ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.428
Committed: Tue May 8 15:44:09 2012 UTC (12 years ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.427: +6 -3 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <windows.h>
207 # include <winsock2.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 # define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # error "unable to find value for NSIG, please report"
247 /* to make it compile regardless, just remove the above line, */
248 /* but consider reporting it, too! :) */
249 # define EV_NSIG 65
250 #endif
251
252 #ifndef EV_USE_FLOOR
253 # define EV_USE_FLOOR 0
254 #endif
255
256 #ifndef EV_USE_CLOCK_SYSCALL
257 # if __linux && __GLIBC__ >= 2
258 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 # else
260 # define EV_USE_CLOCK_SYSCALL 0
261 # endif
262 #endif
263
264 #ifndef EV_USE_MONOTONIC
265 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 # define EV_USE_MONOTONIC EV_FEATURE_OS
267 # else
268 # define EV_USE_MONOTONIC 0
269 # endif
270 #endif
271
272 #ifndef EV_USE_REALTIME
273 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 #endif
275
276 #ifndef EV_USE_NANOSLEEP
277 # if _POSIX_C_SOURCE >= 199309L
278 # define EV_USE_NANOSLEEP EV_FEATURE_OS
279 # else
280 # define EV_USE_NANOSLEEP 0
281 # endif
282 #endif
283
284 #ifndef EV_USE_SELECT
285 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 #endif
287
288 #ifndef EV_USE_POLL
289 # ifdef _WIN32
290 # define EV_USE_POLL 0
291 # else
292 # define EV_USE_POLL EV_FEATURE_BACKENDS
293 # endif
294 #endif
295
296 #ifndef EV_USE_EPOLL
297 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 # else
300 # define EV_USE_EPOLL 0
301 # endif
302 #endif
303
304 #ifndef EV_USE_KQUEUE
305 # define EV_USE_KQUEUE 0
306 #endif
307
308 #ifndef EV_USE_PORT
309 # define EV_USE_PORT 0
310 #endif
311
312 #ifndef EV_USE_INOTIFY
313 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 # define EV_USE_INOTIFY EV_FEATURE_OS
315 # else
316 # define EV_USE_INOTIFY 0
317 # endif
318 #endif
319
320 #ifndef EV_PID_HASHSIZE
321 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 #endif
323
324 #ifndef EV_INOTIFY_HASHSIZE
325 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 #endif
327
328 #ifndef EV_USE_EVENTFD
329 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 # define EV_USE_EVENTFD EV_FEATURE_OS
331 # else
332 # define EV_USE_EVENTFD 0
333 # endif
334 #endif
335
336 #ifndef EV_USE_SIGNALFD
337 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 # define EV_USE_SIGNALFD EV_FEATURE_OS
339 # else
340 # define EV_USE_SIGNALFD 0
341 # endif
342 #endif
343
344 #if 0 /* debugging */
345 # define EV_VERIFY 3
346 # define EV_USE_4HEAP 1
347 # define EV_HEAP_CACHE_AT 1
348 #endif
349
350 #ifndef EV_VERIFY
351 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 #endif
353
354 #ifndef EV_USE_4HEAP
355 # define EV_USE_4HEAP EV_FEATURE_DATA
356 #endif
357
358 #ifndef EV_HEAP_CACHE_AT
359 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 #endif
361
362 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363 /* which makes programs even slower. might work on other unices, too. */
364 #if EV_USE_CLOCK_SYSCALL
365 # include <sys/syscall.h>
366 # ifdef SYS_clock_gettime
367 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368 # undef EV_USE_MONOTONIC
369 # define EV_USE_MONOTONIC 1
370 # else
371 # undef EV_USE_CLOCK_SYSCALL
372 # define EV_USE_CLOCK_SYSCALL 0
373 # endif
374 #endif
375
376 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378 #ifdef _AIX
379 /* AIX has a completely broken poll.h header */
380 # undef EV_USE_POLL
381 # define EV_USE_POLL 0
382 #endif
383
384 #ifndef CLOCK_MONOTONIC
385 # undef EV_USE_MONOTONIC
386 # define EV_USE_MONOTONIC 0
387 #endif
388
389 #ifndef CLOCK_REALTIME
390 # undef EV_USE_REALTIME
391 # define EV_USE_REALTIME 0
392 #endif
393
394 #if !EV_STAT_ENABLE
395 # undef EV_USE_INOTIFY
396 # define EV_USE_INOTIFY 0
397 #endif
398
399 #if !EV_USE_NANOSLEEP
400 /* hp-ux has it in sys/time.h, which we unconditionally include above */
401 # if !defined _WIN32 && !defined __hpux
402 # include <sys/select.h>
403 # endif
404 #endif
405
406 #if EV_USE_INOTIFY
407 # include <sys/statfs.h>
408 # include <sys/inotify.h>
409 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410 # ifndef IN_DONT_FOLLOW
411 # undef EV_USE_INOTIFY
412 # define EV_USE_INOTIFY 0
413 # endif
414 #endif
415
416 #if EV_SELECT_IS_WINSOCKET
417 # include <winsock.h>
418 #endif
419
420 #if EV_USE_EVENTFD
421 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
422 # include <stdint.h>
423 # ifndef EFD_NONBLOCK
424 # define EFD_NONBLOCK O_NONBLOCK
425 # endif
426 # ifndef EFD_CLOEXEC
427 # ifdef O_CLOEXEC
428 # define EFD_CLOEXEC O_CLOEXEC
429 # else
430 # define EFD_CLOEXEC 02000000
431 # endif
432 # endif
433 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
434 #endif
435
436 #if EV_USE_SIGNALFD
437 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
438 # include <stdint.h>
439 # ifndef SFD_NONBLOCK
440 # define SFD_NONBLOCK O_NONBLOCK
441 # endif
442 # ifndef SFD_CLOEXEC
443 # ifdef O_CLOEXEC
444 # define SFD_CLOEXEC O_CLOEXEC
445 # else
446 # define SFD_CLOEXEC 02000000
447 # endif
448 # endif
449 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
450
451 struct signalfd_siginfo
452 {
453 uint32_t ssi_signo;
454 char pad[128 - sizeof (uint32_t)];
455 };
456 #endif
457
458 /**/
459
460 #if EV_VERIFY >= 3
461 # define EV_FREQUENT_CHECK ev_verify (EV_A)
462 #else
463 # define EV_FREQUENT_CHECK do { } while (0)
464 #endif
465
466 /*
467 * This is used to work around floating point rounding problems.
468 * This value is good at least till the year 4000.
469 */
470 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
471 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
472
473 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
474 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
475
476 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
477 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
478
479 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
480 /* ECB.H BEGIN */
481 /*
482 * libecb - http://software.schmorp.de/pkg/libecb
483 *
484 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
485 * Copyright (©) 2011 Emanuele Giaquinta
486 * All rights reserved.
487 *
488 * Redistribution and use in source and binary forms, with or without modifica-
489 * tion, are permitted provided that the following conditions are met:
490 *
491 * 1. Redistributions of source code must retain the above copyright notice,
492 * this list of conditions and the following disclaimer.
493 *
494 * 2. Redistributions in binary form must reproduce the above copyright
495 * notice, this list of conditions and the following disclaimer in the
496 * documentation and/or other materials provided with the distribution.
497 *
498 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
499 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
500 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
501 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
502 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
503 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
504 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
505 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
506 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
507 * OF THE POSSIBILITY OF SUCH DAMAGE.
508 */
509
510 #ifndef ECB_H
511 #define ECB_H
512
513 #ifdef _WIN32
514 typedef signed char int8_t;
515 typedef unsigned char uint8_t;
516 typedef signed short int16_t;
517 typedef unsigned short uint16_t;
518 typedef signed int int32_t;
519 typedef unsigned int uint32_t;
520 #if __GNUC__
521 typedef signed long long int64_t;
522 typedef unsigned long long uint64_t;
523 #else /* _MSC_VER || __BORLANDC__ */
524 typedef signed __int64 int64_t;
525 typedef unsigned __int64 uint64_t;
526 #endif
527 #else
528 #include <inttypes.h>
529 #endif
530
531 /* many compilers define _GNUC_ to some versions but then only implement
532 * what their idiot authors think are the "more important" extensions,
533 * causing enormous grief in return for some better fake benchmark numbers.
534 * or so.
535 * we try to detect these and simply assume they are not gcc - if they have
536 * an issue with that they should have done it right in the first place.
537 */
538 #ifndef ECB_GCC_VERSION
539 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
540 #define ECB_GCC_VERSION(major,minor) 0
541 #else
542 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
543 #endif
544 #endif
545
546 /*****************************************************************************/
547
548 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
549 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
550
551 #if ECB_NO_THREADS
552 # define ECB_NO_SMP 1
553 #endif
554
555 #if ECB_NO_THREADS || ECB_NO_SMP
556 #define ECB_MEMORY_FENCE do { } while (0)
557 #endif
558
559 #ifndef ECB_MEMORY_FENCE
560 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
561 #if __i386 || __i386__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
564 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
565 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
568 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
569 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
570 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
571 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
572 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
573 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
574 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
575 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
576 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
577 #elif __sparc || __sparc__
578 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
579 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
580 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
581 #elif defined __s390__ || defined __s390x__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
583 #elif defined __mips__
584 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
585 #elif defined __alpha__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
587 #endif
588 #endif
589 #endif
590
591 #ifndef ECB_MEMORY_FENCE
592 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
593 #define ECB_MEMORY_FENCE __sync_synchronize ()
594 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
595 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
596 #elif _MSC_VER >= 1400 /* VC++ 2005 */
597 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
598 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
599 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
600 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
601 #elif defined _WIN32
602 #include <WinNT.h>
603 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
604 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
605 #include <mbarrier.h>
606 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
607 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
608 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
609 #elif __xlC__
610 #define ECB_MEMORY_FENCE __sync ()
611 #endif
612 #endif
613
614 #ifndef ECB_MEMORY_FENCE
615 #if !ECB_AVOID_PTHREADS
616 /*
617 * if you get undefined symbol references to pthread_mutex_lock,
618 * or failure to find pthread.h, then you should implement
619 * the ECB_MEMORY_FENCE operations for your cpu/compiler
620 * OR provide pthread.h and link against the posix thread library
621 * of your system.
