ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.411
Committed: Tue Feb 21 04:34:02 2012 UTC (12 years, 2 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.410: +2 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined(EV_USE_CLOCK_SYSCALL)
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <windows.h>
207 # ifndef EV_SELECT_IS_WINSOCKET
208 # define EV_SELECT_IS_WINSOCKET 1
209 # endif
210 # undef EV_AVOID_STDIO
211 #endif
212
213 /* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219 #define _DARWIN_UNLIMITED_SELECT 1
220
221 /* this block tries to deduce configuration from header-defined symbols and defaults */
222
223 /* try to deduce the maximum number of signals on this platform */
224 #if defined (EV_NSIG)
225 /* use what's provided */
226 #elif defined (NSIG)
227 # define EV_NSIG (NSIG)
228 #elif defined(_NSIG)
229 # define EV_NSIG (_NSIG)
230 #elif defined (SIGMAX)
231 # define EV_NSIG (SIGMAX+1)
232 #elif defined (SIG_MAX)
233 # define EV_NSIG (SIG_MAX+1)
234 #elif defined (_SIG_MAX)
235 # define EV_NSIG (_SIG_MAX+1)
236 #elif defined (MAXSIG)
237 # define EV_NSIG (MAXSIG+1)
238 #elif defined (MAX_SIG)
239 # define EV_NSIG (MAX_SIG+1)
240 #elif defined (SIGARRAYSIZE)
241 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242 #elif defined (_sys_nsig)
243 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244 #else
245 # error "unable to find value for NSIG, please report"
246 /* to make it compile regardless, just remove the above line, */
247 /* but consider reporting it, too! :) */
248 # define EV_NSIG 65
249 #endif
250
251 #ifndef EV_USE_FLOOR
252 # define EV_USE_FLOOR 0
253 #endif
254
255 #ifndef EV_USE_CLOCK_SYSCALL
256 # if __linux && __GLIBC__ >= 2
257 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258 # else
259 # define EV_USE_CLOCK_SYSCALL 0
260 # endif
261 #endif
262
263 #ifndef EV_USE_MONOTONIC
264 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
265 # define EV_USE_MONOTONIC EV_FEATURE_OS
266 # else
267 # define EV_USE_MONOTONIC 0
268 # endif
269 #endif
270
271 #ifndef EV_USE_REALTIME
272 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273 #endif
274
275 #ifndef EV_USE_NANOSLEEP
276 # if _POSIX_C_SOURCE >= 199309L
277 # define EV_USE_NANOSLEEP EV_FEATURE_OS
278 # else
279 # define EV_USE_NANOSLEEP 0
280 # endif
281 #endif
282
283 #ifndef EV_USE_SELECT
284 # define EV_USE_SELECT EV_FEATURE_BACKENDS
285 #endif
286
287 #ifndef EV_USE_POLL
288 # ifdef _WIN32
289 # define EV_USE_POLL 0
290 # else
291 # define EV_USE_POLL EV_FEATURE_BACKENDS
292 # endif
293 #endif
294
295 #ifndef EV_USE_EPOLL
296 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
298 # else
299 # define EV_USE_EPOLL 0
300 # endif
301 #endif
302
303 #ifndef EV_USE_KQUEUE
304 # define EV_USE_KQUEUE 0
305 #endif
306
307 #ifndef EV_USE_PORT
308 # define EV_USE_PORT 0
309 #endif
310
311 #ifndef EV_USE_INOTIFY
312 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313 # define EV_USE_INOTIFY EV_FEATURE_OS
314 # else
315 # define EV_USE_INOTIFY 0
316 # endif
317 #endif
318
319 #ifndef EV_PID_HASHSIZE
320 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
321 #endif
322
323 #ifndef EV_INOTIFY_HASHSIZE
324 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325 #endif
326
327 #ifndef EV_USE_EVENTFD
328 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329 # define EV_USE_EVENTFD EV_FEATURE_OS
330 # else
331 # define EV_USE_EVENTFD 0
332 # endif
333 #endif
334
335 #ifndef EV_USE_SIGNALFD
336 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337 # define EV_USE_SIGNALFD EV_FEATURE_OS
338 # else
339 # define EV_USE_SIGNALFD 0
340 # endif
341 #endif
342
343 #if 0 /* debugging */
344 # define EV_VERIFY 3
345 # define EV_USE_4HEAP 1
346 # define EV_HEAP_CACHE_AT 1
347 #endif
348
349 #ifndef EV_VERIFY
350 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351 #endif
352
353 #ifndef EV_USE_4HEAP
354 # define EV_USE_4HEAP EV_FEATURE_DATA
355 #endif
356
357 #ifndef EV_HEAP_CACHE_AT
358 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359 #endif
360
361 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362 /* which makes programs even slower. might work on other unices, too. */
363 #if EV_USE_CLOCK_SYSCALL
364 # include <syscall.h>
365 # ifdef SYS_clock_gettime
366 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367 # undef EV_USE_MONOTONIC
368 # define EV_USE_MONOTONIC 1
369 # else
370 # undef EV_USE_CLOCK_SYSCALL
371 # define EV_USE_CLOCK_SYSCALL 0
372 # endif
373 #endif
374
375 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377 #ifdef _AIX
378 /* AIX has a completely broken poll.h header */
379 # undef EV_USE_POLL
380 # define EV_USE_POLL 0
381 #endif
382
383 #ifndef CLOCK_MONOTONIC
384 # undef EV_USE_MONOTONIC
385 # define EV_USE_MONOTONIC 0
386 #endif
387
388 #ifndef CLOCK_REALTIME
389 # undef EV_USE_REALTIME
390 # define EV_USE_REALTIME 0
391 #endif
392
393 #if !EV_STAT_ENABLE
394 # undef EV_USE_INOTIFY
395 # define EV_USE_INOTIFY 0
396 #endif
397
398 #if !EV_USE_NANOSLEEP
399 /* hp-ux has it in sys/time.h, which we unconditionally include above */
400 # if !defined(_WIN32) && !defined(__hpux)
401 # include <sys/select.h>
402 # endif
403 #endif
404
405 #if EV_USE_INOTIFY
406 # include <sys/statfs.h>
407 # include <sys/inotify.h>
408 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409 # ifndef IN_DONT_FOLLOW
410 # undef EV_USE_INOTIFY
411 # define EV_USE_INOTIFY 0
412 # endif
413 #endif
414
415 #if EV_SELECT_IS_WINSOCKET
416 # include <winsock.h>
417 #endif
418
419 #if EV_USE_EVENTFD
420 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421 # include <stdint.h>
422 # ifndef EFD_NONBLOCK
423 # define EFD_NONBLOCK O_NONBLOCK
424 # endif
425 # ifndef EFD_CLOEXEC
426 # ifdef O_CLOEXEC
427 # define EFD_CLOEXEC O_CLOEXEC
428 # else
429 # define EFD_CLOEXEC 02000000
430 # endif
431 # endif
432 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433 #endif
434
435 #if EV_USE_SIGNALFD
436 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437 # include <stdint.h>
438 # ifndef SFD_NONBLOCK
439 # define SFD_NONBLOCK O_NONBLOCK
440 # endif
441 # ifndef SFD_CLOEXEC
442 # ifdef O_CLOEXEC
443 # define SFD_CLOEXEC O_CLOEXEC
444 # else
445 # define SFD_CLOEXEC 02000000
446 # endif
447 # endif
448 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450 struct signalfd_siginfo
451 {
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454 };
455 #endif
456
457 /**/
458
459 #if EV_VERIFY >= 3
460 # define EV_FREQUENT_CHECK ev_verify (EV_A)
461 #else
462 # define EV_FREQUENT_CHECK do { } while (0)
463 #endif
464
465 /*
466 * This is used to work around floating point rounding problems.
467 * This value is good at least till the year 4000.
468 */
469 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
471
472 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
473 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
474
475 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479 /* ECB.H BEGIN */
480 /*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509 #ifndef ECB_H
510 #define ECB_H
511
512 #ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #else
527 #include <inttypes.h>
528 #endif
529
530 /* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537 #ifndef ECB_GCC_VERSION
538 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
542 #endif
543 #endif
544
545 /*****************************************************************************/
546
547 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550 #if ECB_NO_THREADS
551 # define ECB_NO_SMP 1
552 #endif
553
554 #if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556 #endif
557
558 #ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
571 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
574 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined(__s390__) || defined(__s390x__)
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #endif
583 #endif
584 #endif
585
586 #ifndef ECB_MEMORY_FENCE
587 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
588 #define ECB_MEMORY_FENCE __sync_synchronize ()
589 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
590 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
591 #elif _MSC_VER >= 1400 /* VC++ 2005 */
592 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
593 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
594 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
595 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
596 #elif defined(_WIN32)
597 #include <WinNT.h>
598 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
599 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
600 #include <mbarrier.h>
601 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
602 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
603 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
604 #endif
605 #endif
606
607 #ifndef ECB_MEMORY_FENCE
608 #if !ECB_AVOID_PTHREADS
609 /*
610 * if you get undefined symbol references to pthread_mutex_lock,
611 * or failure to find pthread.h, then you should implement
612 * the ECB_MEMORY_FENCE operations for your cpu/compiler
613 * OR provide pthread.h and link against the posix thread library
614 * of your system.
615 */
616 #include <pthread.h>
617 #define ECB_NEEDS_PTHREADS 1
618 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
619
620 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
621 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
622 #endif
623 #endif
624
625 #if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
626 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
627 #endif
628
629 #if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
630 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
631 #endif
632
633 /*****************************************************************************/
634
635 #define ECB_C99 (__STDC_VERSION__ >= 199901L)
636
637 #if __cplusplus
638 #define ecb_inline static inline
639 #elif ECB_GCC_VERSION(2,5)
640 #define ecb_inline static __inline__
641 #elif ECB_C99
642 #define ecb_inline static inline
643 #else
644 #define ecb_inline static
645 #endif
646
647 #if ECB_GCC_VERSION(3,3)
648 #define ecb_restrict __restrict__
649 #elif ECB_C99
650 #define ecb_restrict restrict
651 #else
652 #define ecb_restrict
653 #endif
654
655 typedef int ecb_bool;
656
657 #define ECB_CONCAT_(a, b) a ## b
658 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
659 #define ECB_STRINGIFY_(a) # a
660 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
661
662 #define ecb_function_ ecb_inline
663
664 #if ECB_GCC_VERSION(3,1)
665 #define ecb_attribute(attrlist) __attribute__(attrlist)
666 #define ecb_is_constant(expr) __builtin_constant_p (expr)
667 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
668 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
669 #else
670 #define ecb_attribute(attrlist)
671 #define ecb_is_constant(expr) 0
672 #define ecb_expect(expr,value) (expr)
673 #define ecb_prefetch(addr,rw,locality)
674 #endif
675
676 /* no emulation for ecb_decltype */
677 #if ECB_GCC_VERSION(4,5)
678 #define ecb_decltype(x) __decltype(x)
679 #elif ECB_GCC_VERSION(3,0)
680 #define ecb_decltype(x) __typeof(x)
681 #endif
682
683 #define ecb_noinline ecb_attribute ((__noinline__))
684 #define ecb_noreturn ecb_attribute ((__noreturn__))
685 #define ecb_unused ecb_attribute ((__unused__))
686 #define ecb_const ecb_attribute ((__const__))
687 #define ecb_pure ecb_attribute ((__pure__))
688
689 #if ECB_GCC_VERSION(4,3)
690 #define ecb_artificial ecb_attribute ((__artificial__))
691 #define ecb_hot ecb_attribute ((__hot__))
692 #define ecb_cold ecb_attribute ((__cold__))
693 #else
694 #define ecb_artificial
695 #define ecb_hot
696 #define ecb_cold
697 #endif
698
699 /* put around conditional expressions if you are very sure that the */
700 /* expression is mostly true or mostly false. note that these return */
701 /* booleans, not the expression. */
702 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
703 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
704 /* for compatibility to the rest of the world */
705 #define ecb_likely(expr) ecb_expect_true (expr)
706 #define ecb_unlikely(expr) ecb_expect_false (expr)
707
708 /* count trailing zero bits and count # of one bits */
709 #if ECB_GCC_VERSION(3,4)
710 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
711 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
712 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
713 #define ecb_ctz32(x) __builtin_ctz (x)
714 #define ecb_ctz64(x) __builtin_ctzll (x)
715 #define ecb_popcount32(x) __builtin_popcount (x)
716 /* no popcountll */
717 #else
718 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
719 ecb_function_ int
720 ecb_ctz32 (uint32_t x)
721 {
722 int r = 0;
723
724 x &= ~x + 1; /* this isolates the lowest bit */
725
726 #if ECB_branchless_on_i386
727 r += !!(x & 0xaaaaaaaa) << 0;
728 r += !!(x & 0xcccccccc) << 1;
729 r += !!(x & 0xf0f0f0f0) << 2;
730 r += !!(x & 0xff00ff00) << 3;
731 r += !!(x & 0xffff0000) << 4;
732 #else
733 if (x & 0xaaaaaaaa) r += 1;
734 if (x & 0xcccccccc) r += 2;
735 if (x & 0xf0f0f0f0) r += 4;
736 if (x & 0xff00ff00) r += 8;
737 if (x & 0xffff0000) r += 16;
738 #endif
739
740 return r;
741 }
742
743 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
744 ecb_function_ int
745 ecb_ctz64 (uint64_t x)
746 {
747 int shift = x & 0xffffffffU ? 0 : 32;
748 return ecb_ctz32 (x >> shift) + shift;
749 }
750
751 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
752 ecb_function_ int
753 ecb_popcount32 (uint32_t x)
754 {
755 x -= (x >> 1) & 0x55555555;
756 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
757 x = ((x >> 4) + x) & 0x0f0f0f0f;
758 x *= 0x01010101;
759
760 return x >> 24;
761 }
762
763 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
764 ecb_function_ int ecb_ld32 (uint32_t x)
765 {
766 int r = 0;
767
768 if (x >> 16) { x >>= 16; r += 16; }
769 if (x >> 8) { x >>= 8; r += 8; }
770 if (x >> 4) { x >>= 4; r += 4; }
771 if (x >> 2) { x >>= 2; r += 2; }
772 if (x >> 1) { r += 1; }
773
774 return r;
775 }
776
777 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
778 ecb_function_ int ecb_ld64 (uint64_t x)
779 {
780 int r = 0;
781
782 if (x >> 32) { x >>= 32; r += 32; }
783
784 return r + ecb_ld32 (x);
785 }
786 #endif
787
788 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
789 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
790 {
791 return ( (x * 0x0802U & 0x22110U)
792 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
793 }
794
795 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
796 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
797 {
798 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
799 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
800 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
801 x = ( x >> 8 ) | ( x << 8);
802
803 return x;
804 }
805
806 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
807 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
808 {
809 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
810 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
811 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
812 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
813 x = ( x >> 16 ) | ( x << 16);
814
815 return x;
816 }
817
818 /* popcount64 is only available on 64 bit cpus as gcc builtin */
819 /* so for this version we are lazy */
820 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
821 ecb_function_ int
822 ecb_popcount64 (uint64_t x)
823 {
824 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
825 }
826
827 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
828 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
829 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
830 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
831 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
832 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
833 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
834 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
835
836 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
837 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
838 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
839 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
840 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
841 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
842 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
843 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
844
845 #if ECB_GCC_VERSION(4,3)
846 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
847 #define ecb_bswap32(x) __builtin_bswap32 (x)
848 #define ecb_bswap64(x) __builtin_bswap64 (x)
849 #else
850 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
851 ecb_function_ uint16_t
852 ecb_bswap16 (uint16_t x)
853 {
854 return ecb_rotl16 (x, 8);
855 }
856
857 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
858 ecb_function_ uint32_t
859 ecb_bswap32 (uint32_t x)
860 {
861 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
862 }
863
864 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
865 ecb_function_ uint64_t
866 ecb_bswap64 (uint64_t x)
867 {
868 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
869 }
870 #endif
871
872 #if ECB_GCC_VERSION(4,5)
873 #define ecb_unreachable() __builtin_unreachable ()
874 #else
875 /* this seems to work fine, but gcc always emits a warning for it :/ */
876 ecb_inline void ecb_unreachable (void) ecb_noreturn;
877 ecb_inline void ecb_unreachable (void) { }
878 #endif
879
880 /* try to tell the compiler that some condition is definitely true */
881 #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
882
883 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
884 ecb_inline unsigned char
885 ecb_byteorder_helper (void)
886 {
887 const uint32_t u = 0x11223344;
888 return *(unsigned char *)&u;
889 }
890
891 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
892 ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
893 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
894 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
895
896 #if ECB_GCC_VERSION(3,0) || ECB_C99
897 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
898 #else
899 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
900 #endif
901
902 #if __cplusplus
903 template<typename T>
904 static inline T ecb_div_rd (T val, T div)
905 {
906 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
907 }
908 template<typename T>
909 static inline T ecb_div_ru (T val, T div)
910 {
911 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
912 }
913 #else
914 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
915 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
916 #endif
917
918 #if ecb_cplusplus_does_not_suck
919 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
920 template<typename T, int N>
921 static inline int ecb_array_length (const T (&arr)[N])
922 {
923 return N;
924 }
925 #else
926 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
927 #endif
928
929 #endif
930
931 /* ECB.H END */
932
933 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
934 /* if your architecture doesn't need memory fences, e.g. because it is
935 * single-cpu/core, or if you use libev in a project that doesn't use libev
936 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
937 * libev, in which cases the memory fences become nops.
