ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.440
Committed: Tue May 29 21:37:14 2012 UTC (11 years, 11 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.439: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 # define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # error "unable to find value for NSIG, please report"
247 /* to make it compile regardless, just remove the above line, */
248 /* but consider reporting it, too! :) */
249 # define EV_NSIG 65
250 #endif
251
252 #ifndef EV_USE_FLOOR
253 # define EV_USE_FLOOR 0
254 #endif
255
256 #ifndef EV_USE_CLOCK_SYSCALL
257 # if __linux && __GLIBC__ >= 2
258 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 # else
260 # define EV_USE_CLOCK_SYSCALL 0
261 # endif
262 #endif
263
264 #ifndef EV_USE_MONOTONIC
265 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 # define EV_USE_MONOTONIC EV_FEATURE_OS
267 # else
268 # define EV_USE_MONOTONIC 0
269 # endif
270 #endif
271
272 #ifndef EV_USE_REALTIME
273 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 #endif
275
276 #ifndef EV_USE_NANOSLEEP
277 # if _POSIX_C_SOURCE >= 199309L
278 # define EV_USE_NANOSLEEP EV_FEATURE_OS
279 # else
280 # define EV_USE_NANOSLEEP 0
281 # endif
282 #endif
283
284 #ifndef EV_USE_SELECT
285 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 #endif
287
288 #ifndef EV_USE_POLL
289 # ifdef _WIN32
290 # define EV_USE_POLL 0
291 # else
292 # define EV_USE_POLL EV_FEATURE_BACKENDS
293 # endif
294 #endif
295
296 #ifndef EV_USE_EPOLL
297 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 # else
300 # define EV_USE_EPOLL 0
301 # endif
302 #endif
303
304 #ifndef EV_USE_KQUEUE
305 # define EV_USE_KQUEUE 0
306 #endif
307
308 #ifndef EV_USE_PORT
309 # define EV_USE_PORT 0
310 #endif
311
312 #ifndef EV_USE_INOTIFY
313 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 # define EV_USE_INOTIFY EV_FEATURE_OS
315 # else
316 # define EV_USE_INOTIFY 0
317 # endif
318 #endif
319
320 #ifndef EV_PID_HASHSIZE
321 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 #endif
323
324 #ifndef EV_INOTIFY_HASHSIZE
325 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 #endif
327
328 #ifndef EV_USE_EVENTFD
329 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 # define EV_USE_EVENTFD EV_FEATURE_OS
331 # else
332 # define EV_USE_EVENTFD 0
333 # endif
334 #endif
335
336 #ifndef EV_USE_SIGNALFD
337 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 # define EV_USE_SIGNALFD EV_FEATURE_OS
339 # else
340 # define EV_USE_SIGNALFD 0
341 # endif
342 #endif
343
344 #if 0 /* debugging */
345 # define EV_VERIFY 3
346 # define EV_USE_4HEAP 1
347 # define EV_HEAP_CACHE_AT 1
348 #endif
349
350 #ifndef EV_VERIFY
351 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 #endif
353
354 #ifndef EV_USE_4HEAP
355 # define EV_USE_4HEAP EV_FEATURE_DATA
356 #endif
357
358 #ifndef EV_HEAP_CACHE_AT
359 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 #endif
361
362 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363 /* which makes programs even slower. might work on other unices, too. */
364 #if EV_USE_CLOCK_SYSCALL
365 # include <sys/syscall.h>
366 # ifdef SYS_clock_gettime
367 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368 # undef EV_USE_MONOTONIC
369 # define EV_USE_MONOTONIC 1
370 # else
371 # undef EV_USE_CLOCK_SYSCALL
372 # define EV_USE_CLOCK_SYSCALL 0
373 # endif
374 #endif
375
376 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378 #ifdef _AIX
379 /* AIX has a completely broken poll.h header */
380 # undef EV_USE_POLL
381 # define EV_USE_POLL 0
382 #endif
383
384 #ifndef CLOCK_MONOTONIC
385 # undef EV_USE_MONOTONIC
386 # define EV_USE_MONOTONIC 0
387 #endif
388
389 #ifndef CLOCK_REALTIME
390 # undef EV_USE_REALTIME
391 # define EV_USE_REALTIME 0
392 #endif
393
394 #if !EV_STAT_ENABLE
395 # undef EV_USE_INOTIFY
396 # define EV_USE_INOTIFY 0
397 #endif
398
399 #if !EV_USE_NANOSLEEP
400 /* hp-ux has it in sys/time.h, which we unconditionally include above */
401 # if !defined _WIN32 && !defined __hpux
402 # include <sys/select.h>
403 # endif
404 #endif
405
406 #if EV_USE_INOTIFY
407 # include <sys/statfs.h>
408 # include <sys/inotify.h>
409 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410 # ifndef IN_DONT_FOLLOW
411 # undef EV_USE_INOTIFY
412 # define EV_USE_INOTIFY 0
413 # endif
414 #endif
415
416 #if EV_USE_EVENTFD
417 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418 # include <stdint.h>
419 # ifndef EFD_NONBLOCK
420 # define EFD_NONBLOCK O_NONBLOCK
421 # endif
422 # ifndef EFD_CLOEXEC
423 # ifdef O_CLOEXEC
424 # define EFD_CLOEXEC O_CLOEXEC
425 # else
426 # define EFD_CLOEXEC 02000000
427 # endif
428 # endif
429 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430 #endif
431
432 #if EV_USE_SIGNALFD
433 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434 # include <stdint.h>
435 # ifndef SFD_NONBLOCK
436 # define SFD_NONBLOCK O_NONBLOCK
437 # endif
438 # ifndef SFD_CLOEXEC
439 # ifdef O_CLOEXEC
440 # define SFD_CLOEXEC O_CLOEXEC
441 # else
442 # define SFD_CLOEXEC 02000000
443 # endif
444 # endif
445 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447 struct signalfd_siginfo
448 {
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451 };
452 #endif
453
454 /**/
455
456 #if EV_VERIFY >= 3
457 # define EV_FREQUENT_CHECK ev_verify (EV_A)
458 #else
459 # define EV_FREQUENT_CHECK do { } while (0)
460 #endif
461
462 /*
463 * This is used to work around floating point rounding problems.
464 * This value is good at least till the year 4000.
465 */
466 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
468
469 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
470 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
471
472 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476 /* ECB.H BEGIN */
477 /*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506 #ifndef ECB_H
507 #define ECB_H
508
509 /* 16 bits major, 16 bits minor */
510 #define ECB_VERSION 0x00010001
511
512 #ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
536 #else
537 #include <inttypes.h>
538 #if UINTMAX_MAX > 0xffffffffU
539 #define ECB_PTRSIZE 8
540 #else
541 #define ECB_PTRSIZE 4
542 #endif
543 #endif
544
545 /* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552 #ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
557 #endif
558 #endif
559
560 #define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561 #define ECB_C99 (__STDC_VERSION__ >= 199901L)
562 #define ECB_C11 (__STDC_VERSION__ >= 201112L)
563 #define ECB_CPP (__cplusplus+0)
564 #define ECB_CPP98 (__cplusplus >= 199711L)
565 #define ECB_CPP11 (__cplusplus >= 201103L)
566
567 /*****************************************************************************/
568
569 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
570 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
571
572 #if ECB_NO_THREADS
573 #define ECB_NO_SMP 1
574 #endif
575
576 #if ECB_NO_SMP
577 #define ECB_MEMORY_FENCE do { } while (0)
578 #endif
579
580 #ifndef ECB_MEMORY_FENCE
581 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
582 #if __i386 || __i386__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
584 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
585 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
586 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
587 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
588 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
589 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
590 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
591 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
592 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
593 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
594 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
595 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
596 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
597 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
598 #elif __sparc || __sparc__
599 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
601 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
602 #elif defined __s390__ || defined __s390x__
603 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
604 #elif defined __mips__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
606 #elif defined __alpha__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
608 #elif defined __hppa__
609 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
610 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
611 #elif defined __ia64__
612 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
613 #endif
614 #endif
615 #endif
616
617 #ifndef ECB_MEMORY_FENCE
618 #if ECB_GCC_VERSION(4,7)
619 /* see comment below about the C11 memory model. in short - avoid */
620 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
621 #elif defined __clang && __has_feature (cxx_atomic)
622 /* see above */
623 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
624 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
625 #define ECB_MEMORY_FENCE __sync_synchronize ()
626 #elif _MSC_VER >= 1400 /* VC++ 2005 */
627 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
628 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
629 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
630 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
631 #elif defined _WIN32
632 #include <WinNT.h>
633 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
634 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
635 #include <mbarrier.h>
636 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
637 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
638 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
639 #elif __xlC__
640 #define ECB_MEMORY_FENCE __sync ()
641 #endif
642 #endif
643
644 #ifndef ECB_MEMORY_FENCE
645 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
646 /* we assume that these memory fences work on all variables/all memory accesses, */
647 /* not just C11 atomics and atomic accesses */
648 #include <stdatomic.h>
649 /* unfortunately, the C11 memory model seems to be very limited, and unable to express */
650 /* simple barrier semantics. That means we need to take out thor's hammer. */
651 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
652 #endif
653 #endif
654
655 #ifndef ECB_MEMORY_FENCE
656 #if !ECB_AVOID_PTHREADS
657 /*
658 * if you get undefined symbol references to pthread_mutex_lock,
659 * or failure to find pthread.h, then you should implement
660 * the ECB_MEMORY_FENCE operations for your cpu/compiler
661 * OR provide pthread.h and link against the posix thread library
662 * of your system.
663 */
664 #include <pthread.h>
665 #define ECB_NEEDS_PTHREADS 1
666 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
667
668 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
669 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
670 #endif
671 #endif
672
673 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
674 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
675 #endif
676
677 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
678 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
679 #endif
680
681 /*****************************************************************************/
682
683 #if __cplusplus
684 #define ecb_inline static inline
685 #elif ECB_GCC_VERSION(2,5)
686 #define ecb_inline static __inline__
687 #elif ECB_C99
688 #define ecb_inline static inline
689 #else
690 #define ecb_inline static
691 #endif
692
693 #if ECB_GCC_VERSION(3,3)
694 #define ecb_restrict __restrict__
695 #elif ECB_C99
696 #define ecb_restrict restrict
697 #else
698 #define ecb_restrict
699 #endif
700
701 typedef int ecb_bool;
702
703 #define ECB_CONCAT_(a, b) a ## b
704 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
705 #define ECB_STRINGIFY_(a) # a
706 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
707
708 #define ecb_function_ ecb_inline
709
710 #if ECB_GCC_VERSION(3,1)
711 #define ecb_attribute(attrlist) __attribute__(attrlist)
712 #define ecb_is_constant(expr) __builtin_constant_p (expr)
713 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
714 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
715 #else
716 #define ecb_attribute(attrlist)
717 #define ecb_is_constant(expr) 0
718 #define ecb_expect(expr,value) (expr)
719 #define ecb_prefetch(addr,rw,locality)
720 #endif
721
722 /* no emulation for ecb_decltype */
723 #if ECB_GCC_VERSION(4,5)
724 #define ecb_decltype(x) __decltype(x)
725 #elif ECB_GCC_VERSION(3,0)
726 #define ecb_decltype(x) __typeof(x)
727 #endif
728
729 #define ecb_noinline ecb_attribute ((__noinline__))
730 #define ecb_unused ecb_attribute ((__unused__))
731 #define ecb_const ecb_attribute ((__const__))
732 #define ecb_pure ecb_attribute ((__pure__))
733
734 #if ECB_C11
735 #define ecb_noreturn _Noreturn
736 #else
737 #define ecb_noreturn ecb_attribute ((__noreturn__))
738 #endif
739
740 #if ECB_GCC_VERSION(4,3)
741 #define ecb_artificial ecb_attribute ((__artificial__))
742 #define ecb_hot ecb_attribute ((__hot__))
743 #define ecb_cold ecb_attribute ((__cold__))
744 #else
745 #define ecb_artificial
746 #define ecb_hot
747 #define ecb_cold
748 #endif
749
750 /* put around conditional expressions if you are very sure that the */
751 /* expression is mostly true or mostly false. note that these return */
752 /* booleans, not the expression. */
753 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
754 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
755 /* for compatibility to the rest of the world */
756 #define ecb_likely(expr) ecb_expect_true (expr)
757 #define ecb_unlikely(expr) ecb_expect_false (expr)
758
759 /* count trailing zero bits and count # of one bits */
760 #if ECB_GCC_VERSION(3,4)
761 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
762 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
763 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
764 #define ecb_ctz32(x) __builtin_ctz (x)
765 #define ecb_ctz64(x) __builtin_ctzll (x)
766 #define ecb_popcount32(x) __builtin_popcount (x)
767 /* no popcountll */
768 #else
769 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
770 ecb_function_ int
771 ecb_ctz32 (uint32_t x)
772 {
773 int r = 0;
774
775 x &= ~x + 1; /* this isolates the lowest bit */
776
777 #if ECB_branchless_on_i386
778 r += !!(x & 0xaaaaaaaa) << 0;
779 r += !!(x & 0xcccccccc) << 1;
780 r += !!(x & 0xf0f0f0f0) << 2;
781 r += !!(x & 0xff00ff00) << 3;
782 r += !!(x & 0xffff0000) << 4;
783 #else
784 if (x & 0xaaaaaaaa) r += 1;
785 if (x & 0xcccccccc) r += 2;
786 if (x & 0xf0f0f0f0) r += 4;
787 if (x & 0xff00ff00) r += 8;
788 if (x & 0xffff0000) r += 16;
789 #endif
790
791 return r;
792 }
793
794 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
795 ecb_function_ int
796 ecb_ctz64 (uint64_t x)
797 {
798 int shift = x & 0xffffffffU ? 0 : 32;
799 return ecb_ctz32 (x >> shift) + shift;
800 }
801
802 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
803 ecb_function_ int
804 ecb_popcount32 (uint32_t x)
805 {
806 x -= (x >> 1) & 0x55555555;
807 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
808 x = ((x >> 4) + x) & 0x0f0f0f0f;
809 x *= 0x01010101;
810
811 return x >> 24;
812 }
813
814 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
815 ecb_function_ int ecb_ld32 (uint32_t x)
816 {
817 int r = 0;
818
819 if (x >> 16) { x >>= 16; r += 16; }
820 if (x >> 8) { x >>= 8; r += 8; }
821 if (x >> 4) { x >>= 4; r += 4; }
822 if (x >> 2) { x >>= 2; r += 2; }
823 if (x >> 1) { r += 1; }
824
825 return r;
826 }
827
828 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
829 ecb_function_ int ecb_ld64 (uint64_t x)
830 {
831 int r = 0;
832
833 if (x >> 32) { x >>= 32; r += 32; }
834
835 return r + ecb_ld32 (x);
836 }
837 #endif
838
839 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
840 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
841 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
842 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
843
844 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
845 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
846 {
847 return ( (x * 0x0802U & 0x22110U)
848 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
849 }
850
851 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
852 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
853 {
854 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
855 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
856 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
857 x = ( x >> 8 ) | ( x << 8);
858
859 return x;
860 }
861
862 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
863 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
864 {
865 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
866 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
867 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
868 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
869 x = ( x >> 16 ) | ( x << 16);
870
871 return x;
872 }
873
874 /* popcount64 is only available on 64 bit cpus as gcc builtin */
875 /* so for this version we are lazy */
876 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
877 ecb_function_ int
878 ecb_popcount64 (uint64_t x)
879 {
880 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
881 }
882
883 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
884 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
885 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
886 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
887 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
888 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
889 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
890 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
891
892 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
893 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
894 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
895 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
896 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
897 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
898 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
899 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
900
901 #if ECB_GCC_VERSION(4,3)
902 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
903 #define ecb_bswap32(x) __builtin_bswap32 (x)
904 #define ecb_bswap64(x) __builtin_bswap64 (x)
905 #else
906 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
907 ecb_function_ uint16_t
908 ecb_bswap16 (uint16_t x)
909 {
910 return ecb_rotl16 (x, 8);
911 }
912
913 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
914 ecb_function_ uint32_t
915 ecb_bswap32 (uint32_t x)
916 {
917 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
918 }
919
920 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
921 ecb_function_ uint64_t
922 ecb_bswap64 (uint64_t x)
923 {
924 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
925 }
926 #endif
927
928 #if ECB_GCC_VERSION(4,5)
929 #define ecb_unreachable() __builtin_unreachable ()
930 #else
931 /* this seems to work fine, but gcc always emits a warning for it :/ */
932 ecb_inline void ecb_unreachable (void) ecb_noreturn;
933 ecb_inline void ecb_unreachable (void) { }
934 #endif
935
936 /* try to tell the compiler that some condition is definitely true */
937 #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
938
939 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
940 ecb_inline unsigned char
941 ecb_byteorder_helper (void)
942 {
943 const uint32_t u = 0x11223344;
944 return *(unsigned char *)&u;
945 }
946
947 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
948 ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
949 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
950 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
951
952 #if ECB_GCC_VERSION(3,0) || ECB_C99
953 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
954 #else
955 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
956 #endif
957
958 #if __cplusplus
959 template<typename T>
960 static inline T ecb_div_rd (T val, T div)
961 {
962 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
963 }
964 template<typename T>
965 static inline T ecb_div_ru (T val, T div)
966 {
967 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
968 }
969 #else
970 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
971 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
972 #endif
973
974 #if ecb_cplusplus_does_not_suck
975 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
976 template<typename T, int N>
977 static inline int ecb_array_length (const T (&arr)[N])
978 {
979 return N;
980 }
981 #else
982 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
983 #endif
984
985 #endif
986
987 /* ECB.H END */
988
989 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
990 /* if your architecture doesn't need memory fences, e.g. because it is
991 * single-cpu/core, or if you use libev in a project that doesn't use libev
992 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
993 * libev, in which cases the memory fences become nops.