622 */
623 #include <pthread.h>
624 #define ECB_NEEDS_PTHREADS 1
625 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
626
627 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
628 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
629 #endif
630 #endif
631
632 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
633 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
634 #endif
635
636 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
637 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
638 #endif
639
640 /*****************************************************************************/
641
642 #define ECB_C99 (__STDC_VERSION__ >= 199901L)
643
644 #if __cplusplus
645 #define ecb_inline static inline
646 #elif ECB_GCC_VERSION(2,5)
647 #define ecb_inline static __inline__
648 #elif ECB_C99
649 #define ecb_inline static inline
650 #else
651 #define ecb_inline static
652 #endif
653
654 #if ECB_GCC_VERSION(3,3)
655 #define ecb_restrict __restrict__
656 #elif ECB_C99
657 #define ecb_restrict restrict
658 #else
659 #define ecb_restrict
660 #endif
661
662 typedef int ecb_bool;
663
664 #define ECB_CONCAT_(a, b) a ## b
665 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
666 #define ECB_STRINGIFY_(a) # a
667 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
668
669 #define ecb_function_ ecb_inline
670
671 #if ECB_GCC_VERSION(3,1)
672 #define ecb_attribute(attrlist) __attribute__(attrlist)
673 #define ecb_is_constant(expr) __builtin_constant_p (expr)
674 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
675 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
676 #else
677 #define ecb_attribute(attrlist)
678 #define ecb_is_constant(expr) 0
679 #define ecb_expect(expr,value) (expr)
680 #define ecb_prefetch(addr,rw,locality)
681 #endif
682
683 /* no emulation for ecb_decltype */
684 #if ECB_GCC_VERSION(4,5)
685 #define ecb_decltype(x) __decltype(x)
686 #elif ECB_GCC_VERSION(3,0)
687 #define ecb_decltype(x) __typeof(x)
688 #endif
689
690 #define ecb_noinline ecb_attribute ((__noinline__))
691 #define ecb_noreturn ecb_attribute ((__noreturn__))
692 #define ecb_unused ecb_attribute ((__unused__))
693 #define ecb_const ecb_attribute ((__const__))
694 #define ecb_pure ecb_attribute ((__pure__))
695
696 #if ECB_GCC_VERSION(4,3)
697 #define ecb_artificial ecb_attribute ((__artificial__))
698 #define ecb_hot ecb_attribute ((__hot__))
699 #define ecb_cold ecb_attribute ((__cold__))
700 #else
701 #define ecb_artificial
702 #define ecb_hot
703 #define ecb_cold
704 #endif
705
706 /* put around conditional expressions if you are very sure that the */
707 /* expression is mostly true or mostly false. note that these return */
708 /* booleans, not the expression. */
709 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
710 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
711 /* for compatibility to the rest of the world */
712 #define ecb_likely(expr) ecb_expect_true (expr)
713 #define ecb_unlikely(expr) ecb_expect_false (expr)
714
715 /* count trailing zero bits and count # of one bits */
716 #if ECB_GCC_VERSION(3,4)
717 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
718 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
719 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
720 #define ecb_ctz32(x) __builtin_ctz (x)
721 #define ecb_ctz64(x) __builtin_ctzll (x)
722 #define ecb_popcount32(x) __builtin_popcount (x)
723 /* no popcountll */
724 #else
725 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
726 ecb_function_ int
727 ecb_ctz32 (uint32_t x)
728 {
729 int r = 0;
730
731 x &= ~x + 1; /* this isolates the lowest bit */
732
733 #if ECB_branchless_on_i386
734 r += !!(x & 0xaaaaaaaa) << 0;
735 r += !!(x & 0xcccccccc) << 1;
736 r += !!(x & 0xf0f0f0f0) << 2;
737 r += !!(x & 0xff00ff00) << 3;
738 r += !!(x & 0xffff0000) << 4;
739 #else
740 if (x & 0xaaaaaaaa) r += 1;
741 if (x & 0xcccccccc) r += 2;
742 if (x & 0xf0f0f0f0) r += 4;
743 if (x & 0xff00ff00) r += 8;
744 if (x & 0xffff0000) r += 16;
745 #endif
746
747 return r;
748 }
749
750 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
751 ecb_function_ int
752 ecb_ctz64 (uint64_t x)
753 {
754 int shift = x & 0xffffffffU ? 0 : 32;
755 return ecb_ctz32 (x >> shift) + shift;
756 }
757
758 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
759 ecb_function_ int
760 ecb_popcount32 (uint32_t x)
761 {
762 x -= (x >> 1) & 0x55555555;
763 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
764 x = ((x >> 4) + x) & 0x0f0f0f0f;
765 x *= 0x01010101;
766
767 return x >> 24;
768 }
769
770 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
771 ecb_function_ int ecb_ld32 (uint32_t x)
772 {
773 int r = 0;
774
775 if (x >> 16) { x >>= 16; r += 16; }
776 if (x >> 8) { x >>= 8; r += 8; }
777 if (x >> 4) { x >>= 4; r += 4; }
778 if (x >> 2) { x >>= 2; r += 2; }
779 if (x >> 1) { r += 1; }
780
781 return r;
782 }
783
784 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
785 ecb_function_ int ecb_ld64 (uint64_t x)
786 {
787 int r = 0;
788
789 if (x >> 32) { x >>= 32; r += 32; }
790
791 return r + ecb_ld32 (x);
792 }
793 #endif
794
795 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
796 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
797 {
798 return ( (x * 0x0802U & 0x22110U)
799 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
800 }
801
802 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
803 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
804 {
805 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
806 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
807 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
808 x = ( x >> 8 ) | ( x << 8);
809
810 return x;
811 }
812
813 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
814 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
815 {
816 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
817 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
818 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
819 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
820 x = ( x >> 16 ) | ( x << 16);
821
822 return x;
823 }
824
825 /* popcount64 is only available on 64 bit cpus as gcc builtin */
826 /* so for this version we are lazy */
827 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
828 ecb_function_ int
829 ecb_popcount64 (uint64_t x)
830 {
831 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
832 }
833
834 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
835 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
836 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
837 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
838 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
839 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
840 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
841 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
842
843 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
844 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
845 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
846 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
847 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
848 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
849 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
850 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
851
852 #if ECB_GCC_VERSION(4,3)
853 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
854 #define ecb_bswap32(x) __builtin_bswap32 (x)
855 #define ecb_bswap64(x) __builtin_bswap64 (x)
856 #else
857 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
858 ecb_function_ uint16_t
859 ecb_bswap16 (uint16_t x)
860 {
861 return ecb_rotl16 (x, 8);
862 }
863
864 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
865 ecb_function_ uint32_t
866 ecb_bswap32 (uint32_t x)
867 {
868 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
869 }
870
871 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
872 ecb_function_ uint64_t
873 ecb_bswap64 (uint64_t x)
874 {
875 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
876 }
877 #endif
878
879 #if ECB_GCC_VERSION(4,5)
880 #define ecb_unreachable() __builtin_unreachable ()
881 #else
882 /* this seems to work fine, but gcc always emits a warning for it :/ */
883 ecb_inline void ecb_unreachable (void) ecb_noreturn;
884 ecb_inline void ecb_unreachable (void) { }
885 #endif
886
887 /* try to tell the compiler that some condition is definitely true */
888 #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
889
890 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
891 ecb_inline unsigned char
892 ecb_byteorder_helper (void)
893 {
894 const uint32_t u = 0x11223344;
895 return *(unsigned char *)&u;
896 }
897
898 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
899 ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
900 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
901 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
902
903 #if ECB_GCC_VERSION(3,0) || ECB_C99
904 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
905 #else
906 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
907 #endif
908
909 #if __cplusplus
910 template<typename T>
911 static inline T ecb_div_rd (T val, T div)
912 {
913 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
914 }
915 template<typename T>
916 static inline T ecb_div_ru (T val, T div)
917 {
918 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
919 }
920 #else
921 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
922 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
923 #endif
924
925 #if ecb_cplusplus_does_not_suck
926 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
927 template<typename T, int N>
928 static inline int ecb_array_length (const T (&arr)[N])
929 {
930 return N;
931 }
932 #else
933 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
934 #endif
935
936 #endif
937
938 /* ECB.H END */
939
940 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
941 /* if your architecture doesn't need memory fences, e.g. because it is
942 * single-cpu/core, or if you use libev in a project that doesn't use libev
943 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
944 * libev, in which cases the memory fences become nops.
945 * alternatively, you can remove this #error and link against libpthread,
946 * which will then provide the memory fences.
947 */
948 # error "memory fences not defined for your architecture, please report"
949 #endif
950
951 #ifndef ECB_MEMORY_FENCE
952 # define ECB_MEMORY_FENCE do { } while (0)
953 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
954 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
955 #endif
956
957 #define expect_false(cond) ecb_expect_false (cond)
958 #define expect_true(cond) ecb_expect_true (cond)
959 #define noinline ecb_noinline
960
961 #define inline_size ecb_inline
962
963 #if EV_FEATURE_CODE
964 # define inline_speed ecb_inline
965 #else
966 # define inline_speed static noinline
967 #endif
968
969 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
970
971 #if EV_MINPRI == EV_MAXPRI
972 # define ABSPRI(w) (((W)w), 0)
973 #else
974 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
975 #endif
976
977 #define EMPTY /* required for microsofts broken pseudo-c compiler */
978 #define EMPTY2(a,b) /* used to suppress some warnings */
979
980 typedef ev_watcher *W;
981 typedef ev_watcher_list *WL;
982 typedef ev_watcher_time *WT;
983
984 #define ev_active(w) ((W)(w))->active
985 #define ev_at(w) ((WT)(w))->at
986
987 #if EV_USE_REALTIME
988 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
989 /* giving it a reasonably high chance of working on typical architectures */
990 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
991 #endif
992
993 #if EV_USE_MONOTONIC
994 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
995 #endif
996
997 #ifndef EV_FD_TO_WIN32_HANDLE
998 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
999 #endif
1000 #ifndef EV_WIN32_HANDLE_TO_FD
1001 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1002 #endif
1003 #ifndef EV_WIN32_CLOSE_FD
1004 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1005 #endif
1006
1007 #ifdef _WIN32
1008 # include "ev_win32.c"
1009 #endif
1010
1011 /*****************************************************************************/
1012
1013 /* define a suitable floor function (only used by periodics atm) */
1014
1015 #if EV_USE_FLOOR
1016 # include <math.h>
1017 # define ev_floor(v) floor (v)
1018 #else
1019
1020 #include <float.h>
1021
1022 /* a floor() replacement function, should be independent of ev_tstamp type */
1023 static ev_tstamp noinline
1024 ev_floor (ev_tstamp v)
1025 {
1026 /* the choice of shift factor is not terribly important */
1027 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1028 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1029 #else
1030 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1031 #endif
1032
1033 /* argument too large for an unsigned long? */
1034 if (expect_false (v >= shift))
1035 {
1036 ev_tstamp f;
1037
1038 if (v == v - 1.)
1039 return v; /* very large number */
1040
1041 f = shift * ev_floor (v * (1. / shift));
1042 return f + ev_floor (v - f);
1043 }
1044
1045 /* special treatment for negative args? */
1046 if (expect_false (v < 0.))
1047 {
1048 ev_tstamp f = -ev_floor (-v);
1049
1050 return f - (f == v ? 0 : 1);
1051 }
1052
1053 /* fits into an unsigned long */
1054 return (unsigned long)v;
1055 }
1056
1057 #endif
1058
1059 /*****************************************************************************/
1060
1061 #ifdef __linux
1062 # include <sys/utsname.h>
1063 #endif
1064
1065 static unsigned int noinline ecb_cold
1066 ev_linux_version (void)
1067 {
1068 #ifdef __linux
1069 unsigned int v = 0;
1070 struct utsname buf;
1071 int i;
1072 char *p = buf.release;
1073
1074 if (uname (&buf))
1075 return 0;
1076
1077 for (i = 3+1; --i; )
1078 {
1079 unsigned int c = 0;
1080
1081 for (;;)
1082 {
1083 if (*p >= '0' && *p <= '9')
1084 c = c * 10 + *p++ - '0';
1085 else
1086 {
1087 p += *p == '.';
1088 break;
1089 }
1090 }
1091
1092 v = (v << 8) | c;
1093 }
1094
1095 return v;
1096 #else
1097 return 0;
1098 #endif
1099 }
1100
1101 /*****************************************************************************/
1102
1103 #if EV_AVOID_STDIO
1104 static void noinline ecb_cold
1105 ev_printerr (const char *msg)
1106 {
1107 write (STDERR_FILENO, msg, strlen (msg));
1108 }
1109 #endif
1110
1111 static void (*syserr_cb)(const char *msg) EV_THROW;
1112
1113 void ecb_cold
1114 ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
1115 {
1116 syserr_cb = cb;
1117 }
1118
1119 static void noinline ecb_cold
1120 ev_syserr (const char *msg)
1121 {
1122 if (!msg)
1123 msg = "(libev) system error";
1124
1125 if (syserr_cb)
1126 syserr_cb (msg);
1127 else
1128 {
1129 #if EV_AVOID_STDIO
1130 ev_printerr (msg);
1131 ev_printerr (": ");
1132 ev_printerr (strerror (errno));
1133 ev_printerr ("\n");
1134 #else
1135 perror (msg);
1136 #endif
1137 abort ();
1138 }
1139 }
1140
1141 static void *
1142 ev_realloc_emul (void *ptr, long size)
1143 {
1144 #if __GLIBC__
1145 return realloc (ptr, size);
1146 #else
1147 /* some systems, notably openbsd and darwin, fail to properly
1148 * implement realloc (x, 0) (as required by both ansi c-89 and
1149 * the single unix specification, so work around them here.
1150 */
1151
1152 if (size)
1153 return realloc (ptr, size);
1154
1155 free (ptr);
1156 return 0;
1157 #endif
1158 }
1159
1160 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1161
1162 void ecb_cold
1163 ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
1164 {
1165 alloc = cb;
1166 }
1167
1168 inline_speed void *
1169 ev_realloc (void *ptr, long size)
1170 {
1171 ptr = alloc (ptr, size);
1172
1173 if (!ptr && size)
1174 {
1175 #if EV_AVOID_STDIO
1176 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1177 #else
1178 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1179 #endif
1180 abort ();
1181 }
1182
1183 return ptr;
1184 }
1185
1186 #define ev_malloc(size) ev_realloc (0, (size))
1187 #define ev_free(ptr) ev_realloc ((ptr), 0)
1188
1189 /*****************************************************************************/
1190
1191 /* set in reify when reification needed */
1192 #define EV_ANFD_REIFY 1
1193
1194 /* file descriptor info structure */
1195 typedef struct
1196 {
1197 WL head;
1198 unsigned char events; /* the events watched for */
1199 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1200 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1201 unsigned char unused;
1202 #if EV_USE_EPOLL
1203 unsigned int egen; /* generation counter to counter epoll bugs */
1204 #endif
1205 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1206 SOCKET handle;
1207 #endif
1208 #if EV_USE_IOCP
1209 OVERLAPPED or, ow;
1210 #endif
1211 } ANFD;
1212
1213 /* stores the pending event set for a given watcher */
1214 typedef struct
1215 {
1216 W w;
1217 int events; /* the pending event set for the given watcher */
1218 } ANPENDING;
1219
1220 #if EV_USE_INOTIFY
1221 /* hash table entry per inotify-id */
1222 typedef struct
1223 {
1224 WL head;
1225 } ANFS;
1226 #endif
1227
1228 /* Heap Entry */
1229 #if EV_HEAP_CACHE_AT
1230 /* a heap element */
1231 typedef struct {
1232 ev_tstamp at;
1233 WT w;
1234 } ANHE;
1235
1236 #define ANHE_w(he) (he).w /* access watcher, read-write */
1237 #define ANHE_at(he) (he).at /* access cached at, read-only */
1238 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1239 #else
1240 /* a heap element */
1241 typedef WT ANHE;
1242
1243 #define ANHE_w(he) (he)
1244 #define ANHE_at(he) (he)->at
1245 #define ANHE_at_cache(he)
1246 #endif
1247
1248 #if EV_MULTIPLICITY
1249
1250 struct ev_loop
1251 {
1252 ev_tstamp ev_rt_now;
1253 #define ev_rt_now ((loop)->ev_rt_now)
1254 #define VAR(name,decl) decl;
1255 #include "ev_vars.h"
1256 #undef VAR
1257 };
1258 #include "ev_wrap.h"
1259
1260 static struct ev_loop default_loop_struct;
1261 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1262
1263 #else
1264
1265 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1266 #define VAR(name,decl) static decl;
1267 #include "ev_vars.h"
1268 #undef VAR
1269
1270 static int ev_default_loop_ptr;
1271
1272 #endif
1273
1274 #if EV_FEATURE_API
1275 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1276 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1277 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1278 #else
1279 # define EV_RELEASE_CB (void)0
1280 # define EV_ACQUIRE_CB (void)0
1281 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1282 #endif
1283
1284 #define EVBREAK_RECURSE 0x80
1285
1286 /*****************************************************************************/
1287
1288 #ifndef EV_HAVE_EV_TIME
1289 ev_tstamp
1290 ev_time (void) EV_THROW
1291 {
1292 #if EV_USE_REALTIME
1293 if (expect_true (have_realtime))
1294 {
1295 struct timespec ts;
1296 clock_gettime (CLOCK_REALTIME, &ts);
1297 return ts.tv_sec + ts.tv_nsec * 1e-9;
1298 }
1299 #endif
1300
1301 struct timeval tv;
1302 gettimeofday (&tv, 0);
1303 return tv.tv_sec + tv.tv_usec * 1e-6;
1304 }
1305 #endif
1306
1307 inline_size ev_tstamp
1308 get_clock (void)
1309 {
1310 #if EV_USE_MONOTONIC
1311 if (expect_true (have_monotonic))
1312 {
1313 struct timespec ts;
1314 clock_gettime (CLOCK_MONOTONIC, &ts);
1315 return ts.tv_sec + ts.tv_nsec * 1e-9;
1316 }
1317 #endif
1318
1319 return ev_time ();
1320 }
1321
1322 #if EV_MULTIPLICITY
1323 ev_tstamp
1324 ev_now (EV_P) EV_THROW
1325 {
1326 return ev_rt_now;
1327 }
1328 #endif
1329
1330 void
1331 ev_sleep (ev_tstamp delay) EV_THROW
1332 {
1333 if (delay > 0.)
