ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.456
Committed: Thu Jul 4 22:32:23 2013 UTC (10 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.455: +3 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 # define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # error "unable to find value for NSIG, please report"
247 /* to make it compile regardless, just remove the above line, */
248 /* but consider reporting it, too! :) */
249 # define EV_NSIG 65
250 #endif
251
252 #ifndef EV_USE_FLOOR
253 # define EV_USE_FLOOR 0
254 #endif
255
256 #ifndef EV_USE_CLOCK_SYSCALL
257 # if __linux && __GLIBC__ >= 2
258 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 # else
260 # define EV_USE_CLOCK_SYSCALL 0
261 # endif
262 #endif
263
264 #ifndef EV_USE_MONOTONIC
265 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 # define EV_USE_MONOTONIC EV_FEATURE_OS
267 # else
268 # define EV_USE_MONOTONIC 0
269 # endif
270 #endif
271
272 #ifndef EV_USE_REALTIME
273 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 #endif
275
276 #ifndef EV_USE_NANOSLEEP
277 # if _POSIX_C_SOURCE >= 199309L
278 # define EV_USE_NANOSLEEP EV_FEATURE_OS
279 # else
280 # define EV_USE_NANOSLEEP 0
281 # endif
282 #endif
283
284 #ifndef EV_USE_SELECT
285 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 #endif
287
288 #ifndef EV_USE_POLL
289 # ifdef _WIN32
290 # define EV_USE_POLL 0
291 # else
292 # define EV_USE_POLL EV_FEATURE_BACKENDS
293 # endif
294 #endif
295
296 #ifndef EV_USE_EPOLL
297 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 # else
300 # define EV_USE_EPOLL 0
301 # endif
302 #endif
303
304 #ifndef EV_USE_KQUEUE
305 # define EV_USE_KQUEUE 0
306 #endif
307
308 #ifndef EV_USE_PORT
309 # define EV_USE_PORT 0
310 #endif
311
312 #ifndef EV_USE_INOTIFY
313 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 # define EV_USE_INOTIFY EV_FEATURE_OS
315 # else
316 # define EV_USE_INOTIFY 0
317 # endif
318 #endif
319
320 #ifndef EV_PID_HASHSIZE
321 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 #endif
323
324 #ifndef EV_INOTIFY_HASHSIZE
325 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 #endif
327
328 #ifndef EV_USE_EVENTFD
329 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 # define EV_USE_EVENTFD EV_FEATURE_OS
331 # else
332 # define EV_USE_EVENTFD 0
333 # endif
334 #endif
335
336 #ifndef EV_USE_SIGNALFD
337 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 # define EV_USE_SIGNALFD EV_FEATURE_OS
339 # else
340 # define EV_USE_SIGNALFD 0
341 # endif
342 #endif
343
344 #if 0 /* debugging */
345 # define EV_VERIFY 3
346 # define EV_USE_4HEAP 1
347 # define EV_HEAP_CACHE_AT 1
348 #endif
349
350 #ifndef EV_VERIFY
351 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 #endif
353
354 #ifndef EV_USE_4HEAP
355 # define EV_USE_4HEAP EV_FEATURE_DATA
356 #endif
357
358 #ifndef EV_HEAP_CACHE_AT
359 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 #endif
361
362 #ifdef ANDROID
363 /* supposedly, android doesn't typedef fd_mask */
364 # undef EV_USE_SELECT
365 # define EV_USE_SELECT 0
366 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367 # undef EV_USE_CLOCK_SYSCALL
368 # define EV_USE_CLOCK_SYSCALL 0
369 #endif
370
371 /* aix's poll.h seems to cause lots of trouble */
372 #ifdef _AIX
373 /* AIX has a completely broken poll.h header */
374 # undef EV_USE_POLL
375 # define EV_USE_POLL 0
376 #endif
377
378 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379 /* which makes programs even slower. might work on other unices, too. */
380 #if EV_USE_CLOCK_SYSCALL
381 # include <sys/syscall.h>
382 # ifdef SYS_clock_gettime
383 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384 # undef EV_USE_MONOTONIC
385 # define EV_USE_MONOTONIC 1
386 # else
387 # undef EV_USE_CLOCK_SYSCALL
388 # define EV_USE_CLOCK_SYSCALL 0
389 # endif
390 #endif
391
392 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
393
394 #ifndef CLOCK_MONOTONIC
395 # undef EV_USE_MONOTONIC
396 # define EV_USE_MONOTONIC 0
397 #endif
398
399 #ifndef CLOCK_REALTIME
400 # undef EV_USE_REALTIME
401 # define EV_USE_REALTIME 0
402 #endif
403
404 #if !EV_STAT_ENABLE
405 # undef EV_USE_INOTIFY
406 # define EV_USE_INOTIFY 0
407 #endif
408
409 #if !EV_USE_NANOSLEEP
410 /* hp-ux has it in sys/time.h, which we unconditionally include above */
411 # if !defined _WIN32 && !defined __hpux
412 # include <sys/select.h>
413 # endif
414 #endif
415
416 #if EV_USE_INOTIFY
417 # include <sys/statfs.h>
418 # include <sys/inotify.h>
419 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420 # ifndef IN_DONT_FOLLOW
421 # undef EV_USE_INOTIFY
422 # define EV_USE_INOTIFY 0
423 # endif
424 #endif
425
426 #if EV_USE_EVENTFD
427 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428 # include <stdint.h>
429 # ifndef EFD_NONBLOCK
430 # define EFD_NONBLOCK O_NONBLOCK
431 # endif
432 # ifndef EFD_CLOEXEC
433 # ifdef O_CLOEXEC
434 # define EFD_CLOEXEC O_CLOEXEC
435 # else
436 # define EFD_CLOEXEC 02000000
437 # endif
438 # endif
439 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440 #endif
441
442 #if EV_USE_SIGNALFD
443 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444 # include <stdint.h>
445 # ifndef SFD_NONBLOCK
446 # define SFD_NONBLOCK O_NONBLOCK
447 # endif
448 # ifndef SFD_CLOEXEC
449 # ifdef O_CLOEXEC
450 # define SFD_CLOEXEC O_CLOEXEC
451 # else
452 # define SFD_CLOEXEC 02000000
453 # endif
454 # endif
455 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457 struct signalfd_siginfo
458 {
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461 };
462 #endif
463
464 /**/
465
466 #if EV_VERIFY >= 3
467 # define EV_FREQUENT_CHECK ev_verify (EV_A)
468 #else
469 # define EV_FREQUENT_CHECK do { } while (0)
470 #endif
471
472 /*
473 * This is used to work around floating point rounding problems.
474 * This value is good at least till the year 4000.
475 */
476 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
478
479 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
480 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
481
482 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486 /* ECB.H BEGIN */
487 /*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
516 #ifndef ECB_H
517 #define ECB_H
518
519 /* 16 bits major, 16 bits minor */
520 #define ECB_VERSION 0x00010003
521
522 #ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
529 #if __GNUC__
530 typedef signed long long int64_t;
531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
545 #else
546 #include <inttypes.h>
547 #if UINTMAX_MAX > 0xffffffffU
548 #define ECB_PTRSIZE 8
549 #else
550 #define ECB_PTRSIZE 4
551 #endif
552 #endif
553
554 /* work around x32 idiocy by defining proper macros */
555 #if __x86_64 || _M_AMD64
556 #if __ILP32
557 #define ECB_AMD64_X32 1
558 #else
559 #define ECB_AMD64 1
560 #endif
561 #endif
562
563 /* many compilers define _GNUC_ to some versions but then only implement
564 * what their idiot authors think are the "more important" extensions,
565 * causing enormous grief in return for some better fake benchmark numbers.
566 * or so.
567 * we try to detect these and simply assume they are not gcc - if they have
568 * an issue with that they should have done it right in the first place.
569 */
570 #ifndef ECB_GCC_VERSION
571 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
572 #define ECB_GCC_VERSION(major,minor) 0
573 #else
574 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
575 #endif
576 #endif
577
578 #define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
579 #define ECB_C99 (__STDC_VERSION__ >= 199901L)
580 #define ECB_C11 (__STDC_VERSION__ >= 201112L)
581 #define ECB_CPP (__cplusplus+0)
582 #define ECB_CPP11 (__cplusplus >= 201103L)
583
584 #if ECB_CPP
585 #define ECB_EXTERN_C extern "C"
586 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
587 #define ECB_EXTERN_C_END }
588 #else
589 #define ECB_EXTERN_C extern
590 #define ECB_EXTERN_C_BEG
591 #define ECB_EXTERN_C_END
592 #endif
593
594 /*****************************************************************************/
595
596 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
597 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
598
599 #if ECB_NO_THREADS
600 #define ECB_NO_SMP 1
601 #endif
602
603 #if ECB_NO_SMP
604 #define ECB_MEMORY_FENCE do { } while (0)
605 #endif
606
607 #ifndef ECB_MEMORY_FENCE
608 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
609 #if __i386 || __i386__
610 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
611 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
612 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
613 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
614 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
615 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
616 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
617 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
619 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
620 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
622 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
623 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
624 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
625 #elif __sparc || __sparc__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
629 #elif defined __s390__ || defined __s390x__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
631 #elif defined __mips__
632 /* GNU/Linux emulates sync on mips1 architectures, so we force it's use */
633 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
635 #elif defined __alpha__
636 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
637 #elif defined __hppa__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
639 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
640 #elif defined __ia64__
641 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
642 #endif
643 #endif
644 #endif
645
646 #ifndef ECB_MEMORY_FENCE
647 #if ECB_GCC_VERSION(4,7)
648 /* see comment below (stdatomic.h) about the C11 memory model. */
649 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
650
651 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
652 * without risking compile time errors with other compilers. We *could*
653 * define our own ecb_clang_has_feature, but I just can't be bothered to work
654 * around this shit time and again.
655 * #elif defined __clang && __has_feature (cxx_atomic)
656 * // see comment below (stdatomic.h) about the C11 memory model.
657 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
658 */
659
660 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
661 #define ECB_MEMORY_FENCE __sync_synchronize ()
662 #elif _MSC_VER >= 1400 /* VC++ 2005 */
663 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
664 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
665 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
666 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
667 #elif defined _WIN32
668 #include <WinNT.h>
669 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
670 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
671 #include <mbarrier.h>
672 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
673 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
674 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
675 #elif __xlC__
676 #define ECB_MEMORY_FENCE __sync ()
677 #endif
678 #endif
679
680 #ifndef ECB_MEMORY_FENCE
681 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
682 /* we assume that these memory fences work on all variables/all memory accesses, */
683 /* not just C11 atomics and atomic accesses */
684 #include <stdatomic.h>
685 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
686 /* any fence other than seq_cst, which isn't very efficient for us. */
687 /* Why that is, we don't know - either the C11 memory model is quite useless */
688 /* for most usages, or gcc and clang have a bug */
689 /* I *currently* lean towards the latter, and inefficiently implement */
690 /* all three of ecb's fences as a seq_cst fence */
691 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
692 #endif
693 #endif
694
695 #ifndef ECB_MEMORY_FENCE
696 #if !ECB_AVOID_PTHREADS
697 /*
698 * if you get undefined symbol references to pthread_mutex_lock,
699 * or failure to find pthread.h, then you should implement
700 * the ECB_MEMORY_FENCE operations for your cpu/compiler
701 * OR provide pthread.h and link against the posix thread library
702 * of your system.
