ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.412
Committed: Wed Feb 22 01:53:00 2012 UTC (12 years, 2 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.411: +2 -0 lines
Log Message:
mips addition by Anton Kirilov

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined(EV_USE_CLOCK_SYSCALL)
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <windows.h>
207 # ifndef EV_SELECT_IS_WINSOCKET
208 # define EV_SELECT_IS_WINSOCKET 1
209 # endif
210 # undef EV_AVOID_STDIO
211 #endif
212
213 /* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219 #define _DARWIN_UNLIMITED_SELECT 1
220
221 /* this block tries to deduce configuration from header-defined symbols and defaults */
222
223 /* try to deduce the maximum number of signals on this platform */
224 #if defined (EV_NSIG)
225 /* use what's provided */
226 #elif defined (NSIG)
227 # define EV_NSIG (NSIG)
228 #elif defined(_NSIG)
229 # define EV_NSIG (_NSIG)
230 #elif defined (SIGMAX)
231 # define EV_NSIG (SIGMAX+1)
232 #elif defined (SIG_MAX)
233 # define EV_NSIG (SIG_MAX+1)
234 #elif defined (_SIG_MAX)
235 # define EV_NSIG (_SIG_MAX+1)
236 #elif defined (MAXSIG)
237 # define EV_NSIG (MAXSIG+1)
238 #elif defined (MAX_SIG)
239 # define EV_NSIG (MAX_SIG+1)
240 #elif defined (SIGARRAYSIZE)
241 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242 #elif defined (_sys_nsig)
243 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244 #else
245 # error "unable to find value for NSIG, please report"
246 /* to make it compile regardless, just remove the above line, */
247 /* but consider reporting it, too! :) */
248 # define EV_NSIG 65
249 #endif
250
251 #ifndef EV_USE_FLOOR
252 # define EV_USE_FLOOR 0
253 #endif
254
255 #ifndef EV_USE_CLOCK_SYSCALL
256 # if __linux && __GLIBC__ >= 2
257 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258 # else
259 # define EV_USE_CLOCK_SYSCALL 0
260 # endif
261 #endif
262
263 #ifndef EV_USE_MONOTONIC
264 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
265 # define EV_USE_MONOTONIC EV_FEATURE_OS
266 # else
267 # define EV_USE_MONOTONIC 0
268 # endif
269 #endif
270
271 #ifndef EV_USE_REALTIME
272 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273 #endif
274
275 #ifndef EV_USE_NANOSLEEP
276 # if _POSIX_C_SOURCE >= 199309L
277 # define EV_USE_NANOSLEEP EV_FEATURE_OS
278 # else
279 # define EV_USE_NANOSLEEP 0
280 # endif
281 #endif
282
283 #ifndef EV_USE_SELECT
284 # define EV_USE_SELECT EV_FEATURE_BACKENDS
285 #endif
286
287 #ifndef EV_USE_POLL
288 # ifdef _WIN32
289 # define EV_USE_POLL 0
290 # else
291 # define EV_USE_POLL EV_FEATURE_BACKENDS
292 # endif
293 #endif
294
295 #ifndef EV_USE_EPOLL
296 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
298 # else
299 # define EV_USE_EPOLL 0
300 # endif
301 #endif
302
303 #ifndef EV_USE_KQUEUE
304 # define EV_USE_KQUEUE 0
305 #endif
306
307 #ifndef EV_USE_PORT
308 # define EV_USE_PORT 0
309 #endif
310
311 #ifndef EV_USE_INOTIFY
312 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313 # define EV_USE_INOTIFY EV_FEATURE_OS
314 # else
315 # define EV_USE_INOTIFY 0
316 # endif
317 #endif
318
319 #ifndef EV_PID_HASHSIZE
320 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
321 #endif
322
323 #ifndef EV_INOTIFY_HASHSIZE
324 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325 #endif
326
327 #ifndef EV_USE_EVENTFD
328 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329 # define EV_USE_EVENTFD EV_FEATURE_OS
330 # else
331 # define EV_USE_EVENTFD 0
332 # endif
333 #endif
334
335 #ifndef EV_USE_SIGNALFD
336 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337 # define EV_USE_SIGNALFD EV_FEATURE_OS
338 # else
339 # define EV_USE_SIGNALFD 0
340 # endif
341 #endif
342
343 #if 0 /* debugging */
344 # define EV_VERIFY 3
345 # define EV_USE_4HEAP 1
346 # define EV_HEAP_CACHE_AT 1
347 #endif
348
349 #ifndef EV_VERIFY
350 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351 #endif
352
353 #ifndef EV_USE_4HEAP
354 # define EV_USE_4HEAP EV_FEATURE_DATA
355 #endif
356
357 #ifndef EV_HEAP_CACHE_AT
358 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359 #endif
360
361 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362 /* which makes programs even slower. might work on other unices, too. */
363 #if EV_USE_CLOCK_SYSCALL
364 # include <syscall.h>
365 # ifdef SYS_clock_gettime
366 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367 # undef EV_USE_MONOTONIC
368 # define EV_USE_MONOTONIC 1
369 # else
370 # undef EV_USE_CLOCK_SYSCALL
371 # define EV_USE_CLOCK_SYSCALL 0
372 # endif
373 #endif
374
375 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377 #ifdef _AIX
378 /* AIX has a completely broken poll.h header */
379 # undef EV_USE_POLL
380 # define EV_USE_POLL 0
381 #endif
382
383 #ifndef CLOCK_MONOTONIC
384 # undef EV_USE_MONOTONIC
385 # define EV_USE_MONOTONIC 0
386 #endif
387
388 #ifndef CLOCK_REALTIME
389 # undef EV_USE_REALTIME
390 # define EV_USE_REALTIME 0
391 #endif
392
393 #if !EV_STAT_ENABLE
394 # undef EV_USE_INOTIFY
395 # define EV_USE_INOTIFY 0
396 #endif
397
398 #if !EV_USE_NANOSLEEP
399 /* hp-ux has it in sys/time.h, which we unconditionally include above */
400 # if !defined(_WIN32) && !defined(__hpux)
401 # include <sys/select.h>
402 # endif
403 #endif
404
405 #if EV_USE_INOTIFY
406 # include <sys/statfs.h>
407 # include <sys/inotify.h>
408 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409 # ifndef IN_DONT_FOLLOW
410 # undef EV_USE_INOTIFY
411 # define EV_USE_INOTIFY 0
412 # endif
413 #endif
414
415 #if EV_SELECT_IS_WINSOCKET
416 # include <winsock.h>
417 #endif
418
419 #if EV_USE_EVENTFD
420 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421 # include <stdint.h>
422 # ifndef EFD_NONBLOCK
423 # define EFD_NONBLOCK O_NONBLOCK
424 # endif
425 # ifndef EFD_CLOEXEC
426 # ifdef O_CLOEXEC
427 # define EFD_CLOEXEC O_CLOEXEC
428 # else
429 # define EFD_CLOEXEC 02000000
430 # endif
431 # endif
432 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433 #endif
434
435 #if EV_USE_SIGNALFD
436 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437 # include <stdint.h>
438 # ifndef SFD_NONBLOCK
439 # define SFD_NONBLOCK O_NONBLOCK
440 # endif
441 # ifndef SFD_CLOEXEC
442 # ifdef O_CLOEXEC
443 # define SFD_CLOEXEC O_CLOEXEC
444 # else
445 # define SFD_CLOEXEC 02000000
446 # endif
447 # endif
448 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450 struct signalfd_siginfo
451 {
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454 };
455 #endif
456
457 /**/
458
459 #if EV_VERIFY >= 3
460 # define EV_FREQUENT_CHECK ev_verify (EV_A)
461 #else
462 # define EV_FREQUENT_CHECK do { } while (0)
463 #endif
464
465 /*
466 * This is used to work around floating point rounding problems.
467 * This value is good at least till the year 4000.
468 */
469 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
471
472 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
473 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
474
475 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479 /* ECB.H BEGIN */
480 /*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509 #ifndef ECB_H
510 #define ECB_H
511
512 #ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #else
527 #include <inttypes.h>
528 #endif
529
530 /* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537 #ifndef ECB_GCC_VERSION
538 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
542 #endif
543 #endif
544
545 /*****************************************************************************/
546
547 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550 #if ECB_NO_THREADS
551 # define ECB_NO_SMP 1
552 #endif
553
554 #if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556 #endif
557
558 #ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
571 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
574 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined(__s390__) || defined(__s390x__)
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined(__mips__)
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #endif
585 #endif
586 #endif
587
588 #ifndef ECB_MEMORY_FENCE
589 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
590 #define ECB_MEMORY_FENCE __sync_synchronize ()
591 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
592 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
593 #elif _MSC_VER >= 1400 /* VC++ 2005 */
594 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
595 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
596 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
597 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
598 #elif defined(_WIN32)
599 #include <WinNT.h>
600 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
601 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
602 #include <mbarrier.h>
603 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
604 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
605 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
606 #endif
607 #endif
608
609 #ifndef ECB_MEMORY_FENCE
610 #if !ECB_AVOID_PTHREADS
611 /*
612 * if you get undefined symbol references to pthread_mutex_lock,
613 * or failure to find pthread.h, then you should implement
614 * the ECB_MEMORY_FENCE operations for your cpu/compiler
615 * OR provide pthread.h and link against the posix thread library
616 * of your system.
617 */
618 #include <pthread.h>
619 #define ECB_NEEDS_PTHREADS 1
620 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
621
622 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
623 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
624 #endif
625 #endif
626
627 #if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
628 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
629 #endif
630
631 #if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
632 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
633 #endif
634
635 /*****************************************************************************/
636
637 #define ECB_C99 (__STDC_VERSION__ >= 199901L)
638
639 #if __cplusplus
640 #define ecb_inline static inline
641 #elif ECB_GCC_VERSION(2,5)
642 #define ecb_inline static __inline__
643 #elif ECB_C99
644 #define ecb_inline static inline
645 #else
646 #define ecb_inline static
647 #endif
648
649 #if ECB_GCC_VERSION(3,3)
650 #define ecb_restrict __restrict__
651 #elif ECB_C99
652 #define ecb_restrict restrict
653 #else
654 #define ecb_restrict
655 #endif
656
657 typedef int ecb_bool;
658
659 #define ECB_CONCAT_(a, b) a ## b
660 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
661 #define ECB_STRINGIFY_(a) # a
662 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
663
664 #define ecb_function_ ecb_inline
665
666 #if ECB_GCC_VERSION(3,1)
667 #define ecb_attribute(attrlist) __attribute__(attrlist)
668 #define ecb_is_constant(expr) __builtin_constant_p (expr)
669 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
670 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
671 #else
672 #define ecb_attribute(attrlist)
673 #define ecb_is_constant(expr) 0
674 #define ecb_expect(expr,value) (expr)
675 #define ecb_prefetch(addr,rw,locality)
676 #endif
677
678 /* no emulation for ecb_decltype */
679 #if ECB_GCC_VERSION(4,5)
680 #define ecb_decltype(x) __decltype(x)
681 #elif ECB_GCC_VERSION(3,0)
682 #define ecb_decltype(x) __typeof(x)
683 #endif
684
685 #define ecb_noinline ecb_attribute ((__noinline__))
686 #define ecb_noreturn ecb_attribute ((__noreturn__))
687 #define ecb_unused ecb_attribute ((__unused__))
688 #define ecb_const ecb_attribute ((__const__))
689 #define ecb_pure ecb_attribute ((__pure__))
690
691 #if ECB_GCC_VERSION(4,3)
692 #define ecb_artificial ecb_attribute ((__artificial__))
693 #define ecb_hot ecb_attribute ((__hot__))
694 #define ecb_cold ecb_attribute ((__cold__))
695 #else
696 #define ecb_artificial
697 #define ecb_hot
698 #define ecb_cold
699 #endif
700
701 /* put around conditional expressions if you are very sure that the */
702 /* expression is mostly true or mostly false. note that these return */
703 /* booleans, not the expression. */
704 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
705 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
706 /* for compatibility to the rest of the world */
707 #define ecb_likely(expr) ecb_expect_true (expr)
708 #define ecb_unlikely(expr) ecb_expect_false (expr)
709
710 /* count trailing zero bits and count # of one bits */
711 #if ECB_GCC_VERSION(3,4)
712 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
713 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
714 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
715 #define ecb_ctz32(x) __builtin_ctz (x)
716 #define ecb_ctz64(x) __builtin_ctzll (x)
717 #define ecb_popcount32(x) __builtin_popcount (x)
718 /* no popcountll */
719 #else
720 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
721 ecb_function_ int
722 ecb_ctz32 (uint32_t x)
723 {
724 int r = 0;
725
726 x &= ~x + 1; /* this isolates the lowest bit */
727
728 #if ECB_branchless_on_i386
729 r += !!(x & 0xaaaaaaaa) << 0;
730 r += !!(x & 0xcccccccc) << 1;
731 r += !!(x & 0xf0f0f0f0) << 2;
732 r += !!(x & 0xff00ff00) << 3;
733 r += !!(x & 0xffff0000) << 4;
734 #else
735 if (x & 0xaaaaaaaa) r += 1;
736 if (x & 0xcccccccc) r += 2;
737 if (x & 0xf0f0f0f0) r += 4;
738 if (x & 0xff00ff00) r += 8;
739 if (x & 0xffff0000) r += 16;
740 #endif
741
742 return r;
743 }
744
745 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
746 ecb_function_ int
747 ecb_ctz64 (uint64_t x)
748 {
749 int shift = x & 0xffffffffU ? 0 : 32;
750 return ecb_ctz32 (x >> shift) + shift;
751 }
752
753 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
754 ecb_function_ int
755 ecb_popcount32 (uint32_t x)
756 {
757 x -= (x >> 1) & 0x55555555;
758 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
759 x = ((x >> 4) + x) & 0x0f0f0f0f;
760 x *= 0x01010101;
761
762 return x >> 24;
763 }
764
765 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
766 ecb_function_ int ecb_ld32 (uint32_t x)
767 {
768 int r = 0;
769
770 if (x >> 16) { x >>= 16; r += 16; }
771 if (x >> 8) { x >>= 8; r += 8; }
772 if (x >> 4) { x >>= 4; r += 4; }
773 if (x >> 2) { x >>= 2; r += 2; }
774 if (x >> 1) { r += 1; }
775
776 return r;
777 }
778
779 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
780 ecb_function_ int ecb_ld64 (uint64_t x)
781 {
782 int r = 0;
783
784 if (x >> 32) { x >>= 32; r += 32; }
785
786 return r + ecb_ld32 (x);
787 }
788 #endif
789
790 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
791 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
792 {
793 return ( (x * 0x0802U & 0x22110U)
794 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
795 }
796
797 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
798 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
799 {
800 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
801 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
802 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
803 x = ( x >> 8 ) | ( x << 8);
804
805 return x;
806 }
807
808 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
809 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
810 {
811 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
812 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
813 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
814 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
815 x = ( x >> 16 ) | ( x << 16);
816
817 return x;
818 }
819
820 /* popcount64 is only available on 64 bit cpus as gcc builtin */
821 /* so for this version we are lazy */
822 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
823 ecb_function_ int
824 ecb_popcount64 (uint64_t x)
825 {
826 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
827 }
828
829 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
830 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
831 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
832 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
833 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
834 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
835 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
836 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
837
838 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
839 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
840 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
841 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
842 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
843 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
844 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
845 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
846
847 #if ECB_GCC_VERSION(4,3)
848 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
849 #define ecb_bswap32(x) __builtin_bswap32 (x)
850 #define ecb_bswap64(x) __builtin_bswap64 (x)
851 #else
852 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
853 ecb_function_ uint16_t
854 ecb_bswap16 (uint16_t x)
855 {
856 return ecb_rotl16 (x, 8);
857 }
858
859 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
860 ecb_function_ uint32_t
861 ecb_bswap32 (uint32_t x)
862 {
863 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
864 }
865
866 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
867 ecb_function_ uint64_t
868 ecb_bswap64 (uint64_t x)
869 {
870 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
871 }
872 #endif
873
874 #if ECB_GCC_VERSION(4,5)
875 #define ecb_unreachable() __builtin_unreachable ()
876 #else
877 /* this seems to work fine, but gcc always emits a warning for it :/ */
878 ecb_inline void ecb_unreachable (void) ecb_noreturn;
879 ecb_inline void ecb_unreachable (void) { }
880 #endif
881
882 /* try to tell the compiler that some condition is definitely true */
883 #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
884
885 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
886 ecb_inline unsigned char
887 ecb_byteorder_helper (void)
888 {
889 const uint32_t u = 0x11223344;
890 return *(unsigned char *)&u;
891 }
892
893 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
894 ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
895 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
896 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
897
898 #if ECB_GCC_VERSION(3,0) || ECB_C99
899 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
900 #else
901 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
902 #endif
903
904 #if __cplusplus
905 template<typename T>
906 static inline T ecb_div_rd (T val, T div)
907 {
908 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
909 }
910 template<typename T>
911 static inline T ecb_div_ru (T val, T div)
912 {
913 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
914 }
915 #else
916 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
917 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
918 #endif
919
920 #if ecb_cplusplus_does_not_suck
921 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
922 template<typename T, int N>
923 static inline int ecb_array_length (const T (&arr)[N])
924 {
925 return N;
926 }
927 #else
928 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
929 #endif
930
931 #endif
932
933 /* ECB.H END */
934
935 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
936 /* if your architecture doesn't need memory fences, e.g. because it is
937 * single-cpu/core, or if you use libev in a project that doesn't use libev
938 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
939 * libev, in which cases the memory fences become nops.