1334 {
1335 #if EV_USE_NANOSLEEP
1336 struct timespec ts;
1337
1338 EV_TS_SET (ts, delay);
1339 nanosleep (&ts, 0);
1340 #elif defined _WIN32
1341 Sleep ((unsigned long)(delay * 1e3));
1342 #else
1343 struct timeval tv;
1344
1345 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1346 /* something not guaranteed by newer posix versions, but guaranteed */
1347 /* by older ones */
1348 EV_TV_SET (tv, delay);
1349 select (0, 0, 0, 0, &tv);
1350 #endif
1351 }
1352 }
1353
1354 /*****************************************************************************/
1355
1356 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1357
1358 /* find a suitable new size for the given array, */
1359 /* hopefully by rounding to a nice-to-malloc size */
1360 inline_size int
1361 array_nextsize (int elem, int cur, int cnt)
1362 {
1363 int ncur = cur + 1;
1364
1365 do
1366 ncur <<= 1;
1367 while (cnt > ncur);
1368
1369 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1370 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1371 {
1372 ncur *= elem;
1373 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1374 ncur = ncur - sizeof (void *) * 4;
1375 ncur /= elem;
1376 }
1377
1378 return ncur;
1379 }
1380
1381 static void * noinline ecb_cold
1382 array_realloc (int elem, void *base, int *cur, int cnt)
1383 {
1384 *cur = array_nextsize (elem, *cur, cnt);
1385 return ev_realloc (base, elem * *cur);
1386 }
1387
1388 #define array_init_zero(base,count) \
1389 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1390
1391 #define array_needsize(type,base,cur,cnt,init) \
1392 if (expect_false ((cnt) > (cur))) \
1393 { \
1394 int ecb_unused ocur_ = (cur); \
1395 (base) = (type *)array_realloc \
1396 (sizeof (type), (base), &(cur), (cnt)); \
1397 init ((base) + (ocur_), (cur) - ocur_); \
1398 }
1399
1400 #if 0
1401 #define array_slim(type,stem) \
1402 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1403 { \
1404 stem ## max = array_roundsize (stem ## cnt >> 1); \
1405 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1406 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1407 }
1408 #endif
1409
1410 #define array_free(stem, idx) \
1411 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1412
1413 /*****************************************************************************/
1414
1415 /* dummy callback for pending events */
1416 static void noinline
1417 pendingcb (EV_P_ ev_prepare *w, int revents)
1418 {
1419 }
1420
1421 void noinline
1422 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1423 {
1424 W w_ = (W)w;
1425 int pri = ABSPRI (w_);
1426
1427 if (expect_false (w_->pending))
1428 pendings [pri][w_->pending - 1].events |= revents;
1429 else
1430 {
1431 w_->pending = ++pendingcnt [pri];
1432 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1433 pendings [pri][w_->pending - 1].w = w_;
1434 pendings [pri][w_->pending - 1].events = revents;
1435 }
1436
1437 pendingpri = NUMPRI - 1;
1438 }
1439
1440 inline_speed void
1441 feed_reverse (EV_P_ W w)
1442 {
1443 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1444 rfeeds [rfeedcnt++] = w;
1445 }
1446
1447 inline_size void
1448 feed_reverse_done (EV_P_ int revents)
1449 {
1450 do
1451 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1452 while (rfeedcnt);
1453 }
1454
1455 inline_speed void
1456 queue_events (EV_P_ W *events, int eventcnt, int type)
1457 {
1458 int i;
1459
1460 for (i = 0; i < eventcnt; ++i)
1461 ev_feed_event (EV_A_ events [i], type);
1462 }
1463
1464 /*****************************************************************************/
1465
1466 inline_speed void
1467 fd_event_nocheck (EV_P_ int fd, int revents)
1468 {
1469 ANFD *anfd = anfds + fd;
1470 ev_io *w;
1471
1472 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1473 {
1474 int ev = w->events & revents;
1475
1476 if (ev)
1477 ev_feed_event (EV_A_ (W)w, ev);
1478 }
1479 }
1480
1481 /* do not submit kernel events for fds that have reify set */
1482 /* because that means they changed while we were polling for new events */
1483 inline_speed void
1484 fd_event (EV_P_ int fd, int revents)
1485 {
1486 ANFD *anfd = anfds + fd;
1487
1488 if (expect_true (!anfd->reify))
1489 fd_event_nocheck (EV_A_ fd, revents);
1490 }
1491
1492 void
1493 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1494 {
1495 if (fd >= 0 && fd < anfdmax)
1496 fd_event_nocheck (EV_A_ fd, revents);
1497 }
1498
1499 /* make sure the external fd watch events are in-sync */
1500 /* with the kernel/libev internal state */
1501 inline_size void
1502 fd_reify (EV_P)
1503 {
1504 int i;
1505
1506 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1507 for (i = 0; i < fdchangecnt; ++i)
1508 {
1509 int fd = fdchanges [i];
1510 ANFD *anfd = anfds + fd;
1511
1512 if (anfd->reify & EV__IOFDSET && anfd->head)
1513 {
1514 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1515
1516 if (handle != anfd->handle)
1517 {
1518 unsigned long arg;
1519
1520 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1521
1522 /* handle changed, but fd didn't - we need to do it in two steps */
1523 backend_modify (EV_A_ fd, anfd->events, 0);
1524 anfd->events = 0;
1525 anfd->handle = handle;
1526 }
1527 }
1528 }
1529 #endif
1530
1531 for (i = 0; i < fdchangecnt; ++i)
1532 {
1533 int fd = fdchanges [i];
1534 ANFD *anfd = anfds + fd;
1535 ev_io *w;
1536
1537 unsigned char o_events = anfd->events;
1538 unsigned char o_reify = anfd->reify;
1539
1540 anfd->reify = 0;
1541
1542 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1543 {
1544 anfd->events = 0;
1545
1546 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1547 anfd->events |= (unsigned char)w->events;
1548
1549 if (o_events != anfd->events)
1550 o_reify = EV__IOFDSET; /* actually |= */
1551 }
1552
1553 if (o_reify & EV__IOFDSET)
1554 backend_modify (EV_A_ fd, o_events, anfd->events);
1555 }
1556
1557 fdchangecnt = 0;
1558 }
1559
1560 /* something about the given fd changed */
1561 inline_size void
1562 fd_change (EV_P_ int fd, int flags)
1563 {
1564 unsigned char reify = anfds [fd].reify;
1565 anfds [fd].reify |= flags;
1566
1567 if (expect_true (!reify))
1568 {
1569 ++fdchangecnt;
1570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1571 fdchanges [fdchangecnt - 1] = fd;
1572 }
1573 }
1574
1575 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1576 inline_speed void ecb_cold
1577 fd_kill (EV_P_ int fd)
1578 {
1579 ev_io *w;
1580
1581 while ((w = (ev_io *)anfds [fd].head))
1582 {
1583 ev_io_stop (EV_A_ w);
1584 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1585 }
1586 }
1587
1588 /* check whether the given fd is actually valid, for error recovery */
1589 inline_size int ecb_cold
1590 fd_valid (int fd)
1591 {
1592 #ifdef _WIN32
1593 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1594 #else
1595 return fcntl (fd, F_GETFD) != -1;
1596 #endif
1597 }
1598
1599 /* called on EBADF to verify fds */
1600 static void noinline ecb_cold
1601 fd_ebadf (EV_P)
1602 {
1603 int fd;
1604
1605 for (fd = 0; fd < anfdmax; ++fd)
1606 if (anfds [fd].events)
1607 if (!fd_valid (fd) && errno == EBADF)
1608 fd_kill (EV_A_ fd);
1609 }
1610
1611 /* called on ENOMEM in select/poll to kill some fds and retry */
1612 static void noinline ecb_cold
1613 fd_enomem (EV_P)
1614 {
1615 int fd;
1616
1617 for (fd = anfdmax; fd--; )
1618 if (anfds [fd].events)
1619 {
1620 fd_kill (EV_A_ fd);
1621 break;
1622 }
1623 }
1624
1625 /* usually called after fork if backend needs to re-arm all fds from scratch */
1626 static void noinline
1627 fd_rearm_all (EV_P)
1628 {
1629 int fd;
1630
1631 for (fd = 0; fd < anfdmax; ++fd)
1632 if (anfds [fd].events)
1633 {
1634 anfds [fd].events = 0;
1635 anfds [fd].emask = 0;
1636 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1637 }
1638 }
1639
1640 /* used to prepare libev internal fd's */
1641 /* this is not fork-safe */
1642 inline_speed void
1643 fd_intern (int fd)
1644 {
1645 #ifdef _WIN32
1646 unsigned long arg = 1;
1647 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1648 #else
1649 fcntl (fd, F_SETFD, FD_CLOEXEC);
1650 fcntl (fd, F_SETFL, O_NONBLOCK);
1651 #endif
1652 }
1653
1654 /*****************************************************************************/
1655
1656 /*
1657 * the heap functions want a real array index. array index 0 is guaranteed to not
1658 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1659 * the branching factor of the d-tree.
1660 */
1661
1662 /*
1663 * at the moment we allow libev the luxury of two heaps,
1664 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1665 * which is more cache-efficient.
1666 * the difference is about 5% with 50000+ watchers.