703 */
704 #include <pthread.h>
705 #define ECB_NEEDS_PTHREADS 1
706 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
707
708 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
709 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
710 #endif
711 #endif
712
713 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
714 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
715 #endif
716
717 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
718 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
719 #endif
720
721 /*****************************************************************************/
722
723 #if __cplusplus
724 #define ecb_inline static inline
725 #elif ECB_GCC_VERSION(2,5)
726 #define ecb_inline static __inline__
727 #elif ECB_C99
728 #define ecb_inline static inline
729 #else
730 #define ecb_inline static
731 #endif
732
733 #if ECB_GCC_VERSION(3,3)
734 #define ecb_restrict __restrict__
735 #elif ECB_C99
736 #define ecb_restrict restrict
737 #else
738 #define ecb_restrict
739 #endif
740
741 typedef int ecb_bool;
742
743 #define ECB_CONCAT_(a, b) a ## b
744 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
745 #define ECB_STRINGIFY_(a) # a
746 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
747
748 #define ecb_function_ ecb_inline
749
750 #if ECB_GCC_VERSION(3,1)
751 #define ecb_attribute(attrlist) __attribute__(attrlist)
752 #define ecb_is_constant(expr) __builtin_constant_p (expr)
753 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
754 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
755 #else
756 #define ecb_attribute(attrlist)
757 #define ecb_is_constant(expr) 0
758 #define ecb_expect(expr,value) (expr)
759 #define ecb_prefetch(addr,rw,locality)
760 #endif
761
762 /* no emulation for ecb_decltype */
763 #if ECB_GCC_VERSION(4,5)
764 #define ecb_decltype(x) __decltype(x)
765 #elif ECB_GCC_VERSION(3,0)
766 #define ecb_decltype(x) __typeof(x)
767 #endif
768
769 #define ecb_noinline ecb_attribute ((__noinline__))
770 #define ecb_unused ecb_attribute ((__unused__))
771 #define ecb_const ecb_attribute ((__const__))
772 #define ecb_pure ecb_attribute ((__pure__))
773
774 #if ECB_C11
775 #define ecb_noreturn _Noreturn
776 #else
777 #define ecb_noreturn ecb_attribute ((__noreturn__))
778 #endif
779
780 #if ECB_GCC_VERSION(4,3)
781 #define ecb_artificial ecb_attribute ((__artificial__))
782 #define ecb_hot ecb_attribute ((__hot__))
783 #define ecb_cold ecb_attribute ((__cold__))
784 #else
785 #define ecb_artificial
786 #define ecb_hot
787 #define ecb_cold
788 #endif
789
790 /* put around conditional expressions if you are very sure that the */
791 /* expression is mostly true or mostly false. note that these return */
792 /* booleans, not the expression. */
793 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
794 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
795 /* for compatibility to the rest of the world */
796 #define ecb_likely(expr) ecb_expect_true (expr)
797 #define ecb_unlikely(expr) ecb_expect_false (expr)
798
799 /* count trailing zero bits and count # of one bits */
800 #if ECB_GCC_VERSION(3,4)
801 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
802 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
803 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
804 #define ecb_ctz32(x) __builtin_ctz (x)
805 #define ecb_ctz64(x) __builtin_ctzll (x)
806 #define ecb_popcount32(x) __builtin_popcount (x)
807 /* no popcountll */
808 #else
809 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
810 ecb_function_ int
811 ecb_ctz32 (uint32_t x)
812 {
813 int r = 0;
814
815 x &= ~x + 1; /* this isolates the lowest bit */
816
817 #if ECB_branchless_on_i386
818 r += !!(x & 0xaaaaaaaa) << 0;
819 r += !!(x & 0xcccccccc) << 1;
820 r += !!(x & 0xf0f0f0f0) << 2;
821 r += !!(x & 0xff00ff00) << 3;
822 r += !!(x & 0xffff0000) << 4;
823 #else
824 if (x & 0xaaaaaaaa) r += 1;
825 if (x & 0xcccccccc) r += 2;
826 if (x & 0xf0f0f0f0) r += 4;
827 if (x & 0xff00ff00) r += 8;
828 if (x & 0xffff0000) r += 16;
829 #endif
830
831 return r;
832 }
833
834 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
835 ecb_function_ int
836 ecb_ctz64 (uint64_t x)
837 {
838 int shift = x & 0xffffffffU ? 0 : 32;
839 return ecb_ctz32 (x >> shift) + shift;
840 }
841
842 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
843 ecb_function_ int
844 ecb_popcount32 (uint32_t x)
845 {
846 x -= (x >> 1) & 0x55555555;
847 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
848 x = ((x >> 4) + x) & 0x0f0f0f0f;
849 x *= 0x01010101;
850
851 return x >> 24;
852 }
853
854 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
855 ecb_function_ int ecb_ld32 (uint32_t x)
856 {
857 int r = 0;
858
859 if (x >> 16) { x >>= 16; r += 16; }
860 if (x >> 8) { x >>= 8; r += 8; }
861 if (x >> 4) { x >>= 4; r += 4; }
862 if (x >> 2) { x >>= 2; r += 2; }
863 if (x >> 1) { r += 1; }
864
865 return r;
866 }
867
868 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
869 ecb_function_ int ecb_ld64 (uint64_t x)
870 {
871 int r = 0;
872
873 if (x >> 32) { x >>= 32; r += 32; }
874
875 return r + ecb_ld32 (x);
876 }
877 #endif
878
879 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
880 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
881 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
882 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
883
884 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
885 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
886 {
887 return ( (x * 0x0802U & 0x22110U)
888 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
889 }
890
891 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
892 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
893 {
894 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
895 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
896 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
897 x = ( x >> 8 ) | ( x << 8);
898
899 return x;
900 }
901
902 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
903 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
904 {
905 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
906 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
907 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
908 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
909 x = ( x >> 16 ) | ( x << 16);
910
911 return x;
912 }
913
914 /* popcount64 is only available on 64 bit cpus as gcc builtin */
915 /* so for this version we are lazy */
916 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
917 ecb_function_ int
918 ecb_popcount64 (uint64_t x)
919 {
920 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
921 }
922
923 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
924 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
925 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
926 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
927 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
928 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
929 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
930 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
931
932 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
933 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
934 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
935 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
936 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
937 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
938 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
939 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
940
941 #if ECB_GCC_VERSION(4,3)
942 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
943 #define ecb_bswap32(x) __builtin_bswap32 (x)
944 #define ecb_bswap64(x) __builtin_bswap64 (x)
945 #else
946 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
947 ecb_function_ uint16_t
948 ecb_bswap16 (uint16_t x)
949 {
950 return ecb_rotl16 (x, 8);
951 }
952
953 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
954 ecb_function_ uint32_t
955 ecb_bswap32 (uint32_t x)
956 {
957 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
958 }
959
960 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
961 ecb_function_ uint64_t
962 ecb_bswap64 (uint64_t x)
963 {
964 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
965 }
966 #endif
967
968 #if ECB_GCC_VERSION(4,5)
969 #define ecb_unreachable() __builtin_unreachable ()
970 #else
971 /* this seems to work fine, but gcc always emits a warning for it :/ */
972 ecb_inline void ecb_unreachable (void) ecb_noreturn;
973 ecb_inline void ecb_unreachable (void) { }
974 #endif
975
976 /* try to tell the compiler that some condition is definitely true */
977 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
978
979 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
980 ecb_inline unsigned char
981 ecb_byteorder_helper (void)
982 {
983 /* the union code still generates code under pressure in gcc, */
984 /* but less than using pointers, and always seems to */
985 /* successfully return a constant. */
986 /* the reason why we have this horrible preprocessor mess */
987 /* is to avoid it in all cases, at least on common architectures */
988 /* or when using a recent enough gcc version (>= 4.6) */
989 #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
990 return 0x44;
991 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
992 return 0x44;
993 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
994 return 0x11;
995 #else
996 union
997 {
998 uint32_t i;
999 uint8_t c;
1000 } u = { 0x11223344 };
1001 return u.c;
1002 #endif
1003 }
1004
1005 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1006 ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1007 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1008 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1009
1010 #if ECB_GCC_VERSION(3,0) || ECB_C99
1011 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1012 #else
1013 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1014 #endif
1015
1016 #if __cplusplus
1017 template<typename T>
1018 static inline T ecb_div_rd (T val, T div)
1019 {
1020 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1021 }
1022 template<typename T>
1023 static inline T ecb_div_ru (T val, T div)
1024 {
1025 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1026 }
1027 #else
1028 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1029 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1030 #endif
1031
1032 #if ecb_cplusplus_does_not_suck
1033 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1034 template<typename T, int N>
1035 static inline int ecb_array_length (const T (&arr)[N])
1036 {
1037 return N;
1038 }
1039 #else
1040 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1041 #endif
1042
1043 /*******************************************************************************/
1044 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1045
1046 /* basically, everything uses "ieee pure-endian" floating point numbers */
1047 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1048 #if 0 \
1049 || __i386 || __i386__ \
1050 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1051 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1052 || defined __arm__ && defined __ARM_EABI__ \
1053 || defined __s390__ || defined __s390x__ \
1054 || defined __mips__ \
1055 || defined __alpha__ \
1056 || defined __hppa__ \
1057 || defined __ia64__ \
1058 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1059 #define ECB_STDFP 1
1060 #include <string.h> /* for memcpy */
1061 #else
1062 #define ECB_STDFP 0
1063 #include <math.h> /* for frexp*, ldexp* */
1064 #endif
1065
1066 #ifndef ECB_NO_LIBM
1067
1068 /* convert a float to ieee single/binary32 */
1069 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1070 ecb_function_ uint32_t
1071 ecb_float_to_binary32 (float x)
1072 {
1073 uint32_t r;
1074
1075 #if ECB_STDFP
1076 memcpy (&r, &x, 4);
1077 #else
1078 /* slow emulation, works for anything but -0 */
1079 uint32_t m;
1080 int e;
1081
1082 if (x == 0e0f ) return 0x00000000U;
1083 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1084 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1085 if (x != x ) return 0x7fbfffffU;
1086
1087 m = frexpf (x, &e) * 0x1000000U;
1088
1089 r = m & 0x80000000U;
1090
1091 if (r)
1092 m = -m;
1093
1094 if (e <= -126)
1095 {
1096 m &= 0xffffffU;
1097 m >>= (-125 - e);
1098 e = -126;
1099 }
1100
1101 r |= (e + 126) << 23;
1102 r |= m & 0x7fffffU;
1103 #endif
1104
1105 return r;
1106 }
1107
1108 /* converts an ieee single/binary32 to a float */
1109 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1110 ecb_function_ float
1111 ecb_binary32_to_float (uint32_t x)
1112 {
1113 float r;
1114
1115 #if ECB_STDFP
1116 memcpy (&r, &x, 4);
1117 #else
1118 /* emulation, only works for normals and subnormals and +0 */
1119 int neg = x >> 31;
1120 int e = (x >> 23) & 0xffU;
1121
1122 x &= 0x7fffffU;
1123
1124 if (e)
1125 x |= 0x800000U;
1126 else
1127 e = 1;
1128
1129 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1130 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1131
1132 r = neg ? -r : r;
1133 #endif
1134
1135 return r;
1136 }
1137
1138 /* convert a double to ieee double/binary64 */
1139 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1140 ecb_function_ uint64_t
1141 ecb_double_to_binary64 (double x)
1142 {
1143 uint64_t r;
1144
1145 #if ECB_STDFP
1146 memcpy (&r, &x, 8);
1147 #else
1148 /* slow emulation, works for anything but -0 */
1149 uint64_t m;
1150 int e;
1151
1152 if (x == 0e0 ) return 0x0000000000000000U;
1153 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1154 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1155 if (x != x ) return 0X7ff7ffffffffffffU;
1156
1157 m = frexp (x, &e) * 0x20000000000000U;
1158
1159 r = m & 0x8000000000000000;;
1160
1161 if (r)
1162 m = -m;
1163
1164 if (e <= -1022)
1165 {
1166 m &= 0x1fffffffffffffU;
1167 m >>= (-1021 - e);
1168 e = -1022;
1169 }
1170
1171 r |= ((uint64_t)(e + 1022)) << 52;
1172 r |= m & 0xfffffffffffffU;
1173 #endif
1174
1175 return r;
1176 }
1177
1178 /* converts an ieee double/binary64 to a double */
1179 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1180 ecb_function_ double
1181 ecb_binary64_to_double (uint64_t x)
1182 {
1183 double r;
1184
1185 #if ECB_STDFP
1186 memcpy (&r, &x, 8);
1187 #else
1188 /* emulation, only works for normals and subnormals and +0 */
1189 int neg = x >> 63;
1190 int e = (x >> 52) & 0x7ffU;
1191
1192 x &= 0xfffffffffffffU;
1193
1194 if (e)
1195 x |= 0x10000000000000U;
1196 else
1197 e = 1;
1198
1199 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1200 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1201
1202 r = neg ? -r : r;
1203 #endif
1204
1205 return r;
1206 }
1207
1208 #endif
1209
1210 #endif
1211
1212 /* ECB.H END */
1213
1214 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1215 /* if your architecture doesn't need memory fences, e.g. because it is
1216 * single-cpu/core, or if you use libev in a project that doesn't use libev
1217 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1218 * libev, in which cases the memory fences become nops.
1219 * alternatively, you can remove this #error and link against libpthread,
1220 * which will then provide the memory fences.
1221 */
1222 # error "memory fences not defined for your architecture, please report"
1223 #endif
1224
1225 #ifndef ECB_MEMORY_FENCE
1226 # define ECB_MEMORY_FENCE do { } while (0)
1227 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1228 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1229 #endif
1230
1231 #define expect_false(cond) ecb_expect_false (cond)
1232 #define expect_true(cond) ecb_expect_true (cond)
1233 #define noinline ecb_noinline
1234
1235 #define inline_size ecb_inline
1236
1237 #if EV_FEATURE_CODE
1238 # define inline_speed ecb_inline
1239 #else
1240 # define inline_speed static noinline
1241 #endif
1242
1243 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1244
1245 #if EV_MINPRI == EV_MAXPRI
1246 # define ABSPRI(w) (((W)w), 0)
1247 #else
1248 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1249 #endif
1250
1251 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1252 #define EMPTY2(a,b) /* used to suppress some warnings */
1253
1254 typedef ev_watcher *W;
1255 typedef ev_watcher_list *WL;
1256 typedef ev_watcher_time *WT;
1257
1258 #define ev_active(w) ((W)(w))->active
1259 #define ev_at(w) ((WT)(w))->at
1260
1261 #if EV_USE_REALTIME
1262 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1263 /* giving it a reasonably high chance of working on typical architectures */
1264 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1265 #endif
1266
1267 #if EV_USE_MONOTONIC
1268 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1269 #endif
1270
1271 #ifndef EV_FD_TO_WIN32_HANDLE
1272 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1273 #endif
1274 #ifndef EV_WIN32_HANDLE_TO_FD
1275 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1276 #endif
1277 #ifndef EV_WIN32_CLOSE_FD
1278 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1279 #endif
1280
1281 #ifdef _WIN32
1282 # include "ev_win32.c"
1283 #endif
1284
1285 /*****************************************************************************/
1286
1287 /* define a suitable floor function (only used by periodics atm) */
1288
1289 #if EV_USE_FLOOR
1290 # include <math.h>
1291 # define ev_floor(v) floor (v)
1292 #else
1293
1294 #include <float.h>
1295
1296 /* a floor() replacement function, should be independent of ev_tstamp type */
1297 static ev_tstamp noinline
1298 ev_floor (ev_tstamp v)
1299 {
1300 /* the choice of shift factor is not terribly important */
1301 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1302 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1303 #else
1304 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1305 #endif
1306
1307 /* argument too large for an unsigned long? */
1308 if (expect_false (v >= shift))
1309 {
1310 ev_tstamp f;
1311
1312 if (v == v - 1.)
1313 return v; /* very large number */
1314
1315 f = shift * ev_floor (v * (1. / shift));
1316 return f + ev_floor (v - f);
1317 }
1318
1319 /* special treatment for negative args? */
1320 if (expect_false (v < 0.))
1321 {
1322 ev_tstamp f = -ev_floor (-v);
1323
1324 return f - (f == v ? 0 : 1);
1325 }
1326
1327 /* fits into an unsigned long */
1328 return (unsigned long)v;
1329 }
1330
1331 #endif
1332
1333 /*****************************************************************************/
1334
1335 #ifdef __linux
1336 # include <sys/utsname.h>
1337 #endif
1338
1339 static unsigned int noinline ecb_cold
1340 ev_linux_version (void)
1341 {
1342 #ifdef __linux
1343 unsigned int v = 0;
1344 struct utsname buf;
1345 int i;
1346 char *p = buf.release;
1347
1348 if (uname (&buf))
1349 return 0;
1350
1351 for (i = 3+1; --i; )
1352 {
1353 unsigned int c = 0;
1354
1355 for (;;)
1356 {
1357 if (*p >= '0' && *p <= '9')
1358 c = c * 10 + *p++ - '0';
1359 else
1360 {
1361 p += *p == '.';
1362 break;
1363 }
1364 }
1365
1366 v = (v << 8) | c;
1367 }
1368
1369 return v;
1370 #else
1371 return 0;
1372 #endif
1373 }
1374
1375 /*****************************************************************************/
1376
1377 #if EV_AVOID_STDIO
1378 static void noinline ecb_cold
1379 ev_printerr (const char *msg)
1380 {
1381 write (STDERR_FILENO, msg, strlen (msg));
1382 }
1383 #endif
1384
1385 static void (*syserr_cb)(const char *msg) EV_THROW;
1386
1387 void ecb_cold
1388 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1389 {
1390 syserr_cb = cb;
1391 }
1392
1393 static void noinline ecb_cold
1394 ev_syserr (const char *msg)
1395 {
1396 if (!msg)
1397 msg = "(libev) system error";
1398
1399 if (syserr_cb)
1400 syserr_cb (msg);
1401 else
1402 {
1403 #if EV_AVOID_STDIO
1404 ev_printerr (msg);
1405 ev_printerr (": ");
1406 ev_printerr (strerror (errno));
1407 ev_printerr ("\n");
1408 #else
1409 perror (msg);
1410 #endif
1411 abort ();
1412 }
1413 }
1414
1415 static void *
1416 ev_realloc_emul (void *ptr, long size) EV_THROW
1417 {
1418 /* some systems, notably openbsd and darwin, fail to properly
1419 * implement realloc (x, 0) (as required by both ansi c-89 and
1420 * the single unix specification, so work around them here.