940 * alternatively, you can remove this #error and link against libpthread,
941 * which will then provide the memory fences.
942 */
943 # error "memory fences not defined for your architecture, please report"
944 #endif
945
946 #ifndef ECB_MEMORY_FENCE
947 # define ECB_MEMORY_FENCE do { } while (0)
948 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
949 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
950 #endif
951
952 #define expect_false(cond) ecb_expect_false (cond)
953 #define expect_true(cond) ecb_expect_true (cond)
954 #define noinline ecb_noinline
955
956 #define inline_size ecb_inline
957
958 #if EV_FEATURE_CODE
959 # define inline_speed ecb_inline
960 #else
961 # define inline_speed static noinline
962 #endif
963
964 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
965
966 #if EV_MINPRI == EV_MAXPRI
967 # define ABSPRI(w) (((W)w), 0)
968 #else
969 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
970 #endif
971
972 #define EMPTY /* required for microsofts broken pseudo-c compiler */
973 #define EMPTY2(a,b) /* used to suppress some warnings */
974
975 typedef ev_watcher *W;
976 typedef ev_watcher_list *WL;
977 typedef ev_watcher_time *WT;
978
979 #define ev_active(w) ((W)(w))->active
980 #define ev_at(w) ((WT)(w))->at
981
982 #if EV_USE_REALTIME
983 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
984 /* giving it a reasonably high chance of working on typical architectures */
985 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
986 #endif
987
988 #if EV_USE_MONOTONIC
989 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
990 #endif
991
992 #ifndef EV_FD_TO_WIN32_HANDLE
993 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
994 #endif
995 #ifndef EV_WIN32_HANDLE_TO_FD
996 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
997 #endif
998 #ifndef EV_WIN32_CLOSE_FD
999 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1000 #endif
1001
1002 #ifdef _WIN32
1003 # include "ev_win32.c"
1004 #endif
1005
1006 /*****************************************************************************/
1007
1008 /* define a suitable floor function (only used by periodics atm) */
1009
1010 #if EV_USE_FLOOR
1011 # include <math.h>
1012 # define ev_floor(v) floor (v)
1013 #else
1014
1015 #include <float.h>
1016
1017 /* a floor() replacement function, should be independent of ev_tstamp type */
1018 static ev_tstamp noinline
1019 ev_floor (ev_tstamp v)
1020 {
1021 /* the choice of shift factor is not terribly important */
1022 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1023 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1024 #else
1025 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1026 #endif
1027
1028 /* argument too large for an unsigned long? */
1029 if (expect_false (v >= shift))
1030 {
1031 ev_tstamp f;
1032
1033 if (v == v - 1.)
1034 return v; /* very large number */
1035
1036 f = shift * ev_floor (v * (1. / shift));
1037 return f + ev_floor (v - f);
1038 }
1039
1040 /* special treatment for negative args? */
1041 if (expect_false (v < 0.))
1042 {
1043 ev_tstamp f = -ev_floor (-v);
1044
1045 return f - (f == v ? 0 : 1);
1046 }
1047
1048 /* fits into an unsigned long */
1049 return (unsigned long)v;
1050 }
1051
1052 #endif
1053
1054 /*****************************************************************************/
1055
1056 #ifdef __linux
1057 # include <sys/utsname.h>
1058 #endif
1059
1060 static unsigned int noinline ecb_cold
1061 ev_linux_version (void)
1062 {
1063 #ifdef __linux
1064 unsigned int v = 0;
1065 struct utsname buf;
1066 int i;
1067 char *p = buf.release;
1068
1069 if (uname (&buf))
1070 return 0;
1071
1072 for (i = 3+1; --i; )
1073 {
1074 unsigned int c = 0;
1075
1076 for (;;)
1077 {
1078 if (*p >= '0' && *p <= '9')
1079 c = c * 10 + *p++ - '0';
1080 else
1081 {
1082 p += *p == '.';
1083 break;
1084 }
1085 }
1086
1087 v = (v << 8) | c;
1088 }
1089
1090 return v;
1091 #else
1092 return 0;
1093 #endif
1094 }
1095
1096 /*****************************************************************************/
1097
1098 #if EV_AVOID_STDIO
1099 static void noinline ecb_cold
1100 ev_printerr (const char *msg)
1101 {
1102 write (STDERR_FILENO, msg, strlen (msg));
1103 }
1104 #endif
1105
1106 static void (*syserr_cb)(const char *msg);
1107
1108 void ecb_cold
1109 ev_set_syserr_cb (void (*cb)(const char *msg))
1110 {
1111 syserr_cb = cb;
1112 }
1113
1114 static void noinline ecb_cold
1115 ev_syserr (const char *msg)
1116 {
1117 if (!msg)
1118 msg = "(libev) system error";
1119
1120 if (syserr_cb)
1121 syserr_cb (msg);
1122 else
1123 {
1124 #if EV_AVOID_STDIO
1125 ev_printerr (msg);
1126 ev_printerr (": ");
1127 ev_printerr (strerror (errno));
1128 ev_printerr ("\n");
1129 #else
1130 perror (msg);
1131 #endif
1132 abort ();
1133 }
1134 }
1135
1136 static void *
1137 ev_realloc_emul (void *ptr, long size)
1138 {
1139 #if __GLIBC__
1140 return realloc (ptr, size);
1141 #else
1142 /* some systems, notably openbsd and darwin, fail to properly
1143 * implement realloc (x, 0) (as required by both ansi c-89 and
1144 * the single unix specification, so work around them here.
1145 */
1146
1147 if (size)
1148 return realloc (ptr, size);
1149
1150 free (ptr);
1151 return 0;
1152 #endif
1153 }
1154
1155 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
1156
1157 void ecb_cold
1158 ev_set_allocator (void *(*cb)(void *ptr, long size))
1159 {
1160 alloc = cb;
1161 }
1162
1163 inline_speed void *
1164 ev_realloc (void *ptr, long size)
1165 {
1166 ptr = alloc (ptr, size);
1167
1168 if (!ptr && size)
1169 {
1170 #if EV_AVOID_STDIO
1171 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1172 #else
1173 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1174 #endif
1175 abort ();
1176 }
1177
1178 return ptr;
1179 }
1180
1181 #define ev_malloc(size) ev_realloc (0, (size))
1182 #define ev_free(ptr) ev_realloc ((ptr), 0)
1183
1184 /*****************************************************************************/
1185
1186 /* set in reify when reification needed */
1187 #define EV_ANFD_REIFY 1
1188
1189 /* file descriptor info structure */
1190 typedef struct
1191 {
1192 WL head;
1193 unsigned char events; /* the events watched for */
1194 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1195 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1196 unsigned char unused;
1197 #if EV_USE_EPOLL
1198 unsigned int egen; /* generation counter to counter epoll bugs */
1199 #endif
1200 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1201 SOCKET handle;
1202 #endif
1203 #if EV_USE_IOCP
1204 OVERLAPPED or, ow;
1205 #endif
1206 } ANFD;
1207
1208 /* stores the pending event set for a given watcher */
1209 typedef struct
1210 {
1211 W w;
1212 int events; /* the pending event set for the given watcher */
1213 } ANPENDING;
1214
1215 #if EV_USE_INOTIFY
1216 /* hash table entry per inotify-id */
1217 typedef struct
1218 {
1219 WL head;
1220 } ANFS;
1221 #endif
1222
1223 /* Heap Entry */
1224 #if EV_HEAP_CACHE_AT
1225 /* a heap element */
1226 typedef struct {
1227 ev_tstamp at;
1228 WT w;
1229 } ANHE;
1230
1231 #define ANHE_w(he) (he).w /* access watcher, read-write */
1232 #define ANHE_at(he) (he).at /* access cached at, read-only */
1233 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1234 #else
1235 /* a heap element */
1236 typedef WT ANHE;
1237
1238 #define ANHE_w(he) (he)
1239 #define ANHE_at(he) (he)->at
1240 #define ANHE_at_cache(he)
1241 #endif
1242
1243 #if EV_MULTIPLICITY
1244
1245 struct ev_loop
1246 {
1247 ev_tstamp ev_rt_now;
1248 #define ev_rt_now ((loop)->ev_rt_now)
1249 #define VAR(name,decl) decl;
1250 #include "ev_vars.h"
1251 #undef VAR
1252 };
1253 #include "ev_wrap.h"
1254
1255 static struct ev_loop default_loop_struct;
1256 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1257
1258 #else
1259
1260 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1261 #define VAR(name,decl) static decl;
1262 #include "ev_vars.h"
1263 #undef VAR
1264
1265 static int ev_default_loop_ptr;
1266
1267 #endif
1268
1269 #if EV_FEATURE_API
1270 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1271 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1272 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1273 #else
1274 # define EV_RELEASE_CB (void)0
1275 # define EV_ACQUIRE_CB (void)0
1276 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1277 #endif
1278
1279 #define EVBREAK_RECURSE 0x80
1280
1281 /*****************************************************************************/
1282
1283 #ifndef EV_HAVE_EV_TIME
1284 ev_tstamp
1285 ev_time (void)
1286 {
1287 #if EV_USE_REALTIME
1288 if (expect_true (have_realtime))
1289 {
1290 struct timespec ts;
1291 clock_gettime (CLOCK_REALTIME, &ts);
1292 return ts.tv_sec + ts.tv_nsec * 1e-9;
1293 }
1294 #endif
1295
1296 struct timeval tv;
1297 gettimeofday (&tv, 0);
1298 return tv.tv_sec + tv.tv_usec * 1e-6;
1299 }
1300 #endif
1301
1302 inline_size ev_tstamp
1303 get_clock (void)
1304 {
1305 #if EV_USE_MONOTONIC
1306 if (expect_true (have_monotonic))
1307 {
1308 struct timespec ts;
1309 clock_gettime (CLOCK_MONOTONIC, &ts);
1310 return ts.tv_sec + ts.tv_nsec * 1e-9;
1311 }
1312 #endif
1313
1314 return ev_time ();
1315 }
1316
1317 #if EV_MULTIPLICITY
1318 ev_tstamp
1319 ev_now (EV_P)
1320 {
1321 return ev_rt_now;
1322 }
1323 #endif
1324
1325 void
1326 ev_sleep (ev_tstamp delay)
1327 {
1328 if (delay > 0.)
