ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.336
Committed: Wed Mar 10 08:19:38 2010 UTC (14 years, 2 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.335: +40 -23 lines
Log Message:
more minimal tuning, add truly minimal example

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_SYSCALL
53 # ifndef EV_USE_CLOCK_SYSCALL
54 # define EV_USE_CLOCK_SYSCALL 1
55 # ifndef EV_USE_REALTIME
56 # define EV_USE_REALTIME 0
57 # endif
58 # ifndef EV_USE_MONOTONIC
59 # define EV_USE_MONOTONIC 1
60 # endif
61 # endif
62 # elif !defined(EV_USE_CLOCK_SYSCALL)
63 # define EV_USE_CLOCK_SYSCALL 0
64 # endif
65
66 # if HAVE_CLOCK_GETTIME
67 # ifndef EV_USE_MONOTONIC
68 # define EV_USE_MONOTONIC 1
69 # endif
70 # ifndef EV_USE_REALTIME
71 # define EV_USE_REALTIME 0
72 # endif
73 # else
74 # ifndef EV_USE_MONOTONIC
75 # define EV_USE_MONOTONIC 0
76 # endif
77 # ifndef EV_USE_REALTIME
78 # define EV_USE_REALTIME 0
79 # endif
80 # endif
81
82 # ifndef EV_USE_NANOSLEEP
83 # if HAVE_NANOSLEEP
84 # define EV_USE_NANOSLEEP 1
85 # else
86 # define EV_USE_NANOSLEEP 0
87 # endif
88 # endif
89
90 # ifndef EV_USE_SELECT
91 # if HAVE_SELECT && HAVE_SYS_SELECT_H
92 # define EV_USE_SELECT 1
93 # else
94 # define EV_USE_SELECT 0
95 # endif
96 # endif
97
98 # ifndef EV_USE_POLL
99 # if HAVE_POLL && HAVE_POLL_H
100 # define EV_USE_POLL 1
101 # else
102 # define EV_USE_POLL 0
103 # endif
104 # endif
105
106 # ifndef EV_USE_EPOLL
107 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108 # define EV_USE_EPOLL 1
109 # else
110 # define EV_USE_EPOLL 0
111 # endif
112 # endif
113
114 # ifndef EV_USE_KQUEUE
115 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
116 # define EV_USE_KQUEUE 1
117 # else
118 # define EV_USE_KQUEUE 0
119 # endif
120 # endif
121
122 # ifndef EV_USE_PORT
123 # if HAVE_PORT_H && HAVE_PORT_CREATE
124 # define EV_USE_PORT 1
125 # else
126 # define EV_USE_PORT 0
127 # endif
128 # endif
129
130 # ifndef EV_USE_INOTIFY
131 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132 # define EV_USE_INOTIFY 1
133 # else
134 # define EV_USE_INOTIFY 0
135 # endif
136 # endif
137
138 # ifndef EV_USE_SIGNALFD
139 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140 # define EV_USE_SIGNALFD 1
141 # else
142 # define EV_USE_SIGNALFD 0
143 # endif
144 # endif
145
146 # ifndef EV_USE_EVENTFD
147 # if HAVE_EVENTFD
148 # define EV_USE_EVENTFD 1
149 # else
150 # define EV_USE_EVENTFD 0
151 # endif
152 # endif
153
154 #endif
155
156 #include <math.h>
157 #include <stdlib.h>
158 #include <string.h>
159 #include <fcntl.h>
160 #include <stddef.h>
161
162 #include <stdio.h>
163
164 #include <assert.h>
165 #include <errno.h>
166 #include <sys/types.h>
167 #include <time.h>
168 #include <limits.h>
169
170 #include <signal.h>
171
172 #ifdef EV_H
173 # include EV_H
174 #else
175 # include "ev.h"
176 #endif
177
178 #ifndef _WIN32
179 # include <sys/time.h>
180 # include <sys/wait.h>
181 # include <unistd.h>
182 #else
183 # include <io.h>
184 # define WIN32_LEAN_AND_MEAN
185 # include <windows.h>
186 # ifndef EV_SELECT_IS_WINSOCKET
187 # define EV_SELECT_IS_WINSOCKET 1
188 # endif
189 # undef EV_AVOID_STDIO
190 #endif
191
192 /* this block tries to deduce configuration from header-defined symbols and defaults */
193
194 /* try to deduce the maximum number of signals on this platform */
195 #if defined (EV_NSIG)
196 /* use what's provided */
197 #elif defined (NSIG)
198 # define EV_NSIG (NSIG)
199 #elif defined(_NSIG)
200 # define EV_NSIG (_NSIG)
201 #elif defined (SIGMAX)
202 # define EV_NSIG (SIGMAX+1)
203 #elif defined (SIG_MAX)
204 # define EV_NSIG (SIG_MAX+1)
205 #elif defined (_SIG_MAX)
206 # define EV_NSIG (_SIG_MAX+1)
207 #elif defined (MAXSIG)
208 # define EV_NSIG (MAXSIG+1)
209 #elif defined (MAX_SIG)
210 # define EV_NSIG (MAX_SIG+1)
211 #elif defined (SIGARRAYSIZE)
212 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213 #elif defined (_sys_nsig)
214 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215 #else
216 # error "unable to find value for NSIG, please report"
217 /* to make it compile regardless, just remove the above line, */
218 /* but consider reporting it, too! :) */
219 # define EV_NSIG 65
220 #endif
221
222 #ifndef EV_USE_CLOCK_SYSCALL
223 # if __linux && __GLIBC__ >= 2
224 # define EV_USE_CLOCK_SYSCALL 1
225 # else
226 # define EV_USE_CLOCK_SYSCALL 0
227 # endif
228 #endif
229
230 #ifndef EV_USE_MONOTONIC
231 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232 # define EV_USE_MONOTONIC 1
233 # else
234 # define EV_USE_MONOTONIC 0
235 # endif
236 #endif
237
238 #ifndef EV_USE_REALTIME
239 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
240 #endif
241
242 #ifndef EV_USE_NANOSLEEP
243 # if _POSIX_C_SOURCE >= 199309L
244 # define EV_USE_NANOSLEEP 1
245 # else
246 # define EV_USE_NANOSLEEP 0
247 # endif
248 #endif
249
250 #ifndef EV_USE_SELECT
251 # define EV_USE_SELECT 1
252 #endif
253
254 #ifndef EV_USE_POLL
255 # ifdef _WIN32
256 # define EV_USE_POLL 0
257 # else
258 # define EV_USE_POLL 1
259 # endif
260 #endif
261
262 #ifndef EV_USE_EPOLL
263 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
264 # define EV_USE_EPOLL 1
265 # else
266 # define EV_USE_EPOLL 0
267 # endif
268 #endif
269
270 #ifndef EV_USE_KQUEUE
271 # define EV_USE_KQUEUE 0
272 #endif
273
274 #ifndef EV_USE_PORT
275 # define EV_USE_PORT 0
276 #endif
277
278 #ifndef EV_USE_INOTIFY
279 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
280 # define EV_USE_INOTIFY 1
281 # else
282 # define EV_USE_INOTIFY 0
283 # endif
284 #endif
285
286 #ifndef EV_PID_HASHSIZE
287 # if EV_MINIMAL
288 # define EV_PID_HASHSIZE 1
289 # else
290 # define EV_PID_HASHSIZE 16
291 # endif
292 #endif
293
294 #ifndef EV_INOTIFY_HASHSIZE
295 # if EV_MINIMAL
296 # define EV_INOTIFY_HASHSIZE 1
297 # else
298 # define EV_INOTIFY_HASHSIZE 16
299 # endif
300 #endif
301
302 #ifndef EV_USE_EVENTFD
303 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
304 # define EV_USE_EVENTFD 1
305 # else
306 # define EV_USE_EVENTFD 0
307 # endif
308 #endif
309
310 #ifndef EV_USE_SIGNALFD
311 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
312 # define EV_USE_SIGNALFD 1
313 # else
314 # define EV_USE_SIGNALFD 0
315 # endif
316 #endif
317
318 #if 0 /* debugging */
319 # define EV_VERIFY 3
320 # define EV_USE_4HEAP 1
321 # define EV_HEAP_CACHE_AT 1
322 #endif
323
324 #ifndef EV_VERIFY
325 # define EV_VERIFY !EV_MINIMAL
326 #endif
327
328 #ifndef EV_USE_4HEAP
329 # define EV_USE_4HEAP !EV_MINIMAL
330 #endif
331
332 #ifndef EV_HEAP_CACHE_AT
333 # define EV_HEAP_CACHE_AT !EV_MINIMAL
334 #endif
335
336 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
337 /* which makes programs even slower. might work on other unices, too. */
338 #if EV_USE_CLOCK_SYSCALL
339 # include <syscall.h>
340 # ifdef SYS_clock_gettime
341 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
342 # undef EV_USE_MONOTONIC
343 # define EV_USE_MONOTONIC 1
344 # else
345 # undef EV_USE_CLOCK_SYSCALL
346 # define EV_USE_CLOCK_SYSCALL 0
347 # endif
348 #endif
349
350 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
351
352 #ifdef _AIX
353 /* AIX has a completely broken poll.h header */
354 # undef EV_USE_POLL
355 # define EV_USE_POLL 0
356 #endif
357
358 #ifndef CLOCK_MONOTONIC
359 # undef EV_USE_MONOTONIC
360 # define EV_USE_MONOTONIC 0
361 #endif
362
363 #ifndef CLOCK_REALTIME
364 # undef EV_USE_REALTIME
365 # define EV_USE_REALTIME 0
366 #endif
367
368 #if !EV_STAT_ENABLE
369 # undef EV_USE_INOTIFY
370 # define EV_USE_INOTIFY 0
371 #endif
372
373 #if !EV_USE_NANOSLEEP
374 # ifndef _WIN32
375 # include <sys/select.h>
376 # endif
377 #endif
378
379 #if EV_USE_INOTIFY
380 # include <sys/utsname.h>
381 # include <sys/statfs.h>
382 # include <sys/inotify.h>
383 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
384 # ifndef IN_DONT_FOLLOW
385 # undef EV_USE_INOTIFY
386 # define EV_USE_INOTIFY 0
387 # endif
388 #endif
389
390 #if EV_SELECT_IS_WINSOCKET
391 # include <winsock.h>
392 #endif
393
394 #if EV_USE_EVENTFD
395 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
396 # include <stdint.h>
397 # ifndef EFD_NONBLOCK
398 # define EFD_NONBLOCK O_NONBLOCK
399 # endif
400 # ifndef EFD_CLOEXEC
401 # ifdef O_CLOEXEC
402 # define EFD_CLOEXEC O_CLOEXEC
403 # else
404 # define EFD_CLOEXEC 02000000
405 # endif
406 # endif
407 # ifdef __cplusplus
408 extern "C" {
409 # endif
410 int (eventfd) (unsigned int initval, int flags);
411 # ifdef __cplusplus
412 }
413 # endif
414 #endif
415
416 #if EV_USE_SIGNALFD
417 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418 # include <stdint.h>
419 # ifndef SFD_NONBLOCK
420 # define SFD_NONBLOCK O_NONBLOCK
421 # endif
422 # ifndef SFD_CLOEXEC
423 # ifdef O_CLOEXEC
424 # define SFD_CLOEXEC O_CLOEXEC
425 # else
426 # define SFD_CLOEXEC 02000000
427 # endif
428 # endif
429 # ifdef __cplusplus
430 extern "C" {
431 # endif
432 int signalfd (int fd, const sigset_t *mask, int flags);
433
434 struct signalfd_siginfo
435 {
436 uint32_t ssi_signo;
437 char pad[128 - sizeof (uint32_t)];
438 };
439 # ifdef __cplusplus
440 }
441 # endif
442 #endif
443
444
445 /**/
446
447 #if EV_VERIFY >= 3
448 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
449 #else
450 # define EV_FREQUENT_CHECK do { } while (0)
451 #endif
452
453 /*
454 * This is used to avoid floating point rounding problems.
455 * It is added to ev_rt_now when scheduling periodics
456 * to ensure progress, time-wise, even when rounding
457 * errors are against us.
458 * This value is good at least till the year 4000.
459 * Better solutions welcome.
