ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.458
Committed: Sun Oct 27 16:26:07 2013 UTC (10 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.457: +27 -3 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 # define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # error "unable to find value for NSIG, please report"
247 /* to make it compile regardless, just remove the above line, */
248 /* but consider reporting it, too! :) */
249 # define EV_NSIG 65
250 #endif
251
252 #ifndef EV_USE_FLOOR
253 # define EV_USE_FLOOR 0
254 #endif
255
256 #ifndef EV_USE_CLOCK_SYSCALL
257 # if __linux && __GLIBC__ >= 2
258 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 # else
260 # define EV_USE_CLOCK_SYSCALL 0
261 # endif
262 #endif
263
264 #ifndef EV_USE_MONOTONIC
265 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 # define EV_USE_MONOTONIC EV_FEATURE_OS
267 # else
268 # define EV_USE_MONOTONIC 0
269 # endif
270 #endif
271
272 #ifndef EV_USE_REALTIME
273 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 #endif
275
276 #ifndef EV_USE_NANOSLEEP
277 # if _POSIX_C_SOURCE >= 199309L
278 # define EV_USE_NANOSLEEP EV_FEATURE_OS
279 # else
280 # define EV_USE_NANOSLEEP 0
281 # endif
282 #endif
283
284 #ifndef EV_USE_SELECT
285 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 #endif
287
288 #ifndef EV_USE_POLL
289 # ifdef _WIN32
290 # define EV_USE_POLL 0
291 # else
292 # define EV_USE_POLL EV_FEATURE_BACKENDS
293 # endif
294 #endif
295
296 #ifndef EV_USE_EPOLL
297 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 # else
300 # define EV_USE_EPOLL 0
301 # endif
302 #endif
303
304 #ifndef EV_USE_KQUEUE
305 # define EV_USE_KQUEUE 0
306 #endif
307
308 #ifndef EV_USE_PORT
309 # define EV_USE_PORT 0
310 #endif
311
312 #ifndef EV_USE_INOTIFY
313 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 # define EV_USE_INOTIFY EV_FEATURE_OS
315 # else
316 # define EV_USE_INOTIFY 0
317 # endif
318 #endif
319
320 #ifndef EV_PID_HASHSIZE
321 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 #endif
323
324 #ifndef EV_INOTIFY_HASHSIZE
325 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 #endif
327
328 #ifndef EV_USE_EVENTFD
329 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 # define EV_USE_EVENTFD EV_FEATURE_OS
331 # else
332 # define EV_USE_EVENTFD 0
333 # endif
334 #endif
335
336 #ifndef EV_USE_SIGNALFD
337 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 # define EV_USE_SIGNALFD EV_FEATURE_OS
339 # else
340 # define EV_USE_SIGNALFD 0
341 # endif
342 #endif
343
344 #if 0 /* debugging */
345 # define EV_VERIFY 3
346 # define EV_USE_4HEAP 1
347 # define EV_HEAP_CACHE_AT 1
348 #endif
349
350 #ifndef EV_VERIFY
351 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 #endif
353
354 #ifndef EV_USE_4HEAP
355 # define EV_USE_4HEAP EV_FEATURE_DATA
356 #endif
357
358 #ifndef EV_HEAP_CACHE_AT
359 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 #endif
361
362 #ifdef ANDROID
363 /* supposedly, android doesn't typedef fd_mask */
364 # undef EV_USE_SELECT
365 # define EV_USE_SELECT 0
366 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367 # undef EV_USE_CLOCK_SYSCALL
368 # define EV_USE_CLOCK_SYSCALL 0
369 #endif
370
371 /* aix's poll.h seems to cause lots of trouble */
372 #ifdef _AIX
373 /* AIX has a completely broken poll.h header */
374 # undef EV_USE_POLL
375 # define EV_USE_POLL 0
376 #endif
377
378 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379 /* which makes programs even slower. might work on other unices, too. */
380 #if EV_USE_CLOCK_SYSCALL
381 # include <sys/syscall.h>
382 # ifdef SYS_clock_gettime