1329 {
1330 #if EV_USE_NANOSLEEP
1331 struct timespec ts;
1332
1333 EV_TS_SET (ts, delay);
1334 nanosleep (&ts, 0);
1335 #elif defined(_WIN32)
1336 Sleep ((unsigned long)(delay * 1e3));
1337 #else
1338 struct timeval tv;
1339
1340 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1341 /* something not guaranteed by newer posix versions, but guaranteed */
1342 /* by older ones */
1343 EV_TV_SET (tv, delay);
1344 select (0, 0, 0, 0, &tv);
1345 #endif
1346 }
1347 }
1348
1349 /*****************************************************************************/
1350
1351 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1352
1353 /* find a suitable new size for the given array, */
1354 /* hopefully by rounding to a nice-to-malloc size */
1355 inline_size int
1356 array_nextsize (int elem, int cur, int cnt)
1357 {
1358 int ncur = cur + 1;
1359
1360 do
1361 ncur <<= 1;
1362 while (cnt > ncur);
1363
1364 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1365 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1366 {
1367 ncur *= elem;
1368 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1369 ncur = ncur - sizeof (void *) * 4;
1370 ncur /= elem;
1371 }
1372
1373 return ncur;
1374 }
1375
1376 static void * noinline ecb_cold
1377 array_realloc (int elem, void *base, int *cur, int cnt)
1378 {
1379 *cur = array_nextsize (elem, *cur, cnt);
1380 return ev_realloc (base, elem * *cur);
1381 }
1382
1383 #define array_init_zero(base,count) \
1384 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1385
1386 #define array_needsize(type,base,cur,cnt,init) \
1387 if (expect_false ((cnt) > (cur))) \
1388 { \
1389 int ecb_unused ocur_ = (cur); \
1390 (base) = (type *)array_realloc \
1391 (sizeof (type), (base), &(cur), (cnt)); \
1392 init ((base) + (ocur_), (cur) - ocur_); \
1393 }
1394
1395 #if 0
1396 #define array_slim(type,stem) \
1397 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1398 { \
1399 stem ## max = array_roundsize (stem ## cnt >> 1); \
1400 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1401 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1402 }
1403 #endif
1404
1405 #define array_free(stem, idx) \
1406 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1407
1408 /*****************************************************************************/
1409
1410 /* dummy callback for pending events */
1411 static void noinline
1412 pendingcb (EV_P_ ev_prepare *w, int revents)
1413 {
1414 }
1415
1416 void noinline
1417 ev_feed_event (EV_P_ void *w, int revents)
1418 {
1419 W w_ = (W)w;
1420 int pri = ABSPRI (w_);
1421
1422 if (expect_false (w_->pending))
1423 pendings [pri][w_->pending - 1].events |= revents;
1424 else
1425 {
1426 w_->pending = ++pendingcnt [pri];
1427 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1428 pendings [pri][w_->pending - 1].w = w_;
1429 pendings [pri][w_->pending - 1].events = revents;
1430 }
1431 }
1432
1433 inline_speed void
1434 feed_reverse (EV_P_ W w)
1435 {
1436 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1437 rfeeds [rfeedcnt++] = w;
1438 }
1439
1440 inline_size void
1441 feed_reverse_done (EV_P_ int revents)
1442 {
1443 do
1444 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1445 while (rfeedcnt);
1446 }
1447
1448 inline_speed void
1449 queue_events (EV_P_ W *events, int eventcnt, int type)
1450 {
1451 int i;
1452
1453 for (i = 0; i < eventcnt; ++i)
1454 ev_feed_event (EV_A_ events [i], type);
1455 }
1456
1457 /*****************************************************************************/
1458
1459 inline_speed void
1460 fd_event_nocheck (EV_P_ int fd, int revents)
1461 {
1462 ANFD *anfd = anfds + fd;
1463 ev_io *w;
1464
1465 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1466 {
1467 int ev = w->events & revents;
1468
1469 if (ev)
1470 ev_feed_event (EV_A_ (W)w, ev);
1471 }
1472 }
1473
1474 /* do not submit kernel events for fds that have reify set */
1475 /* because that means they changed while we were polling for new events */
1476 inline_speed void
1477 fd_event (EV_P_ int fd, int revents)
1478 {
1479 ANFD *anfd = anfds + fd;
1480
1481 if (expect_true (!anfd->reify))
1482 fd_event_nocheck (EV_A_ fd, revents);
1483 }
1484
1485 void
1486 ev_feed_fd_event (EV_P_ int fd, int revents)
1487 {
1488 if (fd >= 0 && fd < anfdmax)
1489 fd_event_nocheck (EV_A_ fd, revents);
1490 }
1491
1492 /* make sure the external fd watch events are in-sync */
1493 /* with the kernel/libev internal state */
1494 inline_size void
1495 fd_reify (EV_P)
1496 {
1497 int i;
1498
1499 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1500 for (i = 0; i < fdchangecnt; ++i)
1501 {
1502 int fd = fdchanges [i];
1503 ANFD *anfd = anfds + fd;
1504
1505 if (anfd->reify & EV__IOFDSET && anfd->head)
1506 {
1507 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1508
1509 if (handle != anfd->handle)
1510 {
1511 unsigned long arg;
1512
1513 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1514
1515 /* handle changed, but fd didn't - we need to do it in two steps */
1516 backend_modify (EV_A_ fd, anfd->events, 0);
1517 anfd->events = 0;
1518 anfd->handle = handle;
1519 }
1520 }
1521 }
1522 #endif
1523
1524 for (i = 0; i < fdchangecnt; ++i)
1525 {
1526 int fd = fdchanges [i];
1527 ANFD *anfd = anfds + fd;
1528 ev_io *w;
1529
1530 unsigned char o_events = anfd->events;
1531 unsigned char o_reify = anfd->reify;
1532
1533 anfd->reify = 0;
1534
1535 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1536 {
1537 anfd->events = 0;
1538
1539 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1540 anfd->events |= (unsigned char)w->events;
1541
1542 if (o_events != anfd->events)
1543 o_reify = EV__IOFDSET; /* actually |= */
1544 }
1545
1546 if (o_reify & EV__IOFDSET)
1547 backend_modify (EV_A_ fd, o_events, anfd->events);
1548 }
1549
1550 fdchangecnt = 0;
1551 }
1552
1553 /* something about the given fd changed */
1554 inline_size void
1555 fd_change (EV_P_ int fd, int flags)
1556 {
1557 unsigned char reify = anfds [fd].reify;
1558 anfds [fd].reify |= flags;
1559
1560 if (expect_true (!reify))
1561 {
1562 ++fdchangecnt;
1563 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1564 fdchanges [fdchangecnt - 1] = fd;
1565 }
1566 }
1567
1568 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1569 inline_speed void ecb_cold
1570 fd_kill (EV_P_ int fd)
1571 {
1572 ev_io *w;
1573
1574 while ((w = (ev_io *)anfds [fd].head))
1575 {
1576 ev_io_stop (EV_A_ w);
1577 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1578 }
1579 }
1580
1581 /* check whether the given fd is actually valid, for error recovery */
1582 inline_size int ecb_cold
1583 fd_valid (int fd)
1584 {
1585 #ifdef _WIN32
1586 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1587 #else
1588 return fcntl (fd, F_GETFD) != -1;
1589 #endif
1590 }
1591
1592 /* called on EBADF to verify fds */
1593 static void noinline ecb_cold
1594 fd_ebadf (EV_P)
1595 {
1596 int fd;
1597
1598 for (fd = 0; fd < anfdmax; ++fd)
1599 if (anfds [fd].events)
1600 if (!fd_valid (fd) && errno == EBADF)
1601 fd_kill (EV_A_ fd);
1602 }
1603
1604 /* called on ENOMEM in select/poll to kill some fds and retry */
1605 static void noinline ecb_cold
1606 fd_enomem (EV_P)
1607 {
1608 int fd;
1609
1610 for (fd = anfdmax; fd--; )
1611 if (anfds [fd].events)
1612 {
1613 fd_kill (EV_A_ fd);
1614 break;
1615 }
1616 }
1617
1618 /* usually called after fork if backend needs to re-arm all fds from scratch */
1619 static void noinline
1620 fd_rearm_all (EV_P)
1621 {
1622 int fd;
1623
1624 for (fd = 0; fd < anfdmax; ++fd)
1625 if (anfds [fd].events)
1626 {
1627 anfds [fd].events = 0;
1628 anfds [fd].emask = 0;
1629 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1630 }
1631 }
1632
1633 /* used to prepare libev internal fd's */
1634 /* this is not fork-safe */
1635 inline_speed void
1636 fd_intern (int fd)
1637 {
1638 #ifdef _WIN32
1639 unsigned long arg = 1;
1640 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1641 #else
1642 fcntl (fd, F_SETFD, FD_CLOEXEC);
1643 fcntl (fd, F_SETFL, O_NONBLOCK);
1644 #endif
1645 }
1646
1647 /*****************************************************************************/
1648
1649 /*
1650 * the heap functions want a real array index. array index 0 is guaranteed to not
1651 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1652 * the branching factor of the d-tree.
1653 */
1654
1655 /*
1656 * at the moment we allow libev the luxury of two heaps,
1657 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1658 * which is more cache-efficient.
1659 * the difference is about 5% with 50000+ watchers.
1660 */
1661 #if EV_USE_4HEAP
1662
1663 #define DHEAP 4
1664 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1665 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1666 #define UPHEAP_DONE(p,k) ((p) == (k))
1667
1668 /* away from the root */
1669 inline_speed void
1670 downheap (ANHE *heap, int N, int k)
1671 {
1672 ANHE he = heap [k];
1673 ANHE *E = heap + N + HEAP0;
1674
1675 for (;;)
1676 {
1677 ev_tstamp minat;
1678 ANHE *minpos;
1679 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1680
1681 /* find minimum child */
1682 if (expect_true (pos + DHEAP - 1 < E))
1683 {
1684 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1685 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1686 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1687 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1688 }
1689 else if (pos < E)
1690 {
1691 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1692 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1693 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1694 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1695 }
1696 else
1697 break;
1698
1699 if (ANHE_at (he) <= minat)
1700 break;
1701
1702 heap [k] = *minpos;
1703 ev_active (ANHE_w (*minpos)) = k;
1704
1705 k = minpos - heap;
1706 }
1707
1708 heap [k] = he;
1709 ev_active (ANHE_w (he)) = k;
1710 }
1711
1712 #else /* 4HEAP */
1713
1714 #define HEAP0 1
1715 #define HPARENT(k) ((k) >> 1)
1716 #define UPHEAP_DONE(p,k) (!(p))
1717
1718 /* away from the root */
1719 inline_speed void
1720 downheap (ANHE *heap, int N, int k)
1721 {
1722 ANHE he = heap [k];
1723
1724 for (;;)
1725 {
1726 int c = k << 1;
1727
1728 if (c >= N + HEAP0)
1729 break;
1730
1731 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1732 ? 1 : 0;
1733
1734 if (ANHE_at (he) <= ANHE_at (heap [c]))
1735 break;
1736
1737 heap [k] = heap [c];
1738 ev_active (ANHE_w (heap [k])) = k;
1739
1740 k = c;
1741 }
1742
1743 heap [k] = he;
1744 ev_active (ANHE_w (he)) = k;
1745 }
1746 #endif
1747
1748 /* towards the root */
1749 inline_speed void
1750 upheap (ANHE *heap, int k)
1751 {
1752 ANHE he = heap [k];
1753
1754 for (;;)
1755 {
1756 int p = HPARENT (k);
1757
1758 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1759 break;
1760
1761 heap [k] = heap [p];
1762 ev_active (ANHE_w (heap [k])) = k;
1763 k = p;
1764 }
1765
1766 heap [k] = he;
1767 ev_active (ANHE_w (he)) = k;
1768 }
1769
1770 /* move an element suitably so it is in a correct place */
1771 inline_size void
1772 adjustheap (ANHE *heap, int N, int k)
1773 {
1774 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1775 upheap (heap, k);
1776 else
1777 downheap (heap, N, k);
1778 }
1779
1780 /* rebuild the heap: this function is used only once and executed rarely */
1781 inline_size void
1782 reheap (ANHE *heap, int N)
1783 {
1784 int i;
1785
1786 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1787 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1788 for (i = 0; i < N; ++i)
1789 upheap (heap, i + HEAP0);
1790 }
1791
1792 /*****************************************************************************/
1793
1794 /* associate signal watchers to a signal signal */
1795 typedef struct
1796 {
1797 EV_ATOMIC_T pending;
1798 #if EV_MULTIPLICITY
1799 EV_P;
1800 #endif
1801 WL head;
1802 } ANSIG;
1803
1804 static ANSIG signals [EV_NSIG - 1];
1805
1806 /*****************************************************************************/
1807
1808 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1809
1810 static void noinline ecb_cold
1811 evpipe_init (EV_P)
1812 {
1813 if (!ev_is_active (&pipe_w))
1814 {
1815 # if EV_USE_EVENTFD
1816 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1817 if (evfd < 0 && errno == EINVAL)
1818 evfd = eventfd (0, 0);
1819
1820 if (evfd >= 0)
1821 {
1822 evpipe [0] = -1;
1823 fd_intern (evfd); /* doing it twice doesn't hurt */
1824 ev_io_set (&pipe_w, evfd, EV_READ);
1825 }
1826 else
1827 # endif
1828 {
1829 while (pipe (evpipe))