460 */
461 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
462
463 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
464 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
465
466 #if __GNUC__ >= 4
467 # define expect(expr,value) __builtin_expect ((expr),(value))
468 # define noinline __attribute__ ((noinline))
469 #else
470 # define expect(expr,value) (expr)
471 # define noinline
472 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
473 # define inline
474 # endif
475 #endif
476
477 #define expect_false(expr) expect ((expr) != 0, 0)
478 #define expect_true(expr) expect ((expr) != 0, 1)
479 #define inline_size static inline
480
481 #if EV_MINIMAL
482 # define inline_speed static noinline
483 #else
484 # define inline_speed static inline
485 #endif
486
487 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
488
489 #if EV_MINPRI == EV_MAXPRI
490 # define ABSPRI(w) (((W)w), 0)
491 #else
492 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
493 #endif
494
495 #define EMPTY /* required for microsofts broken pseudo-c compiler */
496 #define EMPTY2(a,b) /* used to suppress some warnings */
497
498 typedef ev_watcher *W;
499 typedef ev_watcher_list *WL;
500 typedef ev_watcher_time *WT;
501
502 #define ev_active(w) ((W)(w))->active
503 #define ev_at(w) ((WT)(w))->at
504
505 #if EV_USE_REALTIME
506 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
507 /* giving it a reasonably high chance of working on typical architetcures */
508 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
509 #endif
510
511 #if EV_USE_MONOTONIC
512 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
513 #endif
514
515 #ifndef EV_FD_TO_WIN32_HANDLE
516 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
517 #endif
518 #ifndef EV_WIN32_HANDLE_TO_FD
519 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
520 #endif
521 #ifndef EV_WIN32_CLOSE_FD
522 # define EV_WIN32_CLOSE_FD(fd) close (fd)
523 #endif
524
525 #ifdef _WIN32
526 # include "ev_win32.c"
527 #endif
528
529 /*****************************************************************************/
530
531 #if EV_AVOID_STDIO
532 static void noinline
533 ev_printerr (const char *msg)
534 {
535 write (STDERR_FILENO, msg, strlen (msg));
536 }
537 #endif
538
539 static void (*syserr_cb)(const char *msg);
540
541 void
542 ev_set_syserr_cb (void (*cb)(const char *msg))
543 {
544 syserr_cb = cb;
545 }
546
547 static void noinline
548 ev_syserr (const char *msg)
549 {
550 if (!msg)
551 msg = "(libev) system error";
552
553 if (syserr_cb)
554 syserr_cb (msg);
555 else
556 {
557 #if EV_AVOID_STDIO
558 const char *err = strerror (errno);
559
560 ev_printerr (msg);
561 ev_printerr (": ");
562 ev_printerr (err);
563 ev_printerr ("\n");
564 #else
565 perror (msg);
566 #endif
567 abort ();
568 }
569 }
570
571 static void *
572 ev_realloc_emul (void *ptr, long size)
573 {
574 #if __GLIBC__
575 return realloc (ptr, size);
576 #else
577 /* some systems, notably openbsd and darwin, fail to properly
578 * implement realloc (x, 0) (as required by both ansi c-89 and
579 * the single unix specification, so work around them here.
580 */
581
582 if (size)
583 return realloc (ptr, size);
584
585 free (ptr);
586 return 0;
587 #endif
588 }
589
590 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
591
592 void
593 ev_set_allocator (void *(*cb)(void *ptr, long size))
594 {
595 alloc = cb;
596 }
597
598 inline_speed void *
599 ev_realloc (void *ptr, long size)
600 {
601 ptr = alloc (ptr, size);
602
603 if (!ptr && size)
604 {
605 #if EV_AVOID_STDIO
606 ev_printerr ("libev: memory allocation failed, aborting.\n");
607 #else
608 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
609 #endif
610 abort ();
611 }
612
613 return ptr;
614 }
615
616 #define ev_malloc(size) ev_realloc (0, (size))
617 #define ev_free(ptr) ev_realloc ((ptr), 0)
618
619 /*****************************************************************************/
620
621 /* set in reify when reification needed */
622 #define EV_ANFD_REIFY 1
623
624 /* file descriptor info structure */
625 typedef struct
626 {
627 WL head;
628 unsigned char events; /* the events watched for */
629 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
630 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
631 unsigned char unused;
632 #if EV_USE_EPOLL
633 unsigned int egen; /* generation counter to counter epoll bugs */
634 #endif
635 #if EV_SELECT_IS_WINSOCKET
636 SOCKET handle;
637 #endif
638 } ANFD;
639
640 /* stores the pending event set for a given watcher */
641 typedef struct
642 {
643 W w;
644 int events; /* the pending event set for the given watcher */
645 } ANPENDING;
646
647 #if EV_USE_INOTIFY
648 /* hash table entry per inotify-id */
649 typedef struct
650 {
651 WL head;
652 } ANFS;
653 #endif
654
655 /* Heap Entry */
656 #if EV_HEAP_CACHE_AT
657 /* a heap element */
658 typedef struct {
659 ev_tstamp at;
660 WT w;
661 } ANHE;
662
663 #define ANHE_w(he) (he).w /* access watcher, read-write */
664 #define ANHE_at(he) (he).at /* access cached at, read-only */
665 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
666 #else
667 /* a heap element */
668 typedef WT ANHE;
669
670 #define ANHE_w(he) (he)
671 #define ANHE_at(he) (he)->at
672 #define ANHE_at_cache(he)
673 #endif
674
675 #if EV_MULTIPLICITY
676
677 struct ev_loop
678 {
679 ev_tstamp ev_rt_now;
680 #define ev_rt_now ((loop)->ev_rt_now)
681 #define VAR(name,decl) decl;
682 #include "ev_vars.h"
683 #undef VAR
684 };
685 #include "ev_wrap.h"
686
687 static struct ev_loop default_loop_struct;
688 struct ev_loop *ev_default_loop_ptr;
689
690 #else
691
692 ev_tstamp ev_rt_now;
693 #define VAR(name,decl) static decl;
694 #include "ev_vars.h"
695 #undef VAR
696
697 static int ev_default_loop_ptr;
698
699 #endif
700
701 #if EV_MINIMAL < 2
702 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
703 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
704 # define EV_INVOKE_PENDING invoke_cb (EV_A)
705 #else
706 # define EV_RELEASE_CB (void)0
707 # define EV_ACQUIRE_CB (void)0
708 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
709 #endif
710
711 #define EVUNLOOP_RECURSE 0x80
712
713 /*****************************************************************************/
714
715 #ifndef EV_HAVE_EV_TIME
716 ev_tstamp
717 ev_time (void)
718 {
719 #if EV_USE_REALTIME
720 if (expect_true (have_realtime))
721 {
722 struct timespec ts;
723 clock_gettime (CLOCK_REALTIME, &ts);
724 return ts.tv_sec + ts.tv_nsec * 1e-9;
725 }
726 #endif
727
728 struct timeval tv;
729 gettimeofday (&tv, 0);
730 return tv.tv_sec + tv.tv_usec * 1e-6;
731 }
732 #endif
733
734 inline_size ev_tstamp
735 get_clock (void)
736 {
737 #if EV_USE_MONOTONIC
738 if (expect_true (have_monotonic))
739 {
740 struct timespec ts;
741 clock_gettime (CLOCK_MONOTONIC, &ts);
742 return ts.tv_sec + ts.tv_nsec * 1e-9;
743 }
744 #endif
745
746 return ev_time ();
747 }
748
749 #if EV_MULTIPLICITY
750 ev_tstamp
751 ev_now (EV_P)
752 {
753 return ev_rt_now;
754 }
755 #endif
756
757 void
758 ev_sleep (ev_tstamp delay)
759 {
760 if (delay > 0.)
761 {
762 #if EV_USE_NANOSLEEP
763 struct timespec ts;
764
765 ts.tv_sec = (time_t)delay;
766 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
767
768 nanosleep (&ts, 0);
769 #elif defined(_WIN32)
770 Sleep ((unsigned long)(delay * 1e3));
771 #else
772 struct timeval tv;
773
774 tv.tv_sec = (time_t)delay;
775 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
776
777 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
778 /* something not guaranteed by newer posix versions, but guaranteed */
779 /* by older ones */
780 select (0, 0, 0, 0, &tv);
781 #endif
782 }
783 }
784
785 /*****************************************************************************/
786
787 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
788
789 /* find a suitable new size for the given array, */
790 /* hopefully by rounding to a ncie-to-malloc size */
791 inline_size int
792 array_nextsize (int elem, int cur, int cnt)
793 {
794 int ncur = cur + 1;
795
796 do
797 ncur <<= 1;
798 while (cnt > ncur);
799
800 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
801 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
802 {
803 ncur *= elem;
804 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
805 ncur = ncur - sizeof (void *) * 4;
806 ncur /= elem;
807 }
808
809 return ncur;
810 }
811
812 static noinline void *
813 array_realloc (int elem, void *base, int *cur, int cnt)
814 {
815 *cur = array_nextsize (elem, *cur, cnt);
816 return ev_realloc (base, elem * *cur);
817 }
818
819 #define array_init_zero(base,count) \
820 memset ((void *)(base), 0, sizeof (*(base)) * (count))
821
822 #define array_needsize(type,base,cur,cnt,init) \
823 if (expect_false ((cnt) > (cur))) \
824 { \
825 int ocur_ = (cur); \
826 (base) = (type *)array_realloc \
827 (sizeof (type), (base), &(cur), (cnt)); \
828 init ((base) + (ocur_), (cur) - ocur_); \
829 }
830
831 #if 0
832 #define array_slim(type,stem) \
833 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
834 { \
835 stem ## max = array_roundsize (stem ## cnt >> 1); \
836 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
837 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
838 }
839 #endif
840
841 #define array_free(stem, idx) \
842 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
843
844 /*****************************************************************************/
845
846 /* dummy callback for pending events */
847 static void noinline
848 pendingcb (EV_P_ ev_prepare *w, int revents)
849 {
850 }
851
852 void noinline
853 ev_feed_event (EV_P_ void *w, int revents)
854 {
855 W w_ = (W)w;
856 int pri = ABSPRI (w_);
857
858 if (expect_false (w_->pending))
859 pendings [pri][w_->pending - 1].events |= revents;
860 else
861 {
862 w_->pending = ++pendingcnt [pri];
863 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
864 pendings [pri][w_->pending - 1].w = w_;
865 pendings [pri][w_->pending - 1].events = revents;
866 }
867 }
868
869 inline_speed void
870 feed_reverse (EV_P_ W w)
871 {
872 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
873 rfeeds [rfeedcnt++] = w;
874 }
875
876 inline_size void
877 feed_reverse_done (EV_P_ int revents)
878 {
879 do
880 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
881 while (rfeedcnt);
882 }
883
884 inline_speed void
885 queue_events (EV_P_ W *events, int eventcnt, int type)
886 {
887 int i;
888
889 for (i = 0; i < eventcnt; ++i)
890 ev_feed_event (EV_A_ events [i], type);
891 }
892
893 /*****************************************************************************/
894
895 inline_speed void
896 fd_event_nc (EV_P_ int fd, int revents)
897 {
898 ANFD *anfd = anfds + fd;
899 ev_io *w;
900
901 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
902 {
903 int ev = w->events & revents;
904
905 if (ev)
906 ev_feed_event (EV_A_ (W)w, ev);
907 }
908 }
909
910 /* do not submit kernel events for fds that have reify set */
911 /* because that means they changed while we were polling for new events */
912 inline_speed void
913 fd_event (EV_P_ int fd, int revents)
914 {
915 ANFD *anfd = anfds + fd;
916
917 if (expect_true (!anfd->reify))
918 fd_event_nc (EV_A_ fd, revents);
919 }
920
921 void
922 ev_feed_fd_event (EV_P_ int fd, int revents)
923 {
924 if (fd >= 0 && fd < anfdmax)
925 fd_event_nc (EV_A_ fd, revents);
926 }
927
928 /* make sure the external fd watch events are in-sync */
929 /* with the kernel/libev internal state */
930 inline_size void
931 fd_reify (EV_P)
932 {
933 int i;
934
935 for (i = 0; i < fdchangecnt; ++i)
936 {
937 int fd = fdchanges [i];
938 ANFD *anfd = anfds + fd;
939 ev_io *w;
940
941 unsigned char events = 0;
942
943 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
944 events |= (unsigned char)w->events;
945
946 #if EV_SELECT_IS_WINSOCKET
947 if (events)
948 {
949 unsigned long arg;
950 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
951 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
952 }
953 #endif
954
955 {
956 unsigned char o_events = anfd->events;
957 unsigned char o_reify = anfd->reify;
958
959 anfd->reify = 0;
960 anfd->events = events;
961
962 if (o_events != events || o_reify & EV__IOFDSET)
963 backend_modify (EV_A_ fd, o_events, events);
964 }
965 }
966
967 fdchangecnt = 0;
968 }
969
970 /* something about the given fd changed */
971 inline_size void
972 fd_change (EV_P_ int fd, int flags)
973 {
974 unsigned char reify = anfds [fd].reify;
975 anfds [fd].reify |= flags;
976
977 if (expect_true (!reify))
978 {
979 ++fdchangecnt;
980 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
981 fdchanges [fdchangecnt - 1] = fd;
982 }
983 }
984
985 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
986 inline_speed void
987 fd_kill (EV_P_ int fd)
988 {
989 ev_io *w;
990
991 while ((w = (ev_io *)anfds [fd].head))
992 {
993 ev_io_stop (EV_A_ w);
994 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
995 }
996 }
997
998 /* check whether the given fd is actually valid, for error recovery */
999 inline_size int
1000 fd_valid (int fd)
1001 {
1002 #ifdef _WIN32
1003 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1004 #else
1005 return fcntl (fd, F_GETFD) != -1;
1006 #endif
1007 }
1008
1009 /* called on EBADF to verify fds */
1010 static void noinline
1011 fd_ebadf (EV_P)
1012 {
1013 int fd;
1014
1015 for (fd = 0; fd < anfdmax; ++fd)
1016 if (anfds [fd].events)
1017 if (!fd_valid (fd) && errno == EBADF)
1018 fd_kill (EV_A_ fd);
1019 }
1020
1021 /* called on ENOMEM in select/poll to kill some fds and retry */
1022 static void noinline
1023 fd_enomem (EV_P)
1024 {
1025 int fd;
1026
1027 for (fd = anfdmax; fd--; )
1028 if (anfds [fd].events)
1029 {
1030 fd_kill (EV_A_ fd);
1031 break;
1032 }
1033 }
1034
1035 /* usually called after fork if backend needs to re-arm all fds from scratch */
1036 static void noinline
1037 fd_rearm_all (EV_P)
1038 {
1039 int fd;
1040
1041 for (fd = 0; fd < anfdmax; ++fd)
1042 if (anfds [fd].events)
1043 {
1044 anfds [fd].events = 0;
1045 anfds [fd].emask = 0;
1046 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1047 }
1048 }
1049
1050 /* used to prepare libev internal fd's */
1051 /* this is not fork-safe */
1052 inline_speed void
1053 fd_intern (int fd)
1054 {
1055 #ifdef _WIN32
1056 unsigned long arg = 1;
1057 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1058 #else
1059 fcntl (fd, F_SETFD, FD_CLOEXEC);
1060 fcntl (fd, F_SETFL, O_NONBLOCK);
1061 #endif
1062 }
1063
1064 /*****************************************************************************/
1065
1066 /*
1067 * the heap functions want a real array index. array index 0 uis guaranteed to not
1068 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1069 * the branching factor of the d-tree.
