ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.305
Committed: Sun Jul 19 03:49:04 2009 UTC (14 years, 9 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.304: +35 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_SYSCALL
53 # ifndef EV_USE_CLOCK_SYSCALL
54 # define EV_USE_CLOCK_SYSCALL 1
55 # ifndef EV_USE_REALTIME
56 # define EV_USE_REALTIME 0
57 # endif
58 # ifndef EV_USE_MONOTONIC
59 # define EV_USE_MONOTONIC 1
60 # endif
61 # endif
62 # elif !defined(EV_USE_CLOCK_SYSCALL)
63 # define EV_USE_CLOCK_SYSCALL 0
64 # endif
65
66 # if HAVE_CLOCK_GETTIME
67 # ifndef EV_USE_MONOTONIC
68 # define EV_USE_MONOTONIC 1
69 # endif
70 # ifndef EV_USE_REALTIME
71 # define EV_USE_REALTIME 0
72 # endif
73 # else
74 # ifndef EV_USE_MONOTONIC
75 # define EV_USE_MONOTONIC 0
76 # endif
77 # ifndef EV_USE_REALTIME
78 # define EV_USE_REALTIME 0
79 # endif
80 # endif
81
82 # ifndef EV_USE_NANOSLEEP
83 # if HAVE_NANOSLEEP
84 # define EV_USE_NANOSLEEP 1
85 # else
86 # define EV_USE_NANOSLEEP 0
87 # endif
88 # endif
89
90 # ifndef EV_USE_SELECT
91 # if HAVE_SELECT && HAVE_SYS_SELECT_H
92 # define EV_USE_SELECT 1
93 # else
94 # define EV_USE_SELECT 0
95 # endif
96 # endif
97
98 # ifndef EV_USE_POLL
99 # if HAVE_POLL && HAVE_POLL_H
100 # define EV_USE_POLL 1
101 # else
102 # define EV_USE_POLL 0
103 # endif
104 # endif
105
106 # ifndef EV_USE_EPOLL
107 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108 # define EV_USE_EPOLL 1
109 # else
110 # define EV_USE_EPOLL 0
111 # endif
112 # endif
113
114 # ifndef EV_USE_KQUEUE
115 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116 # define EV_USE_KQUEUE 1
117 # else
118 # define EV_USE_KQUEUE 0
119 # endif
120 # endif
121
122 # ifndef EV_USE_PORT
123 # if HAVE_PORT_H && HAVE_PORT_CREATE
124 # define EV_USE_PORT 1
125 # else
126 # define EV_USE_PORT 0
127 # endif
128 # endif
129
130 # ifndef EV_USE_INOTIFY
131 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132 # define EV_USE_INOTIFY 1
133 # else
134 # define EV_USE_INOTIFY 0
135 # endif
136 # endif
137
138 # ifndef EV_USE_SIGNALFD
139 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140 # define EV_USE_SIGNALFD 1
141 # else
142 # define EV_USE_SIGNALFD 0
143 # endif
144 # endif
145
146 # ifndef EV_USE_EVENTFD
147 # if HAVE_EVENTFD
148 # define EV_USE_EVENTFD 1
149 # else
150 # define EV_USE_EVENTFD 0
151 # endif
152 # endif
153
154 #endif
155
156 #include <math.h>
157 #include <stdlib.h>
158 #include <fcntl.h>
159 #include <stddef.h>
160
161 #include <stdio.h>
162
163 #include <assert.h>
164 #include <errno.h>
165 #include <sys/types.h>
166 #include <time.h>
167
168 #include <signal.h>
169
170 #ifdef EV_H
171 # include EV_H
172 #else
173 # include "ev.h"
174 #endif
175
176 #ifndef _WIN32
177 # include <sys/time.h>
178 # include <sys/wait.h>
179 # include <unistd.h>
180 #else
181 # include <io.h>
182 # define WIN32_LEAN_AND_MEAN
183 # include <windows.h>
184 # ifndef EV_SELECT_IS_WINSOCKET
185 # define EV_SELECT_IS_WINSOCKET 1
186 # endif
187 #endif
188
189 /* this block tries to deduce configuration from header-defined symbols and defaults */
190
191 /* try to deduce the maximum number of signals on this platform */
192 #if defined (EV_NSIG)
193 /* use what's provided */
194 #elif defined (NSIG)
195 # define EV_NSIG (NSIG)
196 #elif defined(_NSIG)
197 # define EV_NSIG (_NSIG)
198 #elif defined (SIGMAX)
199 # define EV_NSIG (SIGMAX+1)
200 #elif defined (SIG_MAX)
201 # define EV_NSIG (SIG_MAX+1)
202 #elif defined (_SIG_MAX)
203 # define EV_NSIG (_SIG_MAX+1)
204 #elif defined (MAXSIG)
205 # define EV_NSIG (MAXSIG+1)
206 #elif defined (MAX_SIG)
207 # define EV_NSIG (MAX_SIG+1)
208 #elif defined (SIGARRAYSIZE)
209 # define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210 #elif defined (_sys_nsig)
211 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212 #else
213 # error "unable to find value for NSIG, please report"
214 /* to make it compile regardless, just remove the above line */
215 # define EV_NSIG 64
216 #endif
217
218 /* Default to some arbitrary number that's big enough to get most
219 of the common signals.
220 */
221 #ifndef NSIG
222 # define NSIG 50
223 #endif
224 /* <-- NSIG logic from Configure */
225 #ifndef EV_USE_CLOCK_SYSCALL
226 # if __linux && __GLIBC__ >= 2
227 # define EV_USE_CLOCK_SYSCALL 1
228 # else
229 # define EV_USE_CLOCK_SYSCALL 0
230 # endif
231 #endif
232
233 #ifndef EV_USE_MONOTONIC
234 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
235 # define EV_USE_MONOTONIC 1
236 # else
237 # define EV_USE_MONOTONIC 0
238 # endif
239 #endif
240
241 #ifndef EV_USE_REALTIME
242 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
243 #endif
244
245 #ifndef EV_USE_NANOSLEEP
246 # if _POSIX_C_SOURCE >= 199309L
247 # define EV_USE_NANOSLEEP 1
248 # else
249 # define EV_USE_NANOSLEEP 0
250 # endif
251 #endif
252
253 #ifndef EV_USE_SELECT
254 # define EV_USE_SELECT 1
255 #endif
256
257 #ifndef EV_USE_POLL
258 # ifdef _WIN32
259 # define EV_USE_POLL 0
260 # else
261 # define EV_USE_POLL 1
262 # endif
263 #endif
264
265 #ifndef EV_USE_EPOLL
266 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
267 # define EV_USE_EPOLL 1
268 # else
269 # define EV_USE_EPOLL 0
270 # endif
271 #endif
272
273 #ifndef EV_USE_KQUEUE
274 # define EV_USE_KQUEUE 0
275 #endif
276
277 #ifndef EV_USE_PORT
278 # define EV_USE_PORT 0
279 #endif
280
281 #ifndef EV_USE_INOTIFY
282 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
283 # define EV_USE_INOTIFY 1
284 # else
285 # define EV_USE_INOTIFY 0
286 # endif
287 #endif
288
289 #ifndef EV_PID_HASHSIZE
290 # if EV_MINIMAL
291 # define EV_PID_HASHSIZE 1
292 # else
293 # define EV_PID_HASHSIZE 16
294 # endif
295 #endif
296
297 #ifndef EV_INOTIFY_HASHSIZE
298 # if EV_MINIMAL
299 # define EV_INOTIFY_HASHSIZE 1
300 # else
301 # define EV_INOTIFY_HASHSIZE 16
302 # endif
303 #endif
304
305 #ifndef EV_USE_EVENTFD
306 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
307 # define EV_USE_EVENTFD 1
308 # else
309 # define EV_USE_EVENTFD 0
310 # endif
311 #endif
312
313 #ifndef EV_USE_SIGNALFD
314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
315 # define EV_USE_SIGNALFD 1
316 # else
317 # define EV_USE_SIGNALFD 0
318 # endif
319 #endif
320
321 #if 0 /* debugging */
322 # define EV_VERIFY 3
323 # define EV_USE_4HEAP 1
324 # define EV_HEAP_CACHE_AT 1
325 #endif
326
327 #ifndef EV_VERIFY
328 # define EV_VERIFY !EV_MINIMAL
329 #endif
330
331 #ifndef EV_USE_4HEAP
332 # define EV_USE_4HEAP !EV_MINIMAL
333 #endif
334
335 #ifndef EV_HEAP_CACHE_AT
336 # define EV_HEAP_CACHE_AT !EV_MINIMAL
337 #endif
338
339 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
340 /* which makes programs even slower. might work on other unices, too. */
341 #if EV_USE_CLOCK_SYSCALL
342 # include <syscall.h>
343 # ifdef SYS_clock_gettime
344 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
345 # undef EV_USE_MONOTONIC
346 # define EV_USE_MONOTONIC 1
347 # else
348 # undef EV_USE_CLOCK_SYSCALL
349 # define EV_USE_CLOCK_SYSCALL 0
350 # endif
351 #endif
352
353 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
354
355 #ifndef CLOCK_MONOTONIC
356 # undef EV_USE_MONOTONIC
357 # define EV_USE_MONOTONIC 0
358 #endif
359
360 #ifndef CLOCK_REALTIME
361 # undef EV_USE_REALTIME
362 # define EV_USE_REALTIME 0
363 #endif
364
365 #if !EV_STAT_ENABLE
366 # undef EV_USE_INOTIFY
367 # define EV_USE_INOTIFY 0
368 #endif
369
370 #if !EV_USE_NANOSLEEP
371 # ifndef _WIN32
372 # include <sys/select.h>
373 # endif
374 #endif
375
376 #if EV_USE_INOTIFY
377 # include <sys/utsname.h>
378 # include <sys/statfs.h>
379 # include <sys/inotify.h>
380 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
381 # ifndef IN_DONT_FOLLOW
382 # undef EV_USE_INOTIFY
383 # define EV_USE_INOTIFY 0
384 # endif
385 #endif
386
387 #if EV_SELECT_IS_WINSOCKET
388 # include <winsock.h>
389 #endif
390
391 #if EV_USE_EVENTFD
392 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
393 # include <stdint.h>
394 # ifndef EFD_NONBLOCK
395 # define EFD_NONBLOCK O_NONBLOCK
396 # endif
397 # ifndef EFD_CLOEXEC
398 # define EFD_CLOEXEC O_CLOEXEC
399 # endif
400 # ifdef __cplusplus
401 extern "C" {
402 # endif
403 int eventfd (unsigned int initval, int flags);
404 # ifdef __cplusplus
405 }
406 # endif
407 #endif
408
409 #if EV_USE_SIGNALFD
410 # include <sys/signalfd.h>
411 #endif
412
413 /**/
414
415 #if EV_VERIFY >= 3
416 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
417 #else
418 # define EV_FREQUENT_CHECK do { } while (0)
419 #endif
420
421 /*
422 * This is used to avoid floating point rounding problems.
423 * It is added to ev_rt_now when scheduling periodics
424 * to ensure progress, time-wise, even when rounding
425 * errors are against us.
426 * This value is good at least till the year 4000.
427 * Better solutions welcome.