1830 ev_syserr ("(libev) error creating signal/async pipe");
1831
1832 fd_intern (evpipe [0]);
1833 fd_intern (evpipe [1]);
1834 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1835 }
1836
1837 ev_io_start (EV_A_ &pipe_w);
1838 ev_unref (EV_A); /* watcher should not keep loop alive */
1839 }
1840 }
1841
1842 inline_speed void
1843 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1844 {
1845 if (expect_true (*flag))
1846 return;
1847
1848 *flag = 1;
1849
1850 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1851
1852 pipe_write_skipped = 1;
1853
1854 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1855
1856 if (pipe_write_wanted)
1857 {
1858 int old_errno;
1859
1860 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1861
1862 old_errno = errno; /* save errno because write will clobber it */
1863
1864 #if EV_USE_EVENTFD
1865 if (evfd >= 0)
1866 {
1867 uint64_t counter = 1;
1868 write (evfd, &counter, sizeof (uint64_t));
1869 }
1870 else
1871 #endif
1872 {
1873 /* win32 people keep sending patches that change this write() to send() */
1874 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1875 /* so when you think this write should be a send instead, please find out */
1876 /* where your send() is from - it's definitely not the microsoft send, and */
1877 /* tell me. thank you. */
1878 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1879 /* check the ev documentation on how to use this flag */
1880 write (evpipe [1], &(evpipe [1]), 1);
1881 }
1882
1883 errno = old_errno;
1884 }
1885 }
1886
1887 /* called whenever the libev signal pipe */
1888 /* got some events (signal, async) */
1889 static void
1890 pipecb (EV_P_ ev_io *iow, int revents)
1891 {
1892 int i;
1893
1894 if (revents & EV_READ)
1895 {
1896 #if EV_USE_EVENTFD
1897 if (evfd >= 0)
1898 {
1899 uint64_t counter;
1900 read (evfd, &counter, sizeof (uint64_t));
1901 }
1902 else
1903 #endif
1904 {
1905 char dummy;
1906 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1907 read (evpipe [0], &dummy, 1);
1908 }
1909 }
1910
1911 pipe_write_skipped = 0;
1912
1913 #if EV_SIGNAL_ENABLE
1914 if (sig_pending)
1915 {
1916 sig_pending = 0;
1917
1918 for (i = EV_NSIG - 1; i--; )
1919 if (expect_false (signals [i].pending))
1920 ev_feed_signal_event (EV_A_ i + 1);
1921 }
1922 #endif
1923
1924 #if EV_ASYNC_ENABLE
1925 if (async_pending)
1926 {
1927 async_pending = 0;
1928
1929 for (i = asynccnt; i--; )
1930 if (asyncs [i]->sent)
1931 {
1932 asyncs [i]->sent = 0;
1933 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1934 }
1935 }
1936 #endif
1937 }
1938
1939 /*****************************************************************************/
1940
1941 void
1942 ev_feed_signal (int signum)
1943 {
1944 #if EV_MULTIPLICITY
1945 EV_P = signals [signum - 1].loop;
1946
1947 if (!EV_A)
1948 return;
1949 #endif
1950
1951 if (!ev_active (&pipe_w))
1952 return;
1953
1954 signals [signum - 1].pending = 1;
1955 evpipe_write (EV_A_ &sig_pending);
1956 }
1957
1958 static void
1959 ev_sighandler (int signum)
1960 {
1961 #ifdef _WIN32
1962 signal (signum, ev_sighandler);
1963 #endif
1964
1965 ev_feed_signal (signum);
1966 }
1967
1968 void noinline
1969 ev_feed_signal_event (EV_P_ int signum)
1970 {
1971 WL w;
1972
1973 if (expect_false (signum <= 0 || signum > EV_NSIG))
1974 return;
1975
1976 --signum;
1977
1978 #if EV_MULTIPLICITY
1979 /* it is permissible to try to feed a signal to the wrong loop */
1980 /* or, likely more useful, feeding a signal nobody is waiting for */
1981
1982 if (expect_false (signals [signum].loop != EV_A))
1983 return;
1984 #endif
1985
1986 signals [signum].pending = 0;
1987
1988 for (w = signals [signum].head; w; w = w->next)
1989 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1990 }
1991
1992 #if EV_USE_SIGNALFD
1993 static void
1994 sigfdcb (EV_P_ ev_io *iow, int revents)
1995 {
1996 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1997
1998 for (;;)
1999 {
2000 ssize_t res = read (sigfd, si, sizeof (si));
2001
2002 /* not ISO-C, as res might be -1, but works with SuS */
2003 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2004 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2005
2006 if (res < (ssize_t)sizeof (si))
2007 break;
2008 }
2009 }
2010 #endif
2011
2012 #endif
2013
2014 /*****************************************************************************/
2015
2016 #if EV_CHILD_ENABLE
2017 static WL childs [EV_PID_HASHSIZE];
2018
2019 static ev_signal childev;
2020
2021 #ifndef WIFCONTINUED
2022 # define WIFCONTINUED(status) 0
2023 #endif
2024
2025 /* handle a single child status event */
2026 inline_speed void
2027 child_reap (EV_P_ int chain, int pid, int status)
2028 {
2029 ev_child *w;
2030 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2031
2032 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2033 {
2034 if ((w->pid == pid || !w->pid)
2035 && (!traced || (w->flags & 1)))
2036 {
2037 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2038 w->rpid = pid;
2039 w->rstatus = status;
2040 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2041 }
2042 }
2043 }
2044
2045 #ifndef WCONTINUED
2046 # define WCONTINUED 0
2047 #endif
2048
2049 /* called on sigchld etc., calls waitpid */
2050 static void
2051 childcb (EV_P_ ev_signal *sw, int revents)
2052 {
2053 int pid, status;
2054
2055 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2056 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2057 if (!WCONTINUED
2058 || errno != EINVAL
2059 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2060 return;
2061
2062 /* make sure we are called again until all children have been reaped */
2063 /* we need to do it this way so that the callback gets called before we continue */
2064 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2065
2066 child_reap (EV_A_ pid, pid, status);
2067 if ((EV_PID_HASHSIZE) > 1)
2068 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2069 }
2070
2071 #endif
2072
2073 /*****************************************************************************/
2074
2075 #if EV_USE_IOCP
2076 # include "ev_iocp.c"
2077 #endif
2078 #if EV_USE_PORT
2079 # include "ev_port.c"
2080 #endif
2081 #if EV_USE_KQUEUE
2082 # include "ev_kqueue.c"
2083 #endif
2084 #if EV_USE_EPOLL
2085 # include "ev_epoll.c"
2086 #endif
2087 #if EV_USE_POLL
2088 # include "ev_poll.c"
2089 #endif
2090 #if EV_USE_SELECT
2091 # include "ev_select.c"
2092 #endif
2093
2094 int ecb_cold
2095 ev_version_major (void)
2096 {
2097 return EV_VERSION_MAJOR;
2098 }
2099
2100 int ecb_cold
2101 ev_version_minor (void)
2102 {
2103 return EV_VERSION_MINOR;
2104 }
2105
2106 /* return true if we are running with elevated privileges and should ignore env variables */
2107 int inline_size ecb_cold
2108 enable_secure (void)
2109 {
2110 #ifdef _WIN32
2111 return 0;
2112 #else
2113 return getuid () != geteuid ()
2114 || getgid () != getegid ();
2115 #endif
2116 }
2117
2118 unsigned int ecb_cold
2119 ev_supported_backends (void)
2120 {
2121 unsigned int flags = 0;
2122
2123 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2124 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2125 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2126 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2127 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2128
2129 return flags;
2130 }
2131
2132 unsigned int ecb_cold
2133 ev_recommended_backends (void)
2134 {
2135 unsigned int flags = ev_supported_backends ();
2136
2137 #ifndef __NetBSD__
2138 /* kqueue is borked on everything but netbsd apparently */
2139 /* it usually doesn't work correctly on anything but sockets and pipes */
2140 flags &= ~EVBACKEND_KQUEUE;
2141 #endif
2142 #ifdef __APPLE__
2143 /* only select works correctly on that "unix-certified" platform */
2144 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2145 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2146 #endif
2147 #ifdef __FreeBSD__
2148 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2149 #endif
2150
2151 return flags;
2152 }
2153
2154 unsigned int ecb_cold
2155 ev_embeddable_backends (void)
2156 {
2157 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2158
2159 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2160 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2161 flags &= ~EVBACKEND_EPOLL;
2162
2163 return flags;
2164 }
2165
2166 unsigned int
2167 ev_backend (EV_P)
2168 {
2169 return backend;
2170 }
2171
2172 #if EV_FEATURE_API
2173 unsigned int
2174 ev_iteration (EV_P)
2175 {
2176 return loop_count;
2177 }
2178
2179 unsigned int
2180 ev_depth (EV_P)
2181 {
2182 return loop_depth;
2183 }
2184
2185 void
2186 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2187 {
2188 io_blocktime = interval;
2189 }
2190
2191 void
2192 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2193 {
2194 timeout_blocktime = interval;
2195 }
2196
2197 void
2198 ev_set_userdata (EV_P_ void *data)
2199 {
2200 userdata = data;
2201 }
2202
2203 void *
2204 ev_userdata (EV_P)
2205 {
2206 return userdata;
2207 }
2208
2209 void
2210 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2211 {
2212 invoke_cb = invoke_pending_cb;
2213 }
2214
2215 void
2216 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2217 {
2218 release_cb = release;
2219 acquire_cb = acquire;
2220 }
2221 #endif
2222
2223 /* initialise a loop structure, must be zero-initialised */
2224 static void noinline ecb_cold
2225 loop_init (EV_P_ unsigned int flags)
2226 {
2227 if (!backend)
2228 {
2229 origflags = flags;
2230
2231 #if EV_USE_REALTIME
2232 if (!have_realtime)
2233 {
2234 struct timespec ts;
2235
2236 if (!clock_gettime (CLOCK_REALTIME, &ts))
2237 have_realtime = 1;
2238 }
2239 #endif
2240
2241 #if EV_USE_MONOTONIC
2242 if (!have_monotonic)
2243 {
2244 struct timespec ts;
2245
2246 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2247 have_monotonic = 1;
2248 }
2249 #endif
2250
2251 /* pid check not overridable via env */
2252 #ifndef _WIN32
2253 if (flags & EVFLAG_FORKCHECK)
2254 curpid = getpid ();
2255 #endif
2256
2257 if (!(flags & EVFLAG_NOENV)
2258 && !enable_secure ()
2259 && getenv ("LIBEV_FLAGS"))
2260 flags = atoi (getenv ("LIBEV_FLAGS"));
2261
2262 ev_rt_now = ev_time ();
2263 mn_now = get_clock ();
2264 now_floor = mn_now;
2265 rtmn_diff = ev_rt_now - mn_now;
2266 #if EV_FEATURE_API
2267 invoke_cb = ev_invoke_pending;
2268 #endif
2269
2270 io_blocktime = 0.;
2271 timeout_blocktime = 0.;
2272 backend = 0;
2273 backend_fd = -1;
2274 sig_pending = 0;
2275 #if EV_ASYNC_ENABLE
2276 async_pending = 0;
2277 #endif
2278 pipe_write_skipped = 0;
2279 pipe_write_wanted = 0;
2280 #if EV_USE_INOTIFY
2281 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2282 #endif
2283 #if EV_USE_SIGNALFD
2284 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2285 #endif
2286
2287 if (!(flags & EVBACKEND_MASK))
2288 flags |= ev_recommended_backends ();
2289
2290 #if EV_USE_IOCP
2291 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2292 #endif
2293 #if EV_USE_PORT
2294 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2295 #endif
2296 #if EV_USE_KQUEUE
2297 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2298 #endif
2299 #if EV_USE_EPOLL
2300 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2301 #endif
2302 #if EV_USE_POLL
2303 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2304 #endif
2305 #if EV_USE_SELECT
2306 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2307 #endif
2308
2309 ev_prepare_init (&pending_w, pendingcb);
2310
2311 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2312 ev_init (&pipe_w, pipecb);
2313 ev_set_priority (&pipe_w, EV_MAXPRI);
2314 #endif
2315 }
2316 }
2317
2318 /* free up a loop structure */
2319 void ecb_cold
2320 ev_loop_destroy (EV_P)
2321 {
2322 int i;
2323
2324 #if EV_MULTIPLICITY
2325 /* mimic free (0) */
2326 if (!EV_A)
2327 return;
2328 #endif
2329
2330 #if EV_CLEANUP_ENABLE
2331 /* queue cleanup watchers (and execute them) */
2332 if (expect_false (cleanupcnt))
2333 {
2334 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2335 EV_INVOKE_PENDING;
2336 }
2337 #endif
2338
2339 #if EV_CHILD_ENABLE
2340 if (ev_is_active (&childev))
2341 {
2342 ev_ref (EV_A); /* child watcher */
2343 ev_signal_stop (EV_A_ &childev);
2344 }
2345 #endif
2346
2347 if (ev_is_active (&pipe_w))
2348 {
2349 /*ev_ref (EV_A);*/
2350 /*ev_io_stop (EV_A_ &pipe_w);*/
2351
2352 #if EV_USE_EVENTFD
2353 if (evfd >= 0)
2354 close (evfd);
2355 #endif
2356
2357 if (evpipe [0] >= 0)
2358 {
2359 EV_WIN32_CLOSE_FD (evpipe [0]);
2360 EV_WIN32_CLOSE_FD (evpipe [1]);
2361 }
2362 }
2363
2364 #if EV_USE_SIGNALFD