1070 */
1071
1072 /*
1073 * at the moment we allow libev the luxury of two heaps,
1074 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1075 * which is more cache-efficient.
1076 * the difference is about 5% with 50000+ watchers.
1077 */
1078 #if EV_USE_4HEAP
1079
1080 #define DHEAP 4
1081 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1082 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1083 #define UPHEAP_DONE(p,k) ((p) == (k))
1084
1085 /* away from the root */
1086 inline_speed void
1087 downheap (ANHE *heap, int N, int k)
1088 {
1089 ANHE he = heap [k];
1090 ANHE *E = heap + N + HEAP0;
1091
1092 for (;;)
1093 {
1094 ev_tstamp minat;
1095 ANHE *minpos;
1096 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1097
1098 /* find minimum child */
1099 if (expect_true (pos + DHEAP - 1 < E))
1100 {
1101 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1102 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1103 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1104 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1105 }
1106 else if (pos < E)
1107 {
1108 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1109 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1110 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1111 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1112 }
1113 else
1114 break;
1115
1116 if (ANHE_at (he) <= minat)
1117 break;
1118
1119 heap [k] = *minpos;
1120 ev_active (ANHE_w (*minpos)) = k;
1121
1122 k = minpos - heap;
1123 }
1124
1125 heap [k] = he;
1126 ev_active (ANHE_w (he)) = k;
1127 }
1128
1129 #else /* 4HEAP */
1130
1131 #define HEAP0 1
1132 #define HPARENT(k) ((k) >> 1)
1133 #define UPHEAP_DONE(p,k) (!(p))
1134
1135 /* away from the root */
1136 inline_speed void
1137 downheap (ANHE *heap, int N, int k)
1138 {
1139 ANHE he = heap [k];
1140
1141 for (;;)
1142 {
1143 int c = k << 1;
1144
1145 if (c >= N + HEAP0)
1146 break;
1147
1148 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1149 ? 1 : 0;
1150
1151 if (ANHE_at (he) <= ANHE_at (heap [c]))
1152 break;
1153
1154 heap [k] = heap [c];
1155 ev_active (ANHE_w (heap [k])) = k;
1156
1157 k = c;
1158 }
1159
1160 heap [k] = he;
1161 ev_active (ANHE_w (he)) = k;
1162 }
1163 #endif
1164
1165 /* towards the root */
1166 inline_speed void
1167 upheap (ANHE *heap, int k)
1168 {
1169 ANHE he = heap [k];
1170
1171 for (;;)
1172 {
1173 int p = HPARENT (k);
1174
1175 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1176 break;
1177
1178 heap [k] = heap [p];
1179 ev_active (ANHE_w (heap [k])) = k;
1180 k = p;
1181 }
1182
1183 heap [k] = he;
1184 ev_active (ANHE_w (he)) = k;
1185 }
1186
1187 /* move an element suitably so it is in a correct place */
1188 inline_size void
1189 adjustheap (ANHE *heap, int N, int k)
1190 {
1191 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1192 upheap (heap, k);
1193 else
1194 downheap (heap, N, k);
1195 }
1196
1197 /* rebuild the heap: this function is used only once and executed rarely */
1198 inline_size void
1199 reheap (ANHE *heap, int N)
1200 {
1201 int i;
1202
1203 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1204 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1205 for (i = 0; i < N; ++i)
1206 upheap (heap, i + HEAP0);
1207 }
1208
1209 /*****************************************************************************/
1210
1211 /* associate signal watchers to a signal signal */
1212 typedef struct
1213 {
1214 EV_ATOMIC_T pending;
1215 #if EV_MULTIPLICITY
1216 EV_P;
1217 #endif
1218 WL head;
1219 } ANSIG;
1220
1221 static ANSIG signals [EV_NSIG - 1];
1222
1223 /*****************************************************************************/
1224
1225 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1226
1227 static void noinline
1228 evpipe_init (EV_P)
1229 {
1230 if (!ev_is_active (&pipe_w))
1231 {
1232 # if EV_USE_EVENTFD
1233 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1234 if (evfd < 0 && errno == EINVAL)
1235 evfd = eventfd (0, 0);
1236
1237 if (evfd >= 0)
1238 {
1239 evpipe [0] = -1;
1240 fd_intern (evfd); /* doing it twice doesn't hurt */
1241 ev_io_set (&pipe_w, evfd, EV_READ);
1242 }
1243 else
1244 # endif
1245 {
1246 while (pipe (evpipe))
1247 ev_syserr ("(libev) error creating signal/async pipe");
1248
1249 fd_intern (evpipe [0]);
1250 fd_intern (evpipe [1]);
1251 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1252 }
1253
1254 ev_io_start (EV_A_ &pipe_w);
1255 ev_unref (EV_A); /* watcher should not keep loop alive */
1256 }
1257 }
1258
1259 inline_size void
1260 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1261 {
1262 if (!*flag)
1263 {
1264 int old_errno = errno; /* save errno because write might clobber it */
1265 char dummy;
1266
1267 *flag = 1;
1268
1269 #if EV_USE_EVENTFD
1270 if (evfd >= 0)
1271 {
1272 uint64_t counter = 1;
1273 write (evfd, &counter, sizeof (uint64_t));
1274 }
1275 else
1276 #endif
1277 write (evpipe [1], &dummy, 1);
1278
1279 errno = old_errno;
1280 }
1281 }
1282
1283 /* called whenever the libev signal pipe */
1284 /* got some events (signal, async) */
1285 static void
1286 pipecb (EV_P_ ev_io *iow, int revents)
1287 {
1288 int i;
1289
1290 #if EV_USE_EVENTFD
1291 if (evfd >= 0)
1292 {
1293 uint64_t counter;
1294 read (evfd, &counter, sizeof (uint64_t));
1295 }
1296 else
1297 #endif
1298 {
1299 char dummy;
1300 read (evpipe [0], &dummy, 1);
1301 }
1302
1303 if (sig_pending)
1304 {
1305 sig_pending = 0;
1306
1307 for (i = EV_NSIG - 1; i--; )
1308 if (expect_false (signals [i].pending))
1309 ev_feed_signal_event (EV_A_ i + 1);
1310 }
1311
1312 #if EV_ASYNC_ENABLE
1313 if (async_pending)
1314 {
1315 async_pending = 0;
1316
1317 for (i = asynccnt; i--; )
1318 if (asyncs [i]->sent)
1319 {
1320 asyncs [i]->sent = 0;
1321 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1322 }
1323 }
1324 #endif
1325 }
1326
1327 /*****************************************************************************/
1328
1329 static void
1330 ev_sighandler (int signum)
1331 {
1332 #if EV_MULTIPLICITY
1333 EV_P = signals [signum - 1].loop;
1334 #endif
1335
1336 #ifdef _WIN32
1337 signal (signum, ev_sighandler);
1338 #endif
1339
1340 signals [signum - 1].pending = 1;
1341 evpipe_write (EV_A_ &sig_pending);
1342 }
1343
1344 void noinline
1345 ev_feed_signal_event (EV_P_ int signum)
1346 {
1347 WL w;
1348
1349 if (expect_false (signum <= 0 || signum > EV_NSIG))
1350 return;
1351
1352 --signum;
1353
1354 #if EV_MULTIPLICITY
1355 /* it is permissible to try to feed a signal to the wrong loop */
1356 /* or, likely more useful, feeding a signal nobody is waiting for */
1357
1358 if (expect_false (signals [signum].loop != EV_A))
1359 return;
1360 #endif
1361
1362 signals [signum].pending = 0;
1363
1364 for (w = signals [signum].head; w; w = w->next)
1365 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1366 }
1367
1368 #if EV_USE_SIGNALFD
1369 static void
1370 sigfdcb (EV_P_ ev_io *iow, int revents)
1371 {
1372 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1373
1374 for (;;)
1375 {
1376 ssize_t res = read (sigfd, si, sizeof (si));
1377
1378 /* not ISO-C, as res might be -1, but works with SuS */
1379 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1380 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1381
1382 if (res < (ssize_t)sizeof (si))
1383 break;
1384 }
1385 }
1386 #endif
1387
1388 #endif
1389
1390 /*****************************************************************************/
1391
1392 #if EV_CHILD_ENABLE
1393 static WL childs [EV_PID_HASHSIZE];
1394
1395 static ev_signal childev;
1396
1397 #ifndef WIFCONTINUED
1398 # define WIFCONTINUED(status) 0
1399 #endif
1400
1401 /* handle a single child status event */
1402 inline_speed void
1403 child_reap (EV_P_ int chain, int pid, int status)
1404 {
1405 ev_child *w;
1406 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1407
1408 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1409 {
1410 if ((w->pid == pid || !w->pid)
1411 && (!traced || (w->flags & 1)))
1412 {
1413 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1414 w->rpid = pid;
1415 w->rstatus = status;
1416 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1417 }
1418 }
1419 }
1420
1421 #ifndef WCONTINUED
1422 # define WCONTINUED 0
1423 #endif
1424
1425 /* called on sigchld etc., calls waitpid */
1426 static void
1427 childcb (EV_P_ ev_signal *sw, int revents)
1428 {
1429 int pid, status;
1430
1431 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1432 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1433 if (!WCONTINUED
1434 || errno != EINVAL
1435 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1436 return;
1437
1438 /* make sure we are called again until all children have been reaped */
1439 /* we need to do it this way so that the callback gets called before we continue */
1440 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1441
1442 child_reap (EV_A_ pid, pid, status);
1443 if (EV_PID_HASHSIZE > 1)
1444 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1445 }
1446
1447 #endif
1448
1449 /*****************************************************************************/
1450
1451 #if EV_USE_PORT
1452 # include "ev_port.c"
1453 #endif
1454 #if EV_USE_KQUEUE
1455 # include "ev_kqueue.c"
1456 #endif
1457 #if EV_USE_EPOLL
1458 # include "ev_epoll.c"
1459 #endif
1460 #if EV_USE_POLL
1461 # include "ev_poll.c"
1462 #endif
1463 #if EV_USE_SELECT
1464 # include "ev_select.c"
1465 #endif
1466
1467 int
1468 ev_version_major (void)
1469 {
1470 return EV_VERSION_MAJOR;
1471 }
1472
1473 int
1474 ev_version_minor (void)
1475 {
1476 return EV_VERSION_MINOR;
1477 }
1478
1479 /* return true if we are running with elevated privileges and should ignore env variables */
1480 int inline_size
1481 enable_secure (void)
1482 {
1483 #ifdef _WIN32
1484 return 0;
1485 #else
1486 return getuid () != geteuid ()
1487 || getgid () != getegid ();
1488 #endif
1489 }
1490
1491 unsigned int
1492 ev_supported_backends (void)
1493 {
1494 unsigned int flags = 0;
1495
1496 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1497 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1498 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1499 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1500 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1501
1502 return flags;
1503 }
1504
1505 unsigned int