428 */
429 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
430
431 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
432 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
433 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
434
435 #if __GNUC__ >= 4
436 # define expect(expr,value) __builtin_expect ((expr),(value))
437 # define noinline __attribute__ ((noinline))
438 #else
439 # define expect(expr,value) (expr)
440 # define noinline
441 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
442 # define inline
443 # endif
444 #endif
445
446 #define expect_false(expr) expect ((expr) != 0, 0)
447 #define expect_true(expr) expect ((expr) != 0, 1)
448 #define inline_size static inline
449
450 #if EV_MINIMAL
451 # define inline_speed static noinline
452 #else
453 # define inline_speed static inline
454 #endif
455
456 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
457
458 #if EV_MINPRI == EV_MAXPRI
459 # define ABSPRI(w) (((W)w), 0)
460 #else
461 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
462 #endif
463
464 #define EMPTY /* required for microsofts broken pseudo-c compiler */
465 #define EMPTY2(a,b) /* used to suppress some warnings */
466
467 typedef ev_watcher *W;
468 typedef ev_watcher_list *WL;
469 typedef ev_watcher_time *WT;
470
471 #define ev_active(w) ((W)(w))->active
472 #define ev_at(w) ((WT)(w))->at
473
474 #if EV_USE_REALTIME
475 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
476 /* giving it a reasonably high chance of working on typical architetcures */
477 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
478 #endif
479
480 #if EV_USE_MONOTONIC
481 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
482 #endif
483
484 #ifdef _WIN32
485 # include "ev_win32.c"
486 #endif
487
488 /*****************************************************************************/
489
490 static void (*syserr_cb)(const char *msg);
491
492 void
493 ev_set_syserr_cb (void (*cb)(const char *msg))
494 {
495 syserr_cb = cb;
496 }
497
498 static void noinline
499 ev_syserr (const char *msg)
500 {
501 if (!msg)
502 msg = "(libev) system error";
503
504 if (syserr_cb)
505 syserr_cb (msg);
506 else
507 {
508 perror (msg);
509 abort ();
510 }
511 }
512
513 static void *
514 ev_realloc_emul (void *ptr, long size)
515 {
516 /* some systems, notably openbsd and darwin, fail to properly
517 * implement realloc (x, 0) (as required by both ansi c-98 and
518 * the single unix specification, so work around them here.
519 */
520
521 if (size)
522 return realloc (ptr, size);
523
524 free (ptr);
525 return 0;
526 }
527
528 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
529
530 void
531 ev_set_allocator (void *(*cb)(void *ptr, long size))
532 {
533 alloc = cb;
534 }
535
536 inline_speed void *
537 ev_realloc (void *ptr, long size)
538 {
539 ptr = alloc (ptr, size);
540
541 if (!ptr && size)
542 {
543 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
544 abort ();
545 }
546
547 return ptr;
548 }
549
550 #define ev_malloc(size) ev_realloc (0, (size))
551 #define ev_free(ptr) ev_realloc ((ptr), 0)
552
553 /*****************************************************************************/
554
555 /* set in reify when reification needed */
556 #define EV_ANFD_REIFY 1
557
558 /* file descriptor info structure */
559 typedef struct
560 {
561 WL head;
562 unsigned char events; /* the events watched for */
563 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
564 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
565 unsigned char unused;
566 #if EV_USE_EPOLL
567 unsigned int egen; /* generation counter to counter epoll bugs */
568 #endif
569 #if EV_SELECT_IS_WINSOCKET
570 SOCKET handle;
571 #endif
572 } ANFD;
573
574 /* stores the pending event set for a given watcher */
575 typedef struct
576 {
577 W w;
578 int events; /* the pending event set for the given watcher */
579 } ANPENDING;
580
581 #if EV_USE_INOTIFY
582 /* hash table entry per inotify-id */
583 typedef struct
584 {
585 WL head;
586 } ANFS;
587 #endif
588
589 /* Heap Entry */
590 #if EV_HEAP_CACHE_AT
591 /* a heap element */
592 typedef struct {
593 ev_tstamp at;
594 WT w;
595 } ANHE;
596
597 #define ANHE_w(he) (he).w /* access watcher, read-write */
598 #define ANHE_at(he) (he).at /* access cached at, read-only */
599 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
600 #else
601 /* a heap element */
602 typedef WT ANHE;
603
604 #define ANHE_w(he) (he)
605 #define ANHE_at(he) (he)->at
606 #define ANHE_at_cache(he)
607 #endif
608
609 #if EV_MULTIPLICITY
610
611 struct ev_loop
612 {
613 ev_tstamp ev_rt_now;
614 #define ev_rt_now ((loop)->ev_rt_now)
615 #define VAR(name,decl) decl;
616 #include "ev_vars.h"
617 #undef VAR
618 };
619 #include "ev_wrap.h"
620
621 static struct ev_loop default_loop_struct;
622 struct ev_loop *ev_default_loop_ptr;
623
624 #else
625
626 ev_tstamp ev_rt_now;
627 #define VAR(name,decl) static decl;
628 #include "ev_vars.h"
629 #undef VAR
630
631 static int ev_default_loop_ptr;
632
633 #endif
634
635 #if EV_MINIMAL < 2
636 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
637 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
638 # define EV_INVOKE_PENDING invoke_cb (EV_A)
639 #else
640 # define EV_RELEASE_CB (void)0
641 # define EV_ACQUIRE_CB (void)0
642 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
643 #endif
644
645 #define EVUNLOOP_RECURSE 0x80
646
647 /*****************************************************************************/
648
649 #ifndef EV_HAVE_EV_TIME
650 ev_tstamp
651 ev_time (void)
652 {
653 #if EV_USE_REALTIME
654 if (expect_true (have_realtime))
655 {
656 struct timespec ts;
657 clock_gettime (CLOCK_REALTIME, &ts);
658 return ts.tv_sec + ts.tv_nsec * 1e-9;
659 }
660 #endif
661
662 struct timeval tv;
663 gettimeofday (&tv, 0);
664 return tv.tv_sec + tv.tv_usec * 1e-6;
665 }
666 #endif
667
668 inline_size ev_tstamp
669 get_clock (void)
670 {
671 #if EV_USE_MONOTONIC
672 if (expect_true (have_monotonic))
673 {
674 struct timespec ts;
675 clock_gettime (CLOCK_MONOTONIC, &ts);
676 return ts.tv_sec + ts.tv_nsec * 1e-9;
677 }
678 #endif
679
680 return ev_time ();
681 }
682
683 #if EV_MULTIPLICITY
684 ev_tstamp
685 ev_now (EV_P)
686 {
687 return ev_rt_now;
688 }
689 #endif
690
691 void
692 ev_sleep (ev_tstamp delay)
693 {
694 if (delay > 0.)
695 {
696 #if EV_USE_NANOSLEEP
697 struct timespec ts;
698
699 ts.tv_sec = (time_t)delay;
700 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
701
702 nanosleep (&ts, 0);
703 #elif defined(_WIN32)
704 Sleep ((unsigned long)(delay * 1e3));
705 #else
706 struct timeval tv;
707
708 tv.tv_sec = (time_t)delay;
709 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
710
711 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
712 /* something not guaranteed by newer posix versions, but guaranteed */
713 /* by older ones */
714 select (0, 0, 0, 0, &tv);
715 #endif
716 }
717 }
718
719 /*****************************************************************************/
720
721 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
722
723 /* find a suitable new size for the given array, */
724 /* hopefully by rounding to a ncie-to-malloc size */
725 inline_size int
726 array_nextsize (int elem, int cur, int cnt)
727 {
728 int ncur = cur + 1;
729
730 do
731 ncur <<= 1;
732 while (cnt > ncur);
733
734 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
735 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
736 {
737 ncur *= elem;
738 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
739 ncur = ncur - sizeof (void *) * 4;
740 ncur /= elem;
741 }
742
743 return ncur;
744 }
745
746 static noinline void *
747 array_realloc (int elem, void *base, int *cur, int cnt)
748 {
749 *cur = array_nextsize (elem, *cur, cnt);
750 return ev_realloc (base, elem * *cur);
751 }
752
753 #define array_init_zero(base,count) \
754 memset ((void *)(base), 0, sizeof (*(base)) * (count))
755
756 #define array_needsize(type,base,cur,cnt,init) \
757 if (expect_false ((cnt) > (cur))) \
758 { \
759 int ocur_ = (cur); \
760 (base) = (type *)array_realloc \
761 (sizeof (type), (base), &(cur), (cnt)); \
762 init ((base) + (ocur_), (cur) - ocur_); \
763 }
764
765 #if 0
766 #define array_slim(type,stem) \
767 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
768 { \
769 stem ## max = array_roundsize (stem ## cnt >> 1); \
770 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
771 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
772 }
773 #endif
774
775 #define array_free(stem, idx) \
776 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
777
778 /*****************************************************************************/
779
780 /* dummy callback for pending events */
781 static void noinline
782 pendingcb (EV_P_ ev_prepare *w, int revents)
783 {
784 }
785
786 void noinline
787 ev_feed_event (EV_P_ void *w, int revents)
788 {
789 W w_ = (W)w;
790 int pri = ABSPRI (w_);
791
792 if (expect_false (w_->pending))
793 pendings [pri][w_->pending - 1].events |= revents;
794 else
795 {
796 w_->pending = ++pendingcnt [pri];
797 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
798 pendings [pri][w_->pending - 1].w = w_;
799 pendings [pri][w_->pending - 1].events = revents;
800 }
801 }
802
803 inline_speed void
804 feed_reverse (EV_P_ W w)
805 {
806 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
807 rfeeds [rfeedcnt++] = w;
808 }
809
810 inline_size void
811 feed_reverse_done (EV_P_ int revents)
812 {
813 do
814 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
815 while (rfeedcnt);
816 }
817
818 inline_speed void
819 queue_events (EV_P_ W *events, int eventcnt, int type)
820 {
821 int i;
822
823 for (i = 0; i < eventcnt; ++i)
824 ev_feed_event (EV_A_ events [i], type);
825 }
826
827 /*****************************************************************************/
828
829 inline_speed void
830 fd_event_nc (EV_P_ int fd, int revents)
831 {
832 ANFD *anfd = anfds + fd;
833 ev_io *w;
834
835 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
836 {
837 int ev = w->events & revents;
838
839 if (ev)
840 ev_feed_event (EV_A_ (W)w, ev);
841 }
842 }
843
844 /* do not submit kernel events for fds that have reify set */
845 /* because that means they changed while we were polling for new events */
846 inline_speed void
847 fd_event (EV_P_ int fd, int revents)
848 {
849 ANFD *anfd = anfds + fd;
850
851 if (expect_true (!anfd->reify))
852 fd_event_nc (EV_A_ fd, revents);
853 }
854
855 void
856 ev_feed_fd_event (EV_P_ int fd, int revents)
857 {
858 if (fd >= 0 && fd < anfdmax)
859 fd_event_nc (EV_A_ fd, revents);
860 }
861
862 /* make sure the external fd watch events are in-sync */
863 /* with the kernel/libev internal state */
864 inline_size void
865 fd_reify (EV_P)
866 {
867 int i;
868
869 for (i = 0; i < fdchangecnt; ++i)
870 {
871 int fd = fdchanges [i];
872 ANFD *anfd = anfds + fd;
873 ev_io *w;
874
875 unsigned char events = 0;
876
877 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
878 events |= (unsigned char)w->events;
879
880 #if EV_SELECT_IS_WINSOCKET
881 if (events)
882 {
883 unsigned long arg;
884 #ifdef EV_FD_TO_WIN32_HANDLE
885 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
886 #else
887 anfd->handle = _get_osfhandle (fd);
888 #endif
889 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
890 }
891 #endif
892
893 {
894 unsigned char o_events = anfd->events;
895 unsigned char o_reify = anfd->reify;
896
897 anfd->reify = 0;
898 anfd->events = events;
899
900 if (o_events != events || o_reify & EV__IOFDSET)
901 backend_modify (EV_A_ fd, o_events, events);
902 }
903 }
904
905 fdchangecnt = 0;
906 }
907
908 /* something about the given fd changed */
909 inline_size void
910 fd_change (EV_P_ int fd, int flags)
911 {
912 unsigned char reify = anfds [fd].reify;
913 anfds [fd].reify |= flags;
914
915 if (expect_true (!reify))
916 {
917 ++fdchangecnt;
918 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
919 fdchanges [fdchangecnt - 1] = fd;
920 }
921 }
922
923 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
924 inline_speed void
925 fd_kill (EV_P_ int fd)
926 {
927 ev_io *w;
928
929 while ((w = (ev_io *)anfds [fd].head))
930 {
931 ev_io_stop (EV_A_ w);
932 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
933 }
934 }
935
936 /* check whether the given fd is atcually valid, for error recovery */
937 inline_size int
938 fd_valid (int fd)
939 {
940 #ifdef _WIN32
941 return _get_osfhandle (fd) != -1;
942 #else
943 return fcntl (fd, F_GETFD) != -1;
944 #endif
945 }
946
947 /* called on EBADF to verify fds */
948 static void noinline
949 fd_ebadf (EV_P)
950 {
951 int fd;
952
953 for (fd = 0; fd < anfdmax; ++fd)
954 if (anfds [fd].events)
955 if (!fd_valid (fd) && errno == EBADF)
956 fd_kill (EV_A_ fd);
957 }
958
959 /* called on ENOMEM in select/poll to kill some fds and retry */
960 static void noinline
961 fd_enomem (EV_P)
962 {
963 int fd;
964
965 for (fd = anfdmax; fd--; )
966 if (anfds [fd].events)
967 {
968 fd_kill (EV_A_ fd);
969 return;
970 }
971 }
972
973 /* usually called after fork if backend needs to re-arm all fds from scratch */
974 static void noinline
975 fd_rearm_all (EV_P)
976 {
977 int fd;
978
979 for (fd = 0; fd < anfdmax; ++fd)
980 if (anfds [fd].events)
981 {
982 anfds [fd].events = 0;
983 anfds [fd].emask = 0;
984 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
985 }
986 }
987
988 /*****************************************************************************/
989
990 /*
991 * the heap functions want a real array index. array index 0 uis guaranteed to not
992 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
993 * the branching factor of the d-tree.
