c"
1274 #endif
1275 #if EV_USE_POLL
1276 # include "ev_poll.c"
1277 #endif
1278 #if EV_USE_SELECT
1279 # include "ev_select.c"
1280 #endif
1281
1282 int
1283 ev_version_major (void)
1284 {
1285 return EV_VERSION_MAJOR;
1286 }
1287
1288 int
1289 ev_version_minor (void)
1290 {
1291 return EV_VERSION_MINOR;
1292 }
1293
1294 /* return true if we are running with elevated privileges and should ignore env variables */
1295 int inline_size
1296 enable_secure (void)
1297 {
1298 #ifdef _WIN32
1299 return 0;
1300 #else
1301 return getuid () != geteuid ()
1302 || getgid () != getegid ();
1303 #endif
1304 }
1305
1306 unsigned int
1307 ev_supported_backends (void)
1308 {
1309 unsigned int flags = 0;
1310
1311 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1312 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1313 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1314 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1315 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1316
1317 return flags;
1318 }
1319
1320 unsigned int
1321 ev_recommended_backends (void)
1322 {
1323 unsigned int flags = ev_supported_backends ();
1324
1325 #ifndef __NetBSD__
1326 /* kqueue is borked on everything but netbsd apparently */
1327 /* it usually doesn't work correctly on anything but sockets and pipes */
1328 flags &= ~EVBACKEND_KQUEUE;
1329 #endif
1330 #ifdef __APPLE__
1331 /* only select works correctly on that "unix-certified" platform */
1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1334 #endif
1335
1336 return flags;
1337 }
1338
1339 unsigned int
1340 ev_embeddable_backends (void)
1341 {
1342 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1343
1344 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1345 /* please fix it and tell me how to detect the fix */
1346 flags &= ~EVBACKEND_EPOLL;
1347
1348 return flags;
1349 }
1350
1351 unsigned int
1352 ev_backend (EV_P)
1353 {
1354 return backend;
1355 }
1356
1357 unsigned int
1358 ev_loop_count (EV_P)
1359 {
1360 return loop_count;
1361 }
1362
1363 void
1364 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1365 {
1366 io_blocktime = interval;
1367 }
1368
1369 void
1370 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1371 {
1372 timeout_blocktime = interval;
1373 }
1374
1375 /* initialise a loop structure, must be zero-initialised */
1376 static void noinline
1377 loop_init (EV_P_ unsigned int flags)
1378 {
1379 if (!backend)
1380 {
1381 #if EV_USE_REALTIME
1382 if (!have_realtime)
1383 {
1384 struct timespec ts;
1385
1386 if (!clock_gettime (CLOCK_REALTIME, &ts))
1387 have_realtime = 1;
1388 }
1389 #endif
1390
1391 #if EV_USE_MONOTONIC
1392 if (!have_monotonic)
1393 {
1394 struct timespec ts;
1395
1396 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1397 have_monotonic = 1;
1398 }
1399 #endif
1400
1401 ev_rt_now = ev_time ();
1402 mn_now = get_clock ();
1403 now_floor = mn_now;
1404 rtmn_diff = ev_rt_now - mn_now;
1405
1406 io_blocktime = 0.;
1407 timeout_blocktime = 0.;
1408 backend = 0;
1409 backend_fd = -1;
1410 gotasync = 0;
1411 #if EV_USE_INOTIFY
1412 fs_fd = -2;
1413 #endif
1414
1415 /* pid check not overridable via env */
1416 #ifndef _WIN32
1417 if (flags & EVFLAG_FORKCHECK)
1418 curpid = getpid ();
1419 #endif
1420
1421 if (!(flags & EVFLAG_NOENV)
1422 && !enable_secure ()
1423 && getenv ("LIBEV_FLAGS"))
1424 flags = atoi (getenv ("LIBEV_FLAGS"));
1425
1426 if (!(flags & 0x0000ffffU))
1427 flags |= ev_recommended_backends ();
1428
1429 #if EV_USE_PORT
1430 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1431 #endif
1432 #if EV_USE_KQUEUE
1433 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1434 #endif
1435 #if EV_USE_EPOLL
1436 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1437 #endif
1438 #if EV_USE_POLL
1439 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1440 #endif
1441 #if EV_USE_SELECT
1442 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1443 #endif
1444
1445 ev_prepare_init (&pending_w, pendingcb);
1446
1447 ev_init (&pipe_w, pipecb);
1448 ev_set_priority (&pipe_w, EV_MAXPRI);
1449 }
1450 }
1451
1452 /* free up a loop structure */
1453 static void noinline
1454 loop_destroy (EV_P)
1455 {
1456 int i;
1457
1458 if (ev_is_active (&pipe_w))
1459 {
1460 ev_ref (EV_A); /* signal watcher */
1461 ev_io_stop (EV_A_ &pipe_w);
1462
1463 #if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466 #endif
1467
1468 if (evpipe [0] >= 0)
1469 {
1470 close (evpipe [0]);
1471 close (evpipe [1]);
1472 }
1473 }
1474
1475 #if EV_USE_INOTIFY
1476 if (fs_fd >= 0)
1477 close (fs_fd);
1478 #endif
1479
1480 if (backend_fd >= 0)
1481 close (backend_fd);
1482
1483 #if EV_USE_PORT
1484 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1485 #endif
1486 #if EV_USE_KQUEUE
1487 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1488 #endif
1489 #if EV_USE_EPOLL
1490 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1491 #endif
1492 #if EV_USE_POLL
1493 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1494 #endif
1495 #if EV_USE_SELECT
1496 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1497 #endif
1498
1499 for (i = NUMPRI; i--; )
1500 {
1501 array_free (pending, [i]);
1502 #if EV_IDLE_ENABLE
1503 array_free (idle, [i]);
1504 #endif
1505 }
1506
1507 ev_free (anfds); anfdmax = 0;
1508
1509 /* have to use the microsoft-never-gets-it-right macro */
1510 array_free (rfeed, EMPTY);
1511 array_free (fdchange, EMPTY);
1512 array_free (timer, EMPTY);
1513 #if EV_PERIODIC_ENABLE
1514 array_free (periodic, EMPTY);
1515 #endif
1516 #if EV_FORK_ENABLE
1517 array_free (fork, EMPTY);
1518 #endif
1519 array_free (prepare, EMPTY);
1520 array_free (check, EMPTY);
1521 #if EV_ASYNC_ENABLE
1522 array_free (async, EMPTY);
1523 #endif
1524
1525 backend = 0;
1526 }
1527
1528 #if EV_USE_INOTIFY
1529 inline_size void infy_fork (EV_P);
1530 #endif
1531
1532 inline_size void
1533 loop_fork (EV_P)
1534 {
1535 #if EV_USE_PORT
1536 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1537 #endif
1538 #if EV_USE_KQUEUE