1421 * recently, also (at least) fedora and debian started breaking it,
1422 * despite documenting it otherwise.
1423 */
1424
1425 if (size)
1426 return realloc (ptr, size);
1427
1428 free (ptr);
1429 return 0;
1430 }
1431
1432 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1433
1434 void ecb_cold
1435 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1436 {
1437 alloc = cb;
1438 }
1439
1440 inline_speed void *
1441 ev_realloc (void *ptr, long size)
1442 {
1443 ptr = alloc (ptr, size);
1444
1445 if (!ptr && size)
1446 {
1447 #if EV_AVOID_STDIO
1448 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1449 #else
1450 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1451 #endif
1452 abort ();
1453 }
1454
1455 return ptr;
1456 }
1457
1458 #define ev_malloc(size) ev_realloc (0, (size))
1459 #define ev_free(ptr) ev_realloc ((ptr), 0)
1460
1461 /*****************************************************************************/
1462
1463 /* set in reify when reification needed */
1464 #define EV_ANFD_REIFY 1
1465
1466 /* file descriptor info structure */
1467 typedef struct
1468 {
1469 WL head;
1470 unsigned char events; /* the events watched for */
1471 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1472 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1473 unsigned char unused;
1474 #if EV_USE_EPOLL
1475 unsigned int egen; /* generation counter to counter epoll bugs */
1476 #endif
1477 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1478 SOCKET handle;
1479 #endif
1480 #if EV_USE_IOCP
1481 OVERLAPPED or, ow;
1482 #endif
1483 } ANFD;
1484
1485 /* stores the pending event set for a given watcher */
1486 typedef struct
1487 {
1488 W w;
1489 int events; /* the pending event set for the given watcher */
1490 } ANPENDING;
1491
1492 #if EV_USE_INOTIFY
1493 /* hash table entry per inotify-id */
1494 typedef struct
1495 {
1496 WL head;
1497 } ANFS;
1498 #endif
1499
1500 /* Heap Entry */
1501 #if EV_HEAP_CACHE_AT
1502 /* a heap element */
1503 typedef struct {
1504 ev_tstamp at;
1505 WT w;
1506 } ANHE;
1507
1508 #define ANHE_w(he) (he).w /* access watcher, read-write */
1509 #define ANHE_at(he) (he).at /* access cached at, read-only */
1510 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1511 #else
1512 /* a heap element */
1513 typedef WT ANHE;
1514
1515 #define ANHE_w(he) (he)
1516 #define ANHE_at(he) (he)->at
1517 #define ANHE_at_cache(he)
1518 #endif
1519
1520 #if EV_MULTIPLICITY
1521
1522 struct ev_loop
1523 {
1524 ev_tstamp ev_rt_now;
1525 #define ev_rt_now ((loop)->ev_rt_now)
1526 #define VAR(name,decl) decl;
1527 #include "ev_vars.h"
1528 #undef VAR
1529 };
1530 #include "ev_wrap.h"
1531
1532 static struct ev_loop default_loop_struct;
1533 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1534
1535 #else
1536
1537 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1538 #define VAR(name,decl) static decl;
1539 #include "ev_vars.h"
1540 #undef VAR
1541
1542 static int ev_default_loop_ptr;
1543
1544 #endif
1545
1546 #if EV_FEATURE_API
1547 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1548 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1549 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1550 #else
1551 # define EV_RELEASE_CB (void)0
1552 # define EV_ACQUIRE_CB (void)0
1553 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1554 #endif
1555
1556 #define EVBREAK_RECURSE 0x80
1557
1558 /*****************************************************************************/
1559
1560 #ifndef EV_HAVE_EV_TIME
1561 ev_tstamp
1562 ev_time (void) EV_THROW
1563 {
1564 #if EV_USE_REALTIME
1565 if (expect_true (have_realtime))
1566 {
1567 struct timespec ts;
1568 clock_gettime (CLOCK_REALTIME, &ts);
1569 return ts.tv_sec + ts.tv_nsec * 1e-9;
1570 }
1571 #endif
1572
1573 struct timeval tv;
1574 gettimeofday (&tv, 0);
1575 return tv.tv_sec + tv.tv_usec * 1e-6;
1576 }
1577 #endif
1578
1579 inline_size ev_tstamp
1580 get_clock (void)
1581 {
1582 #if EV_USE_MONOTONIC
1583 if (expect_true (have_monotonic))
1584 {
1585 struct timespec ts;
1586 clock_gettime (CLOCK_MONOTONIC, &ts);
1587 return ts.tv_sec + ts.tv_nsec * 1e-9;
1588 }
1589 #endif
1590
1591 return ev_time ();
1592 }
1593
1594 #if EV_MULTIPLICITY
1595 ev_tstamp
1596 ev_now (EV_P) EV_THROW
1597 {
1598 return ev_rt_now;
1599 }
1600 #endif
1601
1602 void
1603 ev_sleep (ev_tstamp delay) EV_THROW
1604 {
1605 if (delay > 0.)
1606 {
1607 #if EV_USE_NANOSLEEP
1608 struct timespec ts;
1609
1610 EV_TS_SET (ts, delay);
1611 nanosleep (&ts, 0);
1612 #elif defined _WIN32
1613 Sleep ((unsigned long)(delay * 1e3));
1614 #else
1615 struct timeval tv;
1616
1617 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1618 /* something not guaranteed by newer posix versions, but guaranteed */
1619 /* by older ones */
1620 EV_TV_SET (tv, delay);
1621 select (0, 0, 0, 0, &tv);
1622 #endif
1623 }
1624 }
1625
1626 /*****************************************************************************/
1627
1628 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1629
1630 /* find a suitable new size for the given array, */
1631 /* hopefully by rounding to a nice-to-malloc size */
1632 inline_size int
1633 array_nextsize (int elem, int cur, int cnt)
1634 {
1635 int ncur = cur + 1;
1636
1637 do
1638 ncur <<= 1;
1639 while (cnt > ncur);
1640
1641 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1642 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1643 {
1644 ncur *= elem;
1645 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1646 ncur = ncur - sizeof (void *) * 4;
1647 ncur /= elem;
1648 }
1649
1650 return ncur;
1651 }
1652
1653 static void * noinline ecb_cold
1654 array_realloc (int elem, void *base, int *cur, int cnt)
1655 {
1656 *cur = array_nextsize (elem, *cur, cnt);
1657 return ev_realloc (base, elem * *cur);
1658 }
1659
1660 #define array_init_zero(base,count) \
1661 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1662
1663 #define array_needsize(type,base,cur,cnt,init) \
1664 if (expect_false ((cnt) > (cur))) \
1665 { \
1666 int ecb_unused ocur_ = (cur); \
1667 (base) = (type *)array_realloc \
1668 (sizeof (type), (base), &(cur), (cnt)); \
1669 init ((base) + (ocur_), (cur) - ocur_); \
1670 }
1671
1672 #if 0
1673 #define array_slim(type,stem) \
1674 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1675 { \
1676 stem ## max = array_roundsize (stem ## cnt >> 1); \
1677 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1678 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1679 }
1680 #endif
1681
1682 #define array_free(stem, idx) \
1683 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1684
1685 /*****************************************************************************/
1686
1687 /* dummy callback for pending events */
1688 static void noinline
1689 pendingcb (EV_P_ ev_prepare *w, int revents)
1690 {
1691 }
1692
1693 void noinline
1694 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1695 {
1696 W w_ = (W)w;
1697 int pri = ABSPRI (w_);
1698
1699 if (expect_false (w_->pending))
1700 pendings [pri][w_->pending - 1].events |= revents;
1701 else
1702 {
1703 w_->pending = ++pendingcnt [pri];
1704 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1705 pendings [pri][w_->pending - 1].w = w_;
1706 pendings [pri][w_->pending - 1].events = revents;
1707 }
1708
1709 pendingpri = NUMPRI - 1;
1710 }
1711
1712 inline_speed void
1713 feed_reverse (EV_P_ W w)
1714 {
1715 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1716 rfeeds [rfeedcnt++] = w;
1717 }
1718
1719 inline_size void
1720 feed_reverse_done (EV_P_ int revents)
1721 {
1722 do
1723 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1724 while (rfeedcnt);
1725 }
1726
1727 inline_speed void
1728 queue_events (EV_P_ W *events, int eventcnt, int type)
1729 {
1730 int i;
1731
1732 for (i = 0; i < eventcnt; ++i)
1733 ev_feed_event (EV_A_ events [i], type);
1734 }
1735
1736 /*****************************************************************************/
1737
1738 inline_speed void
1739 fd_event_nocheck (EV_P_ int fd, int revents)
1740 {
1741 ANFD *anfd = anfds + fd;
1742 ev_io *w;
1743
1744 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1745 {
1746 int ev = w->events & revents;
1747
1748 if (ev)
1749 ev_feed_event (EV_A_ (W)w, ev);
1750 }
1751 }
1752
1753 /* do not submit kernel events for fds that have reify set */
1754 /* because that means they changed while we were polling for new events */
1755 inline_speed void
1756 fd_event (EV_P_ int fd, int revents)
1757 {
1758 ANFD *anfd = anfds + fd;
1759
1760 if (expect_true (!anfd->reify))
1761 fd_event_nocheck (EV_A_ fd, revents);
1762 }
1763
1764 void
1765 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1766 {
1767 if (fd >= 0 && fd < anfdmax)
1768 fd_event_nocheck (EV_A_ fd, revents);
1769 }
1770
1771 /* make sure the external fd watch events are in-sync */
1772 /* with the kernel/libev internal state */
1773 inline_size void
1774 fd_reify (EV_P)
1775 {
1776 int i;
1777
1778 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1779 for (i = 0; i < fdchangecnt; ++i)
1780 {
1781 int fd = fdchanges [i];
1782 ANFD *anfd = anfds + fd;
1783
1784 if (anfd->reify & EV__IOFDSET && anfd->head)
1785 {
1786 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1787
1788 if (handle != anfd->handle)
1789 {
1790 unsigned long arg;
1791
1792 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1793
1794 /* handle changed, but fd didn't - we need to do it in two steps */
1795 backend_modify (EV_A_ fd, anfd->events, 0);
1796 anfd->events = 0;
1797 anfd->handle = handle;
1798 }
1799 }
1800 }
1801 #endif
1802
1803 for (i = 0; i < fdchangecnt; ++i)
1804 {
1805 int fd = fdchanges [i];
1806 ANFD *anfd = anfds + fd;
1807 ev_io *w;
1808
1809 unsigned char o_events = anfd->events;
1810 unsigned char o_reify = anfd->reify;
1811
1812 anfd->reify = 0;
1813
1814 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1815 {
1816 anfd->events = 0;
1817
1818 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1819 anfd->events |= (unsigned char)w->events;
1820
1821 if (o_events != anfd->events)
1822 o_reify = EV__IOFDSET; /* actually |= */
1823 }
1824
1825 if (o_reify & EV__IOFDSET)
1826 backend_modify (EV_A_ fd, o_events, anfd->events);
1827 }
1828
1829 fdchangecnt = 0;
1830 }
1831
1832 /* something about the given fd changed */
1833 inline_size void
1834 fd_change (EV_P_ int fd, int flags)
1835 {
1836 unsigned char reify = anfds [fd].reify;
1837 anfds [fd].reify |= flags;
1838
1839 if (expect_true (!reify))
1840 {
1841 ++fdchangecnt;
1842 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1843 fdchanges [fdchangecnt - 1] = fd;
1844 }
1845 }
1846
1847 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1848 inline_speed void ecb_cold
1849 fd_kill (EV_P_ int fd)
1850 {
1851 ev_io *w;
1852
1853 while ((w = (ev_io *)anfds [fd].head))
1854 {
1855 ev_io_stop (EV_A_ w);
1856 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1857 }
1858 }
1859
1860 /* check whether the given fd is actually valid, for error recovery */
1861 inline_size int ecb_cold
1862 fd_valid (int fd)
1863 {
1864 #ifdef _WIN32
1865 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1866 #else
1867 return fcntl (fd, F_GETFD) != -1;
1868 #endif
1869 }
1870
1871 /* called on EBADF to verify fds */
1872 static void noinline ecb_cold
1873 fd_ebadf (EV_P)
1874 {
1875 int fd;
1876
1877 for (fd = 0; fd < anfdmax; ++fd)
1878 if (anfds [fd].events)
1879 if (!fd_valid (fd) && errno == EBADF)
1880 fd_kill (EV_A_ fd);
1881 }
1882
1883 /* called on ENOMEM in select/poll to kill some fds and retry */
1884 static void noinline ecb_cold
1885 fd_enomem (EV_P)
1886 {
1887 int fd;
1888
1889 for (fd = anfdmax; fd--; )
1890 if (anfds [fd].events)
1891 {
1892 fd_kill (EV_A_ fd);
1893 break;
1894 }
1895 }
1896
1897 /* usually called after fork if backend needs to re-arm all fds from scratch */
1898 static void noinline
1899 fd_rearm_all (EV_P)
1900 {
1901 int fd;
1902
1903 for (fd = 0; fd < anfdmax; ++fd)
1904 if (anfds [fd].events)
1905 {
1906 anfds [fd].events = 0;
1907 anfds [fd].emask = 0;
1908 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1909 }
1910 }
1911
1912 /* used to prepare libev internal fd's */
1913 /* this is not fork-safe */
1914 inline_speed void
1915 fd_intern (int fd)
1916 {
1917 #ifdef _WIN32
1918 unsigned long arg = 1;
1919 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1920 #else
1921 fcntl (fd, F_SETFD, FD_CLOEXEC);
1922 fcntl (fd, F_SETFL, O_NONBLOCK);
1923 #endif
1924 }
1925
1926 /*****************************************************************************/
1927
1928 /*
1929 * the heap functions want a real array index. array index 0 is guaranteed to not
1930 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1931 * the branching factor of the d-tree.
1932 */
1933
1934 /*
1935 * at the moment we allow libev the luxury of two heaps,
1936 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1937 * which is more cache-efficient.
1938 * the difference is about 5% with 50000+ watchers.