994 */
995
996 /*
997 * at the moment we allow libev the luxury of two heaps,
998 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
999 * which is more cache-efficient.
1000 * the difference is about 5% with 50000+ watchers.
1001 */
1002 #if EV_USE_4HEAP
1003
1004 #define DHEAP 4
1005 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1006 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1007 #define UPHEAP_DONE(p,k) ((p) == (k))
1008
1009 /* away from the root */
1010 inline_speed void
1011 downheap (ANHE *heap, int N, int k)
1012 {
1013 ANHE he = heap [k];
1014 ANHE *E = heap + N + HEAP0;
1015
1016 for (;;)
1017 {
1018 ev_tstamp minat;
1019 ANHE *minpos;
1020 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1021
1022 /* find minimum child */
1023 if (expect_true (pos + DHEAP - 1 < E))
1024 {
1025 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1026 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1027 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1028 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1029 }
1030 else if (pos < E)
1031 {
1032 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1033 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1034 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1035 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1036 }
1037 else
1038 break;
1039
1040 if (ANHE_at (he) <= minat)
1041 break;
1042
1043 heap [k] = *minpos;
1044 ev_active (ANHE_w (*minpos)) = k;
1045
1046 k = minpos - heap;
1047 }
1048
1049 heap [k] = he;
1050 ev_active (ANHE_w (he)) = k;
1051 }
1052
1053 #else /* 4HEAP */
1054
1055 #define HEAP0 1
1056 #define HPARENT(k) ((k) >> 1)
1057 #define UPHEAP_DONE(p,k) (!(p))
1058
1059 /* away from the root */
1060 inline_speed void
1061 downheap (ANHE *heap, int N, int k)
1062 {
1063 ANHE he = heap [k];
1064
1065 for (;;)
1066 {
1067 int c = k << 1;
1068
1069 if (c > N + HEAP0 - 1)
1070 break;
1071
1072 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1073 ? 1 : 0;
1074
1075 if (ANHE_at (he) <= ANHE_at (heap [c]))
1076 break;
1077
1078 heap [k] = heap [c];
1079 ev_active (ANHE_w (heap [k])) = k;
1080
1081 k = c;
1082 }
1083
1084 heap [k] = he;
1085 ev_active (ANHE_w (he)) = k;
1086 }
1087 #endif
1088
1089 /* towards the root */
1090 inline_speed void
1091 upheap (ANHE *heap, int k)
1092 {
1093 ANHE he = heap [k];
1094
1095 for (;;)
1096 {
1097 int p = HPARENT (k);
1098
1099 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1100 break;
1101
1102 heap [k] = heap [p];
1103 ev_active (ANHE_w (heap [k])) = k;
1104 k = p;
1105 }
1106
1107 heap [k] = he;
1108 ev_active (ANHE_w (he)) = k;
1109 }
1110
1111 /* move an element suitably so it is in a correct place */
1112 inline_size void
1113 adjustheap (ANHE *heap, int N, int k)
1114 {
1115 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1116 upheap (heap, k);
1117 else
1118 downheap (heap, N, k);
1119 }
1120
1121 /* rebuild the heap: this function is used only once and executed rarely */
1122 inline_size void
1123 reheap (ANHE *heap, int N)
1124 {
1125 int i;
1126
1127 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1128 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1129 for (i = 0; i < N; ++i)
1130 upheap (heap, i + HEAP0);
1131 }
1132
1133 /*****************************************************************************/
1134
1135 /* associate signal watchers to a signal signal */
1136 typedef struct
1137 {
1138 WL head;
1139 EV_ATOMIC_T gotsig;
1140 } ANSIG;
1141
1142 static ANSIG *signals;
1143 static int signalmax;
1144
1145 static EV_ATOMIC_T gotsig;
1146
1147 /*****************************************************************************/
1148
1149 /* used to prepare libev internal fd's */
1150 /* this is not fork-safe */
1151 inline_speed void
1152 fd_intern (int fd)
1153 {
1154 #ifdef _WIN32
1155 unsigned long arg = 1;
1156 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1157 #else
1158 fcntl (fd, F_SETFD, FD_CLOEXEC);
1159 fcntl (fd, F_SETFL, O_NONBLOCK);
1160 #endif
1161 }
1162
1163 static void noinline
1164 evpipe_init (EV_P)
1165 {
1166 if (!ev_is_active (&pipe_w))
1167 {
1168 #if EV_USE_EVENTFD
1169 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1170 if (evfd < 0 && errno == EINVAL)
1171 evfd = eventfd (0, 0);
1172
1173 if (evfd >= 0)
1174 {
1175 evpipe [0] = -1;
1176 fd_intern (evfd); /* doing it twice doesn't hurt */
1177 ev_io_set (&pipe_w, evfd, EV_READ);
1178 }
1179 else
1180 #endif
1181 {
1182 while (pipe (evpipe))
1183 ev_syserr ("(libev) error creating signal/async pipe");
1184
1185 fd_intern (evpipe [0]);
1186 fd_intern (evpipe [1]);
1187 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1188 }
1189
1190 ev_io_start (EV_A_ &pipe_w);
1191 ev_unref (EV_A); /* watcher should not keep loop alive */
1192 }
1193 }
1194
1195 inline_size void
1196 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1197 {
1198 if (!*flag)
1199 {
1200 int old_errno = errno; /* save errno because write might clobber it */
1201
1202 *flag = 1;
1203
1204 #if EV_USE_EVENTFD
1205 if (evfd >= 0)
1206 {
1207 uint64_t counter = 1;
1208 write (evfd, &counter, sizeof (uint64_t));
1209 }
1210 else
1211 #endif
1212 write (evpipe [1], &old_errno, 1);
1213
1214 errno = old_errno;
1215 }
1216 }
1217
1218 /* called whenever the libev signal pipe */
1219 /* got some events (signal, async) */
1220 static void
1221 pipecb (EV_P_ ev_io *iow, int revents)
1222 {
1223 #if EV_USE_EVENTFD
1224 if (evfd >= 0)
1225 {
1226 uint64_t counter;
1227 read (evfd, &counter, sizeof (uint64_t));
1228 }
1229 else
1230 #endif
1231 {
1232 char dummy;
1233 read (evpipe [0], &dummy, 1);
1234 }
1235
1236 if (gotsig && ev_is_default_loop (EV_A))
1237 {
1238 int signum;
1239 gotsig = 0;
1240
1241 for (signum = signalmax; signum--; )
1242 if (signals [signum].gotsig)
1243 ev_feed_signal_event (EV_A_ signum + 1);
1244 }
1245
1246 #if EV_ASYNC_ENABLE
1247 if (gotasync)
1248 {
1249 int i;
1250 gotasync = 0;
1251
1252 for (i = asynccnt; i--; )
1253 if (asyncs [i]->sent)
1254 {
1255 asyncs [i]->sent = 0;
1256 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1257 }
1258 }
1259 #endif
1260 }
1261
1262 /*****************************************************************************/
1263
1264 static void
1265 ev_sighandler (int signum)
1266 {
1267 #if EV_MULTIPLICITY
1268 struct ev_loop *loop = &default_loop_struct;
1269 #endif
1270
1271 #if _WIN32
1272 signal (signum, ev_sighandler);
1273 #endif
1274
1275 signals [signum - 1].gotsig = 1;
1276 evpipe_write (EV_A_ &gotsig);
1277 }
1278
1279 void noinline
1280 ev_feed_signal_event (EV_P_ int signum)
1281 {
1282 WL w;
1283
1284 #if EV_MULTIPLICITY
1285 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1286 #endif
1287
1288 --signum;
1289
1290 if (signum < 0 || signum >= signalmax)
1291 return;
1292
1293 signals [signum].gotsig = 0;
1294
1295 for (w = signals [signum].head; w; w = w->next)
1296 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1297 }
1298
1299 #if EV_USE_SIGNALFD
1300 static void
1301 sigfdcb (EV_P_ ev_io *iow, int revents)
1302 {
1303 struct signalfd_siginfo si[4], *sip;
1304
1305 for (;;)
1306 {
1307 ssize_t res = read (sigfd, si, sizeof (si));
1308
1309 /* not ISO-C, as res might be -1, but works with SuS */
1310 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1311 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1312
1313 if (res < (ssize_t)sizeof (si))
1314 break;
1315 }
1316 }
1317 #endif
1318
1319 /*****************************************************************************/
1320
1321 static WL childs [EV_PID_HASHSIZE];
1322
1323 #ifndef _WIN32
1324
1325 static ev_signal childev;
1326
1327 #ifndef WIFCONTINUED
1328 # define WIFCONTINUED(status) 0
1329 #endif
1330
1331 /* handle a single child status event */
1332 inline_speed void
1333 child_reap (EV_P_ int chain, int pid, int status)
1334 {
1335 ev_child *w;
1336 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1337
1338 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1339 {
1340 if ((w->pid == pid || !w->pid)
1341 && (!traced || (w->flags & 1)))
1342 {
1343 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1344 w->rpid = pid;
1345 w->rstatus = status;
1346 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1347 }
1348 }
1349 }
1350
1351 #ifndef WCONTINUED
1352 # define WCONTINUED 0
1353 #endif
1354
1355 /* called on sigchld etc., calls waitpid */
1356 static void
1357 childcb (EV_P_ ev_signal *sw, int revents)
1358 {
1359 int pid, status;
1360
1361 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1362 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1363 if (!WCONTINUED
1364 || errno != EINVAL
1365 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1366 return;
1367
1368 /* make sure we are called again until all children have been reaped */
1369 /* we need to do it this way so that the callback gets called before we continue */
1370 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1371
1372 child_reap (EV_A_ pid, pid, status);
1373 if (EV_PID_HASHSIZE > 1)
1374 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1375 }
1376
1377 #endif
1378
1379 /*****************************************************************************/
1380
1381 #if EV_USE_PORT
1382 # include "ev_port.c"
1383 #endif
1384 #if EV_USE_KQUEUE
1385 # include "ev_kqueue.c"
1386 #endif
1387 #if EV_USE_EPOLL
1388 # include "ev_epoll.c"
1389 #endif
1390 #if EV_USE_POLL
1391 # include "ev_poll.c"
1392 #endif
1393 #if EV_USE_SELECT
1394 # include "ev_select.c"
1395 #endif
1396
1397 int
1398 ev_version_major (void)
1399 {
1400 return EV_VERSION_MAJOR;
1401 }
1402
1403 int
1404 ev_version_minor (void)
1405 {
1406 return EV_VERSION_MINOR;
1407 }
1408
1409 /* return true if we are running with elevated privileges and should ignore env variables */
1410 int inline_size
1411 enable_secure (void)
1412 {
1413 #ifdef _WIN32
1414 return 0;
1415 #else
1416 return getuid () != geteuid ()
1417 || getgid () != getegid ();
1418 #endif
1419 }
1420
1421 unsigned int
1422 ev_supported_backends (void)
1423 {
1424 unsigned int flags = 0;
1425
1426 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1427 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1428 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1429 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1430 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1431