1539 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1540 #endif
1541 #if EV_USE_EPOLL
1542 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1543 #endif
1544 #if EV_USE_INOTIFY
1545 infy_fork (EV_A);
1546 #endif
1547
1548 if (ev_is_active (&pipe_w))
1549 {
1550 /* this "locks" the handlers against writing to the pipe */
1551 /* while we modify the fd vars */
1552 gotsig = 1;
1553 #if EV_ASYNC_ENABLE
1554 gotasync = 1;
1555 #endif
1556
1557 ev_ref (EV_A);
1558 ev_io_stop (EV_A_ &pipe_w);
1559
1560 #if EV_USE_EVENTFD
1561 if (evfd >= 0)
1562 close (evfd);
1563 #endif
1564
1565 if (evpipe [0] >= 0)
1566 {
1567 close (evpipe [0]);
1568 close (evpipe [1]);
1569 }
1570
1571 evpipe_init (EV_A);
1572 /* now iterate over everything, in case we missed something */
1573 pipecb (EV_A_ &pipe_w, EV_READ);
1574 }
1575
1576 postfork = 0;
1577 }
1578
1579 #if EV_MULTIPLICITY
1580
1581 struct ev_loop *
1582 ev_loop_new (unsigned int flags)
1583 {
1584 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1585
1586 memset (loop, 0, sizeof (struct ev_loop));
1587
1588 loop_init (EV_A_ flags);
1589
1590 if (ev_backend (EV_A))
1591 return loop;
1592
1593 return 0;
1594 }
1595
1596 void
1597 ev_loop_destroy (EV_P)
1598 {
1599 loop_destroy (EV_A);
1600 ev_free (loop);
1601 }
1602
1603 void
1604 ev_loop_fork (EV_P)
1605 {
1606 postfork = 1; /* must be in line with ev_default_fork */
1607 }
1608
1609 #if EV_VERIFY
1610 static void noinline
1611 verify_watcher (EV_P_ W w)
1612 {
1613 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1614
1615 if (w->pending)
1616 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1617 }
1618
1619 static void noinline
1620 verify_heap (EV_P_ ANHE *heap, int N)
1621 {
1622 int i;
1623
1624 for (i = HEAP0; i < N + HEAP0; ++i)
1625 {
1626 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1627 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1628 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1629
1630 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1631 }
1632 }
1633
1634 static void noinline
1635 array_verify (EV_P_ W *ws, int cnt)
1636 {
1637 while (cnt--)
1638 {
1639 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1640 verify_watcher (EV_A_ ws [cnt]);
1641 }
1642 }
1643 #endif
1644
1645 void
1646 ev_loop_verify (EV_P)
1647 {
1648 #if EV_VERIFY
1649 int i;
1650 WL w;
1651
1652 assert (activecnt >= -1);
1653
1654 assert (fdchangemax >= fdchangecnt);
1655 for (i = 0; i < fdchangecnt; ++i)
1656 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1657
1658 assert (anfdmax >= 0);
1659 for (i = 0; i < anfdmax; ++i)
1660 for (w = anfds [i].head; w; w = w->next)
1661 {
1662 verify_watcher (EV_A_ (W)w);
1663 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1664 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1665 }
1666
1667 assert (timermax >= timercnt);
1668 verify_heap (EV_A_ timers, timercnt);
1669
1670 #if EV_PERIODIC_ENABLE
1671 assert (periodicmax >= periodiccnt);
1672 verify_heap (EV_A_ periodics, periodiccnt);
1673 #endif
1674
1675 for (i = NUMPRI; i--; )
1676 {
1677 assert (pendingmax [i] >= pendingcnt [i]);
1678 #if EV_IDLE_ENABLE
1679 assert (idleall >= 0);
1680 assert (idlemax [i] >= idlecnt [i]);
1681 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1682 #endif
1683 }
1684
1685 #if EV_FORK_ENABLE
1686 assert (forkmax >= forkcnt);
1687 array_verify (EV_A_ (W *)forks, forkcnt);
1688 #endif
1689
1690 #if EV_ASYNC_ENABLE
1691 assert (asyncmax >= asynccnt);
1692 array_verify (EV_A_ (W *)asyncs, asynccnt);
1693 #endif
1694
1695 assert (preparemax >= preparecnt);
1696 array_verify (EV_A_ (W *)prepares, preparecnt);
1697
1698 assert (checkmax >= checkcnt);
1699 array_verify (EV_A_ (W *)checks, checkcnt);
1700
1701 # if 0
1702 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1703 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1704 # endif
1705 #endif
1706 }
1707
1708 #endif /* multiplicity */
1709
1710 #if EV_MULTIPLICITY
1711 struct ev_loop *
1712 ev_default_loop_init (unsigned int flags)
1713 #else
1714 int
1715 ev_default_loop (unsigned int flags)
1716 #endif
1717 {
1718 if (!ev_default_loop_ptr)
1719 {
1720 #if EV_MULTIPLICITY
1721 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1722 #else
1723 ev_default_loop_ptr = 1;
1724 #endif
1725
1726 loop_init (EV_A_ flags);
1727
1728 if (ev_backend (EV_A))
1729 {
1730 #ifndef _WIN32
1731 ev_signal_init (&childev, childcb, SIGCHLD);
1732 ev_set_priority (&childev, EV_MAXPRI);
1733 ev_signal_start (EV_A_ &childev);
1734 ev_unref (EV_A); /* child watcher should not keep loop alive */
1735 #endif
1736 }
1737 else
1738 ev_default_loop_ptr = 0;
1739 }
1740
1741 return ev_default_loop_ptr;
1742 }
1743
1744 void
1745 ev_default_destroy (void)
1746 {
1747 #if EV_MULTIPLICITY
1748 struct ev_loop *loop = ev_default_loop_ptr;
1749 #endif
1750
1751 ev_default_loop_ptr = 0;
1752
1753 #ifndef _WIN32
1754 ev_ref (EV_A); /* child watcher */
1755 ev_signal_stop (EV_A_ &childev);
1756 #endif
1757
1758 loop_destroy (EV_A);
1759 }
1760
1761 void
1762 ev_default_fork (void)
1763 {
1764 #if EV_MULTIPLICITY
1765 struct ev_loop *loop = ev_default_loop_ptr;
1766 #endif
1767
1768 postfork = 1; /* must be in line with ev_loop_fork */
1769 }
1770
1771 /*****************************************************************************/
1772
1773 void
1774 ev_invoke (EV_P_ void *w, int revents)
1775 {
1776 EV_CB_INVOKE ((W)w, revents);
1777 }
1778
1779 inline_speed void
1780 call_pending (EV_P)
1781 {
1782 int pri;
1783
1784 for (pri = NUMPRI; pri--; )
1785 while (pendingcnt [pri])
1786 {
1787 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1788
1789 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1790 /* ^ this is no longer true, as pending_w could be here */
1791
1792 p->w->pending = 0;
1793 EV_CB_INVOKE (p->w, p->events);
1794 EV_FREQUENT_CHECK;
1795 }
1796 }
1797
1798 #if EV_IDLE_ENABLE
1799 /* make idle watchers pending. this handles the "call-idle */
1800 /* only when higher priorities are idle" logic */