994 * alternatively, you can remove this #error and link against libpthread,
995 * which will then provide the memory fences.
996 */
997 # error "memory fences not defined for your architecture, please report"
998 #endif
999
1000 #ifndef ECB_MEMORY_FENCE
1001 # define ECB_MEMORY_FENCE do { } while (0)
1002 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1003 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1004 #endif
1005
1006 #define expect_false(cond) ecb_expect_false (cond)
1007 #define expect_true(cond) ecb_expect_true (cond)
1008 #define noinline ecb_noinline
1009
1010 #define inline_size ecb_inline
1011
1012 #if EV_FEATURE_CODE
1013 # define inline_speed ecb_inline
1014 #else
1015 # define inline_speed static noinline
1016 #endif
1017
1018 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1019
1020 #if EV_MINPRI == EV_MAXPRI
1021 # define ABSPRI(w) (((W)w), 0)
1022 #else
1023 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1024 #endif
1025
1026 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1027 #define EMPTY2(a,b) /* used to suppress some warnings */
1028
1029 typedef ev_watcher *W;
1030 typedef ev_watcher_list *WL;
1031 typedef ev_watcher_time *WT;
1032
1033 #define ev_active(w) ((W)(w))->active
1034 #define ev_at(w) ((WT)(w))->at
1035
1036 #if EV_USE_REALTIME
1037 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1038 /* giving it a reasonably high chance of working on typical architectures */
1039 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1040 #endif
1041
1042 #if EV_USE_MONOTONIC
1043 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1044 #endif
1045
1046 #ifndef EV_FD_TO_WIN32_HANDLE
1047 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1048 #endif
1049 #ifndef EV_WIN32_HANDLE_TO_FD
1050 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1051 #endif
1052 #ifndef EV_WIN32_CLOSE_FD
1053 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1054 #endif
1055
1056 #ifdef _WIN32
1057 # include "ev_win32.c"
1058 #endif
1059
1060 /*****************************************************************************/
1061
1062 /* define a suitable floor function (only used by periodics atm) */
1063
1064 #if EV_USE_FLOOR
1065 # include <math.h>
1066 # define ev_floor(v) floor (v)
1067 #else
1068
1069 #include <float.h>
1070
1071 /* a floor() replacement function, should be independent of ev_tstamp type */
1072 static ev_tstamp noinline
1073 ev_floor (ev_tstamp v)
1074 {
1075 /* the choice of shift factor is not terribly important */
1076 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1077 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1078 #else
1079 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1080 #endif
1081
1082 /* argument too large for an unsigned long? */
1083 if (expect_false (v >= shift))
1084 {
1085 ev_tstamp f;
1086
1087 if (v == v - 1.)
1088 return v; /* very large number */
1089
1090 f = shift * ev_floor (v * (1. / shift));
1091 return f + ev_floor (v - f);
1092 }
1093
1094 /* special treatment for negative args? */
1095 if (expect_false (v < 0.))
1096 {
1097 ev_tstamp f = -ev_floor (-v);
1098
1099 return f - (f == v ? 0 : 1);
1100 }
1101
1102 /* fits into an unsigned long */
1103 return (unsigned long)v;
1104 }
1105
1106 #endif
1107
1108 /*****************************************************************************/
1109
1110 #ifdef __linux
1111 # include <sys/utsname.h>
1112 #endif
1113
1114 static unsigned int noinline ecb_cold
1115 ev_linux_version (void)
1116 {
1117 #ifdef __linux
1118 unsigned int v = 0;
1119 struct utsname buf;
1120 int i;
1121 char *p = buf.release;
1122
1123 if (uname (&buf))
1124 return 0;
1125
1126 for (i = 3+1; --i; )
1127 {
1128 unsigned int c = 0;
1129
1130 for (;;)
1131 {
1132 if (*p >= '0' && *p <= '9')
1133 c = c * 10 + *p++ - '0';
1134 else
1135 {
1136 p += *p == '.';
1137 break;
1138 }
1139 }
1140
1141 v = (v << 8) | c;
1142 }
1143
1144 return v;
1145 #else
1146 return 0;
1147 #endif
1148 }
1149
1150 /*****************************************************************************/
1151
1152 #if EV_AVOID_STDIO
1153 static void noinline ecb_cold
1154 ev_printerr (const char *msg)
1155 {
1156 write (STDERR_FILENO, msg, strlen (msg));
1157 }
1158 #endif
1159
1160 static void (*syserr_cb)(const char *msg) EV_THROW;
1161
1162 void ecb_cold
1163 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1164 {
1165 syserr_cb = cb;
1166 }
1167
1168 static void noinline ecb_cold
1169 ev_syserr (const char *msg)
1170 {
1171 if (!msg)
1172 msg = "(libev) system error";
1173
1174 if (syserr_cb)
1175 syserr_cb (msg);
1176 else
1177 {
1178 #if EV_AVOID_STDIO
1179 ev_printerr (msg);
1180 ev_printerr (": ");
1181 ev_printerr (strerror (errno));
1182 ev_printerr ("\n");
1183 #else
1184 perror (msg);
1185 #endif
1186 abort ();
1187 }
1188 }
1189
1190 static void *
1191 ev_realloc_emul (void *ptr, long size) EV_THROW
1192 {
1193 #if __GLIBC__
1194 return realloc (ptr, size);
1195 #else
1196 /* some systems, notably openbsd and darwin, fail to properly
1197 * implement realloc (x, 0) (as required by both ansi c-89 and
1198 * the single unix specification, so work around them here.
1199 */
1200
1201 if (size)
1202 return realloc (ptr, size);
1203
1204 free (ptr);
1205 return 0;
1206 #endif
1207 }
1208
1209 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1210
1211 void ecb_cold
1212 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1213 {
1214 alloc = cb;
1215 }
1216
1217 inline_speed void *
1218 ev_realloc (void *ptr, long size)
1219 {
1220 ptr = alloc (ptr, size);
1221
1222 if (!ptr && size)
1223 {
1224 #if EV_AVOID_STDIO
1225 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1226 #else
1227 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1228 #endif
1229 abort ();
1230 }
1231
1232 return ptr;
1233 }
1234
1235 #define ev_malloc(size) ev_realloc (0, (size))
1236 #define ev_free(ptr) ev_realloc ((ptr), 0)
1237
1238 /*****************************************************************************/
1239
1240 /* set in reify when reification needed */
1241 #define EV_ANFD_REIFY 1
1242
1243 /* file descriptor info structure */
1244 typedef struct
1245 {
1246 WL head;
1247 unsigned char events; /* the events watched for */
1248 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1249 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1250 unsigned char unused;
1251 #if EV_USE_EPOLL
1252 unsigned int egen; /* generation counter to counter epoll bugs */
1253 #endif
1254 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1255 SOCKET handle;
1256 #endif
1257 #if EV_USE_IOCP
1258 OVERLAPPED or, ow;
1259 #endif
1260 } ANFD;
1261
1262 /* stores the pending event set for a given watcher */
1263 typedef struct
1264 {
1265 W w;
1266 int events; /* the pending event set for the given watcher */
1267 } ANPENDING;
1268
1269 #if EV_USE_INOTIFY
1270 /* hash table entry per inotify-id */
1271 typedef struct
1272 {
1273 WL head;
1274 } ANFS;
1275 #endif
1276
1277 /* Heap Entry */
1278 #if EV_HEAP_CACHE_AT
1279 /* a heap element */
1280 typedef struct {
1281 ev_tstamp at;
1282 WT w;
1283 } ANHE;
1284
1285 #define ANHE_w(he) (he).w /* access watcher, read-write */
1286 #define ANHE_at(he) (he).at /* access cached at, read-only */
1287 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1288 #else
1289 /* a heap element */
1290 typedef WT ANHE;
1291
1292 #define ANHE_w(he) (he)
1293 #define ANHE_at(he) (he)->at
1294 #define ANHE_at_cache(he)
1295 #endif
1296
1297 #if EV_MULTIPLICITY
1298
1299 struct ev_loop
1300 {
1301 ev_tstamp ev_rt_now;
1302 #define ev_rt_now ((loop)->ev_rt_now)
1303 #define VAR(name,decl) decl;
1304 #include "ev_vars.h"
1305 #undef VAR
1306 };
1307 #include "ev_wrap.h"
1308
1309 static struct ev_loop default_loop_struct;
1310 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1311
1312 #else
1313
1314 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1315 #define VAR(name,decl) static decl;
1316 #include "ev_vars.h"
1317 #undef VAR
1318
1319 static int ev_default_loop_ptr;
1320
1321 #endif
1322
1323 #if EV_FEATURE_API
1324 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1325 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1326 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1327 #else
1328 # define EV_RELEASE_CB (void)0
1329 # define EV_ACQUIRE_CB (void)0
1330 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1331 #endif
1332
1333 #define EVBREAK_RECURSE 0x80
1334
1335 /*****************************************************************************/
1336
1337 #ifndef EV_HAVE_EV_TIME
1338 ev_tstamp
1339 ev_time (void) EV_THROW
1340 {
1341 #if EV_USE_REALTIME
1342 if (expect_true (have_realtime))
1343 {
1344 struct timespec ts;
1345 clock_gettime (CLOCK_REALTIME, &ts);
1346 return ts.tv_sec + ts.tv_nsec * 1e-9;
1347 }
1348 #endif
1349
1350 struct timeval tv;
1351 gettimeofday (&tv, 0);
1352 return tv.tv_sec + tv.tv_usec * 1e-6;
1353 }
1354 #endif
1355
1356 inline_size ev_tstamp
1357 get_clock (void)
1358 {
1359 #if EV_USE_MONOTONIC
1360 if (expect_true (have_monotonic))
1361 {
1362 struct timespec ts;
1363 clock_gettime (CLOCK_MONOTONIC, &ts);
1364 return ts.tv_sec + ts.tv_nsec * 1e-9;
1365 }
1366 #endif
1367
1368 return ev_time ();
1369 }
1370
1371 #if EV_MULTIPLICITY
1372 ev_tstamp
1373 ev_now (EV_P) EV_THROW
1374 {
1375 return ev_rt_now;
1376 }
1377 #endif
1378
1379 void
1380 ev_sleep (ev_tstamp delay) EV_THROW
1381 {
1382 if (delay > 0.)