1432 return flags;
1433 }
1434
1435 unsigned int
1436 ev_recommended_backends (void)
1437 {
1438 unsigned int flags = ev_supported_backends ();
1439
1440 #ifndef __NetBSD__
1441 /* kqueue is borked on everything but netbsd apparently */
1442 /* it usually doesn't work correctly on anything but sockets and pipes */
1443 flags &= ~EVBACKEND_KQUEUE;
1444 #endif
1445 #ifdef __APPLE__
1446 /* only select works correctly on that "unix-certified" platform */
1447 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1448 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1449 #endif
1450
1451 return flags;
1452 }
1453
1454 unsigned int
1455 ev_embeddable_backends (void)
1456 {
1457 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1458
1459 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1460 /* please fix it and tell me how to detect the fix */
1461 flags &= ~EVBACKEND_EPOLL;
1462
1463 return flags;
1464 }
1465
1466 unsigned int
1467 ev_backend (EV_P)
1468 {
1469 return backend;
1470 }
1471
1472 #if EV_MINIMAL < 2
1473 unsigned int
1474 ev_loop_count (EV_P)
1475 {
1476 return loop_count;
1477 }
1478
1479 unsigned int
1480 ev_loop_depth (EV_P)
1481 {
1482 return loop_depth;
1483 }
1484
1485 void
1486 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1487 {
1488 io_blocktime = interval;
1489 }
1490
1491 void
1492 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1493 {
1494 timeout_blocktime = interval;
1495 }
1496
1497 void
1498 ev_set_userdata (EV_P_ void *data)
1499 {
1500 userdata = data;
1501 }
1502
1503 void *
1504 ev_userdata (EV_P)
1505 {
1506 return userdata;
1507 }
1508
1509 void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1510 {
1511 invoke_cb = invoke_pending_cb;
1512 }
1513
1514 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1515 {
1516 release_cb = release;
1517 acquire_cb = acquire;
1518 }
1519 #endif
1520
1521 /* initialise a loop structure, must be zero-initialised */
1522 static void noinline
1523 loop_init (EV_P_ unsigned int flags)
1524 {
1525 if (!backend)
1526 {
1527 #if EV_USE_REALTIME
1528 if (!have_realtime)
1529 {
1530 struct timespec ts;
1531
1532 if (!clock_gettime (CLOCK_REALTIME, &ts))
1533 have_realtime = 1;
1534 }
1535 #endif
1536
1537 #if EV_USE_MONOTONIC
1538 if (!have_monotonic)
1539 {
1540 struct timespec ts;
1541
1542 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1543 have_monotonic = 1;
1544 }
1545 #endif
1546
1547 ev_rt_now = ev_time ();
1548 mn_now = get_clock ();
1549 now_floor = mn_now;
1550 rtmn_diff = ev_rt_now - mn_now;
1551 #if EV_MINIMAL < 2
1552 invoke_cb = ev_invoke_pending;
1553 #endif
1554
1555 io_blocktime = 0.;
1556 timeout_blocktime = 0.;
1557 backend = 0;
1558 backend_fd = -1;
1559 gotasync = 0;
1560 #if EV_USE_INOTIFY
1561 fs_fd = -2;
1562 #endif
1563 #if EV_USE_SIGNALFD
1564 sigfd = -2;
1565 #endif
1566
1567 /* pid check not overridable via env */
1568 #ifndef _WIN32
1569 if (flags & EVFLAG_FORKCHECK)
1570 curpid = getpid ();
1571 #endif
1572
1573 if (!(flags & EVFLAG_NOENV)
1574 && !enable_secure ()
1575 && getenv ("LIBEV_FLAGS"))
1576 flags = atoi (getenv ("LIBEV_FLAGS"));
1577
1578 if (!(flags & 0x0000ffffU))
1579 flags |= ev_recommended_backends ();
1580
1581 #if EV_USE_PORT
1582 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1583 #endif
1584 #if EV_USE_KQUEUE
1585 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1586 #endif
1587 #if EV_USE_EPOLL
1588 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1589 #endif
1590 #if EV_USE_POLL
1591 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1592 #endif
1593 #if EV_USE_SELECT
1594 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1595 #endif
1596
1597 ev_prepare_init (&pending_w, pendingcb);
1598
1599 ev_init (&pipe_w, pipecb);
1600 ev_set_priority (&pipe_w, EV_MAXPRI);
1601 }
1602 }
1603
1604 /* free up a loop structure */
1605 static void noinline
1606 loop_destroy (EV_P)
1607 {
1608 int i;
1609
1610 if (ev_is_active (&pipe_w))
1611 {
1612 /*ev_ref (EV_A);*/
1613 /*ev_io_stop (EV_A_ &pipe_w);*/
1614
1615 #if EV_USE_EVENTFD
1616 if (evfd >= 0)
1617 close (evfd);
1618 #endif
1619
1620 if (evpipe [0] >= 0)
1621 {
1622 close (evpipe [0]);
1623 close (evpipe [1]);
1624 }
1625 }
1626
1627 #if EV_USE_SIGNALFD
1628 if (ev_is_active (&sigfd_w))
1629 {
1630 /*ev_ref (EV_A);*/
1631 /*ev_io_stop (EV_A_ &sigfd_w);*/
1632
1633 close (sigfd);
1634 }
1635 #endif
1636
1637 #if EV_USE_INOTIFY
1638 if (fs_fd >= 0)
1639 close (fs_fd);
1640 #endif
1641
1642 if (backend_fd >= 0)
1643 close (backend_fd);
1644
1645 #if EV_USE_PORT
1646 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1647 #endif
1648 #if EV_USE_KQUEUE
1649 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1650 #endif
1651 #if EV_USE_EPOLL
1652 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1653 #endif
1654 #if EV_USE_POLL
1655 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1656 #endif
1657 #if EV_USE_SELECT
1658 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1659 #endif
1660
1661 for (i = NUMPRI; i--; )
1662 {
1663 array_free (pending, [i]);
1664 #if EV_IDLE_ENABLE
1665 array_free (idle, [i]);
1666 #endif
1667 }
1668
1669 ev_free (anfds); anfds = 0; anfdmax = 0;
1670
1671 /* have to use the microsoft-never-gets-it-right macro */
1672 array_free (rfeed, EMPTY);
1673 array_free (fdchange, EMPTY);
1674 array_free (timer, EMPTY);
1675 #if EV_PERIODIC_ENABLE
1676 array_free (periodic, EMPTY);
1677 #endif
1678 #if EV_FORK_ENABLE
1679 array_free (fork, EMPTY);
1680 #endif
1681 array_free (prepare, EMPTY);
1682 array_free (check, EMPTY);
1683 #if EV_ASYNC_ENABLE
1684 array_free (async, EMPTY);
1685 #endif
1686
1687 backend = 0;
1688 }
1689
1690 #if EV_USE_INOTIFY
1691 inline_size void infy_fork (EV_P);
1692 #endif
1693
1694 inline_size void
1695 loop_fork (EV_P)
1696 {
1697 #if EV_USE_PORT
1698 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1699 #endif
1700 #if EV_USE_KQUEUE
1701 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1702 #endif
1703 #if EV_USE_EPOLL
1704 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1705 #endif
1706 #if EV_USE_INOTIFY
1707 infy_fork (EV_A);
1708 #endif
1709
1710 if (ev_is_active (&pipe_w))
1711 {
1712 /* this "locks" the handlers against writing to the pipe */
1713 /* while we modify the fd vars */
1714 gotsig = 1;
1715 #if EV_ASYNC_ENABLE
1716 gotasync = 1;
1717 #endif
1718
1719 ev_ref (EV_A);
1720 ev_io_stop (EV_A_ &pipe_w);
1721
1722 #if EV_USE_EVENTFD
1723 if (evfd >= 0)
1724 close (evfd);
1725 #endif
1726
1727 if (evpipe [0] >= 0)
1728 {
1729 close (evpipe [0]);
1730 close (evpipe [1]);
1731 }
1732
1733 evpipe_init (EV_A);
1734 /* now iterate over everything, in case we missed something */
1735 pipecb (EV_A_ &pipe_w, EV_READ);
1736 }
1737
1738 postfork = 0;
1739 }
1740
1741 #if EV_MULTIPLICITY
1742
1743 struct ev_loop *
1744 ev_loop_new (unsigned int flags)
1745 {
1746 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1747
1748 memset (loop, 0, sizeof (struct ev_loop));
1749 loop_init (EV_A_ flags);
1750
1751 if (ev_backend (EV_A))
1752 return loop;
1753
1754 return 0;
1755 }
1756
1757 void
1758 ev_loop_destroy (EV_P)
1759 {
1760 loop_destroy (EV_A);
1761 ev_free (loop);
1762 }
1763
1764 void
1765 ev_loop_fork (EV_P)
1766 {
1767 postfork = 1; /* must be in line with ev_default_fork */
1768 }
1769 #endif /* multiplicity */
1770
1771 #if EV_VERIFY
1772 static void noinline
1773 verify_watcher (EV_P_ W w)
1774 {
1775 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1776
1777 if (w->pending)
1778 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1779 }
1780
1781 static void noinline
1782 verify_heap (EV_P_ ANHE *heap, int N)
1783 {
1784 int i;
1785
1786 for (i = HEAP0; i < N + HEAP0; ++i)
1787 {
1788 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1789 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1790 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1791
1792 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1793 }
1794 }
1795
1796 static void noinline
1797 array_verify (EV_P_ W *ws, int cnt)
1798 {
1799 while (cnt--)
1800 {
1801 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1802 verify_watcher (EV_A_ ws [cnt]);
1803 }
1804 }
1805 #endif
1806
1807 #if EV_MINIMAL < 2
1808 void
1809 ev_loop_verify (EV_P)
1810 {
1811 #if EV_VERIFY
1812 int i;
1813 WL w;
1814
1815 assert (activecnt >= -1);
1816
1817 assert (fdchangemax >= fdchangecnt);
1818 for (i = 0; i < fdchangecnt; ++i)
1819 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1820
1821 assert (anfdmax >= 0);
1822 for (i = 0; i < anfdmax; ++i)
1823 for (w = anfds [i].head; w; w = w->next)
1824 {
1825 verify_watcher (EV_A_ (W)w);
1826 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1827 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1828 }
1829
1830 assert (timermax >= timercnt);
1831 verify_heap (EV_A_ timers, timercnt);
1832
1833 #if EV_PERIODIC_ENABLE
1834 assert (periodicmax >= periodiccnt);
1835 verify_heap (EV_A_ periodics, periodiccnt);
1836 #endif
1837
1838 for (i = NUMPRI; i--; )
1839 {
1840 assert (pendingmax [i] >= pendingcnt [i]);
1841 #if EV_IDLE_ENABLE
1842 assert (idleall >= 0);
1843 assert (idlemax [i] >= idlecnt [i]);
1844 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1845 #endif
1846 }
1847
1848 #if EV_FORK_ENABLE
1849 assert (forkmax >= forkcnt);
1850 array_verify (EV_A_ (W *)forks, forkcnt);
1851 #endif
1852
1853 #if EV_ASYNC_ENABLE
1854 assert (asyncmax >= asynccnt);
1855 array_verify (EV_A_ (W *)asyncs, asynccnt);
1856 #endif
1857
1858 assert (preparemax >= preparecnt);
1859 array_verify (EV_A_ (W *)prepares, preparecnt);
1860
1861 assert (checkmax >= checkcnt);
1862 array_verify (EV_A_ (W *)checks, checkcnt);
1863
1864 # if 0
1865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1866 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1867 # endif
1868 #endif
1869 }
1870 #endif
1871
1872 #if EV_MULTIPLICITY
1873 struct ev_loop *
1874 ev_default_loop_init (unsigned int flags)
1875 #else
1876 int
1877 ev_default_loop (unsigned int flags)
1878 #endif
1879 {
1880 if (!ev_default_loop_ptr)
1881 {
1882 #if EV_MULTIPLICITY
1883 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1884 #else