1667 */
1668 #if EV_USE_4HEAP
1669
1670 #define DHEAP 4
1671 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1672 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1673 #define UPHEAP_DONE(p,k) ((p) == (k))
1674
1675 /* away from the root */
1676 inline_speed void
1677 downheap (ANHE *heap, int N, int k)
1678 {
1679 ANHE he = heap [k];
1680 ANHE *E = heap + N + HEAP0;
1681
1682 for (;;)
1683 {
1684 ev_tstamp minat;
1685 ANHE *minpos;
1686 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1687
1688 /* find minimum child */
1689 if (expect_true (pos + DHEAP - 1 < E))
1690 {
1691 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1692 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1693 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1694 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1695 }
1696 else if (pos < E)
1697 {
1698 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1699 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1700 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1701 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1702 }
1703 else
1704 break;
1705
1706 if (ANHE_at (he) <= minat)
1707 break;
1708
1709 heap [k] = *minpos;
1710 ev_active (ANHE_w (*minpos)) = k;
1711
1712 k = minpos - heap;
1713 }
1714
1715 heap [k] = he;
1716 ev_active (ANHE_w (he)) = k;
1717 }
1718
1719 #else /* 4HEAP */
1720
1721 #define HEAP0 1
1722 #define HPARENT(k) ((k) >> 1)
1723 #define UPHEAP_DONE(p,k) (!(p))
1724
1725 /* away from the root */
1726 inline_speed void
1727 downheap (ANHE *heap, int N, int k)
1728 {
1729 ANHE he = heap [k];
1730
1731 for (;;)
1732 {
1733 int c = k << 1;
1734
1735 if (c >= N + HEAP0)
1736 break;
1737
1738 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1739 ? 1 : 0;
1740
1741 if (ANHE_at (he) <= ANHE_at (heap [c]))
1742 break;
1743
1744 heap [k] = heap [c];
1745 ev_active (ANHE_w (heap [k])) = k;
1746
1747 k = c;
1748 }
1749
1750 heap [k] = he;
1751 ev_active (ANHE_w (he)) = k;
1752 }
1753 #endif
1754
1755 /* towards the root */
1756 inline_speed void
1757 upheap (ANHE *heap, int k)
1758 {
1759 ANHE he = heap [k];
1760
1761 for (;;)
1762 {
1763 int p = HPARENT (k);
1764
1765 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1766 break;
1767
1768 heap [k] = heap [p];
1769 ev_active (ANHE_w (heap [k])) = k;
1770 k = p;
1771 }
1772
1773 heap [k] = he;
1774 ev_active (ANHE_w (he)) = k;
1775 }
1776
1777 /* move an element suitably so it is in a correct place */
1778 inline_size void
1779 adjustheap (ANHE *heap, int N, int k)
1780 {
1781 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1782 upheap (heap, k);
1783 else
1784 downheap (heap, N, k);
1785 }
1786
1787 /* rebuild the heap: this function is used only once and executed rarely */
1788 inline_size void
1789 reheap (ANHE *heap, int N)
1790 {
1791 int i;
1792
1793 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1794 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1795 for (i = 0; i < N; ++i)
1796 upheap (heap, i + HEAP0);
1797 }
1798
1799 /*****************************************************************************/
1800
1801 /* associate signal watchers to a signal signal */
1802 typedef struct
1803 {
1804 EV_ATOMIC_T pending;
1805 #if EV_MULTIPLICITY
1806 EV_P;
1807 #endif
1808 WL head;
1809 } ANSIG;
1810
1811 static ANSIG signals [EV_NSIG - 1];
1812
1813 /*****************************************************************************/
1814
1815 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1816
1817 static void noinline ecb_cold
1818 evpipe_init (EV_P)
1819 {
1820 if (!ev_is_active (&pipe_w))
1821 {
1822 # if EV_USE_EVENTFD
1823 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1824 if (evfd < 0 && errno == EINVAL)
1825 evfd = eventfd (0, 0);
1826
1827 if (evfd >= 0)
1828 {
1829 evpipe [0] = -1;
1830 fd_intern (evfd); /* doing it twice doesn't hurt */
1831 ev_io_set (&pipe_w, evfd, EV_READ);
1832 }
1833 else
1834 # endif
1835 {
1836 while (pipe (evpipe))
1837 ev_syserr ("(libev) error creating signal/async pipe");
1838
1839 fd_intern (evpipe [0]);
1840 fd_intern (evpipe [1]);
1841 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1842 }
1843
1844 ev_io_start (EV_A_ &pipe_w);
1845 ev_unref (EV_A); /* watcher should not keep loop alive */
1846 }
1847 }
1848
1849 inline_speed void
1850 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1851 {
1852 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1853
1854 if (expect_true (*flag))
1855 return;
1856
1857 *flag = 1;
1858
1859 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1860
1861 pipe_write_skipped = 1;
1862
1863 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1864
1865 if (pipe_write_wanted)
1866 {
1867 int old_errno;
1868
1869 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1870
1871 old_errno = errno; /* save errno because write will clobber it */
1872
1873 #if EV_USE_EVENTFD
1874 if (evfd >= 0)
1875 {
1876 uint64_t counter = 1;
1877 write (evfd, &counter, sizeof (uint64_t));
1878 }
1879 else
1880 #endif
1881 {
1882 #ifdef _WIN32
1883 WSABUF buf;
1884 DWORD sent;
1885 buf.buf = &buf;
1886 buf.len = 1;
1887 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1888 #else
1889 write (evpipe [1], &(evpipe [1]), 1);
1890 #endif
1891 }
1892
1893 errno = old_errno;
1894 }
1895 }
1896
1897 /* called whenever the libev signal pipe */
1898 /* got some events (signal, async) */
1899 static void
1900 pipecb (EV_P_ ev_io *iow, int revents)
1901 {
1902 int i;
1903
1904 if (revents & EV_READ)
1905 {
1906 #if EV_USE_EVENTFD
1907 if (evfd >= 0)
1908 {
1909 uint64_t counter;
1910 read (evfd, &counter, sizeof (uint64_t));
1911 }
1912 else
1913 #endif
1914 {
1915 char dummy[4];
1916 #ifdef _WIN32
1917 WSABUF buf;
1918 DWORD recvd;
1919 buf.buf = dummy;
1920 buf.len = sizeof (dummy);
1921 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, 0, 0, 0);
1922 #else
1923 read (evpipe [0], &dummy, sizeof (dummy));
1924 #endif
1925 }
1926 }
1927
1928 pipe_write_skipped = 0;
1929
1930 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1931
1932 #if EV_SIGNAL_ENABLE
1933 if (sig_pending)
1934 {
1935 sig_pending = 0;
1936
1937 ECB_MEMORY_FENCE_RELEASE;
1938
1939 for (i = EV_NSIG - 1; i--; )
1940 if (expect_false (signals [i].pending))
1941 ev_feed_signal_event (EV_A_ i + 1);
1942 }
1943 #endif
1944
1945 #if EV_ASYNC_ENABLE
1946 if (async_pending)
1947 {
1948 async_pending = 0;
1949
1950 ECB_MEMORY_FENCE_RELEASE;
1951
1952 for (i = asynccnt; i--; )
1953 if (asyncs [i]->sent)
1954 {
1955 asyncs [i]->sent = 0;
1956 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1957 }
1958 }
1959 #endif
1960 }
1961
1962 /*****************************************************************************/
1963
1964 void
1965 ev_feed_signal (int signum) EV_THROW
1966 {
1967 #if EV_MULTIPLICITY
1968 EV_P = signals [signum - 1].loop;
1969
1970 if (!EV_A)
1971 return;
1972 #endif
1973
1974 if (!ev_active (&pipe_w))
1975 return;
1976
1977 signals [signum - 1].pending = 1;
1978 evpipe_write (EV_A_ &sig_pending);
1979 }
1980
1981 static void
1982 ev_sighandler (int signum)
1983 {
1984 #ifdef _WIN32
1985 signal (signum, ev_sighandler);
1986 #endif
1987
1988 ev_feed_signal (signum);
1989 }
1990
1991 void noinline
1992 ev_feed_signal_event (EV_P_ int signum) EV_THROW
1993 {
1994 WL w;
1995
1996 if (expect_false (signum <= 0 || signum > EV_NSIG))
1997 return;
1998
1999 --signum;
2000
2001 #if EV_MULTIPLICITY
2002 /* it is permissible to try to feed a signal to the wrong loop */
2003 /* or, likely more useful, feeding a signal nobody is waiting for */
2004
2005 if (expect_false (signals [signum].loop != EV_A))
2006 return;
2007 #endif
2008
2009 signals [signum].pending = 0;
2010
2011 for (w = signals [signum].head; w; w = w->next)
2012 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2013 }
2014
2015 #if EV_USE_SIGNALFD
2016 static void
2017 sigfdcb (EV_P_ ev_io *iow, int revents)
2018 {
2019 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2020
2021 for (;;)
2022 {
2023 ssize_t res = read (sigfd, si, sizeof (si));
2024
2025 /* not ISO-C, as res might be -1, but works with SuS */
2026 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2027 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2028
2029 if (res < (ssize_t)sizeof (si))
2030 break;
2031 }
2032 }
2033 #endif
2034
2035 #endif
2036
2037 /*****************************************************************************/
2038
2039 #if EV_CHILD_ENABLE
2040 static WL childs [EV_PID_HASHSIZE];
2041
2042 static ev_signal childev;
2043
2044 #ifndef WIFCONTINUED
2045 # define WIFCONTINUED(status) 0
2046 #endif
2047
2048 /* handle a single child status event */
2049 inline_speed void
2050 child_reap (EV_P_ int chain, int pid, int status)
2051 {
2052 ev_child *w;
2053 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2054
2055 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2056 {
2057 if ((w->pid == pid || !w->pid)
2058 && (!traced || (w->flags & 1)))
2059 {
2060 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2061 w->rpid = pid;
2062 w->rstatus = status;
2063 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2064 }
2065 }
2066 }
2067
2068 #ifndef WCONTINUED
2069 # define WCONTINUED 0
2070 #endif
2071
2072 /* called on sigchld etc., calls waitpid */
2073 static void
2074 childcb (EV_P_ ev_signal *sw, int revents)
2075 {
2076 int pid, status;
2077
2078 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2079 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2080 if (!WCONTINUED
2081 || errno != EINVAL
2082 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2083 return;
2084
2085 /* make sure we are called again until all children have been reaped */
2086 /* we need to do it this way so that the callback gets called before we continue */
2087 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2088
2089 child_reap (EV_A_ pid, pid, status);
2090 if ((EV_PID_HASHSIZE) > 1)
2091 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2092 }
2093
2094 #endif
2095
2096 /*****************************************************************************/
2097
2098 #if EV_USE_IOCP
2099 # include "ev_iocp.c"
2100 #endif
2101 #if EV_USE_PORT
2102 # include "ev_port.c"
2103 #endif
2104 #if EV_USE_KQUEUE
2105 # include "ev_kqueue.c"
2106 #endif
2107 #if EV_USE_EPOLL
2108 # include "ev_epoll.c"
2109 #endif
2110 #if EV_USE_POLL
2111 # include "ev_poll.c"
2112 #endif
2113 #if EV_USE_SELECT
2114 # include "ev_select.c"
2115 #endif
2116
2117 int ecb_cold
2118 ev_version_major (void) EV_THROW
2119 {
2120 return EV_VERSION_MAJOR;
2121 }
2122
2123 int ecb_cold
2124 ev_version_minor (void) EV_THROW
2125 {
2126 return EV_VERSION_MINOR;
2127 }
2128
2129 /* return true if we are running with elevated privileges and should ignore env variables */
2130 int inline_size ecb_cold
2131 enable_secure (void)
2132 {
2133 #ifdef _WIN32
2134 return 0;
2135 #else
2136 return getuid () != geteuid ()
2137 || getgid () != getegid ();
2138 #endif
2139 }
2140
2141 unsigned int ecb_cold
2142 ev_supported_backends (void) EV_THROW
2143 {
2144 unsigned int flags = 0;
2145
2146 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2147 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2148 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2149 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2150 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2151
2152 return flags;
2153 }
2154
2155 unsigned int ecb_cold
2156 ev_recommended_backends (void) EV_THROW
2157 {
2158 unsigned int flags = ev_supported_backends ();
2159
2160 #ifndef __NetBSD__
2161 /* kqueue is borked on everything but netbsd apparently */
2162 /* it usually doesn't work correctly on anything but sockets and pipes */
2163 flags &= ~EVBACKEND_KQUEUE;
2164 #endif
2165 #ifdef __APPLE__
2166 /* only select works correctly on that "unix-certified" platform */
2167 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2168 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2169 #endif
2170 #ifdef __FreeBSD__
2171 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2172 #endif
2173
2174 return flags;
2175 }
2176
2177 unsigned int ecb_cold
2178 ev_embeddable_backends (void) EV_THROW
2179 {
2180 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2181
2182 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2183 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2184 flags &= ~EVBACKEND_EPOLL;
2185
2186 return flags;
2187 }
2188
2189 unsigned int
2190 ev_backend (EV_P) EV_THROW
2191 {
2192 return backend;
2193 }
2194
2195 #if EV_FEATURE_API
2196 unsigned int
2197 ev_iteration (EV_P) EV_THROW
2198 {
2199 return loop_count;
2200 }
2201
2202 unsigned int
2203 ev_depth (EV_P) EV_THROW
2204 {
2205 return loop_depth;
2206 }
2207
2208 void
2209 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2210 {
2211 io_blocktime = interval;
2212 }
2213
2214 void
2215 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2216 {
2217 timeout_blocktime = interval;
2218 }
2219
2220 void
2221 ev_set_userdata (EV_P_ void *data) EV_THROW
2222 {
2223 userdata = data;
2224 }
2225
2226 void *
2227 ev_userdata (EV_P) EV_THROW
2228 {
2229 return userdata;
2230 }
2231
2232 void
2233 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2234 {
2235 invoke_cb = invoke_pending_cb;
2236 }
2237
2238 void
2239 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2240 {
2241 release_cb = release;
2242 acquire_cb = acquire;
2243 }
2244 #endif
2245
2246 /* initialise a loop structure, must be zero-initialised */
2247 static void noinline ecb_cold
2248 loop_init (EV_P_ unsigned int flags) EV_THROW
2249 {
2250 if (!backend)
2251 {
2252 origflags = flags;
2253
2254 #if EV_USE_REALTIME
2255 if (!have_realtime)
2256 {
2257 struct timespec ts;
2258
2259 if (!clock_gettime (CLOCK_REALTIME, &ts))
2260 have_realtime = 1;
2261 }
2262 #endif
2263
2264 #if EV_USE_MONOTONIC
2265 if (!have_monotonic)
2266 {
2267 struct timespec ts;
2268
2269 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2270 have_monotonic = 1;
2271 }
2272 #endif
2273
2274 /* pid check not overridable via env */
2275 #ifndef _WIN32
2276 if (flags & EVFLAG_FORKCHECK)
2277 curpid = getpid ();
2278 #endif
2279
2280 if (!(flags & EVFLAG_NOENV)
2281 && !enable_secure ()
2282 && getenv ("LIBEV_FLAGS"))
2283 flags = atoi (getenv ("LIBEV_FLAGS"));
2284
2285 ev_rt_now = ev_time ();
2286 mn_now = get_clock ();
2287 now_floor = mn_now;
2288 rtmn_diff = ev_rt_now - mn_now;
2289 #if EV_FEATURE_API
2290 invoke_cb = ev_invoke_pending;
2291 #endif
2292
2293 io_blocktime = 0.;
2294 timeout_blocktime = 0.;