1383 {
1384 #if EV_USE_NANOSLEEP
1385 struct timespec ts;
1386
1387 EV_TS_SET (ts, delay);
1388 nanosleep (&ts, 0);
1389 #elif defined _WIN32
1390 Sleep ((unsigned long)(delay * 1e3));
1391 #else
1392 struct timeval tv;
1393
1394 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1395 /* something not guaranteed by newer posix versions, but guaranteed */
1396 /* by older ones */
1397 EV_TV_SET (tv, delay);
1398 select (0, 0, 0, 0, &tv);
1399 #endif
1400 }
1401 }
1402
1403 /*****************************************************************************/
1404
1405 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1406
1407 /* find a suitable new size for the given array, */
1408 /* hopefully by rounding to a nice-to-malloc size */
1409 inline_size int
1410 array_nextsize (int elem, int cur, int cnt)
1411 {
1412 int ncur = cur + 1;
1413
1414 do
1415 ncur <<= 1;
1416 while (cnt > ncur);
1417
1418 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1419 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1420 {
1421 ncur *= elem;
1422 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1423 ncur = ncur - sizeof (void *) * 4;
1424 ncur /= elem;
1425 }
1426
1427 return ncur;
1428 }
1429
1430 static void * noinline ecb_cold
1431 array_realloc (int elem, void *base, int *cur, int cnt)
1432 {
1433 *cur = array_nextsize (elem, *cur, cnt);
1434 return ev_realloc (base, elem * *cur);
1435 }
1436
1437 #define array_init_zero(base,count) \
1438 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1439
1440 #define array_needsize(type,base,cur,cnt,init) \
1441 if (expect_false ((cnt) > (cur))) \
1442 { \
1443 int ecb_unused ocur_ = (cur); \
1444 (base) = (type *)array_realloc \
1445 (sizeof (type), (base), &(cur), (cnt)); \
1446 init ((base) + (ocur_), (cur) - ocur_); \
1447 }
1448
1449 #if 0
1450 #define array_slim(type,stem) \
1451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1452 { \
1453 stem ## max = array_roundsize (stem ## cnt >> 1); \
1454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1456 }
1457 #endif
1458
1459 #define array_free(stem, idx) \
1460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1461
1462 /*****************************************************************************/
1463
1464 /* dummy callback for pending events */
1465 static void noinline
1466 pendingcb (EV_P_ ev_prepare *w, int revents)
1467 {
1468 }
1469
1470 void noinline
1471 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1472 {
1473 W w_ = (W)w;
1474 int pri = ABSPRI (w_);
1475
1476 if (expect_false (w_->pending))
1477 pendings [pri][w_->pending - 1].events |= revents;
1478 else
1479 {
1480 w_->pending = ++pendingcnt [pri];
1481 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1482 pendings [pri][w_->pending - 1].w = w_;
1483 pendings [pri][w_->pending - 1].events = revents;
1484 }
1485
1486 pendingpri = NUMPRI - 1;
1487 }
1488
1489 inline_speed void
1490 feed_reverse (EV_P_ W w)
1491 {
1492 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1493 rfeeds [rfeedcnt++] = w;
1494 }
1495
1496 inline_size void
1497 feed_reverse_done (EV_P_ int revents)
1498 {
1499 do
1500 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1501 while (rfeedcnt);
1502 }
1503
1504 inline_speed void
1505 queue_events (EV_P_ W *events, int eventcnt, int type)
1506 {
1507 int i;
1508
1509 for (i = 0; i < eventcnt; ++i)
1510 ev_feed_event (EV_A_ events [i], type);
1511 }
1512
1513 /*****************************************************************************/
1514
1515 inline_speed void
1516 fd_event_nocheck (EV_P_ int fd, int revents)
1517 {
1518 ANFD *anfd = anfds + fd;
1519 ev_io *w;
1520
1521 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1522 {
1523 int ev = w->events & revents;
1524
1525 if (ev)
1526 ev_feed_event (EV_A_ (W)w, ev);
1527 }
1528 }
1529
1530 /* do not submit kernel events for fds that have reify set */
1531 /* because that means they changed while we were polling for new events */
1532 inline_speed void
1533 fd_event (EV_P_ int fd, int revents)
1534 {
1535 ANFD *anfd = anfds + fd;
1536
1537 if (expect_true (!anfd->reify))
1538 fd_event_nocheck (EV_A_ fd, revents);
1539 }
1540
1541 void
1542 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1543 {
1544 if (fd >= 0 && fd < anfdmax)
1545 fd_event_nocheck (EV_A_ fd, revents);
1546 }
1547
1548 /* make sure the external fd watch events are in-sync */
1549 /* with the kernel/libev internal state */
1550 inline_size void
1551 fd_reify (EV_P)
1552 {
1553 int i;
1554
1555 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1556 for (i = 0; i < fdchangecnt; ++i)
1557 {
1558 int fd = fdchanges [i];
1559 ANFD *anfd = anfds + fd;
1560
1561 if (anfd->reify & EV__IOFDSET && anfd->head)
1562 {
1563 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1564
1565 if (handle != anfd->handle)
1566 {
1567 unsigned long arg;
1568
1569 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1570
1571 /* handle changed, but fd didn't - we need to do it in two steps */
1572 backend_modify (EV_A_ fd, anfd->events, 0);
1573 anfd->events = 0;
1574 anfd->handle = handle;
1575 }
1576 }
1577 }
1578 #endif
1579
1580 for (i = 0; i < fdchangecnt; ++i)
1581 {
1582 int fd = fdchanges [i];
1583 ANFD *anfd = anfds + fd;
1584 ev_io *w;
1585
1586 unsigned char o_events = anfd->events;
1587 unsigned char o_reify = anfd->reify;
1588
1589 anfd->reify = 0;
1590
1591 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1592 {
1593 anfd->events = 0;
1594
1595 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1596 anfd->events |= (unsigned char)w->events;
1597
1598 if (o_events != anfd->events)
1599 o_reify = EV__IOFDSET; /* actually |= */
1600 }
1601
1602 if (o_reify & EV__IOFDSET)
1603 backend_modify (EV_A_ fd, o_events, anfd->events);
1604 }
1605
1606 fdchangecnt = 0;
1607 }
1608
1609 /* something about the given fd changed */
1610 inline_size void
1611 fd_change (EV_P_ int fd, int flags)
1612 {
1613 unsigned char reify = anfds [fd].reify;
1614 anfds [fd].reify |= flags;
1615
1616 if (expect_true (!reify))
1617 {
1618 ++fdchangecnt;
1619 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1620 fdchanges [fdchangecnt - 1] = fd;
1621 }
1622 }
1623
1624 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1625 inline_speed void ecb_cold
1626 fd_kill (EV_P_ int fd)
1627 {
1628 ev_io *w;
1629
1630 while ((w = (ev_io *)anfds [fd].head))
1631 {
1632 ev_io_stop (EV_A_ w);
1633 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1634 }
1635 }
1636
1637 /* check whether the given fd is actually valid, for error recovery */
1638 inline_size int ecb_cold
1639 fd_valid (int fd)
1640 {
1641 #ifdef _WIN32
1642 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1643 #else
1644 return fcntl (fd, F_GETFD) != -1;
1645 #endif
1646 }
1647
1648 /* called on EBADF to verify fds */
1649 static void noinline ecb_cold
1650 fd_ebadf (EV_P)
1651 {
1652 int fd;
1653
1654 for (fd = 0; fd < anfdmax; ++fd)
1655 if (anfds [fd].events)
1656 if (!fd_valid (fd) && errno == EBADF)
1657 fd_kill (EV_A_ fd);
1658 }
1659
1660 /* called on ENOMEM in select/poll to kill some fds and retry */
1661 static void noinline ecb_cold
1662 fd_enomem (EV_P)
1663 {
1664 int fd;
1665
1666 for (fd = anfdmax; fd--; )
1667 if (anfds [fd].events)
1668 {
1669 fd_kill (EV_A_ fd);
1670 break;
1671 }
1672 }
1673
1674 /* usually called after fork if backend needs to re-arm all fds from scratch */
1675 static void noinline
1676 fd_rearm_all (EV_P)
1677 {
1678 int fd;
1679
1680 for (fd = 0; fd < anfdmax; ++fd)
1681 if (anfds [fd].events)
1682 {
1683 anfds [fd].events = 0;
1684 anfds [fd].emask = 0;
1685 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1686 }
1687 }
1688
1689 /* used to prepare libev internal fd's */
1690 /* this is not fork-safe */
1691 inline_speed void
1692 fd_intern (int fd)
1693 {
1694 #ifdef _WIN32
1695 unsigned long arg = 1;
1696 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1697 #else
1698 fcntl (fd, F_SETFD, FD_CLOEXEC);
1699 fcntl (fd, F_SETFL, O_NONBLOCK);
1700 #endif
1701 }
1702
1703 /*****************************************************************************/
1704
1705 /*
1706 * the heap functions want a real array index. array index 0 is guaranteed to not
1707 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1708 * the branching factor of the d-tree.
1709 */
1710
1711 /*
1712 * at the moment we allow libev the luxury of two heaps,
1713 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1714 * which is more cache-efficient.
1715 * the difference is about 5% with 50000+ watchers.
1716 */
1717 #if EV_USE_4HEAP
1718
1719 #define DHEAP 4
1720 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1721 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1722 #define UPHEAP_DONE(p,k) ((p) == (k))
1723
1724 /* away from the root */
1725 inline_speed void
1726 downheap (ANHE *heap, int N, int k)
1727 {
1728 ANHE he = heap [k];
1729 ANHE *E = heap + N + HEAP0;
1730
1731 for (;;)
1732 {
1733 ev_tstamp minat;
1734 ANHE *minpos;
1735 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1736
1737 /* find minimum child */
1738 if (expect_true (pos + DHEAP - 1 < E))
1739 {
1740 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1741 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1742 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1743 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1744 }
1745 else if (pos < E)
1746 {
1747 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1748 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1749 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1750 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1751 }
1752 else
1753 break;
1754
1755 if (ANHE_at (he) <= minat)
1756 break;
1757
1758 heap [k] = *minpos;
1759 ev_active (ANHE_w (*minpos)) = k;
1760
1761 k = minpos - heap;
1762 }
1763
1764 heap [k] = he;
1765 ev_active (ANHE_w (he)) = k;
1766 }
1767
1768 #else /* 4HEAP */
1769
1770 #define HEAP0 1
1771 #define HPARENT(k) ((k) >> 1)
1772 #define UPHEAP_DONE(p,k) (!(p))
1773
1774 /* away from the root */
1775 inline_speed void
1776 downheap (ANHE *heap, int N, int k)
1777 {
1778 ANHE he = heap [k];
1779
1780 for (;;)
1781 {
1782 int c = k << 1;
1783
1784 if (c >= N + HEAP0)
1785 break;
1786
1787 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1788 ? 1 : 0;
1789
1790 if (ANHE_at (he) <= ANHE_at (heap [c]))
1791 break;
1792
1793 heap [k] = heap [c];
1794 ev_active (ANHE_w (heap [k])) = k;
1795
1796 k = c;
1797 }
1798
1799 heap [k] = he;
1800 ev_active (ANHE_w (he)) = k;
1801 }
1802 #endif
1803
1804 /* towards the root */
1805 inline_speed void
1806 upheap (ANHE *heap, int k)
1807 {
1808 ANHE he = heap [k];
1809
1810 for (;;)
1811 {
1812 int p = HPARENT (k);
1813
1814 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1815 break;
1816
1817 heap [k] = heap [p];
1818 ev_active (ANHE_w (heap [k])) = k;
1819 k = p;
1820 }
1821
1822 heap [k] = he;
1823 ev_active (ANHE_w (he)) = k;
1824 }
1825
1826 /* move an element suitably so it is in a correct place */
1827 inline_size void
1828 adjustheap (ANHE *heap, int N, int k)
1829 {
1830 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1831 upheap (heap, k);
1832 else
1833 downheap (heap, N, k);
1834 }
1835
1836 /* rebuild the heap: this function is used only once and executed rarely */
1837 inline_size void
1838 reheap (ANHE *heap, int N)
1839 {
1840 int i;
1841
1842 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1843 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1844 for (i = 0; i < N; ++i)
1845 upheap (heap, i + HEAP0);
1846 }
1847
1848 /*****************************************************************************/
1849
1850 /* associate signal watchers to a signal signal */
1851 typedef struct
1852 {
1853 EV_ATOMIC_T pending;
1854 #if EV_MULTIPLICITY
1855 EV_P;
1856 #endif
1857 WL head;
1858 } ANSIG;
1859
1860 static ANSIG signals [EV_NSIG - 1];
1861
1862 /*****************************************************************************/
1863
1864 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1865
1866 static void noinline ecb_cold
1867 evpipe_init (EV_P)
1868 {
1869 if (!ev_is_active (&pipe_w))
1870 {
1871 # if EV_USE_EVENTFD
1872 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1873 if (evfd < 0 && errno == EINVAL)
1874 evfd = eventfd (0, 0);
1875
1876 if (evfd >= 0)
1877 {
1878 evpipe [0] = -1;
1879 fd_intern (evfd); /* doing it twice doesn't hurt */
1880 ev_io_set (&pipe_w, evfd, EV_READ);
1881 }
1882 else
1883 # endif
1884 {
1885 while (pipe (evpipe))
1886 ev_syserr ("(libev) error creating signal/async pipe");