1939 */
1940 #if EV_USE_4HEAP
1941
1942 #define DHEAP 4
1943 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1944 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1945 #define UPHEAP_DONE(p,k) ((p) == (k))
1946
1947 /* away from the root */
1948 inline_speed void
1949 downheap (ANHE *heap, int N, int k)
1950 {
1951 ANHE he = heap [k];
1952 ANHE *E = heap + N + HEAP0;
1953
1954 for (;;)
1955 {
1956 ev_tstamp minat;
1957 ANHE *minpos;
1958 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1959
1960 /* find minimum child */
1961 if (expect_true (pos + DHEAP - 1 < E))
1962 {
1963 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1964 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1965 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1966 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1967 }
1968 else if (pos < E)
1969 {
1970 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1971 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1972 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1973 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1974 }
1975 else
1976 break;
1977
1978 if (ANHE_at (he) <= minat)
1979 break;
1980
1981 heap [k] = *minpos;
1982 ev_active (ANHE_w (*minpos)) = k;
1983
1984 k = minpos - heap;
1985 }
1986
1987 heap [k] = he;
1988 ev_active (ANHE_w (he)) = k;
1989 }
1990
1991 #else /* 4HEAP */
1992
1993 #define HEAP0 1
1994 #define HPARENT(k) ((k) >> 1)
1995 #define UPHEAP_DONE(p,k) (!(p))
1996
1997 /* away from the root */
1998 inline_speed void
1999 downheap (ANHE *heap, int N, int k)
2000 {
2001 ANHE he = heap [k];
2002
2003 for (;;)
2004 {
2005 int c = k << 1;
2006
2007 if (c >= N + HEAP0)
2008 break;
2009
2010 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2011 ? 1 : 0;
2012
2013 if (ANHE_at (he) <= ANHE_at (heap [c]))
2014 break;
2015
2016 heap [k] = heap [c];
2017 ev_active (ANHE_w (heap [k])) = k;
2018
2019 k = c;
2020 }
2021
2022 heap [k] = he;
2023 ev_active (ANHE_w (he)) = k;
2024 }
2025 #endif
2026
2027 /* towards the root */
2028 inline_speed void
2029 upheap (ANHE *heap, int k)
2030 {
2031 ANHE he = heap [k];
2032
2033 for (;;)
2034 {
2035 int p = HPARENT (k);
2036
2037 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2038 break;
2039
2040 heap [k] = heap [p];
2041 ev_active (ANHE_w (heap [k])) = k;
2042 k = p;
2043 }
2044
2045 heap [k] = he;
2046 ev_active (ANHE_w (he)) = k;
2047 }
2048
2049 /* move an element suitably so it is in a correct place */
2050 inline_size void
2051 adjustheap (ANHE *heap, int N, int k)
2052 {
2053 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2054 upheap (heap, k);
2055 else
2056 downheap (heap, N, k);
2057 }
2058
2059 /* rebuild the heap: this function is used only once and executed rarely */
2060 inline_size void
2061 reheap (ANHE *heap, int N)
2062 {
2063 int i;
2064
2065 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2066 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2067 for (i = 0; i < N; ++i)
2068 upheap (heap, i + HEAP0);
2069 }
2070
2071 /*****************************************************************************/
2072
2073 /* associate signal watchers to a signal signal */
2074 typedef struct
2075 {
2076 EV_ATOMIC_T pending;
2077 #if EV_MULTIPLICITY
2078 EV_P;
2079 #endif
2080 WL head;
2081 } ANSIG;
2082
2083 static ANSIG signals [EV_NSIG - 1];
2084
2085 /*****************************************************************************/
2086
2087 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2088
2089 static void noinline ecb_cold
2090 evpipe_init (EV_P)
2091 {
2092 if (!ev_is_active (&pipe_w))
2093 {
2094 int fds [2];
2095
2096 # if EV_USE_EVENTFD
2097 fds [0] = -1;
2098 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2099 if (fds [1] < 0 && errno == EINVAL)
2100 fds [1] = eventfd (0, 0);
2101
2102 if (fds [1] < 0)
2103 # endif
2104 {
2105 while (pipe (fds))
2106 ev_syserr ("(libev) error creating signal/async pipe");
2107
2108 fd_intern (fds [0]);
2109 }
2110
2111 evpipe [0] = fds [0];
2112
2113 if (evpipe [1] < 0)
2114 evpipe [1] = fds [1]; /* first call, set write fd */
2115 else
2116 {
2117 /* on subsequent calls, do not change evpipe [1] */
2118 /* so that evpipe_write can always rely on its value. */
2119 /* this branch does not do anything sensible on windows, */
2120 /* so must not be executed on windows */
2121
2122 dup2 (fds [1], evpipe [1]);
2123 close (fds [1]);
2124 }
2125
2126 fd_intern (evpipe [1]);
2127
2128 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2129 ev_io_start (EV_A_ &pipe_w);
2130 ev_unref (EV_A); /* watcher should not keep loop alive */
2131 }
2132 }
2133
2134 inline_speed void
2135 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2136 {
2137 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2138
2139 if (expect_true (*flag))
2140 return;
2141
2142 *flag = 1;
2143 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2144
2145 pipe_write_skipped = 1;
2146
2147 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2148
2149 if (pipe_write_wanted)
2150 {
2151 int old_errno;
2152
2153 pipe_write_skipped = 0;
2154 ECB_MEMORY_FENCE_RELEASE;
2155
2156 old_errno = errno; /* save errno because write will clobber it */
2157
2158 #if EV_USE_EVENTFD
2159 if (evpipe [0] < 0)
2160 {
2161 uint64_t counter = 1;
2162 write (evpipe [1], &counter, sizeof (uint64_t));
2163 }
2164 else
2165 #endif
2166 {
2167 #ifdef _WIN32
2168 WSABUF buf;
2169 DWORD sent;
2170 buf.buf = &buf;
2171 buf.len = 1;
2172 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2173 #else
2174 write (evpipe [1], &(evpipe [1]), 1);
2175 #endif
2176 }
2177
2178 errno = old_errno;
2179 }
2180 }
2181
2182 /* called whenever the libev signal pipe */
2183 /* got some events (signal, async) */
2184 static void
2185 pipecb (EV_P_ ev_io *iow, int revents)
2186 {
2187 int i;
2188
2189 if (revents & EV_READ)
2190 {
2191 #if EV_USE_EVENTFD
2192 if (evpipe [0] < 0)
2193 {
2194 uint64_t counter;
2195 read (evpipe [1], &counter, sizeof (uint64_t));
2196 }
2197 else
2198 #endif
2199 {
2200 char dummy[4];
2201 #ifdef _WIN32
2202 WSABUF buf;
2203 DWORD recvd;
2204 DWORD flags = 0;
2205 buf.buf = dummy;
2206 buf.len = sizeof (dummy);
2207 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2208 #else
2209 read (evpipe [0], &dummy, sizeof (dummy));
2210 #endif
2211 }
2212 }
2213
2214 pipe_write_skipped = 0;
2215
2216 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2217
2218 #if EV_SIGNAL_ENABLE
2219 if (sig_pending)
2220 {
2221 sig_pending = 0;
2222
2223 ECB_MEMORY_FENCE;
2224
2225 for (i = EV_NSIG - 1; i--; )
2226 if (expect_false (signals [i].pending))
2227 ev_feed_signal_event (EV_A_ i + 1);
2228 }
2229 #endif
2230
2231 #if EV_ASYNC_ENABLE
2232 if (async_pending)
2233 {
2234 async_pending = 0;
2235
2236 ECB_MEMORY_FENCE;
2237
2238 for (i = asynccnt; i--; )
2239 if (asyncs [i]->sent)
2240 {
2241 asyncs [i]->sent = 0;
2242 ECB_MEMORY_FENCE_RELEASE;
2243 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2244 }
2245 }
2246 #endif
2247 }
2248
2249 /*****************************************************************************/
2250
2251 void
2252 ev_feed_signal (int signum) EV_THROW
2253 {
2254 #if EV_MULTIPLICITY
2255 EV_P;
2256 ECB_MEMORY_FENCE_ACQUIRE;
2257 EV_A = signals [signum - 1].loop;
2258
2259 if (!EV_A)
2260 return;
2261 #endif
2262
2263 signals [signum - 1].pending = 1;
2264 evpipe_write (EV_A_ &sig_pending);
2265 }
2266
2267 static void
2268 ev_sighandler (int signum)
2269 {
2270 #ifdef _WIN32
2271 signal (signum, ev_sighandler);
2272 #endif
2273
2274 ev_feed_signal (signum);
2275 }
2276
2277 void noinline
2278 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2279 {
2280 WL w;
2281
2282 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2283 return;
2284
2285 --signum;
2286
2287 #if EV_MULTIPLICITY
2288 /* it is permissible to try to feed a signal to the wrong loop */
2289 /* or, likely more useful, feeding a signal nobody is waiting for */
2290
2291 if (expect_false (signals [signum].loop != EV_A))
2292 return;
2293 #endif
2294
2295 signals [signum].pending = 0;
2296 ECB_MEMORY_FENCE_RELEASE;
2297
2298 for (w = signals [signum].head; w; w = w->next)
2299 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2300 }
2301
2302 #if EV_USE_SIGNALFD
2303 static void
2304 sigfdcb (EV_P_ ev_io *iow, int revents)
2305 {
2306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2307
2308 for (;;)
2309 {
2310 ssize_t res = read (sigfd, si, sizeof (si));
2311
2312 /* not ISO-C, as res might be -1, but works with SuS */
2313 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2314 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2315
2316 if (res < (ssize_t)sizeof (si))
2317 break;
2318 }
2319 }
2320 #endif
2321
2322 #endif
2323
2324 /*****************************************************************************/
2325
2326 #if EV_CHILD_ENABLE
2327 static WL childs [EV_PID_HASHSIZE];
2328
2329 static ev_signal childev;
2330
2331 #ifndef WIFCONTINUED
2332 # define WIFCONTINUED(status) 0
2333 #endif
2334
2335 /* handle a single child status event */
2336 inline_speed void
2337 child_reap (EV_P_ int chain, int pid, int status)
2338 {
2339 ev_child *w;
2340 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2341
2342 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2343 {
2344 if ((w->pid == pid || !w->pid)
2345 && (!traced || (w->flags & 1)))
2346 {
2347 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2348 w->rpid = pid;
2349 w->rstatus = status;
2350 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2351 }
2352 }
2353 }
2354
2355 #ifndef WCONTINUED
2356 # define WCONTINUED 0
2357 #endif
2358
2359 /* called on sigchld etc., calls waitpid */
2360 static void
2361 childcb (EV_P_ ev_signal *sw, int revents)
2362 {
2363 int pid, status;
2364
2365 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2366 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2367 if (!WCONTINUED
2368 || errno != EINVAL
2369 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2370 return;
2371
2372 /* make sure we are called again until all children have been reaped */
2373 /* we need to do it this way so that the callback gets called before we continue */
2374 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2375
2376 child_reap (EV_A_ pid, pid, status);
2377 if ((EV_PID_HASHSIZE) > 1)
2378 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2379 }
2380
2381 #endif
2382
2383 /*****************************************************************************/
2384
2385 #if EV_USE_IOCP
2386 # include "ev_iocp.c"
2387 #endif
2388 #if EV_USE_PORT
2389 # include "ev_port.c"
2390 #endif
2391 #if EV_USE_KQUEUE
2392 # include "ev_kqueue.c"
2393 #endif
2394 #if EV_USE_EPOLL
2395 # include "ev_epoll.c"
2396 #endif
2397 #if EV_USE_POLL
2398 # include "ev_poll.c"
2399 #endif
2400 #if EV_USE_SELECT
2401 # include "ev_select.c"
2402 #endif
2403
2404 int ecb_cold
2405 ev_version_major (void) EV_THROW
2406 {
2407 return EV_VERSION_MAJOR;
2408 }
2409
2410 int ecb_cold
2411 ev_version_minor (void) EV_THROW
2412 {
2413 return EV_VERSION_MINOR;
2414 }
2415
2416 /* return true if we are running with elevated privileges and should ignore env variables */
2417 int inline_size ecb_cold
2418 enable_secure (void)
2419 {
2420 #ifdef _WIN32
2421 return 0;
2422 #else
2423 return getuid () != geteuid ()
2424 || getgid () != getegid ();
2425 #endif
2426 }
2427
2428 unsigned int ecb_cold
2429 ev_supported_backends (void) EV_THROW
2430 {
2431 unsigned int flags = 0;
2432
2433 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2434 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2435 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2436 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2437 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2438
2439 return flags;
2440 }
2441
2442 unsigned int ecb_cold
2443 ev_recommended_backends (void) EV_THROW
2444 {
2445 unsigned int flags = ev_supported_backends ();
2446
2447 #ifndef __NetBSD__
2448 /* kqueue is borked on everything but netbsd apparently */
2449 /* it usually doesn't work correctly on anything but sockets and pipes */
2450 flags &= ~EVBACKEND_KQUEUE;
2451 #endif
2452 #ifdef __APPLE__
2453 /* only select works correctly on that "unix-certified" platform */
2454 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2455 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2456 #endif
2457 #ifdef __FreeBSD__
2458 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2459 #endif
2460
2461 return flags;
2462 }
2463
2464 unsigned int ecb_cold
2465 ev_embeddable_backends (void) EV_THROW
2466 {
2467 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2468
2469 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2470 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2471 flags &= ~EVBACKEND_EPOLL;
2472
2473 return flags;
2474 }
2475
2476 unsigned int
2477 ev_backend (EV_P) EV_THROW
2478 {
2479 return backend;
2480 }
2481
2482 #if EV_FEATURE_API
2483 unsigned int
2484 ev_iteration (EV_P) EV_THROW
2485 {
2486 return loop_count;
2487 }
2488
2489 unsigned int
2490 ev_depth (EV_P) EV_THROW
2491 {
2492 return loop_depth;
2493 }
2494
2495 void
2496 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2497 {
2498 io_blocktime = interval;
2499 }
2500
2501 void
2502 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2503 {
2504 timeout_blocktime = interval;
2505 }
2506
2507 void
2508 ev_set_userdata (EV_P_ void *data) EV_THROW
2509 {
2510 userdata = data;
2511 }
2512
2513 void *
2514 ev_userdata (EV_P) EV_THROW
2515 {
2516 return userdata;
2517 }
2518
2519 void
2520 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2521 {
2522 invoke_cb = invoke_pending_cb;
2523 }
2524
2525 void
2526 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2527 {
2528 release_cb = release;
2529 acquire_cb = acquire;
2530 }
2531 #endif
2532
2533 /* initialise a loop structure, must be zero-initialised */
2534 static void noinline ecb_cold
2535 loop_init (EV_P_ unsigned int flags) EV_THROW
2536 {
2537 if (!backend)
2538 {
2539 origflags = flags;
2540
2541 #if EV_USE_REALTIME
2542 if (!have_realtime)
2543 {
2544 struct timespec ts;
2545
2546 if (!clock_gettime (CLOCK_REALTIME, &ts))
2547 have_realtime = 1;
2548 }
2549 #endif
2550
2551 #if EV_USE_MONOTONIC
2552 if (!have_monotonic)
2553 {
2554 struct timespec ts;
2555
2556 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2557 have_monotonic = 1;
2558 }
2559 #endif
2560
2561 /* pid check not overridable via env */
2562 #ifndef _WIN32
2563 if (flags & EVFLAG_FORKCHECK)
2564 curpid = getpid ();
2565 #endif
2566
2567 if (!(flags & EVFLAG_NOENV)
2568 && !enable_secure ()
2569 && getenv ("LIBEV_FLAGS"))
2570 flags = atoi (getenv ("LIBEV_FLAGS"));