2295 backend = 0;
2296 backend_fd = -1;
2297 sig_pending = 0;
2298 #if EV_ASYNC_ENABLE
2299 async_pending = 0;
2300 #endif
2301 pipe_write_skipped = 0;
2302 pipe_write_wanted = 0;
2303 #if EV_USE_INOTIFY
2304 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2305 #endif
2306 #if EV_USE_SIGNALFD
2307 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2308 #endif
2309
2310 if (!(flags & EVBACKEND_MASK))
2311 flags |= ev_recommended_backends ();
2312
2313 #if EV_USE_IOCP
2314 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2315 #endif
2316 #if EV_USE_PORT
2317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2318 #endif
2319 #if EV_USE_KQUEUE
2320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2321 #endif
2322 #if EV_USE_EPOLL
2323 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2324 #endif
2325 #if EV_USE_POLL
2326 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2327 #endif
2328 #if EV_USE_SELECT
2329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2330 #endif
2331
2332 ev_prepare_init (&pending_w, pendingcb);
2333
2334 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2335 ev_init (&pipe_w, pipecb);
2336 ev_set_priority (&pipe_w, EV_MAXPRI);
2337 #endif
2338 }
2339 }
2340
2341 /* free up a loop structure */
2342 void ecb_cold
2343 ev_loop_destroy (EV_P)
2344 {
2345 int i;
2346
2347 #if EV_MULTIPLICITY
2348 /* mimic free (0) */
2349 if (!EV_A)
2350 return;
2351 #endif
2352
2353 #if EV_CLEANUP_ENABLE
2354 /* queue cleanup watchers (and execute them) */
2355 if (expect_false (cleanupcnt))
2356 {
2357 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2358 EV_INVOKE_PENDING;
2359 }
2360 #endif
2361
2362 #if EV_CHILD_ENABLE
2363 if (ev_is_active (&childev))
2364 {
2365 ev_ref (EV_A); /* child watcher */
2366 ev_signal_stop (EV_A_ &childev);
2367 }
2368 #endif
2369
2370 if (ev_is_active (&pipe_w))
2371 {
2372 /*ev_ref (EV_A);*/
2373 /*ev_io_stop (EV_A_ &pipe_w);*/
2374
2375 #if EV_USE_EVENTFD
2376 if (evfd >= 0)
2377 close (evfd);
2378 #endif
2379
2380 if (evpipe [0] >= 0)
2381 {
2382 EV_WIN32_CLOSE_FD (evpipe [0]);
2383 EV_WIN32_CLOSE_FD (evpipe [1]);
2384 }
2385 }
2386
2387 #if EV_USE_SIGNALFD
2388 if (ev_is_active (&sigfd_w))
2389 close (sigfd);
2390 #endif
2391
2392 #if EV_USE_INOTIFY
2393 if (fs_fd >= 0)
2394 close (fs_fd);
2395 #endif
2396
2397 if (backend_fd >= 0)
2398 close (backend_fd);
2399
2400 #if EV_USE_IOCP
2401 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2402 #endif
2403 #if EV_USE_PORT
2404 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2405 #endif
2406 #if EV_USE_KQUEUE
2407 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2408 #endif
2409 #if EV_USE_EPOLL
2410 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2411 #endif
2412 #if EV_USE_POLL
2413 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2414 #endif
2415 #if EV_USE_SELECT
2416 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2417 #endif
2418
2419 for (i = NUMPRI; i--; )
2420 {
2421 array_free (pending, [i]);
2422 #if EV_IDLE_ENABLE
2423 array_free (idle, [i]);
2424 #endif
2425 }
2426
2427 ev_free (anfds); anfds = 0; anfdmax = 0;
2428
2429 /* have to use the microsoft-never-gets-it-right macro */
2430 array_free (rfeed, EMPTY);
2431 array_free (fdchange, EMPTY);
2432 array_free (timer, EMPTY);
2433 #if EV_PERIODIC_ENABLE
2434 array_free (periodic, EMPTY);
2435 #endif
2436 #if EV_FORK_ENABLE
2437 array_free (fork, EMPTY);
2438 #endif
2439 #if EV_CLEANUP_ENABLE
2440 array_free (cleanup, EMPTY);
2441 #endif
2442 array_free (prepare, EMPTY);
2443 array_free (check, EMPTY);
2444 #if EV_ASYNC_ENABLE
2445 array_free (async, EMPTY);
2446 #endif
2447
2448 backend = 0;
2449
2450 #if EV_MULTIPLICITY
2451 if (ev_is_default_loop (EV_A))
2452 #endif
2453 ev_default_loop_ptr = 0;
2454 #if EV_MULTIPLICITY
2455 else
2456 ev_free (EV_A);
2457 #endif
2458 }
2459
2460 #if EV_USE_INOTIFY
2461 inline_size void infy_fork (EV_P);
2462 #endif
2463
2464 inline_size void
2465 loop_fork (EV_P)
2466 {
2467 #if EV_USE_PORT
2468 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2469 #endif
2470 #if EV_USE_KQUEUE
2471 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2472 #endif
2473 #if EV_USE_EPOLL
2474 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2475 #endif
2476 #if EV_USE_INOTIFY
2477 infy_fork (EV_A);
2478 #endif
2479
2480 if (ev_is_active (&pipe_w))
2481 {
2482 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2483
2484 ev_ref (EV_A);
2485 ev_io_stop (EV_A_ &pipe_w);
2486
2487 #if EV_USE_EVENTFD
2488 if (evfd >= 0)
2489 close (evfd);
2490 #endif
2491
2492 if (evpipe [0] >= 0)
2493 {
2494 EV_WIN32_CLOSE_FD (evpipe [0]);
2495 EV_WIN32_CLOSE_FD (evpipe [1]);
2496 }
2497
2498 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2499 evpipe_init (EV_A);
2500 /* now iterate over everything, in case we missed something */
2501 pipecb (EV_A_ &pipe_w, EV_READ);
2502 #endif
2503 }
2504
2505 postfork = 0;
2506 }
2507
2508 #if EV_MULTIPLICITY
2509
2510 struct ev_loop * ecb_cold
2511 ev_loop_new (unsigned int flags) EV_THROW
2512 {
2513 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2514
2515 memset (EV_A, 0, sizeof (struct ev_loop));
2516 loop_init (EV_A_ flags);
2517
2518 if (ev_backend (EV_A))
2519 return EV_A;
2520
2521 ev_free (EV_A);
2522 return 0;
2523 }
2524
2525 #endif /* multiplicity */
2526
2527 #if EV_VERIFY
2528 static void noinline ecb_cold
2529 verify_watcher (EV_P_ W w)
2530 {
2531 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2532
2533 if (w->pending)
2534 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2535 }
2536
2537 static void noinline ecb_cold
2538 verify_heap (EV_P_ ANHE *heap, int N)
2539 {
2540 int i;
2541
2542 for (i = HEAP0; i < N + HEAP0; ++i)
2543 {
2544 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2545 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2546 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2547
2548 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2549 }
2550 }
2551
2552 static void noinline ecb_cold
2553 array_verify (EV_P_ W *ws, int cnt)
2554 {
2555 while (cnt--)
2556 {
2557 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2558 verify_watcher (EV_A_ ws [cnt]);
2559 }
2560 }
2561 #endif
2562
2563 #if EV_FEATURE_API
2564 void ecb_cold
2565 ev_verify (EV_P) EV_THROW
2566 {
2567 #if EV_VERIFY
2568 int i, j;
2569 WL w, w2;
2570
2571 assert (activecnt >= -1);
2572
2573 assert (fdchangemax >= fdchangecnt);
2574 for (i = 0; i < fdchangecnt; ++i)
2575 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2576
2577 assert (anfdmax >= 0);
2578 for (i = j = 0; i < anfdmax; ++i)
2579 for (w = w2 = anfds [i].head; w; w = w->next)
2580 {
2581 verify_watcher (EV_A_ (W)w);
2582
2583 if (j++ & 1)
2584 {
2585 assert (("libev: io watcher list contains a loop", w != w2));
2586 w2 = w2->next;
2587 }
2588
2589 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2590 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2591 }
2592
2593 assert (timermax >= timercnt);
2594 verify_heap (EV_A_ timers, timercnt);
2595
2596 #if EV_PERIODIC_ENABLE
2597 assert (periodicmax >= periodiccnt);
2598 verify_heap (EV_A_ periodics, periodiccnt);
2599 #endif
2600
2601 for (i = NUMPRI; i--; )
2602 {
2603 assert (pendingmax [i] >= pendingcnt [i]);
2604 #if EV_IDLE_ENABLE
2605 assert (idleall >= 0);
2606 assert (idlemax [i] >= idlecnt [i]);
2607 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2608 #endif
2609 }
2610
2611 #if EV_FORK_ENABLE
2612 assert (forkmax >= forkcnt);
2613 array_verify (EV_A_ (W *)forks, forkcnt);
2614 #endif
2615
2616 #if EV_CLEANUP_ENABLE
2617 assert (cleanupmax >= cleanupcnt);
2618 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2619 #endif
2620
2621 #if EV_ASYNC_ENABLE
2622 assert (asyncmax >= asynccnt);
2623 array_verify (EV_A_ (W *)asyncs, asynccnt);
2624 #endif
2625
2626 #if EV_PREPARE_ENABLE
2627 assert (preparemax >= preparecnt);
2628 array_verify (EV_A_ (W *)prepares, preparecnt);
2629 #endif
2630
2631 #if EV_CHECK_ENABLE
2632 assert (checkmax >= checkcnt);
2633 array_verify (EV_A_ (W *)checks, checkcnt);
2634 #endif
2635
2636 # if 0
2637 #if EV_CHILD_ENABLE
2638 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2639 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2640 #endif
2641 # endif
2642 #endif
2643 }
2644 #endif
2645
2646 #if EV_MULTIPLICITY
2647 struct ev_loop * ecb_cold
2648 #else
2649 int
2650 #endif
2651 ev_default_loop (unsigned int flags) EV_THROW
2652 {
2653 if (!ev_default_loop_ptr)
2654 {
2655 #if EV_MULTIPLICITY
2656 EV_P = ev_default_loop_ptr = &default_loop_struct;
2657 #else
2658 ev_default_loop_ptr = 1;
2659 #endif
2660
2661 loop_init (EV_A_ flags);
2662
2663 if (ev_backend (EV_A))
2664 {
2665 #if EV_CHILD_ENABLE
2666 ev_signal_init (&childev, childcb, SIGCHLD);
2667 ev_set_priority (&childev, EV_MAXPRI);
2668 ev_signal_start (EV_A_ &childev);
2669 ev_unref (EV_A); /* child watcher should not keep loop alive */
2670 #endif
2671 }
2672 else
2673 ev_default_loop_ptr = 0;
2674 }
2675
2676 return ev_default_loop_ptr;
2677 }
2678
2679 void
2680 ev_loop_fork (EV_P) EV_THROW
2681 {
2682 postfork = 1; /* must be in line with ev_default_fork */
2683 }
2684
2685 /*****************************************************************************/
2686
2687 void
2688 ev_invoke (EV_P_ void *w, int revents)
2689 {
2690 EV_CB_INVOKE ((W)w, revents);
2691 }
2692
2693 unsigned int
2694 ev_pending_count (EV_P) EV_THROW
2695 {
2696 int pri;
2697 unsigned int count = 0;
2698
2699 for (pri = NUMPRI; pri--; )
2700 count += pendingcnt [pri];
2701
2702 return count;
2703 }
2704
2705 void noinline
2706 ev_invoke_pending (EV_P)
2707 {
2708 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
2709 while (pendingcnt [pendingpri])
2710 {
2711 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2712
2713 p->w->pending = 0;
2714 EV_CB_INVOKE (p->w, p->events);
2715 EV_FREQUENT_CHECK;
2716 }
2717 }
2718
2719 #if EV_IDLE_ENABLE
2720 /* make idle watchers pending. this handles the "call-idle */
2721 /* only when higher priorities are idle" logic */
2722 inline_size void
2723 idle_reify (EV_P)
2724 {
2725 if (expect_false (idleall))
2726 {
2727 int pri;
2728
2729 for (pri = NUMPRI; pri--; )
2730 {
2731 if (pendingcnt [pri])
2732 break;
2733
2734 if (idlecnt [pri])
2735 {
2736 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2737 break;
2738 }
2739 }
2740 }
2741 }
2742 #endif
2743
2744 /* make timers pending */
2745 inline_size void
2746 timers_reify (EV_P)
2747 {
2748 EV_FREQUENT_CHECK;
2749
2750 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2751 {
2752 do
2753 {
2754 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2755
2756 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2757
2758 /* first reschedule or stop timer */
2759 if (w->repeat)
2760 {
2761 ev_at (w) += w->repeat;
2762 if (ev_at (w) < mn_now)
2763 ev_at (w) = mn_now;
2764
2765 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2766
2767 ANHE_at_cache (timers [HEAP0]);
2768 downheap (timers, timercnt, HEAP0);
2769 }
2770 else
2771 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2772
2773 EV_FREQUENT_CHECK;
2774 feed_reverse (EV_A_ (W)w);
2775 }
2776 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2777
2778 feed_reverse_done (EV_A_ EV_TIMER);
2779 }
2780 }
2781
2782 #if EV_PERIODIC_ENABLE
2783
2784 static void noinline
2785 periodic_recalc (EV_P_ ev_periodic *w)
2786 {
2787 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2788 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2789
2790 /* the above almost always errs on the low side */
2791 while (at <= ev_rt_now)
2792 {
2793 ev_tstamp nat = at + w->interval;
2794
2795 /* when resolution fails us, we use ev_rt_now */
2796 if (expect_false (nat == at))
2797 {
2798 at = ev_rt_now;
2799 break;
2800 }
2801
2802 at = nat;
2803 }
2804
2805 ev_at (w) = at;
2806 }
2807
2808 /* make periodics pending */
2809 inline_size void
2810 periodics_reify (EV_P)
2811 {
2812 EV_FREQUENT_CHECK;
2813
2814 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2815 {
2816 int feed_count = 0;
2817
2818 do
2819 {
2820 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2821
2822 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2823
2824 /* first reschedule or stop timer */
2825 if (w->reschedule_cb)
2826 {
2827 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2828
2829 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2830
2831 ANHE_at_cache (periodics [HEAP0]);
2832 downheap (periodics, periodiccnt, HEAP0);
2833 }
2834 else if (w->interval)
2835 {
2836 periodic_recalc (EV_A_ w);
2837 ANHE_at_cache (periodics [HEAP0]);
2838 downheap (periodics, periodiccnt, HEAP0);
2839 }
2840 else
2841 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2842
2843 EV_FREQUENT_CHECK;
2844 feed_reverse (EV_A_ (W)w);
2845 }
2846 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2847
2848 feed_reverse_done (EV_A_ EV_PERIODIC);
2849 }
2850 }
2851
2852 /* simply recalculate all periodics */
2853 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2854 static void noinline ecb_cold
2855 periodics_reschedule (EV_P)
2856 {
2857 int i;
2858
2859 /* adjust periodics after time jump */
2860 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2861 {
2862 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2863
2864 if (w->reschedule_cb)
2865 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2866 else if (w->interval)
2867 periodic_recalc (EV_A_ w);
2868
2869 ANHE_at_cache (periodics [i]);
2870 }
2871
2872 reheap (periodics, periodiccnt);
2873 }
2874 #endif
2875
2876 /* adjust all timers by a given offset */
2877 static void noinline ecb_cold
2878 timers_reschedule (EV_P_ ev_tstamp adjust)
2879 {
2880 int i;
2881
2882 for (i = 0; i < timercnt; ++i)
2883 {
2884 ANHE *he = timers + i + HEAP0;
2885 ANHE_w (*he)->at += adjust;
2886 ANHE_at_cache (*he);
2887 }
2888 }
2889
2890 /* fetch new monotonic and realtime times from the kernel */
2891 /* also detect if there was a timejump, and act accordingly */
2892 inline_speed void
2893 time_update (EV_P_ ev_tstamp max_block)
2894 {
2895 #if EV_USE_MONOTONIC
2896 if (expect_true (have_monotonic))
2897 {
2898 int i;
2899 ev_tstamp odiff = rtmn_diff;
2900
2901 mn_now = get_clock ();
2902
2903 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2904 /* interpolate in the meantime */
2905 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2906 {
2907 ev_rt_now = rtmn_diff + mn_now;
2908 return;
2909 }
2910
2911 now_floor = mn_now;
2912 ev_rt_now = ev_time ();
2913
2914 /* loop a few times, before making important decisions.