1506 ev_recommended_backends (void)
1507 {
1508 unsigned int flags = ev_supported_backends ();
1509
1510 #ifndef __NetBSD__
1511 /* kqueue is borked on everything but netbsd apparently */
1512 /* it usually doesn't work correctly on anything but sockets and pipes */
1513 flags &= ~EVBACKEND_KQUEUE;
1514 #endif
1515 #ifdef __APPLE__
1516 /* only select works correctly on that "unix-certified" platform */
1517 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1518 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1519 #endif
1520
1521 return flags;
1522 }
1523
1524 unsigned int
1525 ev_embeddable_backends (void)
1526 {
1527 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1528
1529 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1530 /* please fix it and tell me how to detect the fix */
1531 flags &= ~EVBACKEND_EPOLL;
1532
1533 return flags;
1534 }
1535
1536 unsigned int
1537 ev_backend (EV_P)
1538 {
1539 return backend;
1540 }
1541
1542 #if EV_MINIMAL < 2
1543 unsigned int
1544 ev_loop_count (EV_P)
1545 {
1546 return loop_count;
1547 }
1548
1549 unsigned int
1550 ev_loop_depth (EV_P)
1551 {
1552 return loop_depth;
1553 }
1554
1555 void
1556 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1557 {
1558 io_blocktime = interval;
1559 }
1560
1561 void
1562 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1563 {
1564 timeout_blocktime = interval;
1565 }
1566
1567 void
1568 ev_set_userdata (EV_P_ void *data)
1569 {
1570 userdata = data;
1571 }
1572
1573 void *
1574 ev_userdata (EV_P)
1575 {
1576 return userdata;
1577 }
1578
1579 void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1580 {
1581 invoke_cb = invoke_pending_cb;
1582 }
1583
1584 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1585 {
1586 release_cb = release;
1587 acquire_cb = acquire;
1588 }
1589 #endif
1590
1591 /* initialise a loop structure, must be zero-initialised */
1592 static void noinline
1593 loop_init (EV_P_ unsigned int flags)
1594 {
1595 if (!backend)
1596 {
1597 #if EV_USE_REALTIME
1598 if (!have_realtime)
1599 {
1600 struct timespec ts;
1601
1602 if (!clock_gettime (CLOCK_REALTIME, &ts))
1603 have_realtime = 1;
1604 }
1605 #endif
1606
1607 #if EV_USE_MONOTONIC
1608 if (!have_monotonic)
1609 {
1610 struct timespec ts;
1611
1612 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1613 have_monotonic = 1;
1614 }
1615 #endif
1616
1617 /* pid check not overridable via env */
1618 #ifndef _WIN32
1619 if (flags & EVFLAG_FORKCHECK)
1620 curpid = getpid ();
1621 #endif
1622
1623 if (!(flags & EVFLAG_NOENV)
1624 && !enable_secure ()
1625 && getenv ("LIBEV_FLAGS"))
1626 flags = atoi (getenv ("LIBEV_FLAGS"));
1627
1628 ev_rt_now = ev_time ();
1629 mn_now = get_clock ();
1630 now_floor = mn_now;
1631 rtmn_diff = ev_rt_now - mn_now;
1632 #if EV_MINIMAL < 2
1633 invoke_cb = ev_invoke_pending;
1634 #endif
1635
1636 io_blocktime = 0.;
1637 timeout_blocktime = 0.;
1638 backend = 0;
1639 backend_fd = -1;
1640 sig_pending = 0;
1641 #if EV_ASYNC_ENABLE
1642 async_pending = 0;
1643 #endif
1644 #if EV_USE_INOTIFY
1645 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1646 #endif
1647 #if EV_USE_SIGNALFD
1648 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1649 #endif
1650
1651 if (!(flags & 0x0000ffffU))
1652 flags |= ev_recommended_backends ();
1653
1654 #if EV_USE_PORT
1655 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1656 #endif
1657 #if EV_USE_KQUEUE
1658 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1659 #endif
1660 #if EV_USE_EPOLL
1661 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1662 #endif
1663 #if EV_USE_POLL
1664 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1665 #endif
1666 #if EV_USE_SELECT
1667 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1668 #endif
1669
1670 ev_prepare_init (&pending_w, pendingcb);
1671
1672 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1673 ev_init (&pipe_w, pipecb);
1674 ev_set_priority (&pipe_w, EV_MAXPRI);
1675 #endif
1676 }
1677 }
1678
1679 /* free up a loop structure */
1680 static void noinline
1681 loop_destroy (EV_P)
1682 {
1683 int i;
1684
1685 if (ev_is_active (&pipe_w))
1686 {
1687 /*ev_ref (EV_A);*/
1688 /*ev_io_stop (EV_A_ &pipe_w);*/
1689
1690 #if EV_USE_EVENTFD
1691 if (evfd >= 0)
1692 close (evfd);
1693 #endif
1694
1695 if (evpipe [0] >= 0)
1696 {
1697 EV_WIN32_CLOSE_FD (evpipe [0]);
1698 EV_WIN32_CLOSE_FD (evpipe [1]);
1699 }
1700 }
1701
1702 #if EV_USE_SIGNALFD
1703 if (ev_is_active (&sigfd_w))
1704 close (sigfd);
1705 #endif
1706
1707 #if EV_USE_INOTIFY
1708 if (fs_fd >= 0)
1709 close (fs_fd);
1710 #endif
1711
1712 if (backend_fd >= 0)
1713 close (backend_fd);
1714
1715 #if EV_USE_PORT
1716 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1717 #endif
1718 #if EV_USE_KQUEUE
1719 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1720 #endif
1721 #if EV_USE_EPOLL
1722 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1723 #endif
1724 #if EV_USE_POLL
1725 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1726 #endif
1727 #if EV_USE_SELECT
1728 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1729 #endif
1730
1731 for (i = NUMPRI; i--; )
1732 {
1733 array_free (pending, [i]);
1734 #if EV_IDLE_ENABLE
1735 array_free (idle, [i]);
1736 #endif
1737 }
1738
1739 ev_free (anfds); anfds = 0; anfdmax = 0;
1740
1741 /* have to use the microsoft-never-gets-it-right macro */
1742 array_free (rfeed, EMPTY);
1743 array_free (fdchange, EMPTY);
1744 array_free (timer, EMPTY);
1745 #if EV_PERIODIC_ENABLE
1746 array_free (periodic, EMPTY);
1747 #endif
1748 #if EV_FORK_ENABLE
1749 array_free (fork, EMPTY);
1750 #endif
1751 array_free (prepare, EMPTY);
1752 array_free (check, EMPTY);
1753 #if EV_ASYNC_ENABLE
1754 array_free (async, EMPTY);
1755 #endif
1756
1757 backend = 0;
1758 }
1759
1760 #if EV_USE_INOTIFY
1761 inline_size void infy_fork (EV_P);
1762 #endif
1763
1764 inline_size void
1765 loop_fork (EV_P)
1766 {
1767 #if EV_USE_PORT
1768 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1769 #endif
1770 #if EV_USE_KQUEUE
1771 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1772 #endif
1773 #if EV_USE_EPOLL
1774 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1775 #endif
1776 #if EV_USE_INOTIFY
1777 infy_fork (EV_A);
1778 #endif
1779
1780 if (ev_is_active (&pipe_w))
1781 {
1782 /* this "locks" the handlers against writing to the pipe */
1783 /* while we modify the fd vars */
1784 sig_pending = 1;
1785 #if EV_ASYNC_ENABLE
1786 async_pending = 1;
1787 #endif
1788
1789 ev_ref (EV_A);
1790 ev_io_stop (EV_A_ &pipe_w);
1791
1792 #if EV_USE_EVENTFD
1793 if (evfd >= 0)
1794 close (evfd);
1795 #endif
1796
1797 if (evpipe [0] >= 0)
1798 {
1799 EV_WIN32_CLOSE_FD (evpipe [0]);
1800 EV_WIN32_CLOSE_FD (evpipe [1]);
1801 }
1802
1803 evpipe_init (EV_A);
1804 /* now iterate over everything, in case we missed something */
1805 pipecb (EV_A_ &pipe_w, EV_READ);
1806 }
1807
1808 postfork = 0;
1809 }
1810
1811 #if EV_MULTIPLICITY
1812
1813 struct ev_loop *
1814 ev_loop_new (unsigned int flags)
1815 {
1816 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1817
1818 memset (EV_A, 0, sizeof (struct ev_loop));
1819 loop_init (EV_A_ flags);
1820
1821 if (ev_backend (EV_A))
1822 return EV_A;
1823
1824 return 0;
1825 }
1826
1827 void
1828 ev_loop_destroy (EV_P)
1829 {
1830 loop_destroy (EV_A);
1831 ev_free (loop);
1832 }
1833
1834 void
1835 ev_loop_fork (EV_P)
1836 {
1837 postfork = 1; /* must be in line with ev_default_fork */
1838 }
1839 #endif /* multiplicity */
1840
1841 #if EV_VERIFY
1842 static void noinline
1843 verify_watcher (EV_P_ W w)
1844 {
1845 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1846
1847 if (w->pending)
1848 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1849 }
1850
1851 static void noinline
1852 verify_heap (EV_P_ ANHE *heap, int N)
1853 {
1854 int i;
1855
1856 for (i = HEAP0; i < N + HEAP0; ++i)
1857 {
1858 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1859 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1860 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1861
1862 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1863 }
1864 }
1865
1866 static void noinline
1867 array_verify (EV_P_ W *ws, int cnt)
1868 {
1869 while (cnt--)
1870 {
1871 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1872 verify_watcher (EV_A_ ws [cnt]);
1873 }
1874 }
1875 #endif
1876
1877 #if EV_MINIMAL < 2
1878 void
1879 ev_loop_verify (EV_P)
1880 {
1881 #if EV_VERIFY
1882 int i;
1883 WL w;
1884
1885 assert (activecnt >= -1);
1886
1887 assert (fdchangemax >= fdchangecnt);
1888 for (i = 0; i < fdchangecnt; ++i)
1889 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1890
1891 assert (anfdmax >= 0);
1892 for (i = 0; i < anfdmax; ++i)
1893 for (w = anfds [i].head; w; w = w->next)
1894 {
1895 verify_watcher (EV_A_ (W)w);
1896 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1897 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1898 }
1899
1900 assert (timermax >= timercnt);
1901 verify_heap (EV_A_ timers, timercnt);
1902
1903 #if EV_PERIODIC_ENABLE
1904 assert (periodicmax >= periodiccnt);
1905 verify_heap (EV_A_ periodics, periodiccnt);
1906 #endif
1907
1908 for (i = NUMPRI; i--; )
1909 {
1910 assert (pendingmax [i] >= pendingcnt [i]);
1911 #if EV_IDLE_ENABLE
1912 assert (idleall >= 0);
1913 assert (idlemax [i] >= idlecnt [i]);
1914 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1915 #endif
1916 }
1917
1918 #if EV_FORK_ENABLE
1919 assert (forkmax >= forkcnt);
1920 array_verify (EV_A_ (W *)forks, forkcnt);
1921 #endif
1922
1923 #if EV_ASYNC_ENABLE
1924 assert (asyncmax >= asynccnt);
1925 array_verify (EV_A_ (W *)asyncs, asynccnt);
1926 #endif
1927
1928 assert (preparemax >= preparecnt);
1929 array_verify (EV_A_ (W *)prepares, preparecnt);
1930
1931 assert (checkmax >= checkcnt);
1932 array_verify (EV_A_ (W *)checks, checkcnt);
1933
1934 # if 0
1935 #if EV_CHILD_ENABLE
1936 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1937 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1938 #endif
1939 # endif
1940 #endif
1941 }
1942 #endif
1943
1944 #if EV_MULTIPLICITY
1945 struct ev_loop *
1946 ev_default_loop_init (unsigned int flags)
1947 #else
1948 int
1949 ev_default_loop (unsigned int flags)
1950 #endif
1951 {
1952 if (!ev_default_loop_ptr)
1953 {
1954 #if EV_MULTIPLICITY