1885 ev_default_loop_ptr = 1;
1886 #endif
1887
1888 loop_init (EV_A_ flags);
1889
1890 if (ev_backend (EV_A))
1891 {
1892 #ifndef _WIN32
1893 ev_signal_init (&childev, childcb, SIGCHLD);
1894 ev_set_priority (&childev, EV_MAXPRI);
1895 ev_signal_start (EV_A_ &childev);
1896 ev_unref (EV_A); /* child watcher should not keep loop alive */
1897 #endif
1898 }
1899 else
1900 ev_default_loop_ptr = 0;
1901 }
1902
1903 return ev_default_loop_ptr;
1904 }
1905
1906 void
1907 ev_default_destroy (void)
1908 {
1909 #if EV_MULTIPLICITY
1910 struct ev_loop *loop = ev_default_loop_ptr;
1911 #endif
1912
1913 ev_default_loop_ptr = 0;
1914
1915 #ifndef _WIN32
1916 ev_ref (EV_A); /* child watcher */
1917 ev_signal_stop (EV_A_ &childev);
1918 #endif
1919
1920 loop_destroy (EV_A);
1921 }
1922
1923 void
1924 ev_default_fork (void)
1925 {
1926 #if EV_MULTIPLICITY
1927 struct ev_loop *loop = ev_default_loop_ptr;
1928 #endif
1929
1930 postfork = 1; /* must be in line with ev_loop_fork */
1931 }
1932
1933 /*****************************************************************************/
1934
1935 void
1936 ev_invoke (EV_P_ void *w, int revents)
1937 {
1938 EV_CB_INVOKE ((W)w, revents);
1939 }
1940
1941 unsigned int
1942 ev_pending_count (EV_P)
1943 {
1944 int pri;
1945 unsigned int count = 0;
1946
1947 for (pri = NUMPRI; pri--; )
1948 count += pendingcnt [pri];
1949
1950 return count;
1951 }
1952
1953 void noinline
1954 ev_invoke_pending (EV_P)
1955 {
1956 int pri;
1957
1958 for (pri = NUMPRI; pri--; )
1959 while (pendingcnt [pri])
1960 {
1961 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1962
1963 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1964 /* ^ this is no longer true, as pending_w could be here */
1965
1966 p->w->pending = 0;
1967 EV_CB_INVOKE (p->w, p->events);
1968 EV_FREQUENT_CHECK;
1969 }
1970 }
1971
1972 #if EV_IDLE_ENABLE
1973 /* make idle watchers pending. this handles the "call-idle */
1974 /* only when higher priorities are idle" logic */
1975 inline_size void
1976 idle_reify (EV_P)
1977 {
1978 if (expect_false (idleall))
1979 {
1980 int pri;
1981
1982 for (pri = NUMPRI; pri--; )
1983 {
1984 if (pendingcnt [pri])
1985 break;
1986
1987 if (idlecnt [pri])
1988 {
1989 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1990 break;
1991 }
1992 }
1993 }
1994 }
1995 #endif
1996
1997 /* make timers pending */
1998 inline_size void
1999 timers_reify (EV_P)
2000 {
2001 EV_FREQUENT_CHECK;
2002
2003 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2004 {
2005 do
2006 {
2007 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2008
2009 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2010
2011 /* first reschedule or stop timer */
2012 if (w->repeat)
2013 {
2014 ev_at (w) += w->repeat;
2015 if (ev_at (w) < mn_now)
2016 ev_at (w) = mn_now;
2017
2018 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2019
2020 ANHE_at_cache (timers [HEAP0]);
2021 downheap (timers, timercnt, HEAP0);
2022 }
2023 else
2024 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2025
2026 EV_FREQUENT_CHECK;
2027 feed_reverse (EV_A_ (W)w);
2028 }
2029 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2030
2031 feed_reverse_done (EV_A_ EV_TIMEOUT);
2032 }
2033 }
2034
2035 #if EV_PERIODIC_ENABLE
2036 /* make periodics pending */
2037 inline_size void
2038 periodics_reify (EV_P)
2039 {
2040 EV_FREQUENT_CHECK;
2041
2042 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2043 {
2044 int feed_count = 0;
2045
2046 do
2047 {
2048 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2049
2050 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2051
2052 /* first reschedule or stop timer */
2053 if (w->reschedule_cb)
2054 {
2055 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2056
2057 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2058
2059 ANHE_at_cache (periodics [HEAP0]);
2060 downheap (periodics, periodiccnt, HEAP0);
2061 }
2062 else if (w->interval)
2063 {
2064 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2065 /* if next trigger time is not sufficiently in the future, put it there */
2066 /* this might happen because of floating point inexactness */
2067 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2068 {
2069 ev_at (w) += w->interval;
2070
2071 /* if interval is unreasonably low we might still have a time in the past */
2072 /* so correct this. this will make the periodic very inexact, but the user */
2073 /* has effectively asked to get triggered more often than possible */
2074 if (ev_at (w) < ev_rt_now)
2075 ev_at (w) = ev_rt_now;
2076 }
2077
2078 ANHE_at_cache (periodics [HEAP0]);
2079 downheap (periodics, periodiccnt, HEAP0);
2080 }
2081 else
2082 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
2086 }
2087 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2088
2089 feed_reverse_done (EV_A_ EV_PERIODIC);
2090 }
2091 }
2092
2093 /* simply recalculate all periodics */
2094 /* TODO: maybe ensure that at leats one event happens when jumping forward? */
2095 static void noinline
2096 periodics_reschedule (EV_P)
2097 {
2098 int i;
2099
2100 /* adjust periodics after time jump */
2101 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2102 {
2103 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2104
2105 if (w->reschedule_cb)
2106 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2107 else if (w->interval)
2108 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2109
2110 ANHE_at_cache (periodics [i]);
2111 }
2112
2113 reheap (periodics, periodiccnt);
2114 }
2115 #endif
2116
2117 /* adjust all timers by a given offset */
2118 static void noinline
2119 timers_reschedule (EV_P_ ev_tstamp adjust)
2120 {
2121 int i;
2122
2123 for (i = 0; i < timercnt; ++i)
2124 {
2125 ANHE *he = timers + i + HEAP0;
2126 ANHE_w (*he)->at += adjust;
2127 ANHE_at_cache (*he);
2128 }
2129 }
2130
2131 /* fetch new monotonic and realtime times from the kernel */
2132 /* also detetc if there was a timejump, and act accordingly */
2133 inline_speed void
2134 time_update (EV_P_ ev_tstamp max_block)
2135 {
2136 #if EV_USE_MONOTONIC
2137 if (expect_true (have_monotonic))
2138 {
2139 int i;
2140 ev_tstamp odiff = rtmn_diff;
2141
2142 mn_now = get_clock ();
2143
2144 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2145 /* interpolate in the meantime */
2146 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2147 {
2148 ev_rt_now = rtmn_diff + mn_now;
2149 return;
2150 }
2151
2152 now_floor = mn_now;
2153 ev_rt_now = ev_time ();
2154
2155 /* loop a few times, before making important decisions.
2156 * on the choice of "4": one iteration isn't enough,
2157 * in case we get preempted during the calls to
2158 * ev_time and get_clock. a second call is almost guaranteed
2159 * to succeed in that case, though. and looping a few more times
2160 * doesn't hurt either as we only do this on time-jumps or
2161 * in the unlikely event of having been preempted here.
2162 */
2163 for (i = 4; --i; )
2164 {
2165 rtmn_diff = ev_rt_now - mn_now;
2166
2167 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2168 return; /* all is well */
2169
2170 ev_rt_now = ev_time ();
2171 mn_now = get_clock ();
2172 now_floor = mn_now;
2173 }
2174
2175 /* no timer adjustment, as the monotonic clock doesn't jump */
2176 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2177 # if EV_PERIODIC_ENABLE
2178 periodics_reschedule (EV_A);
2179 # endif
2180 }
2181 else
2182 #endif
2183 {
2184 ev_rt_now = ev_time ();
2185
2186 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2187 {
2188 /* adjust timers. this is easy, as the offset is the same for all of them */
2189 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2190 #if EV_PERIODIC_ENABLE
2191 periodics_reschedule (EV_A);
2192 #endif
2193 }
2194
2195 mn_now = ev_rt_now;
2196 }
2197 }
2198
2199 void
2200 ev_loop (EV_P_ int flags)
2201 {
2202 #if EV_MINIMAL < 2
2203 ++loop_depth;
2204 #endif
2205
2206 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2207
2208 loop_done = EVUNLOOP_CANCEL;
2209
2210 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2211
2212 do
2213 {
2214 #if EV_VERIFY >= 2
2215 ev_loop_verify (EV_A);
2216 #endif
2217
2218 #ifndef _WIN32
2219 if (expect_false (curpid)) /* penalise the forking check even more */
2220 if (expect_false (getpid () != curpid))
2221 {
2222 curpid = getpid ();
2223 postfork = 1;
2224 }
2225 #endif
2226
2227 #if EV_FORK_ENABLE
2228 /* we might have forked, so queue fork handlers */
2229 if (expect_false (postfork))
2230 if (forkcnt)
2231 {
2232 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2233 EV_INVOKE_PENDING;
2234 }
2235 #endif
2236
2237 /* queue prepare watchers (and execute them) */
2238 if (expect_false (preparecnt))
2239 {
2240 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2241 EV_INVOKE_PENDING;
2242 }
2243
2244 if (expect_false (loop_done))
2245 break;
2246
2247 /* we might have forked, so reify kernel state if necessary */
2248 if (expect_false (postfork))
2249 loop_fork (EV_A);
2250
2251 /* update fd-related kernel structures */
2252 fd_reify (EV_A);
2253
2254 /* calculate blocking time */
2255 {
2256 ev_tstamp waittime = 0.;
2257 ev_tstamp sleeptime = 0.;
2258
2259 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2260 {
2261 /* remember old timestamp for io_blocktime calculation */
2262 ev_tstamp prev_mn_now = mn_now;
2263
2264 /* update time to cancel out callback processing overhead */
2265 time_update (EV_A_ 1e100);
2266
2267 waittime = MAX_BLOCKTIME;
2268
2269 if (timercnt)
2270 {
2271 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2272 if (waittime > to) waittime = to;
2273 }
2274
2275 #if EV_PERIODIC_ENABLE
2276 if (periodiccnt)
2277 {
2278 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2279 if (waittime > to) waittime = to;
2280 }
2281 #endif
2282
2283 /* don't let timeouts decrease the waittime below timeout_blocktime */
2284 if (expect_false (waittime < timeout_blocktime))
2285 waittime = timeout_blocktime;
2286
2287 /* extra check because io_blocktime is commonly 0 */
2288 if (expect_false (io_blocktime))
2289 {
2290 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2291
2292 if (sleeptime > waittime - backend_fudge)
2293 sleeptime = waittime - backend_fudge;
2294
2295 if (expect_true (sleeptime > 0.))