383 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384 # undef EV_USE_MONOTONIC
385 # define EV_USE_MONOTONIC 1
386 # else
387 # undef EV_USE_CLOCK_SYSCALL
388 # define EV_USE_CLOCK_SYSCALL 0
389 # endif
390 #endif
391
392 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
393
394 #ifndef CLOCK_MONOTONIC
395 # undef EV_USE_MONOTONIC
396 # define EV_USE_MONOTONIC 0
397 #endif
398
399 #ifndef CLOCK_REALTIME
400 # undef EV_USE_REALTIME
401 # define EV_USE_REALTIME 0
402 #endif
403
404 #if !EV_STAT_ENABLE
405 # undef EV_USE_INOTIFY
406 # define EV_USE_INOTIFY 0
407 #endif
408
409 #if !EV_USE_NANOSLEEP
410 /* hp-ux has it in sys/time.h, which we unconditionally include above */
411 # if !defined _WIN32 && !defined __hpux
412 # include <sys/select.h>
413 # endif
414 #endif
415
416 #if EV_USE_INOTIFY
417 # include <sys/statfs.h>
418 # include <sys/inotify.h>
419 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420 # ifndef IN_DONT_FOLLOW
421 # undef EV_USE_INOTIFY
422 # define EV_USE_INOTIFY 0
423 # endif
424 #endif
425
426 #if EV_USE_EVENTFD
427 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428 # include <stdint.h>
429 # ifndef EFD_NONBLOCK
430 # define EFD_NONBLOCK O_NONBLOCK
431 # endif
432 # ifndef EFD_CLOEXEC
433 # ifdef O_CLOEXEC
434 # define EFD_CLOEXEC O_CLOEXEC
435 # else
436 # define EFD_CLOEXEC 02000000
437 # endif
438 # endif
439 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440 #endif
441
442 #if EV_USE_SIGNALFD
443 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444 # include <stdint.h>
445 # ifndef SFD_NONBLOCK
446 # define SFD_NONBLOCK O_NONBLOCK
447 # endif
448 # ifndef SFD_CLOEXEC
449 # ifdef O_CLOEXEC
450 # define SFD_CLOEXEC O_CLOEXEC
451 # else
452 # define SFD_CLOEXEC 02000000
453 # endif
454 # endif
455 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457 struct signalfd_siginfo
458 {
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461 };
462 #endif
463
464 /**/
465
466 #if EV_VERIFY >= 3
467 # define EV_FREQUENT_CHECK ev_verify (EV_A)
468 #else
469 # define EV_FREQUENT_CHECK do { } while (0)
470 #endif
471
472 /*
473 * This is used to work around floating point rounding problems.
474 * This value is good at least till the year 4000.
475 */
476 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
478
479 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
480 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
481
482 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486 /* ECB.H BEGIN */
487 /*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
516 #ifndef ECB_H
517 #define ECB_H
518
519 /* 16 bits major, 16 bits minor */
520 #define ECB_VERSION 0x00010003
521
522 #ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
529 #if __GNUC__
530 typedef signed long long int64_t;
531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
545 #else
546 #include <inttypes.h>
547 #if UINTMAX_MAX > 0xffffffffU
548 #define ECB_PTRSIZE 8
549 #else
550 #define ECB_PTRSIZE 4
551 #endif
552 #endif
553
554 /* work around x32 idiocy by defining proper macros */
555 #if __x86_64 || _M_AMD64
556 #if _ILP32
557 #define ECB_AMD64_X32 1
558 #else
559 #define ECB_AMD64 1
560 #endif
561 #endif
562
563 /* many compilers define _GNUC_ to some versions but then only implement
564 * what their idiot authors think are the "more important" extensions,
565 * causing enormous grief in return for some better fake benchmark numbers.
566 * or so.
567 * we try to detect these and simply assume they are not gcc - if they have
568 * an issue with that they should have done it right in the first place.