2365 if (ev_is_active (&sigfd_w))
2366 close (sigfd);
2367 #endif
2368
2369 #if EV_USE_INOTIFY
2370 if (fs_fd >= 0)
2371 close (fs_fd);
2372 #endif
2373
2374 if (backend_fd >= 0)
2375 close (backend_fd);
2376
2377 #if EV_USE_IOCP
2378 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2379 #endif
2380 #if EV_USE_PORT
2381 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2382 #endif
2383 #if EV_USE_KQUEUE
2384 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2385 #endif
2386 #if EV_USE_EPOLL
2387 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2388 #endif
2389 #if EV_USE_POLL
2390 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2391 #endif
2392 #if EV_USE_SELECT
2393 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2394 #endif
2395
2396 for (i = NUMPRI; i--; )
2397 {
2398 array_free (pending, [i]);
2399 #if EV_IDLE_ENABLE
2400 array_free (idle, [i]);
2401 #endif
2402 }
2403
2404 ev_free (anfds); anfds = 0; anfdmax = 0;
2405
2406 /* have to use the microsoft-never-gets-it-right macro */
2407 array_free (rfeed, EMPTY);
2408 array_free (fdchange, EMPTY);
2409 array_free (timer, EMPTY);
2410 #if EV_PERIODIC_ENABLE
2411 array_free (periodic, EMPTY);
2412 #endif
2413 #if EV_FORK_ENABLE
2414 array_free (fork, EMPTY);
2415 #endif
2416 #if EV_CLEANUP_ENABLE
2417 array_free (cleanup, EMPTY);
2418 #endif
2419 array_free (prepare, EMPTY);
2420 array_free (check, EMPTY);
2421 #if EV_ASYNC_ENABLE
2422 array_free (async, EMPTY);
2423 #endif
2424
2425 backend = 0;
2426
2427 #if EV_MULTIPLICITY
2428 if (ev_is_default_loop (EV_A))
2429 #endif
2430 ev_default_loop_ptr = 0;
2431 #if EV_MULTIPLICITY
2432 else
2433 ev_free (EV_A);
2434 #endif
2435 }
2436
2437 #if EV_USE_INOTIFY
2438 inline_size void infy_fork (EV_P);
2439 #endif
2440
2441 inline_size void
2442 loop_fork (EV_P)
2443 {
2444 #if EV_USE_PORT
2445 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2446 #endif
2447 #if EV_USE_KQUEUE
2448 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2449 #endif
2450 #if EV_USE_EPOLL
2451 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2452 #endif
2453 #if EV_USE_INOTIFY
2454 infy_fork (EV_A);
2455 #endif
2456
2457 if (ev_is_active (&pipe_w))
2458 {
2459 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2460
2461 ev_ref (EV_A);
2462 ev_io_stop (EV_A_ &pipe_w);
2463
2464 #if EV_USE_EVENTFD
2465 if (evfd >= 0)
2466 close (evfd);
2467 #endif
2468
2469 if (evpipe [0] >= 0)
2470 {
2471 EV_WIN32_CLOSE_FD (evpipe [0]);
2472 EV_WIN32_CLOSE_FD (evpipe [1]);
2473 }
2474
2475 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2476 evpipe_init (EV_A);
2477 /* now iterate over everything, in case we missed something */
2478 pipecb (EV_A_ &pipe_w, EV_READ);
2479 #endif
2480 }
2481
2482 postfork = 0;
2483 }
2484
2485 #if EV_MULTIPLICITY
2486
2487 struct ev_loop * ecb_cold
2488 ev_loop_new (unsigned int flags)
2489 {
2490 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2491
2492 memset (EV_A, 0, sizeof (struct ev_loop));
2493 loop_init (EV_A_ flags);
2494
2495 if (ev_backend (EV_A))
2496 return EV_A;
2497
2498 ev_free (EV_A);
2499 return 0;
2500 }
2501
2502 #endif /* multiplicity */
2503
2504 #if EV_VERIFY
2505 static void noinline ecb_cold
2506 verify_watcher (EV_P_ W w)
2507 {
2508 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2509
2510 if (w->pending)
2511 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2512 }
2513
2514 static void noinline ecb_cold
2515 verify_heap (EV_P_ ANHE *heap, int N)
2516 {
2517 int i;
2518
2519 for (i = HEAP0; i < N + HEAP0; ++i)
2520 {
2521 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2522 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2523 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2524
2525 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2526 }
2527 }
2528
2529 static void noinline ecb_cold
2530 array_verify (EV_P_ W *ws, int cnt)
2531 {
2532 while (cnt--)
2533 {
2534 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2535 verify_watcher (EV_A_ ws [cnt]);
2536 }
2537 }
2538 #endif
2539
2540 #if EV_FEATURE_API
2541 void ecb_cold
2542 ev_verify (EV_P)
2543 {
2544 #if EV_VERIFY
2545 int i;
2546 WL w;
2547
2548 assert (activecnt >= -1);
2549
2550 assert (fdchangemax >= fdchangecnt);
2551 for (i = 0; i < fdchangecnt; ++i)
2552 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2553
2554 assert (anfdmax >= 0);
2555 for (i = 0; i < anfdmax; ++i)
2556 for (w = anfds [i].head; w; w = w->next)
2557 {
2558 verify_watcher (EV_A_ (W)w);
2559 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2560 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2561 }
2562
2563 assert (timermax >= timercnt);
2564 verify_heap (EV_A_ timers, timercnt);
2565
2566 #if EV_PERIODIC_ENABLE
2567 assert (periodicmax >= periodiccnt);
2568 verify_heap (EV_A_ periodics, periodiccnt);
2569 #endif
2570
2571 for (i = NUMPRI; i--; )
2572 {
2573 assert (pendingmax [i] >= pendingcnt [i]);
2574 #if EV_IDLE_ENABLE
2575 assert (idleall >= 0);
2576 assert (idlemax [i] >= idlecnt [i]);
2577 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2578 #endif
2579 }
2580
2581 #if EV_FORK_ENABLE
2582 assert (forkmax >= forkcnt);
2583 array_verify (EV_A_ (W *)forks, forkcnt);
2584 #endif
2585
2586 #if EV_CLEANUP_ENABLE
2587 assert (cleanupmax >= cleanupcnt);
2588 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2589 #endif
2590
2591 #if EV_ASYNC_ENABLE
2592 assert (asyncmax >= asynccnt);
2593 array_verify (EV_A_ (W *)asyncs, asynccnt);
2594 #endif
2595
2596 #if EV_PREPARE_ENABLE
2597 assert (preparemax >= preparecnt);
2598 array_verify (EV_A_ (W *)prepares, preparecnt);
2599 #endif
2600
2601 #if EV_CHECK_ENABLE
2602 assert (checkmax >= checkcnt);
2603 array_verify (EV_A_ (W *)checks, checkcnt);
2604 #endif
2605
2606 # if 0
2607 #if EV_CHILD_ENABLE
2608 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2609 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2610 #endif
2611 # endif
2612 #endif
2613 }
2614 #endif
2615
2616 #if EV_MULTIPLICITY
2617 struct ev_loop * ecb_cold
2618 #else
2619 int
2620 #endif
2621 ev_default_loop (unsigned int flags)
2622 {
2623 if (!ev_default_loop_ptr)
2624 {
2625 #if EV_MULTIPLICITY
2626 EV_P = ev_default_loop_ptr = &default_loop_struct;
2627 #else
2628 ev_default_loop_ptr = 1;
2629 #endif
2630
2631 loop_init (EV_A_ flags);
2632
2633 if (ev_backend (EV_A))
2634 {
2635 #if EV_CHILD_ENABLE
2636 ev_signal_init (&childev, childcb, SIGCHLD);
2637 ev_set_priority (&childev, EV_MAXPRI);
2638 ev_signal_start (EV_A_ &childev);
2639 ev_unref (EV_A); /* child watcher should not keep loop alive */
2640 #endif
2641 }
2642 else
2643 ev_default_loop_ptr = 0;
2644 }
2645
2646 return ev_default_loop_ptr;
2647 }
2648
2649 void
2650 ev_loop_fork (EV_P)
2651 {
2652 postfork = 1; /* must be in line with ev_default_fork */
2653 }
2654
2655 /*****************************************************************************/
2656
2657 void
2658 ev_invoke (EV_P_ void *w, int revents)
2659 {
2660 EV_CB_INVOKE ((W)w, revents);
2661 }
2662
2663 unsigned int
2664 ev_pending_count (EV_P)
2665 {
2666 int pri;
2667 unsigned int count = 0;
2668
2669 for (pri = NUMPRI; pri--; )
2670 count += pendingcnt [pri];
2671
2672 return count;
2673 }
2674
2675 void noinline
2676 ev_invoke_pending (EV_P)
2677 {
2678 int pri;
2679
2680 for (pri = NUMPRI; pri--; )
2681 while (pendingcnt [pri])
2682 {
2683 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2684
2685 p->w->pending = 0;
2686 EV_CB_INVOKE (p->w, p->events);
2687 EV_FREQUENT_CHECK;
2688 }
2689 }
2690
2691 #if EV_IDLE_ENABLE
2692 /* make idle watchers pending. this handles the "call-idle */
2693 /* only when higher priorities are idle" logic */
2694 inline_size void
2695 idle_reify (EV_P)
2696 {
2697 if (expect_false (idleall))
2698 {
2699 int pri;
2700
2701 for (pri = NUMPRI; pri--; )
2702 {
2703 if (pendingcnt [pri])
2704 break;
2705
2706 if (idlecnt [pri])
2707 {
2708 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2709 break;
2710 }
2711 }
2712 }
2713 }
2714 #endif
2715
2716 /* make timers pending */
2717 inline_size void
2718 timers_reify (EV_P)
2719 {
2720 EV_FREQUENT_CHECK;
2721
2722 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2723 {
2724 do
2725 {
2726 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2727
2728 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2729
2730 /* first reschedule or stop timer */
2731 if (w->repeat)
2732 {
2733 ev_at (w) += w->repeat;
2734 if (ev_at (w) < mn_now)
2735 ev_at (w) = mn_now;
2736
2737 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2738
2739 ANHE_at_cache (timers [HEAP0]);
2740 downheap (timers, timercnt, HEAP0);
2741 }
2742 else
2743 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2744
2745 EV_FREQUENT_CHECK;
2746 feed_reverse (EV_A_ (W)w);
2747 }
2748 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2749
2750 feed_reverse_done (EV_A_ EV_TIMER);
2751 }
2752 }
2753
2754 #if EV_PERIODIC_ENABLE
2755
2756 static void noinline
2757 periodic_recalc (EV_P_ ev_periodic *w)
2758 {
2759 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2760 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2761
2762 /* the above almost always errs on the low side */
2763 while (at <= ev_rt_now)
2764 {
2765 ev_tstamp nat = at + w->interval;
2766
2767 /* when resolution fails us, we use ev_rt_now */
2768 if (expect_false (nat == at))
2769 {
2770 at = ev_rt_now;
2771 break;
2772 }
2773
2774 at = nat;
2775 }
2776
2777 ev_at (w) = at;
2778 }
2779
2780 /* make periodics pending */
2781 inline_size void
2782 periodics_reify (EV_P)
2783 {
2784 EV_FREQUENT_CHECK;
2785
2786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2787 {
2788 int feed_count = 0;
2789
2790 do
2791 {
2792 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2793
2794 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2795
2796 /* first reschedule or stop timer */
2797 if (w->reschedule_cb)
2798 {
2799 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2800
2801 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2802
2803 ANHE_at_cache (periodics [HEAP0]);
2804 downheap (periodics, periodiccnt, HEAP0);
2805 }
2806 else if (w->interval)
2807 {
2808 periodic_recalc (EV_A_ w);
2809 ANHE_at_cache (periodics [HEAP0]);
2810 downheap (periodics, periodiccnt, HEAP0);
2811 }
2812 else
2813 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2814
2815 EV_FREQUENT_CHECK;
2816 feed_reverse (EV_A_ (W)w);
2817 }
2818 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2819
2820 feed_reverse_done (EV_A_ EV_PERIODIC);
2821 }
2822 }
2823
2824 /* simply recalculate all periodics */
2825 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2826 static void noinline ecb_cold
2827 periodics_reschedule (EV_P)
2828 {
2829 int i;
2830
2831 /* adjust periodics after time jump */
2832 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2833 {
2834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2835
2836 if (w->reschedule_cb)
2837 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2838 else if (w->interval)
2839 periodic_recalc (EV_A_ w);
2840
2841 ANHE_at_cache (periodics [i]);
2842 }
2843
2844 reheap (periodics, periodiccnt);
2845 }
2846 #endif
2847
2848 /* adjust all timers by a given offset */
2849 static void noinline ecb_cold
2850 timers_reschedule (EV_P_ ev_tstamp adjust)
2851 {
2852 int i;
2853
2854 for (i = 0; i < timercnt; ++i)
2855 {
2856 ANHE *he = timers + i + HEAP0;
2857 ANHE_w (*he)->at += adjust;
2858 ANHE_at_cache (*he);
2859 }
2860 }
2861
2862 /* fetch new monotonic and realtime times from the kernel */
2863 /* also detect if there was a timejump, and act accordingly */
2864 inline_speed void
2865 time_update (EV_P_ ev_tstamp max_block)
2866 {
2867 #if EV_USE_MONOTONIC
2868 if (expect_true (have_monotonic))
2869 {
2870 int i;
2871 ev_tstamp odiff = rtmn_diff;
2872
2873 mn_now = get_clock ();
2874
2875 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2876 /* interpolate in the meantime */
2877 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2878 {
2879 ev_rt_now = rtmn_diff + mn_now;
2880 return;
2881 }
2882
2883 now_floor = mn_now;
2884 ev_rt_now = ev_time ();
2885
2886 /* loop a few times, before making important decisions.
2887 * on the choice of "4": one iteration isn't enough,
2888 * in case we get preempted during the calls to
2889 * ev_time and get_clock. a second call is almost guaranteed
2890 * to succeed in that case, though. and looping a few more times
2891 * doesn't hurt either as we only do this on time-jumps or
2892 * in the unlikely event of having been preempted here.