938 * alternatively, you can remove this #error and link against libpthread,
939 * which will then provide the memory fences.
940 */
941 # error "memory fences not defined for your architecture, please report"
942 #endif
943
944 #ifndef ECB_MEMORY_FENCE
945 # define ECB_MEMORY_FENCE do { } while (0)
946 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
947 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
948 #endif
949
950 #define expect_false(cond) ecb_expect_false (cond)
951 #define expect_true(cond) ecb_expect_true (cond)
952 #define noinline ecb_noinline
953
954 #define inline_size ecb_inline
955
956 #if EV_FEATURE_CODE
957 # define inline_speed ecb_inline
958 #else
959 # define inline_speed static noinline
960 #endif
961
962 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
963
964 #if EV_MINPRI == EV_MAXPRI
965 # define ABSPRI(w) (((W)w), 0)
966 #else
967 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
968 #endif
969
970 #define EMPTY /* required for microsofts broken pseudo-c compiler */
971 #define EMPTY2(a,b) /* used to suppress some warnings */
972
973 typedef ev_watcher *W;
974 typedef ev_watcher_list *WL;
975 typedef ev_watcher_time *WT;
976
977 #define ev_active(w) ((W)(w))->active
978 #define ev_at(w) ((WT)(w))->at
979
980 #if EV_USE_REALTIME
981 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
982 /* giving it a reasonably high chance of working on typical architectures */
983 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
984 #endif
985
986 #if EV_USE_MONOTONIC
987 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
988 #endif
989
990 #ifndef EV_FD_TO_WIN32_HANDLE
991 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
992 #endif
993 #ifndef EV_WIN32_HANDLE_TO_FD
994 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
995 #endif
996 #ifndef EV_WIN32_CLOSE_FD
997 # define EV_WIN32_CLOSE_FD(fd) close (fd)
998 #endif
999
1000 #ifdef _WIN32
1001 # include "ev_win32.c"
1002 #endif
1003
1004 /*****************************************************************************/
1005
1006 /* define a suitable floor function (only used by periodics atm) */
1007
1008 #if EV_USE_FLOOR
1009 # include <math.h>
1010 # define ev_floor(v) floor (v)
1011 #else
1012
1013 #include <float.h>
1014
1015 /* a floor() replacement function, should be independent of ev_tstamp type */
1016 static ev_tstamp noinline
1017 ev_floor (ev_tstamp v)
1018 {
1019 /* the choice of shift factor is not terribly important */
1020 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1021 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1022 #else
1023 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1024 #endif
1025
1026 /* argument too large for an unsigned long? */
1027 if (expect_false (v >= shift))
1028 {
1029 ev_tstamp f;
1030
1031 if (v == v - 1.)
1032 return v; /* very large number */
1033
1034 f = shift * ev_floor (v * (1. / shift));
1035 return f + ev_floor (v - f);
1036 }
1037
1038 /* special treatment for negative args? */
1039 if (expect_false (v < 0.))
1040 {
1041 ev_tstamp f = -ev_floor (-v);
1042
1043 return f - (f == v ? 0 : 1);
1044 }
1045
1046 /* fits into an unsigned long */
1047 return (unsigned long)v;
1048 }
1049
1050 #endif
1051
1052 /*****************************************************************************/
1053
1054 #ifdef __linux
1055 # include <sys/utsname.h>
1056 #endif
1057
1058 static unsigned int noinline ecb_cold
1059 ev_linux_version (void)
1060 {
1061 #ifdef __linux
1062 unsigned int v = 0;
1063 struct utsname buf;
1064 int i;
1065 char *p = buf.release;
1066
1067 if (uname (&buf))
1068 return 0;
1069
1070 for (i = 3+1; --i; )
1071 {
1072 unsigned int c = 0;
1073
1074 for (;;)
1075 {
1076 if (*p >= '0' && *p <= '9')
1077 c = c * 10 + *p++ - '0';
1078 else
1079 {
1080 p += *p == '.';
1081 break;
1082 }
1083 }
1084
1085 v = (v << 8) | c;
1086 }
1087
1088 return v;
1089 #else
1090 return 0;
1091 #endif
1092 }
1093
1094 /*****************************************************************************/
1095
1096 #if EV_AVOID_STDIO
1097 static void noinline ecb_cold
1098 ev_printerr (const char *msg)
1099 {
1100 write (STDERR_FILENO, msg, strlen (msg));
1101 }
1102 #endif
1103
1104 static void (*syserr_cb)(const char *msg);
1105
1106 void ecb_cold
1107 ev_set_syserr_cb (void (*cb)(const char *msg))
1108 {
1109 syserr_cb = cb;
1110 }
1111
1112 static void noinline ecb_cold
1113 ev_syserr (const char *msg)
1114 {
1115 if (!msg)
1116 msg = "(libev) system error";
1117
1118 if (syserr_cb)
1119 syserr_cb (msg);
1120 else
1121 {
1122 #if EV_AVOID_STDIO
1123 ev_printerr (msg);
1124 ev_printerr (": ");
1125 ev_printerr (strerror (errno));
1126 ev_printerr ("\n");
1127 #else
1128 perror (msg);
1129 #endif
1130 abort ();
1131 }
1132 }
1133
1134 static void *
1135 ev_realloc_emul (void *ptr, long size)
1136 {
1137 #if __GLIBC__
1138 return realloc (ptr, size);
1139 #else
1140 /* some systems, notably openbsd and darwin, fail to properly
1141 * implement realloc (x, 0) (as required by both ansi c-89 and
1142 * the single unix specification, so work around them here.
1143 */
1144
1145 if (size)
1146 return realloc (ptr, size);
1147
1148 free (ptr);
1149 return 0;
1150 #endif
1151 }
1152
1153 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
1154
1155 void ecb_cold
1156 ev_set_allocator (void *(*cb)(void *ptr, long size))
1157 {
1158 alloc = cb;
1159 }
1160
1161 inline_speed void *
1162 ev_realloc (void *ptr, long size)
1163 {
1164 ptr = alloc (ptr, size);
1165
1166 if (!ptr && size)
1167 {
1168 #if EV_AVOID_STDIO
1169 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1170 #else
1171 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1172 #endif
1173 abort ();
1174 }
1175
1176 return ptr;
1177 }
1178
1179 #define ev_malloc(size) ev_realloc (0, (size))
1180 #define ev_free(ptr) ev_realloc ((ptr), 0)
1181
1182 /*****************************************************************************/
1183
1184 /* set in reify when reification needed */
1185 #define EV_ANFD_REIFY 1
1186
1187 /* file descriptor info structure */
1188 typedef struct
1189 {
1190 WL head;
1191 unsigned char events; /* the events watched for */
1192 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1193 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1194 unsigned char unused;
1195 #if EV_USE_EPOLL
1196 unsigned int egen; /* generation counter to counter epoll bugs */
1197 #endif
1198 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1199 SOCKET handle;
1200 #endif
1201 #if EV_USE_IOCP
1202 OVERLAPPED or, ow;
1203 #endif
1204 } ANFD;
1205
1206 /* stores the pending event set for a given watcher */
1207 typedef struct
1208 {
1209 W w;
1210 int events; /* the pending event set for the given watcher */
1211 } ANPENDING;
1212
1213 #if EV_USE_INOTIFY
1214 /* hash table entry per inotify-id */
1215 typedef struct
1216 {
1217 WL head;
1218 } ANFS;
1219 #endif
1220
1221 /* Heap Entry */
1222 #if EV_HEAP_CACHE_AT
1223 /* a heap element */
1224 typedef struct {
1225 ev_tstamp at;
1226 WT w;
1227 } ANHE;
1228
1229 #define ANHE_w(he) (he).w /* access watcher, read-write */
1230 #define ANHE_at(he) (he).at /* access cached at, read-only */
1231 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1232 #else
1233 /* a heap element */
1234 typedef WT ANHE;
1235
1236 #define ANHE_w(he) (he)
1237 #define ANHE_at(he) (he)->at
1238 #define ANHE_at_cache(he)
1239 #endif
1240
1241 #if EV_MULTIPLICITY
1242
1243 struct ev_loop
1244 {
1245 ev_tstamp ev_rt_now;
1246 #define ev_rt_now ((loop)->ev_rt_now)
1247 #define VAR(name,decl) decl;
1248 #include "ev_vars.h"
1249 #undef VAR
1250 };
1251 #include "ev_wrap.h"
1252
1253 static struct ev_loop default_loop_struct;
1254 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1255
1256 #else
1257
1258 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1259 #define VAR(name,decl) static decl;
1260 #include "ev_vars.h"
1261 #undef VAR
1262
1263 static int ev_default_loop_ptr;
1264
1265 #endif
1266
1267 #if EV_FEATURE_API
1268 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1269 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1270 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1271 #else
1272 # define EV_RELEASE_CB (void)0
1273 # define EV_ACQUIRE_CB (void)0
1274 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1275 #endif
1276
1277 #define EVBREAK_RECURSE 0x80
1278
1279 /*****************************************************************************/
1280
1281 #ifndef EV_HAVE_EV_TIME
1282 ev_tstamp
1283 ev_time (void)
1284 {
1285 #if EV_USE_REALTIME
1286 if (expect_true (have_realtime))
1287 {
1288 struct timespec ts;
1289 clock_gettime (CLOCK_REALTIME, &ts);
1290 return ts.tv_sec + ts.tv_nsec * 1e-9;
1291 }
1292 #endif
1293
1294 struct timeval tv;
1295 gettimeofday (&tv, 0);
1296 return tv.tv_sec + tv.tv_usec * 1e-6;
1297 }
1298 #endif
1299
1300 inline_size ev_tstamp
1301 get_clock (void)
1302 {
1303 #if EV_USE_MONOTONIC
1304 if (expect_true (have_monotonic))
1305 {
1306 struct timespec ts;
1307 clock_gettime (CLOCK_MONOTONIC, &ts);
1308 return ts.tv_sec + ts.tv_nsec * 1e-9;
1309 }
1310 #endif
1311
1312 return ev_time ();
1313 }
1314
1315 #if EV_MULTIPLICITY
1316 ev_tstamp
1317 ev_now (EV_P)
1318 {
1319 return ev_rt_now;
1320 }
1321 #endif
1322
1323 void
1324 ev_sleep (ev_tstamp delay)
1325 {
1326 if (delay > 0.)