2571
2572 ev_rt_now = ev_time ();
2573 mn_now = get_clock ();
2574 now_floor = mn_now;
2575 rtmn_diff = ev_rt_now - mn_now;
2576 #if EV_FEATURE_API
2577 invoke_cb = ev_invoke_pending;
2578 #endif
2579
2580 io_blocktime = 0.;
2581 timeout_blocktime = 0.;
2582 backend = 0;
2583 backend_fd = -1;
2584 sig_pending = 0;
2585 #if EV_ASYNC_ENABLE
2586 async_pending = 0;
2587 #endif
2588 pipe_write_skipped = 0;
2589 pipe_write_wanted = 0;
2590 evpipe [0] = -1;
2591 evpipe [1] = -1;
2592 #if EV_USE_INOTIFY
2593 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2594 #endif
2595 #if EV_USE_SIGNALFD
2596 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2597 #endif
2598
2599 if (!(flags & EVBACKEND_MASK))
2600 flags |= ev_recommended_backends ();
2601
2602 #if EV_USE_IOCP
2603 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2604 #endif
2605 #if EV_USE_PORT
2606 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2607 #endif
2608 #if EV_USE_KQUEUE
2609 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2610 #endif
2611 #if EV_USE_EPOLL
2612 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2613 #endif
2614 #if EV_USE_POLL
2615 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2616 #endif
2617 #if EV_USE_SELECT
2618 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2619 #endif
2620
2621 ev_prepare_init (&pending_w, pendingcb);
2622
2623 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2624 ev_init (&pipe_w, pipecb);
2625 ev_set_priority (&pipe_w, EV_MAXPRI);
2626 #endif
2627 }
2628 }
2629
2630 /* free up a loop structure */
2631 void ecb_cold
2632 ev_loop_destroy (EV_P)
2633 {
2634 int i;
2635
2636 #if EV_MULTIPLICITY
2637 /* mimic free (0) */
2638 if (!EV_A)
2639 return;
2640 #endif
2641
2642 #if EV_CLEANUP_ENABLE
2643 /* queue cleanup watchers (and execute them) */
2644 if (expect_false (cleanupcnt))
2645 {
2646 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2647 EV_INVOKE_PENDING;
2648 }
2649 #endif
2650
2651 #if EV_CHILD_ENABLE
2652 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2653 {
2654 ev_ref (EV_A); /* child watcher */
2655 ev_signal_stop (EV_A_ &childev);
2656 }
2657 #endif
2658
2659 if (ev_is_active (&pipe_w))
2660 {
2661 /*ev_ref (EV_A);*/
2662 /*ev_io_stop (EV_A_ &pipe_w);*/
2663
2664 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2665 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2666 }
2667
2668 #if EV_USE_SIGNALFD
2669 if (ev_is_active (&sigfd_w))
2670 close (sigfd);
2671 #endif
2672
2673 #if EV_USE_INOTIFY
2674 if (fs_fd >= 0)
2675 close (fs_fd);
2676 #endif
2677
2678 if (backend_fd >= 0)
2679 close (backend_fd);
2680
2681 #if EV_USE_IOCP
2682 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2683 #endif
2684 #if EV_USE_PORT
2685 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2686 #endif
2687 #if EV_USE_KQUEUE
2688 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2689 #endif
2690 #if EV_USE_EPOLL
2691 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2692 #endif
2693 #if EV_USE_POLL
2694 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2695 #endif
2696 #if EV_USE_SELECT
2697 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2698 #endif
2699
2700 for (i = NUMPRI; i--; )
2701 {
2702 array_free (pending, [i]);
2703 #if EV_IDLE_ENABLE
2704 array_free (idle, [i]);
2705 #endif
2706 }
2707
2708 ev_free (anfds); anfds = 0; anfdmax = 0;
2709
2710 /* have to use the microsoft-never-gets-it-right macro */
2711 array_free (rfeed, EMPTY);
2712 array_free (fdchange, EMPTY);
2713 array_free (timer, EMPTY);
2714 #if EV_PERIODIC_ENABLE
2715 array_free (periodic, EMPTY);
2716 #endif
2717 #if EV_FORK_ENABLE
2718 array_free (fork, EMPTY);
2719 #endif
2720 #if EV_CLEANUP_ENABLE
2721 array_free (cleanup, EMPTY);
2722 #endif
2723 array_free (prepare, EMPTY);
2724 array_free (check, EMPTY);
2725 #if EV_ASYNC_ENABLE
2726 array_free (async, EMPTY);
2727 #endif
2728
2729 backend = 0;
2730
2731 #if EV_MULTIPLICITY
2732 if (ev_is_default_loop (EV_A))
2733 #endif
2734 ev_default_loop_ptr = 0;
2735 #if EV_MULTIPLICITY
2736 else
2737 ev_free (EV_A);
2738 #endif
2739 }
2740
2741 #if EV_USE_INOTIFY
2742 inline_size void infy_fork (EV_P);
2743 #endif
2744
2745 inline_size void
2746 loop_fork (EV_P)
2747 {
2748 #if EV_USE_PORT
2749 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2750 #endif
2751 #if EV_USE_KQUEUE
2752 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2753 #endif
2754 #if EV_USE_EPOLL
2755 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2756 #endif
2757 #if EV_USE_INOTIFY
2758 infy_fork (EV_A);
2759 #endif
2760
2761 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2762 if (ev_is_active (&pipe_w))
2763 {
2764 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2765
2766 ev_ref (EV_A);
2767 ev_io_stop (EV_A_ &pipe_w);
2768
2769 if (evpipe [0] >= 0)
2770 EV_WIN32_CLOSE_FD (evpipe [0]);
2771
2772 evpipe_init (EV_A);
2773 /* iterate over everything, in case we missed something before */
2774 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2775 }
2776 #endif
2777
2778 postfork = 0;
2779 }
2780
2781 #if EV_MULTIPLICITY
2782
2783 struct ev_loop * ecb_cold
2784 ev_loop_new (unsigned int flags) EV_THROW
2785 {
2786 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2787
2788 memset (EV_A, 0, sizeof (struct ev_loop));
2789 loop_init (EV_A_ flags);
2790
2791 if (ev_backend (EV_A))
2792 return EV_A;
2793
2794 ev_free (EV_A);
2795 return 0;
2796 }
2797
2798 #endif /* multiplicity */
2799
2800 #if EV_VERIFY
2801 static void noinline ecb_cold
2802 verify_watcher (EV_P_ W w)
2803 {
2804 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2805
2806 if (w->pending)
2807 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2808 }
2809
2810 static void noinline ecb_cold
2811 verify_heap (EV_P_ ANHE *heap, int N)
2812 {
2813 int i;
2814
2815 for (i = HEAP0; i < N + HEAP0; ++i)
2816 {
2817 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2818 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2819 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2820
2821 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2822 }
2823 }
2824
2825 static void noinline ecb_cold
2826 array_verify (EV_P_ W *ws, int cnt)
2827 {
2828 while (cnt--)
2829 {
2830 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2831 verify_watcher (EV_A_ ws [cnt]);
2832 }
2833 }
2834 #endif
2835
2836 #if EV_FEATURE_API
2837 void ecb_cold
2838 ev_verify (EV_P) EV_THROW
2839 {
2840 #if EV_VERIFY
2841 int i;
2842 WL w, w2;
2843
2844 assert (activecnt >= -1);
2845
2846 assert (fdchangemax >= fdchangecnt);
2847 for (i = 0; i < fdchangecnt; ++i)
2848 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2849
2850 assert (anfdmax >= 0);
2851 for (i = 0; i < anfdmax; ++i)
2852 {
2853 int j = 0;
2854
2855 for (w = w2 = anfds [i].head; w; w = w->next)
2856 {
2857 verify_watcher (EV_A_ (W)w);
2858
2859 if (j++ & 1)
2860 {
2861 assert (("libev: io watcher list contains a loop", w != w2));
2862 w2 = w2->next;
2863 }
2864
2865 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2866 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2867 }
2868 }
2869
2870 assert (timermax >= timercnt);
2871 verify_heap (EV_A_ timers, timercnt);
2872
2873 #if EV_PERIODIC_ENABLE
2874 assert (periodicmax >= periodiccnt);
2875 verify_heap (EV_A_ periodics, periodiccnt);
2876 #endif
2877
2878 for (i = NUMPRI; i--; )
2879 {
2880 assert (pendingmax [i] >= pendingcnt [i]);
2881 #if EV_IDLE_ENABLE
2882 assert (idleall >= 0);
2883 assert (idlemax [i] >= idlecnt [i]);
2884 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2885 #endif
2886 }
2887
2888 #if EV_FORK_ENABLE
2889 assert (forkmax >= forkcnt);
2890 array_verify (EV_A_ (W *)forks, forkcnt);
2891 #endif
2892
2893 #if EV_CLEANUP_ENABLE
2894 assert (cleanupmax >= cleanupcnt);
2895 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2896 #endif
2897
2898 #if EV_ASYNC_ENABLE
2899 assert (asyncmax >= asynccnt);
2900 array_verify (EV_A_ (W *)asyncs, asynccnt);
2901 #endif
2902
2903 #if EV_PREPARE_ENABLE
2904 assert (preparemax >= preparecnt);
2905 array_verify (EV_A_ (W *)prepares, preparecnt);
2906 #endif
2907
2908 #if EV_CHECK_ENABLE
2909 assert (checkmax >= checkcnt);
2910 array_verify (EV_A_ (W *)checks, checkcnt);
2911 #endif
2912
2913 # if 0
2914 #if EV_CHILD_ENABLE
2915 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2916 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2917 #endif
2918 # endif
2919 #endif
2920 }
2921 #endif
2922
2923 #if EV_MULTIPLICITY
2924 struct ev_loop * ecb_cold
2925 #else
2926 int
2927 #endif
2928 ev_default_loop (unsigned int flags) EV_THROW
2929 {
2930 if (!ev_default_loop_ptr)
2931 {
2932 #if EV_MULTIPLICITY
2933 EV_P = ev_default_loop_ptr = &default_loop_struct;
2934 #else
2935 ev_default_loop_ptr = 1;
2936 #endif
2937
2938 loop_init (EV_A_ flags);
2939
2940 if (ev_backend (EV_A))
2941 {
2942 #if EV_CHILD_ENABLE
2943 ev_signal_init (&childev, childcb, SIGCHLD);
2944 ev_set_priority (&childev, EV_MAXPRI);
2945 ev_signal_start (EV_A_ &childev);
2946 ev_unref (EV_A); /* child watcher should not keep loop alive */
2947 #endif
2948 }
2949 else
2950 ev_default_loop_ptr = 0;
2951 }
2952
2953 return ev_default_loop_ptr;
2954 }
2955
2956 void
2957 ev_loop_fork (EV_P) EV_THROW
2958 {
2959 postfork = 1;
2960 }
2961
2962 /*****************************************************************************/
2963
2964 void
2965 ev_invoke (EV_P_ void *w, int revents)
2966 {
2967 EV_CB_INVOKE ((W)w, revents);
2968 }
2969
2970 unsigned int
2971 ev_pending_count (EV_P) EV_THROW
2972 {
2973 int pri;
2974 unsigned int count = 0;
2975
2976 for (pri = NUMPRI; pri--; )
2977 count += pendingcnt [pri];
2978
2979 return count;
2980 }
2981
2982 void noinline
2983 ev_invoke_pending (EV_P)
2984 {
2985 pendingpri = NUMPRI;
2986
2987 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2988 {
2989 --pendingpri;
2990
2991 while (pendingcnt [pendingpri])
2992 {
2993 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2994
2995 p->w->pending = 0;
2996 EV_CB_INVOKE (p->w, p->events);
2997 EV_FREQUENT_CHECK;
2998 }
2999 }
3000 }
3001
3002 #if EV_IDLE_ENABLE
3003 /* make idle watchers pending. this handles the "call-idle */
3004 /* only when higher priorities are idle" logic */
3005 inline_size void
3006 idle_reify (EV_P)
3007 {
3008 if (expect_false (idleall))
3009 {
3010 int pri;
3011
3012 for (pri = NUMPRI; pri--; )
3013 {
3014 if (pendingcnt [pri])
3015 break;
3016
3017 if (idlecnt [pri])
3018 {
3019 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3020 break;
3021 }
3022 }
3023 }
3024 }
3025 #endif
3026
3027 /* make timers pending */
3028 inline_size void
3029 timers_reify (EV_P)
3030 {
3031 EV_FREQUENT_CHECK;
3032
3033 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3034 {
3035 do
3036 {
3037 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3038
3039 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3040
3041 /* first reschedule or stop timer */
3042 if (w->repeat)
3043 {
3044 ev_at (w) += w->repeat;
3045 if (ev_at (w) < mn_now)
3046 ev_at (w) = mn_now;
3047
3048 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3049
3050 ANHE_at_cache (timers [HEAP0]);
3051 downheap (timers, timercnt, HEAP0);
3052 }
3053 else
3054 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3055
3056 EV_FREQUENT_CHECK;
3057 feed_reverse (EV_A_ (W)w);
3058 }
3059 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3060
3061 feed_reverse_done (EV_A_ EV_TIMER);
3062 }
3063 }
3064
3065 #if EV_PERIODIC_ENABLE
3066
3067 static void noinline
3068 periodic_recalc (EV_P_ ev_periodic *w)
3069 {
3070 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3071 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3072
3073 /* the above almost always errs on the low side */
3074 while (at <= ev_rt_now)
3075 {
3076 ev_tstamp nat = at + w->interval;
3077
3078 /* when resolution fails us, we use ev_rt_now */
3079 if (expect_false (nat == at))
3080 {
3081 at = ev_rt_now;
3082 break;
3083 }
3084
3085 at = nat;
3086 }
3087
3088 ev_at (w) = at;
3089 }
3090
3091 /* make periodics pending */
3092 inline_size void
3093 periodics_reify (EV_P)
3094 {
3095 EV_FREQUENT_CHECK;
3096
3097 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3098 {
3099 do
3100 {
3101 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3102
3103 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3104
3105 /* first reschedule or stop timer */
3106 if (w->reschedule_cb)
3107 {
3108 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3109
3110 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3111
3112 ANHE_at_cache (periodics [HEAP0]);
3113 downheap (periodics, periodiccnt, HEAP0);
3114 }
3115 else if (w->interval)
3116 {
3117 periodic_recalc (EV_A_ w);
3118 ANHE_at_cache (periodics [HEAP0]);
3119 downheap (periodics, periodiccnt, HEAP0);
3120 }
3121 else
3122 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3123
3124 EV_FREQUENT_CHECK;
3125 feed_reverse (EV_A_ (W)w);
3126 }
3127 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3128
3129 feed_reverse_done (EV_A_ EV_PERIODIC);
3130 }
3131 }
3132
3133 /* simply recalculate all periodics */
3134 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3135 static void noinline ecb_cold
3136 periodics_reschedule (EV_P)
3137 {
3138 int i;
3139
3140 /* adjust periodics after time jump */
3141 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3142 {
3143 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3144
3145 if (w->reschedule_cb)
3146 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3147 else if (w->interval)
3148 periodic_recalc (EV_A_ w);
3149
3150 ANHE_at_cache (periodics [i]);
3151 }
3152
3153 reheap (periodics, periodiccnt);
3154 }
3155 #endif
3156
3157 /* adjust all timers by a given offset */
3158 static void noinline ecb_cold
3159 timers_reschedule (EV_P_ ev_tstamp adjust)
3160 {
3161 int i;
3162
3163 for (i = 0; i < timercnt; ++i)
3164 {
3165 ANHE *he = timers + i + HEAP0;
3166 ANHE_w (*he)->at += adjust;
3167 ANHE_at_cache (*he);
3168 }
3169 }
3170
3171 /* fetch new monotonic and realtime times from the kernel */
3172 /* also detect if there was a timejump, and act accordingly */
3173 inline_speed void
3174 time_update (EV_P_ ev_tstamp max_block)
3175 {
3176 #if EV_USE_MONOTONIC
3177 if (expect_true (have_monotonic))
3178 {
3179 int i;
3180 ev_tstamp odiff = rtmn_diff;
3181
3182 mn_now = get_clock ();
3183
3184 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3185 /* interpolate in the meantime */
3186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3187 {
3188 ev_rt_now = rtmn_diff + mn_now;
3189 return;
3190 }
3191
3192 now_floor = mn_now;
3193 ev_rt_now = ev_time ();
3194
3195 /* loop a few times, before making important decisions.