1801 inline_size void
1802 idle_reify (EV_P)
1803 {
1804 if (expect_false (idleall))
1805 {
1806 int pri;
1807
1808 for (pri = NUMPRI; pri--; )
1809 {
1810 if (pendingcnt [pri])
1811 break;
1812
1813 if (idlecnt [pri])
1814 {
1815 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1816 break;
1817 }
1818 }
1819 }
1820 }
1821 #endif
1822
1823 /* make timers pending */
1824 inline_size void
1825 timers_reify (EV_P)
1826 {
1827 EV_FREQUENT_CHECK;
1828
1829 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1830 {
1831 do
1832 {
1833 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1834
1835 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1836
1837 /* first reschedule or stop timer */
1838 if (w->repeat)
1839 {
1840 ev_at (w) += w->repeat;
1841 if (ev_at (w) < mn_now)
1842 ev_at (w) = mn_now;
1843
1844 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1845
1846 ANHE_at_cache (timers [HEAP0]);
1847 downheap (timers, timercnt, HEAP0);
1848 }
1849 else
1850 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1851
1852 EV_FREQUENT_CHECK;
1853 feed_reverse (EV_A_ (W)w);
1854 }
1855 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1856
1857 feed_reverse_done (EV_A_ EV_TIMEOUT);
1858 }
1859 }
1860
1861 #if EV_PERIODIC_ENABLE
1862 /* make periodics pending */
1863 inline_size void
1864 periodics_reify (EV_P)
1865 {
1866 EV_FREQUENT_CHECK;
1867
1868 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1869 {
1870 int feed_count = 0;
1871
1872 do
1873 {
1874 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1875
1876 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1877
1878 /* first reschedule or stop timer */
1879 if (w->reschedule_cb)
1880 {
1881 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1882
1883 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1884
1885 ANHE_at_cache (periodics [HEAP0]);
1886 downheap (periodics, periodiccnt, HEAP0);
1887 }
1888 else if (w->interval)
1889 {
1890 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1891 /* if next trigger time is not sufficiently in the future, put it there */
1892 /* this might happen because of floating point inexactness */
1893 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1894 {
1895 ev_at (w) += w->interval;
1896
1897 /* if interval is unreasonably low we might still have a time in the past */
1898 /* so correct this. this will make the periodic very inexact, but the user */
1899 /* has effectively asked to get triggered more often than possible */
1900 if (ev_at (w) < ev_rt_now)
1901 ev_at (w) = ev_rt_now;
1902 }
1903
1904 ANHE_at_cache (periodics [HEAP0]);
1905 downheap (periodics, periodiccnt, HEAP0);
1906 }
1907 else
1908 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1909
1910 EV_FREQUENT_CHECK;
1911 feed_reverse (EV_A_ (W)w);
1912 }
1913 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1914
1915 feed_reverse_done (EV_A_ EV_PERIODIC);
1916 }
1917 }
1918
1919 /* simply recalculate all periodics */
1920 /* TODO: maybe ensure that at leats one event happens when jumping forward? */
1921 static void noinline
1922 periodics_reschedule (EV_P)
1923 {
1924 int i;
1925
1926 /* adjust periodics after time jump */
1927 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1928 {
1929 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1930
1931 if (w->reschedule_cb)
1932 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1933 else if (w->interval)
1934 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1935
1936 ANHE_at_cache (periodics [i]);
1937 }
1938
1939 reheap (periodics, periodiccnt);
1940 }
1941 #endif
1942
1943 /* adjust all timers by a given offset */
1944 static void noinline
1945 timers_reschedule (EV_P_ ev_tstamp adjust)
1946 {
1947 int i;
1948
1949 for (i = 0; i < timercnt; ++i)
1950 {
1951 ANHE *he = timers + i + HEAP0;
1952 ANHE_w (*he)->at += adjust;
1953 ANHE_at_cache (*he);
1954 }
1955 }
1956
1957 /* fetch new monotonic and realtime times from the kernel */
1958 /* also detetc if there was a timejump, and act accordingly */
1959 inline_speed void
1960 time_update (EV_P_ ev_tstamp max_block)
1961 {
1962 #if EV_USE_MONOTONIC
1963 if (expect_true (have_monotonic))
1964 {
1965 int i;
1966 ev_tstamp odiff = rtmn_diff;
1967
1968 mn_now = get_clock ();
1969
1970 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1971 /* interpolate in the meantime */
1972 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1973 {
1974 ev_rt_now = rtmn_diff + mn_now;
1975 return;
1976 }
1977
1978 now_floor = mn_now;
1979 ev_rt_now = ev_time ();
1980
1981 /* loop a few times, before making important decisions.
1982 * on the choice of "4": one iteration isn't enough,
1983 * in case we get preempted during the calls to
1984 * ev_time and get_clock. a second call is almost guaranteed
1985 * to succeed in that case, though. and looping a few more times
1986 * doesn't hurt either as we only do this on time-jumps or
1987 * in the unlikely event of having been preempted here.
1988 */
1989 for (i = 4; --i; )
1990 {
1991 rtmn_diff = ev_rt_now - mn_now;
1992
1993 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1994 return; /* all is well */
1995
1996 ev_rt_now = ev_time ();
1997 mn_now = get_clock ();
1998 now_floor = mn_now;
1999 }
2000
2001 /* no timer adjustment, as the monotonic clock doesn't jump */
2002 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2003 # if EV_PERIODIC_ENABLE
2004 periodics_reschedule (EV_A);
2005 # endif
2006 }
2007 else
2008 #endif
2009 {
2010 ev_rt_now = ev_time ();
2011
2012 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2013 {
2014 /* adjust timers. this is easy, as the offset is the same for all of them */
2015 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2016 #if EV_PERIODIC_ENABLE
2017 periodics_reschedule (EV_A);
2018 #endif
2019 }
2020
2021 mn_now = ev_rt_now;
2022 }
2023 }
2024
2025 static int loop_done;
2026
2027 void
2028 ev_loop (EV_P_ int flags)
2029 {
2030 loop_done = EVUNLOOP_CANCEL;
2031
2032 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