1327 {
1328 #if EV_USE_NANOSLEEP
1329 struct timespec ts;
1330
1331 EV_TS_SET (ts, delay);
1332 nanosleep (&ts, 0);
1333 #elif defined(_WIN32)
1334 Sleep ((unsigned long)(delay * 1e3));
1335 #else
1336 struct timeval tv;
1337
1338 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1339 /* something not guaranteed by newer posix versions, but guaranteed */
1340 /* by older ones */
1341 EV_TV_SET (tv, delay);
1342 select (0, 0, 0, 0, &tv);
1343 #endif
1344 }
1345 }
1346
1347 /*****************************************************************************/
1348
1349 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1350
1351 /* find a suitable new size for the given array, */
1352 /* hopefully by rounding to a nice-to-malloc size */
1353 inline_size int
1354 array_nextsize (int elem, int cur, int cnt)
1355 {
1356 int ncur = cur + 1;
1357
1358 do
1359 ncur <<= 1;
1360 while (cnt > ncur);
1361
1362 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1363 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1364 {
1365 ncur *= elem;
1366 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1367 ncur = ncur - sizeof (void *) * 4;
1368 ncur /= elem;
1369 }
1370
1371 return ncur;
1372 }
1373
1374 static void * noinline ecb_cold
1375 array_realloc (int elem, void *base, int *cur, int cnt)
1376 {
1377 *cur = array_nextsize (elem, *cur, cnt);
1378 return ev_realloc (base, elem * *cur);
1379 }
1380
1381 #define array_init_zero(base,count) \
1382 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1383
1384 #define array_needsize(type,base,cur,cnt,init) \
1385 if (expect_false ((cnt) > (cur))) \
1386 { \
1387 int ecb_unused ocur_ = (cur); \
1388 (base) = (type *)array_realloc \
1389 (sizeof (type), (base), &(cur), (cnt)); \
1390 init ((base) + (ocur_), (cur) - ocur_); \
1391 }
1392
1393 #if 0
1394 #define array_slim(type,stem) \
1395 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1396 { \
1397 stem ## max = array_roundsize (stem ## cnt >> 1); \
1398 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1399 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1400 }
1401 #endif
1402
1403 #define array_free(stem, idx) \
1404 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1405
1406 /*****************************************************************************/
1407
1408 /* dummy callback for pending events */
1409 static void noinline
1410 pendingcb (EV_P_ ev_prepare *w, int revents)
1411 {
1412 }
1413
1414 void noinline
1415 ev_feed_event (EV_P_ void *w, int revents)
1416 {
1417 W w_ = (W)w;
1418 int pri = ABSPRI (w_);
1419
1420 if (expect_false (w_->pending))
1421 pendings [pri][w_->pending - 1].events |= revents;
1422 else
1423 {
1424 w_->pending = ++pendingcnt [pri];
1425 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1426 pendings [pri][w_->pending - 1].w = w_;
1427 pendings [pri][w_->pending - 1].events = revents;
1428 }
1429 }
1430
1431 inline_speed void
1432 feed_reverse (EV_P_ W w)
1433 {
1434 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1435 rfeeds [rfeedcnt++] = w;
1436 }
1437
1438 inline_size void
1439 feed_reverse_done (EV_P_ int revents)
1440 {
1441 do
1442 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1443 while (rfeedcnt);
1444 }
1445
1446 inline_speed void
1447 queue_events (EV_P_ W *events, int eventcnt, int type)
1448 {
1449 int i;
1450
1451 for (i = 0; i < eventcnt; ++i)
1452 ev_feed_event (EV_A_ events [i], type);
1453 }
1454
1455 /*****************************************************************************/
1456
1457 inline_speed void
1458 fd_event_nocheck (EV_P_ int fd, int revents)
1459 {
1460 ANFD *anfd = anfds + fd;
1461 ev_io *w;
1462
1463 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1464 {
1465 int ev = w->events & revents;
1466
1467 if (ev)
1468 ev_feed_event (EV_A_ (W)w, ev);
1469 }
1470 }
1471
1472 /* do not submit kernel events for fds that have reify set */
1473 /* because that means they changed while we were polling for new events */
1474 inline_speed void
1475 fd_event (EV_P_ int fd, int revents)
1476 {
1477 ANFD *anfd = anfds + fd;
1478
1479 if (expect_true (!anfd->reify))
1480 fd_event_nocheck (EV_A_ fd, revents);
1481 }
1482
1483 void
1484 ev_feed_fd_event (EV_P_ int fd, int revents)
1485 {
1486 if (fd >= 0 && fd < anfdmax)
1487 fd_event_nocheck (EV_A_ fd, revents);
1488 }
1489
1490 /* make sure the external fd watch events are in-sync */
1491 /* with the kernel/libev internal state */
1492 inline_size void
1493 fd_reify (EV_P)
1494 {
1495 int i;
1496
1497 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1498 for (i = 0; i < fdchangecnt; ++i)
1499 {
1500 int fd = fdchanges [i];
1501 ANFD *anfd = anfds + fd;
1502
1503 if (anfd->reify & EV__IOFDSET && anfd->head)
1504 {
1505 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1506
1507 if (handle != anfd->handle)
1508 {
1509 unsigned long arg;
1510
1511 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1512
1513 /* handle changed, but fd didn't - we need to do it in two steps */
1514 backend_modify (EV_A_ fd, anfd->events, 0);
1515 anfd->events = 0;
1516 anfd->handle = handle;
1517 }
1518 }
1519 }
1520 #endif
1521
1522 for (i = 0; i < fdchangecnt; ++i)
1523 {
1524 int fd = fdchanges [i];
1525 ANFD *anfd = anfds + fd;
1526 ev_io *w;
1527
1528 unsigned char o_events = anfd->events;
1529 unsigned char o_reify = anfd->reify;
1530
1531 anfd->reify = 0;
1532
1533 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1534 {
1535 anfd->events = 0;
1536
1537 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1538 anfd->events |= (unsigned char)w->events;
1539
1540 if (o_events != anfd->events)
1541 o_reify = EV__IOFDSET; /* actually |= */
1542 }
1543
1544 if (o_reify & EV__IOFDSET)
1545 backend_modify (EV_A_ fd, o_events, anfd->events);
1546 }
1547
1548 fdchangecnt = 0;
1549 }
1550
1551 /* something about the given fd changed */
1552 inline_size void
1553 fd_change (EV_P_ int fd, int flags)
1554 {
1555 unsigned char reify = anfds [fd].reify;
1556 anfds [fd].reify |= flags;
1557
1558 if (expect_true (!reify))
1559 {
1560 ++fdchangecnt;
1561 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1562 fdchanges [fdchangecnt - 1] = fd;
1563 }
1564 }
1565
1566 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1567 inline_speed void ecb_cold
1568 fd_kill (EV_P_ int fd)
1569 {
1570 ev_io *w;
1571
1572 while ((w = (ev_io *)anfds [fd].head))
1573 {
1574 ev_io_stop (EV_A_ w);
1575 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1576 }
1577 }
1578
1579 /* check whether the given fd is actually valid, for error recovery */
1580 inline_size int ecb_cold
1581 fd_valid (int fd)
1582 {
1583 #ifdef _WIN32
1584 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1585 #else
1586 return fcntl (fd, F_GETFD) != -1;
1587 #endif
1588 }
1589
1590 /* called on EBADF to verify fds */
1591 static void noinline ecb_cold
1592 fd_ebadf (EV_P)
1593 {
1594 int fd;
1595
1596 for (fd = 0; fd < anfdmax; ++fd)
1597 if (anfds [fd].events)
1598 if (!fd_valid (fd) && errno == EBADF)
1599 fd_kill (EV_A_ fd);
1600 }
1601
1602 /* called on ENOMEM in select/poll to kill some fds and retry */
1603 static void noinline ecb_cold
1604 fd_enomem (EV_P)
1605 {
1606 int fd;
1607
1608 for (fd = anfdmax; fd--; )
1609 if (anfds [fd].events)
1610 {
1611 fd_kill (EV_A_ fd);
1612 break;
1613 }
1614 }
1615
1616 /* usually called after fork if backend needs to re-arm all fds from scratch */
1617 static void noinline
1618 fd_rearm_all (EV_P)
1619 {
1620 int fd;
1621
1622 for (fd = 0; fd < anfdmax; ++fd)
1623 if (anfds [fd].events)
1624 {
1625 anfds [fd].events = 0;
1626 anfds [fd].emask = 0;
1627 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1628 }
1629 }
1630
1631 /* used to prepare libev internal fd's */
1632 /* this is not fork-safe */
1633 inline_speed void
1634 fd_intern (int fd)
1635 {
1636 #ifdef _WIN32
1637 unsigned long arg = 1;
1638 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1639 #else
1640 fcntl (fd, F_SETFD, FD_CLOEXEC);
1641 fcntl (fd, F_SETFL, O_NONBLOCK);
1642 #endif
1643 }
1644
1645 /*****************************************************************************/
1646
1647 /*
1648 * the heap functions want a real array index. array index 0 is guaranteed to not
1649 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1650 * the branching factor of the d-tree.
1651 */
1652
1653 /*
1654 * at the moment we allow libev the luxury of two heaps,
1655 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1656 * which is more cache-efficient.
1657 * the difference is about 5% with 50000+ watchers.
1658 */
1659 #if EV_USE_4HEAP
1660
1661 #define DHEAP 4
1662 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1663 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1664 #define UPHEAP_DONE(p,k) ((p) == (k))
1665
1666 /* away from the root */
1667 inline_speed void
1668 downheap (ANHE *heap, int N, int k)
1669 {
1670 ANHE he = heap [k];
1671 ANHE *E = heap + N + HEAP0;
1672
1673 for (;;)
1674 {
1675 ev_tstamp minat;
1676 ANHE *minpos;
1677 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1678
1679 /* find minimum child */
1680 if (expect_true (pos + DHEAP - 1 < E))
1681 {
1682 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1683 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1684 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1685 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1686 }
1687 else if (pos < E)
1688 {
1689 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1690 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1691 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1692 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1693 }
1694 else
1695 break;
1696
1697 if (ANHE_at (he) <= minat)
1698 break;
1699
1700 heap [k] = *minpos;
1701 ev_active (ANHE_w (*minpos)) = k;
1702
1703 k = minpos - heap;
1704 }
1705
1706 heap [k] = he;
1707 ev_active (ANHE_w (he)) = k;
1708 }
1709
1710 #else /* 4HEAP */
1711
1712 #define HEAP0 1
1713 #define HPARENT(k) ((k) >> 1)
1714 #define UPHEAP_DONE(p,k) (!(p))
1715
1716 /* away from the root */
1717 inline_speed void
1718 downheap (ANHE *heap, int N, int k)
1719 {
1720 ANHE he = heap [k];
1721
1722 for (;;)
1723 {
1724 int c = k << 1;
1725
1726 if (c >= N + HEAP0)
1727 break;
1728
1729 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1730 ? 1 : 0;
1731
1732 if (ANHE_at (he) <= ANHE_at (heap [c]))
1733 break;
1734
1735 heap [k] = heap [c];
1736 ev_active (ANHE_w (heap [k])) = k;
1737
1738 k = c;
1739 }
1740
1741 heap [k] = he;
1742 ev_active (ANHE_w (he)) = k;
1743 }
1744 #endif
1745
1746 /* towards the root */
1747 inline_speed void
1748 upheap (ANHE *heap, int k)
1749 {
1750 ANHE he = heap [k];
1751
1752 for (;;)
1753 {
1754 int p = HPARENT (k);
1755
1756 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1757 break;
1758
1759 heap [k] = heap [p];
1760 ev_active (ANHE_w (heap [k])) = k;
1761 k = p;
1762 }
1763
1764 heap [k] = he;
1765 ev_active (ANHE_w (he)) = k;
1766 }
1767
1768 /* move an element suitably so it is in a correct place */
1769 inline_size void
1770 adjustheap (ANHE *heap, int N, int k)
1771 {
1772 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1773 upheap (heap, k);
1774 else
1775 downheap (heap, N, k);
1776 }
1777
1778 /* rebuild the heap: this function is used only once and executed rarely */
1779 inline_size void
1780 reheap (ANHE *heap, int N)
1781 {
1782 int i;
1783
1784 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1785 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1786 for (i = 0; i < N; ++i)
1787 upheap (heap, i + HEAP0);
1788 }
1789
1790 /*****************************************************************************/
1791
1792 /* associate signal watchers to a signal signal */
1793 typedef struct
1794 {
1795 EV_ATOMIC_T pending;
1796 #if EV_MULTIPLICITY
1797 EV_P;
1798 #endif
1799 WL head;
1800 } ANSIG;
1801
1802 static ANSIG signals [EV_NSIG - 1];
1803
1804 /*****************************************************************************/
1805
1806 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1807
1808 static void noinline ecb_cold
1809 evpipe_init (EV_P)
1810 {
1811 if (!ev_is_active (&pipe_w))
1812 {
1813 # if EV_USE_EVENTFD
1814 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1815 if (evfd < 0 && errno == EINVAL)
1816 evfd = eventfd (0, 0);
1817
1818 if (evfd >= 0)
1819 {
1820 evpipe [0] = -1;
1821 fd_intern (evfd); /* doing it twice doesn't hurt */
1822 ev_io_set (&pipe_w, evfd, EV_READ);
1823 }
1824 else
1825 # endif
1826 {
1827 while (pipe (evpipe))