569 */
570 #ifndef ECB_GCC_VERSION
571 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
572 #define ECB_GCC_VERSION(major,minor) 0
573 #else
574 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
575 #endif
576 #endif
577
578 #define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
579 #define ECB_C99 (__STDC_VERSION__ >= 199901L)
580 #define ECB_C11 (__STDC_VERSION__ >= 201112L)
581 #define ECB_CPP (__cplusplus+0)
582 #define ECB_CPP11 (__cplusplus >= 201103L)
583
584 #if ECB_CPP
585 #define ECB_EXTERN_C extern "C"
586 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
587 #define ECB_EXTERN_C_END }
588 #else
589 #define ECB_EXTERN_C extern
590 #define ECB_EXTERN_C_BEG
591 #define ECB_EXTERN_C_END
592 #endif
593
594 /*****************************************************************************/
595
596 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
597 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
598
599 #if ECB_NO_THREADS
600 #define ECB_NO_SMP 1
601 #endif
602
603 #if ECB_NO_SMP
604 #define ECB_MEMORY_FENCE do { } while (0)
605 #endif
606
607 #ifndef ECB_MEMORY_FENCE
608 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
609 #if __i386 || __i386__
610 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
611 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
612 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
613 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
614 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
615 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
616 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
617 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
619 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
620 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
622 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
623 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
624 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
625 #elif __sparc || __sparc__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
629 #elif defined __s390__ || defined __s390x__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
631 #elif defined __mips__
632 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
633 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
635 #elif defined __alpha__
636 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
637 #elif defined __hppa__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
639 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
640 #elif defined __ia64__
641 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
642 #elif defined __m68k__
643 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
644 #elif defined __m88k__
645 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
646 #elif defined __sh__
647 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
648 #endif
649 #endif
650 #endif
651
652 #ifndef ECB_MEMORY_FENCE
653 #if ECB_GCC_VERSION(4,7)
654 /* see comment below (stdatomic.h) about the C11 memory model. */
655 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
656
657 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
658 * without risking compile time errors with other compilers. We *could*
659 * define our own ecb_clang_has_feature, but I just can't be bothered to work
660 * around this shit time and again.
661 * #elif defined __clang && __has_feature (cxx_atomic)
662 * // see comment below (stdatomic.h) about the C11 memory model.
663 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
664 */
665
666 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
667 #define ECB_MEMORY_FENCE __sync_synchronize ()
668 #elif _MSC_VER >= 1400 /* VC++ 2005 */
669 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
670 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
671 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
672 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
673 #elif defined _WIN32
674 #include <WinNT.h>
675 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
676 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
677 #include <mbarrier.h>
678 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
679 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
680 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
681 #elif __xlC__
682 #define ECB_MEMORY_FENCE __sync ()
683 #endif
684 #endif
685
686 #ifndef ECB_MEMORY_FENCE
687 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
688 /* we assume that these memory fences work on all variables/all memory accesses, */
689 /* not just C11 atomics and atomic accesses */
690 #include <stdatomic.h>
691 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
692 /* any fence other than seq_cst, which isn't very efficient for us. */
693 /* Why that is, we don't know - either the C11 memory model is quite useless */
694 /* for most usages, or gcc and clang have a bug */
695 /* I *currently* lean towards the latter, and inefficiently implement */
696 /* all three of ecb's fences as a seq_cst fence */
697 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
698 #endif
699 #endif
700
701 #ifndef ECB_MEMORY_FENCE
702 #if !ECB_AVOID_PTHREADS
703 /*
704 * if you get undefined symbol references to pthread_mutex_lock,
705 * or failure to find pthread.h, then you should implement
706 * the ECB_MEMORY_FENCE operations for your cpu/compiler
707 * OR provide pthread.h and link against the posix thread library
708 * of your system.