2033
2034 do
2035 {
2036 #if EV_VERIFY >= 2
2037 ev_loop_verify (EV_A);
2038 #endif
2039
2040 #ifndef _WIN32
2041 if (expect_false (curpid)) /* penalise the forking check even more */
2042 if (expect_false (getpid () != curpid))
2043 {
2044 curpid = getpid ();
2045 postfork = 1;
2046 }
2047 #endif
2048
2049 #if EV_FORK_ENABLE
2050 /* we might have forked, so queue fork handlers */
2051 if (expect_false (postfork))
2052 if (forkcnt)
2053 {
2054 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2055 call_pending (EV_A);
2056 }
2057 #endif
2058
2059 /* queue prepare watchers (and execute them) */
2060 if (expect_false (preparecnt))
2061 {
2062 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2063 call_pending (EV_A);
2064 }
2065
2066 /* we might have forked, so reify kernel state if necessary */
2067 if (expect_false (postfork))
2068 loop_fork (EV_A);
2069
2070 /* update fd-related kernel structures */
2071 fd_reify (EV_A);
2072
2073 /* calculate blocking time */
2074 {
2075 ev_tstamp waittime = 0.;
2076 ev_tstamp sleeptime = 0.;
2077
2078 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2079 {
2080 /* update time to cancel out callback processing overhead */
2081 time_update (EV_A_ 1e100);
2082
2083 waittime = MAX_BLOCKTIME;
2084
2085 if (timercnt)
2086 {
2087 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2088 if (waittime > to) waittime = to;
2089 }
2090
2091 #if EV_PERIODIC_ENABLE
2092 if (periodiccnt)
2093 {
2094 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2095 if (waittime > to) waittime = to;
2096 }
2097 #endif
2098
2099 if (expect_false (waittime < timeout_blocktime))
2100 waittime = timeout_blocktime;
2101
2102 sleeptime = waittime - backend_fudge;
2103
2104 if (expect_true (sleeptime > io_blocktime))
2105 sleeptime = io_blocktime;
2106
2107 if (sleeptime)
2108 {
2109 ev_sleep (sleeptime);
2110 waittime -= sleeptime;
2111 }
2112 }
2113
2114 ++loop_count;
2115 backend_poll (EV_A_ waittime);
2116
2117 /* update ev_rt_now, do magic */
2118 time_update (EV_A_ waittime + sleeptime);
2119 }
2120
2121 /* queue pending timers and reschedule them */
2122 timers_reify (EV_A); /* relative timers called last */
2123 #if EV_PERIODIC_ENABLE
2124 periodics_reify (EV_A); /* absolute timers called first */
2125 #endif
2126
2127 #if EV_IDLE_ENABLE
2128 /* queue idle watchers unless other events are pending */
2129 idle_reify (EV_A);
2130 #endif
2131
2132 /* queue check watchers, to be executed first */
2133 if (expect_false (checkcnt))
2134 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2135
2136 call_pending (EV_A);
2137 }
2138 while (expect_true (
2139 activecnt
2140 && !loop_done
2141 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2142 ));
2143
2144 if (loop_done == EVUNLOOP_ONE)
2145 loop_done = EVUNLOOP_CANCEL;
2146 }
2147
2148 void
2149 ev_unloop (EV_P_ int how)
2150 {
2151 loop_done = how;
2152 }
2153
2154 void
2155 ev_ref (EV_P)
2156 {
2157 ++activecnt;
2158 }
2159
2160 void
2161 ev_unref (EV_P)
2162 {
2163 --activecnt;
2164 }
2165
2166 void
2167 ev_now_update (EV_P)
2168 {
2169 time_update (EV_A_ 1e100);
2170 }
2171
2172 void
2173 ev_suspend (EV_P)
2174 {
2175 ev_now_update (EV_A);
2176 }
2177
2178 void
2179 ev_resume (EV_P)
2180 {
2181 ev_tstamp mn_prev = mn_now;
2182
2183 ev_now_update (EV_A);
2184 timers_reschedule (EV_A_ mn_now - mn_prev);
2185 #if EV_PERIODIC_ENABLE
2186 /* TODO: really do this? */
2187 periodics_reschedule (EV_A);
2188 #endif
2189 }
2190
2191 /*****************************************************************************/
2192 /* singly-linked list management, used when the expected list length is short */
2193
2194 inline_size void
2195 wlist_add (WL *head, WL elem)
2196 {
2197 elem->next = *head;
2198 *head = elem;
2199 }
2200
2201 inline_size void
2202 wlist_del (WL *head, WL elem)
2203 {
2204 while (*head)
2205 {
2206 if (*head == elem)
2207 {
2208 *head = elem->next;
2209 return;
2210 }
2211
2212 head = &(*head)->next;
2213 }
2214 }
2215
2216 /* internal, faster, version of ev_clear_pending */
2217 inline_speed void
2218 clear_pending (EV_P_ W w)
2219 {
2220 if (w->pending)
2221 {
2222 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2223 w->pending = 0;
2224 }
2225 }
2226
2227 int
2228 ev_clear_pending (EV_P_ void *w)
2229 {
2230 W w_ = (W)w;
2231 int pending = w_->pending;
2232
2233 if (expect_true (pending))
2234 {
2235 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2236 p->w = (W)&pending_w;
2237 w_->pending = 0;
2238 return p->events;
2239 }
2240 else
2241 return 0;
2242 }
2243
2244 inline_size void
2245 pri_adjust (EV_P_ W w)
2246 {
2247 int pri = w->priority;
2248 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2249 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2250 w->priority = pri;
2251 }
2252
2253 inline_speed void
2254 ev_start (EV_P_ W w, int active)
2255 {
2256 pri_adjust (EV_A_ w);
2257 w->active = active;
2258 ev_ref (EV_A);
2259 }
2260
2261 inline_size void
2262 ev_stop (EV_P_ W w)
2263 {
2264 ev_unref (EV_A);
2265 w->active = 0;
2266 }
2267
2268 /*****************************************************************************/
2269
2270 void noinline
2271 ev_io_start (EV_P_ ev_io *w)
2272 {
2273 int fd = w->fd;
2274
2275 if (expect_false (ev_is_active (w)))
2276 return;
2277
2278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2279 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2280
2281 EV_FREQUENT_CHECK;
2282
2283 ev_start (EV_A_ (W)w, 1);
2284 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2285 wlist_add (&anfds[fd].head, (WL)w);
2286
2287 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2288 w->events &= ~EV__IOFDSET;
2289
2290 EV_FREQUENT_CHECK;
2291 }
2292
2293 void noinline
2294 ev_io_stop (EV_P_ ev_io *w)
2295 {
2296 clear_pending (EV_A_ (W)w);
2297 if (expect_false (!ev_is_active (w)))
2298 return;
2299
2300 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2301
2302 EV_FREQUENT_CHECK;
2303
2304 wlist_del (&anfds[w->fd].head, (WL)w);