1828 ev_syserr ("(libev) error creating signal/async pipe");
1829
1830 fd_intern (evpipe [0]);
1831 fd_intern (evpipe [1]);
1832 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1833 }
1834
1835 ev_io_start (EV_A_ &pipe_w);
1836 ev_unref (EV_A); /* watcher should not keep loop alive */
1837 }
1838 }
1839
1840 inline_speed void
1841 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1842 {
1843 if (expect_true (*flag))
1844 return;
1845
1846 *flag = 1;
1847
1848 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1849
1850 pipe_write_skipped = 1;
1851
1852 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1853
1854 if (pipe_write_wanted)
1855 {
1856 int old_errno;
1857
1858 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1859
1860 old_errno = errno; /* save errno because write will clobber it */
1861
1862 #if EV_USE_EVENTFD
1863 if (evfd >= 0)
1864 {
1865 uint64_t counter = 1;
1866 write (evfd, &counter, sizeof (uint64_t));
1867 }
1868 else
1869 #endif
1870 {
1871 /* win32 people keep sending patches that change this write() to send() */
1872 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1873 /* so when you think this write should be a send instead, please find out */
1874 /* where your send() is from - it's definitely not the microsoft send, and */
1875 /* tell me. thank you. */
1876 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1877 /* check the ev documentation on how to use this flag */
1878 write (evpipe [1], &(evpipe [1]), 1);
1879 }
1880
1881 errno = old_errno;
1882 }
1883 }
1884
1885 /* called whenever the libev signal pipe */
1886 /* got some events (signal, async) */
1887 static void
1888 pipecb (EV_P_ ev_io *iow, int revents)
1889 {
1890 int i;
1891
1892 if (revents & EV_READ)
1893 {
1894 #if EV_USE_EVENTFD
1895 if (evfd >= 0)
1896 {
1897 uint64_t counter;
1898 read (evfd, &counter, sizeof (uint64_t));
1899 }
1900 else
1901 #endif
1902 {
1903 char dummy;
1904 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1905 read (evpipe [0], &dummy, 1);
1906 }
1907 }
1908
1909 pipe_write_skipped = 0;
1910
1911 #if EV_SIGNAL_ENABLE
1912 if (sig_pending)
1913 {
1914 sig_pending = 0;
1915
1916 for (i = EV_NSIG - 1; i--; )
1917 if (expect_false (signals [i].pending))
1918 ev_feed_signal_event (EV_A_ i + 1);
1919 }
1920 #endif
1921
1922 #if EV_ASYNC_ENABLE
1923 if (async_pending)
1924 {
1925 async_pending = 0;
1926
1927 for (i = asynccnt; i--; )
1928 if (asyncs [i]->sent)
1929 {
1930 asyncs [i]->sent = 0;
1931 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1932 }
1933 }
1934 #endif
1935 }
1936
1937 /*****************************************************************************/
1938
1939 void
1940 ev_feed_signal (int signum)
1941 {
1942 #if EV_MULTIPLICITY
1943 EV_P = signals [signum - 1].loop;
1944
1945 if (!EV_A)
1946 return;
1947 #endif
1948
1949 if (!ev_active (&pipe_w))
1950 return;
1951
1952 signals [signum - 1].pending = 1;
1953 evpipe_write (EV_A_ &sig_pending);
1954 }
1955
1956 static void
1957 ev_sighandler (int signum)
1958 {
1959 #ifdef _WIN32
1960 signal (signum, ev_sighandler);
1961 #endif
1962
1963 ev_feed_signal (signum);
1964 }
1965
1966 void noinline
1967 ev_feed_signal_event (EV_P_ int signum)
1968 {
1969 WL w;
1970
1971 if (expect_false (signum <= 0 || signum > EV_NSIG))
1972 return;
1973
1974 --signum;
1975
1976 #if EV_MULTIPLICITY
1977 /* it is permissible to try to feed a signal to the wrong loop */
1978 /* or, likely more useful, feeding a signal nobody is waiting for */
1979
1980 if (expect_false (signals [signum].loop != EV_A))
1981 return;
1982 #endif
1983
1984 signals [signum].pending = 0;
1985
1986 for (w = signals [signum].head; w; w = w->next)
1987 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1988 }
1989
1990 #if EV_USE_SIGNALFD
1991 static void
1992 sigfdcb (EV_P_ ev_io *iow, int revents)
1993 {
1994 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1995
1996 for (;;)
1997 {
1998 ssize_t res = read (sigfd, si, sizeof (si));
1999
2000 /* not ISO-C, as res might be -1, but works with SuS */
2001 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2002 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2003
2004 if (res < (ssize_t)sizeof (si))
2005 break;
2006 }
2007 }
2008 #endif
2009
2010 #endif
2011
2012 /*****************************************************************************/
2013
2014 #if EV_CHILD_ENABLE
2015 static WL childs [EV_PID_HASHSIZE];
2016
2017 static ev_signal childev;
2018
2019 #ifndef WIFCONTINUED
2020 # define WIFCONTINUED(status) 0
2021 #endif
2022
2023 /* handle a single child status event */
2024 inline_speed void
2025 child_reap (EV_P_ int chain, int pid, int status)
2026 {
2027 ev_child *w;
2028 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2029
2030 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2031 {
2032 if ((w->pid == pid || !w->pid)
2033 && (!traced || (w->flags & 1)))
2034 {
2035 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2036 w->rpid = pid;
2037 w->rstatus = status;
2038 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2039 }
2040 }
2041 }
2042
2043 #ifndef WCONTINUED
2044 # define WCONTINUED 0
2045 #endif
2046
2047 /* called on sigchld etc., calls waitpid */
2048 static void
2049 childcb (EV_P_ ev_signal *sw, int revents)
2050 {
2051 int pid, status;
2052
2053 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2054 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2055 if (!WCONTINUED
2056 || errno != EINVAL
2057 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2058 return;
2059
2060 /* make sure we are called again until all children have been reaped */
2061 /* we need to do it this way so that the callback gets called before we continue */
2062 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2063
2064 child_reap (EV_A_ pid, pid, status);
2065 if ((EV_PID_HASHSIZE) > 1)
2066 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2067 }
2068
2069 #endif
2070
2071 /*****************************************************************************/
2072
2073 #if EV_USE_IOCP
2074 # include "ev_iocp.c"
2075 #endif
2076 #if EV_USE_PORT
2077 # include "ev_port.c"
2078 #endif
2079 #if EV_USE_KQUEUE
2080 # include "ev_kqueue.c"
2081 #endif
2082 #if EV_USE_EPOLL
2083 # include "ev_epoll.c"
2084 #endif
2085 #if EV_USE_POLL
2086 # include "ev_poll.c"
2087 #endif
2088 #if EV_USE_SELECT
2089 # include "ev_select.c"
2090 #endif
2091
2092 int ecb_cold
2093 ev_version_major (void)
2094 {
2095 return EV_VERSION_MAJOR;
2096 }
2097
2098 int ecb_cold
2099 ev_version_minor (void)
2100 {
2101 return EV_VERSION_MINOR;
2102 }
2103
2104 /* return true if we are running with elevated privileges and should ignore env variables */
2105 int inline_size ecb_cold
2106 enable_secure (void)
2107 {
2108 #ifdef _WIN32
2109 return 0;
2110 #else
2111 return getuid () != geteuid ()
2112 || getgid () != getegid ();
2113 #endif
2114 }
2115
2116 unsigned int ecb_cold
2117 ev_supported_backends (void)
2118 {
2119 unsigned int flags = 0;
2120
2121 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2122 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2123 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2124 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2125 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2126
2127 return flags;
2128 }
2129
2130 unsigned int ecb_cold
2131 ev_recommended_backends (void)
2132 {
2133 unsigned int flags = ev_supported_backends ();
2134
2135 #ifndef __NetBSD__
2136 /* kqueue is borked on everything but netbsd apparently */
2137 /* it usually doesn't work correctly on anything but sockets and pipes */
2138 flags &= ~EVBACKEND_KQUEUE;
2139 #endif
2140 #ifdef __APPLE__
2141 /* only select works correctly on that "unix-certified" platform */
2142 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2143 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2144 #endif
2145 #ifdef __FreeBSD__
2146 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2147 #endif
2148
2149 return flags;
2150 }
2151
2152 unsigned int ecb_cold
2153 ev_embeddable_backends (void)
2154 {
2155 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2156
2157 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2158 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2159 flags &= ~EVBACKEND_EPOLL;
2160
2161 return flags;
2162 }
2163
2164 unsigned int
2165 ev_backend (EV_P)
2166 {
2167 return backend;
2168 }
2169
2170 #if EV_FEATURE_API
2171 unsigned int
2172 ev_iteration (EV_P)
2173 {
2174 return loop_count;
2175 }
2176
2177 unsigned int
2178 ev_depth (EV_P)
2179 {
2180 return loop_depth;
2181 }
2182
2183 void
2184 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2185 {
2186 io_blocktime = interval;
2187 }
2188
2189 void
2190 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2191 {
2192 timeout_blocktime = interval;
2193 }
2194
2195 void
2196 ev_set_userdata (EV_P_ void *data)
2197 {
2198 userdata = data;
2199 }
2200
2201 void *
2202 ev_userdata (EV_P)
2203 {
2204 return userdata;
2205 }
2206
2207 void
2208 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2209 {
2210 invoke_cb = invoke_pending_cb;
2211 }
2212
2213 void
2214 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2215 {
2216 release_cb = release;
2217 acquire_cb = acquire;
2218 }
2219 #endif
2220
2221 /* initialise a loop structure, must be zero-initialised */
2222 static void noinline ecb_cold
2223 loop_init (EV_P_ unsigned int flags)
2224 {
2225 if (!backend)
2226 {
2227 origflags = flags;
2228
2229 #if EV_USE_REALTIME
2230 if (!have_realtime)
2231 {
2232 struct timespec ts;
2233
2234 if (!clock_gettime (CLOCK_REALTIME, &ts))
2235 have_realtime = 1;
2236 }
2237 #endif
2238
2239 #if EV_USE_MONOTONIC
2240 if (!have_monotonic)
2241 {
2242 struct timespec ts;
2243
2244 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2245 have_monotonic = 1;
2246 }
2247 #endif
2248
2249 /* pid check not overridable via env */
2250 #ifndef _WIN32
2251 if (flags & EVFLAG_FORKCHECK)
2252 curpid = getpid ();
2253 #endif
2254
2255 if (!(flags & EVFLAG_NOENV)
2256 && !enable_secure ()
2257 && getenv ("LIBEV_FLAGS"))
2258 flags = atoi (getenv ("LIBEV_FLAGS"));
2259
2260 ev_rt_now = ev_time ();
2261 mn_now = get_clock ();
2262 now_floor = mn_now;
2263 rtmn_diff = ev_rt_now - mn_now;
2264 #if EV_FEATURE_API
2265 invoke_cb = ev_invoke_pending;
2266 #endif
2267
2268 io_blocktime = 0.;
2269 timeout_blocktime = 0.;
2270 backend = 0;
2271 backend_fd = -1;
2272 sig_pending = 0;
2273 #if EV_ASYNC_ENABLE
2274 async_pending = 0;
2275 #endif
2276 pipe_write_skipped = 0;
2277 pipe_write_wanted = 0;
2278 #if EV_USE_INOTIFY
2279 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2280 #endif
2281 #if EV_USE_SIGNALFD
2282 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2283 #endif
2284
2285 if (!(flags & EVBACKEND_MASK))
2286 flags |= ev_recommended_backends ();
2287
2288 #if EV_USE_IOCP
2289 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2290 #endif
2291 #if EV_USE_PORT
2292 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2293 #endif
2294 #if EV_USE_KQUEUE
2295 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2296 #endif
2297 #if EV_USE_EPOLL
2298 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2299 #endif
2300 #if EV_USE_POLL
2301 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2302 #endif
2303 #if EV_USE_SELECT
2304 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2305 #endif
2306
2307 ev_prepare_init (&pending_w, pendingcb);
2308
2309 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2310 ev_init (&pipe_w, pipecb);
2311 ev_set_priority (&pipe_w, EV_MAXPRI);
2312 #endif
2313 }
2314 }
2315
2316 /* free up a loop structure */
2317 void ecb_cold
2318 ev_loop_destroy (EV_P)
2319 {
2320 int i;
2321
2322 #if EV_MULTIPLICITY
2323 /* mimic free (0) */
2324 if (!EV_A)
2325 return;
2326 #endif
2327
2328 #if EV_CLEANUP_ENABLE
2329 /* queue cleanup watchers (and execute them) */
2330 if (expect_false (cleanupcnt))
2331 {
2332 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2333 EV_INVOKE_PENDING;
2334 }
2335 #endif
2336
2337 #if EV_CHILD_ENABLE
2338 if (ev_is_active (&childev))
2339 {
2340 ev_ref (EV_A); /* child watcher */
2341 ev_signal_stop (EV_A_ &childev);
2342 }
2343 #endif
2344
2345 if (ev_is_active (&pipe_w))
2346 {
2347 /*ev_ref (EV_A);*/
2348 /*ev_io_stop (EV_A_ &pipe_w);*/
2349
2350 #if EV_USE_EVENTFD
2351 if (evfd >= 0)
2352 close (evfd);
2353 #endif
2354
2355 if (evpipe [0] >= 0)
2356 {
2357 EV_WIN32_CLOSE_FD (evpipe [0]);
2358 EV_WIN32_CLOSE_FD (evpipe [1]);
2359 }
2360 }
2361
2362 #if EV_USE_SIGNALFD