2296 {
2297 ev_sleep (sleeptime);
2298 waittime -= sleeptime;
2299 }
2300 }
2301 }
2302
2303 #if EV_MINIMAL < 2
2304 ++loop_count;
2305 #endif
2306 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2307 backend_poll (EV_A_ waittime);
2308 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2309
2310 /* update ev_rt_now, do magic */
2311 time_update (EV_A_ waittime + sleeptime);
2312 }
2313
2314 /* queue pending timers and reschedule them */
2315 timers_reify (EV_A); /* relative timers called last */
2316 #if EV_PERIODIC_ENABLE
2317 periodics_reify (EV_A); /* absolute timers called first */
2318 #endif
2319
2320 #if EV_IDLE_ENABLE
2321 /* queue idle watchers unless other events are pending */
2322 idle_reify (EV_A);
2323 #endif
2324
2325 /* queue check watchers, to be executed first */
2326 if (expect_false (checkcnt))
2327 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2328
2329 EV_INVOKE_PENDING;
2330 }
2331 while (expect_true (
2332 activecnt
2333 && !loop_done
2334 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2335 ));
2336
2337 if (loop_done == EVUNLOOP_ONE)
2338 loop_done = EVUNLOOP_CANCEL;
2339
2340 #if EV_MINIMAL < 2
2341 --loop_depth;
2342 #endif
2343 }
2344
2345 void
2346 ev_unloop (EV_P_ int how)
2347 {
2348 loop_done = how;
2349 }
2350
2351 void
2352 ev_ref (EV_P)
2353 {
2354 ++activecnt;
2355 }
2356
2357 void
2358 ev_unref (EV_P)
2359 {
2360 --activecnt;
2361 }
2362
2363 void
2364 ev_now_update (EV_P)
2365 {
2366 time_update (EV_A_ 1e100);
2367 }
2368
2369 void
2370 ev_suspend (EV_P)
2371 {
2372 ev_now_update (EV_A);
2373 }
2374
2375 void
2376 ev_resume (EV_P)
2377 {
2378 ev_tstamp mn_prev = mn_now;
2379
2380 ev_now_update (EV_A);
2381 timers_reschedule (EV_A_ mn_now - mn_prev);
2382 #if EV_PERIODIC_ENABLE
2383 /* TODO: really do this? */
2384 periodics_reschedule (EV_A);
2385 #endif
2386 }
2387
2388 /*****************************************************************************/
2389 /* singly-linked list management, used when the expected list length is short */
2390
2391 inline_size void
2392 wlist_add (WL *head, WL elem)
2393 {
2394 elem->next = *head;
2395 *head = elem;
2396 }
2397
2398 inline_size void
2399 wlist_del (WL *head, WL elem)
2400 {
2401 while (*head)
2402 {
2403 if (*head == elem)
2404 {
2405 *head = elem->next;
2406 return;
2407 }
2408
2409 head = &(*head)->next;
2410 }
2411 }
2412
2413 /* internal, faster, version of ev_clear_pending */
2414 inline_speed void
2415 clear_pending (EV_P_ W w)
2416 {
2417 if (w->pending)
2418 {
2419 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2420 w->pending = 0;
2421 }
2422 }
2423
2424 int
2425 ev_clear_pending (EV_P_ void *w)
2426 {
2427 W w_ = (W)w;
2428 int pending = w_->pending;
2429
2430 if (expect_true (pending))
2431 {
2432 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2433 p->w = (W)&pending_w;
2434 w_->pending = 0;
2435 return p->events;
2436 }
2437 else
2438 return 0;
2439 }
2440
2441 inline_size void
2442 pri_adjust (EV_P_ W w)
2443 {
2444 int pri = ev_priority (w);
2445 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2446 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2447 ev_set_priority (w, pri);
2448 }
2449
2450 inline_speed void
2451 ev_start (EV_P_ W w, int active)
2452 {
2453 pri_adjust (EV_A_ w);
2454 w->active = active;
2455 ev_ref (EV_A);
2456 }
2457
2458 inline_size void
2459 ev_stop (EV_P_ W w)
2460 {
2461 ev_unref (EV_A);
2462 w->active = 0;
2463 }
2464
2465 /*****************************************************************************/
2466
2467 void noinline
2468 ev_io_start (EV_P_ ev_io *w)
2469 {
2470 int fd = w->fd;
2471
2472 if (expect_false (ev_is_active (w)))
2473 return;
2474
2475 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2476 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2477
2478 EV_FREQUENT_CHECK;
2479
2480 ev_start (EV_A_ (W)w, 1);
2481 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2482 wlist_add (&anfds[fd].head, (WL)w);
2483
2484 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2485 w->events &= ~EV__IOFDSET;
2486
2487 EV_FREQUENT_CHECK;
2488 }
2489
2490 void noinline
2491 ev_io_stop (EV_P_ ev_io *w)
2492 {
2493 clear_pending (EV_A_ (W)w);
2494 if (expect_false (!ev_is_active (w)))
2495 return;
2496
2497 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2498
2499 EV_FREQUENT_CHECK;
2500
2501 wlist_del (&anfds[w->fd].head, (WL)w);
2502 ev_stop (EV_A_ (W)w);
2503
2504 fd_change (EV_A_ w->fd, 1);
2505
2506 EV_FREQUENT_CHECK;
2507 }
2508
2509 void noinline
2510 ev_timer_start (EV_P_ ev_timer *w)
2511 {
2512 if (expect_false (ev_is_active (w)))
2513 return;
2514
2515 ev_at (w) += mn_now;
2516
2517 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2518
2519 EV_FREQUENT_CHECK;
2520
2521 ++timercnt;
2522 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2523 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2524 ANHE_w (timers [ev_active (w)]) = (WT)w;
2525 ANHE_at_cache (timers [ev_active (w)]);
2526 upheap (timers, ev_active (w));
2527
2528 EV_FREQUENT_CHECK;
2529
2530 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2531 }
2532
2533 void noinline
2534 ev_timer_stop (EV_P_ ev_timer *w)
2535 {
2536 clear_pending (EV_A_ (W)w);
2537 if (expect_false (!ev_is_active (w)))
2538 return;
2539
2540 EV_FREQUENT_CHECK;
2541
2542 {
2543 int active = ev_active (w);
2544
2545 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2546
2547 --timercnt;
2548
2549 if (expect_true (active < timercnt + HEAP0))
2550 {
2551 timers [active] = timers [timercnt + HEAP0];
2552 adjustheap (timers, timercnt, active);
2553 }
2554 }
2555
2556 EV_FREQUENT_CHECK;
2557
2558 ev_at (w) -= mn_now;
2559
2560 ev_stop (EV_A_ (W)w);
2561 }
2562
2563 void noinline
2564 ev_timer_again (EV_P_ ev_timer *w)
2565 {
2566 EV_FREQUENT_CHECK;
2567
2568 if (ev_is_active (w))
2569 {
2570 if (w->repeat)
2571 {
2572 ev_at (w) = mn_now + w->repeat;
2573 ANHE_at_cache (timers [ev_active (w)]);
2574 adjustheap (timers, timercnt, ev_active (w));
2575 }
2576 else
2577 ev_timer_stop (EV_A_ w);
2578 }
2579 else if (w->repeat)
2580 {
2581 ev_at (w) = w->repeat;
2582 ev_timer_start (EV_A_ w);
2583 }
2584
2585 EV_FREQUENT_CHECK;
2586 }
2587
2588 ev_tstamp
2589 ev_timer_remaining (EV_P_ ev_timer *w)
2590 {
2591 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2592 }
2593
2594 #if EV_PERIODIC_ENABLE
2595 void noinline
2596 ev_periodic_start (EV_P_ ev_periodic *w)
2597 {
2598 if (expect_false (ev_is_active (w)))
2599 return;
2600
2601 if (w->reschedule_cb)
2602 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2603 else if (w->interval)
2604 {
2605 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2606 /* this formula differs from the one in periodic_reify because we do not always round up */
2607 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2608 }
2609 else
2610 ev_at (w) = w->offset;
2611
2612 EV_FREQUENT_CHECK;
2613
2614 ++periodiccnt;
2615 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2616 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2617 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2618 ANHE_at_cache (periodics [ev_active (w)]);
2619 upheap (periodics, ev_active (w));
2620
2621 EV_FREQUENT_CHECK;
2622
2623 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2624 }
2625
2626 void noinline
2627 ev_periodic_stop (EV_P_ ev_periodic *w)
2628 {
2629 clear_pending (EV_A_ (W)w);
2630 if (expect_false (!ev_is_active (w)))
2631 return;
2632
2633 EV_FREQUENT_CHECK;
2634
2635 {
2636 int active = ev_active (w);
2637
2638 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2639
2640 --periodiccnt;
2641
2642 if (expect_true (active < periodiccnt + HEAP0))
2643 {
2644 periodics [active] = periodics [periodiccnt + HEAP0];
2645 adjustheap (periodics, periodiccnt, active);
2646 }
2647 }
2648
2649 EV_FREQUENT_CHECK;
2650
2651 ev_stop (EV_A_ (W)w);
2652 }
2653
2654 void noinline
2655 ev_periodic_again (EV_P_ ev_periodic *w)
2656 {
2657 /* TODO: use adjustheap and recalculation */
2658 ev_periodic_stop (EV_A_ w);
2659 ev_periodic_start (EV_A_ w);
2660 }
2661 #endif
2662
2663 #ifndef SA_RESTART
2664 # define SA_RESTART 0
2665 #endif
2666
2667 void noinline
2668 ev_signal_start (EV_P_ ev_signal *w)
2669 {
2670 #if EV_MULTIPLICITY
2671 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2672 #endif
2673 if (expect_false (ev_is_active (w)))
2674 return;
2675
2676 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2677
2678 EV_FREQUENT_CHECK;
2679
2680 #if EV_USE_SIGNALFD
2681 if (sigfd == -2)
2682 {
2683 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2684 if (sigfd < 0 && errno == EINVAL)
2685 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2686
2687 if (sigfd >= 0)
2688 {
2689 fd_intern (sigfd); /* doing it twice will not hurt */
2690
2691 sigemptyset (&sigfd_set);
2692
2693 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2694 ev_set_priority (&sigfd_w, EV_MAXPRI);
2695 ev_io_start (EV_A_ &sigfd_w);
2696 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2697 }
2698 }
2699
2700 if (sigfd >= 0)
2701 {
2702 /* TODO: check .head */
2703 sigaddset (&sigfd_set, w->signum);
2704 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2705
2706 signalfd (sigfd, &sigfd_set, 0);
2707 }
2708 else
2709 #endif
2710 evpipe_init (EV_A);
2711
2712 {
2713 #ifndef _WIN32
2714 sigset_t full, prev;
2715 sigfillset (&full);
2716 sigprocmask (SIG_SETMASK, &full, &prev);
2717 #endif
2718
2719 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2720
2721 #ifndef _WIN32
2722 # if EV_USE_SIGNALFD
2723 if (sigfd < 0)/*TODO*/
2724 # endif
2725 sigdelset (&prev, w->signum);
2726 sigprocmask (SIG_SETMASK, &prev, 0);
2727 #endif
2728 }
2729
2730 ev_start (EV_A_ (W)w, 1);
2731 wlist_add (&signals [w->signum - 1].head, (WL)w);
2732
2733 if (!((WL)w)->next)
2734 {
2735 #if _WIN32
2736 signal (w->signum, ev_sighandler);
2737 #else
2738 # if EV_USE_SIGNALFD
2739 if (sigfd < 0) /*TODO*/
2740 # endif
2741 {
2742 struct sigaction sa = { };