1955 EV_P = ev_default_loop_ptr = &default_loop_struct;
1956 #else
1957 ev_default_loop_ptr = 1;
1958 #endif
1959
1960 loop_init (EV_A_ flags);
1961
1962 if (ev_backend (EV_A))
1963 {
1964 #if EV_CHILD_ENABLE
1965 ev_signal_init (&childev, childcb, SIGCHLD);
1966 ev_set_priority (&childev, EV_MAXPRI);
1967 ev_signal_start (EV_A_ &childev);
1968 ev_unref (EV_A); /* child watcher should not keep loop alive */
1969 #endif
1970 }
1971 else
1972 ev_default_loop_ptr = 0;
1973 }
1974
1975 return ev_default_loop_ptr;
1976 }
1977
1978 void
1979 ev_default_destroy (void)
1980 {
1981 #if EV_MULTIPLICITY
1982 EV_P = ev_default_loop_ptr;
1983 #endif
1984
1985 ev_default_loop_ptr = 0;
1986
1987 #if EV_CHILD_ENABLE
1988 ev_ref (EV_A); /* child watcher */
1989 ev_signal_stop (EV_A_ &childev);
1990 #endif
1991
1992 loop_destroy (EV_A);
1993 }
1994
1995 void
1996 ev_default_fork (void)
1997 {
1998 #if EV_MULTIPLICITY
1999 EV_P = ev_default_loop_ptr;
2000 #endif
2001
2002 postfork = 1; /* must be in line with ev_loop_fork */
2003 }
2004
2005 /*****************************************************************************/
2006
2007 void
2008 ev_invoke (EV_P_ void *w, int revents)
2009 {
2010 EV_CB_INVOKE ((W)w, revents);
2011 }
2012
2013 unsigned int
2014 ev_pending_count (EV_P)
2015 {
2016 int pri;
2017 unsigned int count = 0;
2018
2019 for (pri = NUMPRI; pri--; )
2020 count += pendingcnt [pri];
2021
2022 return count;
2023 }
2024
2025 void noinline
2026 ev_invoke_pending (EV_P)
2027 {
2028 int pri;
2029
2030 for (pri = NUMPRI; pri--; )
2031 while (pendingcnt [pri])
2032 {
2033 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2034
2035 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2036 /* ^ this is no longer true, as pending_w could be here */
2037
2038 p->w->pending = 0;
2039 EV_CB_INVOKE (p->w, p->events);
2040 EV_FREQUENT_CHECK;
2041 }
2042 }
2043
2044 #if EV_IDLE_ENABLE
2045 /* make idle watchers pending. this handles the "call-idle */
2046 /* only when higher priorities are idle" logic */
2047 inline_size void
2048 idle_reify (EV_P)
2049 {
2050 if (expect_false (idleall))
2051 {
2052 int pri;
2053
2054 for (pri = NUMPRI; pri--; )
2055 {
2056 if (pendingcnt [pri])
2057 break;
2058
2059 if (idlecnt [pri])
2060 {
2061 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2062 break;
2063 }
2064 }
2065 }
2066 }
2067 #endif
2068
2069 /* make timers pending */
2070 inline_size void
2071 timers_reify (EV_P)
2072 {
2073 EV_FREQUENT_CHECK;
2074
2075 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2076 {
2077 do
2078 {
2079 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2080
2081 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2082
2083 /* first reschedule or stop timer */
2084 if (w->repeat)
2085 {
2086 ev_at (w) += w->repeat;
2087 if (ev_at (w) < mn_now)
2088 ev_at (w) = mn_now;
2089
2090 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2091
2092 ANHE_at_cache (timers [HEAP0]);
2093 downheap (timers, timercnt, HEAP0);
2094 }
2095 else
2096 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2097
2098 EV_FREQUENT_CHECK;
2099 feed_reverse (EV_A_ (W)w);
2100 }
2101 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2102
2103 feed_reverse_done (EV_A_ EV_TIMEOUT);
2104 }
2105 }
2106
2107 #if EV_PERIODIC_ENABLE
2108 /* make periodics pending */
2109 inline_size void
2110 periodics_reify (EV_P)
2111 {
2112 EV_FREQUENT_CHECK;
2113
2114 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2115 {
2116 int feed_count = 0;
2117
2118 do
2119 {
2120 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2121
2122 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2123
2124 /* first reschedule or stop timer */
2125 if (w->reschedule_cb)
2126 {
2127 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2128
2129 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2130
2131 ANHE_at_cache (periodics [HEAP0]);
2132 downheap (periodics, periodiccnt, HEAP0);
2133 }
2134 else if (w->interval)
2135 {
2136 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2137 /* if next trigger time is not sufficiently in the future, put it there */
2138 /* this might happen because of floating point inexactness */
2139 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2140 {
2141 ev_at (w) += w->interval;
2142
2143 /* if interval is unreasonably low we might still have a time in the past */
2144 /* so correct this. this will make the periodic very inexact, but the user */
2145 /* has effectively asked to get triggered more often than possible */
2146 if (ev_at (w) < ev_rt_now)
2147 ev_at (w) = ev_rt_now;
2148 }
2149
2150 ANHE_at_cache (periodics [HEAP0]);
2151 downheap (periodics, periodiccnt, HEAP0);
2152 }
2153 else
2154 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2155
2156 EV_FREQUENT_CHECK;
2157 feed_reverse (EV_A_ (W)w);
2158 }
2159 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2160
2161 feed_reverse_done (EV_A_ EV_PERIODIC);
2162 }
2163 }
2164
2165 /* simply recalculate all periodics */
2166 /* TODO: maybe ensure that at leats one event happens when jumping forward? */
2167 static void noinline
2168 periodics_reschedule (EV_P)
2169 {
2170 int i;
2171
2172 /* adjust periodics after time jump */
2173 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2174 {
2175 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2176
2177 if (w->reschedule_cb)
2178 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2179 else if (w->interval)
2180 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2181
2182 ANHE_at_cache (periodics [i]);
2183 }
2184
2185 reheap (periodics, periodiccnt);
2186 }
2187 #endif
2188
2189 /* adjust all timers by a given offset */
2190 static void noinline
2191 timers_reschedule (EV_P_ ev_tstamp adjust)
2192 {
2193 int i;
2194
2195 for (i = 0; i < timercnt; ++i)
2196 {
2197 ANHE *he = timers + i + HEAP0;
2198 ANHE_w (*he)->at += adjust;
2199 ANHE_at_cache (*he);
2200 }
2201 }
2202
2203 /* fetch new monotonic and realtime times from the kernel */
2204 /* also detect if there was a timejump, and act accordingly */
2205 inline_speed void
2206 time_update (EV_P_ ev_tstamp max_block)
2207 {
2208 #if EV_USE_MONOTONIC
2209 if (expect_true (have_monotonic))
2210 {
2211 int i;
2212 ev_tstamp odiff = rtmn_diff;
2213
2214 mn_now = get_clock ();
2215
2216 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2217 /* interpolate in the meantime */
2218 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2219 {
2220 ev_rt_now = rtmn_diff + mn_now;
2221 return;
2222 }
2223
2224 now_floor = mn_now;
2225 ev_rt_now = ev_time ();
2226
2227 /* loop a few times, before making important decisions.
2228 * on the choice of "4": one iteration isn't enough,
2229 * in case we get preempted during the calls to
2230 * ev_time and get_clock. a second call is almost guaranteed
2231 * to succeed in that case, though. and looping a few more times
2232 * doesn't hurt either as we only do this on time-jumps or
2233 * in the unlikely event of having been preempted here.
2234 */
2235 for (i = 4; --i; )
2236 {
2237 rtmn_diff = ev_rt_now - mn_now;
2238
2239 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2240 return; /* all is well */
2241
2242 ev_rt_now = ev_time ();
2243 mn_now = get_clock ();
2244 now_floor = mn_now;
2245 }
2246
2247 /* no timer adjustment, as the monotonic clock doesn't jump */
2248 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2249 # if EV_PERIODIC_ENABLE
2250 periodics_reschedule (EV_A);
2251 # endif
2252 }
2253 else
2254 #endif
2255 {
2256 ev_rt_now = ev_time ();
2257
2258 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2259 {
2260 /* adjust timers. this is easy, as the offset is the same for all of them */
2261 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2262 #if EV_PERIODIC_ENABLE
2263 periodics_reschedule (EV_A);
2264 #endif
2265 }
2266
2267 mn_now = ev_rt_now;
2268 }
2269 }
2270
2271 void
2272 ev_loop (EV_P_ int flags)
2273 {
2274 #if EV_MINIMAL < 2
2275 ++loop_depth;
2276 #endif
2277
2278 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2279
2280 loop_done = EVUNLOOP_CANCEL;
2281
2282 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2283
2284 do
2285 {
2286 #if EV_VERIFY >= 2
2287 ev_loop_verify (EV_A);
2288 #endif
2289
2290 #ifndef _WIN32
2291 if (expect_false (curpid)) /* penalise the forking check even more */
2292 if (expect_false (getpid () != curpid))
2293 {
2294 curpid = getpid ();
2295 postfork = 1;
2296 }
2297 #endif
2298
2299 #if EV_FORK_ENABLE
2300 /* we might have forked, so queue fork handlers */
2301 if (expect_false (postfork))
2302 if (forkcnt)
2303 {
2304 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2305 EV_INVOKE_PENDING;
2306 }
2307 #endif
2308
2309 /* queue prepare watchers (and execute them) */
2310 if (expect_false (preparecnt))
2311 {
2312 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2313 EV_INVOKE_PENDING;
2314 }
2315
2316 if (expect_false (loop_done))
2317 break;
2318
2319 /* we might have forked, so reify kernel state if necessary */
2320 if (expect_false (postfork))
2321 loop_fork (EV_A);
2322
2323 /* update fd-related kernel structures */
2324 fd_reify (EV_A);
2325
2326 /* calculate blocking time */
2327 {
2328 ev_tstamp waittime = 0.;
2329 ev_tstamp sleeptime = 0.;
2330
2331 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2332 {
2333 /* remember old timestamp for io_blocktime calculation */
2334 ev_tstamp prev_mn_now = mn_now;
2335
2336 /* update time to cancel out callback processing overhead */
2337 time_update (EV_A_ 1e100);
2338
2339 waittime = MAX_BLOCKTIME;
2340
2341 if (timercnt)
2342 {
2343 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2344 if (waittime > to) waittime = to;
2345 }
2346
2347 #if EV_PERIODIC_ENABLE
2348 if (periodiccnt)
2349 {
2350 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2351 if (waittime > to) waittime = to;
2352 }
2353 #endif
2354
2355 /* don't let timeouts decrease the waittime below timeout_blocktime */
2356 if (expect_false (waittime < timeout_blocktime))
2357 waittime = timeout_blocktime;
2358
2359 /* extra check because io_blocktime is commonly 0 */
2360 if (expect_false (io_blocktime))
2361 {
2362 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2363
2364 if (sleeptime > waittime - backend_fudge)
2365 sleeptime = waittime - backend_fudge;
2366
2367 if (expect_true (sleeptime > 0.))