2305 ev_stop (EV_A_ (W)w);
2306
2307 fd_change (EV_A_ w->fd, 1);
2308
2309 EV_FREQUENT_CHECK;
2310 }
2311
2312 void noinline
2313 ev_timer_start (EV_P_ ev_timer *w)
2314 {
2315 if (expect_false (ev_is_active (w)))
2316 return;
2317
2318 ev_at (w) += mn_now;
2319
2320 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2321
2322 EV_FREQUENT_CHECK;
2323
2324 ++timercnt;
2325 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2326 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2327 ANHE_w (timers [ev_active (w)]) = (WT)w;
2328 ANHE_at_cache (timers [ev_active (w)]);
2329 upheap (timers, ev_active (w));
2330
2331 EV_FREQUENT_CHECK;
2332
2333 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2334 }
2335
2336 void noinline
2337 ev_timer_stop (EV_P_ ev_timer *w)
2338 {
2339 clear_pending (EV_A_ (W)w);
2340 if (expect_false (!ev_is_active (w)))
2341 return;
2342
2343 EV_FREQUENT_CHECK;
2344
2345 {
2346 int active = ev_active (w);
2347
2348 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2349
2350 --timercnt;
2351
2352 if (expect_true (active < timercnt + HEAP0))
2353 {
2354 timers [active] = timers [timercnt + HEAP0];
2355 adjustheap (timers, timercnt, active);
2356 }
2357 }
2358
2359 EV_FREQUENT_CHECK;
2360
2361 ev_at (w) -= mn_now;
2362
2363 ev_stop (EV_A_ (W)w);
2364 }
2365
2366 void noinline
2367 ev_timer_again (EV_P_ ev_timer *w)
2368 {
2369 EV_FREQUENT_CHECK;
2370
2371 if (ev_is_active (w))
2372 {
2373 if (w->repeat)
2374 {
2375 ev_at (w) = mn_now + w->repeat;
2376 ANHE_at_cache (timers [ev_active (w)]);
2377 adjustheap (timers, timercnt, ev_active (w));
2378 }
2379 else
2380 ev_timer_stop (EV_A_ w);
2381 }
2382 else if (w->repeat)
2383 {
2384 ev_at (w) = w->repeat;
2385 ev_timer_start (EV_A_ w);
2386 }
2387
2388 EV_FREQUENT_CHECK;
2389 }
2390
2391 #if EV_PERIODIC_ENABLE
2392 void noinline
2393 ev_periodic_start (EV_P_ ev_periodic *w)
2394 {
2395 if (expect_false (ev_is_active (w)))
2396 return;
2397
2398 if (w->reschedule_cb)
2399 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2400 else if (w->interval)
2401 {
2402 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2403 /* this formula differs from the one in periodic_reify because we do not always round up */
2404 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2405 }
2406 else
2407 ev_at (w) = w->offset;
2408
2409 EV_FREQUENT_CHECK;
2410
2411 ++periodiccnt;
2412 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2413 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2414 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2415 ANHE_at_cache (periodics [ev_active (w)]);
2416 upheap (periodics, ev_active (w));
2417
2418 EV_FREQUENT_CHECK;
2419
2420 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2421 }
2422
2423 void noinline
2424 ev_periodic_stop (EV_P_ ev_periodic *w)
2425 {
2426 clear_pending (EV_A_ (W)w);
2427 if (expect_false (!ev_is_active (w)))
2428 return;
2429
2430 EV_FREQUENT_CHECK;
2431
2432 {
2433 int active = ev_active (w);
2434
2435 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2436
2437 --periodiccnt;
2438
2439 if (expect_true (active < periodiccnt + HEAP0))
2440 {
2441 periodics [active] = periodics [periodiccnt + HEAP0];
2442 adjustheap (periodics, periodiccnt, active);
2443 }
2444 }
2445
2446 EV_FREQUENT_CHECK;
2447
2448 ev_stop (EV_A_ (W)w);
2449 }
2450
2451 void noinline
2452 ev_periodic_again (EV_P_ ev_periodic *w)
2453 {
2454 /* TODO: use adjustheap and recalculation */
2455 ev_periodic_stop (EV_A_ w);
2456 ev_periodic_start (EV_A_ w);
2457 }
2458 #endif
2459
2460 #ifndef SA_RESTART
2461 # define SA_RESTART 0
2462 #endif
2463
2464 void noinline
2465 ev_signal_start (EV_P_ ev_signal *w)
2466 {
2467 #if EV_MULTIPLICITY
2468 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2469 #endif
2470 if (expect_false (ev_is_active (w)))
2471 return;
2472
2473 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2474
2475 evpipe_init (EV_A);
2476
2477 EV_FREQUENT_CHECK;
2478
2479 {
2480 #ifndef _WIN32
2481 sigset_t full, prev;
2482 sigfillset (&full);
2483 sigprocmask (SIG_SETMASK, &full, &prev);
2484 #endif
2485
2486 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2487
2488 #ifndef _WIN32
2489 sigprocmask (SIG_SETMASK, &prev, 0);
2490 #endif
2491 }
2492
2493 ev_start (EV_A_ (W)w, 1);
2494 wlist_add (&signals [w->signum - 1].head, (WL)w);
2495
2496 if (!((WL)w)->next)
2497 {
2498 #if _WIN32
2499 signal (w->signum, ev_sighandler);
2500 #else
2501 struct sigaction sa;
2502 sa.sa_handler = ev_sighandler;
2503 sigfillset (&sa.sa_mask);
2504 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2505 sigaction (w->signum, &sa, 0);
2506 #endif
2507 }
2508
2509 EV_FREQUENT_CHECK;
2510 }
2511
2512 void noinline
2513 ev_signal_stop (EV_P_ ev_signal *w)
2514 {
2515 clear_pending (EV_A_ (W)w);
2516 if (expect_false (!ev_is_active (w)))
2517 return;
2518
2519 EV_FREQUENT_CHECK;
2520
2521 wlist_del (&signals [w->signum - 1].head, (WL)w);
2522 ev_stop (EV_A_ (W)w);
2523
2524 if (!signals [w->signum - 1].head)
2525 signal (w->signum, SIG_DFL);
2526
2527 EV_FREQUENT_CHECK;
2528 }
2529
2530 void
2531 ev_child_start (EV_P_ ev_child *w)
2532 {
2533 #if EV_MULTIPLICITY
2534 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2535 #endif
2536 if (expect_false (ev_is_active (w)))
2537 return;
2538
2539 EV_FREQUENT_CHECK;
2540
2541 ev_start (EV_A_ (W)w, 1);
2542 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2543
2544 EV_FREQUENT_CHECK;
2545 }
2546
2547 void
2548 ev_child_stop (EV_P_ ev_child *w)
2549 {
2550 clear_pending (EV_A_ (W)w);
2551 if (expect_false (!ev_is_active (w)))
2552 return;
2553
2554 EV_FREQUENT_CHECK;
2555
2556 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2557 ev_stop (EV_A_ (W)w);
2558
2559 EV_FREQUENT_CHECK;
2560 }
2561
2562 #if EV_STAT_ENABLE
2563
2564 # ifdef _WIN32
2565 # undef lstat
2566 # define lstat(a,b) _stati64 (a,b)
2567 # endif
2568
2569 #define DEF_STAT_INTERVAL 5.0074891
2570 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2571 #define MIN_STAT_INTERVAL 0.1074891