2915 * on the choice of "4": one iteration isn't enough,
2916 * in case we get preempted during the calls to
2917 * ev_time and get_clock. a second call is almost guaranteed
2918 * to succeed in that case, though. and looping a few more times
2919 * doesn't hurt either as we only do this on time-jumps or
2920 * in the unlikely event of having been preempted here.
2921 */
2922 for (i = 4; --i; )
2923 {
2924 ev_tstamp diff;
2925 rtmn_diff = ev_rt_now - mn_now;
2926
2927 diff = odiff - rtmn_diff;
2928
2929 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2930 return; /* all is well */
2931
2932 ev_rt_now = ev_time ();
2933 mn_now = get_clock ();
2934 now_floor = mn_now;
2935 }
2936
2937 /* no timer adjustment, as the monotonic clock doesn't jump */
2938 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2939 # if EV_PERIODIC_ENABLE
2940 periodics_reschedule (EV_A);
2941 # endif
2942 }
2943 else
2944 #endif
2945 {
2946 ev_rt_now = ev_time ();
2947
2948 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2949 {
2950 /* adjust timers. this is easy, as the offset is the same for all of them */
2951 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2952 #if EV_PERIODIC_ENABLE
2953 periodics_reschedule (EV_A);
2954 #endif
2955 }
2956
2957 mn_now = ev_rt_now;
2958 }
2959 }
2960
2961 int
2962 ev_run (EV_P_ int flags)
2963 {
2964 #if EV_FEATURE_API
2965 ++loop_depth;
2966 #endif
2967
2968 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2969
2970 loop_done = EVBREAK_CANCEL;
2971
2972 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2973
2974 do
2975 {
2976 #if EV_VERIFY >= 2
2977 ev_verify (EV_A);
2978 #endif
2979
2980 #ifndef _WIN32
2981 if (expect_false (curpid)) /* penalise the forking check even more */
2982 if (expect_false (getpid () != curpid))
2983 {
2984 curpid = getpid ();
2985 postfork = 1;
2986 }
2987 #endif
2988
2989 #if EV_FORK_ENABLE
2990 /* we might have forked, so queue fork handlers */
2991 if (expect_false (postfork))
2992 if (forkcnt)
2993 {
2994 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2995 EV_INVOKE_PENDING;
2996 }
2997 #endif
2998
2999 #if EV_PREPARE_ENABLE
3000 /* queue prepare watchers (and execute them) */
3001 if (expect_false (preparecnt))
3002 {
3003 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3004 EV_INVOKE_PENDING;
3005 }
3006 #endif
3007
3008 if (expect_false (loop_done))
3009 break;
3010
3011 /* we might have forked, so reify kernel state if necessary */
3012 if (expect_false (postfork))
3013 loop_fork (EV_A);
3014
3015 /* update fd-related kernel structures */
3016 fd_reify (EV_A);
3017
3018 /* calculate blocking time */
3019 {
3020 ev_tstamp waittime = 0.;
3021 ev_tstamp sleeptime = 0.;
3022
3023 /* remember old timestamp for io_blocktime calculation */
3024 ev_tstamp prev_mn_now = mn_now;
3025
3026 /* update time to cancel out callback processing overhead */
3027 time_update (EV_A_ 1e100);
3028
3029 /* from now on, we want a pipe-wake-up */
3030 pipe_write_wanted = 1;
3031
3032 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3033
3034 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3035 {
3036 waittime = MAX_BLOCKTIME;
3037
3038 if (timercnt)
3039 {
3040 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3041 if (waittime > to) waittime = to;
3042 }
3043
3044 #if EV_PERIODIC_ENABLE
3045 if (periodiccnt)
3046 {
3047 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3048 if (waittime > to) waittime = to;
3049 }
3050 #endif
3051
3052 /* don't let timeouts decrease the waittime below timeout_blocktime */
3053 if (expect_false (waittime < timeout_blocktime))
3054 waittime = timeout_blocktime;
3055
3056 /* at this point, we NEED to wait, so we have to ensure */
3057 /* to pass a minimum nonzero value to the backend */
3058 if (expect_false (waittime < backend_mintime))
3059 waittime = backend_mintime;
3060
3061 /* extra check because io_blocktime is commonly 0 */
3062 if (expect_false (io_blocktime))
3063 {
3064 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3065
3066 if (sleeptime > waittime - backend_mintime)
3067 sleeptime = waittime - backend_mintime;
3068
3069 if (expect_true (sleeptime > 0.))
3070 {
3071 ev_sleep (sleeptime);
3072 waittime -= sleeptime;
3073 }
3074 }
3075 }
3076
3077 #if EV_FEATURE_API
3078 ++loop_count;
3079 #endif
3080 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3081 backend_poll (EV_A_ waittime);
3082 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3083
3084 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3085
3086 if (pipe_write_skipped)
3087 {
3088 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3089 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3090 }
3091
3092
3093 /* update ev_rt_now, do magic */
3094 time_update (EV_A_ waittime + sleeptime);
3095 }
3096
3097 /* queue pending timers and reschedule them */
3098 timers_reify (EV_A); /* relative timers called last */
3099 #if EV_PERIODIC_ENABLE
3100 periodics_reify (EV_A); /* absolute timers called first */
3101 #endif
3102
3103 #if EV_IDLE_ENABLE
3104 /* queue idle watchers unless other events are pending */
3105 idle_reify (EV_A);
3106 #endif
3107
3108 #if EV_CHECK_ENABLE
3109 /* queue check watchers, to be executed first */
3110 if (expect_false (checkcnt))
3111 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3112 #endif
3113
3114 EV_INVOKE_PENDING;
3115 }
3116 while (expect_true (
3117 activecnt
3118 && !loop_done
3119 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3120 ));
3121
3122 if (loop_done == EVBREAK_ONE)
3123 loop_done = EVBREAK_CANCEL;
3124
3125 #if EV_FEATURE_API
3126 --loop_depth;
3127 #endif
3128
3129 return activecnt;
3130 }
3131
3132 void
3133 ev_break (EV_P_ int how) EV_THROW
3134 {
3135 loop_done = how;
3136 }
3137
3138 void
3139 ev_ref (EV_P) EV_THROW
3140 {
3141 ++activecnt;
3142 }
3143
3144 void
3145 ev_unref (EV_P) EV_THROW
3146 {
3147 --activecnt;
3148 }
3149
3150 void
3151 ev_now_update (EV_P) EV_THROW
3152 {
3153 time_update (EV_A_ 1e100);
3154 }
3155
3156 void
3157 ev_suspend (EV_P) EV_THROW
3158 {
3159 ev_now_update (EV_A);
3160 }
3161
3162 void
3163 ev_resume (EV_P) EV_THROW
3164 {
3165 ev_tstamp mn_prev = mn_now;
3166
3167 ev_now_update (EV_A);
3168 timers_reschedule (EV_A_ mn_now - mn_prev);
3169 #if EV_PERIODIC_ENABLE
3170 /* TODO: really do this? */
3171 periodics_reschedule (EV_A);
3172 #endif
3173 }
3174
3175 /*****************************************************************************/
3176 /* singly-linked list management, used when the expected list length is short */
3177
3178 inline_size void
3179 wlist_add (WL *head, WL elem)
3180 {
3181 elem->next = *head;
3182 *head = elem;
3183 }
3184
3185 inline_size void
3186 wlist_del (WL *head, WL elem)
3187 {
3188 while (*head)
3189 {
3190 if (expect_true (*head == elem))
3191 {
3192 *head = elem->next;
3193 break;
3194 }
3195
3196 head = &(*head)->next;
3197 }
3198 }
3199
3200 /* internal, faster, version of ev_clear_pending */
3201 inline_speed void
3202 clear_pending (EV_P_ W w)
3203 {
3204 if (w->pending)
3205 {
3206 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3207 w->pending = 0;
3208 }
3209 }
3210
3211 int
3212 ev_clear_pending (EV_P_ void *w) EV_THROW
3213 {
3214 W w_ = (W)w;
3215 int pending = w_->pending;
3216
3217 if (expect_true (pending))
3218 {
3219 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3220 p->w = (W)&pending_w;
3221 w_->pending = 0;
3222 return p->events;
3223 }
3224 else
3225 return 0;
3226 }
3227
3228 inline_size void
3229 pri_adjust (EV_P_ W w)
3230 {
3231 int pri = ev_priority (w);
3232 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3233 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3234 ev_set_priority (w, pri);
3235 }
3236
3237 inline_speed void
3238 ev_start (EV_P_ W w, int active)
3239 {
3240 pri_adjust (EV_A_ w);
3241 w->active = active;
3242 ev_ref (EV_A);
3243 }
3244
3245 inline_size void
3246 ev_stop (EV_P_ W w)
3247 {
3248 ev_unref (EV_A);
3249 w->active = 0;
3250 }
3251
3252 /*****************************************************************************/
3253
3254 void noinline
3255 ev_io_start (EV_P_ ev_io *w) EV_THROW
3256 {
3257 int fd = w->fd;
3258
3259 if (expect_false (ev_is_active (w)))
3260 return;
3261
3262 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3263 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3264
3265 EV_FREQUENT_CHECK;
3266
3267 ev_start (EV_A_ (W)w, 1);
3268 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3269 wlist_add (&anfds[fd].head, (WL)w);
3270
3271 /* common bug, apparently */
3272 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3273
3274 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3275 w->events &= ~EV__IOFDSET;
3276
3277 EV_FREQUENT_CHECK;
3278 }
3279
3280 void noinline
3281 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3282 {
3283 clear_pending (EV_A_ (W)w);
3284 if (expect_false (!ev_is_active (w)))
3285 return;
3286
3287 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3288
3289 EV_FREQUENT_CHECK;
3290
3291 wlist_del (&anfds[w->fd].head, (WL)w);
3292 ev_stop (EV_A_ (W)w);
3293
3294 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3295
3296 EV_FREQUENT_CHECK;
3297 }
3298
3299 void noinline
3300 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3301 {
3302 if (expect_false (ev_is_active (w)))
3303 return;
3304
3305 ev_at (w) += mn_now;
3306
3307 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3308
3309 EV_FREQUENT_CHECK;
3310
3311 ++timercnt;
3312 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3313 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3314 ANHE_w (timers [ev_active (w)]) = (WT)w;
3315 ANHE_at_cache (timers [ev_active (w)]);
3316 upheap (timers, ev_active (w));
3317
3318 EV_FREQUENT_CHECK;
3319
3320 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3321 }
3322
3323 void noinline
3324 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3325 {
3326 clear_pending (EV_A_ (W)w);
3327 if (expect_false (!ev_is_active (w)))
3328 return;
3329
3330 EV_FREQUENT_CHECK;
3331
3332 {
3333 int active = ev_active (w);
3334
3335 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3336
3337 --timercnt;
3338
3339 if (expect_true (active < timercnt + HEAP0))
3340 {
3341 timers [active] = timers [timercnt + HEAP0];
3342 adjustheap (timers, timercnt, active);
3343 }
3344 }
3345
3346 ev_at (w) -= mn_now;
3347
3348 ev_stop (EV_A_ (W)w);
3349
3350 EV_FREQUENT_CHECK;
3351 }
3352
3353 void noinline
3354 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3355 {
3356 EV_FREQUENT_CHECK;
3357
3358 clear_pending (EV_A_ (W)w);
3359
3360 if (ev_is_active (w))
3361 {
3362 if (w->repeat)
3363 {
3364 ev_at (w) = mn_now + w->repeat;
3365 ANHE_at_cache (timers [ev_active (w)]);
3366 adjustheap (timers, timercnt, ev_active (w));
3367 }
3368 else
3369 ev_timer_stop (EV_A_ w);
3370 }
3371 else if (w->repeat)
3372 {
3373 ev_at (w) = w->repeat;
3374 ev_timer_start (EV_A_ w);
3375 }
3376
3377 EV_FREQUENT_CHECK;
3378 }
3379
3380 ev_tstamp
3381 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3382 {
3383 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3384 }
3385
3386 #if EV_PERIODIC_ENABLE
3387 void noinline
3388 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3389 {
3390 if (expect_false (ev_is_active (w)))
3391 return;
3392
3393 if (w->reschedule_cb)
3394 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3395 else if (w->interval)
3396 {
3397 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3398 periodic_recalc (EV_A_ w);
3399 }
3400 else
3401 ev_at (w) = w->offset;
3402
3403 EV_FREQUENT_CHECK;
3404
3405 ++periodiccnt;
3406 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3407 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3408 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3409 ANHE_at_cache (periodics [ev_active (w)]);
3410 upheap (periodics, ev_active (w));
3411
3412 EV_FREQUENT_CHECK;
3413
3414 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3415 }
3416
3417 void noinline
3418 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3419 {
3420 clear_pending (EV_A_ (W)w);
3421 if (expect_false (!ev_is_active (w)))
3422 return;
3423
3424 EV_FREQUENT_CHECK;
3425
3426 {
3427 int active = ev_active (w);
3428
3429 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3430
3431 --periodiccnt;
3432
3433 if (expect_true (active < periodiccnt + HEAP0))
3434 {
3435 periodics [active] = periodics [periodiccnt + HEAP0];