2893 */
2894 for (i = 4; --i; )
2895 {
2896 ev_tstamp diff;
2897 rtmn_diff = ev_rt_now - mn_now;
2898
2899 diff = odiff - rtmn_diff;
2900
2901 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2902 return; /* all is well */
2903
2904 ev_rt_now = ev_time ();
2905 mn_now = get_clock ();
2906 now_floor = mn_now;
2907 }
2908
2909 /* no timer adjustment, as the monotonic clock doesn't jump */
2910 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2911 # if EV_PERIODIC_ENABLE
2912 periodics_reschedule (EV_A);
2913 # endif
2914 }
2915 else
2916 #endif
2917 {
2918 ev_rt_now = ev_time ();
2919
2920 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2921 {
2922 /* adjust timers. this is easy, as the offset is the same for all of them */
2923 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2924 #if EV_PERIODIC_ENABLE
2925 periodics_reschedule (EV_A);
2926 #endif
2927 }
2928
2929 mn_now = ev_rt_now;
2930 }
2931 }
2932
2933 void
2934 ev_run (EV_P_ int flags)
2935 {
2936 #if EV_FEATURE_API
2937 ++loop_depth;
2938 #endif
2939
2940 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2941
2942 loop_done = EVBREAK_CANCEL;
2943
2944 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2945
2946 do
2947 {
2948 #if EV_VERIFY >= 2
2949 ev_verify (EV_A);
2950 #endif
2951
2952 #ifndef _WIN32
2953 if (expect_false (curpid)) /* penalise the forking check even more */
2954 if (expect_false (getpid () != curpid))
2955 {
2956 curpid = getpid ();
2957 postfork = 1;
2958 }
2959 #endif
2960
2961 #if EV_FORK_ENABLE
2962 /* we might have forked, so queue fork handlers */
2963 if (expect_false (postfork))
2964 if (forkcnt)
2965 {
2966 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2967 EV_INVOKE_PENDING;
2968 }
2969 #endif
2970
2971 #if EV_PREPARE_ENABLE
2972 /* queue prepare watchers (and execute them) */
2973 if (expect_false (preparecnt))
2974 {
2975 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2976 EV_INVOKE_PENDING;
2977 }
2978 #endif
2979
2980 if (expect_false (loop_done))
2981 break;
2982
2983 /* we might have forked, so reify kernel state if necessary */
2984 if (expect_false (postfork))
2985 loop_fork (EV_A);
2986
2987 /* update fd-related kernel structures */
2988 fd_reify (EV_A);
2989
2990 /* calculate blocking time */
2991 {
2992 ev_tstamp waittime = 0.;
2993 ev_tstamp sleeptime = 0.;
2994
2995 /* remember old timestamp for io_blocktime calculation */
2996 ev_tstamp prev_mn_now = mn_now;
2997
2998 /* update time to cancel out callback processing overhead */
2999 time_update (EV_A_ 1e100);
3000
3001 /* from now on, we want a pipe-wake-up */
3002 pipe_write_wanted = 1;
3003
3004 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3005
3006 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3007 {
3008 waittime = MAX_BLOCKTIME;
3009
3010 if (timercnt)
3011 {
3012 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3013 if (waittime > to) waittime = to;
3014 }
3015
3016 #if EV_PERIODIC_ENABLE
3017 if (periodiccnt)
3018 {
3019 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3020 if (waittime > to) waittime = to;
3021 }
3022 #endif
3023
3024 /* don't let timeouts decrease the waittime below timeout_blocktime */
3025 if (expect_false (waittime < timeout_blocktime))
3026 waittime = timeout_blocktime;
3027
3028 /* at this point, we NEED to wait, so we have to ensure */
3029 /* to pass a minimum nonzero value to the backend */
3030 if (expect_false (waittime < backend_mintime))
3031 waittime = backend_mintime;
3032
3033 /* extra check because io_blocktime is commonly 0 */
3034 if (expect_false (io_blocktime))
3035 {
3036 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3037
3038 if (sleeptime > waittime - backend_mintime)
3039 sleeptime = waittime - backend_mintime;
3040
3041 if (expect_true (sleeptime > 0.))
3042 {
3043 ev_sleep (sleeptime);
3044 waittime -= sleeptime;
3045 }
3046 }
3047 }
3048
3049 #if EV_FEATURE_API
3050 ++loop_count;
3051 #endif
3052 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3053 backend_poll (EV_A_ waittime);
3054 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3055
3056 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3057
3058 if (pipe_write_skipped)
3059 {
3060 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3061 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3062 }
3063
3064
3065 /* update ev_rt_now, do magic */
3066 time_update (EV_A_ waittime + sleeptime);
3067 }
3068
3069 /* queue pending timers and reschedule them */
3070 timers_reify (EV_A); /* relative timers called last */
3071 #if EV_PERIODIC_ENABLE
3072 periodics_reify (EV_A); /* absolute timers called first */
3073 #endif
3074
3075 #if EV_IDLE_ENABLE
3076 /* queue idle watchers unless other events are pending */
3077 idle_reify (EV_A);
3078 #endif
3079
3080 #if EV_CHECK_ENABLE
3081 /* queue check watchers, to be executed first */
3082 if (expect_false (checkcnt))
3083 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3084 #endif
3085
3086 EV_INVOKE_PENDING;
3087 }
3088 while (expect_true (
3089 activecnt
3090 && !loop_done
3091 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3092 ));
3093
3094 if (loop_done == EVBREAK_ONE)
3095 loop_done = EVBREAK_CANCEL;
3096
3097 #if EV_FEATURE_API
3098 --loop_depth;
3099 #endif
3100 }
3101
3102 void
3103 ev_break (EV_P_ int how)
3104 {
3105 loop_done = how;
3106 }
3107
3108 void
3109 ev_ref (EV_P)
3110 {
3111 ++activecnt;
3112 }
3113
3114 void
3115 ev_unref (EV_P)
3116 {
3117 --activecnt;
3118 }
3119
3120 void
3121 ev_now_update (EV_P)
3122 {
3123 time_update (EV_A_ 1e100);
3124 }
3125
3126 void
3127 ev_suspend (EV_P)
3128 {
3129 ev_now_update (EV_A);
3130 }
3131
3132 void
3133 ev_resume (EV_P)
3134 {
3135 ev_tstamp mn_prev = mn_now;
3136
3137 ev_now_update (EV_A);
3138 timers_reschedule (EV_A_ mn_now - mn_prev);
3139 #if EV_PERIODIC_ENABLE
3140 /* TODO: really do this? */
3141 periodics_reschedule (EV_A);
3142 #endif
3143 }
3144
3145 /*****************************************************************************/
3146 /* singly-linked list management, used when the expected list length is short */
3147
3148 inline_size void
3149 wlist_add (WL *head, WL elem)
3150 {
3151 elem->next = *head;
3152 *head = elem;
3153 }
3154
3155 inline_size void
3156 wlist_del (WL *head, WL elem)
3157 {
3158 while (*head)
3159 {
3160 if (expect_true (*head == elem))
3161 {
3162 *head = elem->next;
3163 break;
3164 }
3165
3166 head = &(*head)->next;
3167 }
3168 }
3169
3170 /* internal, faster, version of ev_clear_pending */
3171 inline_speed void
3172 clear_pending (EV_P_ W w)
3173 {
3174 if (w->pending)
3175 {
3176 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3177 w->pending = 0;
3178 }
3179 }
3180
3181 int
3182 ev_clear_pending (EV_P_ void *w)
3183 {
3184 W w_ = (W)w;
3185 int pending = w_->pending;
3186
3187 if (expect_true (pending))
3188 {
3189 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3190 p->w = (W)&pending_w;
3191 w_->pending = 0;
3192 return p->events;
3193 }
3194 else
3195 return 0;
3196 }
3197
3198 inline_size void
3199 pri_adjust (EV_P_ W w)
3200 {
3201 int pri = ev_priority (w);
3202 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3203 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3204 ev_set_priority (w, pri);
3205 }
3206
3207 inline_speed void
3208 ev_start (EV_P_ W w, int active)
3209 {
3210 pri_adjust (EV_A_ w);
3211 w->active = active;
3212 ev_ref (EV_A);
3213 }
3214
3215 inline_size void
3216 ev_stop (EV_P_ W w)
3217 {
3218 ev_unref (EV_A);
3219 w->active = 0;
3220 }
3221
3222 /*****************************************************************************/
3223
3224 void noinline
3225 ev_io_start (EV_P_ ev_io *w)
3226 {
3227 int fd = w->fd;
3228
3229 if (expect_false (ev_is_active (w)))
3230 return;
3231
3232 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3233 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3234
3235 EV_FREQUENT_CHECK;
3236
3237 ev_start (EV_A_ (W)w, 1);
3238 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3239 wlist_add (&anfds[fd].head, (WL)w);
3240
3241 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3242 w->events &= ~EV__IOFDSET;
3243
3244 EV_FREQUENT_CHECK;
3245 }
3246
3247 void noinline
3248 ev_io_stop (EV_P_ ev_io *w)
3249 {
3250 clear_pending (EV_A_ (W)w);
3251 if (expect_false (!ev_is_active (w)))
3252 return;
3253
3254 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3255
3256 EV_FREQUENT_CHECK;
3257
3258 wlist_del (&anfds[w->fd].head, (WL)w);
3259 ev_stop (EV_A_ (W)w);
3260
3261 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3262
3263 EV_FREQUENT_CHECK;
3264 }
3265
3266 void noinline
3267 ev_timer_start (EV_P_ ev_timer *w)
3268 {
3269 if (expect_false (ev_is_active (w)))
3270 return;
3271
3272 ev_at (w) += mn_now;
3273
3274 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3275
3276 EV_FREQUENT_CHECK;
3277
3278 ++timercnt;
3279 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3280 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3281 ANHE_w (timers [ev_active (w)]) = (WT)w;
3282 ANHE_at_cache (timers [ev_active (w)]);
3283 upheap (timers, ev_active (w));
3284
3285 EV_FREQUENT_CHECK;
3286
3287 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3288 }
3289
3290 void noinline
3291 ev_timer_stop (EV_P_ ev_timer *w)
3292 {
3293 clear_pending (EV_A_ (W)w);
3294 if (expect_false (!ev_is_active (w)))
3295 return;
3296
3297 EV_FREQUENT_CHECK;
3298
3299 {
3300 int active = ev_active (w);
3301
3302 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3303
3304 --timercnt;
3305
3306 if (expect_true (active < timercnt + HEAP0))
3307 {
3308 timers [active] = timers [timercnt + HEAP0];
3309 adjustheap (timers, timercnt, active);
3310 }
3311 }
3312
3313 ev_at (w) -= mn_now;
3314
3315 ev_stop (EV_A_ (W)w);
3316
3317 EV_FREQUENT_CHECK;
3318 }
3319
3320 void noinline
3321 ev_timer_again (EV_P_ ev_timer *w)
3322 {
3323 EV_FREQUENT_CHECK;
3324
3325 clear_pending (EV_A_ (W)w);
3326
3327 if (ev_is_active (w))
3328 {
3329 if (w->repeat)
3330 {
3331 ev_at (w) = mn_now + w->repeat;
3332 ANHE_at_cache (timers [ev_active (w)]);
3333 adjustheap (timers, timercnt, ev_active (w));
3334 }
3335 else
3336 ev_timer_stop (EV_A_ w);
3337 }
3338 else if (w->repeat)
3339 {
3340 ev_at (w) = w->repeat;
3341 ev_timer_start (EV_A_ w);
3342 }
3343
3344 EV_FREQUENT_CHECK;
3345 }
3346
3347 ev_tstamp
3348 ev_timer_remaining (EV_P_ ev_timer *w)
3349 {
3350 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3351 }
3352
3353 #if EV_PERIODIC_ENABLE
3354 void noinline
3355 ev_periodic_start (EV_P_ ev_periodic *w)
3356 {
3357 if (expect_false (ev_is_active (w)))
3358 return;
3359
3360 if (w->reschedule_cb)
3361 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3362 else if (w->interval)
3363 {
3364 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3365 periodic_recalc (EV_A_ w);
3366 }
3367 else
3368 ev_at (w) = w->offset;
3369
3370 EV_FREQUENT_CHECK;
3371
3372 ++periodiccnt;
3373 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3374 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3375 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3376 ANHE_at_cache (periodics [ev_active (w)]);
3377 upheap (periodics, ev_active (w));
3378
3379 EV_FREQUENT_CHECK;
3380
3381 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3382 }
3383
3384 void noinline
3385 ev_periodic_stop (EV_P_ ev_periodic *w)
3386 {
3387 clear_pending (EV_A_ (W)w);
3388 if (expect_false (!ev_is_active (w)))
3389 return;
3390
3391 EV_FREQUENT_CHECK;
3392
3393 {
3394 int active = ev_active (w);
3395
3396 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3397
3398 --periodiccnt;
3399
3400 if (expect_true (active < periodiccnt + HEAP0))
3401 {
3402 periodics [active] = periodics [periodiccnt + HEAP0];
3403 adjustheap (periodics, periodiccnt, active);
3404 }
3405 }
3406
3407 ev_stop (EV_A_ (W)w);
3408
3409 EV_FREQUENT_CHECK;
3410 }
3411
3412 void noinline
3413 ev_periodic_again (EV_P_ ev_periodic *w)
3414 {
3415 /* TODO: use adjustheap and recalculation */
3416 ev_periodic_stop (EV_A_ w);