2368 {
2369 ev_sleep (sleeptime);
2370 waittime -= sleeptime;
2371 }
2372 }
2373 }
2374
2375 #if EV_MINIMAL < 2
2376 ++loop_count;
2377 #endif
2378 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2379 backend_poll (EV_A_ waittime);
2380 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2381
2382 /* update ev_rt_now, do magic */
2383 time_update (EV_A_ waittime + sleeptime);
2384 }
2385
2386 /* queue pending timers and reschedule them */
2387 timers_reify (EV_A); /* relative timers called last */
2388 #if EV_PERIODIC_ENABLE
2389 periodics_reify (EV_A); /* absolute timers called first */
2390 #endif
2391
2392 #if EV_IDLE_ENABLE
2393 /* queue idle watchers unless other events are pending */
2394 idle_reify (EV_A);
2395 #endif
2396
2397 /* queue check watchers, to be executed first */
2398 if (expect_false (checkcnt))
2399 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2400
2401 EV_INVOKE_PENDING;
2402 }
2403 while (expect_true (
2404 activecnt
2405 && !loop_done
2406 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2407 ));
2408
2409 if (loop_done == EVUNLOOP_ONE)
2410 loop_done = EVUNLOOP_CANCEL;
2411
2412 #if EV_MINIMAL < 2
2413 --loop_depth;
2414 #endif
2415 }
2416
2417 void
2418 ev_unloop (EV_P_ int how)
2419 {
2420 loop_done = how;
2421 }
2422
2423 void
2424 ev_ref (EV_P)
2425 {
2426 ++activecnt;
2427 }
2428
2429 void
2430 ev_unref (EV_P)
2431 {
2432 --activecnt;
2433 }
2434
2435 void
2436 ev_now_update (EV_P)
2437 {
2438 time_update (EV_A_ 1e100);
2439 }
2440
2441 void
2442 ev_suspend (EV_P)
2443 {
2444 ev_now_update (EV_A);
2445 }
2446
2447 void
2448 ev_resume (EV_P)
2449 {
2450 ev_tstamp mn_prev = mn_now;
2451
2452 ev_now_update (EV_A);
2453 timers_reschedule (EV_A_ mn_now - mn_prev);
2454 #if EV_PERIODIC_ENABLE
2455 /* TODO: really do this? */
2456 periodics_reschedule (EV_A);
2457 #endif
2458 }
2459
2460 /*****************************************************************************/
2461 /* singly-linked list management, used when the expected list length is short */
2462
2463 inline_size void
2464 wlist_add (WL *head, WL elem)
2465 {
2466 elem->next = *head;
2467 *head = elem;
2468 }
2469
2470 inline_size void
2471 wlist_del (WL *head, WL elem)
2472 {
2473 while (*head)
2474 {
2475 if (expect_true (*head == elem))
2476 {
2477 *head = elem->next;
2478 break;
2479 }
2480
2481 head = &(*head)->next;
2482 }
2483 }
2484
2485 /* internal, faster, version of ev_clear_pending */
2486 inline_speed void
2487 clear_pending (EV_P_ W w)
2488 {
2489 if (w->pending)
2490 {
2491 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2492 w->pending = 0;
2493 }
2494 }
2495
2496 int
2497 ev_clear_pending (EV_P_ void *w)
2498 {
2499 W w_ = (W)w;
2500 int pending = w_->pending;
2501
2502 if (expect_true (pending))
2503 {
2504 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2505 p->w = (W)&pending_w;
2506 w_->pending = 0;
2507 return p->events;
2508 }
2509 else
2510 return 0;
2511 }
2512
2513 inline_size void
2514 pri_adjust (EV_P_ W w)
2515 {
2516 int pri = ev_priority (w);
2517 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2518 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2519 ev_set_priority (w, pri);
2520 }
2521
2522 inline_speed void
2523 ev_start (EV_P_ W w, int active)
2524 {
2525 pri_adjust (EV_A_ w);
2526 w->active = active;
2527 ev_ref (EV_A);
2528 }
2529
2530 inline_size void
2531 ev_stop (EV_P_ W w)
2532 {
2533 ev_unref (EV_A);
2534 w->active = 0;
2535 }
2536
2537 /*****************************************************************************/
2538
2539 void noinline
2540 ev_io_start (EV_P_ ev_io *w)
2541 {
2542 int fd = w->fd;
2543
2544 if (expect_false (ev_is_active (w)))
2545 return;
2546
2547 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2548 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2549
2550 EV_FREQUENT_CHECK;
2551
2552 ev_start (EV_A_ (W)w, 1);
2553 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2554 wlist_add (&anfds[fd].head, (WL)w);
2555
2556 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2557 w->events &= ~EV__IOFDSET;
2558
2559 EV_FREQUENT_CHECK;
2560 }
2561
2562 void noinline
2563 ev_io_stop (EV_P_ ev_io *w)
2564 {
2565 clear_pending (EV_A_ (W)w);
2566 if (expect_false (!ev_is_active (w)))
2567 return;
2568
2569 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2570
2571 EV_FREQUENT_CHECK;
2572
2573 wlist_del (&anfds[w->fd].head, (WL)w);
2574 ev_stop (EV_A_ (W)w);
2575
2576 fd_change (EV_A_ w->fd, 1);
2577
2578 EV_FREQUENT_CHECK;
2579 }
2580
2581 void noinline
2582 ev_timer_start (EV_P_ ev_timer *w)
2583 {
2584 if (expect_false (ev_is_active (w)))
2585 return;
2586
2587 ev_at (w) += mn_now;
2588
2589 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2590
2591 EV_FREQUENT_CHECK;
2592
2593 ++timercnt;
2594 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2595 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2596 ANHE_w (timers [ev_active (w)]) = (WT)w;
2597 ANHE_at_cache (timers [ev_active (w)]);
2598 upheap (timers, ev_active (w));
2599
2600 EV_FREQUENT_CHECK;
2601
2602 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2603 }
2604
2605 void noinline
2606 ev_timer_stop (EV_P_ ev_timer *w)
2607 {
2608 clear_pending (EV_A_ (W)w);
2609 if (expect_false (!ev_is_active (w)))
2610 return;
2611
2612 EV_FREQUENT_CHECK;
2613
2614 {
2615 int active = ev_active (w);
2616
2617 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2618
2619 --timercnt;
2620
2621 if (expect_true (active < timercnt + HEAP0))
2622 {
2623 timers [active] = timers [timercnt + HEAP0];
2624 adjustheap (timers, timercnt, active);
2625 }
2626 }
2627
2628 ev_at (w) -= mn_now;
2629
2630 ev_stop (EV_A_ (W)w);
2631
2632 EV_FREQUENT_CHECK;
2633 }
2634
2635 void noinline
2636 ev_timer_again (EV_P_ ev_timer *w)
2637 {
2638 EV_FREQUENT_CHECK;
2639
2640 if (ev_is_active (w))
2641 {
2642 if (w->repeat)
2643 {
2644 ev_at (w) = mn_now + w->repeat;
2645 ANHE_at_cache (timers [ev_active (w)]);
2646 adjustheap (timers, timercnt, ev_active (w));
2647 }
2648 else
2649 ev_timer_stop (EV_A_ w);
2650 }
2651 else if (w->repeat)
2652 {
2653 ev_at (w) = w->repeat;
2654 ev_timer_start (EV_A_ w);
2655 }
2656
2657 EV_FREQUENT_CHECK;
2658 }
2659
2660 ev_tstamp
2661 ev_timer_remaining (EV_P_ ev_timer *w)
2662 {
2663 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2664 }
2665
2666 #if EV_PERIODIC_ENABLE
2667 void noinline
2668 ev_periodic_start (EV_P_ ev_periodic *w)
2669 {
2670 if (expect_false (ev_is_active (w)))
2671 return;
2672
2673 if (w->reschedule_cb)
2674 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2675 else if (w->interval)
2676 {
2677 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2678 /* this formula differs from the one in periodic_reify because we do not always round up */
2679 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2680 }
2681 else
2682 ev_at (w) = w->offset;
2683
2684 EV_FREQUENT_CHECK;
2685
2686 ++periodiccnt;
2687 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2688 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2689 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2690 ANHE_at_cache (periodics [ev_active (w)]);
2691 upheap (periodics, ev_active (w));
2692
2693 EV_FREQUENT_CHECK;
2694
2695 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2696 }
2697
2698 void noinline
2699 ev_periodic_stop (EV_P_ ev_periodic *w)
2700 {
2701 clear_pending (EV_A_ (W)w);
2702 if (expect_false (!ev_is_active (w)))
2703 return;
2704
2705 EV_FREQUENT_CHECK;
2706
2707 {
2708 int active = ev_active (w);
2709
2710 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2711
2712 --periodiccnt;
2713
2714 if (expect_true (active < periodiccnt + HEAP0))
2715 {
2716 periodics [active] = periodics [periodiccnt + HEAP0];
2717 adjustheap (periodics, periodiccnt, active);
2718 }
2719 }
2720
2721 ev_stop (EV_A_ (W)w);
2722
2723 EV_FREQUENT_CHECK;
2724 }
2725
2726 void noinline
2727 ev_periodic_again (EV_P_ ev_periodic *w)
2728 {
2729 /* TODO: use adjustheap and recalculation */
2730 ev_periodic_stop (EV_A_ w);
2731 ev_periodic_start (EV_A_ w);
2732 }
2733 #endif
2734
2735 #ifndef SA_RESTART
2736 # define SA_RESTART 0
2737 #endif
2738
2739 #if EV_SIGNAL_ENABLE
2740
2741 void noinline
2742 ev_signal_start (EV_P_ ev_signal *w)
2743 {
2744 if (expect_false (ev_is_active (w)))
2745 return;
2746
2747 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2748
2749 #if EV_MULTIPLICITY
2750 assert (("libev: a signal must not be attached to two different loops",
2751 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2752
2753 signals [w->signum - 1].loop = EV_A;
2754 #endif
2755
2756 EV_FREQUENT_CHECK;
2757
2758 #if EV_USE_SIGNALFD
2759 if (sigfd == -2)
2760 {
2761 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2762 if (sigfd < 0 && errno == EINVAL)
2763 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2764
2765 if (sigfd >= 0)
2766 {
2767 fd_intern (sigfd); /* doing it twice will not hurt */
2768
2769 sigemptyset (&sigfd_set);
2770
2771 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2772 ev_set_priority (&sigfd_w, EV_MAXPRI);
2773 ev_io_start (EV_A_ &sigfd_w);
2774 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2775 }
2776 }
2777
2778 if (sigfd >= 0)
2779 {
2780 /* TODO: check .head */
2781 sigaddset (&sigfd_set, w->signum);
2782 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2783
2784 signalfd (sigfd, &sigfd_set, 0);
2785 }
2786 #endif
2787
2788 ev_start (EV_A_ (W)w, 1);
2789 wlist_add (&signals [w->signum - 1].head, (WL)w);
2790
2791 if (!((WL)w)->next)
2792 # if EV_USE_SIGNALFD
2793 if (sigfd < 0) /*TODO*/
2794 # endif
2795 {
2796 # ifdef _WIN32
2797 evpipe_init (EV_A);
2798
2799 signal (w->signum, ev_sighandler);
2800 # else
2801 struct sigaction sa;
2802
2803 evpipe_init (EV_A);
2804
2805 sa.sa_handler = ev_sighandler;
2806 sigfillset (&sa.sa_mask);
2807 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2808 sigaction (w->signum, &sa, 0);
2809
2810 sigemptyset (&sa.sa_mask);
2811 sigaddset (&sa.sa_mask, w->signum);
2812 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2813 #endif
2814 }
2815
2816 EV_FREQUENT_CHECK;
2817 }
2818
2819 void noinline
2820 ev_signal_stop (EV_P_ ev_signal *w)
2821 {
2822 clear_pending (EV_A_ (W)w);
2823 if (expect_false (!ev_is_active (w)))
2824 return;
2825
2826 EV_FREQUENT_CHECK;
2827
2828 wlist_del (&signals [w->signum - 1].head, (WL)w);
2829 ev_stop (EV_A_ (W)w);
2830
2831 if (!signals [w->signum - 1].head)
2832 {
2833 #if EV_MULTIPLICITY