2363 if (ev_is_active (&sigfd_w))
2364 close (sigfd);
2365 #endif
2366
2367 #if EV_USE_INOTIFY
2368 if (fs_fd >= 0)
2369 close (fs_fd);
2370 #endif
2371
2372 if (backend_fd >= 0)
2373 close (backend_fd);
2374
2375 #if EV_USE_IOCP
2376 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2377 #endif
2378 #if EV_USE_PORT
2379 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2380 #endif
2381 #if EV_USE_KQUEUE
2382 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2383 #endif
2384 #if EV_USE_EPOLL
2385 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2386 #endif
2387 #if EV_USE_POLL
2388 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2389 #endif
2390 #if EV_USE_SELECT
2391 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2392 #endif
2393
2394 for (i = NUMPRI; i--; )
2395 {
2396 array_free (pending, [i]);
2397 #if EV_IDLE_ENABLE
2398 array_free (idle, [i]);
2399 #endif
2400 }
2401
2402 ev_free (anfds); anfds = 0; anfdmax = 0;
2403
2404 /* have to use the microsoft-never-gets-it-right macro */
2405 array_free (rfeed, EMPTY);
2406 array_free (fdchange, EMPTY);
2407 array_free (timer, EMPTY);
2408 #if EV_PERIODIC_ENABLE
2409 array_free (periodic, EMPTY);
2410 #endif
2411 #if EV_FORK_ENABLE
2412 array_free (fork, EMPTY);
2413 #endif
2414 #if EV_CLEANUP_ENABLE
2415 array_free (cleanup, EMPTY);
2416 #endif
2417 array_free (prepare, EMPTY);
2418 array_free (check, EMPTY);
2419 #if EV_ASYNC_ENABLE
2420 array_free (async, EMPTY);
2421 #endif
2422
2423 backend = 0;
2424
2425 #if EV_MULTIPLICITY
2426 if (ev_is_default_loop (EV_A))
2427 #endif
2428 ev_default_loop_ptr = 0;
2429 #if EV_MULTIPLICITY
2430 else
2431 ev_free (EV_A);
2432 #endif
2433 }
2434
2435 #if EV_USE_INOTIFY
2436 inline_size void infy_fork (EV_P);
2437 #endif
2438
2439 inline_size void
2440 loop_fork (EV_P)
2441 {
2442 #if EV_USE_PORT
2443 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2444 #endif
2445 #if EV_USE_KQUEUE
2446 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2447 #endif
2448 #if EV_USE_EPOLL
2449 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2450 #endif
2451 #if EV_USE_INOTIFY
2452 infy_fork (EV_A);
2453 #endif
2454
2455 if (ev_is_active (&pipe_w))
2456 {
2457 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2458
2459 ev_ref (EV_A);
2460 ev_io_stop (EV_A_ &pipe_w);
2461
2462 #if EV_USE_EVENTFD
2463 if (evfd >= 0)
2464 close (evfd);
2465 #endif
2466
2467 if (evpipe [0] >= 0)
2468 {
2469 EV_WIN32_CLOSE_FD (evpipe [0]);
2470 EV_WIN32_CLOSE_FD (evpipe [1]);
2471 }
2472
2473 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2474 evpipe_init (EV_A);
2475 /* now iterate over everything, in case we missed something */
2476 pipecb (EV_A_ &pipe_w, EV_READ);
2477 #endif
2478 }
2479
2480 postfork = 0;
2481 }
2482
2483 #if EV_MULTIPLICITY
2484
2485 struct ev_loop * ecb_cold
2486 ev_loop_new (unsigned int flags)
2487 {
2488 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2489
2490 memset (EV_A, 0, sizeof (struct ev_loop));
2491 loop_init (EV_A_ flags);
2492
2493 if (ev_backend (EV_A))
2494 return EV_A;
2495
2496 ev_free (EV_A);
2497 return 0;
2498 }
2499
2500 #endif /* multiplicity */
2501
2502 #if EV_VERIFY
2503 static void noinline ecb_cold
2504 verify_watcher (EV_P_ W w)
2505 {
2506 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2507
2508 if (w->pending)
2509 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2510 }
2511
2512 static void noinline ecb_cold
2513 verify_heap (EV_P_ ANHE *heap, int N)
2514 {
2515 int i;
2516
2517 for (i = HEAP0; i < N + HEAP0; ++i)
2518 {
2519 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2520 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2521 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2522
2523 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2524 }
2525 }
2526
2527 static void noinline ecb_cold
2528 array_verify (EV_P_ W *ws, int cnt)
2529 {
2530 while (cnt--)
2531 {
2532 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2533 verify_watcher (EV_A_ ws [cnt]);
2534 }
2535 }
2536 #endif
2537
2538 #if EV_FEATURE_API
2539 void ecb_cold
2540 ev_verify (EV_P)
2541 {
2542 #if EV_VERIFY
2543 int i;
2544 WL w;
2545
2546 assert (activecnt >= -1);
2547
2548 assert (fdchangemax >= fdchangecnt);
2549 for (i = 0; i < fdchangecnt; ++i)
2550 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2551
2552 assert (anfdmax >= 0);
2553 for (i = 0; i < anfdmax; ++i)
2554 for (w = anfds [i].head; w; w = w->next)
2555 {
2556 verify_watcher (EV_A_ (W)w);
2557 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2558 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2559 }
2560
2561 assert (timermax >= timercnt);
2562 verify_heap (EV_A_ timers, timercnt);
2563
2564 #if EV_PERIODIC_ENABLE
2565 assert (periodicmax >= periodiccnt);
2566 verify_heap (EV_A_ periodics, periodiccnt);
2567 #endif
2568
2569 for (i = NUMPRI; i--; )
2570 {
2571 assert (pendingmax [i] >= pendingcnt [i]);
2572 #if EV_IDLE_ENABLE
2573 assert (idleall >= 0);
2574 assert (idlemax [i] >= idlecnt [i]);
2575 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2576 #endif
2577 }
2578
2579 #if EV_FORK_ENABLE
2580 assert (forkmax >= forkcnt);
2581 array_verify (EV_A_ (W *)forks, forkcnt);
2582 #endif
2583
2584 #if EV_CLEANUP_ENABLE
2585 assert (cleanupmax >= cleanupcnt);
2586 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2587 #endif
2588
2589 #if EV_ASYNC_ENABLE
2590 assert (asyncmax >= asynccnt);
2591 array_verify (EV_A_ (W *)asyncs, asynccnt);
2592 #endif
2593
2594 #if EV_PREPARE_ENABLE
2595 assert (preparemax >= preparecnt);
2596 array_verify (EV_A_ (W *)prepares, preparecnt);
2597 #endif
2598
2599 #if EV_CHECK_ENABLE
2600 assert (checkmax >= checkcnt);
2601 array_verify (EV_A_ (W *)checks, checkcnt);
2602 #endif
2603
2604 # if 0
2605 #if EV_CHILD_ENABLE
2606 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2607 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2608 #endif
2609 # endif
2610 #endif
2611 }
2612 #endif
2613
2614 #if EV_MULTIPLICITY
2615 struct ev_loop * ecb_cold
2616 #else
2617 int
2618 #endif
2619 ev_default_loop (unsigned int flags)
2620 {
2621 if (!ev_default_loop_ptr)
2622 {
2623 #if EV_MULTIPLICITY
2624 EV_P = ev_default_loop_ptr = &default_loop_struct;
2625 #else
2626 ev_default_loop_ptr = 1;
2627 #endif
2628
2629 loop_init (EV_A_ flags);
2630
2631 if (ev_backend (EV_A))
2632 {
2633 #if EV_CHILD_ENABLE
2634 ev_signal_init (&childev, childcb, SIGCHLD);
2635 ev_set_priority (&childev, EV_MAXPRI);
2636 ev_signal_start (EV_A_ &childev);
2637 ev_unref (EV_A); /* child watcher should not keep loop alive */
2638 #endif
2639 }
2640 else
2641 ev_default_loop_ptr = 0;
2642 }
2643
2644 return ev_default_loop_ptr;
2645 }
2646
2647 void
2648 ev_loop_fork (EV_P)
2649 {
2650 postfork = 1; /* must be in line with ev_default_fork */
2651 }
2652
2653 /*****************************************************************************/
2654
2655 void
2656 ev_invoke (EV_P_ void *w, int revents)
2657 {
2658 EV_CB_INVOKE ((W)w, revents);
2659 }
2660
2661 unsigned int
2662 ev_pending_count (EV_P)
2663 {
2664 int pri;
2665 unsigned int count = 0;
2666
2667 for (pri = NUMPRI; pri--; )
2668 count += pendingcnt [pri];
2669
2670 return count;
2671 }
2672
2673 void noinline
2674 ev_invoke_pending (EV_P)
2675 {
2676 int pri;
2677
2678 for (pri = NUMPRI; pri--; )
2679 while (pendingcnt [pri])
2680 {
2681 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2682
2683 p->w->pending = 0;
2684 EV_CB_INVOKE (p->w, p->events);
2685 EV_FREQUENT_CHECK;
2686 }
2687 }
2688
2689 #if EV_IDLE_ENABLE
2690 /* make idle watchers pending. this handles the "call-idle */
2691 /* only when higher priorities are idle" logic */
2692 inline_size void
2693 idle_reify (EV_P)
2694 {
2695 if (expect_false (idleall))
2696 {
2697 int pri;
2698
2699 for (pri = NUMPRI; pri--; )
2700 {
2701 if (pendingcnt [pri])
2702 break;
2703
2704 if (idlecnt [pri])
2705 {
2706 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2707 break;
2708 }
2709 }
2710 }
2711 }
2712 #endif
2713
2714 /* make timers pending */
2715 inline_size void
2716 timers_reify (EV_P)
2717 {
2718 EV_FREQUENT_CHECK;
2719
2720 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2721 {
2722 do
2723 {
2724 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2725
2726 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2727
2728 /* first reschedule or stop timer */
2729 if (w->repeat)
2730 {
2731 ev_at (w) += w->repeat;
2732 if (ev_at (w) < mn_now)
2733 ev_at (w) = mn_now;
2734
2735 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2736
2737 ANHE_at_cache (timers [HEAP0]);
2738 downheap (timers, timercnt, HEAP0);
2739 }
2740 else
2741 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2742
2743 EV_FREQUENT_CHECK;
2744 feed_reverse (EV_A_ (W)w);
2745 }
2746 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2747
2748 feed_reverse_done (EV_A_ EV_TIMER);
2749 }
2750 }
2751
2752 #if EV_PERIODIC_ENABLE
2753
2754 static void noinline
2755 periodic_recalc (EV_P_ ev_periodic *w)
2756 {
2757 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2758 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2759
2760 /* the above almost always errs on the low side */
2761 while (at <= ev_rt_now)
2762 {
2763 ev_tstamp nat = at + w->interval;
2764
2765 /* when resolution fails us, we use ev_rt_now */
2766 if (expect_false (nat == at))
2767 {
2768 at = ev_rt_now;
2769 break;
2770 }
2771
2772 at = nat;
2773 }
2774
2775 ev_at (w) = at;
2776 }
2777
2778 /* make periodics pending */
2779 inline_size void
2780 periodics_reify (EV_P)
2781 {
2782 EV_FREQUENT_CHECK;
2783
2784 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2785 {
2786 int feed_count = 0;
2787
2788 do
2789 {
2790 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2791
2792 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2793
2794 /* first reschedule or stop timer */
2795 if (w->reschedule_cb)
2796 {
2797 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2798
2799 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2800
2801 ANHE_at_cache (periodics [HEAP0]);
2802 downheap (periodics, periodiccnt, HEAP0);
2803 }
2804 else if (w->interval)
2805 {
2806 periodic_recalc (EV_A_ w);
2807 ANHE_at_cache (periodics [HEAP0]);
2808 downheap (periodics, periodiccnt, HEAP0);
2809 }
2810 else
2811 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2812
2813 EV_FREQUENT_CHECK;
2814 feed_reverse (EV_A_ (W)w);
2815 }
2816 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2817
2818 feed_reverse_done (EV_A_ EV_PERIODIC);
2819 }
2820 }
2821
2822 /* simply recalculate all periodics */
2823 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2824 static void noinline ecb_cold
2825 periodics_reschedule (EV_P)
2826 {
2827 int i;
2828
2829 /* adjust periodics after time jump */
2830 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2831 {
2832 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2833
2834 if (w->reschedule_cb)
2835 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2836 else if (w->interval)
2837 periodic_recalc (EV_A_ w);
2838
2839 ANHE_at_cache (periodics [i]);
2840 }
2841
2842 reheap (periodics, periodiccnt);
2843 }
2844 #endif
2845
2846 /* adjust all timers by a given offset */
2847 static void noinline ecb_cold
2848 timers_reschedule (EV_P_ ev_tstamp adjust)
2849 {
2850 int i;
2851
2852 for (i = 0; i < timercnt; ++i)
2853 {
2854 ANHE *he = timers + i + HEAP0;
2855 ANHE_w (*he)->at += adjust;
2856 ANHE_at_cache (*he);
2857 }
2858 }
2859
2860 /* fetch new monotonic and realtime times from the kernel */
2861 /* also detect if there was a timejump, and act accordingly */
2862 inline_speed void
2863 time_update (EV_P_ ev_tstamp max_block)
2864 {
2865 #if EV_USE_MONOTONIC
2866 if (expect_true (have_monotonic))
2867 {
2868 int i;
2869 ev_tstamp odiff = rtmn_diff;
2870
2871 mn_now = get_clock ();
2872
2873 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2874 /* interpolate in the meantime */
2875 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2876 {
2877 ev_rt_now = rtmn_diff + mn_now;
2878 return;
2879 }
2880
2881 now_floor = mn_now;
2882 ev_rt_now = ev_time ();
2883
2884 /* loop a few times, before making important decisions.
2885 * on the choice of "4": one iteration isn't enough,
2886 * in case we get preempted during the calls to
2887 * ev_time and get_clock. a second call is almost guaranteed
2888 * to succeed in that case, though. and looping a few more times
2889 * doesn't hurt either as we only do this on time-jumps or
2890 * in the unlikely event of having been preempted here.