1887
1888 fd_intern (evpipe [0]);
1889 fd_intern (evpipe [1]);
1890 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1891 }
1892
1893 ev_io_start (EV_A_ &pipe_w);
1894 ev_unref (EV_A); /* watcher should not keep loop alive */
1895 }
1896 }
1897
1898 inline_speed void
1899 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1900 {
1901 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1902
1903 if (expect_true (*flag))
1904 return;
1905
1906 *flag = 1;
1907 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1908
1909 pipe_write_skipped = 1;
1910
1911 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1912
1913 if (pipe_write_wanted)
1914 {
1915 int old_errno;
1916
1917 pipe_write_skipped = 0;
1918 ECB_MEMORY_FENCE_RELEASE;
1919
1920 old_errno = errno; /* save errno because write will clobber it */
1921
1922 #if EV_USE_EVENTFD
1923 if (evfd >= 0)
1924 {
1925 uint64_t counter = 1;
1926 write (evfd, &counter, sizeof (uint64_t));
1927 }
1928 else
1929 #endif
1930 {
1931 #ifdef _WIN32
1932 WSABUF buf;
1933 DWORD sent;
1934 buf.buf = &buf;
1935 buf.len = 1;
1936 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1937 #else
1938 write (evpipe [1], &(evpipe [1]), 1);
1939 #endif
1940 }
1941
1942 errno = old_errno;
1943 }
1944 }
1945
1946 /* called whenever the libev signal pipe */
1947 /* got some events (signal, async) */
1948 static void
1949 pipecb (EV_P_ ev_io *iow, int revents)
1950 {
1951 int i;
1952
1953 if (revents & EV_READ)
1954 {
1955 #if EV_USE_EVENTFD
1956 if (evfd >= 0)
1957 {
1958 uint64_t counter;
1959 read (evfd, &counter, sizeof (uint64_t));
1960 }
1961 else
1962 #endif
1963 {
1964 char dummy[4];
1965 #ifdef _WIN32
1966 WSABUF buf;
1967 DWORD recvd;
1968 DWORD flags = 0;
1969 buf.buf = dummy;
1970 buf.len = sizeof (dummy);
1971 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1972 #else
1973 read (evpipe [0], &dummy, sizeof (dummy));
1974 #endif
1975 }
1976 }
1977
1978 pipe_write_skipped = 0;
1979
1980 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1981
1982 #if EV_SIGNAL_ENABLE
1983 if (sig_pending)
1984 {
1985 sig_pending = 0;
1986
1987 ECB_MEMORY_FENCE;
1988
1989 for (i = EV_NSIG - 1; i--; )
1990 if (expect_false (signals [i].pending))
1991 ev_feed_signal_event (EV_A_ i + 1);
1992 }
1993 #endif
1994
1995 #if EV_ASYNC_ENABLE
1996 if (async_pending)
1997 {
1998 async_pending = 0;
1999
2000 ECB_MEMORY_FENCE;
2001
2002 for (i = asynccnt; i--; )
2003 if (asyncs [i]->sent)
2004 {
2005 asyncs [i]->sent = 0;
2006 ECB_MEMORY_FENCE_RELEASE;
2007 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2008 }
2009 }
2010 #endif
2011 }
2012
2013 /*****************************************************************************/
2014
2015 void
2016 ev_feed_signal (int signum) EV_THROW
2017 {
2018 #if EV_MULTIPLICITY
2019 EV_P = signals [signum - 1].loop;
2020
2021 if (!EV_A)
2022 return;
2023 #endif
2024
2025 if (!ev_active (&pipe_w))
2026 return;
2027
2028 signals [signum - 1].pending = 1;
2029 evpipe_write (EV_A_ &sig_pending);
2030 }
2031
2032 static void
2033 ev_sighandler (int signum)
2034 {
2035 #ifdef _WIN32
2036 signal (signum, ev_sighandler);
2037 #endif
2038
2039 ev_feed_signal (signum);
2040 }
2041
2042 void noinline
2043 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2044 {
2045 WL w;
2046
2047 if (expect_false (signum <= 0 || signum > EV_NSIG))
2048 return;
2049
2050 --signum;
2051
2052 #if EV_MULTIPLICITY
2053 /* it is permissible to try to feed a signal to the wrong loop */
2054 /* or, likely more useful, feeding a signal nobody is waiting for */
2055
2056 if (expect_false (signals [signum].loop != EV_A))
2057 return;
2058 #endif
2059
2060 signals [signum].pending = 0;
2061 ECB_MEMORY_FENCE_RELEASE;
2062
2063 for (w = signals [signum].head; w; w = w->next)
2064 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2065 }
2066
2067 #if EV_USE_SIGNALFD
2068 static void
2069 sigfdcb (EV_P_ ev_io *iow, int revents)
2070 {
2071 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2072
2073 for (;;)
2074 {
2075 ssize_t res = read (sigfd, si, sizeof (si));
2076
2077 /* not ISO-C, as res might be -1, but works with SuS */
2078 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2079 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2080
2081 if (res < (ssize_t)sizeof (si))
2082 break;
2083 }
2084 }
2085 #endif
2086
2087 #endif
2088
2089 /*****************************************************************************/
2090
2091 #if EV_CHILD_ENABLE
2092 static WL childs [EV_PID_HASHSIZE];
2093
2094 static ev_signal childev;
2095
2096 #ifndef WIFCONTINUED
2097 # define WIFCONTINUED(status) 0
2098 #endif
2099
2100 /* handle a single child status event */
2101 inline_speed void
2102 child_reap (EV_P_ int chain, int pid, int status)
2103 {
2104 ev_child *w;
2105 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2106
2107 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2108 {
2109 if ((w->pid == pid || !w->pid)
2110 && (!traced || (w->flags & 1)))
2111 {
2112 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2113 w->rpid = pid;
2114 w->rstatus = status;
2115 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2116 }
2117 }
2118 }
2119
2120 #ifndef WCONTINUED
2121 # define WCONTINUED 0
2122 #endif
2123
2124 /* called on sigchld etc., calls waitpid */
2125 static void
2126 childcb (EV_P_ ev_signal *sw, int revents)
2127 {
2128 int pid, status;
2129
2130 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2131 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2132 if (!WCONTINUED
2133 || errno != EINVAL
2134 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2135 return;
2136
2137 /* make sure we are called again until all children have been reaped */
2138 /* we need to do it this way so that the callback gets called before we continue */
2139 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2140
2141 child_reap (EV_A_ pid, pid, status);
2142 if ((EV_PID_HASHSIZE) > 1)
2143 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2144 }
2145
2146 #endif
2147
2148 /*****************************************************************************/
2149
2150 #if EV_USE_IOCP
2151 # include "ev_iocp.c"
2152 #endif
2153 #if EV_USE_PORT
2154 # include "ev_port.c"
2155 #endif
2156 #if EV_USE_KQUEUE
2157 # include "ev_kqueue.c"
2158 #endif
2159 #if EV_USE_EPOLL
2160 # include "ev_epoll.c"
2161 #endif
2162 #if EV_USE_POLL
2163 # include "ev_poll.c"
2164 #endif
2165 #if EV_USE_SELECT
2166 # include "ev_select.c"
2167 #endif
2168
2169 int ecb_cold
2170 ev_version_major (void) EV_THROW
2171 {
2172 return EV_VERSION_MAJOR;
2173 }
2174
2175 int ecb_cold
2176 ev_version_minor (void) EV_THROW
2177 {
2178 return EV_VERSION_MINOR;
2179 }
2180
2181 /* return true if we are running with elevated privileges and should ignore env variables */
2182 int inline_size ecb_cold
2183 enable_secure (void)
2184 {
2185 #ifdef _WIN32
2186 return 0;
2187 #else
2188 return getuid () != geteuid ()
2189 || getgid () != getegid ();
2190 #endif
2191 }
2192
2193 unsigned int ecb_cold
2194 ev_supported_backends (void) EV_THROW
2195 {
2196 unsigned int flags = 0;
2197
2198 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2199 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2200 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2201 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2202 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2203
2204 return flags;
2205 }
2206
2207 unsigned int ecb_cold
2208 ev_recommended_backends (void) EV_THROW
2209 {
2210 unsigned int flags = ev_supported_backends ();
2211
2212 #ifndef __NetBSD__
2213 /* kqueue is borked on everything but netbsd apparently */
2214 /* it usually doesn't work correctly on anything but sockets and pipes */
2215 flags &= ~EVBACKEND_KQUEUE;
2216 #endif
2217 #ifdef __APPLE__
2218 /* only select works correctly on that "unix-certified" platform */
2219 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2220 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2221 #endif
2222 #ifdef __FreeBSD__
2223 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2224 #endif
2225
2226 return flags;
2227 }
2228
2229 unsigned int ecb_cold
2230 ev_embeddable_backends (void) EV_THROW
2231 {
2232 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2233
2234 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2235 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2236 flags &= ~EVBACKEND_EPOLL;
2237
2238 return flags;
2239 }
2240
2241 unsigned int
2242 ev_backend (EV_P) EV_THROW
2243 {
2244 return backend;
2245 }
2246
2247 #if EV_FEATURE_API
2248 unsigned int
2249 ev_iteration (EV_P) EV_THROW
2250 {
2251 return loop_count;
2252 }
2253
2254 unsigned int
2255 ev_depth (EV_P) EV_THROW
2256 {
2257 return loop_depth;
2258 }
2259
2260 void
2261 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2262 {
2263 io_blocktime = interval;
2264 }
2265
2266 void
2267 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2268 {
2269 timeout_blocktime = interval;
2270 }
2271
2272 void
2273 ev_set_userdata (EV_P_ void *data) EV_THROW
2274 {
2275 userdata = data;
2276 }
2277
2278 void *
2279 ev_userdata (EV_P) EV_THROW
2280 {
2281 return userdata;
2282 }
2283
2284 void
2285 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2286 {
2287 invoke_cb = invoke_pending_cb;
2288 }
2289
2290 void
2291 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2292 {
2293 release_cb = release;
2294 acquire_cb = acquire;
2295 }
2296 #endif
2297
2298 /* initialise a loop structure, must be zero-initialised */
2299 static void noinline ecb_cold
2300 loop_init (EV_P_ unsigned int flags) EV_THROW
2301 {
2302 if (!backend)
2303 {
2304 origflags = flags;
2305
2306 #if EV_USE_REALTIME
2307 if (!have_realtime)
2308 {
2309 struct timespec ts;
2310
2311 if (!clock_gettime (CLOCK_REALTIME, &ts))
2312 have_realtime = 1;
2313 }
2314 #endif
2315
2316 #if EV_USE_MONOTONIC
2317 if (!have_monotonic)
2318 {
2319 struct timespec ts;
2320
2321 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2322 have_monotonic = 1;
2323 }
2324 #endif
2325
2326 /* pid check not overridable via env */
2327 #ifndef _WIN32
2328 if (flags & EVFLAG_FORKCHECK)
2329 curpid = getpid ();
2330 #endif
2331
2332 if (!(flags & EVFLAG_NOENV)
2333 && !enable_secure ()
2334 && getenv ("LIBEV_FLAGS"))
2335 flags = atoi (getenv ("LIBEV_FLAGS"));
2336
2337 ev_rt_now = ev_time ();
2338 mn_now = get_clock ();
2339 now_floor = mn_now;
2340 rtmn_diff = ev_rt_now - mn_now;
2341 #if EV_FEATURE_API
2342 invoke_cb = ev_invoke_pending;
2343 #endif
2344
2345 io_blocktime = 0.;
2346 timeout_blocktime = 0.;
2347 backend = 0;
2348 backend_fd = -1;
2349 sig_pending = 0;
2350 #if EV_ASYNC_ENABLE
2351 async_pending = 0;
2352 #endif
2353 pipe_write_skipped = 0;
2354 pipe_write_wanted = 0;
2355 #if EV_USE_INOTIFY
2356 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2357 #endif
2358 #if EV_USE_SIGNALFD
2359 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2360 #endif
2361
2362 if (!(flags & EVBACKEND_MASK))
2363 flags |= ev_recommended_backends ();
2364
2365 #if EV_USE_IOCP
2366 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2367 #endif
2368 #if EV_USE_PORT
2369 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2370 #endif
2371 #if EV_USE_KQUEUE
2372 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2373 #endif
2374 #if EV_USE_EPOLL
2375 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2376 #endif
2377 #if EV_USE_POLL
2378 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2379 #endif
2380 #if EV_USE_SELECT
2381 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2382 #endif
2383
2384 ev_prepare_init (&pending_w, pendingcb);
2385
2386 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2387 ev_init (&pipe_w, pipecb);
2388 ev_set_priority (&pipe_w, EV_MAXPRI);
2389 #endif
2390 }
2391 }
2392
2393 /* free up a loop structure */
2394 void ecb_cold
2395 ev_loop_destroy (EV_P)
2396 {
2397 int i;
2398
2399 #if EV_MULTIPLICITY
2400 /* mimic free (0) */
2401 if (!EV_A)
2402 return;
2403 #endif
2404
2405 #if EV_CLEANUP_ENABLE
2406 /* queue cleanup watchers (and execute them) */
2407 if (expect_false (cleanupcnt))
2408 {
2409 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2410 EV_INVOKE_PENDING;
2411 }
2412 #endif
2413
2414 #if EV_CHILD_ENABLE
2415 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2416 {
2417 ev_ref (EV_A); /* child watcher */
2418 ev_signal_stop (EV_A_ &childev);
2419 }
2420 #endif
2421
2422 if (ev_is_active (&pipe_w))
2423 {
2424 /*ev_ref (EV_A);*/
2425 /*ev_io_stop (EV_A_ &pipe_w);*/
2426