2834 signals [w->signum - 1].loop = 0; /* unattach from signal */
2835 #endif
2836 #if EV_USE_SIGNALFD
2837 if (sigfd >= 0)
2838 {
2839 sigset_t ss;
2840
2841 sigemptyset (&ss);
2842 sigaddset (&ss, w->signum);
2843 sigdelset (&sigfd_set, w->signum);
2844
2845 signalfd (sigfd, &sigfd_set, 0);
2846 sigprocmask (SIG_UNBLOCK, &ss, 0);
2847 }
2848 else
2849 #endif
2850 signal (w->signum, SIG_DFL);
2851 }
2852
2853 EV_FREQUENT_CHECK;
2854 }
2855
2856 #endif
2857
2858 #if EV_CHILD_ENABLE
2859
2860 void
2861 ev_child_start (EV_P_ ev_child *w)
2862 {
2863 #if EV_MULTIPLICITY
2864 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2865 #endif
2866 if (expect_false (ev_is_active (w)))
2867 return;
2868
2869 EV_FREQUENT_CHECK;
2870
2871 ev_start (EV_A_ (W)w, 1);
2872 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2873
2874 EV_FREQUENT_CHECK;
2875 }
2876
2877 void
2878 ev_child_stop (EV_P_ ev_child *w)
2879 {
2880 clear_pending (EV_A_ (W)w);
2881 if (expect_false (!ev_is_active (w)))
2882 return;
2883
2884 EV_FREQUENT_CHECK;
2885
2886 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2890 }
2891
2892 #endif
2893
2894 #if EV_STAT_ENABLE
2895
2896 # ifdef _WIN32
2897 # undef lstat
2898 # define lstat(a,b) _stati64 (a,b)
2899 # endif
2900
2901 #define DEF_STAT_INTERVAL 5.0074891
2902 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2903 #define MIN_STAT_INTERVAL 0.1074891
2904
2905 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2906
2907 #if EV_USE_INOTIFY
2908
2909 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2910 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2911
2912 static void noinline
2913 infy_add (EV_P_ ev_stat *w)
2914 {
2915 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2916
2917 if (w->wd >= 0)
2918 {
2919 struct statfs sfs;
2920
2921 /* now local changes will be tracked by inotify, but remote changes won't */
2922 /* unless the filesystem is known to be local, we therefore still poll */
2923 /* also do poll on <2.6.25, but with normal frequency */
2924
2925 if (!fs_2625)
2926 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2927 else if (!statfs (w->path, &sfs)
2928 && (sfs.f_type == 0x1373 /* devfs */
2929 || sfs.f_type == 0xEF53 /* ext2/3 */
2930 || sfs.f_type == 0x3153464a /* jfs */
2931 || sfs.f_type == 0x52654973 /* reiser3 */
2932 || sfs.f_type == 0x01021994 /* tempfs */
2933 || sfs.f_type == 0x58465342 /* xfs */))
2934 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2935 else
2936 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2937 }
2938 else
2939 {
2940 /* can't use inotify, continue to stat */
2941 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2942
2943 /* if path is not there, monitor some parent directory for speedup hints */
2944 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2945 /* but an efficiency issue only */
2946 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2947 {
2948 char path [4096];
2949 strcpy (path, w->path);
2950
2951 do
2952 {
2953 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2954 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2955
2956 char *pend = strrchr (path, '/');
2957
2958 if (!pend || pend == path)
2959 break;
2960
2961 *pend = 0;
2962 w->wd = inotify_add_watch (fs_fd, path, mask);
2963 }
2964 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2965 }
2966 }
2967
2968 if (w->wd >= 0)
2969 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2970
2971 /* now re-arm timer, if required */
2972 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2973 ev_timer_again (EV_A_ &w->timer);
2974 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2975 }
2976
2977 static void noinline
2978 infy_del (EV_P_ ev_stat *w)
2979 {
2980 int slot;
2981 int wd = w->wd;
2982
2983 if (wd < 0)
2984 return;
2985
2986 w->wd = -2;
2987 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2988 wlist_del (&fs_hash [slot].head, (WL)w);
2989
2990 /* remove this watcher, if others are watching it, they will rearm */
2991 inotify_rm_watch (fs_fd, wd);
2992 }
2993
2994 static void noinline
2995 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2996 {
2997 if (slot < 0)
2998 /* overflow, need to check for all hash slots */
2999 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3000 infy_wd (EV_A_ slot, wd, ev);
3001 else
3002 {
3003 WL w_;
3004
3005 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
3006 {
3007 ev_stat *w = (ev_stat *)w_;
3008 w_ = w_->next; /* lets us remove this watcher and all before it */
3009
3010 if (w->wd == wd || wd == -1)
3011 {
3012 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3013 {
3014 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
3015 w->wd = -1;
3016 infy_add (EV_A_ w); /* re-add, no matter what */
3017 }
3018
3019 stat_timer_cb (EV_A_ &w->timer, 0);
3020 }
3021 }
3022 }
3023 }
3024
3025 static void
3026 infy_cb (EV_P_ ev_io *w, int revents)
3027 {
3028 char buf [EV_INOTIFY_BUFSIZE];
3029 int ofs;
3030 int len = read (fs_fd, buf, sizeof (buf));
3031
3032 for (ofs = 0; ofs < len; )
3033 {
3034 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3035 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3036 ofs += sizeof (struct inotify_event) + ev->len;
3037 }
3038 }
3039
3040 inline_size unsigned int
3041 ev_linux_version (void)
3042 {
3043 struct utsname buf;
3044 unsigned int v;
3045 int i;
3046 char *p = buf.release;
3047
3048 if (uname (&buf))
3049 return 0;
3050
3051 for (i = 3+1; --i; )
3052 {
3053 unsigned int c = 0;
3054
3055 for (;;)
3056 {
3057 if (*p >= '0' && *p <= '9')
3058 c = c * 10 + *p++ - '0';
3059 else
3060 {
3061 p += *p == '.';
3062 break;
3063 }
3064 }
3065
3066 v = (v << 8) | c;
3067 }
3068
3069 return v;
3070 }
3071
3072 inline_size void
3073 ev_check_2625 (EV_P)
3074 {
3075 /* kernels < 2.6.25 are borked
3076 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3077 */
3078 if (ev_linux_version () < 0x020619)
3079 return;
3080
3081 fs_2625 = 1;
3082 }
3083
3084 inline_size int
3085 infy_newfd (void)
3086 {
3087 #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3088 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3089 if (fd >= 0)
3090 return fd;
3091 #endif
3092 return inotify_init ();
3093 }
3094
3095 inline_size void
3096 infy_init (EV_P)
3097 {
3098 if (fs_fd != -2)
3099 return;
3100
3101 fs_fd = -1;
3102
3103 ev_check_2625 (EV_A);
3104
3105 fs_fd = infy_newfd ();
3106
3107 if (fs_fd >= 0)
3108 {
3109 fd_intern (fs_fd);
3110 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3111 ev_set_priority (&fs_w, EV_MAXPRI);
3112 ev_io_start (EV_A_ &fs_w);
3113 ev_unref (EV_A);
3114 }
3115 }
3116
3117 inline_size void
3118 infy_fork (EV_P)
3119 {
3120 int slot;
3121
3122 if (fs_fd < 0)
3123 return;
3124
3125 ev_ref (EV_A);
3126 ev_io_stop (EV_A_ &fs_w);
3127 close (fs_fd);
3128 fs_fd = infy_newfd ();
3129
3130 if (fs_fd >= 0)
3131 {
3132 fd_intern (fs_fd);
3133 ev_io_set (&fs_w, fs_fd, EV_READ);
3134 ev_io_start (EV_A_ &fs_w);
3135 ev_unref (EV_A);
3136 }
3137
3138 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3139 {
3140 WL w_ = fs_hash [slot].head;
3141 fs_hash [slot].head = 0;
3142
3143 while (w_)
3144 {
3145 ev_stat *w = (ev_stat *)w_;
3146 w_ = w_->next; /* lets us add this watcher */
3147
3148 w->wd = -1;
3149
3150 if (fs_fd >= 0)
3151 infy_add (EV_A_ w); /* re-add, no matter what */
3152 else
3153 {
3154 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3155 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3156 ev_timer_again (EV_A_ &w->timer);
3157 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3158 }
3159 }
3160 }
3161 }
3162
3163 #endif
3164
3165 #ifdef _WIN32
3166 # define EV_LSTAT(p,b) _stati64 (p, b)
3167 #else
3168 # define EV_LSTAT(p,b) lstat (p, b)
3169 #endif
3170
3171 void
3172 ev_stat_stat (EV_P_ ev_stat *w)
3173 {
3174 if (lstat (w->path, &w->attr) < 0)
3175 w->attr.st_nlink = 0;
3176 else if (!w->attr.st_nlink)
3177 w->attr.st_nlink = 1;
3178 }
3179
3180 static void noinline
3181 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3182 {
3183 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3184
3185 ev_statdata prev = w->attr;
3186 ev_stat_stat (EV_A_ w);
3187
3188 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3189 if (
3190 prev.st_dev != w->attr.st_dev
3191 || prev.st_ino != w->attr.st_ino
3192 || prev.st_mode != w->attr.st_mode
3193 || prev.st_nlink != w->attr.st_nlink
3194 || prev.st_uid != w->attr.st_uid
3195 || prev.st_gid != w->attr.st_gid
3196 || prev.st_rdev != w->attr.st_rdev
3197 || prev.st_size != w->attr.st_size
3198 || prev.st_atime != w->attr.st_atime
3199 || prev.st_mtime != w->attr.st_mtime
3200 || prev.st_ctime != w->attr.st_ctime
3201 ) {
3202 /* we only update w->prev on actual differences */
3203 /* in case we test more often than invoke the callback, */
3204 /* to ensure that prev is always different to attr */
3205 w->prev = prev;
3206
3207 #if EV_USE_INOTIFY
3208 if (fs_fd >= 0)
3209 {
3210 infy_del (EV_A_ w);
3211 infy_add (EV_A_ w);
3212 ev_stat_stat (EV_A_ w); /* avoid race... */
3213 }
3214 #endif
3215
3216 ev_feed_event (EV_A_ w, EV_STAT);
3217 }
3218 }
3219
3220 void
3221 ev_stat_start (EV_P_ ev_stat *w)
3222 {
3223 if (expect_false (ev_is_active (w)))
3224 return;
3225
3226 ev_stat_stat (EV_A_ w);
3227
3228 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3229 w->interval = MIN_STAT_INTERVAL;
3230
3231 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3232 ev_set_priority (&w->timer, ev_priority (w));
3233
3234 #if EV_USE_INOTIFY
3235 infy_init (EV_A);
3236
3237 if (fs_fd >= 0)
3238 infy_add (EV_A_ w);
3239 else
3240 #endif
3241 {
3242 ev_timer_again (EV_A_ &w->timer);
3243 ev_unref (EV_A);
3244 }
3245
3246 ev_start (EV_A_ (W)w, 1);
3247
3248 EV_FREQUENT_CHECK;
3249 }
3250
3251 void
3252 ev_stat_stop (EV_P_ ev_stat *w)
3253 {
3254 clear_pending (EV_A_ (W)w);
3255 if (expect_false (!ev_is_active (w)))
3256 return;
3257
3258 EV_FREQUENT_CHECK;
3259
3260 #if EV_USE_INOTIFY
3261 infy_del (EV_A_ w);
3262 #endif
3263
3264 if (ev_is_active (&w->timer))
3265 {
3266 ev_ref (EV_A);
3267 ev_timer_stop (EV_A_ &w->timer);
3268 }
3269
3270 ev_stop (EV_A_ (W)w);
3271
3272 EV_FREQUENT_CHECK;
3273 }
3274 #endif
3275
3276 #if EV_IDLE_ENABLE
3277 void
3278 ev_idle_start (EV_P_ ev_idle *w)
3279 {
3280 if (expect_false (ev_is_active (w)))
3281 return;
3282
3283 pri_adjust (EV_A_ (W)w);
3284
3285 EV_FREQUENT_CHECK;
3286
3287 {
3288 int active = ++idlecnt [ABSPRI (w)];
3289
3290 ++idleall;
3291 ev_start (EV_A_ (W)w, active);