709 */
710 #include <pthread.h>
711 #define ECB_NEEDS_PTHREADS 1
712 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
713
714 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
715 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
716 #endif
717 #endif
718
719 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
720 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
721 #endif
722
723 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
724 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
725 #endif
726
727 /*****************************************************************************/
728
729 #if __cplusplus
730 #define ecb_inline static inline
731 #elif ECB_GCC_VERSION(2,5)
732 #define ecb_inline static __inline__
733 #elif ECB_C99
734 #define ecb_inline static inline
735 #else
736 #define ecb_inline static
737 #endif
738
739 #if ECB_GCC_VERSION(3,3)
740 #define ecb_restrict __restrict__
741 #elif ECB_C99
742 #define ecb_restrict restrict
743 #else
744 #define ecb_restrict
745 #endif
746
747 typedef int ecb_bool;
748
749 #define ECB_CONCAT_(a, b) a ## b
750 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
751 #define ECB_STRINGIFY_(a) # a
752 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
753
754 #define ecb_function_ ecb_inline
755
756 #if ECB_GCC_VERSION(3,1)
757 #define ecb_attribute(attrlist) __attribute__(attrlist)
758 #define ecb_is_constant(expr) __builtin_constant_p (expr)
759 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
760 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
761 #else
762 #define ecb_attribute(attrlist)
763 #define ecb_is_constant(expr) 0
764 #define ecb_expect(expr,value) (expr)
765 #define ecb_prefetch(addr,rw,locality)
766 #endif
767
768 /* no emulation for ecb_decltype */
769 #if ECB_GCC_VERSION(4,5)
770 #define ecb_decltype(x) __decltype(x)
771 #elif ECB_GCC_VERSION(3,0)
772 #define ecb_decltype(x) __typeof(x)
773 #endif
774
775 #define ecb_noinline ecb_attribute ((__noinline__))
776 #define ecb_unused ecb_attribute ((__unused__))
777 #define ecb_const ecb_attribute ((__const__))
778 #define ecb_pure ecb_attribute ((__pure__))
779
780 #if ECB_C11
781 #define ecb_noreturn _Noreturn
782 #else
783 #define ecb_noreturn ecb_attribute ((__noreturn__))
784 #endif
785
786 #if ECB_GCC_VERSION(4,3)
787 #define ecb_artificial ecb_attribute ((__artificial__))
788 #define ecb_hot ecb_attribute ((__hot__))
789 #define ecb_cold ecb_attribute ((__cold__))
790 #else
791 #define ecb_artificial
792 #define ecb_hot
793 #define ecb_cold
794 #endif
795
796 /* put around conditional expressions if you are very sure that the */
797 /* expression is mostly true or mostly false. note that these return */
798 /* booleans, not the expression. */
799 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
800 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
801 /* for compatibility to the rest of the world */
802 #define ecb_likely(expr) ecb_expect_true (expr)
803 #define ecb_unlikely(expr) ecb_expect_false (expr)
804
805 /* count trailing zero bits and count # of one bits */
806 #if ECB_GCC_VERSION(3,4)
807 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
808 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
809 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
810 #define ecb_ctz32(x) __builtin_ctz (x)
811 #define ecb_ctz64(x) __builtin_ctzll (x)
812 #define ecb_popcount32(x) __builtin_popcount (x)
813 /* no popcountll */
814 #else
815 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
816 ecb_function_ int
817 ecb_ctz32 (uint32_t x)
818 {
819 int r = 0;
820
821 x &= ~x + 1; /* this isolates the lowest bit */
822
823 #if ECB_branchless_on_i386
824 r += !!(x & 0xaaaaaaaa) << 0;
825 r += !!(x & 0xcccccccc) << 1;
826 r += !!(x & 0xf0f0f0f0) << 2;
827 r += !!(x & 0xff00ff00) << 3;
828 r += !!(x & 0xffff0000) << 4;
829 #else
830 if (x & 0xaaaaaaaa) r += 1;
831 if (x & 0xcccccccc) r += 2;
832 if (x & 0xf0f0f0f0) r += 4;
833 if (x & 0xff00ff00) r += 8;
834 if (x & 0xffff0000) r += 16;
835 #endif
836
837 return r;
838 }
839
840 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
841 ecb_function_ int
842 ecb_ctz64 (uint64_t x)
843 {
844 int shift = x & 0xffffffffU ? 0 : 32;
845 return ecb_ctz32 (x >> shift) + shift;
846 }
847
848 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
849 ecb_function_ int
850 ecb_popcount32 (uint32_t x)
851 {
852 x -= (x >> 1) & 0x55555555;
853 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
854 x = ((x >> 4) + x) & 0x0f0f0f0f;
855 x *= 0x01010101;
856
857 return x >> 24;
858 }
859
860 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
861 ecb_function_ int ecb_ld32 (uint32_t x)
862 {
863 int r = 0;
864
865 if (x >> 16) { x >>= 16; r += 16; }
866 if (x >> 8) { x >>= 8; r += 8; }
867 if (x >> 4) { x >>= 4; r += 4; }
868 if (x >> 2) { x >>= 2; r += 2; }
869 if (x >> 1) { r += 1; }
870
871 return r;