2427 #if EV_USE_EVENTFD
2428 if (evfd >= 0)
2429 close (evfd);
2430 #endif
2431
2432 if (evpipe [0] >= 0)
2433 {
2434 EV_WIN32_CLOSE_FD (evpipe [0]);
2435 EV_WIN32_CLOSE_FD (evpipe [1]);
2436 }
2437 }
2438
2439 #if EV_USE_SIGNALFD
2440 if (ev_is_active (&sigfd_w))
2441 close (sigfd);
2442 #endif
2443
2444 #if EV_USE_INOTIFY
2445 if (fs_fd >= 0)
2446 close (fs_fd);
2447 #endif
2448
2449 if (backend_fd >= 0)
2450 close (backend_fd);
2451
2452 #if EV_USE_IOCP
2453 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2454 #endif
2455 #if EV_USE_PORT
2456 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2457 #endif
2458 #if EV_USE_KQUEUE
2459 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2460 #endif
2461 #if EV_USE_EPOLL
2462 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2463 #endif
2464 #if EV_USE_POLL
2465 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2466 #endif
2467 #if EV_USE_SELECT
2468 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2469 #endif
2470
2471 for (i = NUMPRI; i--; )
2472 {
2473 array_free (pending, [i]);
2474 #if EV_IDLE_ENABLE
2475 array_free (idle, [i]);
2476 #endif
2477 }
2478
2479 ev_free (anfds); anfds = 0; anfdmax = 0;
2480
2481 /* have to use the microsoft-never-gets-it-right macro */
2482 array_free (rfeed, EMPTY);
2483 array_free (fdchange, EMPTY);
2484 array_free (timer, EMPTY);
2485 #if EV_PERIODIC_ENABLE
2486 array_free (periodic, EMPTY);
2487 #endif
2488 #if EV_FORK_ENABLE
2489 array_free (fork, EMPTY);
2490 #endif
2491 #if EV_CLEANUP_ENABLE
2492 array_free (cleanup, EMPTY);
2493 #endif
2494 array_free (prepare, EMPTY);
2495 array_free (check, EMPTY);
2496 #if EV_ASYNC_ENABLE
2497 array_free (async, EMPTY);
2498 #endif
2499
2500 backend = 0;
2501
2502 #if EV_MULTIPLICITY
2503 if (ev_is_default_loop (EV_A))
2504 #endif
2505 ev_default_loop_ptr = 0;
2506 #if EV_MULTIPLICITY
2507 else
2508 ev_free (EV_A);
2509 #endif
2510 }
2511
2512 #if EV_USE_INOTIFY
2513 inline_size void infy_fork (EV_P);
2514 #endif
2515
2516 inline_size void
2517 loop_fork (EV_P)
2518 {
2519 #if EV_USE_PORT
2520 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2521 #endif
2522 #if EV_USE_KQUEUE
2523 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2524 #endif
2525 #if EV_USE_EPOLL
2526 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2527 #endif
2528 #if EV_USE_INOTIFY
2529 infy_fork (EV_A);
2530 #endif
2531
2532 if (ev_is_active (&pipe_w))
2533 {
2534 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2535
2536 ev_ref (EV_A);
2537 ev_io_stop (EV_A_ &pipe_w);
2538
2539 #if EV_USE_EVENTFD
2540 if (evfd >= 0)
2541 close (evfd);
2542 #endif
2543
2544 if (evpipe [0] >= 0)
2545 {
2546 EV_WIN32_CLOSE_FD (evpipe [0]);
2547 EV_WIN32_CLOSE_FD (evpipe [1]);
2548 }
2549
2550 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2551 evpipe_init (EV_A);
2552 /* now iterate over everything, in case we missed something */
2553 pipecb (EV_A_ &pipe_w, EV_READ);
2554 #endif
2555 }
2556
2557 postfork = 0;
2558 }
2559
2560 #if EV_MULTIPLICITY
2561
2562 struct ev_loop * ecb_cold
2563 ev_loop_new (unsigned int flags) EV_THROW
2564 {
2565 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2566
2567 memset (EV_A, 0, sizeof (struct ev_loop));
2568 loop_init (EV_A_ flags);
2569
2570 if (ev_backend (EV_A))
2571 return EV_A;
2572
2573 ev_free (EV_A);
2574 return 0;
2575 }
2576
2577 #endif /* multiplicity */
2578
2579 #if EV_VERIFY
2580 static void noinline ecb_cold
2581 verify_watcher (EV_P_ W w)
2582 {
2583 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2584
2585 if (w->pending)
2586 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2587 }
2588
2589 static void noinline ecb_cold
2590 verify_heap (EV_P_ ANHE *heap, int N)
2591 {
2592 int i;
2593
2594 for (i = HEAP0; i < N + HEAP0; ++i)
2595 {
2596 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2597 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2598 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2599
2600 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2601 }
2602 }
2603
2604 static void noinline ecb_cold
2605 array_verify (EV_P_ W *ws, int cnt)
2606 {
2607 while (cnt--)
2608 {
2609 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2610 verify_watcher (EV_A_ ws [cnt]);
2611 }
2612 }
2613 #endif
2614
2615 #if EV_FEATURE_API
2616 void ecb_cold
2617 ev_verify (EV_P) EV_THROW
2618 {
2619 #if EV_VERIFY
2620 int i;
2621 WL w, w2;
2622
2623 assert (activecnt >= -1);
2624
2625 assert (fdchangemax >= fdchangecnt);
2626 for (i = 0; i < fdchangecnt; ++i)
2627 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2628
2629 assert (anfdmax >= 0);
2630 for (i = 0; i < anfdmax; ++i)
2631 {
2632 int j = 0;
2633
2634 for (w = w2 = anfds [i].head; w; w = w->next)
2635 {
2636 verify_watcher (EV_A_ (W)w);
2637
2638 if (j++ & 1)
2639 {
2640 assert (("libev: io watcher list contains a loop", w != w2));
2641 w2 = w2->next;
2642 }
2643
2644 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2645 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2646 }
2647 }
2648
2649 assert (timermax >= timercnt);
2650 verify_heap (EV_A_ timers, timercnt);
2651
2652 #if EV_PERIODIC_ENABLE
2653 assert (periodicmax >= periodiccnt);
2654 verify_heap (EV_A_ periodics, periodiccnt);
2655 #endif
2656
2657 for (i = NUMPRI; i--; )
2658 {
2659 assert (pendingmax [i] >= pendingcnt [i]);
2660 #if EV_IDLE_ENABLE
2661 assert (idleall >= 0);
2662 assert (idlemax [i] >= idlecnt [i]);
2663 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2664 #endif
2665 }
2666
2667 #if EV_FORK_ENABLE
2668 assert (forkmax >= forkcnt);
2669 array_verify (EV_A_ (W *)forks, forkcnt);
2670 #endif
2671
2672 #if EV_CLEANUP_ENABLE
2673 assert (cleanupmax >= cleanupcnt);
2674 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2675 #endif
2676
2677 #if EV_ASYNC_ENABLE
2678 assert (asyncmax >= asynccnt);
2679 array_verify (EV_A_ (W *)asyncs, asynccnt);
2680 #endif
2681
2682 #if EV_PREPARE_ENABLE
2683 assert (preparemax >= preparecnt);
2684 array_verify (EV_A_ (W *)prepares, preparecnt);
2685 #endif
2686
2687 #if EV_CHECK_ENABLE
2688 assert (checkmax >= checkcnt);
2689 array_verify (EV_A_ (W *)checks, checkcnt);
2690 #endif
2691
2692 # if 0
2693 #if EV_CHILD_ENABLE
2694 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2695 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2696 #endif
2697 # endif
2698 #endif
2699 }
2700 #endif
2701
2702 #if EV_MULTIPLICITY
2703 struct ev_loop * ecb_cold
2704 #else
2705 int
2706 #endif
2707 ev_default_loop (unsigned int flags) EV_THROW
2708 {
2709 if (!ev_default_loop_ptr)
2710 {
2711 #if EV_MULTIPLICITY
2712 EV_P = ev_default_loop_ptr = &default_loop_struct;
2713 #else
2714 ev_default_loop_ptr = 1;
2715 #endif
2716
2717 loop_init (EV_A_ flags);
2718
2719 if (ev_backend (EV_A))
2720 {
2721 #if EV_CHILD_ENABLE
2722 ev_signal_init (&childev, childcb, SIGCHLD);
2723 ev_set_priority (&childev, EV_MAXPRI);
2724 ev_signal_start (EV_A_ &childev);
2725 ev_unref (EV_A); /* child watcher should not keep loop alive */
2726 #endif
2727 }
2728 else
2729 ev_default_loop_ptr = 0;
2730 }
2731
2732 return ev_default_loop_ptr;
2733 }
2734
2735 void
2736 ev_loop_fork (EV_P) EV_THROW
2737 {
2738 postfork = 1;
2739 }
2740
2741 /*****************************************************************************/
2742
2743 void
2744 ev_invoke (EV_P_ void *w, int revents)
2745 {
2746 EV_CB_INVOKE ((W)w, revents);
2747 }
2748
2749 unsigned int
2750 ev_pending_count (EV_P) EV_THROW
2751 {
2752 int pri;
2753 unsigned int count = 0;
2754
2755 for (pri = NUMPRI; pri--; )
2756 count += pendingcnt [pri];
2757
2758 return count;
2759 }
2760
2761 void noinline
2762 ev_invoke_pending (EV_P)
2763 {
2764 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
2765 while (pendingcnt [pendingpri])
2766 {
2767 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2768
2769 p->w->pending = 0;
2770 EV_CB_INVOKE (p->w, p->events);
2771 EV_FREQUENT_CHECK;
2772 }
2773 }
2774
2775 #if EV_IDLE_ENABLE
2776 /* make idle watchers pending. this handles the "call-idle */
2777 /* only when higher priorities are idle" logic */
2778 inline_size void
2779 idle_reify (EV_P)
2780 {
2781 if (expect_false (idleall))
2782 {
2783 int pri;
2784
2785 for (pri = NUMPRI; pri--; )
2786 {
2787 if (pendingcnt [pri])
2788 break;
2789
2790 if (idlecnt [pri])
2791 {
2792 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2793 break;
2794 }
2795 }
2796 }
2797 }
2798 #endif
2799
2800 /* make timers pending */
2801 inline_size void
2802 timers_reify (EV_P)
2803 {
2804 EV_FREQUENT_CHECK;
2805
2806 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2807 {
2808 do
2809 {
2810 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2811
2812 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2813
2814 /* first reschedule or stop timer */
2815 if (w->repeat)
2816 {
2817 ev_at (w) += w->repeat;
2818 if (ev_at (w) < mn_now)
2819 ev_at (w) = mn_now;
2820
2821 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2822
2823 ANHE_at_cache (timers [HEAP0]);
2824 downheap (timers, timercnt, HEAP0);
2825 }
2826 else
2827 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2828
2829 EV_FREQUENT_CHECK;
2830 feed_reverse (EV_A_ (W)w);
2831 }
2832 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2833
2834 feed_reverse_done (EV_A_ EV_TIMER);
2835 }
2836 }
2837
2838 #if EV_PERIODIC_ENABLE
2839
2840 static void noinline
2841 periodic_recalc (EV_P_ ev_periodic *w)
2842 {
2843 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2844 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2845
2846 /* the above almost always errs on the low side */
2847 while (at <= ev_rt_now)
2848 {
2849 ev_tstamp nat = at + w->interval;
2850
2851 /* when resolution fails us, we use ev_rt_now */
2852 if (expect_false (nat == at))
2853 {
2854 at = ev_rt_now;
2855 break;
2856 }
2857
2858 at = nat;
2859 }
2860
2861 ev_at (w) = at;
2862 }
2863
2864 /* make periodics pending */
2865 inline_size void
2866 periodics_reify (EV_P)
2867 {
2868 EV_FREQUENT_CHECK;
2869
2870 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2871 {
2872 do
2873 {
2874 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2875
2876 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2877
2878 /* first reschedule or stop timer */
2879 if (w->reschedule_cb)
2880 {
2881 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2882
2883 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2884
2885 ANHE_at_cache (periodics [HEAP0]);
2886 downheap (periodics, periodiccnt, HEAP0);
2887 }
2888 else if (w->interval)
2889 {
2890 periodic_recalc (EV_A_ w);
2891 ANHE_at_cache (periodics [HEAP0]);
2892 downheap (periodics, periodiccnt, HEAP0);
2893 }
2894 else
2895 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2896
2897 EV_FREQUENT_CHECK;
2898 feed_reverse (EV_A_ (W)w);
2899 }
2900 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2901
2902 feed_reverse_done (EV_A_ EV_PERIODIC);
2903 }
2904 }
2905
2906 /* simply recalculate all periodics */
2907 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2908 static void noinline ecb_cold
2909 periodics_reschedule (EV_P)
2910 {
2911 int i;
2912
2913 /* adjust periodics after time jump */
2914 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2915 {
2916 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2917
2918 if (w->reschedule_cb)
2919 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2920 else if (w->interval)
2921 periodic_recalc (EV_A_ w);
2922
2923 ANHE_at_cache (periodics [i]);
2924 }
2925
2926 reheap (periodics, periodiccnt);
2927 }
2928 #endif
2929
2930 /* adjust all timers by a given offset */
2931 static void noinline ecb_cold
2932 timers_reschedule (EV_P_ ev_tstamp adjust)
2933 {
2934 int i;
2935
2936 for (i = 0; i < timercnt; ++i)
2937 {
2938 ANHE *he = timers + i + HEAP0;
2939 ANHE_w (*he)->at += adjust;
2940 ANHE_at_cache (*he);
2941 }
2942 }
2943
2944 /* fetch new monotonic and realtime times from the kernel */
2945 /* also detect if there was a timejump, and act accordingly */
2946 inline_speed void
2947 time_update (EV_P_ ev_tstamp max_block)
2948 {
2949 #if EV_USE_MONOTONIC
2950 if (expect_true (have_monotonic))
2951 {
2952 int i;
2953 ev_tstamp odiff = rtmn_diff;
2954
2955 mn_now = get_clock ();
2956
2957 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2958 /* interpolate in the meantime */
2959 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2960 {
2961 ev_rt_now = rtmn_diff + mn_now;
2962 return;
2963 }
2964
2965 now_floor = mn_now;
2966 ev_rt_now = ev_time ();
2967
2968 /* loop a few times, before making important decisions.