3436 adjustheap (periodics, periodiccnt, active);
3437 }
3438 }
3439
3440 ev_stop (EV_A_ (W)w);
3441
3442 EV_FREQUENT_CHECK;
3443 }
3444
3445 void noinline
3446 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3447 {
3448 /* TODO: use adjustheap and recalculation */
3449 ev_periodic_stop (EV_A_ w);
3450 ev_periodic_start (EV_A_ w);
3451 }
3452 #endif
3453
3454 #ifndef SA_RESTART
3455 # define SA_RESTART 0
3456 #endif
3457
3458 #if EV_SIGNAL_ENABLE
3459
3460 void noinline
3461 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3462 {
3463 if (expect_false (ev_is_active (w)))
3464 return;
3465
3466 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3467
3468 #if EV_MULTIPLICITY
3469 assert (("libev: a signal must not be attached to two different loops",
3470 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3471
3472 signals [w->signum - 1].loop = EV_A;
3473 #endif
3474
3475 EV_FREQUENT_CHECK;
3476
3477 #if EV_USE_SIGNALFD
3478 if (sigfd == -2)
3479 {
3480 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3481 if (sigfd < 0 && errno == EINVAL)
3482 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3483
3484 if (sigfd >= 0)
3485 {
3486 fd_intern (sigfd); /* doing it twice will not hurt */
3487
3488 sigemptyset (&sigfd_set);
3489
3490 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3491 ev_set_priority (&sigfd_w, EV_MAXPRI);
3492 ev_io_start (EV_A_ &sigfd_w);
3493 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3494 }
3495 }
3496
3497 if (sigfd >= 0)
3498 {
3499 /* TODO: check .head */
3500 sigaddset (&sigfd_set, w->signum);
3501 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3502
3503 signalfd (sigfd, &sigfd_set, 0);
3504 }
3505 #endif
3506
3507 ev_start (EV_A_ (W)w, 1);
3508 wlist_add (&signals [w->signum - 1].head, (WL)w);
3509
3510 if (!((WL)w)->next)
3511 # if EV_USE_SIGNALFD
3512 if (sigfd < 0) /*TODO*/
3513 # endif
3514 {
3515 # ifdef _WIN32
3516 evpipe_init (EV_A);
3517
3518 signal (w->signum, ev_sighandler);
3519 # else
3520 struct sigaction sa;
3521
3522 evpipe_init (EV_A);
3523
3524 sa.sa_handler = ev_sighandler;
3525 sigfillset (&sa.sa_mask);
3526 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3527 sigaction (w->signum, &sa, 0);
3528
3529 if (origflags & EVFLAG_NOSIGMASK)
3530 {
3531 sigemptyset (&sa.sa_mask);
3532 sigaddset (&sa.sa_mask, w->signum);
3533 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3534 }
3535 #endif
3536 }
3537
3538 EV_FREQUENT_CHECK;
3539 }
3540
3541 void noinline
3542 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3543 {
3544 clear_pending (EV_A_ (W)w);
3545 if (expect_false (!ev_is_active (w)))
3546 return;
3547
3548 EV_FREQUENT_CHECK;
3549
3550 wlist_del (&signals [w->signum - 1].head, (WL)w);
3551 ev_stop (EV_A_ (W)w);
3552
3553 if (!signals [w->signum - 1].head)
3554 {
3555 #if EV_MULTIPLICITY
3556 signals [w->signum - 1].loop = 0; /* unattach from signal */
3557 #endif
3558 #if EV_USE_SIGNALFD
3559 if (sigfd >= 0)
3560 {
3561 sigset_t ss;
3562
3563 sigemptyset (&ss);
3564 sigaddset (&ss, w->signum);
3565 sigdelset (&sigfd_set, w->signum);
3566
3567 signalfd (sigfd, &sigfd_set, 0);
3568 sigprocmask (SIG_UNBLOCK, &ss, 0);
3569 }
3570 else
3571 #endif
3572 signal (w->signum, SIG_DFL);
3573 }
3574
3575 EV_FREQUENT_CHECK;
3576 }
3577
3578 #endif
3579
3580 #if EV_CHILD_ENABLE
3581
3582 void
3583 ev_child_start (EV_P_ ev_child *w) EV_THROW
3584 {
3585 #if EV_MULTIPLICITY
3586 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3587 #endif
3588 if (expect_false (ev_is_active (w)))
3589 return;
3590
3591 EV_FREQUENT_CHECK;
3592
3593 ev_start (EV_A_ (W)w, 1);
3594 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3595
3596 EV_FREQUENT_CHECK;
3597 }
3598
3599 void
3600 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3601 {
3602 clear_pending (EV_A_ (W)w);
3603 if (expect_false (!ev_is_active (w)))
3604 return;
3605
3606 EV_FREQUENT_CHECK;
3607
3608 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3609 ev_stop (EV_A_ (W)w);
3610
3611 EV_FREQUENT_CHECK;
3612 }
3613
3614 #endif
3615
3616 #if EV_STAT_ENABLE
3617
3618 # ifdef _WIN32
3619 # undef lstat
3620 # define lstat(a,b) _stati64 (a,b)
3621 # endif
3622
3623 #define DEF_STAT_INTERVAL 5.0074891
3624 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3625 #define MIN_STAT_INTERVAL 0.1074891
3626
3627 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3628
3629 #if EV_USE_INOTIFY
3630
3631 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3632 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3633
3634 static void noinline
3635 infy_add (EV_P_ ev_stat *w)
3636 {
3637 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3638
3639 if (w->wd >= 0)
3640 {
3641 struct statfs sfs;
3642
3643 /* now local changes will be tracked by inotify, but remote changes won't */
3644 /* unless the filesystem is known to be local, we therefore still poll */
3645 /* also do poll on <2.6.25, but with normal frequency */
3646
3647 if (!fs_2625)
3648 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3649 else if (!statfs (w->path, &sfs)
3650 && (sfs.f_type == 0x1373 /* devfs */
3651 || sfs.f_type == 0xEF53 /* ext2/3 */
3652 || sfs.f_type == 0x3153464a /* jfs */
3653 || sfs.f_type == 0x52654973 /* reiser3 */
3654 || sfs.f_type == 0x01021994 /* tempfs */
3655 || sfs.f_type == 0x58465342 /* xfs */))
3656 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3657 else
3658 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3659 }
3660 else
3661 {
3662 /* can't use inotify, continue to stat */
3663 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3664
3665 /* if path is not there, monitor some parent directory for speedup hints */
3666 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3667 /* but an efficiency issue only */
3668 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3669 {
3670 char path [4096];
3671 strcpy (path, w->path);
3672
3673 do
3674 {
3675 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3676 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3677
3678 char *pend = strrchr (path, '/');
3679
3680 if (!pend || pend == path)
3681 break;
3682
3683 *pend = 0;
3684 w->wd = inotify_add_watch (fs_fd, path, mask);
3685 }
3686 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3687 }
3688 }
3689
3690 if (w->wd >= 0)
3691 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3692
3693 /* now re-arm timer, if required */
3694 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3695 ev_timer_again (EV_A_ &w->timer);
3696 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3697 }
3698
3699 static void noinline
3700 infy_del (EV_P_ ev_stat *w)
3701 {
3702 int slot;
3703 int wd = w->wd;
3704
3705 if (wd < 0)
3706 return;
3707
3708 w->wd = -2;
3709 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3710 wlist_del (&fs_hash [slot].head, (WL)w);
3711
3712 /* remove this watcher, if others are watching it, they will rearm */
3713 inotify_rm_watch (fs_fd, wd);
3714 }
3715
3716 static void noinline
3717 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3718 {
3719 if (slot < 0)
3720 /* overflow, need to check for all hash slots */
3721 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3722 infy_wd (EV_A_ slot, wd, ev);
3723 else
3724 {
3725 WL w_;
3726
3727 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3728 {
3729 ev_stat *w = (ev_stat *)w_;
3730 w_ = w_->next; /* lets us remove this watcher and all before it */
3731
3732 if (w->wd == wd || wd == -1)
3733 {
3734 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3735 {
3736 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3737 w->wd = -1;
3738 infy_add (EV_A_ w); /* re-add, no matter what */
3739 }
3740
3741 stat_timer_cb (EV_A_ &w->timer, 0);
3742 }
3743 }
3744 }
3745 }
3746
3747 static void
3748 infy_cb (EV_P_ ev_io *w, int revents)
3749 {
3750 char buf [EV_INOTIFY_BUFSIZE];
3751 int ofs;
3752 int len = read (fs_fd, buf, sizeof (buf));
3753
3754 for (ofs = 0; ofs < len; )
3755 {
3756 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3757 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3758 ofs += sizeof (struct inotify_event) + ev->len;
3759 }
3760 }
3761
3762 inline_size void ecb_cold
3763 ev_check_2625 (EV_P)
3764 {
3765 /* kernels < 2.6.25 are borked
3766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3767 */
3768 if (ev_linux_version () < 0x020619)
3769 return;
3770
3771 fs_2625 = 1;
3772 }
3773
3774 inline_size int
3775 infy_newfd (void)
3776 {
3777 #if defined IN_CLOEXEC && defined IN_NONBLOCK
3778 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3779 if (fd >= 0)
3780 return fd;
3781 #endif
3782 return inotify_init ();
3783 }
3784
3785 inline_size void
3786 infy_init (EV_P)
3787 {
3788 if (fs_fd != -2)
3789 return;
3790
3791 fs_fd = -1;
3792
3793 ev_check_2625 (EV_A);
3794
3795 fs_fd = infy_newfd ();
3796
3797 if (fs_fd >= 0)
3798 {
3799 fd_intern (fs_fd);
3800 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3801 ev_set_priority (&fs_w, EV_MAXPRI);
3802 ev_io_start (EV_A_ &fs_w);
3803 ev_unref (EV_A);
3804 }
3805 }
3806
3807 inline_size void
3808 infy_fork (EV_P)
3809 {
3810 int slot;
3811
3812 if (fs_fd < 0)
3813 return;
3814
3815 ev_ref (EV_A);
3816 ev_io_stop (EV_A_ &fs_w);
3817 close (fs_fd);
3818 fs_fd = infy_newfd ();
3819
3820 if (fs_fd >= 0)
3821 {
3822 fd_intern (fs_fd);
3823 ev_io_set (&fs_w, fs_fd, EV_READ);
3824 ev_io_start (EV_A_ &fs_w);
3825 ev_unref (EV_A);
3826 }
3827
3828 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3829 {
3830 WL w_ = fs_hash [slot].head;
3831 fs_hash [slot].head = 0;
3832
3833 while (w_)
3834 {
3835 ev_stat *w = (ev_stat *)w_;
3836 w_ = w_->next; /* lets us add this watcher */
3837
3838 w->wd = -1;
3839
3840 if (fs_fd >= 0)
3841 infy_add (EV_A_ w); /* re-add, no matter what */
3842 else
3843 {
3844 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3845 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3846 ev_timer_again (EV_A_ &w->timer);
3847 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3848 }
3849 }
3850 }
3851 }
3852
3853 #endif
3854
3855 #ifdef _WIN32
3856 # define EV_LSTAT(p,b) _stati64 (p, b)
3857 #else
3858 # define EV_LSTAT(p,b) lstat (p, b)
3859 #endif
3860
3861 void
3862 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3863 {
3864 if (lstat (w->path, &w->attr) < 0)
3865 w->attr.st_nlink = 0;
3866 else if (!w->attr.st_nlink)
3867 w->attr.st_nlink = 1;
3868 }
3869
3870 static void noinline
3871 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3872 {
3873 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3874
3875 ev_statdata prev = w->attr;
3876 ev_stat_stat (EV_A_ w);
3877
3878 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3879 if (
3880 prev.st_dev != w->attr.st_dev
3881 || prev.st_ino != w->attr.st_ino
3882 || prev.st_mode != w->attr.st_mode
3883 || prev.st_nlink != w->attr.st_nlink
3884 || prev.st_uid != w->attr.st_uid
3885 || prev.st_gid != w->attr.st_gid
3886 || prev.st_rdev != w->attr.st_rdev
3887 || prev.st_size != w->attr.st_size
3888 || prev.st_atime != w->attr.st_atime
3889 || prev.st_mtime != w->attr.st_mtime
3890 || prev.st_ctime != w->attr.st_ctime
3891 ) {
3892 /* we only update w->prev on actual differences */
3893 /* in case we test more often than invoke the callback, */
3894 /* to ensure that prev is always different to attr */
3895 w->prev = prev;
3896
3897 #if EV_USE_INOTIFY
3898 if (fs_fd >= 0)
3899 {
3900 infy_del (EV_A_ w);
3901 infy_add (EV_A_ w);
3902 ev_stat_stat (EV_A_ w); /* avoid race... */
3903 }
3904 #endif
3905
3906 ev_feed_event (EV_A_ w, EV_STAT);
3907 }
3908 }
3909
3910 void
3911 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3912 {
3913 if (expect_false (ev_is_active (w)))
3914 return;
3915
3916 ev_stat_stat (EV_A_ w);
3917
3918 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3919 w->interval = MIN_STAT_INTERVAL;
3920
3921 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3922 ev_set_priority (&w->timer, ev_priority (w));
3923
3924 #if EV_USE_INOTIFY
3925 infy_init (EV_A);
3926
3927 if (fs_fd >= 0)
3928 infy_add (EV_A_ w);
3929 else
3930 #endif
3931 {
3932 ev_timer_again (EV_A_ &w->timer);
3933 ev_unref (EV_A);
3934 }
3935
3936 ev_start (EV_A_ (W)w, 1);
3937
3938 EV_FREQUENT_CHECK;
3939 }
3940
3941 void
3942 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
3943 {
3944 clear_pending (EV_A_ (W)w);
3945 if (expect_false (!ev_is_active (w)))