3196 * on the choice of "4": one iteration isn't enough,
3197 * in case we get preempted during the calls to
3198 * ev_time and get_clock. a second call is almost guaranteed
3199 * to succeed in that case, though. and looping a few more times
3200 * doesn't hurt either as we only do this on time-jumps or
3201 * in the unlikely event of having been preempted here.
3202 */
3203 for (i = 4; --i; )
3204 {
3205 ev_tstamp diff;
3206 rtmn_diff = ev_rt_now - mn_now;
3207
3208 diff = odiff - rtmn_diff;
3209
3210 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3211 return; /* all is well */
3212
3213 ev_rt_now = ev_time ();
3214 mn_now = get_clock ();
3215 now_floor = mn_now;
3216 }
3217
3218 /* no timer adjustment, as the monotonic clock doesn't jump */
3219 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3220 # if EV_PERIODIC_ENABLE
3221 periodics_reschedule (EV_A);
3222 # endif
3223 }
3224 else
3225 #endif
3226 {
3227 ev_rt_now = ev_time ();
3228
3229 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3230 {
3231 /* adjust timers. this is easy, as the offset is the same for all of them */
3232 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3233 #if EV_PERIODIC_ENABLE
3234 periodics_reschedule (EV_A);
3235 #endif
3236 }
3237
3238 mn_now = ev_rt_now;
3239 }
3240 }
3241
3242 int
3243 ev_run (EV_P_ int flags)
3244 {
3245 #if EV_FEATURE_API
3246 ++loop_depth;
3247 #endif
3248
3249 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3250
3251 loop_done = EVBREAK_CANCEL;
3252
3253 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3254
3255 do
3256 {
3257 #if EV_VERIFY >= 2
3258 ev_verify (EV_A);
3259 #endif
3260
3261 #ifndef _WIN32
3262 if (expect_false (curpid)) /* penalise the forking check even more */
3263 if (expect_false (getpid () != curpid))
3264 {
3265 curpid = getpid ();
3266 postfork = 1;
3267 }
3268 #endif
3269
3270 #if EV_FORK_ENABLE
3271 /* we might have forked, so queue fork handlers */
3272 if (expect_false (postfork))
3273 if (forkcnt)
3274 {
3275 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3276 EV_INVOKE_PENDING;
3277 }
3278 #endif
3279
3280 #if EV_PREPARE_ENABLE
3281 /* queue prepare watchers (and execute them) */
3282 if (expect_false (preparecnt))
3283 {
3284 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3285 EV_INVOKE_PENDING;
3286 }
3287 #endif
3288
3289 if (expect_false (loop_done))
3290 break;
3291
3292 /* we might have forked, so reify kernel state if necessary */
3293 if (expect_false (postfork))
3294 loop_fork (EV_A);
3295
3296 /* update fd-related kernel structures */
3297 fd_reify (EV_A);
3298
3299 /* calculate blocking time */
3300 {
3301 ev_tstamp waittime = 0.;
3302 ev_tstamp sleeptime = 0.;
3303
3304 /* remember old timestamp for io_blocktime calculation */
3305 ev_tstamp prev_mn_now = mn_now;
3306
3307 /* update time to cancel out callback processing overhead */
3308 time_update (EV_A_ 1e100);
3309
3310 /* from now on, we want a pipe-wake-up */
3311 pipe_write_wanted = 1;
3312
3313 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3314
3315 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3316 {
3317 waittime = MAX_BLOCKTIME;
3318
3319 if (timercnt)
3320 {
3321 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3322 if (waittime > to) waittime = to;
3323 }
3324
3325 #if EV_PERIODIC_ENABLE
3326 if (periodiccnt)
3327 {
3328 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3329 if (waittime > to) waittime = to;
3330 }
3331 #endif
3332
3333 /* don't let timeouts decrease the waittime below timeout_blocktime */
3334 if (expect_false (waittime < timeout_blocktime))
3335 waittime = timeout_blocktime;
3336
3337 /* at this point, we NEED to wait, so we have to ensure */
3338 /* to pass a minimum nonzero value to the backend */
3339 if (expect_false (waittime < backend_mintime))
3340 waittime = backend_mintime;
3341
3342 /* extra check because io_blocktime is commonly 0 */
3343 if (expect_false (io_blocktime))
3344 {
3345 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3346
3347 if (sleeptime > waittime - backend_mintime)
3348 sleeptime = waittime - backend_mintime;
3349
3350 if (expect_true (sleeptime > 0.))
3351 {
3352 ev_sleep (sleeptime);
3353 waittime -= sleeptime;
3354 }
3355 }
3356 }
3357
3358 #if EV_FEATURE_API
3359 ++loop_count;
3360 #endif
3361 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3362 backend_poll (EV_A_ waittime);
3363 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3364
3365 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3366
3367 ECB_MEMORY_FENCE_ACQUIRE;
3368 if (pipe_write_skipped)
3369 {
3370 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3371 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3372 }
3373
3374
3375 /* update ev_rt_now, do magic */
3376 time_update (EV_A_ waittime + sleeptime);
3377 }
3378
3379 /* queue pending timers and reschedule them */
3380 timers_reify (EV_A); /* relative timers called last */
3381 #if EV_PERIODIC_ENABLE
3382 periodics_reify (EV_A); /* absolute timers called first */
3383 #endif
3384
3385 #if EV_IDLE_ENABLE
3386 /* queue idle watchers unless other events are pending */
3387 idle_reify (EV_A);
3388 #endif
3389
3390 #if EV_CHECK_ENABLE
3391 /* queue check watchers, to be executed first */
3392 if (expect_false (checkcnt))
3393 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3394 #endif
3395
3396 EV_INVOKE_PENDING;
3397 }
3398 while (expect_true (
3399 activecnt
3400 && !loop_done
3401 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3402 ));
3403
3404 if (loop_done == EVBREAK_ONE)
3405 loop_done = EVBREAK_CANCEL;
3406
3407 #if EV_FEATURE_API
3408 --loop_depth;
3409 #endif
3410
3411 return activecnt;
3412 }
3413
3414 void
3415 ev_break (EV_P_ int how) EV_THROW
3416 {
3417 loop_done = how;
3418 }
3419
3420 void
3421 ev_ref (EV_P) EV_THROW
3422 {
3423 ++activecnt;
3424 }
3425
3426 void
3427 ev_unref (EV_P) EV_THROW
3428 {
3429 --activecnt;
3430 }
3431
3432 void
3433 ev_now_update (EV_P) EV_THROW
3434 {
3435 time_update (EV_A_ 1e100);
3436 }
3437
3438 void
3439 ev_suspend (EV_P) EV_THROW
3440 {
3441 ev_now_update (EV_A);
3442 }
3443
3444 void
3445 ev_resume (EV_P) EV_THROW
3446 {
3447 ev_tstamp mn_prev = mn_now;
3448
3449 ev_now_update (EV_A);
3450 timers_reschedule (EV_A_ mn_now - mn_prev);
3451 #if EV_PERIODIC_ENABLE
3452 /* TODO: really do this? */
3453 periodics_reschedule (EV_A);
3454 #endif
3455 }
3456
3457 /*****************************************************************************/
3458 /* singly-linked list management, used when the expected list length is short */
3459
3460 inline_size void
3461 wlist_add (WL *head, WL elem)
3462 {
3463 elem->next = *head;
3464 *head = elem;
3465 }
3466
3467 inline_size void
3468 wlist_del (WL *head, WL elem)
3469 {
3470 while (*head)
3471 {
3472 if (expect_true (*head == elem))
3473 {
3474 *head = elem->next;
3475 break;
3476 }
3477
3478 head = &(*head)->next;
3479 }
3480 }
3481
3482 /* internal, faster, version of ev_clear_pending */
3483 inline_speed void
3484 clear_pending (EV_P_ W w)
3485 {
3486 if (w->pending)
3487 {
3488 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3489 w->pending = 0;
3490 }
3491 }
3492
3493 int
3494 ev_clear_pending (EV_P_ void *w) EV_THROW
3495 {
3496 W w_ = (W)w;
3497 int pending = w_->pending;
3498
3499 if (expect_true (pending))
3500 {
3501 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3502 p->w = (W)&pending_w;
3503 w_->pending = 0;
3504 return p->events;
3505 }
3506 else
3507 return 0;
3508 }
3509
3510 inline_size void
3511 pri_adjust (EV_P_ W w)
3512 {
3513 int pri = ev_priority (w);
3514 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3515 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3516 ev_set_priority (w, pri);
3517 }
3518
3519 inline_speed void
3520 ev_start (EV_P_ W w, int active)
3521 {
3522 pri_adjust (EV_A_ w);
3523 w->active = active;
3524 ev_ref (EV_A);
3525 }
3526
3527 inline_size void
3528 ev_stop (EV_P_ W w)
3529 {
3530 ev_unref (EV_A);
3531 w->active = 0;
3532 }
3533
3534 /*****************************************************************************/
3535
3536 void noinline
3537 ev_io_start (EV_P_ ev_io *w) EV_THROW
3538 {
3539 int fd = w->fd;
3540
3541 if (expect_false (ev_is_active (w)))
3542 return;
3543
3544 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3545 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3546
3547 EV_FREQUENT_CHECK;
3548
3549 ev_start (EV_A_ (W)w, 1);
3550 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3551 wlist_add (&anfds[fd].head, (WL)w);
3552
3553 /* common bug, apparently */
3554 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3555
3556 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3557 w->events &= ~EV__IOFDSET;
3558
3559 EV_FREQUENT_CHECK;
3560 }
3561
3562 void noinline
3563 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3564 {
3565 clear_pending (EV_A_ (W)w);
3566 if (expect_false (!ev_is_active (w)))
3567 return;
3568
3569 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3570
3571 EV_FREQUENT_CHECK;
3572
3573 wlist_del (&anfds[w->fd].head, (WL)w);
3574 ev_stop (EV_A_ (W)w);
3575
3576 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3577
3578 EV_FREQUENT_CHECK;
3579 }
3580
3581 void noinline
3582 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3583 {
3584 if (expect_false (ev_is_active (w)))
3585 return;
3586
3587 ev_at (w) += mn_now;
3588
3589 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3590
3591 EV_FREQUENT_CHECK;
3592
3593 ++timercnt;
3594 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3595 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3596 ANHE_w (timers [ev_active (w)]) = (WT)w;
3597 ANHE_at_cache (timers [ev_active (w)]);
3598 upheap (timers, ev_active (w));
3599
3600 EV_FREQUENT_CHECK;
3601
3602 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3603 }
3604
3605 void noinline
3606 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3607 {
3608 clear_pending (EV_A_ (W)w);
3609 if (expect_false (!ev_is_active (w)))
3610 return;
3611
3612 EV_FREQUENT_CHECK;
3613
3614 {
3615 int active = ev_active (w);
3616
3617 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3618
3619 --timercnt;
3620
3621 if (expect_true (active < timercnt + HEAP0))
3622 {
3623 timers [active] = timers [timercnt + HEAP0];
3624 adjustheap (timers, timercnt, active);
3625 }
3626 }
3627
3628 ev_at (w) -= mn_now;
3629
3630 ev_stop (EV_A_ (W)w);
3631
3632 EV_FREQUENT_CHECK;
3633 }
3634
3635 void noinline
3636 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3637 {
3638 EV_FREQUENT_CHECK;
3639
3640 clear_pending (EV_A_ (W)w);
3641
3642 if (ev_is_active (w))
3643 {
3644 if (w->repeat)
3645 {
3646 ev_at (w) = mn_now + w->repeat;
3647 ANHE_at_cache (timers [ev_active (w)]);
3648 adjustheap (timers, timercnt, ev_active (w));
3649 }
3650 else
3651 ev_timer_stop (EV_A_ w);
3652 }
3653 else if (w->repeat)
3654 {
3655 ev_at (w) = w->repeat;
3656 ev_timer_start (EV_A_ w);
3657 }
3658
3659 EV_FREQUENT_CHECK;
3660 }
3661
3662 ev_tstamp
3663 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3664 {
3665 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3666 }
3667
3668 #if EV_PERIODIC_ENABLE
3669 void noinline
3670 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3671 {
3672 if (expect_false (ev_is_active (w)))
3673 return;
3674
3675 if (w->reschedule_cb)
3676 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3677 else if (w->interval)
3678 {
3679 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3680 periodic_recalc (EV_A_ w);
3681 }
3682 else
3683 ev_at (w) = w->offset;
3684
3685 EV_FREQUENT_CHECK;
3686
3687 ++periodiccnt;
3688 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3689 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3690 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3691 ANHE_at_cache (periodics [ev_active (w)]);
3692 upheap (periodics, ev_active (w));
3693
3694 EV_FREQUENT_CHECK;
3695
3696 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3697 }
3698
3699 void noinline
3700 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3701 {
3702 clear_pending (EV_A_ (W)w);
3703 if (expect_false (!ev_is_active (w)))
3704 return;
3705
3706 EV_FREQUENT_CHECK;
3707
3708 {
3709 int active = ev_active (w);
3710
3711 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3712
3713 --periodiccnt;
3714
3715 if (expect_true (active < periodiccnt + HEAP0))
3716 {
3717 periodics [active] = periodics [periodiccnt + HEAP0];
3718 adjustheap (periodics, periodiccnt, active);
3719 }
3720 }
3721
3722 ev_stop (EV_A_ (W)w);