2969 * on the choice of "4": one iteration isn't enough,
2970 * in case we get preempted during the calls to
2971 * ev_time and get_clock. a second call is almost guaranteed
2972 * to succeed in that case, though. and looping a few more times
2973 * doesn't hurt either as we only do this on time-jumps or
2974 * in the unlikely event of having been preempted here.
2975 */
2976 for (i = 4; --i; )
2977 {
2978 ev_tstamp diff;
2979 rtmn_diff = ev_rt_now - mn_now;
2980
2981 diff = odiff - rtmn_diff;
2982
2983 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2984 return; /* all is well */
2985
2986 ev_rt_now = ev_time ();
2987 mn_now = get_clock ();
2988 now_floor = mn_now;
2989 }
2990
2991 /* no timer adjustment, as the monotonic clock doesn't jump */
2992 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2993 # if EV_PERIODIC_ENABLE
2994 periodics_reschedule (EV_A);
2995 # endif
2996 }
2997 else
2998 #endif
2999 {
3000 ev_rt_now = ev_time ();
3001
3002 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3003 {
3004 /* adjust timers. this is easy, as the offset is the same for all of them */
3005 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3006 #if EV_PERIODIC_ENABLE
3007 periodics_reschedule (EV_A);
3008 #endif
3009 }
3010
3011 mn_now = ev_rt_now;
3012 }
3013 }
3014
3015 int
3016 ev_run (EV_P_ int flags)
3017 {
3018 #if EV_FEATURE_API
3019 ++loop_depth;
3020 #endif
3021
3022 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3023
3024 loop_done = EVBREAK_CANCEL;
3025
3026 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3027
3028 do
3029 {
3030 #if EV_VERIFY >= 2
3031 ev_verify (EV_A);
3032 #endif
3033
3034 #ifndef _WIN32
3035 if (expect_false (curpid)) /* penalise the forking check even more */
3036 if (expect_false (getpid () != curpid))
3037 {
3038 curpid = getpid ();
3039 postfork = 1;
3040 }
3041 #endif
3042
3043 #if EV_FORK_ENABLE
3044 /* we might have forked, so queue fork handlers */
3045 if (expect_false (postfork))
3046 if (forkcnt)
3047 {
3048 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3049 EV_INVOKE_PENDING;
3050 }
3051 #endif
3052
3053 #if EV_PREPARE_ENABLE
3054 /* queue prepare watchers (and execute them) */
3055 if (expect_false (preparecnt))
3056 {
3057 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3058 EV_INVOKE_PENDING;
3059 }
3060 #endif
3061
3062 if (expect_false (loop_done))
3063 break;
3064
3065 /* we might have forked, so reify kernel state if necessary */
3066 if (expect_false (postfork))
3067 loop_fork (EV_A);
3068
3069 /* update fd-related kernel structures */
3070 fd_reify (EV_A);
3071
3072 /* calculate blocking time */
3073 {
3074 ev_tstamp waittime = 0.;
3075 ev_tstamp sleeptime = 0.;
3076
3077 /* remember old timestamp for io_blocktime calculation */
3078 ev_tstamp prev_mn_now = mn_now;
3079
3080 /* update time to cancel out callback processing overhead */
3081 time_update (EV_A_ 1e100);
3082
3083 /* from now on, we want a pipe-wake-up */
3084 pipe_write_wanted = 1;
3085
3086 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3087
3088 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3089 {
3090 waittime = MAX_BLOCKTIME;
3091
3092 if (timercnt)
3093 {
3094 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3095 if (waittime > to) waittime = to;
3096 }
3097
3098 #if EV_PERIODIC_ENABLE
3099 if (periodiccnt)
3100 {
3101 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3102 if (waittime > to) waittime = to;
3103 }
3104 #endif
3105
3106 /* don't let timeouts decrease the waittime below timeout_blocktime */
3107 if (expect_false (waittime < timeout_blocktime))
3108 waittime = timeout_blocktime;
3109
3110 /* at this point, we NEED to wait, so we have to ensure */
3111 /* to pass a minimum nonzero value to the backend */
3112 if (expect_false (waittime < backend_mintime))
3113 waittime = backend_mintime;
3114
3115 /* extra check because io_blocktime is commonly 0 */
3116 if (expect_false (io_blocktime))
3117 {
3118 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3119
3120 if (sleeptime > waittime - backend_mintime)
3121 sleeptime = waittime - backend_mintime;
3122
3123 if (expect_true (sleeptime > 0.))
3124 {
3125 ev_sleep (sleeptime);
3126 waittime -= sleeptime;
3127 }
3128 }
3129 }
3130
3131 #if EV_FEATURE_API
3132 ++loop_count;
3133 #endif
3134 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3135 backend_poll (EV_A_ waittime);
3136 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3137
3138 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3139
3140 if (pipe_write_skipped)
3141 {
3142 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3143 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3144 }
3145
3146
3147 /* update ev_rt_now, do magic */
3148 time_update (EV_A_ waittime + sleeptime);
3149 }
3150
3151 /* queue pending timers and reschedule them */
3152 timers_reify (EV_A); /* relative timers called last */
3153 #if EV_PERIODIC_ENABLE
3154 periodics_reify (EV_A); /* absolute timers called first */
3155 #endif
3156
3157 #if EV_IDLE_ENABLE
3158 /* queue idle watchers unless other events are pending */
3159 idle_reify (EV_A);
3160 #endif
3161
3162 #if EV_CHECK_ENABLE
3163 /* queue check watchers, to be executed first */
3164 if (expect_false (checkcnt))
3165 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3166 #endif
3167
3168 EV_INVOKE_PENDING;
3169 }
3170 while (expect_true (
3171 activecnt
3172 && !loop_done
3173 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3174 ));
3175
3176 if (loop_done == EVBREAK_ONE)
3177 loop_done = EVBREAK_CANCEL;
3178
3179 #if EV_FEATURE_API
3180 --loop_depth;
3181 #endif
3182
3183 return activecnt;
3184 }
3185
3186 void
3187 ev_break (EV_P_ int how) EV_THROW
3188 {
3189 loop_done = how;
3190 }
3191
3192 void
3193 ev_ref (EV_P) EV_THROW
3194 {
3195 ++activecnt;
3196 }
3197
3198 void
3199 ev_unref (EV_P) EV_THROW
3200 {
3201 --activecnt;
3202 }
3203
3204 void
3205 ev_now_update (EV_P) EV_THROW
3206 {
3207 time_update (EV_A_ 1e100);
3208 }
3209
3210 void
3211 ev_suspend (EV_P) EV_THROW
3212 {
3213 ev_now_update (EV_A);
3214 }
3215
3216 void
3217 ev_resume (EV_P) EV_THROW
3218 {
3219 ev_tstamp mn_prev = mn_now;
3220
3221 ev_now_update (EV_A);
3222 timers_reschedule (EV_A_ mn_now - mn_prev);
3223 #if EV_PERIODIC_ENABLE
3224 /* TODO: really do this? */
3225 periodics_reschedule (EV_A);
3226 #endif
3227 }
3228
3229 /*****************************************************************************/
3230 /* singly-linked list management, used when the expected list length is short */
3231
3232 inline_size void
3233 wlist_add (WL *head, WL elem)
3234 {
3235 elem->next = *head;
3236 *head = elem;
3237 }
3238
3239 inline_size void
3240 wlist_del (WL *head, WL elem)
3241 {
3242 while (*head)
3243 {
3244 if (expect_true (*head == elem))
3245 {
3246 *head = elem->next;
3247 break;
3248 }
3249
3250 head = &(*head)->next;
3251 }
3252 }
3253
3254 /* internal, faster, version of ev_clear_pending */
3255 inline_speed void
3256 clear_pending (EV_P_ W w)
3257 {
3258 if (w->pending)
3259 {
3260 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3261 w->pending = 0;
3262 }
3263 }
3264
3265 int
3266 ev_clear_pending (EV_P_ void *w) EV_THROW
3267 {
3268 W w_ = (W)w;
3269 int pending = w_->pending;
3270
3271 if (expect_true (pending))
3272 {
3273 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3274 p->w = (W)&pending_w;
3275 w_->pending = 0;
3276 return p->events;
3277 }
3278 else
3279 return 0;
3280 }
3281
3282 inline_size void
3283 pri_adjust (EV_P_ W w)
3284 {
3285 int pri = ev_priority (w);
3286 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3287 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3288 ev_set_priority (w, pri);
3289 }
3290
3291 inline_speed void
3292 ev_start (EV_P_ W w, int active)
3293 {
3294 pri_adjust (EV_A_ w);
3295 w->active = active;
3296 ev_ref (EV_A);
3297 }
3298
3299 inline_size void
3300 ev_stop (EV_P_ W w)
3301 {
3302 ev_unref (EV_A);
3303 w->active = 0;
3304 }
3305
3306 /*****************************************************************************/
3307
3308 void noinline
3309 ev_io_start (EV_P_ ev_io *w) EV_THROW
3310 {
3311 int fd = w->fd;
3312
3313 if (expect_false (ev_is_active (w)))
3314 return;
3315
3316 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3317 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3318
3319 EV_FREQUENT_CHECK;
3320
3321 ev_start (EV_A_ (W)w, 1);
3322 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3323 wlist_add (&anfds[fd].head, (WL)w);
3324
3325 /* common bug, apparently */
3326 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3327
3328 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3329 w->events &= ~EV__IOFDSET;
3330
3331 EV_FREQUENT_CHECK;
3332 }
3333
3334 void noinline
3335 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3336 {
3337 clear_pending (EV_A_ (W)w);
3338 if (expect_false (!ev_is_active (w)))
3339 return;
3340
3341 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3342
3343 EV_FREQUENT_CHECK;
3344
3345 wlist_del (&anfds[w->fd].head, (WL)w);
3346 ev_stop (EV_A_ (W)w);
3347
3348 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3349
3350 EV_FREQUENT_CHECK;
3351 }
3352
3353 void noinline
3354 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3355 {
3356 if (expect_false (ev_is_active (w)))
3357 return;
3358
3359 ev_at (w) += mn_now;
3360
3361 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3362
3363 EV_FREQUENT_CHECK;
3364
3365 ++timercnt;
3366 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3367 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3368 ANHE_w (timers [ev_active (w)]) = (WT)w;
3369 ANHE_at_cache (timers [ev_active (w)]);
3370 upheap (timers, ev_active (w));
3371
3372 EV_FREQUENT_CHECK;
3373
3374 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3375 }
3376
3377 void noinline
3378 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3379 {
3380 clear_pending (EV_A_ (W)w);
3381 if (expect_false (!ev_is_active (w)))
3382 return;
3383
3384 EV_FREQUENT_CHECK;
3385
3386 {
3387 int active = ev_active (w);
3388
3389 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3390
3391 --timercnt;
3392
3393 if (expect_true (active < timercnt + HEAP0))
3394 {
3395 timers [active] = timers [timercnt + HEAP0];
3396 adjustheap (timers, timercnt, active);
3397 }
3398 }
3399
3400 ev_at (w) -= mn_now;
3401
3402 ev_stop (EV_A_ (W)w);
3403
3404 EV_FREQUENT_CHECK;
3405 }
3406
3407 void noinline
3408 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3409 {
3410 EV_FREQUENT_CHECK;
3411
3412 clear_pending (EV_A_ (W)w);
3413
3414 if (ev_is_active (w))
3415 {
3416 if (w->repeat)
3417 {
3418 ev_at (w) = mn_now + w->repeat;
3419 ANHE_at_cache (timers [ev_active (w)]);
3420 adjustheap (timers, timercnt, ev_active (w));
3421 }
3422 else
3423 ev_timer_stop (EV_A_ w);
3424 }
3425 else if (w->repeat)
3426 {
3427 ev_at (w) = w->repeat;
3428 ev_timer_start (EV_A_ w);
3429 }
3430
3431 EV_FREQUENT_CHECK;
3432 }
3433
3434 ev_tstamp
3435 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3436 {
3437 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3438 }
3439
3440 #if EV_PERIODIC_ENABLE
3441 void noinline
3442 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3443 {
3444 if (expect_false (ev_is_active (w)))
3445 return;
3446
3447 if (w->reschedule_cb)
3448 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3449 else if (w->interval)
3450 {
3451 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3452 periodic_recalc (EV_A_ w);
3453 }
3454 else
3455 ev_at (w) = w->offset;
3456
3457 EV_FREQUENT_CHECK;
3458
3459 ++periodiccnt;
3460 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3461 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3462 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3463 ANHE_at_cache (periodics [ev_active (w)]);
3464 upheap (periodics, ev_active (w));
3465
3466 EV_FREQUENT_CHECK;
3467
3468 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3469 }
3470
3471 void noinline
3472 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3473 {
3474 clear_pending (EV_A_ (W)w);
3475 if (expect_false (!ev_is_active (w)))
3476 return;
3477
3478 EV_FREQUENT_CHECK;
3479
3480 {
3481 int active = ev_active (w);
3482
3483 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3484
3485 --periodiccnt;
3486
3487 if (expect_true (active < periodiccnt + HEAP0))
3488 {