872 }
873
874 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
875 ecb_function_ int ecb_ld64 (uint64_t x)
876 {
877 int r = 0;
878
879 if (x >> 32) { x >>= 32; r += 32; }
880
881 return r + ecb_ld32 (x);
882 }
883 #endif
884
885 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
886 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
887 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
888 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
889
890 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
891 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
892 {
893 return ( (x * 0x0802U & 0x22110U)
894 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
895 }
896
897 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
898 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
899 {
900 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
901 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
902 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
903 x = ( x >> 8 ) | ( x << 8);
904
905 return x;
906 }
907
908 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
909 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
910 {
911 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
912 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
913 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
914 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
915 x = ( x >> 16 ) | ( x << 16);
916
917 return x;
918 }
919
920 /* popcount64 is only available on 64 bit cpus as gcc builtin */
921 /* so for this version we are lazy */
922 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
923 ecb_function_ int
924 ecb_popcount64 (uint64_t x)
925 {
926 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
927 }
928
929 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
930 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
931 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
932 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
933 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
934 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
935 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
936 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
937
938 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
939 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
940 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
941 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
942 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
943 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
944 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
945 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
946
947 #if ECB_GCC_VERSION(4,3)
948 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
949 #define ecb_bswap32(x) __builtin_bswap32 (x)
950 #define ecb_bswap64(x) __builtin_bswap64 (x)
951 #else
952 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
953 ecb_function_ uint16_t
954 ecb_bswap16 (uint16_t x)
955 {
956 return ecb_rotl16 (x, 8);
957 }
958
959 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
960 ecb_function_ uint32_t
961 ecb_bswap32 (uint32_t x)
962 {
963 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
964 }
965
966 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
967 ecb_function_ uint64_t
968 ecb_bswap64 (uint64_t x)
969 {
970 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
971 }
972 #endif
973
974 #if ECB_GCC_VERSION(4,5)
975 #define ecb_unreachable() __builtin_unreachable ()
976 #else
977 /* this seems to work fine, but gcc always emits a warning for it :/ */
978 ecb_inline void ecb_unreachable (void) ecb_noreturn;
979 ecb_inline void ecb_unreachable (void) { }
980 #endif
981
982 /* try to tell the compiler that some condition is definitely true */
983 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
984
985 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
986 ecb_inline unsigned char
987 ecb_byteorder_helper (void)
988 {
989 /* the union code still generates code under pressure in gcc, */
990 /* but less than using pointers, and always seems to */
991 /* successfully return a constant. */
992 /* the reason why we have this horrible preprocessor mess */
993 /* is to avoid it in all cases, at least on common architectures */
994 /* or when using a recent enough gcc version (>= 4.6) */
995 #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
996 return 0x44;
997 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
998 return 0x44;
999 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1000 return 0x11;
1001 #else
1002 union
1003 {
1004 uint32_t i;
1005 uint8_t c;
1006 } u = { 0x11223344 };
1007 return u.c;
1008 #endif
1009 }
1010
1011 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1012 ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1013 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1014 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1015