3723
3724 EV_FREQUENT_CHECK;
3725 }
3726
3727 void noinline
3728 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3729 {
3730 /* TODO: use adjustheap and recalculation */
3731 ev_periodic_stop (EV_A_ w);
3732 ev_periodic_start (EV_A_ w);
3733 }
3734 #endif
3735
3736 #ifndef SA_RESTART
3737 # define SA_RESTART 0
3738 #endif
3739
3740 #if EV_SIGNAL_ENABLE
3741
3742 void noinline
3743 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3744 {
3745 if (expect_false (ev_is_active (w)))
3746 return;
3747
3748 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3749
3750 #if EV_MULTIPLICITY
3751 assert (("libev: a signal must not be attached to two different loops",
3752 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3753
3754 signals [w->signum - 1].loop = EV_A;
3755 ECB_MEMORY_FENCE_RELEASE;
3756 #endif
3757
3758 EV_FREQUENT_CHECK;
3759
3760 #if EV_USE_SIGNALFD
3761 if (sigfd == -2)
3762 {
3763 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3764 if (sigfd < 0 && errno == EINVAL)
3765 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3766
3767 if (sigfd >= 0)
3768 {
3769 fd_intern (sigfd); /* doing it twice will not hurt */
3770
3771 sigemptyset (&sigfd_set);
3772
3773 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3774 ev_set_priority (&sigfd_w, EV_MAXPRI);
3775 ev_io_start (EV_A_ &sigfd_w);
3776 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3777 }
3778 }
3779
3780 if (sigfd >= 0)
3781 {
3782 /* TODO: check .head */
3783 sigaddset (&sigfd_set, w->signum);
3784 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3785
3786 signalfd (sigfd, &sigfd_set, 0);
3787 }
3788 #endif
3789
3790 ev_start (EV_A_ (W)w, 1);
3791 wlist_add (&signals [w->signum - 1].head, (WL)w);
3792
3793 if (!((WL)w)->next)
3794 # if EV_USE_SIGNALFD
3795 if (sigfd < 0) /*TODO*/
3796 # endif
3797 {
3798 # ifdef _WIN32
3799 evpipe_init (EV_A);
3800
3801 signal (w->signum, ev_sighandler);
3802 # else
3803 struct sigaction sa;
3804
3805 evpipe_init (EV_A);
3806
3807 sa.sa_handler = ev_sighandler;
3808 sigfillset (&sa.sa_mask);
3809 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3810 sigaction (w->signum, &sa, 0);
3811
3812 if (origflags & EVFLAG_NOSIGMASK)
3813 {
3814 sigemptyset (&sa.sa_mask);
3815 sigaddset (&sa.sa_mask, w->signum);
3816 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3817 }
3818 #endif
3819 }
3820
3821 EV_FREQUENT_CHECK;
3822 }
3823
3824 void noinline
3825 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3826 {
3827 clear_pending (EV_A_ (W)w);
3828 if (expect_false (!ev_is_active (w)))
3829 return;
3830
3831 EV_FREQUENT_CHECK;
3832
3833 wlist_del (&signals [w->signum - 1].head, (WL)w);
3834 ev_stop (EV_A_ (W)w);
3835
3836 if (!signals [w->signum - 1].head)
3837 {
3838 #if EV_MULTIPLICITY
3839 signals [w->signum - 1].loop = 0; /* unattach from signal */
3840 #endif
3841 #if EV_USE_SIGNALFD
3842 if (sigfd >= 0)
3843 {
3844 sigset_t ss;
3845
3846 sigemptyset (&ss);
3847 sigaddset (&ss, w->signum);
3848 sigdelset (&sigfd_set, w->signum);
3849
3850 signalfd (sigfd, &sigfd_set, 0);
3851 sigprocmask (SIG_UNBLOCK, &ss, 0);
3852 }
3853 else
3854 #endif
3855 signal (w->signum, SIG_DFL);
3856 }
3857
3858 EV_FREQUENT_CHECK;
3859 }
3860
3861 #endif
3862
3863 #if EV_CHILD_ENABLE
3864
3865 void
3866 ev_child_start (EV_P_ ev_child *w) EV_THROW
3867 {
3868 #if EV_MULTIPLICITY
3869 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3870 #endif
3871 if (expect_false (ev_is_active (w)))
3872 return;
3873
3874 EV_FREQUENT_CHECK;
3875
3876 ev_start (EV_A_ (W)w, 1);
3877 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3878
3879 EV_FREQUENT_CHECK;
3880 }
3881
3882 void
3883 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3884 {
3885 clear_pending (EV_A_ (W)w);
3886 if (expect_false (!ev_is_active (w)))
3887 return;
3888
3889 EV_FREQUENT_CHECK;
3890
3891 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3892 ev_stop (EV_A_ (W)w);
3893
3894 EV_FREQUENT_CHECK;
3895 }
3896
3897 #endif
3898
3899 #if EV_STAT_ENABLE
3900
3901 # ifdef _WIN32
3902 # undef lstat
3903 # define lstat(a,b) _stati64 (a,b)
3904 # endif
3905
3906 #define DEF_STAT_INTERVAL 5.0074891
3907 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3908 #define MIN_STAT_INTERVAL 0.1074891
3909
3910 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3911
3912 #if EV_USE_INOTIFY
3913
3914 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3915 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3916
3917 static void noinline
3918 infy_add (EV_P_ ev_stat *w)
3919 {
3920 w->wd = inotify_add_watch (fs_fd, w->path,
3921 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3922 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3923 | IN_DONT_FOLLOW | IN_MASK_ADD);
3924
3925 if (w->wd >= 0)
3926 {
3927 struct statfs sfs;
3928
3929 /* now local changes will be tracked by inotify, but remote changes won't */
3930 /* unless the filesystem is known to be local, we therefore still poll */
3931 /* also do poll on <2.6.25, but with normal frequency */
3932
3933 if (!fs_2625)
3934 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3935 else if (!statfs (w->path, &sfs)
3936 && (sfs.f_type == 0x1373 /* devfs */
3937 || sfs.f_type == 0x4006 /* fat */
3938 || sfs.f_type == 0x4d44 /* msdos */
3939 || sfs.f_type == 0xEF53 /* ext2/3 */
3940 || sfs.f_type == 0x72b6 /* jffs2 */
3941 || sfs.f_type == 0x858458f6 /* ramfs */
3942 || sfs.f_type == 0x5346544e /* ntfs */
3943 || sfs.f_type == 0x3153464a /* jfs */
3944 || sfs.f_type == 0x9123683e /* btrfs */
3945 || sfs.f_type == 0x52654973 /* reiser3 */
3946 || sfs.f_type == 0x01021994 /* tmpfs */
3947 || sfs.f_type == 0x58465342 /* xfs */))
3948 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3949 else
3950 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3951 }
3952 else
3953 {
3954 /* can't use inotify, continue to stat */
3955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3956
3957 /* if path is not there, monitor some parent directory for speedup hints */
3958 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3959 /* but an efficiency issue only */
3960 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3961 {
3962 char path [4096];
3963 strcpy (path, w->path);
3964
3965 do
3966 {
3967 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3968 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3969
3970 char *pend = strrchr (path, '/');
3971
3972 if (!pend || pend == path)
3973 break;
3974
3975 *pend = 0;
3976 w->wd = inotify_add_watch (fs_fd, path, mask);
3977 }
3978 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3979 }
3980 }
3981
3982 if (w->wd >= 0)
3983 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3984
3985 /* now re-arm timer, if required */
3986 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3987 ev_timer_again (EV_A_ &w->timer);
3988 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3989 }
3990
3991 static void noinline
3992 infy_del (EV_P_ ev_stat *w)
3993 {
3994 int slot;
3995 int wd = w->wd;
3996
3997 if (wd < 0)
3998 return;
3999
4000 w->wd = -2;
4001 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4002 wlist_del (&fs_hash [slot].head, (WL)w);
4003
4004 /* remove this watcher, if others are watching it, they will rearm */
4005 inotify_rm_watch (fs_fd, wd);
4006 }
4007
4008 static void noinline
4009 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4010 {
4011 if (slot < 0)
4012 /* overflow, need to check for all hash slots */
4013 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4014 infy_wd (EV_A_ slot, wd, ev);
4015 else
4016 {
4017 WL w_;
4018
4019 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4020 {
4021 ev_stat *w = (ev_stat *)w_;
4022 w_ = w_->next; /* lets us remove this watcher and all before it */
4023
4024 if (w->wd == wd || wd == -1)
4025 {
4026 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4027 {
4028 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4029 w->wd = -1;
4030 infy_add (EV_A_ w); /* re-add, no matter what */
4031 }
4032
4033 stat_timer_cb (EV_A_ &w->timer, 0);
4034 }
4035 }
4036 }
4037 }
4038
4039 static void
4040 infy_cb (EV_P_ ev_io *w, int revents)
4041 {
4042 char buf [EV_INOTIFY_BUFSIZE];
4043 int ofs;
4044 int len = read (fs_fd, buf, sizeof (buf));
4045
4046 for (ofs = 0; ofs < len; )
4047 {
4048 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4049 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4050 ofs += sizeof (struct inotify_event) + ev->len;
4051 }
4052 }
4053
4054 inline_size void ecb_cold
4055 ev_check_2625 (EV_P)
4056 {
4057 /* kernels < 2.6.25 are borked
4058 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4059 */
4060 if (ev_linux_version () < 0x020619)
4061 return;
4062
4063 fs_2625 = 1;
4064 }
4065
4066 inline_size int
4067 infy_newfd (void)
4068 {
4069 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4070 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4071 if (fd >= 0)
4072 return fd;
4073 #endif
4074 return inotify_init ();
4075 }
4076
4077 inline_size void
4078 infy_init (EV_P)
4079 {
4080 if (fs_fd != -2)
4081 return;
4082
4083 fs_fd = -1;
4084
4085 ev_check_2625 (EV_A);
4086
4087 fs_fd = infy_newfd ();
4088
4089 if (fs_fd >= 0)
4090 {
4091 fd_intern (fs_fd);
4092 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4093 ev_set_priority (&fs_w, EV_MAXPRI);
4094 ev_io_start (EV_A_ &fs_w);
4095 ev_unref (EV_A);
4096 }
4097 }
4098
4099 inline_size void
4100 infy_fork (EV_P)
4101 {
4102 int slot;
4103
4104 if (fs_fd < 0)
4105 return;
4106
4107 ev_ref (EV_A);
4108 ev_io_stop (EV_A_ &fs_w);
4109 close (fs_fd);
4110 fs_fd = infy_newfd ();
4111
4112 if (fs_fd >= 0)
4113 {
4114 fd_intern (fs_fd);
4115 ev_io_set (&fs_w, fs_fd, EV_READ);
4116 ev_io_start (EV_A_ &fs_w);
4117 ev_unref (EV_A);
4118 }
4119
4120 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4121 {
4122 WL w_ = fs_hash [slot].head;
4123 fs_hash [slot].head = 0;
4124
4125 while (w_)
4126 {
4127 ev_stat *w = (ev_stat *)w_;
4128 w_ = w_->next; /* lets us add this watcher */
4129
4130 w->wd = -1;
4131
4132 if (fs_fd >= 0)
4133 infy_add (EV_A_ w); /* re-add, no matter what */
4134 else
4135 {
4136 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4137 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4138 ev_timer_again (EV_A_ &w->timer);
4139 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4140 }
4141 }
4142 }
4143 }
4144
4145 #endif
4146
4147 #ifdef _WIN32
4148 # define EV_LSTAT(p,b) _stati64 (p, b)
4149 #else
4150 # define EV_LSTAT(p,b) lstat (p, b)
4151 #endif
4152
4153 void
4154 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4155 {
4156 if (lstat (w->path, &w->attr) < 0)
4157 w->attr.st_nlink = 0;
4158 else if (!w->attr.st_nlink)
4159 w->attr.st_nlink = 1;
4160 }
4161
4162 static void noinline
4163 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4164 {
4165 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4166
4167 ev_statdata prev = w->attr;
4168 ev_stat_stat (EV_A_ w);
4169
4170 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4171 if (
4172 prev.st_dev != w->attr.st_dev
4173 || prev.st_ino != w->attr.st_ino
4174 || prev.st_mode != w->attr.st_mode
4175 || prev.st_nlink != w->attr.st_nlink
4176 || prev.st_uid != w->attr.st_uid
4177 || prev.st_gid != w->attr.st_gid
4178 || prev.st_rdev != w->attr.st_rdev
4179 || prev.st_size != w->attr.st_size
4180 || prev.st_atime != w->attr.st_atime
4181 || prev.st_mtime != w->attr.st_mtime
4182 || prev.st_ctime != w->attr.st_ctime
4183 ) {
4184 /* we only update w->prev on actual differences */
4185 /* in case we test more often than invoke the callback, */
4186 /* to ensure that prev is always different to attr */
4187 w->prev = prev;
4188
4189 #if EV_USE_INOTIFY
4190 if (fs_fd >= 0)
4191 {
4192 infy_del (EV_A_ w);
4193 infy_add (EV_A_ w);
4194 ev_stat_stat (EV_A_ w); /* avoid race... */
4195 }
4196 #endif
4197
4198 ev_feed_event (EV_A_ w, EV_STAT);
4199 }
4200 }
4201
4202 void
4203 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4204 {
4205 if (expect_false (ev_is_active (w)))
4206 return;
4207
4208 ev_stat_stat (EV_A_ w);
4209
4210 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4211 w->interval = MIN_STAT_INTERVAL;
4212
4213 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4214 ev_set_priority (&w->timer, ev_priority (w));
4215
4216 #if EV_USE_INOTIFY
4217 infy_init (EV_A);
4218
4219 if (fs_fd >= 0)
4220 infy_add (EV_A_ w);
4221 else
4222 #endif
4223 {
4224 ev_timer_again (EV_A_ &w->timer);
4225 ev_unref (EV_A);
4226 }
4227
4228 ev_start (EV_A_ (W)w, 1);
4229
4230 EV_FREQUENT_CHECK;