3489 periodics [active] = periodics [periodiccnt + HEAP0];
3490 adjustheap (periodics, periodiccnt, active);
3491 }
3492 }
3493
3494 ev_stop (EV_A_ (W)w);
3495
3496 EV_FREQUENT_CHECK;
3497 }
3498
3499 void noinline
3500 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3501 {
3502 /* TODO: use adjustheap and recalculation */
3503 ev_periodic_stop (EV_A_ w);
3504 ev_periodic_start (EV_A_ w);
3505 }
3506 #endif
3507
3508 #ifndef SA_RESTART
3509 # define SA_RESTART 0
3510 #endif
3511
3512 #if EV_SIGNAL_ENABLE
3513
3514 void noinline
3515 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3516 {
3517 if (expect_false (ev_is_active (w)))
3518 return;
3519
3520 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3521
3522 #if EV_MULTIPLICITY
3523 assert (("libev: a signal must not be attached to two different loops",
3524 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3525
3526 signals [w->signum - 1].loop = EV_A;
3527 #endif
3528
3529 EV_FREQUENT_CHECK;
3530
3531 #if EV_USE_SIGNALFD
3532 if (sigfd == -2)
3533 {
3534 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3535 if (sigfd < 0 && errno == EINVAL)
3536 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3537
3538 if (sigfd >= 0)
3539 {
3540 fd_intern (sigfd); /* doing it twice will not hurt */
3541
3542 sigemptyset (&sigfd_set);
3543
3544 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3545 ev_set_priority (&sigfd_w, EV_MAXPRI);
3546 ev_io_start (EV_A_ &sigfd_w);
3547 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3548 }
3549 }
3550
3551 if (sigfd >= 0)
3552 {
3553 /* TODO: check .head */
3554 sigaddset (&sigfd_set, w->signum);
3555 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3556
3557 signalfd (sigfd, &sigfd_set, 0);
3558 }
3559 #endif
3560
3561 ev_start (EV_A_ (W)w, 1);
3562 wlist_add (&signals [w->signum - 1].head, (WL)w);
3563
3564 if (!((WL)w)->next)
3565 # if EV_USE_SIGNALFD
3566 if (sigfd < 0) /*TODO*/
3567 # endif
3568 {
3569 # ifdef _WIN32
3570 evpipe_init (EV_A);
3571
3572 signal (w->signum, ev_sighandler);
3573 # else
3574 struct sigaction sa;
3575
3576 evpipe_init (EV_A);
3577
3578 sa.sa_handler = ev_sighandler;
3579 sigfillset (&sa.sa_mask);
3580 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3581 sigaction (w->signum, &sa, 0);
3582
3583 if (origflags & EVFLAG_NOSIGMASK)
3584 {
3585 sigemptyset (&sa.sa_mask);
3586 sigaddset (&sa.sa_mask, w->signum);
3587 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3588 }
3589 #endif
3590 }
3591
3592 EV_FREQUENT_CHECK;
3593 }
3594
3595 void noinline
3596 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3597 {
3598 clear_pending (EV_A_ (W)w);
3599 if (expect_false (!ev_is_active (w)))
3600 return;
3601
3602 EV_FREQUENT_CHECK;
3603
3604 wlist_del (&signals [w->signum - 1].head, (WL)w);
3605 ev_stop (EV_A_ (W)w);
3606
3607 if (!signals [w->signum - 1].head)
3608 {
3609 #if EV_MULTIPLICITY
3610 signals [w->signum - 1].loop = 0; /* unattach from signal */
3611 #endif
3612 #if EV_USE_SIGNALFD
3613 if (sigfd >= 0)
3614 {
3615 sigset_t ss;
3616
3617 sigemptyset (&ss);
3618 sigaddset (&ss, w->signum);
3619 sigdelset (&sigfd_set, w->signum);
3620
3621 signalfd (sigfd, &sigfd_set, 0);
3622 sigprocmask (SIG_UNBLOCK, &ss, 0);
3623 }
3624 else
3625 #endif
3626 signal (w->signum, SIG_DFL);
3627 }
3628
3629 EV_FREQUENT_CHECK;
3630 }
3631
3632 #endif
3633
3634 #if EV_CHILD_ENABLE
3635
3636 void
3637 ev_child_start (EV_P_ ev_child *w) EV_THROW
3638 {
3639 #if EV_MULTIPLICITY
3640 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3641 #endif
3642 if (expect_false (ev_is_active (w)))
3643 return;
3644
3645 EV_FREQUENT_CHECK;
3646
3647 ev_start (EV_A_ (W)w, 1);
3648 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3649
3650 EV_FREQUENT_CHECK;
3651 }
3652
3653 void
3654 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3655 {
3656 clear_pending (EV_A_ (W)w);
3657 if (expect_false (!ev_is_active (w)))
3658 return;
3659
3660 EV_FREQUENT_CHECK;
3661
3662 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3663 ev_stop (EV_A_ (W)w);
3664
3665 EV_FREQUENT_CHECK;
3666 }
3667
3668 #endif
3669
3670 #if EV_STAT_ENABLE
3671
3672 # ifdef _WIN32
3673 # undef lstat
3674 # define lstat(a,b) _stati64 (a,b)
3675 # endif
3676
3677 #define DEF_STAT_INTERVAL 5.0074891
3678 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3679 #define MIN_STAT_INTERVAL 0.1074891
3680
3681 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3682
3683 #if EV_USE_INOTIFY
3684
3685 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3686 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3687
3688 static void noinline
3689 infy_add (EV_P_ ev_stat *w)
3690 {
3691 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3692
3693 if (w->wd >= 0)
3694 {
3695 struct statfs sfs;
3696
3697 /* now local changes will be tracked by inotify, but remote changes won't */
3698 /* unless the filesystem is known to be local, we therefore still poll */
3699 /* also do poll on <2.6.25, but with normal frequency */
3700
3701 if (!fs_2625)
3702 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3703 else if (!statfs (w->path, &sfs)
3704 && (sfs.f_type == 0x1373 /* devfs */
3705 || sfs.f_type == 0xEF53 /* ext2/3 */
3706 || sfs.f_type == 0x3153464a /* jfs */
3707 || sfs.f_type == 0x52654973 /* reiser3 */
3708 || sfs.f_type == 0x01021994 /* tempfs */
3709 || sfs.f_type == 0x58465342 /* xfs */))
3710 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3711 else
3712 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3713 }
3714 else
3715 {
3716 /* can't use inotify, continue to stat */
3717 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3718
3719 /* if path is not there, monitor some parent directory for speedup hints */
3720 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3721 /* but an efficiency issue only */
3722 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3723 {
3724 char path [4096];
3725 strcpy (path, w->path);
3726
3727 do
3728 {
3729 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3730 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3731
3732 char *pend = strrchr (path, '/');
3733
3734 if (!pend || pend == path)
3735 break;
3736
3737 *pend = 0;
3738 w->wd = inotify_add_watch (fs_fd, path, mask);
3739 }
3740 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3741 }
3742 }
3743
3744 if (w->wd >= 0)
3745 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3746
3747 /* now re-arm timer, if required */
3748 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3749 ev_timer_again (EV_A_ &w->timer);
3750 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3751 }
3752
3753 static void noinline
3754 infy_del (EV_P_ ev_stat *w)
3755 {
3756 int slot;
3757 int wd = w->wd;
3758
3759 if (wd < 0)
3760 return;
3761
3762 w->wd = -2;
3763 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3764 wlist_del (&fs_hash [slot].head, (WL)w);
3765
3766 /* remove this watcher, if others are watching it, they will rearm */
3767 inotify_rm_watch (fs_fd, wd);
3768 }
3769
3770 static void noinline
3771 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3772 {
3773 if (slot < 0)
3774 /* overflow, need to check for all hash slots */
3775 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3776 infy_wd (EV_A_ slot, wd, ev);
3777 else
3778 {
3779 WL w_;
3780
3781 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3782 {
3783 ev_stat *w = (ev_stat *)w_;
3784 w_ = w_->next; /* lets us remove this watcher and all before it */
3785
3786 if (w->wd == wd || wd == -1)
3787 {
3788 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3789 {
3790 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3791 w->wd = -1;
3792 infy_add (EV_A_ w); /* re-add, no matter what */
3793 }
3794
3795 stat_timer_cb (EV_A_ &w->timer, 0);
3796 }
3797 }
3798 }
3799 }
3800
3801 static void
3802 infy_cb (EV_P_ ev_io *w, int revents)
3803 {
3804 char buf [EV_INOTIFY_BUFSIZE];
3805 int ofs;
3806 int len = read (fs_fd, buf, sizeof (buf));
3807
3808 for (ofs = 0; ofs < len; )
3809 {
3810 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3811 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3812 ofs += sizeof (struct inotify_event) + ev->len;
3813 }
3814 }
3815
3816 inline_size void ecb_cold
3817 ev_check_2625 (EV_P)
3818 {
3819 /* kernels < 2.6.25 are borked
3820 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3821 */
3822 if (ev_linux_version () < 0x020619)
3823 return;
3824
3825 fs_2625 = 1;
3826 }
3827
3828 inline_size int
3829 infy_newfd (void)
3830 {
3831 #if defined IN_CLOEXEC && defined IN_NONBLOCK
3832 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3833 if (fd >= 0)
3834 return fd;
3835 #endif
3836 return inotify_init ();
3837 }
3838
3839 inline_size void
3840 infy_init (EV_P)
3841 {
3842 if (fs_fd != -2)
3843 return;
3844
3845 fs_fd = -1;
3846
3847 ev_check_2625 (EV_A);
3848
3849 fs_fd = infy_newfd ();
3850
3851 if (fs_fd >= 0)
3852 {
3853 fd_intern (fs_fd);
3854 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3855 ev_set_priority (&fs_w, EV_MAXPRI);
3856 ev_io_start (EV_A_ &fs_w);
3857 ev_unref (EV_A);
3858 }
3859 }
3860
3861 inline_size void
3862 infy_fork (EV_P)
3863 {
3864 int slot;
3865
3866 if (fs_fd < 0)
3867 return;
3868
3869 ev_ref (EV_A);
3870 ev_io_stop (EV_A_ &fs_w);
3871 close (fs_fd);
3872 fs_fd = infy_newfd ();
3873
3874 if (fs_fd >= 0)
3875 {
3876 fd_intern (fs_fd);
3877 ev_io_set (&fs_w, fs_fd, EV_READ);
3878 ev_io_start (EV_A_ &fs_w);
3879 ev_unref (EV_A);
3880 }
3881
3882 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3883 {
3884 WL w_ = fs_hash [slot].head;
3885 fs_hash [slot].head = 0;
3886
3887 while (w_)
3888 {
3889 ev_stat *w = (ev_stat *)w_;
3890 w_ = w_->next; /* lets us add this watcher */
3891
3892 w->wd = -1;
3893
3894 if (fs_fd >= 0)
3895 infy_add (EV_A_ w); /* re-add, no matter what */
3896 else
3897 {
3898 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3899 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3900 ev_timer_again (EV_A_ &w->timer);
3901 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3902 }
3903 }
3904 }
3905 }
3906
3907 #endif
3908
3909 #ifdef _WIN32
3910 # define EV_LSTAT(p,b) _stati64 (p, b)
3911 #else
3912 # define EV_LSTAT(p,b) lstat (p, b)
3913 #endif
3914
3915 void
3916 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3917 {
3918 if (lstat (w->path, &w->attr) < 0)
3919 w->attr.st_nlink = 0;
3920 else if (!w->attr.st_nlink)
3921 w->attr.st_nlink = 1;
3922 }
3923
3924 static void noinline
3925 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3926 {
3927 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3928
3929 ev_statdata prev = w->attr;
3930 ev_stat_stat (EV_A_ w);
3931
3932 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3933 if (
3934 prev.st_dev != w->attr.st_dev
3935 || prev.st_ino != w->attr.st_ino
3936 || prev.st_mode != w->attr.st_mode
3937 || prev.st_nlink != w->attr.st_nlink
3938 || prev.st_uid != w->attr.st_uid
3939 || prev.st_gid != w->attr.st_gid
3940 || prev.st_rdev != w->attr.st_rdev
3941 || prev.st_size != w->attr.st_size
3942 || prev.st_atime != w->attr.st_atime
3943 || prev.st_mtime != w->attr.st_mtime
3944 || prev.st_ctime != w->attr.st_ctime
3945 ) {
3946 /* we only update w->prev on actual differences */
3947 /* in case we test more often than invoke the callback, */
3948 /* to ensure that prev is always different to attr */
3949 w->prev = prev;
3950
3951 #if EV_USE_INOTIFY
3952 if (fs_fd >= 0)
3953 {
3954 infy_del (EV_A_ w);
3955 infy_add (EV_A_ w);
3956 ev_stat_stat (EV_A_ w); /* avoid race... */
3957 }
3958 #endif
3959
3960 ev_feed_event (EV_A_ w, EV_STAT);
3961 }
3962 }
3963
3964 void
3965 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3966 {
3967 if (expect_false (ev_is_active (w)))
3968 return;
3969
3970 ev_stat_stat (EV_A_ w);
3971
3972 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3973 w->interval = MIN_STAT_INTERVAL;
3974
3975 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3976 ev_set_priority (&w->timer, ev_priority (w));
3977
3978 #if EV_USE_INOTIFY
3979 infy_init (EV_A);
3980
3981 if (fs_fd >= 0)
3982 infy_add (EV_A_ w);
3983 else
3984 #endif
3985 {
3986 ev_timer_again (EV_A_ &w->timer);
3987 ev_unref (EV_A);
3988 }
3989
3990 ev_start (EV_A_ (W)w, 1);
3991
3992 EV_FREQUENT_CHECK;
3993 }
3994
3995 void
3996 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
3997 {
3998 clear_pending (EV_A_ (W)w);
3999 if (expect_false (!ev_is_active (w)))