3417 ev_periodic_start (EV_A_ w);
3418 }
3419 #endif
3420
3421 #ifndef SA_RESTART
3422 # define SA_RESTART 0
3423 #endif
3424
3425 #if EV_SIGNAL_ENABLE
3426
3427 void noinline
3428 ev_signal_start (EV_P_ ev_signal *w)
3429 {
3430 if (expect_false (ev_is_active (w)))
3431 return;
3432
3433 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3434
3435 #if EV_MULTIPLICITY
3436 assert (("libev: a signal must not be attached to two different loops",
3437 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3438
3439 signals [w->signum - 1].loop = EV_A;
3440 #endif
3441
3442 EV_FREQUENT_CHECK;
3443
3444 #if EV_USE_SIGNALFD
3445 if (sigfd == -2)
3446 {
3447 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3448 if (sigfd < 0 && errno == EINVAL)
3449 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3450
3451 if (sigfd >= 0)
3452 {
3453 fd_intern (sigfd); /* doing it twice will not hurt */
3454
3455 sigemptyset (&sigfd_set);
3456
3457 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3458 ev_set_priority (&sigfd_w, EV_MAXPRI);
3459 ev_io_start (EV_A_ &sigfd_w);
3460 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3461 }
3462 }
3463
3464 if (sigfd >= 0)
3465 {
3466 /* TODO: check .head */
3467 sigaddset (&sigfd_set, w->signum);
3468 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3469
3470 signalfd (sigfd, &sigfd_set, 0);
3471 }
3472 #endif
3473
3474 ev_start (EV_A_ (W)w, 1);
3475 wlist_add (&signals [w->signum - 1].head, (WL)w);
3476
3477 if (!((WL)w)->next)
3478 # if EV_USE_SIGNALFD
3479 if (sigfd < 0) /*TODO*/
3480 # endif
3481 {
3482 # ifdef _WIN32
3483 evpipe_init (EV_A);
3484
3485 signal (w->signum, ev_sighandler);
3486 # else
3487 struct sigaction sa;
3488
3489 evpipe_init (EV_A);
3490
3491 sa.sa_handler = ev_sighandler;
3492 sigfillset (&sa.sa_mask);
3493 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3494 sigaction (w->signum, &sa, 0);
3495
3496 if (origflags & EVFLAG_NOSIGMASK)
3497 {
3498 sigemptyset (&sa.sa_mask);
3499 sigaddset (&sa.sa_mask, w->signum);
3500 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3501 }
3502 #endif
3503 }
3504
3505 EV_FREQUENT_CHECK;
3506 }
3507
3508 void noinline
3509 ev_signal_stop (EV_P_ ev_signal *w)
3510 {
3511 clear_pending (EV_A_ (W)w);
3512 if (expect_false (!ev_is_active (w)))
3513 return;
3514
3515 EV_FREQUENT_CHECK;
3516
3517 wlist_del (&signals [w->signum - 1].head, (WL)w);
3518 ev_stop (EV_A_ (W)w);
3519
3520 if (!signals [w->signum - 1].head)
3521 {
3522 #if EV_MULTIPLICITY
3523 signals [w->signum - 1].loop = 0; /* unattach from signal */
3524 #endif
3525 #if EV_USE_SIGNALFD
3526 if (sigfd >= 0)
3527 {
3528 sigset_t ss;
3529
3530 sigemptyset (&ss);
3531 sigaddset (&ss, w->signum);
3532 sigdelset (&sigfd_set, w->signum);
3533
3534 signalfd (sigfd, &sigfd_set, 0);
3535 sigprocmask (SIG_UNBLOCK, &ss, 0);
3536 }
3537 else
3538 #endif
3539 signal (w->signum, SIG_DFL);
3540 }
3541
3542 EV_FREQUENT_CHECK;
3543 }
3544
3545 #endif
3546
3547 #if EV_CHILD_ENABLE
3548
3549 void
3550 ev_child_start (EV_P_ ev_child *w)
3551 {
3552 #if EV_MULTIPLICITY
3553 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3554 #endif
3555 if (expect_false (ev_is_active (w)))
3556 return;
3557
3558 EV_FREQUENT_CHECK;
3559
3560 ev_start (EV_A_ (W)w, 1);
3561 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3562
3563 EV_FREQUENT_CHECK;
3564 }
3565
3566 void
3567 ev_child_stop (EV_P_ ev_child *w)
3568 {
3569 clear_pending (EV_A_ (W)w);
3570 if (expect_false (!ev_is_active (w)))
3571 return;
3572
3573 EV_FREQUENT_CHECK;
3574
3575 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3576 ev_stop (EV_A_ (W)w);
3577
3578 EV_FREQUENT_CHECK;
3579 }
3580
3581 #endif
3582
3583 #if EV_STAT_ENABLE
3584
3585 # ifdef _WIN32
3586 # undef lstat
3587 # define lstat(a,b) _stati64 (a,b)
3588 # endif
3589
3590 #define DEF_STAT_INTERVAL 5.0074891
3591 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3592 #define MIN_STAT_INTERVAL 0.1074891
3593
3594 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3595
3596 #if EV_USE_INOTIFY
3597
3598 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3599 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3600
3601 static void noinline
3602 infy_add (EV_P_ ev_stat *w)
3603 {
3604 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3605
3606 if (w->wd >= 0)
3607 {
3608 struct statfs sfs;
3609
3610 /* now local changes will be tracked by inotify, but remote changes won't */
3611 /* unless the filesystem is known to be local, we therefore still poll */
3612 /* also do poll on <2.6.25, but with normal frequency */
3613
3614 if (!fs_2625)
3615 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3616 else if (!statfs (w->path, &sfs)
3617 && (sfs.f_type == 0x1373 /* devfs */
3618 || sfs.f_type == 0xEF53 /* ext2/3 */
3619 || sfs.f_type == 0x3153464a /* jfs */
3620 || sfs.f_type == 0x52654973 /* reiser3 */
3621 || sfs.f_type == 0x01021994 /* tempfs */
3622 || sfs.f_type == 0x58465342 /* xfs */))
3623 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3624 else
3625 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3626 }
3627 else
3628 {
3629 /* can't use inotify, continue to stat */
3630 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3631
3632 /* if path is not there, monitor some parent directory for speedup hints */
3633 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3634 /* but an efficiency issue only */
3635 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3636 {
3637 char path [4096];
3638 strcpy (path, w->path);
3639
3640 do
3641 {
3642 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3643 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3644
3645 char *pend = strrchr (path, '/');
3646
3647 if (!pend || pend == path)
3648 break;
3649
3650 *pend = 0;
3651 w->wd = inotify_add_watch (fs_fd, path, mask);
3652 }
3653 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3654 }
3655 }
3656
3657 if (w->wd >= 0)
3658 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3659
3660 /* now re-arm timer, if required */
3661 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3662 ev_timer_again (EV_A_ &w->timer);
3663 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3664 }
3665
3666 static void noinline
3667 infy_del (EV_P_ ev_stat *w)
3668 {
3669 int slot;
3670 int wd = w->wd;
3671
3672 if (wd < 0)
3673 return;
3674
3675 w->wd = -2;
3676 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3677 wlist_del (&fs_hash [slot].head, (WL)w);
3678
3679 /* remove this watcher, if others are watching it, they will rearm */
3680 inotify_rm_watch (fs_fd, wd);
3681 }
3682
3683 static void noinline
3684 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3685 {
3686 if (slot < 0)
3687 /* overflow, need to check for all hash slots */
3688 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3689 infy_wd (EV_A_ slot, wd, ev);
3690 else
3691 {
3692 WL w_;
3693
3694 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3695 {
3696 ev_stat *w = (ev_stat *)w_;
3697 w_ = w_->next; /* lets us remove this watcher and all before it */
3698
3699 if (w->wd == wd || wd == -1)
3700 {
3701 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3702 {
3703 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3704 w->wd = -1;
3705 infy_add (EV_A_ w); /* re-add, no matter what */
3706 }
3707
3708 stat_timer_cb (EV_A_ &w->timer, 0);
3709 }
3710 }
3711 }
3712 }
3713
3714 static void
3715 infy_cb (EV_P_ ev_io *w, int revents)
3716 {
3717 char buf [EV_INOTIFY_BUFSIZE];
3718 int ofs;
3719 int len = read (fs_fd, buf, sizeof (buf));
3720
3721 for (ofs = 0; ofs < len; )
3722 {
3723 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3724 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3725 ofs += sizeof (struct inotify_event) + ev->len;
3726 }
3727 }
3728
3729 inline_size void ecb_cold
3730 ev_check_2625 (EV_P)
3731 {
3732 /* kernels < 2.6.25 are borked
3733 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3734 */
3735 if (ev_linux_version () < 0x020619)
3736 return;
3737
3738 fs_2625 = 1;
3739 }
3740
3741 inline_size int
3742 infy_newfd (void)
3743 {
3744 #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3745 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3746 if (fd >= 0)
3747 return fd;
3748 #endif
3749 return inotify_init ();
3750 }
3751
3752 inline_size void
3753 infy_init (EV_P)
3754 {
3755 if (fs_fd != -2)
3756 return;
3757
3758 fs_fd = -1;
3759
3760 ev_check_2625 (EV_A);
3761
3762 fs_fd = infy_newfd ();
3763
3764 if (fs_fd >= 0)
3765 {
3766 fd_intern (fs_fd);
3767 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3768 ev_set_priority (&fs_w, EV_MAXPRI);
3769 ev_io_start (EV_A_ &fs_w);
3770 ev_unref (EV_A);
3771 }
3772 }
3773
3774 inline_size void
3775 infy_fork (EV_P)
3776 {
3777 int slot;
3778
3779 if (fs_fd < 0)
3780 return;
3781
3782 ev_ref (EV_A);
3783 ev_io_stop (EV_A_ &fs_w);
3784 close (fs_fd);
3785 fs_fd = infy_newfd ();
3786
3787 if (fs_fd >= 0)
3788 {
3789 fd_intern (fs_fd);
3790 ev_io_set (&fs_w, fs_fd, EV_READ);
3791 ev_io_start (EV_A_ &fs_w);
3792 ev_unref (EV_A);
3793 }
3794
3795 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3796 {
3797 WL w_ = fs_hash [slot].head;
3798 fs_hash [slot].head = 0;
3799
3800 while (w_)
3801 {
3802 ev_stat *w = (ev_stat *)w_;
3803 w_ = w_->next; /* lets us add this watcher */
3804
3805 w->wd = -1;
3806
3807 if (fs_fd >= 0)
3808 infy_add (EV_A_ w); /* re-add, no matter what */
3809 else
3810 {
3811 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3812 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3813 ev_timer_again (EV_A_ &w->timer);
3814 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3815 }
3816 }
3817 }
3818 }
3819
3820 #endif
3821
3822 #ifdef _WIN32
3823 # define EV_LSTAT(p,b) _stati64 (p, b)
3824 #else
3825 # define EV_LSTAT(p,b) lstat (p, b)
3826 #endif
3827
3828 void
3829 ev_stat_stat (EV_P_ ev_stat *w)
3830 {
3831 if (lstat (w->path, &w->attr) < 0)
3832 w->attr.st_nlink = 0;
3833 else if (!w->attr.st_nlink)
3834 w->attr.st_nlink = 1;
3835 }
3836
3837 static void noinline
3838 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3839 {
3840 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3841
3842 ev_statdata prev = w->attr;
3843 ev_stat_stat (EV_A_ w);
3844
3845 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3846 if (
3847 prev.st_dev != w->attr.st_dev
3848 || prev.st_ino != w->attr.st_ino
3849 || prev.st_mode != w->attr.st_mode
3850 || prev.st_nlink != w->attr.st_nlink
3851 || prev.st_uid != w->attr.st_uid
3852 || prev.st_gid != w->attr.st_gid
3853 || prev.st_rdev != w->attr.st_rdev
3854 || prev.st_size != w->attr.st_size
3855 || prev.st_atime != w->attr.st_atime
3856 || prev.st_mtime != w->attr.st_mtime
3857 || prev.st_ctime != w->attr.st_ctime
3858 ) {
3859 /* we only update w->prev on actual differences */
3860 /* in case we test more often than invoke the callback, */
3861 /* to ensure that prev is always different to attr */
3862 w->prev = prev;
3863
3864 #if EV_USE_INOTIFY
3865 if (fs_fd >= 0)
3866 {
3867 infy_del (EV_A_ w);
3868 infy_add (EV_A_ w);
3869 ev_stat_stat (EV_A_ w); /* avoid race... */
3870 }
3871 #endif
3872
3873 ev_feed_event (EV_A_ w, EV_STAT);
3874 }
3875 }
3876
3877 void
3878 ev_stat_start (EV_P_ ev_stat *w)
3879 {
3880 if (expect_false (ev_is_active (w)))
3881 return;
3882
3883 ev_stat_stat (EV_A_ w);
3884
3885 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3886 w->interval = MIN_STAT_INTERVAL;
3887
3888 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3889 ev_set_priority (&w->timer, ev_priority (w));
3890
3891 #if EV_USE_INOTIFY
3892 infy_init (EV_A);
3893
3894 if (fs_fd >= 0)
3895 infy_add (EV_A_ w);
3896 else
3897 #endif
3898 {
3899 ev_timer_again (EV_A_ &w->timer);
3900 ev_unref (EV_A);
3901 }
3902
3903 ev_start (EV_A_ (W)w, 1);
3904
3905 EV_FREQUENT_CHECK;
3906 }
3907
3908 void
3909 ev_stat_stop (EV_P_ ev_stat *w)
3910 {
3911 clear_pending (EV_A_ (W)w);
3912 if (expect_false (!ev_is_active (w)))
3913 return;
3914
3915 EV_FREQUENT_CHECK;
3916
3917 #if EV_USE_INOTIFY
3918 infy_del (EV_A_ w);