4231 }
4232
4233 void
4234 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4235 {
4236 clear_pending (EV_A_ (W)w);
4237 if (expect_false (!ev_is_active (w)))
4238 return;
4239
4240 EV_FREQUENT_CHECK;
4241
4242 #if EV_USE_INOTIFY
4243 infy_del (EV_A_ w);
4244 #endif
4245
4246 if (ev_is_active (&w->timer))
4247 {
4248 ev_ref (EV_A);
4249 ev_timer_stop (EV_A_ &w->timer);
4250 }
4251
4252 ev_stop (EV_A_ (W)w);
4253
4254 EV_FREQUENT_CHECK;
4255 }
4256 #endif
4257
4258 #if EV_IDLE_ENABLE
4259 void
4260 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4261 {
4262 if (expect_false (ev_is_active (w)))
4263 return;
4264
4265 pri_adjust (EV_A_ (W)w);
4266
4267 EV_FREQUENT_CHECK;
4268
4269 {
4270 int active = ++idlecnt [ABSPRI (w)];
4271
4272 ++idleall;
4273 ev_start (EV_A_ (W)w, active);
4274
4275 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4276 idles [ABSPRI (w)][active - 1] = w;
4277 }
4278
4279 EV_FREQUENT_CHECK;
4280 }
4281
4282 void
4283 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4284 {
4285 clear_pending (EV_A_ (W)w);
4286 if (expect_false (!ev_is_active (w)))
4287 return;
4288
4289 EV_FREQUENT_CHECK;
4290
4291 {
4292 int active = ev_active (w);
4293
4294 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4295 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4296
4297 ev_stop (EV_A_ (W)w);
4298 --idleall;
4299 }
4300
4301 EV_FREQUENT_CHECK;
4302 }
4303 #endif
4304
4305 #if EV_PREPARE_ENABLE
4306 void
4307 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4308 {
4309 if (expect_false (ev_is_active (w)))
4310 return;
4311
4312 EV_FREQUENT_CHECK;
4313
4314 ev_start (EV_A_ (W)w, ++preparecnt);
4315 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4316 prepares [preparecnt - 1] = w;
4317
4318 EV_FREQUENT_CHECK;
4319 }
4320
4321 void
4322 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4323 {
4324 clear_pending (EV_A_ (W)w);
4325 if (expect_false (!ev_is_active (w)))
4326 return;
4327
4328 EV_FREQUENT_CHECK;
4329
4330 {
4331 int active = ev_active (w);
4332
4333 prepares [active - 1] = prepares [--preparecnt];
4334 ev_active (prepares [active - 1]) = active;
4335 }
4336
4337 ev_stop (EV_A_ (W)w);
4338
4339 EV_FREQUENT_CHECK;
4340 }
4341 #endif
4342
4343 #if EV_CHECK_ENABLE
4344 void
4345 ev_check_start (EV_P_ ev_check *w) EV_THROW
4346 {
4347 if (expect_false (ev_is_active (w)))
4348 return;
4349
4350 EV_FREQUENT_CHECK;
4351
4352 ev_start (EV_A_ (W)w, ++checkcnt);
4353 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4354 checks [checkcnt - 1] = w;
4355
4356 EV_FREQUENT_CHECK;
4357 }
4358
4359 void
4360 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4361 {
4362 clear_pending (EV_A_ (W)w);
4363 if (expect_false (!ev_is_active (w)))
4364 return;
4365
4366 EV_FREQUENT_CHECK;
4367
4368 {
4369 int active = ev_active (w);
4370
4371 checks [active - 1] = checks [--checkcnt];
4372 ev_active (checks [active - 1]) = active;
4373 }
4374
4375 ev_stop (EV_A_ (W)w);
4376
4377 EV_FREQUENT_CHECK;
4378 }
4379 #endif
4380
4381 #if EV_EMBED_ENABLE
4382 void noinline
4383 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4384 {
4385 ev_run (w->other, EVRUN_NOWAIT);
4386 }
4387
4388 static void
4389 embed_io_cb (EV_P_ ev_io *io, int revents)
4390 {
4391 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4392
4393 if (ev_cb (w))
4394 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4395 else
4396 ev_run (w->other, EVRUN_NOWAIT);
4397 }
4398
4399 static void
4400 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4401 {
4402 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4403
4404 {
4405 EV_P = w->other;
4406
4407 while (fdchangecnt)
4408 {
4409 fd_reify (EV_A);
4410 ev_run (EV_A_ EVRUN_NOWAIT);
4411 }
4412 }
4413 }
4414
4415 static void
4416 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4417 {
4418 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4419
4420 ev_embed_stop (EV_A_ w);
4421
4422 {
4423 EV_P = w->other;
4424
4425 ev_loop_fork (EV_A);
4426 ev_run (EV_A_ EVRUN_NOWAIT);
4427 }
4428
4429 ev_embed_start (EV_A_ w);
4430 }
4431
4432 #if 0
4433 static void
4434 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4435 {
4436 ev_idle_stop (EV_A_ idle);
4437 }
4438 #endif
4439
4440 void
4441 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4442 {
4443 if (expect_false (ev_is_active (w)))
4444 return;
4445
4446 {
4447 EV_P = w->other;
4448 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4449 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4450 }
4451
4452 EV_FREQUENT_CHECK;
4453
4454 ev_set_priority (&w->io, ev_priority (w));
4455 ev_io_start (EV_A_ &w->io);
4456
4457 ev_prepare_init (&w->prepare, embed_prepare_cb);
4458 ev_set_priority (&w->prepare, EV_MINPRI);
4459 ev_prepare_start (EV_A_ &w->prepare);
4460
4461 ev_fork_init (&w->fork, embed_fork_cb);
4462 ev_fork_start (EV_A_ &w->fork);
4463
4464 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4465
4466 ev_start (EV_A_ (W)w, 1);
4467
4468 EV_FREQUENT_CHECK;
4469 }
4470
4471 void
4472 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4473 {
4474 clear_pending (EV_A_ (W)w);
4475 if (expect_false (!ev_is_active (w)))
4476 return;
4477
4478 EV_FREQUENT_CHECK;
4479
4480 ev_io_stop (EV_A_ &w->io);
4481 ev_prepare_stop (EV_A_ &w->prepare);
4482 ev_fork_stop (EV_A_ &w->fork);
4483
4484 ev_stop (EV_A_ (W)w);
4485
4486 EV_FREQUENT_CHECK;
4487 }
4488 #endif
4489
4490 #if EV_FORK_ENABLE
4491 void
4492 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4493 {
4494 if (expect_false (ev_is_active (w)))
4495 return;
4496
4497 EV_FREQUENT_CHECK;
4498
4499 ev_start (EV_A_ (W)w, ++forkcnt);
4500 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4501 forks [forkcnt - 1] = w;
4502
4503 EV_FREQUENT_CHECK;
4504 }
4505
4506 void
4507 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4508 {
4509 clear_pending (EV_A_ (W)w);
4510 if (expect_false (!ev_is_active (w)))
4511 return;
4512
4513 EV_FREQUENT_CHECK;
4514
4515 {
4516 int active = ev_active (w);
4517
4518 forks [active - 1] = forks [--forkcnt];
4519 ev_active (forks [active - 1]) = active;
4520 }
4521
4522 ev_stop (EV_A_ (W)w);
4523
4524 EV_FREQUENT_CHECK;
4525 }
4526 #endif
4527
4528 #if EV_CLEANUP_ENABLE
4529 void
4530 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4531 {
4532 if (expect_false (ev_is_active (w)))
4533 return;
4534
4535 EV_FREQUENT_CHECK;
4536
4537 ev_start (EV_A_ (W)w, ++cleanupcnt);
4538 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4539 cleanups [cleanupcnt - 1] = w;
4540
4541 /* cleanup watchers should never keep a refcount on the loop */
4542 ev_unref (EV_A);
4543 EV_FREQUENT_CHECK;
4544 }
4545
4546 void
4547 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4548 {
4549 clear_pending (EV_A_ (W)w);
4550 if (expect_false (!ev_is_active (w)))
4551 return;
4552
4553 EV_FREQUENT_CHECK;
4554 ev_ref (EV_A);
4555
4556 {
4557 int active = ev_active (w);
4558
4559 cleanups [active - 1] = cleanups [--cleanupcnt];
4560 ev_active (cleanups [active - 1]) = active;
4561 }
4562
4563 ev_stop (EV_A_ (W)w);
4564
4565 EV_FREQUENT_CHECK;
4566 }
4567 #endif
4568
4569 #if EV_ASYNC_ENABLE
4570 void
4571 ev_async_start (EV_P_ ev_async *w) EV_THROW
4572 {
4573 if (expect_false (ev_is_active (w)))
4574 return;
4575
4576 w->sent = 0;
4577
4578 evpipe_init (EV_A);
4579
4580 EV_FREQUENT_CHECK;
4581
4582 ev_start (EV_A_ (W)w, ++asynccnt);
4583 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4584 asyncs [asynccnt - 1] = w;
4585
4586 EV_FREQUENT_CHECK;
4587 }
4588
4589 void
4590 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4591 {
4592 clear_pending (EV_A_ (W)w);
4593 if (expect_false (!ev_is_active (w)))
4594 return;
4595
4596 EV_FREQUENT_CHECK;
4597
4598 {
4599 int active = ev_active (w);
4600
4601 asyncs [active - 1] = asyncs [--asynccnt];
4602 ev_active (asyncs [active - 1]) = active;
4603 }
4604
4605 ev_stop (EV_A_ (W)w);
4606
4607 EV_FREQUENT_CHECK;
4608 }
4609
4610 void
4611 ev_async_send (EV_P_ ev_async *w) EV_THROW
4612 {
4613 w->sent = 1;
4614 evpipe_write (EV_A_ &async_pending);
4615 }
4616 #endif
4617
4618 /*****************************************************************************/
4619
4620 struct ev_once
4621 {
4622 ev_io io;
4623 ev_timer to;
4624 void (*cb)(int revents, void *arg);
4625 void *arg;
4626 };
4627
4628 static void
4629 once_cb (EV_P_ struct ev_once *once, int revents)
4630 {
4631 void (*cb)(int revents, void *arg) = once->cb;
4632 void *arg = once->arg;
4633
4634 ev_io_stop (EV_A_ &once->io);
4635 ev_timer_stop (EV_A_ &once->to);
4636 ev_free (once);
4637
4638 cb (revents, arg);
4639 }
4640
4641 static void
4642 once_cb_io (EV_P_ ev_io *w, int revents)
4643 {
4644 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4645
4646 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4647 }
4648
4649 static void
4650 once_cb_to (EV_P_ ev_timer *w, int revents)
4651 {
4652 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4653
4654 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4655 }
4656
4657 void
4658 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4659 {
4660 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4661
4662 if (expect_false (!once))
4663 {
4664 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4665 return;
4666 }
4667
4668 once->cb = cb;
4669 once->arg = arg;
4670
4671 ev_init (&once->io, once_cb_io);
4672 if (fd >= 0)
4673 {
4674 ev_io_set (&once->io, fd, events);
4675 ev_io_start (EV_A_ &once->io);
4676 }
4677
4678 ev_init (&once->to, once_cb_to);
4679 if (timeout >= 0.)
4680 {
4681 ev_timer_set (&once->to, timeout, 0.);
4682 ev_timer_start (EV_A_ &once->to);
4683 }
4684 }
4685
4686 /*****************************************************************************/
4687
4688 #if EV_WALK_ENABLE
4689 void ecb_cold
4690 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4691 {
4692 int i, j;
4693 ev_watcher_list *wl, *wn;
4694
4695 if (types & (EV_IO | EV_EMBED))
4696 for (i = 0; i < anfdmax; ++i)
4697 for (wl = anfds [i].head; wl; )
4698 {
4699 wn = wl->next;
4700
4701 #if EV_EMBED_ENABLE
4702 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4703 {
4704 if (types & EV_EMBED)
4705 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4706 }
4707 else
4708 #endif
4709 #if EV_USE_INOTIFY
4710 if (ev_cb ((ev_io *)wl) == infy_cb)
4711 ;
4712 else
4713 #endif
4714 if ((ev_io *)wl != &pipe_w)
4715 if (types & EV_IO)
4716 cb (EV_A_ EV_IO, wl);
4717
4718 wl = wn;
4719 }
4720
4721 if (types & (EV_TIMER | EV_STAT))
4722 for (i = timercnt + HEAP0; i-- > HEAP0; )
4723 #if EV_STAT_ENABLE
4724 /*TODO: timer is not always active*/
4725 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4726 {
4727 if (types & EV_STAT)
4728 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4729 }
4730 else
4731 #endif
4732 if (types & EV_TIMER)
4733 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4734
4735 #if EV_PERIODIC_ENABLE
4736 if (types & EV_PERIODIC)
4737 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4738 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4739 #endif
4740
4741 #if EV_IDLE_ENABLE
4742 if (types & EV_IDLE)
4743 for (j = NUMPRI; j--; )
4744 for (i = idlecnt [j]; i--; )
4745 cb (EV_A_ EV_IDLE, idles [j][i]);
4746 #endif
4747
4748 #if EV_FORK_ENABLE
4749 if (types & EV_FORK)
4750 for (i = forkcnt; i--; )
4751 if (ev_cb (forks [i]) != embed_fork_cb)
4752 cb (EV_A_ EV_FORK, forks [i]);
4753 #endif
4754
4755 #if EV_ASYNC_ENABLE
4756 if (types & EV_ASYNC)
4757 for (i = asynccnt; i--; )
4758 cb (EV_A_ EV_ASYNC, asyncs [i]);
4759 #endif
4760
4761 #if EV_PREPARE_ENABLE
4762 if (types & EV_PREPARE)
4763 for (i = preparecnt; i--; )
4764 # if EV_EMBED_ENABLE
4765 if (ev_cb (prepares [i]) != embed_prepare_cb)
4766 # endif
4767 cb (EV_A_ EV_PREPARE, prepares [i]);
4768 #endif
4769
4770 #if EV_CHECK_ENABLE
4771 if (types & EV_CHECK)
4772 for (i = checkcnt; i--; )
4773 cb (EV_A_ EV_CHECK, checks [i]);
4774 #endif
4775
4776 #if EV_SIGNAL_ENABLE
4777 if (types & EV_SIGNAL)
4778 for (i = 0; i < EV_NSIG - 1; ++i)
4779 for (wl = signals [i].head; wl; )
4780 {
4781 wn = wl->next;
4782 cb (EV_A_ EV_SIGNAL, wl);
4783 wl = wn;
4784 }
4785 #endif
4786
4787 #if EV_CHILD_ENABLE
4788 if (types & EV_CHILD)
4789 for (i = (EV_PID_HASHSIZE); i--; )
4790 for (wl = childs [i]; wl; )
4791 {
4792 wn = wl->next;
4793 cb (EV_A_ EV_CHILD, wl);
4794 wl = wn;
4795 }
4796 #endif
4797 /* EV_STAT 0x00001000 /* stat data changed */
4798 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4799 }
4800 #endif
4801
4802 #if EV_MULTIPLICITY
4803 #include "ev_wrap.h"
4804 #endif
4805