4000 return;
4001
4002 EV_FREQUENT_CHECK;
4003
4004 #if EV_USE_INOTIFY
4005 infy_del (EV_A_ w);
4006 #endif
4007
4008 if (ev_is_active (&w->timer))
4009 {
4010 ev_ref (EV_A);
4011 ev_timer_stop (EV_A_ &w->timer);
4012 }
4013
4014 ev_stop (EV_A_ (W)w);
4015
4016 EV_FREQUENT_CHECK;
4017 }
4018 #endif
4019
4020 #if EV_IDLE_ENABLE
4021 void
4022 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4023 {
4024 if (expect_false (ev_is_active (w)))
4025 return;
4026
4027 pri_adjust (EV_A_ (W)w);
4028
4029 EV_FREQUENT_CHECK;
4030
4031 {
4032 int active = ++idlecnt [ABSPRI (w)];
4033
4034 ++idleall;
4035 ev_start (EV_A_ (W)w, active);
4036
4037 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4038 idles [ABSPRI (w)][active - 1] = w;
4039 }
4040
4041 EV_FREQUENT_CHECK;
4042 }
4043
4044 void
4045 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4046 {
4047 clear_pending (EV_A_ (W)w);
4048 if (expect_false (!ev_is_active (w)))
4049 return;
4050
4051 EV_FREQUENT_CHECK;
4052
4053 {
4054 int active = ev_active (w);
4055
4056 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4057 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4058
4059 ev_stop (EV_A_ (W)w);
4060 --idleall;
4061 }
4062
4063 EV_FREQUENT_CHECK;
4064 }
4065 #endif
4066
4067 #if EV_PREPARE_ENABLE
4068 void
4069 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4070 {
4071 if (expect_false (ev_is_active (w)))
4072 return;
4073
4074 EV_FREQUENT_CHECK;
4075
4076 ev_start (EV_A_ (W)w, ++preparecnt);
4077 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4078 prepares [preparecnt - 1] = w;
4079
4080 EV_FREQUENT_CHECK;
4081 }
4082
4083 void
4084 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4085 {
4086 clear_pending (EV_A_ (W)w);
4087 if (expect_false (!ev_is_active (w)))
4088 return;
4089
4090 EV_FREQUENT_CHECK;
4091
4092 {
4093 int active = ev_active (w);
4094
4095 prepares [active - 1] = prepares [--preparecnt];
4096 ev_active (prepares [active - 1]) = active;
4097 }
4098
4099 ev_stop (EV_A_ (W)w);
4100
4101 EV_FREQUENT_CHECK;
4102 }
4103 #endif
4104
4105 #if EV_CHECK_ENABLE
4106 void
4107 ev_check_start (EV_P_ ev_check *w) EV_THROW
4108 {
4109 if (expect_false (ev_is_active (w)))
4110 return;
4111
4112 EV_FREQUENT_CHECK;
4113
4114 ev_start (EV_A_ (W)w, ++checkcnt);
4115 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4116 checks [checkcnt - 1] = w;
4117
4118 EV_FREQUENT_CHECK;
4119 }
4120
4121 void
4122 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4123 {
4124 clear_pending (EV_A_ (W)w);
4125 if (expect_false (!ev_is_active (w)))
4126 return;
4127
4128 EV_FREQUENT_CHECK;
4129
4130 {
4131 int active = ev_active (w);
4132
4133 checks [active - 1] = checks [--checkcnt];
4134 ev_active (checks [active - 1]) = active;
4135 }
4136
4137 ev_stop (EV_A_ (W)w);
4138
4139 EV_FREQUENT_CHECK;
4140 }
4141 #endif
4142
4143 #if EV_EMBED_ENABLE
4144 void noinline
4145 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4146 {
4147 ev_run (w->other, EVRUN_NOWAIT);
4148 }
4149
4150 static void
4151 embed_io_cb (EV_P_ ev_io *io, int revents)
4152 {
4153 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4154
4155 if (ev_cb (w))
4156 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4157 else
4158 ev_run (w->other, EVRUN_NOWAIT);
4159 }
4160
4161 static void
4162 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4163 {
4164 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4165
4166 {
4167 EV_P = w->other;
4168
4169 while (fdchangecnt)
4170 {
4171 fd_reify (EV_A);
4172 ev_run (EV_A_ EVRUN_NOWAIT);
4173 }
4174 }
4175 }
4176
4177 static void
4178 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4179 {
4180 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4181
4182 ev_embed_stop (EV_A_ w);
4183
4184 {
4185 EV_P = w->other;
4186
4187 ev_loop_fork (EV_A);
4188 ev_run (EV_A_ EVRUN_NOWAIT);
4189 }
4190
4191 ev_embed_start (EV_A_ w);
4192 }
4193
4194 #if 0
4195 static void
4196 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4197 {
4198 ev_idle_stop (EV_A_ idle);
4199 }
4200 #endif
4201
4202 void
4203 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4204 {
4205 if (expect_false (ev_is_active (w)))
4206 return;
4207
4208 {
4209 EV_P = w->other;
4210 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4211 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4212 }
4213
4214 EV_FREQUENT_CHECK;
4215
4216 ev_set_priority (&w->io, ev_priority (w));
4217 ev_io_start (EV_A_ &w->io);
4218
4219 ev_prepare_init (&w->prepare, embed_prepare_cb);
4220 ev_set_priority (&w->prepare, EV_MINPRI);
4221 ev_prepare_start (EV_A_ &w->prepare);
4222
4223 ev_fork_init (&w->fork, embed_fork_cb);
4224 ev_fork_start (EV_A_ &w->fork);
4225
4226 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4227
4228 ev_start (EV_A_ (W)w, 1);
4229
4230 EV_FREQUENT_CHECK;
4231 }
4232
4233 void
4234 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4235 {
4236 clear_pending (EV_A_ (W)w);
4237 if (expect_false (!ev_is_active (w)))
4238 return;
4239
4240 EV_FREQUENT_CHECK;
4241
4242 ev_io_stop (EV_A_ &w->io);
4243 ev_prepare_stop (EV_A_ &w->prepare);
4244 ev_fork_stop (EV_A_ &w->fork);
4245
4246 ev_stop (EV_A_ (W)w);
4247
4248 EV_FREQUENT_CHECK;
4249 }
4250 #endif
4251
4252 #if EV_FORK_ENABLE
4253 void
4254 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4255 {
4256 if (expect_false (ev_is_active (w)))
4257 return;
4258
4259 EV_FREQUENT_CHECK;
4260
4261 ev_start (EV_A_ (W)w, ++forkcnt);
4262 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4263 forks [forkcnt - 1] = w;
4264
4265 EV_FREQUENT_CHECK;
4266 }
4267
4268 void
4269 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4270 {
4271 clear_pending (EV_A_ (W)w);
4272 if (expect_false (!ev_is_active (w)))
4273 return;
4274
4275 EV_FREQUENT_CHECK;
4276
4277 {
4278 int active = ev_active (w);
4279
4280 forks [active - 1] = forks [--forkcnt];
4281 ev_active (forks [active - 1]) = active;
4282 }
4283
4284 ev_stop (EV_A_ (W)w);
4285
4286 EV_FREQUENT_CHECK;
4287 }
4288 #endif
4289
4290 #if EV_CLEANUP_ENABLE
4291 void
4292 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4293 {
4294 if (expect_false (ev_is_active (w)))
4295 return;
4296
4297 EV_FREQUENT_CHECK;
4298
4299 ev_start (EV_A_ (W)w, ++cleanupcnt);
4300 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4301 cleanups [cleanupcnt - 1] = w;
4302
4303 /* cleanup watchers should never keep a refcount on the loop */
4304 ev_unref (EV_A);
4305 EV_FREQUENT_CHECK;
4306 }
4307
4308 void
4309 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4310 {
4311 clear_pending (EV_A_ (W)w);
4312 if (expect_false (!ev_is_active (w)))
4313 return;
4314
4315 EV_FREQUENT_CHECK;
4316 ev_ref (EV_A);
4317
4318 {
4319 int active = ev_active (w);
4320
4321 cleanups [active - 1] = cleanups [--cleanupcnt];
4322 ev_active (cleanups [active - 1]) = active;
4323 }
4324
4325 ev_stop (EV_A_ (W)w);
4326
4327 EV_FREQUENT_CHECK;
4328 }
4329 #endif
4330
4331 #if EV_ASYNC_ENABLE
4332 void
4333 ev_async_start (EV_P_ ev_async *w) EV_THROW
4334 {
4335 if (expect_false (ev_is_active (w)))
4336 return;
4337
4338 w->sent = 0;
4339
4340 evpipe_init (EV_A);
4341
4342 EV_FREQUENT_CHECK;
4343
4344 ev_start (EV_A_ (W)w, ++asynccnt);
4345 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4346 asyncs [asynccnt - 1] = w;
4347
4348 EV_FREQUENT_CHECK;
4349 }
4350
4351 void
4352 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4353 {
4354 clear_pending (EV_A_ (W)w);
4355 if (expect_false (!ev_is_active (w)))
4356 return;
4357
4358 EV_FREQUENT_CHECK;
4359
4360 {
4361 int active = ev_active (w);
4362
4363 asyncs [active - 1] = asyncs [--asynccnt];
4364 ev_active (asyncs [active - 1]) = active;
4365 }
4366
4367 ev_stop (EV_A_ (W)w);
4368
4369 EV_FREQUENT_CHECK;
4370 }
4371
4372 void
4373 ev_async_send (EV_P_ ev_async *w) EV_THROW
4374 {
4375 w->sent = 1;
4376 evpipe_write (EV_A_ &async_pending);
4377 }
4378 #endif
4379
4380 /*****************************************************************************/
4381
4382 struct ev_once
4383 {
4384 ev_io io;
4385 ev_timer to;
4386 void (*cb)(int revents, void *arg);
4387 void *arg;
4388 };
4389
4390 static void
4391 once_cb (EV_P_ struct ev_once *once, int revents)
4392 {
4393 void (*cb)(int revents, void *arg) = once->cb;
4394 void *arg = once->arg;
4395
4396 ev_io_stop (EV_A_ &once->io);
4397 ev_timer_stop (EV_A_ &once->to);
4398 ev_free (once);
4399
4400 cb (revents, arg);
4401 }
4402
4403 static void
4404 once_cb_io (EV_P_ ev_io *w, int revents)
4405 {
4406 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4407
4408 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4409 }
4410
4411 static void
4412 once_cb_to (EV_P_ ev_timer *w, int revents)
4413 {
4414 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4415
4416 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4417 }
4418
4419 void
4420 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4421 {
4422 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4423
4424 if (expect_false (!once))
4425 {
4426 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4427 return;
4428 }
4429
4430 once->cb = cb;
4431 once->arg = arg;
4432
4433 ev_init (&once->io, once_cb_io);
4434 if (fd >= 0)
4435 {
4436 ev_io_set (&once->io, fd, events);
4437 ev_io_start (EV_A_ &once->io);
4438 }
4439
4440 ev_init (&once->to, once_cb_to);
4441 if (timeout >= 0.)
4442 {
4443 ev_timer_set (&once->to, timeout, 0.);
4444 ev_timer_start (EV_A_ &once->to);
4445 }
4446 }
4447
4448 /*****************************************************************************/
4449
4450 #if EV_WALK_ENABLE
4451 void ecb_cold
4452 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4453 {
4454 int i, j;
4455 ev_watcher_list *wl, *wn;
4456
4457 if (types & (EV_IO | EV_EMBED))
4458 for (i = 0; i < anfdmax; ++i)
4459 for (wl = anfds [i].head; wl; )
4460 {
4461 wn = wl->next;
4462
4463 #if EV_EMBED_ENABLE
4464 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4465 {
4466 if (types & EV_EMBED)
4467 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4468 }
4469 else
4470 #endif
4471 #if EV_USE_INOTIFY
4472 if (ev_cb ((ev_io *)wl) == infy_cb)
4473 ;
4474 else
4475 #endif
4476 if ((ev_io *)wl != &pipe_w)
4477 if (types & EV_IO)
4478 cb (EV_A_ EV_IO, wl);
4479
4480 wl = wn;
4481 }
4482
4483 if (types & (EV_TIMER | EV_STAT))
4484 for (i = timercnt + HEAP0; i-- > HEAP0; )
4485 #if EV_STAT_ENABLE
4486 /*TODO: timer is not always active*/
4487 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4488 {
4489 if (types & EV_STAT)
4490 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4491 }
4492 else
4493 #endif
4494 if (types & EV_TIMER)
4495 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4496
4497 #if EV_PERIODIC_ENABLE
4498 if (types & EV_PERIODIC)
4499 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4500 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4501 #endif
4502
4503 #if EV_IDLE_ENABLE
4504 if (types & EV_IDLE)
4505 for (j = NUMPRI; j--; )
4506 for (i = idlecnt [j]; i--; )
4507 cb (EV_A_ EV_IDLE, idles [j][i]);
4508 #endif
4509
4510 #if EV_FORK_ENABLE
4511 if (types & EV_FORK)
4512 for (i = forkcnt; i--; )
4513 if (ev_cb (forks [i]) != embed_fork_cb)
4514 cb (EV_A_ EV_FORK, forks [i]);
4515 #endif
4516
4517 #if EV_ASYNC_ENABLE
4518 if (types & EV_ASYNC)
4519 for (i = asynccnt; i--; )
4520 cb (EV_A_ EV_ASYNC, asyncs [i]);
4521 #endif
4522
4523 #if EV_PREPARE_ENABLE
4524 if (types & EV_PREPARE)
4525 for (i = preparecnt; i--; )
4526 # if EV_EMBED_ENABLE
4527 if (ev_cb (prepares [i]) != embed_prepare_cb)
4528 # endif
4529 cb (EV_A_ EV_PREPARE, prepares [i]);
4530 #endif
4531
4532 #if EV_CHECK_ENABLE
4533 if (types & EV_CHECK)
4534 for (i = checkcnt; i--; )
4535 cb (EV_A_ EV_CHECK, checks [i]);
4536 #endif
4537
4538 #if EV_SIGNAL_ENABLE
4539 if (types & EV_SIGNAL)
4540 for (i = 0; i < EV_NSIG - 1; ++i)
4541 for (wl = signals [i].head; wl; )
4542 {
4543 wn = wl->next;
4544 cb (EV_A_ EV_SIGNAL, wl);
4545 wl = wn;
4546 }
4547 #endif
4548
4549 #if EV_CHILD_ENABLE
4550 if (types & EV_CHILD)
4551 for (i = (EV_PID_HASHSIZE); i--; )
4552 for (wl = childs [i]; wl; )
4553 {
4554 wn = wl->next;
4555 cb (EV_A_ EV_CHILD, wl);
4556 wl = wn;
4557 }
4558 #endif
4559 /* EV_STAT 0x00001000 /* stat data changed */
4560 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4561 }
4562 #endif
4563
4564 #if EV_MULTIPLICITY
4565 #include "ev_wrap.h"
4566 #endif
4567