2891 */
2892 for (i = 4; --i; )
2893 {
2894 ev_tstamp diff;
2895 rtmn_diff = ev_rt_now - mn_now;
2896
2897 diff = odiff - rtmn_diff;
2898
2899 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2900 return; /* all is well */
2901
2902 ev_rt_now = ev_time ();
2903 mn_now = get_clock ();
2904 now_floor = mn_now;
2905 }
2906
2907 /* no timer adjustment, as the monotonic clock doesn't jump */
2908 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2909 # if EV_PERIODIC_ENABLE
2910 periodics_reschedule (EV_A);
2911 # endif
2912 }
2913 else
2914 #endif
2915 {
2916 ev_rt_now = ev_time ();
2917
2918 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2919 {
2920 /* adjust timers. this is easy, as the offset is the same for all of them */
2921 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2922 #if EV_PERIODIC_ENABLE
2923 periodics_reschedule (EV_A);
2924 #endif
2925 }
2926
2927 mn_now = ev_rt_now;
2928 }
2929 }
2930
2931 void
2932 ev_run (EV_P_ int flags)
2933 {
2934 #if EV_FEATURE_API
2935 ++loop_depth;
2936 #endif
2937
2938 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2939
2940 loop_done = EVBREAK_CANCEL;
2941
2942 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2943
2944 do
2945 {
2946 #if EV_VERIFY >= 2
2947 ev_verify (EV_A);
2948 #endif
2949
2950 #ifndef _WIN32
2951 if (expect_false (curpid)) /* penalise the forking check even more */
2952 if (expect_false (getpid () != curpid))
2953 {
2954 curpid = getpid ();
2955 postfork = 1;
2956 }
2957 #endif
2958
2959 #if EV_FORK_ENABLE
2960 /* we might have forked, so queue fork handlers */
2961 if (expect_false (postfork))
2962 if (forkcnt)
2963 {
2964 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2965 EV_INVOKE_PENDING;
2966 }
2967 #endif
2968
2969 #if EV_PREPARE_ENABLE
2970 /* queue prepare watchers (and execute them) */
2971 if (expect_false (preparecnt))
2972 {
2973 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2974 EV_INVOKE_PENDING;
2975 }
2976 #endif
2977
2978 if (expect_false (loop_done))
2979 break;
2980
2981 /* we might have forked, so reify kernel state if necessary */
2982 if (expect_false (postfork))
2983 loop_fork (EV_A);
2984
2985 /* update fd-related kernel structures */
2986 fd_reify (EV_A);
2987
2988 /* calculate blocking time */
2989 {
2990 ev_tstamp waittime = 0.;
2991 ev_tstamp sleeptime = 0.;
2992
2993 /* remember old timestamp for io_blocktime calculation */
2994 ev_tstamp prev_mn_now = mn_now;
2995
2996 /* update time to cancel out callback processing overhead */
2997 time_update (EV_A_ 1e100);
2998
2999 /* from now on, we want a pipe-wake-up */
3000 pipe_write_wanted = 1;
3001
3002 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3003
3004 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3005 {
3006 waittime = MAX_BLOCKTIME;
3007
3008 if (timercnt)
3009 {
3010 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3011 if (waittime > to) waittime = to;
3012 }
3013
3014 #if EV_PERIODIC_ENABLE
3015 if (periodiccnt)
3016 {
3017 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3018 if (waittime > to) waittime = to;
3019 }
3020 #endif
3021
3022 /* don't let timeouts decrease the waittime below timeout_blocktime */
3023 if (expect_false (waittime < timeout_blocktime))
3024 waittime = timeout_blocktime;
3025
3026 /* at this point, we NEED to wait, so we have to ensure */
3027 /* to pass a minimum nonzero value to the backend */
3028 if (expect_false (waittime < backend_mintime))
3029 waittime = backend_mintime;
3030
3031 /* extra check because io_blocktime is commonly 0 */
3032 if (expect_false (io_blocktime))
3033 {
3034 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3035
3036 if (sleeptime > waittime - backend_mintime)
3037 sleeptime = waittime - backend_mintime;
3038
3039 if (expect_true (sleeptime > 0.))
3040 {
3041 ev_sleep (sleeptime);
3042 waittime -= sleeptime;
3043 }
3044 }
3045 }
3046
3047 #if EV_FEATURE_API
3048 ++loop_count;
3049 #endif
3050 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3051 backend_poll (EV_A_ waittime);
3052 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3053
3054 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3055
3056 if (pipe_write_skipped)
3057 {
3058 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3059 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3060 }
3061
3062
3063 /* update ev_rt_now, do magic */
3064 time_update (EV_A_ waittime + sleeptime);
3065 }
3066
3067 /* queue pending timers and reschedule them */
3068 timers_reify (EV_A); /* relative timers called last */
3069 #if EV_PERIODIC_ENABLE
3070 periodics_reify (EV_A); /* absolute timers called first */
3071 #endif
3072
3073 #if EV_IDLE_ENABLE
3074 /* queue idle watchers unless other events are pending */
3075 idle_reify (EV_A);
3076 #endif
3077
3078 #if EV_CHECK_ENABLE
3079 /* queue check watchers, to be executed first */
3080 if (expect_false (checkcnt))
3081 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3082 #endif
3083
3084 EV_INVOKE_PENDING;
3085 }
3086 while (expect_true (
3087 activecnt
3088 && !loop_done
3089 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3090 ));
3091
3092 if (loop_done == EVBREAK_ONE)
3093 loop_done = EVBREAK_CANCEL;
3094
3095 #if EV_FEATURE_API
3096 --loop_depth;
3097 #endif
3098 }
3099
3100 void
3101 ev_break (EV_P_ int how)
3102 {
3103 loop_done = how;
3104 }
3105
3106 void
3107 ev_ref (EV_P)
3108 {
3109 ++activecnt;
3110 }
3111
3112 void
3113 ev_unref (EV_P)
3114 {
3115 --activecnt;
3116 }
3117
3118 void
3119 ev_now_update (EV_P)
3120 {
3121 time_update (EV_A_ 1e100);
3122 }
3123
3124 void
3125 ev_suspend (EV_P)
3126 {
3127 ev_now_update (EV_A);
3128 }
3129
3130 void
3131 ev_resume (EV_P)
3132 {
3133 ev_tstamp mn_prev = mn_now;
3134
3135 ev_now_update (EV_A);
3136 timers_reschedule (EV_A_ mn_now - mn_prev);
3137 #if EV_PERIODIC_ENABLE
3138 /* TODO: really do this? */
3139 periodics_reschedule (EV_A);
3140 #endif
3141 }
3142
3143 /*****************************************************************************/
3144 /* singly-linked list management, used when the expected list length is short */
3145
3146 inline_size void
3147 wlist_add (WL *head, WL elem)
3148 {
3149 elem->next = *head;
3150 *head = elem;
3151 }
3152
3153 inline_size void
3154 wlist_del (WL *head, WL elem)
3155 {
3156 while (*head)
3157 {
3158 if (expect_true (*head == elem))
3159 {
3160 *head = elem->next;
3161 break;
3162 }
3163
3164 head = &(*head)->next;
3165 }
3166 }
3167
3168 /* internal, faster, version of ev_clear_pending */
3169 inline_speed void
3170 clear_pending (EV_P_ W w)
3171 {
3172 if (w->pending)
3173 {
3174 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3175 w->pending = 0;
3176 }
3177 }
3178
3179 int
3180 ev_clear_pending (EV_P_ void *w)
3181 {
3182 W w_ = (W)w;
3183 int pending = w_->pending;
3184
3185 if (expect_true (pending))
3186 {
3187 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3188 p->w = (W)&pending_w;
3189 w_->pending = 0;
3190 return p->events;
3191 }
3192 else
3193 return 0;
3194 }
3195
3196 inline_size void
3197 pri_adjust (EV_P_ W w)
3198 {
3199 int pri = ev_priority (w);
3200 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3201 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3202 ev_set_priority (w, pri);
3203 }
3204
3205 inline_speed void
3206 ev_start (EV_P_ W w, int active)
3207 {
3208 pri_adjust (EV_A_ w);
3209 w->active = active;
3210 ev_ref (EV_A);
3211 }
3212
3213 inline_size void
3214 ev_stop (EV_P_ W w)
3215 {
3216 ev_unref (EV_A);
3217 w->active = 0;
3218 }
3219
3220 /*****************************************************************************/
3221
3222 void noinline
3223 ev_io_start (EV_P_ ev_io *w)
3224 {
3225 int fd = w->fd;
3226
3227 if (expect_false (ev_is_active (w)))
3228 return;
3229
3230 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3231 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3232
3233 EV_FREQUENT_CHECK;
3234
3235 ev_start (EV_A_ (W)w, 1);
3236 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3237 wlist_add (&anfds[fd].head, (WL)w);
3238
3239 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3240 w->events &= ~EV__IOFDSET;
3241
3242 EV_FREQUENT_CHECK;
3243 }
3244
3245 void noinline
3246 ev_io_stop (EV_P_ ev_io *w)
3247 {
3248 clear_pending (EV_A_ (W)w);
3249 if (expect_false (!ev_is_active (w)))
3250 return;
3251
3252 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3253
3254 EV_FREQUENT_CHECK;
3255
3256 wlist_del (&anfds[w->fd].head, (WL)w);
3257 ev_stop (EV_A_ (W)w);
3258
3259 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3260
3261 EV_FREQUENT_CHECK;
3262 }
3263
3264 void noinline
3265 ev_timer_start (EV_P_ ev_timer *w)
3266 {
3267 if (expect_false (ev_is_active (w)))
3268 return;
3269
3270 ev_at (w) += mn_now;
3271
3272 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3273
3274 EV_FREQUENT_CHECK;
3275
3276 ++timercnt;
3277 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3278 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3279 ANHE_w (timers [ev_active (w)]) = (WT)w;
3280 ANHE_at_cache (timers [ev_active (w)]);
3281 upheap (timers, ev_active (w));
3282
3283 EV_FREQUENT_CHECK;
3284
3285 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3286 }
3287
3288 void noinline
3289 ev_timer_stop (EV_P_ ev_timer *w)
3290 {
3291 clear_pending (EV_A_ (W)w);
3292 if (expect_false (!ev_is_active (w)))
3293 return;
3294
3295 EV_FREQUENT_CHECK;
3296
3297 {
3298 int active = ev_active (w);
3299
3300 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3301
3302 --timercnt;
3303
3304 if (expect_true (active < timercnt + HEAP0))
3305 {
3306 timers [active] = timers [timercnt + HEAP0];
3307 adjustheap (timers, timercnt, active);
3308 }
3309 }
3310
3311 ev_at (w) -= mn_now;
3312
3313 ev_stop (EV_A_ (W)w);
3314
3315 EV_FREQUENT_CHECK;
3316 }
3317
3318 void noinline
3319 ev_timer_again (EV_P_ ev_timer *w)
3320 {
3321 EV_FREQUENT_CHECK;
3322
3323 clear_pending (EV_A_ (W)w);
3324
3325 if (ev_is_active (w))
3326 {
3327 if (w->repeat)
3328 {
3329 ev_at (w) = mn_now + w->repeat;
3330 ANHE_at_cache (timers [ev_active (w)]);
3331 adjustheap (timers, timercnt, ev_active (w));
3332 }
3333 else
3334 ev_timer_stop (EV_A_ w);
3335 }
3336 else if (w->repeat)
3337 {
3338 ev_at (w) = w->repeat;
3339 ev_timer_start (EV_A_ w);
3340 }
3341
3342 EV_FREQUENT_CHECK;
3343 }
3344
3345 ev_tstamp
3346 ev_timer_remaining (EV_P_ ev_timer *w)
3347 {
3348 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3349 }
3350
3351 #if EV_PERIODIC_ENABLE
3352 void noinline
3353 ev_periodic_start (EV_P_ ev_periodic *w)
3354 {
3355 if (expect_false (ev_is_active (w)))
3356 return;
3357
3358 if (w->reschedule_cb)
3359 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3360 else if (w->interval)
3361 {
3362 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3363 periodic_recalc (EV_A_ w);
3364 }
3365 else
3366 ev_at (w) = w->offset;
3367
3368 EV_FREQUENT_CHECK;
3369
3370 ++periodiccnt;
3371 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3372 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3373 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3374 ANHE_at_cache (periodics [ev_active (w)]);
3375 upheap (periodics, ev_active (w));
3376
3377 EV_FREQUENT_CHECK;
3378
3379 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3380 }
3381
3382 void noinline
3383 ev_periodic_stop (EV_P_ ev_periodic *w)
3384 {
3385 clear_pending (EV_A_ (W)w);
3386 if (expect_false (!ev_is_active (w)))
3387 return;
3388
3389 EV_FREQUENT_CHECK;
3390
3391 {
3392 int active = ev_active (w);
3393
3394 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3395
3396 --periodiccnt;
3397
3398 if (expect_true (active < periodiccnt + HEAP0))
3399 {
3400 periodics [active] = periodics [periodiccnt + HEAP0];
3401 adjustheap (periodics, periodiccnt, active);
3402 }
3403 }
3404
3405 ev_stop (EV_A_ (W)w);
3406
3407 EV_FREQUENT_CHECK;
3408 }
3409
3410 void noinline
3411 ev_periodic_again (EV_P_ ev_periodic *w)
3412 {
3413 /* TODO: use adjustheap and recalculation */
3414 ev_periodic_stop (EV_A_ w);