2572
2573 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2574
2575 #if EV_USE_INOTIFY
2576 # define EV_INOTIFY_BUFSIZE 8192
2577
2578 static void noinline
2579 infy_add (EV_P_ ev_stat *w)
2580 {
2581 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2582
2583 if (w->wd < 0)
2584 {
2585 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2586 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2587
2588 /* monitor some parent directory for speedup hints */
2589 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2590 /* but an efficiency issue only */
2591 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2592 {
2593 char path [4096];
2594 strcpy (path, w->path);
2595
2596 do
2597 {
2598 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2599 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2600
2601 char *pend = strrchr (path, '/');
2602
2603 if (!pend || pend == path)
2604 break;
2605
2606 *pend = 0;
2607 w->wd = inotify_add_watch (fs_fd, path, mask);
2608 }
2609 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2610 }
2611 }
2612
2613 if (w->wd >= 0)
2614 {
2615 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2616
2617 /* now local changes will be tracked by inotify, but remote changes won't */
2618 /* unless the filesystem it known to be local, we therefore still poll */
2619 /* also do poll on <2.6.25, but with normal frequency */
2620 struct statfs sfs;
2621
2622 if (fs_2625 && !statfs (w->path, &sfs))
2623 if (sfs.f_type == 0x1373 /* devfs */
2624 || sfs.f_type == 0xEF53 /* ext2/3 */
2625 || sfs.f_type == 0x3153464a /* jfs */
2626 || sfs.f_type == 0x52654973 /* reiser3 */
2627 || sfs.f_type == 0x01021994 /* tempfs */
2628 || sfs.f_type == 0x58465342 /* xfs */)
2629 return;
2630
2631 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2632 ev_timer_again (EV_A_ &w->timer);
2633 }
2634 }
2635
2636 static void noinline
2637 infy_del (EV_P_ ev_stat *w)
2638 {
2639 int slot;
2640 int wd = w->wd;
2641
2642 if (wd < 0)
2643 return;
2644
2645 w->wd = -2;
2646 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2647 wlist_del (&fs_hash [slot].head, (WL)w);
2648
2649 /* remove this watcher, if others are watching it, they will rearm */
2650 inotify_rm_watch (fs_fd, wd);
2651 }
2652
2653 static void noinline
2654 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2655 {
2656 if (slot < 0)
2657 /* overflow, need to check for all hash slots */
2658 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2659 infy_wd (EV_A_ slot, wd, ev);
2660 else
2661 {
2662 WL w_;
2663
2664 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2665 {
2666 ev_stat *w = (ev_stat *)w_;
2667 w_ = w_->next; /* lets us remove this watcher and all before it */
2668
2669 if (w->wd == wd || wd == -1)
2670 {
2671 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2672 {
2673 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2674 w->wd = -1;
2675 infy_add (EV_A_ w); /* re-add, no matter what */
2676 }
2677
2678 stat_timer_cb (EV_A_ &w->timer, 0);
2679 }
2680 }
2681 }
2682 }
2683
2684 static void
2685 infy_cb (EV_P_ ev_io *w, int revents)
2686 {
2687 char buf [EV_INOTIFY_BUFSIZE];
2688 struct inotify_event *ev = (struct inotify_event *)buf;
2689 int ofs;
2690 int len = read (fs_fd, buf, sizeof (buf));
2691
2692 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2693 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2694 }
2695
2696 inline_size void
2697 check_2625 (EV_P)
2698 {
2699 /* kernels < 2.6.25 are borked
2700 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2701 */
2702 struct utsname buf;
2703 int major, minor, micro;
2704
2705 if (uname (&buf))
2706 return;
2707
2708 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2709 return;
2710
2711 if (major < 2
2712 || (major == 2 && minor < 6)
2713 || (major == 2 && minor == 6 && micro < 25))
2714 return;
2715
2716 fs_2625 = 1;
2717 }
2718
2719 inline_size void
2720 infy_init (EV_P)
2721 {
2722 if (fs_fd != -2)
2723 return;
2724
2725 fs_fd = -1;
2726
2727 check_2625 (EV_A);
2728
2729 fs_fd = inotify_init ();
2730
2731 if (fs_fd >= 0)
2732 {
2733 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2734 ev_set_priority (&fs_w, EV_MAXPRI);
2735 ev_io_start (EV_A_ &fs_w);
2736 }
2737 }
2738
2739 inline_size void
2740 infy_fork (EV_P)
2741 {
2742 int slot;
2743
2744 if (fs_fd < 0)
2745 return;
2746
2747 close (fs_fd);
2748 fs_fd = inotify_init ();
2749
2750 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2751 {
2752 WL w_ = fs_hash [slot].head;
2753 fs_hash [slot].head = 0;
2754
2755 while (w_)
2756 {
2757 ev_stat *w = (ev_stat *)w_;
2758 w_ = w_->next; /* lets us add this watcher */
2759
2760 w->wd = -1;
2761
2762 if (fs_fd >= 0)
2763 infy_add (EV_A_ w); /* re-add, no matter what */
2764 else
2765 ev_timer_again (EV_A_ &w->timer);
2766 }
2767 }
2768 }
2769
2770 #endif
2771
2772 #ifdef _WIN32
2773 # define EV_LSTAT(p,b) _stati64 (p, b)
2774 #else
2775 # define EV_LSTAT(p,b) lstat (p, b)
2776 #endif
2777
2778 void
2779 ev_stat_stat (EV_P_ ev_stat *w)
2780 {
2781 if (lstat (w->path, &w->attr) < 0)
2782 w->attr.st_nlink = 0;
2783 else if (!w->attr.st_nlink)
2784 w->attr.st_nlink = 1;
2785 }
2786
2787 static void noinline
2788 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2789 {
2790 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2791
2792 /* we copy this here each the time so that */
2793 /* prev has the old value when the callback gets invoked */
2794 w->prev = w->attr;
2795 ev_stat_stat (EV_A_ w);
2796
2797 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2798 if (
2799 w->prev.st_dev != w->attr.st_dev
2800 || w->prev.st_ino != w->attr.st_ino
2801 || w->prev.st_mode != w->attr.st_mode
2802 || w->prev.st_nlink != w->attr.st_nlink
2803 || w->prev.st_uid != w->attr.st_uid
2804 || w->prev.st_gid != w->attr.st_gid
2805 || w->prev.st_rdev != w->attr.st_rdev
2806 || w->prev.st_size != w->attr.st_size
2807 || w->prev.st_atime != w->attr.st_atime
2808 || w->prev.st_mtime != w->attr.st_mtime