3292
3293 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3294 idles [ABSPRI (w)][active - 1] = w;
3295 }
3296
3297 EV_FREQUENT_CHECK;
3298 }
3299
3300 void
3301 ev_idle_stop (EV_P_ ev_idle *w)
3302 {
3303 clear_pending (EV_A_ (W)w);
3304 if (expect_false (!ev_is_active (w)))
3305 return;
3306
3307 EV_FREQUENT_CHECK;
3308
3309 {
3310 int active = ev_active (w);
3311
3312 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3313 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3314
3315 ev_stop (EV_A_ (W)w);
3316 --idleall;
3317 }
3318
3319 EV_FREQUENT_CHECK;
3320 }
3321 #endif
3322
3323 void
3324 ev_prepare_start (EV_P_ ev_prepare *w)
3325 {
3326 if (expect_false (ev_is_active (w)))
3327 return;
3328
3329 EV_FREQUENT_CHECK;
3330
3331 ev_start (EV_A_ (W)w, ++preparecnt);
3332 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3333 prepares [preparecnt - 1] = w;
3334
3335 EV_FREQUENT_CHECK;
3336 }
3337
3338 void
3339 ev_prepare_stop (EV_P_ ev_prepare *w)
3340 {
3341 clear_pending (EV_A_ (W)w);
3342 if (expect_false (!ev_is_active (w)))
3343 return;
3344
3345 EV_FREQUENT_CHECK;
3346
3347 {
3348 int active = ev_active (w);
3349
3350 prepares [active - 1] = prepares [--preparecnt];
3351 ev_active (prepares [active - 1]) = active;
3352 }
3353
3354 ev_stop (EV_A_ (W)w);
3355
3356 EV_FREQUENT_CHECK;
3357 }
3358
3359 void
3360 ev_check_start (EV_P_ ev_check *w)
3361 {
3362 if (expect_false (ev_is_active (w)))
3363 return;
3364
3365 EV_FREQUENT_CHECK;
3366
3367 ev_start (EV_A_ (W)w, ++checkcnt);
3368 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3369 checks [checkcnt - 1] = w;
3370
3371 EV_FREQUENT_CHECK;
3372 }
3373
3374 void
3375 ev_check_stop (EV_P_ ev_check *w)
3376 {
3377 clear_pending (EV_A_ (W)w);
3378 if (expect_false (!ev_is_active (w)))
3379 return;
3380
3381 EV_FREQUENT_CHECK;
3382
3383 {
3384 int active = ev_active (w);
3385
3386 checks [active - 1] = checks [--checkcnt];
3387 ev_active (checks [active - 1]) = active;
3388 }
3389
3390 ev_stop (EV_A_ (W)w);
3391
3392 EV_FREQUENT_CHECK;
3393 }
3394
3395 #if EV_EMBED_ENABLE
3396 void noinline
3397 ev_embed_sweep (EV_P_ ev_embed *w)
3398 {
3399 ev_loop (w->other, EVLOOP_NONBLOCK);
3400 }
3401
3402 static void
3403 embed_io_cb (EV_P_ ev_io *io, int revents)
3404 {
3405 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3406
3407 if (ev_cb (w))
3408 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3409 else
3410 ev_loop (w->other, EVLOOP_NONBLOCK);
3411 }
3412
3413 static void
3414 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3415 {
3416 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3417
3418 {
3419 EV_P = w->other;
3420
3421 while (fdchangecnt)
3422 {
3423 fd_reify (EV_A);
3424 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3425 }
3426 }
3427 }
3428
3429 static void
3430 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3431 {
3432 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3433
3434 ev_embed_stop (EV_A_ w);
3435
3436 {
3437 EV_P = w->other;
3438
3439 ev_loop_fork (EV_A);
3440 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3441 }
3442
3443 ev_embed_start (EV_A_ w);
3444 }
3445
3446 #if 0
3447 static void
3448 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3449 {
3450 ev_idle_stop (EV_A_ idle);
3451 }
3452 #endif
3453
3454 void
3455 ev_embed_start (EV_P_ ev_embed *w)
3456 {
3457 if (expect_false (ev_is_active (w)))
3458 return;
3459
3460 {
3461 EV_P = w->other;
3462 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3463 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3464 }
3465
3466 EV_FREQUENT_CHECK;
3467
3468 ev_set_priority (&w->io, ev_priority (w));
3469 ev_io_start (EV_A_ &w->io);
3470
3471 ev_prepare_init (&w->prepare, embed_prepare_cb);
3472 ev_set_priority (&w->prepare, EV_MINPRI);
3473 ev_prepare_start (EV_A_ &w->prepare);
3474
3475 ev_fork_init (&w->fork, embed_fork_cb);
3476 ev_fork_start (EV_A_ &w->fork);
3477
3478 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3479
3480 ev_start (EV_A_ (W)w, 1);
3481
3482 EV_FREQUENT_CHECK;
3483 }
3484
3485 void
3486 ev_embed_stop (EV_P_ ev_embed *w)
3487 {
3488 clear_pending (EV_A_ (W)w);
3489 if (expect_false (!ev_is_active (w)))
3490 return;
3491
3492 EV_FREQUENT_CHECK;
3493
3494 ev_io_stop (EV_A_ &w->io);
3495 ev_prepare_stop (EV_A_ &w->prepare);
3496 ev_fork_stop (EV_A_ &w->fork);
3497
3498 ev_stop (EV_A_ (W)w);
3499
3500 EV_FREQUENT_CHECK;
3501 }
3502 #endif
3503
3504 #if EV_FORK_ENABLE
3505 void
3506 ev_fork_start (EV_P_ ev_fork *w)
3507 {
3508 if (expect_false (ev_is_active (w)))
3509 return;
3510
3511 EV_FREQUENT_CHECK;
3512
3513 ev_start (EV_A_ (W)w, ++forkcnt);
3514 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3515 forks [forkcnt - 1] = w;
3516
3517 EV_FREQUENT_CHECK;
3518 }
3519
3520 void
3521 ev_fork_stop (EV_P_ ev_fork *w)
3522 {
3523 clear_pending (EV_A_ (W)w);
3524 if (expect_false (!ev_is_active (w)))
3525 return;
3526
3527 EV_FREQUENT_CHECK;
3528
3529 {
3530 int active = ev_active (w);
3531
3532 forks [active - 1] = forks [--forkcnt];
3533 ev_active (forks [active - 1]) = active;
3534 }
3535
3536 ev_stop (EV_A_ (W)w);
3537
3538 EV_FREQUENT_CHECK;
3539 }
3540 #endif
3541
3542 #if EV_ASYNC_ENABLE
3543 void
3544 ev_async_start (EV_P_ ev_async *w)
3545 {
3546 if (expect_false (ev_is_active (w)))
3547 return;
3548
3549 evpipe_init (EV_A);
3550
3551 EV_FREQUENT_CHECK;
3552
3553 ev_start (EV_A_ (W)w, ++asynccnt);
3554 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3555 asyncs [asynccnt - 1] = w;
3556
3557 EV_FREQUENT_CHECK;
3558 }
3559
3560 void
3561 ev_async_stop (EV_P_ ev_async *w)
3562 {
3563 clear_pending (EV_A_ (W)w);
3564 if (expect_false (!ev_is_active (w)))
3565 return;
3566
3567 EV_FREQUENT_CHECK;
3568
3569 {
3570 int active = ev_active (w);
3571
3572 asyncs [active - 1] = asyncs [--asynccnt];
3573 ev_active (asyncs [active - 1]) = active;
3574 }
3575
3576 ev_stop (EV_A_ (W)w);
3577
3578 EV_FREQUENT_CHECK;
3579 }
3580
3581 void
3582 ev_async_send (EV_P_ ev_async *w)
3583 {
3584 w->sent = 1;
3585 evpipe_write (EV_A_ &async_pending);
3586 }
3587 #endif
3588
3589 /*****************************************************************************/
3590
3591 struct ev_once
3592 {
3593 ev_io io;
3594 ev_timer to;
3595 void (*cb)(int revents, void *arg);
3596 void *arg;
3597 };
3598
3599 static void
3600 once_cb (EV_P_ struct ev_once *once, int revents)
3601 {
3602 void (*cb)(int revents, void *arg) = once->cb;
3603 void *arg = once->arg;
3604
3605 ev_io_stop (EV_A_ &once->io);
3606 ev_timer_stop (EV_A_ &once->to);
3607 ev_free (once);
3608
3609 cb (revents, arg);
3610 }
3611
3612 static void
3613 once_cb_io (EV_P_ ev_io *w, int revents)
3614 {
3615 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3616
3617 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3618 }
3619
3620 static void
3621 once_cb_to (EV_P_ ev_timer *w, int revents)
3622 {
3623 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3624
3625 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3626 }
3627
3628 void
3629 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3630 {
3631 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3632
3633 if (expect_false (!once))
3634 {
3635 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3636 return;
3637 }
3638
3639 once->cb = cb;
3640 once->arg = arg;
3641
3642 ev_init (&once->io, once_cb_io);
3643 if (fd >= 0)
3644 {
3645 ev_io_set (&once->io, fd, events);
3646 ev_io_start (EV_A_ &once->io);
3647 }
3648
3649 ev_init (&once->to, once_cb_to);
3650 if (timeout >= 0.)
3651 {
3652 ev_timer_set (&once->to, timeout, 0.);
3653 ev_timer_start (EV_A_ &once->to);
3654 }
3655 }
3656
3657 /*****************************************************************************/
3658
3659 #if EV_WALK_ENABLE
3660 void
3661 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3662 {
3663 int i, j;
3664 ev_watcher_list *wl, *wn;
3665
3666 if (types & (EV_IO | EV_EMBED))
3667 for (i = 0; i < anfdmax; ++i)
3668 for (wl = anfds [i].head; wl; )
3669 {
3670 wn = wl->next;
3671
3672 #if EV_EMBED_ENABLE
3673 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3674 {
3675 if (types & EV_EMBED)
3676 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3677 }
3678 else
3679 #endif
3680 #if EV_USE_INOTIFY
3681 if (ev_cb ((ev_io *)wl) == infy_cb)
3682 ;
3683 else
3684 #endif
3685 if ((ev_io *)wl != &pipe_w)
3686 if (types & EV_IO)
3687 cb (EV_A_ EV_IO, wl);
3688
3689 wl = wn;
3690 }
3691
3692 if (types & (EV_TIMER | EV_STAT))
3693 for (i = timercnt + HEAP0; i-- > HEAP0; )
3694 #if EV_STAT_ENABLE
3695 /*TODO: timer is not always active*/
3696 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3697 {
3698 if (types & EV_STAT)
3699 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3700 }
3701 else
3702 #endif
3703 if (types & EV_TIMER)
3704 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3705
3706 #if EV_PERIODIC_ENABLE
3707 if (types & EV_PERIODIC)
3708 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3709 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3710 #endif
3711
3712 #if EV_IDLE_ENABLE
3713 if (types & EV_IDLE)
3714 for (j = NUMPRI; i--; )
3715 for (i = idlecnt [j]; i--; )
3716 cb (EV_A_ EV_IDLE, idles [j][i]);
3717 #endif
3718
3719 #if EV_FORK_ENABLE
3720 if (types & EV_FORK)
3721 for (i = forkcnt; i--; )
3722 if (ev_cb (forks [i]) != embed_fork_cb)
3723 cb (EV_A_ EV_FORK, forks [i]);
3724 #endif
3725
3726 #if EV_ASYNC_ENABLE
3727 if (types & EV_ASYNC)
3728 for (i = asynccnt; i--; )
3729 cb (EV_A_ EV_ASYNC, asyncs [i]);
3730 #endif
3731
3732 if (types & EV_PREPARE)
3733 for (i = preparecnt; i--; )
3734 #if EV_EMBED_ENABLE
3735 if (ev_cb (prepares [i]) != embed_prepare_cb)
3736 #endif
3737 cb (EV_A_ EV_PREPARE, prepares [i]);
3738
3739 if (types & EV_CHECK)
3740 for (i = checkcnt; i--; )
3741 cb (EV_A_ EV_CHECK, checks [i]);
3742
3743 if (types & EV_SIGNAL)
3744 for (i = 0; i < EV_NSIG - 1; ++i)
3745 for (wl = signals [i].head; wl; )
3746 {
3747 wn = wl->next;
3748 cb (EV_A_ EV_SIGNAL, wl);
3749 wl = wn;
3750 }
3751
3752 if (types & EV_CHILD)
3753 for (i = EV_PID_HASHSIZE; i--; )
3754 for (wl = childs [i]; wl; )
3755 {
3756 wn = wl->next;
3757 cb (EV_A_ EV_CHILD, wl);
3758 wl = wn;
3759 }
3760 /* EV_STAT 0x00001000 /* stat data changed */
3761 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3762 }
3763 #endif
3764
3765 #if EV_MULTIPLICITY
3766 #include "ev_wrap.h"
3767 #endif
3768
3769 #ifdef __cplusplus
3770 }
3771 #endif
3772