2743 sa.sa_handler = ev_sighandler;
2744 sigfillset (&sa.sa_mask);
2745 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2746 sigaction (w->signum, &sa, 0);
2747 }
2748 #endif
2749 }
2750
2751 EV_FREQUENT_CHECK;
2752 }
2753
2754 void noinline
2755 ev_signal_stop (EV_P_ ev_signal *w)
2756 {
2757 clear_pending (EV_A_ (W)w);
2758 if (expect_false (!ev_is_active (w)))
2759 return;
2760
2761 EV_FREQUENT_CHECK;
2762
2763 wlist_del (&signals [w->signum - 1].head, (WL)w);
2764 ev_stop (EV_A_ (W)w);
2765
2766 if (!signals [w->signum - 1].head)
2767 #if EV_USE_SIGNALFD
2768 if (sigfd >= 0)
2769 {
2770 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2771 sigdelset (&sigfd_set, w->signum);
2772 signalfd (sigfd, &sigfd_set, 0);
2773 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2774 /*TODO: maybe unblock signal? */
2775 }
2776 else
2777 #endif
2778 signal (w->signum, SIG_DFL);
2779
2780 EV_FREQUENT_CHECK;
2781 }
2782
2783 void
2784 ev_child_start (EV_P_ ev_child *w)
2785 {
2786 #if EV_MULTIPLICITY
2787 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2788 #endif
2789 if (expect_false (ev_is_active (w)))
2790 return;
2791
2792 EV_FREQUENT_CHECK;
2793
2794 ev_start (EV_A_ (W)w, 1);
2795 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2796
2797 EV_FREQUENT_CHECK;
2798 }
2799
2800 void
2801 ev_child_stop (EV_P_ ev_child *w)
2802 {
2803 clear_pending (EV_A_ (W)w);
2804 if (expect_false (!ev_is_active (w)))
2805 return;
2806
2807 EV_FREQUENT_CHECK;
2808
2809 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2810 ev_stop (EV_A_ (W)w);
2811
2812 EV_FREQUENT_CHECK;
2813 }
2814
2815 #if EV_STAT_ENABLE
2816
2817 # ifdef _WIN32
2818 # undef lstat
2819 # define lstat(a,b) _stati64 (a,b)
2820 # endif
2821
2822 #define DEF_STAT_INTERVAL 5.0074891
2823 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2824 #define MIN_STAT_INTERVAL 0.1074891
2825
2826 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2827
2828 #if EV_USE_INOTIFY
2829 # define EV_INOTIFY_BUFSIZE 8192
2830
2831 static void noinline
2832 infy_add (EV_P_ ev_stat *w)
2833 {
2834 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2835
2836 if (w->wd < 0)
2837 {
2838 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2839 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2840
2841 /* monitor some parent directory for speedup hints */
2842 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2843 /* but an efficiency issue only */
2844 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2845 {
2846 char path [4096];
2847 strcpy (path, w->path);
2848
2849 do
2850 {
2851 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2852 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2853
2854 char *pend = strrchr (path, '/');
2855
2856 if (!pend || pend == path)
2857 break;
2858
2859 *pend = 0;
2860 w->wd = inotify_add_watch (fs_fd, path, mask);
2861 }
2862 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2863 }
2864 }
2865
2866 if (w->wd >= 0)
2867 {
2868 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2869
2870 /* now local changes will be tracked by inotify, but remote changes won't */
2871 /* unless the filesystem it known to be local, we therefore still poll */
2872 /* also do poll on <2.6.25, but with normal frequency */
2873 struct statfs sfs;
2874
2875 if (fs_2625 && !statfs (w->path, &sfs))
2876 if (sfs.f_type == 0x1373 /* devfs */
2877 || sfs.f_type == 0xEF53 /* ext2/3 */
2878 || sfs.f_type == 0x3153464a /* jfs */
2879 || sfs.f_type == 0x52654973 /* reiser3 */
2880 || sfs.f_type == 0x01021994 /* tempfs */
2881 || sfs.f_type == 0x58465342 /* xfs */)
2882 return;
2883
2884 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2885 ev_timer_again (EV_A_ &w->timer);
2886 }
2887 }
2888
2889 static void noinline
2890 infy_del (EV_P_ ev_stat *w)
2891 {
2892 int slot;
2893 int wd = w->wd;
2894
2895 if (wd < 0)
2896 return;
2897
2898 w->wd = -2;
2899 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2900 wlist_del (&fs_hash [slot].head, (WL)w);
2901
2902 /* remove this watcher, if others are watching it, they will rearm */
2903 inotify_rm_watch (fs_fd, wd);
2904 }
2905
2906 static void noinline
2907 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2908 {
2909 if (slot < 0)
2910 /* overflow, need to check for all hash slots */
2911 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2912 infy_wd (EV_A_ slot, wd, ev);
2913 else
2914 {
2915 WL w_;
2916
2917 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2918 {
2919 ev_stat *w = (ev_stat *)w_;
2920 w_ = w_->next; /* lets us remove this watcher and all before it */
2921
2922 if (w->wd == wd || wd == -1)
2923 {
2924 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2925 {
2926 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2927 w->wd = -1;
2928 infy_add (EV_A_ w); /* re-add, no matter what */
2929 }
2930
2931 stat_timer_cb (EV_A_ &w->timer, 0);
2932 }
2933 }
2934 }
2935 }
2936
2937 static void
2938 infy_cb (EV_P_ ev_io *w, int revents)
2939 {
2940 char buf [EV_INOTIFY_BUFSIZE];
2941 struct inotify_event *ev = (struct inotify_event *)buf;
2942 int ofs;
2943 int len = read (fs_fd, buf, sizeof (buf));
2944
2945 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2946 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2947 }
2948
2949 inline_size void
2950 check_2625 (EV_P)
2951 {
2952 /* kernels < 2.6.25 are borked
2953 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2954 */
2955 struct utsname buf;
2956 int major, minor, micro;
2957
2958 if (uname (&buf))
2959 return;
2960
2961 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2962 return;
2963
2964 if (major < 2
2965 || (major == 2 && minor < 6)
2966 || (major == 2 && minor == 6 && micro < 25))
2967 return;
2968
2969 fs_2625 = 1;
2970 }
2971
2972 inline_size void
2973 infy_init (EV_P)
2974 {
2975 if (fs_fd != -2)
2976 return;
2977
2978 fs_fd = -1;
2979
2980 check_2625 (EV_A);
2981
2982 fs_fd = inotify_init ();
2983
2984 if (fs_fd >= 0)
2985 {
2986 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2987 ev_set_priority (&fs_w, EV_MAXPRI);
2988 ev_io_start (EV_A_ &fs_w);
2989 }
2990 }
2991
2992 inline_size void
2993 infy_fork (EV_P)
2994 {
2995 int slot;
2996
2997 if (fs_fd < 0)
2998 return;
2999
3000 close (fs_fd);
3001 fs_fd = inotify_init ();
3002
3003 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3004 {
3005 WL w_ = fs_hash [slot].head;
3006 fs_hash [slot].head = 0;
3007
3008 while (w_)
3009 {
3010 ev_stat *w = (ev_stat *)w_;
3011 w_ = w_->next; /* lets us add this watcher */
3012
3013 w->wd = -1;
3014
3015 if (fs_fd >= 0)
3016 infy_add (EV_A_ w); /* re-add, no matter what */
3017 else
3018 ev_timer_again (EV_A_ &w->timer);
3019 }
3020 }
3021 }
3022
3023 #endif
3024
3025 #ifdef _WIN32
3026 # define EV_LSTAT(p,b) _stati64 (p, b)
3027 #else
3028 # define EV_LSTAT(p,b) lstat (p, b)
3029 #endif
3030
3031 void
3032 ev_stat_stat (EV_P_ ev_stat *w)
3033 {
3034 if (lstat (w->path, &w->attr) < 0)
3035 w->attr.st_nlink = 0;
3036 else if (!w->attr.st_nlink)
3037 w->attr.st_nlink = 1;
3038 }
3039
3040 static void noinline
3041 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3042 {
3043 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3044
3045 /* we copy this here each the time so that */
3046 /* prev has the old value when the callback gets invoked */
3047 w->prev = w->attr;
3048 ev_stat_stat (EV_A_ w);
3049
3050 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3051 if (
3052 w->prev.st_dev != w->attr.st_dev
3053 || w->prev.st_ino != w->attr.st_ino
3054 || w->prev.st_mode != w->attr.st_mode
3055 || w->prev.st_nlink != w->attr.st_nlink
3056 || w->prev.st_uid != w->attr.st_uid
3057 || w->prev.st_gid != w->attr.st_gid
3058 || w->prev.st_rdev != w->attr.st_rdev
3059 || w->prev.st_size != w->attr.st_size
3060 || w->prev.st_atime != w->attr.st_atime
3061 || w->prev.st_mtime != w->attr.st_mtime
3062 || w->prev.st_ctime != w->attr.st_ctime
3063 ) {
3064 #if EV_USE_INOTIFY
3065 if (fs_fd >= 0)
3066 {
3067 infy_del (EV_A_ w);
3068 infy_add (EV_A_ w);
3069 ev_stat_stat (EV_A_ w); /* avoid race... */
3070 }
3071 #endif
3072
3073 ev_feed_event (EV_A_ w, EV_STAT);
3074 }
3075 }
3076
3077 void
3078 ev_stat_start (EV_P_ ev_stat *w)
3079 {
3080 if (expect_false (ev_is_active (w)))
3081 return;
3082
3083 ev_stat_stat (EV_A_ w);
3084
3085 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3086 w->interval = MIN_STAT_INTERVAL;
3087
3088 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3089 ev_set_priority (&w->timer, ev_priority (w));
3090
3091 #if EV_USE_INOTIFY
3092 infy_init (EV_A);
3093
3094 if (fs_fd >= 0)
3095 infy_add (EV_A_ w);
3096 else
3097 #endif
3098 ev_timer_again (EV_A_ &w->timer);
3099
3100 ev_start (EV_A_ (W)w, 1);
3101
3102 EV_FREQUENT_CHECK;
3103 }
3104
3105 void
3106 ev_stat_stop (EV_P_ ev_stat *w)
3107 {
3108 clear_pending (EV_A_ (W)w);
3109 if (expect_false (!ev_is_active (w)))
3110 return;
3111
3112 EV_FREQUENT_CHECK;
3113
3114 #if EV_USE_INOTIFY
3115 infy_del (EV_A_ w);
3116 #endif
3117 ev_timer_stop (EV_A_ &w->timer);
3118
3119 ev_stop (EV_A_ (W)w);
3120
3121 EV_FREQUENT_CHECK;
3122 }
3123 #endif
3124
3125 #if EV_IDLE_ENABLE
3126 void
3127 ev_idle_start (EV_P_ ev_idle *w)
3128 {
3129 if (expect_false (ev_is_active (w)))
3130 return;
3131
3132 pri_adjust (EV_A_ (W)w);
3133
3134 EV_FREQUENT_CHECK;
3135
3136 {
3137 int active = ++idlecnt [ABSPRI (w)];
3138
3139 ++idleall;
3140 ev_start (EV_A_ (W)w, active);
3141
3142 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3143 idles [ABSPRI (w)][active - 1] = w;
3144 }
3145
3146 EV_FREQUENT_CHECK;
3147 }
3148
3149 void
3150 ev_idle_stop (EV_P_ ev_idle *w)
3151 {
3152 clear_pending (EV_A_ (W)w);
3153 if (expect_false (!ev_is_active (w)))
3154 return;
3155
3156 EV_FREQUENT_CHECK;
3157
3158 {
3159 int active = ev_active (w);
3160
3161 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3162 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3163
3164 ev_stop (EV_A_ (W)w);