3919 #endif
3920
3921 if (ev_is_active (&w->timer))
3922 {
3923 ev_ref (EV_A);
3924 ev_timer_stop (EV_A_ &w->timer);
3925 }
3926
3927 ev_stop (EV_A_ (W)w);
3928
3929 EV_FREQUENT_CHECK;
3930 }
3931 #endif
3932
3933 #if EV_IDLE_ENABLE
3934 void
3935 ev_idle_start (EV_P_ ev_idle *w)
3936 {
3937 if (expect_false (ev_is_active (w)))
3938 return;
3939
3940 pri_adjust (EV_A_ (W)w);
3941
3942 EV_FREQUENT_CHECK;
3943
3944 {
3945 int active = ++idlecnt [ABSPRI (w)];
3946
3947 ++idleall;
3948 ev_start (EV_A_ (W)w, active);
3949
3950 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3951 idles [ABSPRI (w)][active - 1] = w;
3952 }
3953
3954 EV_FREQUENT_CHECK;
3955 }
3956
3957 void
3958 ev_idle_stop (EV_P_ ev_idle *w)
3959 {
3960 clear_pending (EV_A_ (W)w);
3961 if (expect_false (!ev_is_active (w)))
3962 return;
3963
3964 EV_FREQUENT_CHECK;
3965
3966 {
3967 int active = ev_active (w);
3968
3969 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3970 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3971
3972 ev_stop (EV_A_ (W)w);
3973 --idleall;
3974 }
3975
3976 EV_FREQUENT_CHECK;
3977 }
3978 #endif
3979
3980 #if EV_PREPARE_ENABLE
3981 void
3982 ev_prepare_start (EV_P_ ev_prepare *w)
3983 {
3984 if (expect_false (ev_is_active (w)))
3985 return;
3986
3987 EV_FREQUENT_CHECK;
3988
3989 ev_start (EV_A_ (W)w, ++preparecnt);
3990 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3991 prepares [preparecnt - 1] = w;
3992
3993 EV_FREQUENT_CHECK;
3994 }
3995
3996 void
3997 ev_prepare_stop (EV_P_ ev_prepare *w)
3998 {
3999 clear_pending (EV_A_ (W)w);
4000 if (expect_false (!ev_is_active (w)))
4001 return;
4002
4003 EV_FREQUENT_CHECK;
4004
4005 {
4006 int active = ev_active (w);
4007
4008 prepares [active - 1] = prepares [--preparecnt];
4009 ev_active (prepares [active - 1]) = active;
4010 }
4011
4012 ev_stop (EV_A_ (W)w);
4013
4014 EV_FREQUENT_CHECK;
4015 }
4016 #endif
4017
4018 #if EV_CHECK_ENABLE
4019 void
4020 ev_check_start (EV_P_ ev_check *w)
4021 {
4022 if (expect_false (ev_is_active (w)))
4023 return;
4024
4025 EV_FREQUENT_CHECK;
4026
4027 ev_start (EV_A_ (W)w, ++checkcnt);
4028 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4029 checks [checkcnt - 1] = w;
4030
4031 EV_FREQUENT_CHECK;
4032 }
4033
4034 void
4035 ev_check_stop (EV_P_ ev_check *w)
4036 {
4037 clear_pending (EV_A_ (W)w);
4038 if (expect_false (!ev_is_active (w)))
4039 return;
4040
4041 EV_FREQUENT_CHECK;
4042
4043 {
4044 int active = ev_active (w);
4045
4046 checks [active - 1] = checks [--checkcnt];
4047 ev_active (checks [active - 1]) = active;
4048 }
4049
4050 ev_stop (EV_A_ (W)w);
4051
4052 EV_FREQUENT_CHECK;
4053 }
4054 #endif
4055
4056 #if EV_EMBED_ENABLE
4057 void noinline
4058 ev_embed_sweep (EV_P_ ev_embed *w)
4059 {
4060 ev_run (w->other, EVRUN_NOWAIT);
4061 }
4062
4063 static void
4064 embed_io_cb (EV_P_ ev_io *io, int revents)
4065 {
4066 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4067
4068 if (ev_cb (w))
4069 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4070 else
4071 ev_run (w->other, EVRUN_NOWAIT);
4072 }
4073
4074 static void
4075 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4076 {
4077 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4078
4079 {
4080 EV_P = w->other;
4081
4082 while (fdchangecnt)
4083 {
4084 fd_reify (EV_A);
4085 ev_run (EV_A_ EVRUN_NOWAIT);
4086 }
4087 }
4088 }
4089
4090 static void
4091 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4092 {
4093 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4094
4095 ev_embed_stop (EV_A_ w);
4096
4097 {
4098 EV_P = w->other;
4099
4100 ev_loop_fork (EV_A);
4101 ev_run (EV_A_ EVRUN_NOWAIT);
4102 }
4103
4104 ev_embed_start (EV_A_ w);
4105 }
4106
4107 #if 0
4108 static void
4109 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4110 {
4111 ev_idle_stop (EV_A_ idle);
4112 }
4113 #endif
4114
4115 void
4116 ev_embed_start (EV_P_ ev_embed *w)
4117 {
4118 if (expect_false (ev_is_active (w)))
4119 return;
4120
4121 {
4122 EV_P = w->other;
4123 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4124 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4125 }
4126
4127 EV_FREQUENT_CHECK;
4128
4129 ev_set_priority (&w->io, ev_priority (w));
4130 ev_io_start (EV_A_ &w->io);
4131
4132 ev_prepare_init (&w->prepare, embed_prepare_cb);
4133 ev_set_priority (&w->prepare, EV_MINPRI);
4134 ev_prepare_start (EV_A_ &w->prepare);
4135
4136 ev_fork_init (&w->fork, embed_fork_cb);
4137 ev_fork_start (EV_A_ &w->fork);
4138
4139 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4140
4141 ev_start (EV_A_ (W)w, 1);
4142
4143 EV_FREQUENT_CHECK;
4144 }
4145
4146 void
4147 ev_embed_stop (EV_P_ ev_embed *w)
4148 {
4149 clear_pending (EV_A_ (W)w);
4150 if (expect_false (!ev_is_active (w)))
4151 return;
4152
4153 EV_FREQUENT_CHECK;
4154
4155 ev_io_stop (EV_A_ &w->io);
4156 ev_prepare_stop (EV_A_ &w->prepare);
4157 ev_fork_stop (EV_A_ &w->fork);
4158
4159 ev_stop (EV_A_ (W)w);
4160
4161 EV_FREQUENT_CHECK;
4162 }
4163 #endif
4164
4165 #if EV_FORK_ENABLE
4166 void
4167 ev_fork_start (EV_P_ ev_fork *w)
4168 {
4169 if (expect_false (ev_is_active (w)))
4170 return;
4171
4172 EV_FREQUENT_CHECK;
4173
4174 ev_start (EV_A_ (W)w, ++forkcnt);
4175 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4176 forks [forkcnt - 1] = w;
4177
4178 EV_FREQUENT_CHECK;
4179 }
4180
4181 void
4182 ev_fork_stop (EV_P_ ev_fork *w)
4183 {
4184 clear_pending (EV_A_ (W)w);
4185 if (expect_false (!ev_is_active (w)))
4186 return;
4187
4188 EV_FREQUENT_CHECK;
4189
4190 {
4191 int active = ev_active (w);
4192
4193 forks [active - 1] = forks [--forkcnt];
4194 ev_active (forks [active - 1]) = active;
4195 }
4196
4197 ev_stop (EV_A_ (W)w);
4198
4199 EV_FREQUENT_CHECK;
4200 }
4201 #endif
4202
4203 #if EV_CLEANUP_ENABLE
4204 void
4205 ev_cleanup_start (EV_P_ ev_cleanup *w)
4206 {
4207 if (expect_false (ev_is_active (w)))
4208 return;
4209
4210 EV_FREQUENT_CHECK;
4211
4212 ev_start (EV_A_ (W)w, ++cleanupcnt);
4213 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4214 cleanups [cleanupcnt - 1] = w;
4215
4216 /* cleanup watchers should never keep a refcount on the loop */
4217 ev_unref (EV_A);
4218 EV_FREQUENT_CHECK;
4219 }
4220
4221 void
4222 ev_cleanup_stop (EV_P_ ev_cleanup *w)
4223 {
4224 clear_pending (EV_A_ (W)w);
4225 if (expect_false (!ev_is_active (w)))
4226 return;
4227
4228 EV_FREQUENT_CHECK;
4229 ev_ref (EV_A);
4230
4231 {
4232 int active = ev_active (w);
4233
4234 cleanups [active - 1] = cleanups [--cleanupcnt];
4235 ev_active (cleanups [active - 1]) = active;
4236 }
4237
4238 ev_stop (EV_A_ (W)w);
4239
4240 EV_FREQUENT_CHECK;
4241 }
4242 #endif
4243
4244 #if EV_ASYNC_ENABLE
4245 void
4246 ev_async_start (EV_P_ ev_async *w)
4247 {
4248 if (expect_false (ev_is_active (w)))
4249 return;
4250
4251 w->sent = 0;
4252
4253 evpipe_init (EV_A);
4254
4255 EV_FREQUENT_CHECK;
4256
4257 ev_start (EV_A_ (W)w, ++asynccnt);
4258 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4259 asyncs [asynccnt - 1] = w;
4260
4261 EV_FREQUENT_CHECK;
4262 }
4263
4264 void
4265 ev_async_stop (EV_P_ ev_async *w)
4266 {
4267 clear_pending (EV_A_ (W)w);
4268 if (expect_false (!ev_is_active (w)))
4269 return;
4270
4271 EV_FREQUENT_CHECK;
4272
4273 {
4274 int active = ev_active (w);
4275
4276 asyncs [active - 1] = asyncs [--asynccnt];
4277 ev_active (asyncs [active - 1]) = active;
4278 }
4279
4280 ev_stop (EV_A_ (W)w);
4281
4282 EV_FREQUENT_CHECK;
4283 }
4284
4285 void
4286 ev_async_send (EV_P_ ev_async *w)
4287 {
4288 w->sent = 1;
4289 evpipe_write (EV_A_ &async_pending);
4290 }
4291 #endif
4292
4293 /*****************************************************************************/
4294
4295 struct ev_once
4296 {
4297 ev_io io;
4298 ev_timer to;
4299 void (*cb)(int revents, void *arg);
4300 void *arg;
4301 };
4302
4303 static void
4304 once_cb (EV_P_ struct ev_once *once, int revents)
4305 {
4306 void (*cb)(int revents, void *arg) = once->cb;
4307 void *arg = once->arg;
4308
4309 ev_io_stop (EV_A_ &once->io);
4310 ev_timer_stop (EV_A_ &once->to);
4311 ev_free (once);
4312
4313 cb (revents, arg);
4314 }
4315
4316 static void
4317 once_cb_io (EV_P_ ev_io *w, int revents)
4318 {
4319 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4320
4321 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4322 }
4323
4324 static void
4325 once_cb_to (EV_P_ ev_timer *w, int revents)
4326 {
4327 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4328
4329 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4330 }
4331
4332 void
4333 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
4334 {
4335 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4336
4337 if (expect_false (!once))
4338 {
4339 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4340 return;
4341 }
4342
4343 once->cb = cb;
4344 once->arg = arg;
4345
4346 ev_init (&once->io, once_cb_io);
4347 if (fd >= 0)
4348 {
4349 ev_io_set (&once->io, fd, events);
4350 ev_io_start (EV_A_ &once->io);
4351 }
4352
4353 ev_init (&once->to, once_cb_to);
4354 if (timeout >= 0.)
4355 {
4356 ev_timer_set (&once->to, timeout, 0.);
4357 ev_timer_start (EV_A_ &once->to);
4358 }
4359 }
4360
4361 /*****************************************************************************/
4362
4363 #if EV_WALK_ENABLE
4364 void ecb_cold
4365 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4366 {
4367 int i, j;
4368 ev_watcher_list *wl, *wn;
4369
4370 if (types & (EV_IO | EV_EMBED))
4371 for (i = 0; i < anfdmax; ++i)
4372 for (wl = anfds [i].head; wl; )
4373 {
4374 wn = wl->next;
4375
4376 #if EV_EMBED_ENABLE
4377 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4378 {
4379 if (types & EV_EMBED)
4380 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4381 }
4382 else
4383 #endif
4384 #if EV_USE_INOTIFY
4385 if (ev_cb ((ev_io *)wl) == infy_cb)
4386 ;
4387 else
4388 #endif
4389 if ((ev_io *)wl != &pipe_w)
4390 if (types & EV_IO)
4391 cb (EV_A_ EV_IO, wl);
4392
4393 wl = wn;
4394 }
4395
4396 if (types & (EV_TIMER | EV_STAT))
4397 for (i = timercnt + HEAP0; i-- > HEAP0; )
4398 #if EV_STAT_ENABLE
4399 /*TODO: timer is not always active*/
4400 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4401 {
4402 if (types & EV_STAT)
4403 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4404 }
4405 else
4406 #endif
4407 if (types & EV_TIMER)
4408 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4409
4410 #if EV_PERIODIC_ENABLE
4411 if (types & EV_PERIODIC)
4412 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4413 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4414 #endif
4415
4416 #if EV_IDLE_ENABLE
4417 if (types & EV_IDLE)
4418 for (j = NUMPRI; j--; )
4419 for (i = idlecnt [j]; i--; )
4420 cb (EV_A_ EV_IDLE, idles [j][i]);
4421 #endif
4422
4423 #if EV_FORK_ENABLE
4424 if (types & EV_FORK)
4425 for (i = forkcnt; i--; )
4426 if (ev_cb (forks [i]) != embed_fork_cb)
4427 cb (EV_A_ EV_FORK, forks [i]);
4428 #endif
4429
4430 #if EV_ASYNC_ENABLE
4431 if (types & EV_ASYNC)
4432 for (i = asynccnt; i--; )
4433 cb (EV_A_ EV_ASYNC, asyncs [i]);
4434 #endif
4435
4436 #if EV_PREPARE_ENABLE
4437 if (types & EV_PREPARE)
4438 for (i = preparecnt; i--; )
4439 # if EV_EMBED_ENABLE
4440 if (ev_cb (prepares [i]) != embed_prepare_cb)
4441 # endif
4442 cb (EV_A_ EV_PREPARE, prepares [i]);
4443 #endif
4444
4445 #if EV_CHECK_ENABLE
4446 if (types & EV_CHECK)
4447 for (i = checkcnt; i--; )
4448 cb (EV_A_ EV_CHECK, checks [i]);
4449 #endif
4450
4451 #if EV_SIGNAL_ENABLE
4452 if (types & EV_SIGNAL)
4453 for (i = 0; i < EV_NSIG - 1; ++i)
4454 for (wl = signals [i].head; wl; )
4455 {
4456 wn = wl->next;
4457 cb (EV_A_ EV_SIGNAL, wl);
4458 wl = wn;
4459 }
4460 #endif
4461
4462 #if EV_CHILD_ENABLE
4463 if (types & EV_CHILD)
4464 for (i = (EV_PID_HASHSIZE); i--; )
4465 for (wl = childs [i]; wl; )
4466 {
4467 wn = wl->next;
4468 cb (EV_A_ EV_CHILD, wl);
4469 wl = wn;
4470 }
4471 #endif
4472 /* EV_STAT 0x00001000 /* stat data changed */
4473 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4474 }
4475 #endif
4476
4477 #if EV_MULTIPLICITY
4478 #include "ev_wrap.h"
4479 #endif
4480