2809 || w->prev.st_ctime != w->attr.st_ctime
2810 ) {
2811 #if EV_USE_INOTIFY
2812 if (fs_fd >= 0)
2813 {
2814 infy_del (EV_A_ w);
2815 infy_add (EV_A_ w);
2816 ev_stat_stat (EV_A_ w); /* avoid race... */
2817 }
2818 #endif
2819
2820 ev_feed_event (EV_A_ w, EV_STAT);
2821 }
2822 }
2823
2824 void
2825 ev_stat_start (EV_P_ ev_stat *w)
2826 {
2827 if (expect_false (ev_is_active (w)))
2828 return;
2829
2830 ev_stat_stat (EV_A_ w);
2831
2832 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2833 w->interval = MIN_STAT_INTERVAL;
2834
2835 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2836 ev_set_priority (&w->timer, ev_priority (w));
2837
2838 #if EV_USE_INOTIFY
2839 infy_init (EV_A);
2840
2841 if (fs_fd >= 0)
2842 infy_add (EV_A_ w);
2843 else
2844 #endif
2845 ev_timer_again (EV_A_ &w->timer);
2846
2847 ev_start (EV_A_ (W)w, 1);
2848
2849 EV_FREQUENT_CHECK;
2850 }
2851
2852 void
2853 ev_stat_stop (EV_P_ ev_stat *w)
2854 {
2855 clear_pending (EV_A_ (W)w);
2856 if (expect_false (!ev_is_active (w)))
2857 return;
2858
2859 EV_FREQUENT_CHECK;
2860
2861 #if EV_USE_INOTIFY
2862 infy_del (EV_A_ w);
2863 #endif
2864 ev_timer_stop (EV_A_ &w->timer);
2865
2866 ev_stop (EV_A_ (W)w);
2867
2868 EV_FREQUENT_CHECK;
2869 }
2870 #endif
2871
2872 #if EV_IDLE_ENABLE
2873 void
2874 ev_idle_start (EV_P_ ev_idle *w)
2875 {
2876 if (expect_false (ev_is_active (w)))
2877 return;
2878
2879 pri_adjust (EV_A_ (W)w);
2880
2881 EV_FREQUENT_CHECK;
2882
2883 {
2884 int active = ++idlecnt [ABSPRI (w)];
2885
2886 ++idleall;
2887 ev_start (EV_A_ (W)w, active);
2888
2889 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2890 idles [ABSPRI (w)][active - 1] = w;
2891 }
2892
2893 EV_FREQUENT_CHECK;
2894 }
2895
2896 void
2897 ev_idle_stop (EV_P_ ev_idle *w)
2898 {
2899 clear_pending (EV_A_ (W)w);
2900 if (expect_false (!ev_is_active (w)))
2901 return;
2902
2903 EV_FREQUENT_CHECK;
2904
2905 {
2906 int active = ev_active (w);
2907
2908 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2909 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2910
2911 ev_stop (EV_A_ (W)w);
2912 --idleall;
2913 }
2914
2915 EV_FREQUENT_CHECK;
2916 }
2917 #endif
2918
2919 void
2920 ev_prepare_start (EV_P_ ev_prepare *w)
2921 {
2922 if (expect_false (ev_is_active (w)))
2923 return;
2924
2925 EV_FREQUENT_CHECK;
2926
2927 ev_start (EV_A_ (W)w, ++preparecnt);
2928 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2929 prepares [preparecnt - 1] = w;
2930
2931 EV_FREQUENT_CHECK;
2932 }
2933
2934 void
2935 ev_prepare_stop (EV_P_ ev_prepare *w)
2936 {
2937 clear_pending (EV_A_ (W)w);
2938 if (expect_false (!ev_is_active (w)))
2939 return;
2940
2941 EV_FREQUENT_CHECK;
2942
2943 {
2944 int active = ev_active (w);
2945
2946 prepares [active - 1] = prepares [--preparecnt];
2947 ev_active (prepares [active - 1]) = active;
2948 }
2949
2950 ev_stop (EV_A_ (W)w);
2951
2952 EV_FREQUENT_CHECK;
2953 }
2954
2955 void
2956 ev_check_start (EV_P_ ev_check *w)
2957 {
2958 if (expect_false (ev_is_active (w)))
2959 return;
2960
2961 EV_FREQUENT_CHECK;
2962
2963 ev_start (EV_A_ (W)w, ++checkcnt);
2964 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2965 checks [checkcnt - 1] = w;
2966
2967 EV_FREQUENT_CHECK;
2968 }
2969
2970 void
2971 ev_check_stop (EV_P_ ev_check *w)
2972 {
2973 clear_pending (EV_A_ (W)w);
2974 if (expect_false (!ev_is_active (w)))
2975 return;
2976
2977 EV_FREQUENT_CHECK;
2978
2979 {
2980 int active = ev_active (w);
2981
2982 checks [active - 1] = checks [--checkcnt];
2983 ev_active (checks [active - 1]) = active;
2984 }
2985
2986 ev_stop (EV_A_ (W)w);
2987
2988 EV_FREQUENT_CHECK;
2989 }
2990
2991 #if EV_EMBED_ENABLE
2992 void noinline
2993 ev_embed_sweep (EV_P_ ev_embed *w)
2994 {
2995 ev_loop (w->other, EVLOOP_NONBLOCK);
2996 }
2997
2998 static void
2999 embed_io_cb (EV_P_ ev_io *io, int revents)
3000 {
3001 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3002
3003 if (ev_cb (w))
3004 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3005 else
3006 ev_loop (w->other, EVLOOP_NONBLOCK);
3007 }
3008
3009 static void
3010 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3011 {
3012 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3013
3014 {
3015 struct ev_loop *loop = w->other;
3016
3017 while (fdchangecnt)
3018 {
3019 fd_reify (EV_A);
3020 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3021 }
3022 }
3023 }
3024
3025 static void
3026 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3027 {
3028 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3029
3030 ev_embed_stop (EV_A_ w);
3031
3032 {
3033 struct ev_loop *loop = w->other;
3034
3035 ev_loop_fork (EV_A);
3036 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3037 }
3038
3039 ev_embed_start (EV_A_ w);
3040 }
3041
3042 #if 0
3043 static void
3044 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3045 {
3046 ev_idle_stop (EV_A_ idle);
3047 }
3048 #endif
3049
3050 void
3051 ev_embed_start (EV_P_ ev_embed *w)
3052 {
3053 if (expect_false (ev_is_active (w)))
3054 return;
3055
3056 {
3057 struct ev_loop *loop = w->other;
3058 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3059 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3060 }
3061
3062 EV_FREQUENT_CHECK;
3063
3064 ev_set_priority (&w->io, ev_priority (w));
3065 ev_io_start (EV_A_ &w->io);
3066
3067 ev_prepare_init (&w->prepare, embed_prepare_cb);
3068 ev_set_priority (&w->prepare, EV_MINPRI);
3069 ev_prepare_start (EV_A_ &w->prepare);
3070
3071 ev_fork_init (&w->fork, embed_fork_cb);
3072 ev_fork_start (EV_A_ &w->fork);
3073
3074 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3075
3076 ev_start (EV_A_ (W)w, 1);
3077
3078 EV_FREQUENT_CHECK;
3079 }
3080
3081 void
3082 ev_embed_stop (EV_P_ ev_embed *w)
3083 {
3084 clear_pending (EV_A_ (W)w);
3085 if (expect_false (!ev_is_active (w)))
3086 return;
3087
3088 EV_FREQUENT_CHECK;
3089
3090 ev_io_stop (EV_A_ &w->io);
3091 ev_prepare_stop (EV_A_ &w->prepare);
3092 ev_fork_stop (EV_A_ &w->fork);
3093
3094 EV_FREQUENT_CHECK;
3095 }
3096 #endif
3097