3415 ev_periodic_start (EV_A_ w);
3416 }
3417 #endif
3418
3419 #ifndef SA_RESTART
3420 # define SA_RESTART 0
3421 #endif
3422
3423 #if EV_SIGNAL_ENABLE
3424
3425 void noinline
3426 ev_signal_start (EV_P_ ev_signal *w)
3427 {
3428 if (expect_false (ev_is_active (w)))
3429 return;
3430
3431 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3432
3433 #if EV_MULTIPLICITY
3434 assert (("libev: a signal must not be attached to two different loops",
3435 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3436
3437 signals [w->signum - 1].loop = EV_A;
3438 #endif
3439
3440 EV_FREQUENT_CHECK;
3441
3442 #if EV_USE_SIGNALFD
3443 if (sigfd == -2)
3444 {
3445 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3446 if (sigfd < 0 && errno == EINVAL)
3447 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3448
3449 if (sigfd >= 0)
3450 {
3451 fd_intern (sigfd); /* doing it twice will not hurt */
3452
3453 sigemptyset (&sigfd_set);
3454
3455 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3456 ev_set_priority (&sigfd_w, EV_MAXPRI);
3457 ev_io_start (EV_A_ &sigfd_w);
3458 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3459 }
3460 }
3461
3462 if (sigfd >= 0)
3463 {
3464 /* TODO: check .head */
3465 sigaddset (&sigfd_set, w->signum);
3466 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3467
3468 signalfd (sigfd, &sigfd_set, 0);
3469 }
3470 #endif
3471
3472 ev_start (EV_A_ (W)w, 1);
3473 wlist_add (&signals [w->signum - 1].head, (WL)w);
3474
3475 if (!((WL)w)->next)
3476 # if EV_USE_SIGNALFD
3477 if (sigfd < 0) /*TODO*/
3478 # endif
3479 {
3480 # ifdef _WIN32
3481 evpipe_init (EV_A);
3482
3483 signal (w->signum, ev_sighandler);
3484 # else
3485 struct sigaction sa;
3486
3487 evpipe_init (EV_A);
3488
3489 sa.sa_handler = ev_sighandler;
3490 sigfillset (&sa.sa_mask);
3491 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3492 sigaction (w->signum, &sa, 0);
3493
3494 if (origflags & EVFLAG_NOSIGMASK)
3495 {
3496 sigemptyset (&sa.sa_mask);
3497 sigaddset (&sa.sa_mask, w->signum);
3498 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3499 }
3500 #endif
3501 }
3502
3503 EV_FREQUENT_CHECK;
3504 }
3505
3506 void noinline
3507 ev_signal_stop (EV_P_ ev_signal *w)
3508 {
3509 clear_pending (EV_A_ (W)w);
3510 if (expect_false (!ev_is_active (w)))
3511 return;
3512
3513 EV_FREQUENT_CHECK;
3514
3515 wlist_del (&signals [w->signum - 1].head, (WL)w);
3516 ev_stop (EV_A_ (W)w);
3517
3518 if (!signals [w->signum - 1].head)
3519 {
3520 #if EV_MULTIPLICITY
3521 signals [w->signum - 1].loop = 0; /* unattach from signal */
3522 #endif
3523 #if EV_USE_SIGNALFD
3524 if (sigfd >= 0)
3525 {
3526 sigset_t ss;
3527
3528 sigemptyset (&ss);
3529 sigaddset (&ss, w->signum);
3530 sigdelset (&sigfd_set, w->signum);
3531
3532 signalfd (sigfd, &sigfd_set, 0);
3533 sigprocmask (SIG_UNBLOCK, &ss, 0);
3534 }
3535 else
3536 #endif
3537 signal (w->signum, SIG_DFL);
3538 }
3539
3540 EV_FREQUENT_CHECK;
3541 }
3542
3543 #endif
3544
3545 #if EV_CHILD_ENABLE
3546
3547 void
3548 ev_child_start (EV_P_ ev_child *w)
3549 {
3550 #if EV_MULTIPLICITY
3551 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3552 #endif
3553 if (expect_false (ev_is_active (w)))
3554 return;
3555
3556 EV_FREQUENT_CHECK;
3557
3558 ev_start (EV_A_ (W)w, 1);
3559 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3560
3561 EV_FREQUENT_CHECK;
3562 }
3563
3564 void
3565 ev_child_stop (EV_P_ ev_child *w)
3566 {
3567 clear_pending (EV_A_ (W)w);
3568 if (expect_false (!ev_is_active (w)))
3569 return;
3570
3571 EV_FREQUENT_CHECK;
3572
3573 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3574 ev_stop (EV_A_ (W)w);
3575
3576 EV_FREQUENT_CHECK;
3577 }
3578
3579 #endif
3580
3581 #if EV_STAT_ENABLE
3582
3583 # ifdef _WIN32
3584 # undef lstat
3585 # define lstat(a,b) _stati64 (a,b)
3586 # endif
3587
3588 #define DEF_STAT_INTERVAL 5.0074891
3589 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3590 #define MIN_STAT_INTERVAL 0.1074891
3591
3592 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3593
3594 #if EV_USE_INOTIFY
3595
3596 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3597 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3598
3599 static void noinline
3600 infy_add (EV_P_ ev_stat *w)
3601 {
3602 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3603
3604 if (w->wd >= 0)
3605 {
3606 struct statfs sfs;
3607
3608 /* now local changes will be tracked by inotify, but remote changes won't */
3609 /* unless the filesystem is known to be local, we therefore still poll */
3610 /* also do poll on <2.6.25, but with normal frequency */
3611
3612 if (!fs_2625)
3613 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3614 else if (!statfs (w->path, &sfs)
3615 && (sfs.f_type == 0x1373 /* devfs */
3616 || sfs.f_type == 0xEF53 /* ext2/3 */
3617 || sfs.f_type == 0x3153464a /* jfs */
3618 || sfs.f_type == 0x52654973 /* reiser3 */
3619 || sfs.f_type == 0x01021994 /* tempfs */
3620 || sfs.f_type == 0x58465342 /* xfs */))
3621 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3622 else
3623 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3624 }
3625 else
3626 {
3627 /* can't use inotify, continue to stat */
3628 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3629
3630 /* if path is not there, monitor some parent directory for speedup hints */
3631 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3632 /* but an efficiency issue only */
3633 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3634 {
3635 char path [4096];
3636 strcpy (path, w->path);
3637
3638 do
3639 {
3640 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3641 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3642
3643 char *pend = strrchr (path, '/');
3644
3645 if (!pend || pend == path)
3646 break;
3647
3648 *pend = 0;
3649 w->wd = inotify_add_watch (fs_fd, path, mask);
3650 }
3651 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3652 }
3653 }
3654
3655 if (w->wd >= 0)
3656 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3657
3658 /* now re-arm timer, if required */
3659 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3660 ev_timer_again (EV_A_ &w->timer);
3661 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3662 }
3663
3664 static void noinline
3665 infy_del (EV_P_ ev_stat *w)
3666 {
3667 int slot;
3668 int wd = w->wd;
3669
3670 if (wd < 0)
3671 return;
3672
3673 w->wd = -2;
3674 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3675 wlist_del (&fs_hash [slot].head, (WL)w);
3676
3677 /* remove this watcher, if others are watching it, they will rearm */
3678 inotify_rm_watch (fs_fd, wd);
3679 }
3680
3681 static void noinline
3682 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3683 {
3684 if (slot < 0)
3685 /* overflow, need to check for all hash slots */
3686 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3687 infy_wd (EV_A_ slot, wd, ev);
3688 else
3689 {
3690 WL w_;
3691
3692 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3693 {
3694 ev_stat *w = (ev_stat *)w_;
3695 w_ = w_->next; /* lets us remove this watcher and all before it */
3696
3697 if (w->wd == wd || wd == -1)
3698 {
3699 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3700 {
3701 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3702 w->wd = -1;
3703 infy_add (EV_A_ w); /* re-add, no matter what */
3704 }
3705
3706 stat_timer_cb (EV_A_ &w->timer, 0);
3707 }
3708 }
3709 }
3710 }
3711
3712 static void
3713 infy_cb (EV_P_ ev_io *w, int revents)
3714 {
3715 char buf [EV_INOTIFY_BUFSIZE];
3716 int ofs;
3717 int len = read (fs_fd, buf, sizeof (buf));
3718
3719 for (ofs = 0; ofs < len; )
3720 {
3721 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3722 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3723 ofs += sizeof (struct inotify_event) + ev->len;
3724 }
3725 }
3726
3727 inline_size void ecb_cold
3728 ev_check_2625 (EV_P)
3729 {
3730 /* kernels < 2.6.25 are borked
3731 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3732 */
3733 if (ev_linux_version () < 0x020619)
3734 return;
3735
3736 fs_2625 = 1;
3737 }
3738
3739 inline_size int
3740 infy_newfd (void)
3741 {
3742 #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3743 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3744 if (fd >= 0)
3745 return fd;
3746 #endif
3747 return inotify_init ();
3748 }
3749
3750 inline_size void
3751 infy_init (EV_P)
3752 {
3753 if (fs_fd != -2)
3754 return;
3755
3756 fs_fd = -1;
3757
3758 ev_check_2625 (EV_A);
3759
3760 fs_fd = infy_newfd ();
3761
3762 if (fs_fd >= 0)
3763 {
3764 fd_intern (fs_fd);
3765 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3766 ev_set_priority (&fs_w, EV_MAXPRI);
3767 ev_io_start (EV_A_ &fs_w);
3768 ev_unref (EV_A);
3769 }
3770 }
3771
3772 inline_size void
3773 infy_fork (EV_P)
3774 {
3775 int slot;
3776
3777 if (fs_fd < 0)
3778 return;
3779
3780 ev_ref (EV_A);
3781 ev_io_stop (EV_A_ &fs_w);
3782 close (fs_fd);
3783 fs_fd = infy_newfd ();
3784
3785 if (fs_fd >= 0)
3786 {
3787 fd_intern (fs_fd);
3788 ev_io_set (&fs_w, fs_fd, EV_READ);
3789 ev_io_start (EV_A_ &fs_w);
3790 ev_unref (EV_A);
3791 }
3792
3793 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3794 {
3795 WL w_ = fs_hash [slot].head;
3796 fs_hash [slot].head = 0;
3797
3798 while (w_)
3799 {
3800 ev_stat *w = (ev_stat *)w_;
3801 w_ = w_->next; /* lets us add this watcher */
3802
3803 w->wd = -1;
3804
3805 if (fs_fd >= 0)
3806 infy_add (EV_A_ w); /* re-add, no matter what */
3807 else
3808 {
3809 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3810 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3811 ev_timer_again (EV_A_ &w->timer);
3812 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3813 }
3814 }
3815 }
3816 }
3817
3818 #endif
3819
3820 #ifdef _WIN32
3821 # define EV_LSTAT(p,b) _stati64 (p, b)
3822 #else
3823 # define EV_LSTAT(p,b) lstat (p, b)
3824 #endif
3825
3826 void
3827 ev_stat_stat (EV_P_ ev_stat *w)
3828 {
3829 if (lstat (w->path, &w->attr) < 0)
3830 w->attr.st_nlink = 0;
3831 else if (!w->attr.st_nlink)
3832 w->attr.st_nlink = 1;
3833 }
3834
3835 static void noinline
3836 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3837 {
3838 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3839
3840 ev_statdata prev = w->attr;
3841 ev_stat_stat (EV_A_ w);
3842
3843 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3844 if (
3845 prev.st_dev != w->attr.st_dev
3846 || prev.st_ino != w->attr.st_ino
3847 || prev.st_mode != w->attr.st_mode
3848 || prev.st_nlink != w->attr.st_nlink
3849 || prev.st_uid != w->attr.st_uid
3850 || prev.st_gid != w->attr.st_gid
3851 || prev.st_rdev != w->attr.st_rdev
3852 || prev.st_size != w->attr.st_size
3853 || prev.st_atime != w->attr.st_atime
3854 || prev.st_mtime != w->attr.st_mtime
3855 || prev.st_ctime != w->attr.st_ctime
3856 ) {
3857 /* we only update w->prev on actual differences */
3858 /* in case we test more often than invoke the callback, */
3859 /* to ensure that prev is always different to attr */
3860 w->prev = prev;
3861
3862 #if EV_USE_INOTIFY
3863 if (fs_fd >= 0)
3864 {
3865 infy_del (EV_A_ w);
3866 infy_add (EV_A_ w);
3867 ev_stat_stat (EV_A_ w); /* avoid race... */
3868 }
3869 #endif
3870
3871 ev_feed_event (EV_A_ w, EV_STAT);
3872 }
3873 }
3874
3875 void
3876 ev_stat_start (EV_P_ ev_stat *w)
3877 {
3878 if (expect_false (ev_is_active (w)))
3879 return;
3880
3881 ev_stat_stat (EV_A_ w);
3882
3883 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3884 w->interval = MIN_STAT_INTERVAL;
3885
3886 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3887 ev_set_priority (&w->timer, ev_priority (w));
3888
3889 #if EV_USE_INOTIFY
3890 infy_init (EV_A);
3891
3892 if (fs_fd >= 0)
3893 infy_add (EV_A_ w);
3894 else
3895 #endif
3896 {
3897 ev_timer_again (EV_A_ &w->timer);
3898 ev_unref (EV_A);
3899 }
3900
3901 ev_start (EV_A_ (W)w, 1);
3902
3903 EV_FREQUENT_CHECK;
3904 }
3905
3906 void
3907 ev_stat_stop (EV_P_ ev_stat *w)
3908 {
3909 clear_pending (EV_A_ (W)w);
3910 if (expect_false (!ev_is_active (w)))
3911 return;
3912
3913 EV_FREQUENT_CHECK;
3914
3915 #if EV_USE_INOTIFY
3916 infy_del (EV_A_ w);