3165 --idleall;
3166 }
3167
3168 EV_FREQUENT_CHECK;
3169 }
3170 #endif
3171
3172 void
3173 ev_prepare_start (EV_P_ ev_prepare *w)
3174 {
3175 if (expect_false (ev_is_active (w)))
3176 return;
3177
3178 EV_FREQUENT_CHECK;
3179
3180 ev_start (EV_A_ (W)w, ++preparecnt);
3181 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3182 prepares [preparecnt - 1] = w;
3183
3184 EV_FREQUENT_CHECK;
3185 }
3186
3187 void
3188 ev_prepare_stop (EV_P_ ev_prepare *w)
3189 {
3190 clear_pending (EV_A_ (W)w);
3191 if (expect_false (!ev_is_active (w)))
3192 return;
3193
3194 EV_FREQUENT_CHECK;
3195
3196 {
3197 int active = ev_active (w);
3198
3199 prepares [active - 1] = prepares [--preparecnt];
3200 ev_active (prepares [active - 1]) = active;
3201 }
3202
3203 ev_stop (EV_A_ (W)w);
3204
3205 EV_FREQUENT_CHECK;
3206 }
3207
3208 void
3209 ev_check_start (EV_P_ ev_check *w)
3210 {
3211 if (expect_false (ev_is_active (w)))
3212 return;
3213
3214 EV_FREQUENT_CHECK;
3215
3216 ev_start (EV_A_ (W)w, ++checkcnt);
3217 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3218 checks [checkcnt - 1] = w;
3219
3220 EV_FREQUENT_CHECK;
3221 }
3222
3223 void
3224 ev_check_stop (EV_P_ ev_check *w)
3225 {
3226 clear_pending (EV_A_ (W)w);
3227 if (expect_false (!ev_is_active (w)))
3228 return;
3229
3230 EV_FREQUENT_CHECK;
3231
3232 {
3233 int active = ev_active (w);
3234
3235 checks [active - 1] = checks [--checkcnt];
3236 ev_active (checks [active - 1]) = active;
3237 }
3238
3239 ev_stop (EV_A_ (W)w);
3240
3241 EV_FREQUENT_CHECK;
3242 }
3243
3244 #if EV_EMBED_ENABLE
3245 void noinline
3246 ev_embed_sweep (EV_P_ ev_embed *w)
3247 {
3248 ev_loop (w->other, EVLOOP_NONBLOCK);
3249 }
3250
3251 static void
3252 embed_io_cb (EV_P_ ev_io *io, int revents)
3253 {
3254 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3255
3256 if (ev_cb (w))
3257 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3258 else
3259 ev_loop (w->other, EVLOOP_NONBLOCK);
3260 }
3261
3262 static void
3263 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3264 {
3265 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3266
3267 {
3268 struct ev_loop *loop = w->other;
3269
3270 while (fdchangecnt)
3271 {
3272 fd_reify (EV_A);
3273 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3274 }
3275 }
3276 }
3277
3278 static void
3279 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3280 {
3281 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3282
3283 ev_embed_stop (EV_A_ w);
3284
3285 {
3286 struct ev_loop *loop = w->other;
3287
3288 ev_loop_fork (EV_A);
3289 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3290 }
3291
3292 ev_embed_start (EV_A_ w);
3293 }
3294
3295 #if 0
3296 static void
3297 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3298 {
3299 ev_idle_stop (EV_A_ idle);
3300 }
3301 #endif
3302
3303 void
3304 ev_embed_start (EV_P_ ev_embed *w)
3305 {
3306 if (expect_false (ev_is_active (w)))
3307 return;
3308
3309 {
3310 struct ev_loop *loop = w->other;
3311 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3312 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3313 }
3314
3315 EV_FREQUENT_CHECK;
3316
3317 ev_set_priority (&w->io, ev_priority (w));
3318 ev_io_start (EV_A_ &w->io);
3319
3320 ev_prepare_init (&w->prepare, embed_prepare_cb);
3321 ev_set_priority (&w->prepare, EV_MINPRI);
3322 ev_prepare_start (EV_A_ &w->prepare);
3323
3324 ev_fork_init (&w->fork, embed_fork_cb);
3325 ev_fork_start (EV_A_ &w->fork);
3326
3327 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3328
3329 ev_start (EV_A_ (W)w, 1);
3330
3331 EV_FREQUENT_CHECK;
3332 }
3333
3334 void
3335 ev_embed_stop (EV_P_ ev_embed *w)
3336 {
3337 clear_pending (EV_A_ (W)w);
3338 if (expect_false (!ev_is_active (w)))
3339 return;
3340
3341 EV_FREQUENT_CHECK;
3342
3343 ev_io_stop (EV_A_ &w->io);
3344 ev_prepare_stop (EV_A_ &w->prepare);
3345 ev_fork_stop (EV_A_ &w->fork);
3346
3347 EV_FREQUENT_CHECK;
3348 }
3349 #endif
3350
3351 #if EV_FORK_ENABLE
3352 void
3353 ev_fork_start (EV_P_ ev_fork *w)
3354 {
3355 if (expect_false (ev_is_active (w)))
3356 return;
3357
3358 EV_FREQUENT_CHECK;
3359
3360 ev_start (EV_A_ (W)w, ++forkcnt);
3361 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3362 forks [forkcnt - 1] = w;
3363
3364 EV_FREQUENT_CHECK;
3365 }
3366
3367 void
3368 ev_fork_stop (EV_P_ ev_fork *w)
3369 {
3370 clear_pending (EV_A_ (W)w);
3371 if (expect_false (!ev_is_active (w)))
3372 return;
3373
3374 EV_FREQUENT_CHECK;
3375
3376 {
3377 int active = ev_active (w);
3378
3379 forks [active - 1] = forks [--forkcnt];
3380 ev_active (forks [active - 1]) = active;
3381 }
3382
3383 ev_stop (EV_A_ (W)w);
3384
3385 EV_FREQUENT_CHECK;
3386 }
3387 #endif
3388
3389 #if EV_ASYNC_ENABLE
3390 void
3391 ev_async_start (EV_P_ ev_async *w)
3392 {
3393 if (expect_false (ev_is_active (w)))
3394 return;
3395
3396 evpipe_init (EV_A);
3397
3398 EV_FREQUENT_CHECK;
3399
3400 ev_start (EV_A_ (W)w, ++asynccnt);
3401 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3402 asyncs [asynccnt - 1] = w;
3403
3404 EV_FREQUENT_CHECK;
3405 }
3406
3407 void
3408 ev_async_stop (EV_P_ ev_async *w)
3409 {
3410 clear_pending (EV_A_ (W)w);
3411 if (expect_false (!ev_is_active (w)))
3412 return;
3413
3414 EV_FREQUENT_CHECK;
3415
3416 {
3417 int active = ev_active (w);
3418
3419 asyncs [active - 1] = asyncs [--asynccnt];
3420 ev_active (asyncs [active - 1]) = active;
3421 }
3422
3423 ev_stop (EV_A_ (W)w);
3424
3425 EV_FREQUENT_CHECK;
3426 }
3427
3428 void
3429 ev_async_send (EV_P_ ev_async *w)
3430 {
3431 w->sent = 1;
3432 evpipe_write (EV_A_ &gotasync);
3433 }
3434 #endif
3435
3436 /*****************************************************************************/
3437
3438 struct ev_once
3439 {
3440 ev_io io;
3441 ev_timer to;
3442 void (*cb)(int revents, void *arg);
3443 void *arg;
3444 };
3445
3446 static void
3447 once_cb (EV_P_ struct ev_once *once, int revents)
3448 {
3449 void (*cb)(int revents, void *arg) = once->cb;
3450 void *arg = once->arg;
3451
3452 ev_io_stop (EV_A_ &once->io);
3453 ev_timer_stop (EV_A_ &once->to);
3454 ev_free (once);
3455
3456 cb (revents, arg);
3457 }
3458
3459 static void
3460 once_cb_io (EV_P_ ev_io *w, int revents)
3461 {
3462 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3463
3464 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3465 }
3466
3467 static void
3468 once_cb_to (EV_P_ ev_timer *w, int revents)
3469 {
3470 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3471
3472 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3473 }
3474
3475 void
3476 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3477 {
3478 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3479
3480 if (expect_false (!once))
3481 {
3482 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3483 return;
3484 }
3485
3486 once->cb = cb;
3487 once->arg = arg;
3488
3489 ev_init (&once->io, once_cb_io);
3490 if (fd >= 0)
3491 {
3492 ev_io_set (&once->io, fd, events);
3493 ev_io_start (EV_A_ &once->io);
3494 }
3495
3496 ev_init (&once->to, once_cb_to);
3497 if (timeout >= 0.)
3498 {
3499 ev_timer_set (&once->to, timeout, 0.);
3500 ev_timer_start (EV_A_ &once->to);
3501 }
3502 }
3503
3504 /*****************************************************************************/
3505
3506 #if EV_WALK_ENABLE
3507 void
3508 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3509 {
3510 int i, j;
3511 ev_watcher_list *wl, *wn;
3512
3513 if (types & (EV_IO | EV_EMBED))
3514 for (i = 0; i < anfdmax; ++i)
3515 for (wl = anfds [i].head; wl; )
3516 {
3517 wn = wl->next;
3518
3519 #if EV_EMBED_ENABLE
3520 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3521 {
3522 if (types & EV_EMBED)
3523 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3524 }
3525 else
3526 #endif
3527 #if EV_USE_INOTIFY
3528 if (ev_cb ((ev_io *)wl) == infy_cb)
3529 ;
3530 else
3531 #endif
3532 if ((ev_io *)wl != &pipe_w)
3533 if (types & EV_IO)
3534 cb (EV_A_ EV_IO, wl);
3535
3536 wl = wn;
3537 }
3538
3539 if (types & (EV_TIMER | EV_STAT))
3540 for (i = timercnt + HEAP0; i-- > HEAP0; )
3541 #if EV_STAT_ENABLE
3542 /*TODO: timer is not always active*/
3543 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3544 {
3545 if (types & EV_STAT)
3546 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3547 }
3548 else
3549 #endif
3550 if (types & EV_TIMER)
3551 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3552
3553 #if EV_PERIODIC_ENABLE
3554 if (types & EV_PERIODIC)
3555 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3556 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3557 #endif
3558
3559 #if EV_IDLE_ENABLE
3560 if (types & EV_IDLE)
3561 for (j = NUMPRI; i--; )
3562 for (i = idlecnt [j]; i--; )
3563 cb (EV_A_ EV_IDLE, idles [j][i]);
3564 #endif
3565
3566 #if EV_FORK_ENABLE
3567 if (types & EV_FORK)
3568 for (i = forkcnt; i--; )
3569 if (ev_cb (forks [i]) != embed_fork_cb)
3570 cb (EV_A_ EV_FORK, forks [i]);
3571 #endif
3572
3573 #if EV_ASYNC_ENABLE
3574 if (types & EV_ASYNC)
3575 for (i = asynccnt; i--; )
3576 cb (EV_A_ EV_ASYNC, asyncs [i]);
3577 #endif
3578
3579 if (types & EV_PREPARE)
3580 for (i = preparecnt; i--; )
3581 #if EV_EMBED_ENABLE
3582 if (ev_cb (prepares [i]) != embed_prepare_cb)
3583 #endif
3584 cb (EV_A_ EV_PREPARE, prepares [i]);
3585
3586 if (types & EV_CHECK)
3587 for (i = checkcnt; i--; )
3588 cb (EV_A_ EV_CHECK, checks [i]);
3589
3590 if (types & EV_SIGNAL)
3591 for (i = 0; i < signalmax; ++i)
3592 for (wl = signals [i].head; wl; )
3593 {
3594 wn = wl->next;
3595 cb (EV_A_ EV_SIGNAL, wl);
3596 wl = wn;
3597 }
3598
3599 if (types & EV_CHILD)
3600 for (i = EV_PID_HASHSIZE; i--; )
3601 for (wl = childs [i]; wl; )
3602 {
3603 wn = wl->next;
3604 cb (EV_A_ EV_CHILD, wl);
3605 wl = wn;
3606 }
3607 /* EV_STAT 0x00001000 /* stat data changed */
3608 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3609 }
3610 #endif
3611
3612 #if EV_MULTIPLICITY
3613 #include "ev_wrap.h"
3614 #endif
3615
3616 #ifdef __cplusplus
3617 }
3618 #endif
3619