3098 #if EV_FORK_ENABLE
3099 void
3100 ev_fork_start (EV_P_ ev_fork *w)
3101 {
3102 if (expect_false (ev_is_active (w)))
3103 return;
3104
3105 EV_FREQUENT_CHECK;
3106
3107 ev_start (EV_A_ (W)w, ++forkcnt);
3108 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3109 forks [forkcnt - 1] = w;
3110
3111 EV_FREQUENT_CHECK;
3112 }
3113
3114 void
3115 ev_fork_stop (EV_P_ ev_fork *w)
3116 {
3117 clear_pending (EV_A_ (W)w);
3118 if (expect_false (!ev_is_active (w)))
3119 return;
3120
3121 EV_FREQUENT_CHECK;
3122
3123 {
3124 int active = ev_active (w);
3125
3126 forks [active - 1] = forks [--forkcnt];
3127 ev_active (forks [active - 1]) = active;
3128 }
3129
3130 ev_stop (EV_A_ (W)w);
3131
3132 EV_FREQUENT_CHECK;
3133 }
3134 #endif
3135
3136 #if EV_ASYNC_ENABLE
3137 void
3138 ev_async_start (EV_P_ ev_async *w)
3139 {
3140 if (expect_false (ev_is_active (w)))
3141 return;
3142
3143 evpipe_init (EV_A);
3144
3145 EV_FREQUENT_CHECK;
3146
3147 ev_start (EV_A_ (W)w, ++asynccnt);
3148 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3149 asyncs [asynccnt - 1] = w;
3150
3151 EV_FREQUENT_CHECK;
3152 }
3153
3154 void
3155 ev_async_stop (EV_P_ ev_async *w)
3156 {
3157 clear_pending (EV_A_ (W)w);
3158 if (expect_false (!ev_is_active (w)))
3159 return;
3160
3161 EV_FREQUENT_CHECK;
3162
3163 {
3164 int active = ev_active (w);
3165
3166 asyncs [active - 1] = asyncs [--asynccnt];
3167 ev_active (asyncs [active - 1]) = active;
3168 }
3169
3170 ev_stop (EV_A_ (W)w);
3171
3172 EV_FREQUENT_CHECK;
3173 }
3174
3175 void
3176 ev_async_send (EV_P_ ev_async *w)
3177 {
3178 w->sent = 1;
3179 evpipe_write (EV_A_ &gotasync);
3180 }
3181 #endif
3182
3183 /*****************************************************************************/
3184
3185 struct ev_once
3186 {
3187 ev_io io;
3188 ev_timer to;
3189 void (*cb)(int revents, void *arg);
3190 void *arg;
3191 };
3192
3193 static void
3194 once_cb (EV_P_ struct ev_once *once, int revents)
3195 {
3196 void (*cb)(int revents, void *arg) = once->cb;
3197 void *arg = once->arg;
3198
3199 ev_io_stop (EV_A_ &once->io);
3200 ev_timer_stop (EV_A_ &once->to);
3201 ev_free (once);
3202
3203 cb (revents, arg);
3204 }
3205
3206 static void
3207 once_cb_io (EV_P_ ev_io *w, int revents)
3208 {
3209 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3210
3211 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3212 }
3213
3214 static void
3215 once_cb_to (EV_P_ ev_timer *w, int revents)
3216 {
3217 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3218
3219 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3220 }
3221
3222 void
3223 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3224 {
3225 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3226
3227 if (expect_false (!once))
3228 {
3229 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3230 return;
3231 }
3232
3233 once->cb = cb;
3234 once->arg = arg;
3235
3236 ev_init (&once->io, once_cb_io);
3237 if (fd >= 0)
3238 {
3239 ev_io_set (&once->io, fd, events);
3240 ev_io_start (EV_A_ &once->io);
3241 }
3242
3243 ev_init (&once->to, once_cb_to);
3244 if (timeout >= 0.)
3245 {
3246 ev_timer_set (&once->to, timeout, 0.);
3247 ev_timer_start (EV_A_ &once->to);
3248 }
3249 }
3250
3251 /*****************************************************************************/
3252
3253 #if EV_WALK_ENABLE
3254 void
3255 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3256 {
3257 int i, j;
3258 ev_watcher_list *wl, *wn;
3259
3260 if (types & (EV_IO | EV_EMBED))
3261 for (i = 0; i < anfdmax; ++i)
3262 for (wl = anfds [i].head; wl; )
3263 {
3264 wn = wl->next;
3265
3266 #if EV_EMBED_ENABLE
3267 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3268 {
3269 if (types & EV_EMBED)
3270 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3271 }
3272 else
3273 #endif
3274 #if EV_USE_INOTIFY
3275 if (ev_cb ((ev_io *)wl) == infy_cb)
3276 ;
3277 else
3278 #endif
3279 if ((ev_io *)wl != &pipe_w)
3280 if (types & EV_IO)
3281 cb (EV_A_ EV_IO, wl);
3282
3283 wl = wn;
3284 }
3285
3286 if (types & (EV_TIMER | EV_STAT))
3287 for (i = timercnt + HEAP0; i-- > HEAP0; )
3288 #if EV_STAT_ENABLE
3289 /*TODO: timer is not always active*/
3290 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3291 {
3292 if (types & EV_STAT)
3293 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3294 }
3295 else
3296 #endif
3297 if (types & EV_TIMER)
3298 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3299
3300 #if EV_PERIODIC_ENABLE
3301 if (types & EV_PERIODIC)
3302 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3303 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3304 #endif
3305
3306 #if EV_IDLE_ENABLE
3307 if (types & EV_IDLE)
3308 for (j = NUMPRI; i--; )
3309 for (i = idlecnt [j]; i--; )
3310 cb (EV_A_ EV_IDLE, idles [j][i]);
3311 #endif
3312
3313 #if EV_FORK_ENABLE
3314 if (types & EV_FORK)
3315 for (i = forkcnt; i--; )
3316 if (ev_cb (forks [i]) != embed_fork_cb)
3317 cb (EV_A_ EV_FORK, forks [i]);
3318 #endif
3319
3320 #if EV_ASYNC_ENABLE
3321 if (types & EV_ASYNC)
3322 for (i = asynccnt; i--; )
3323 cb (EV_A_ EV_ASYNC, asyncs [i]);
3324 #endif
3325
3326 if (types & EV_PREPARE)
3327 for (i = preparecnt; i--; )
3328 #if EV_EMBED_ENABLE
3329 if (ev_cb (prepares [i]) != embed_prepare_cb)
3330 #endif
3331 cb (EV_A_ EV_PREPARE, prepares [i]);
3332
3333 if (types & EV_CHECK)
3334 for (i = checkcnt; i--; )
3335 cb (EV_A_ EV_CHECK, checks [i]);
3336
3337 if (types & EV_SIGNAL)
3338 for (i = 0; i < signalmax; ++i)
3339 for (wl = signals [i].head; wl; )
3340 {
3341 wn = wl->next;
3342 cb (EV_A_ EV_SIGNAL, wl);
3343 wl = wn;
3344 }
3345
3346 if (types & EV_CHILD)
3347 for (i = EV_PID_HASHSIZE; i--; )
3348 for (wl = childs [i]; wl; )
3349 {
3350 wn = wl->next;
3351 cb (EV_A_ EV_CHILD, wl);
3352 wl = wn;
3353 }
3354 /* EV_STAT 0x00001000 /* stat data changed */
3355 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3356 }
3357 #endif
3358
3359 #if EV_MULTIPLICITY
3360 #include "ev_wrap.h"
3361 #endif
3362
3363 #ifdef __cplusplus
3364 }
3365 #endif
3366