3946 return;
3947
3948 EV_FREQUENT_CHECK;
3949
3950 #if EV_USE_INOTIFY
3951 infy_del (EV_A_ w);
3952 #endif
3953
3954 if (ev_is_active (&w->timer))
3955 {
3956 ev_ref (EV_A);
3957 ev_timer_stop (EV_A_ &w->timer);
3958 }
3959
3960 ev_stop (EV_A_ (W)w);
3961
3962 EV_FREQUENT_CHECK;
3963 }
3964 #endif
3965
3966 #if EV_IDLE_ENABLE
3967 void
3968 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
3969 {
3970 if (expect_false (ev_is_active (w)))
3971 return;
3972
3973 pri_adjust (EV_A_ (W)w);
3974
3975 EV_FREQUENT_CHECK;
3976
3977 {
3978 int active = ++idlecnt [ABSPRI (w)];
3979
3980 ++idleall;
3981 ev_start (EV_A_ (W)w, active);
3982
3983 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3984 idles [ABSPRI (w)][active - 1] = w;
3985 }
3986
3987 EV_FREQUENT_CHECK;
3988 }
3989
3990 void
3991 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
3992 {
3993 clear_pending (EV_A_ (W)w);
3994 if (expect_false (!ev_is_active (w)))
3995 return;
3996
3997 EV_FREQUENT_CHECK;
3998
3999 {
4000 int active = ev_active (w);
4001
4002 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4003 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4004
4005 ev_stop (EV_A_ (W)w);
4006 --idleall;
4007 }
4008
4009 EV_FREQUENT_CHECK;
4010 }
4011 #endif
4012
4013 #if EV_PREPARE_ENABLE
4014 void
4015 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4016 {
4017 if (expect_false (ev_is_active (w)))
4018 return;
4019
4020 EV_FREQUENT_CHECK;
4021
4022 ev_start (EV_A_ (W)w, ++preparecnt);
4023 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4024 prepares [preparecnt - 1] = w;
4025
4026 EV_FREQUENT_CHECK;
4027 }
4028
4029 void
4030 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4031 {
4032 clear_pending (EV_A_ (W)w);
4033 if (expect_false (!ev_is_active (w)))
4034 return;
4035
4036 EV_FREQUENT_CHECK;
4037
4038 {
4039 int active = ev_active (w);
4040
4041 prepares [active - 1] = prepares [--preparecnt];
4042 ev_active (prepares [active - 1]) = active;
4043 }
4044
4045 ev_stop (EV_A_ (W)w);
4046
4047 EV_FREQUENT_CHECK;
4048 }
4049 #endif
4050
4051 #if EV_CHECK_ENABLE
4052 void
4053 ev_check_start (EV_P_ ev_check *w) EV_THROW
4054 {
4055 if (expect_false (ev_is_active (w)))
4056 return;
4057
4058 EV_FREQUENT_CHECK;
4059
4060 ev_start (EV_A_ (W)w, ++checkcnt);
4061 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4062 checks [checkcnt - 1] = w;
4063
4064 EV_FREQUENT_CHECK;
4065 }
4066
4067 void
4068 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4069 {
4070 clear_pending (EV_A_ (W)w);
4071 if (expect_false (!ev_is_active (w)))
4072 return;
4073
4074 EV_FREQUENT_CHECK;
4075
4076 {
4077 int active = ev_active (w);
4078
4079 checks [active - 1] = checks [--checkcnt];
4080 ev_active (checks [active - 1]) = active;
4081 }
4082
4083 ev_stop (EV_A_ (W)w);
4084
4085 EV_FREQUENT_CHECK;
4086 }
4087 #endif
4088
4089 #if EV_EMBED_ENABLE
4090 void noinline
4091 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4092 {
4093 ev_run (w->other, EVRUN_NOWAIT);
4094 }
4095
4096 static void
4097 embed_io_cb (EV_P_ ev_io *io, int revents)
4098 {
4099 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4100
4101 if (ev_cb (w))
4102 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4103 else
4104 ev_run (w->other, EVRUN_NOWAIT);
4105 }
4106
4107 static void
4108 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4109 {
4110 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4111
4112 {
4113 EV_P = w->other;
4114
4115 while (fdchangecnt)
4116 {
4117 fd_reify (EV_A);
4118 ev_run (EV_A_ EVRUN_NOWAIT);
4119 }
4120 }
4121 }
4122
4123 static void
4124 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4125 {
4126 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4127
4128 ev_embed_stop (EV_A_ w);
4129
4130 {
4131 EV_P = w->other;
4132
4133 ev_loop_fork (EV_A);
4134 ev_run (EV_A_ EVRUN_NOWAIT);
4135 }
4136
4137 ev_embed_start (EV_A_ w);
4138 }
4139
4140 #if 0
4141 static void
4142 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4143 {
4144 ev_idle_stop (EV_A_ idle);
4145 }
4146 #endif
4147
4148 void
4149 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4150 {
4151 if (expect_false (ev_is_active (w)))
4152 return;
4153
4154 {
4155 EV_P = w->other;
4156 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4157 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4158 }
4159
4160 EV_FREQUENT_CHECK;
4161
4162 ev_set_priority (&w->io, ev_priority (w));
4163 ev_io_start (EV_A_ &w->io);
4164
4165 ev_prepare_init (&w->prepare, embed_prepare_cb);
4166 ev_set_priority (&w->prepare, EV_MINPRI);
4167 ev_prepare_start (EV_A_ &w->prepare);
4168
4169 ev_fork_init (&w->fork, embed_fork_cb);
4170 ev_fork_start (EV_A_ &w->fork);
4171
4172 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4173
4174 ev_start (EV_A_ (W)w, 1);
4175
4176 EV_FREQUENT_CHECK;
4177 }
4178
4179 void
4180 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4181 {
4182 clear_pending (EV_A_ (W)w);
4183 if (expect_false (!ev_is_active (w)))
4184 return;
4185
4186 EV_FREQUENT_CHECK;
4187
4188 ev_io_stop (EV_A_ &w->io);
4189 ev_prepare_stop (EV_A_ &w->prepare);
4190 ev_fork_stop (EV_A_ &w->fork);
4191
4192 ev_stop (EV_A_ (W)w);
4193
4194 EV_FREQUENT_CHECK;
4195 }
4196 #endif
4197
4198 #if EV_FORK_ENABLE
4199 void
4200 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4201 {
4202 if (expect_false (ev_is_active (w)))
4203 return;
4204
4205 EV_FREQUENT_CHECK;
4206
4207 ev_start (EV_A_ (W)w, ++forkcnt);
4208 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4209 forks [forkcnt - 1] = w;
4210
4211 EV_FREQUENT_CHECK;
4212 }
4213
4214 void
4215 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4216 {
4217 clear_pending (EV_A_ (W)w);
4218 if (expect_false (!ev_is_active (w)))
4219 return;
4220
4221 EV_FREQUENT_CHECK;
4222
4223 {
4224 int active = ev_active (w);
4225
4226 forks [active - 1] = forks [--forkcnt];
4227 ev_active (forks [active - 1]) = active;
4228 }
4229
4230 ev_stop (EV_A_ (W)w);
4231
4232 EV_FREQUENT_CHECK;
4233 }
4234 #endif
4235
4236 #if EV_CLEANUP_ENABLE
4237 void
4238 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4239 {
4240 if (expect_false (ev_is_active (w)))
4241 return;
4242
4243 EV_FREQUENT_CHECK;
4244
4245 ev_start (EV_A_ (W)w, ++cleanupcnt);
4246 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4247 cleanups [cleanupcnt - 1] = w;
4248
4249 /* cleanup watchers should never keep a refcount on the loop */
4250 ev_unref (EV_A);
4251 EV_FREQUENT_CHECK;
4252 }
4253
4254 void
4255 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4256 {
4257 clear_pending (EV_A_ (W)w);
4258 if (expect_false (!ev_is_active (w)))
4259 return;
4260
4261 EV_FREQUENT_CHECK;
4262 ev_ref (EV_A);
4263
4264 {
4265 int active = ev_active (w);
4266
4267 cleanups [active - 1] = cleanups [--cleanupcnt];
4268 ev_active (cleanups [active - 1]) = active;
4269 }
4270
4271 ev_stop (EV_A_ (W)w);
4272
4273 EV_FREQUENT_CHECK;
4274 }
4275 #endif
4276
4277 #if EV_ASYNC_ENABLE
4278 void
4279 ev_async_start (EV_P_ ev_async *w) EV_THROW
4280 {
4281 if (expect_false (ev_is_active (w)))
4282 return;
4283
4284 w->sent = 0;
4285
4286 evpipe_init (EV_A);
4287
4288 EV_FREQUENT_CHECK;
4289
4290 ev_start (EV_A_ (W)w, ++asynccnt);
4291 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4292 asyncs [asynccnt - 1] = w;
4293
4294 EV_FREQUENT_CHECK;
4295 }
4296
4297 void
4298 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4299 {
4300 clear_pending (EV_A_ (W)w);
4301 if (expect_false (!ev_is_active (w)))
4302 return;
4303
4304 EV_FREQUENT_CHECK;
4305
4306 {
4307 int active = ev_active (w);
4308
4309 asyncs [active - 1] = asyncs [--asynccnt];
4310 ev_active (asyncs [active - 1]) = active;
4311 }
4312
4313 ev_stop (EV_A_ (W)w);
4314
4315 EV_FREQUENT_CHECK;
4316 }
4317
4318 void
4319 ev_async_send (EV_P_ ev_async *w) EV_THROW
4320 {
4321 w->sent = 1;
4322 evpipe_write (EV_A_ &async_pending);
4323 }
4324 #endif
4325
4326 /*****************************************************************************/
4327
4328 struct ev_once
4329 {
4330 ev_io io;
4331 ev_timer to;
4332 void (*cb)(int revents, void *arg);
4333 void *arg;
4334 };
4335
4336 static void
4337 once_cb (EV_P_ struct ev_once *once, int revents)
4338 {
4339 void (*cb)(int revents, void *arg) = once->cb;
4340 void *arg = once->arg;
4341
4342 ev_io_stop (EV_A_ &once->io);
4343 ev_timer_stop (EV_A_ &once->to);
4344 ev_free (once);
4345
4346 cb (revents, arg);
4347 }
4348
4349 static void
4350 once_cb_io (EV_P_ ev_io *w, int revents)
4351 {
4352 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4353
4354 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4355 }
4356
4357 static void
4358 once_cb_to (EV_P_ ev_timer *w, int revents)
4359 {
4360 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4361
4362 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4363 }
4364
4365 void
4366 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4367 {
4368 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4369
4370 if (expect_false (!once))
4371 {
4372 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4373 return;
4374 }
4375
4376 once->cb = cb;
4377 once->arg = arg;
4378
4379 ev_init (&once->io, once_cb_io);
4380 if (fd >= 0)
4381 {
4382 ev_io_set (&once->io, fd, events);
4383 ev_io_start (EV_A_ &once->io);
4384 }
4385
4386 ev_init (&once->to, once_cb_to);
4387 if (timeout >= 0.)
4388 {
4389 ev_timer_set (&once->to, timeout, 0.);
4390 ev_timer_start (EV_A_ &once->to);
4391 }
4392 }
4393
4394 /*****************************************************************************/
4395
4396 #if EV_WALK_ENABLE
4397 void ecb_cold
4398 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4399 {
4400 int i, j;
4401 ev_watcher_list *wl, *wn;
4402
4403 if (types & (EV_IO | EV_EMBED))
4404 for (i = 0; i < anfdmax; ++i)
4405 for (wl = anfds [i].head; wl; )
4406 {
4407 wn = wl->next;
4408
4409 #if EV_EMBED_ENABLE
4410 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4411 {
4412 if (types & EV_EMBED)
4413 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4414 }
4415 else
4416 #endif
4417 #if EV_USE_INOTIFY
4418 if (ev_cb ((ev_io *)wl) == infy_cb)
4419 ;
4420 else
4421 #endif
4422 if ((ev_io *)wl != &pipe_w)
4423 if (types & EV_IO)
4424 cb (EV_A_ EV_IO, wl);
4425
4426 wl = wn;
4427 }
4428
4429 if (types & (EV_TIMER | EV_STAT))
4430 for (i = timercnt + HEAP0; i-- > HEAP0; )
4431 #if EV_STAT_ENABLE
4432 /*TODO: timer is not always active*/
4433 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4434 {
4435 if (types & EV_STAT)
4436 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4437 }
4438 else
4439 #endif
4440 if (types & EV_TIMER)
4441 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4442
4443 #if EV_PERIODIC_ENABLE
4444 if (types & EV_PERIODIC)
4445 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4446 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4447 #endif
4448
4449 #if EV_IDLE_ENABLE
4450 if (types & EV_IDLE)
4451 for (j = NUMPRI; j--; )
4452 for (i = idlecnt [j]; i--; )
4453 cb (EV_A_ EV_IDLE, idles [j][i]);
4454 #endif
4455
4456 #if EV_FORK_ENABLE
4457 if (types & EV_FORK)
4458 for (i = forkcnt; i--; )
4459 if (ev_cb (forks [i]) != embed_fork_cb)
4460 cb (EV_A_ EV_FORK, forks [i]);
4461 #endif
4462
4463 #if EV_ASYNC_ENABLE
4464 if (types & EV_ASYNC)
4465 for (i = asynccnt; i--; )
4466 cb (EV_A_ EV_ASYNC, asyncs [i]);
4467 #endif
4468
4469 #if EV_PREPARE_ENABLE
4470 if (types & EV_PREPARE)
4471 for (i = preparecnt; i--; )
4472 # if EV_EMBED_ENABLE
4473 if (ev_cb (prepares [i]) != embed_prepare_cb)
4474 # endif
4475 cb (EV_A_ EV_PREPARE, prepares [i]);
4476 #endif
4477
4478 #if EV_CHECK_ENABLE
4479 if (types & EV_CHECK)
4480 for (i = checkcnt; i--; )
4481 cb (EV_A_ EV_CHECK, checks [i]);
4482 #endif
4483
4484 #if EV_SIGNAL_ENABLE
4485 if (types & EV_SIGNAL)
4486 for (i = 0; i < EV_NSIG - 1; ++i)
4487 for (wl = signals [i].head; wl; )
4488 {
4489 wn = wl->next;
4490 cb (EV_A_ EV_SIGNAL, wl);
4491 wl = wn;
4492 }
4493 #endif
4494
4495 #if EV_CHILD_ENABLE
4496 if (types & EV_CHILD)
4497 for (i = (EV_PID_HASHSIZE); i--; )
4498 for (wl = childs [i]; wl; )
4499 {
4500 wn = wl->next;
4501 cb (EV_A_ EV_CHILD, wl);
4502 wl = wn;
4503 }
4504 #endif
4505 /* EV_STAT 0x00001000 /* stat data changed */
4506 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4507 }
4508 #endif
4509
4510 #if EV_MULTIPLICITY
4511 #include "ev_wrap.h"
4512 #endif
4513