3917 #endif
3918
3919 if (ev_is_active (&w->timer))
3920 {
3921 ev_ref (EV_A);
3922 ev_timer_stop (EV_A_ &w->timer);
3923 }
3924
3925 ev_stop (EV_A_ (W)w);
3926
3927 EV_FREQUENT_CHECK;
3928 }
3929 #endif
3930
3931 #if EV_IDLE_ENABLE
3932 void
3933 ev_idle_start (EV_P_ ev_idle *w)
3934 {
3935 if (expect_false (ev_is_active (w)))
3936 return;
3937
3938 pri_adjust (EV_A_ (W)w);
3939
3940 EV_FREQUENT_CHECK;
3941
3942 {
3943 int active = ++idlecnt [ABSPRI (w)];
3944
3945 ++idleall;
3946 ev_start (EV_A_ (W)w, active);
3947
3948 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3949 idles [ABSPRI (w)][active - 1] = w;
3950 }
3951
3952 EV_FREQUENT_CHECK;
3953 }
3954
3955 void
3956 ev_idle_stop (EV_P_ ev_idle *w)
3957 {
3958 clear_pending (EV_A_ (W)w);
3959 if (expect_false (!ev_is_active (w)))
3960 return;
3961
3962 EV_FREQUENT_CHECK;
3963
3964 {
3965 int active = ev_active (w);
3966
3967 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3968 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3969
3970 ev_stop (EV_A_ (W)w);
3971 --idleall;
3972 }
3973
3974 EV_FREQUENT_CHECK;
3975 }
3976 #endif
3977
3978 #if EV_PREPARE_ENABLE
3979 void
3980 ev_prepare_start (EV_P_ ev_prepare *w)
3981 {
3982 if (expect_false (ev_is_active (w)))
3983 return;
3984
3985 EV_FREQUENT_CHECK;
3986
3987 ev_start (EV_A_ (W)w, ++preparecnt);
3988 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3989 prepares [preparecnt - 1] = w;
3990
3991 EV_FREQUENT_CHECK;
3992 }
3993
3994 void
3995 ev_prepare_stop (EV_P_ ev_prepare *w)
3996 {
3997 clear_pending (EV_A_ (W)w);
3998 if (expect_false (!ev_is_active (w)))
3999 return;
4000
4001 EV_FREQUENT_CHECK;
4002
4003 {
4004 int active = ev_active (w);
4005
4006 prepares [active - 1] = prepares [--preparecnt];
4007 ev_active (prepares [active - 1]) = active;
4008 }
4009
4010 ev_stop (EV_A_ (W)w);
4011
4012 EV_FREQUENT_CHECK;
4013 }
4014 #endif
4015
4016 #if EV_CHECK_ENABLE
4017 void
4018 ev_check_start (EV_P_ ev_check *w)
4019 {
4020 if (expect_false (ev_is_active (w)))
4021 return;
4022
4023 EV_FREQUENT_CHECK;
4024
4025 ev_start (EV_A_ (W)w, ++checkcnt);
4026 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4027 checks [checkcnt - 1] = w;
4028
4029 EV_FREQUENT_CHECK;
4030 }
4031
4032 void
4033 ev_check_stop (EV_P_ ev_check *w)
4034 {
4035 clear_pending (EV_A_ (W)w);
4036 if (expect_false (!ev_is_active (w)))
4037 return;
4038
4039 EV_FREQUENT_CHECK;
4040
4041 {
4042 int active = ev_active (w);
4043
4044 checks [active - 1] = checks [--checkcnt];
4045 ev_active (checks [active - 1]) = active;
4046 }
4047
4048 ev_stop (EV_A_ (W)w);
4049
4050 EV_FREQUENT_CHECK;
4051 }
4052 #endif
4053
4054 #if EV_EMBED_ENABLE
4055 void noinline
4056 ev_embed_sweep (EV_P_ ev_embed *w)
4057 {
4058 ev_run (w->other, EVRUN_NOWAIT);
4059 }
4060
4061 static void
4062 embed_io_cb (EV_P_ ev_io *io, int revents)
4063 {
4064 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4065
4066 if (ev_cb (w))
4067 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4068 else
4069 ev_run (w->other, EVRUN_NOWAIT);
4070 }
4071
4072 static void
4073 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4074 {
4075 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4076
4077 {
4078 EV_P = w->other;
4079
4080 while (fdchangecnt)
4081 {
4082 fd_reify (EV_A);
4083 ev_run (EV_A_ EVRUN_NOWAIT);
4084 }
4085 }
4086 }
4087
4088 static void
4089 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4090 {
4091 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4092
4093 ev_embed_stop (EV_A_ w);
4094
4095 {
4096 EV_P = w->other;
4097
4098 ev_loop_fork (EV_A);
4099 ev_run (EV_A_ EVRUN_NOWAIT);
4100 }
4101
4102 ev_embed_start (EV_A_ w);
4103 }
4104
4105 #if 0
4106 static void
4107 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4108 {
4109 ev_idle_stop (EV_A_ idle);
4110 }
4111 #endif
4112
4113 void
4114 ev_embed_start (EV_P_ ev_embed *w)
4115 {
4116 if (expect_false (ev_is_active (w)))
4117 return;
4118
4119 {
4120 EV_P = w->other;
4121 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4122 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4123 }
4124
4125 EV_FREQUENT_CHECK;
4126
4127 ev_set_priority (&w->io, ev_priority (w));
4128 ev_io_start (EV_A_ &w->io);
4129
4130 ev_prepare_init (&w->prepare, embed_prepare_cb);
4131 ev_set_priority (&w->prepare, EV_MINPRI);
4132 ev_prepare_start (EV_A_ &w->prepare);
4133
4134 ev_fork_init (&w->fork, embed_fork_cb);
4135 ev_fork_start (EV_A_ &w->fork);
4136
4137 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4138
4139 ev_start (EV_A_ (W)w, 1);
4140
4141 EV_FREQUENT_CHECK;
4142 }
4143
4144 void
4145 ev_embed_stop (EV_P_ ev_embed *w)
4146 {
4147 clear_pending (EV_A_ (W)w);
4148 if (expect_false (!ev_is_active (w)))
4149 return;
4150
4151 EV_FREQUENT_CHECK;
4152
4153 ev_io_stop (EV_A_ &w->io);
4154 ev_prepare_stop (EV_A_ &w->prepare);
4155 ev_fork_stop (EV_A_ &w->fork);
4156
4157 ev_stop (EV_A_ (W)w);
4158
4159 EV_FREQUENT_CHECK;
4160 }
4161 #endif
4162
4163 #if EV_FORK_ENABLE
4164 void
4165 ev_fork_start (EV_P_ ev_fork *w)
4166 {
4167 if (expect_false (ev_is_active (w)))
4168 return;
4169
4170 EV_FREQUENT_CHECK;
4171
4172 ev_start (EV_A_ (W)w, ++forkcnt);
4173 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4174 forks [forkcnt - 1] = w;
4175
4176 EV_FREQUENT_CHECK;
4177 }
4178
4179 void
4180 ev_fork_stop (EV_P_ ev_fork *w)
4181 {
4182 clear_pending (EV_A_ (W)w);
4183 if (expect_false (!ev_is_active (w)))
4184 return;
4185
4186 EV_FREQUENT_CHECK;
4187
4188 {
4189 int active = ev_active (w);
4190
4191 forks [active - 1] = forks [--forkcnt];
4192 ev_active (forks [active - 1]) = active;
4193 }
4194
4195 ev_stop (EV_A_ (W)w);
4196
4197 EV_FREQUENT_CHECK;
4198 }
4199 #endif
4200
4201 #if EV_CLEANUP_ENABLE
4202 void
4203 ev_cleanup_start (EV_P_ ev_cleanup *w)
4204 {
4205 if (expect_false (ev_is_active (w)))
4206 return;
4207
4208 EV_FREQUENT_CHECK;
4209
4210 ev_start (EV_A_ (W)w, ++cleanupcnt);
4211 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4212 cleanups [cleanupcnt - 1] = w;
4213
4214 /* cleanup watchers should never keep a refcount on the loop */
4215 ev_unref (EV_A);
4216 EV_FREQUENT_CHECK;
4217 }
4218
4219 void
4220 ev_cleanup_stop (EV_P_ ev_cleanup *w)
4221 {
4222 clear_pending (EV_A_ (W)w);
4223 if (expect_false (!ev_is_active (w)))
4224 return;
4225
4226 EV_FREQUENT_CHECK;
4227 ev_ref (EV_A);
4228
4229 {
4230 int active = ev_active (w);
4231
4232 cleanups [active - 1] = cleanups [--cleanupcnt];
4233 ev_active (cleanups [active - 1]) = active;
4234 }
4235
4236 ev_stop (EV_A_ (W)w);
4237
4238 EV_FREQUENT_CHECK;
4239 }
4240 #endif
4241
4242 #if EV_ASYNC_ENABLE
4243 void
4244 ev_async_start (EV_P_ ev_async *w)
4245 {
4246 if (expect_false (ev_is_active (w)))
4247 return;
4248
4249 w->sent = 0;
4250
4251 evpipe_init (EV_A);
4252
4253 EV_FREQUENT_CHECK;
4254
4255 ev_start (EV_A_ (W)w, ++asynccnt);
4256 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4257 asyncs [asynccnt - 1] = w;
4258
4259 EV_FREQUENT_CHECK;
4260 }
4261
4262 void
4263 ev_async_stop (EV_P_ ev_async *w)
4264 {
4265 clear_pending (EV_A_ (W)w);
4266 if (expect_false (!ev_is_active (w)))
4267 return;
4268
4269 EV_FREQUENT_CHECK;
4270
4271 {
4272 int active = ev_active (w);
4273
4274 asyncs [active - 1] = asyncs [--asynccnt];
4275 ev_active (asyncs [active - 1]) = active;
4276 }
4277
4278 ev_stop (EV_A_ (W)w);
4279
4280 EV_FREQUENT_CHECK;
4281 }
4282
4283 void
4284 ev_async_send (EV_P_ ev_async *w)
4285 {
4286 w->sent = 1;
4287 evpipe_write (EV_A_ &async_pending);
4288 }
4289 #endif
4290
4291 /*****************************************************************************/
4292
4293 struct ev_once
4294 {
4295 ev_io io;
4296 ev_timer to;
4297 void (*cb)(int revents, void *arg);
4298 void *arg;
4299 };
4300
4301 static void
4302 once_cb (EV_P_ struct ev_once *once, int revents)
4303 {
4304 void (*cb)(int revents, void *arg) = once->cb;
4305 void *arg = once->arg;
4306
4307 ev_io_stop (EV_A_ &once->io);
4308 ev_timer_stop (EV_A_ &once->to);
4309 ev_free (once);
4310
4311 cb (revents, arg);
4312 }
4313
4314 static void
4315 once_cb_io (EV_P_ ev_io *w, int revents)
4316 {
4317 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4318
4319 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4320 }
4321
4322 static void
4323 once_cb_to (EV_P_ ev_timer *w, int revents)
4324 {
4325 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4326
4327 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4328 }
4329
4330 void
4331 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
4332 {
4333 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4334
4335 if (expect_false (!once))
4336 {
4337 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4338 return;
4339 }
4340
4341 once->cb = cb;
4342 once->arg = arg;
4343
4344 ev_init (&once->io, once_cb_io);
4345 if (fd >= 0)
4346 {
4347 ev_io_set (&once->io, fd, events);
4348 ev_io_start (EV_A_ &once->io);
4349 }
4350
4351 ev_init (&once->to, once_cb_to);
4352 if (timeout >= 0.)
4353 {
4354 ev_timer_set (&once->to, timeout, 0.);
4355 ev_timer_start (EV_A_ &once->to);
4356 }
4357 }
4358
4359 /*****************************************************************************/
4360
4361 #if EV_WALK_ENABLE
4362 void ecb_cold
4363 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4364 {
4365 int i, j;
4366 ev_watcher_list *wl, *wn;
4367
4368 if (types & (EV_IO | EV_EMBED))
4369 for (i = 0; i < anfdmax; ++i)
4370 for (wl = anfds [i].head; wl; )
4371 {
4372 wn = wl->next;
4373
4374 #if EV_EMBED_ENABLE
4375 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4376 {
4377 if (types & EV_EMBED)
4378 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4379 }
4380 else
4381 #endif
4382 #if EV_USE_INOTIFY
4383 if (ev_cb ((ev_io *)wl) == infy_cb)
4384 ;
4385 else
4386 #endif
4387 if ((ev_io *)wl != &pipe_w)
4388 if (types & EV_IO)
4389 cb (EV_A_ EV_IO, wl);
4390
4391 wl = wn;
4392 }
4393
4394 if (types & (EV_TIMER | EV_STAT))
4395 for (i = timercnt + HEAP0; i-- > HEAP0; )
4396 #if EV_STAT_ENABLE
4397 /*TODO: timer is not always active*/
4398 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4399 {
4400 if (types & EV_STAT)
4401 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4402 }
4403 else
4404 #endif
4405 if (types & EV_TIMER)
4406 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4407
4408 #if EV_PERIODIC_ENABLE
4409 if (types & EV_PERIODIC)
4410 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4411 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4412 #endif
4413
4414 #if EV_IDLE_ENABLE
4415 if (types & EV_IDLE)
4416 for (j = NUMPRI; j--; )
4417 for (i = idlecnt [j]; i--; )
4418 cb (EV_A_ EV_IDLE, idles [j][i]);
4419 #endif
4420
4421 #if EV_FORK_ENABLE
4422 if (types & EV_FORK)
4423 for (i = forkcnt; i--; )
4424 if (ev_cb (forks [i]) != embed_fork_cb)
4425 cb (EV_A_ EV_FORK, forks [i]);
4426 #endif
4427
4428 #if EV_ASYNC_ENABLE
4429 if (types & EV_ASYNC)
4430 for (i = asynccnt; i--; )
4431 cb (EV_A_ EV_ASYNC, asyncs [i]);
4432 #endif
4433
4434 #if EV_PREPARE_ENABLE
4435 if (types & EV_PREPARE)
4436 for (i = preparecnt; i--; )
4437 # if EV_EMBED_ENABLE
4438 if (ev_cb (prepares [i]) != embed_prepare_cb)
4439 # endif
4440 cb (EV_A_ EV_PREPARE, prepares [i]);
4441 #endif
4442
4443 #if EV_CHECK_ENABLE
4444 if (types & EV_CHECK)
4445 for (i = checkcnt; i--; )
4446 cb (EV_A_ EV_CHECK, checks [i]);
4447 #endif
4448
4449 #if EV_SIGNAL_ENABLE
4450 if (types & EV_SIGNAL)
4451 for (i = 0; i < EV_NSIG - 1; ++i)
4452 for (wl = signals [i].head; wl; )
4453 {
4454 wn = wl->next;
4455 cb (EV_A_ EV_SIGNAL, wl);
4456 wl = wn;
4457 }
4458 #endif
4459
4460 #if EV_CHILD_ENABLE
4461 if (types & EV_CHILD)
4462 for (i = (EV_PID_HASHSIZE); i--; )
4463 for (wl = childs [i]; wl; )
4464 {
4465 wn = wl->next;
4466 cb (EV_A_ EV_CHILD, wl);
4467 wl = wn;
4468 }
4469 #endif
4470 /* EV_STAT 0x00001000 /* stat data changed */
4471 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4472 }
4473 #endif
4474
4475 #if EV_MULTIPLICITY
4476 #include "ev_wrap.h"
4477 #endif
4478