1016 #if ECB_GCC_VERSION(3,0) || ECB_C99
1017 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1018 #else
1019 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1020 #endif
1021
1022 #if __cplusplus
1023 template<typename T>
1024 static inline T ecb_div_rd (T val, T div)
1025 {
1026 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1027 }
1028 template<typename T>
1029 static inline T ecb_div_ru (T val, T div)
1030 {
1031 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1032 }
1033 #else
1034 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1035 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1036 #endif
1037
1038 #if ecb_cplusplus_does_not_suck
1039 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1040 template<typename T, int N>
1041 static inline int ecb_array_length (const T (&arr)[N])
1042 {
1043 return N;
1044 }
1045 #else
1046 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1047 #endif
1048
1049 /*******************************************************************************/
1050 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1051
1052 /* basically, everything uses "ieee pure-endian" floating point numbers */
1053 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1054 #if 0 \
1055 || __i386 || __i386__ \
1056 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1057 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1058 || defined __arm__ && defined __ARM_EABI__ \
1059 || defined __s390__ || defined __s390x__ \
1060 || defined __mips__ \
1061 || defined __alpha__ \
1062 || defined __hppa__ \
1063 || defined __ia64__ \
1064 || defined __m68k__ \
1065 || defined __m88k__ \
1066 || defined __sh__ \
1067 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1068 #define ECB_STDFP 1
1069 #include <string.h> /* for memcpy */
1070 #else
1071 #define ECB_STDFP 0
1072 #endif
1073
1074 #ifndef ECB_NO_LIBM
1075
1076 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1077
1078 #ifdef NEN
1079 #define ECB_NAN NAN
1080 #else
1081 #define ECB_NAN INFINITY
1082 #endif
1083
1084 /* converts an ieee half/binary16 to a float */
1085 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1086 ecb_function_ float
1087 ecb_binary16_to_float (uint16_t x)
1088 {
1089 int e = (x >> 10) & 0x1f;
1090 int m = x & 0x3ff;
1091 float r;
1092
1093 if (!e ) r = ldexpf (m , -24);
1094 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1095 else if (m ) r = ECB_NAN;
1096 else r = INFINITY;
1097
1098 return x & 0x8000 ? -r : r;
1099 }
1100
1101 /* convert a float to ieee single/binary32 */
1102 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1103 ecb_function_ uint32_t
1104 ecb_float_to_binary32 (float x)
1105 {
1106 uint32_t r;
1107
1108 #if ECB_STDFP
1109 memcpy (&r, &x, 4);
1110 #else
1111 /* slow emulation, works for anything but -0 */
1112 uint32_t m;
1113 int e;
1114
1115 if (x == 0e0f ) return 0x00000000U;
1116 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1117 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1118 if (x != x ) return 0x7fbfffffU;
1119
1120 m = frexpf (x, &e) * 0x1000000U;
1121
1122 r = m & 0x80000000U;
1123
1124 if (r)
1125 m = -m;
1126
1127 if (e <= -126)
1128 {
1129 m &= 0xffffffU;
1130 m >>= (-125 - e);
1131 e = -126;
1132 }
1133
1134 r |= (e + 126) << 23;
1135 r |= m & 0x7fffffU;
1136 #endif
1137
1138 return r;
1139 }
1140
1141 /* converts an ieee single/binary32 to a float */
1142 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1143 ecb_function_ float
1144 ecb_binary32_to_float (uint32_t x)
1145 {
1146 float r;
1147
1148 #if ECB_STDFP
1149 memcpy (&r, &x, 4);
1150 #else
1151 /* emulation, only works for normals and subnormals and +0 */
1152 int neg = x >> 31;
1153 int e = (x >> 23) & 0xffU;
1154
1155 x &= 0x7fffffU;
1156
1157 if (e)
1158 x |= 0x800000U;
1159 else
1160 e = 1;
1161
1162 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1163 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1164
1165 r = neg ? -r : r;
1166 #endif
1167
1168 return r;
1169 }
1170
1171 /* convert a double to ieee double/binary64 */
1172 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1173 ecb_function_ uint64_t
1174 ecb_double_to_binary64 (double x)
1175 {
1176 uint64_t r;
1177
1178 #if ECB_STDFP
1179 memcpy (&r, &x, 8);
1180 #else
1181 /* slow emulation, works for anything but -0 */
1182 uint64_t m;
1183 int e;
1184
1185 if (x == 0e0 ) return 0x0000000000000000U;
1186 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1187 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1188 if (x != x ) return 0X7ff7ffffffffffffU;
1189
1190 m = frexp (x, &e) * 0x20000000000000U;
1191
1192 r = m & 0x8000000000000000;;
1193
1194 if (r)
1195 m = -m;
1196
1197 if (e <= -1022)
1198 {
1199 m &= 0x1fffffffffffffU;
1200 m >>= (-1021 - e);
1201 e = -1022;
1202 }
1203
1204 r |= ((uint64_t)(e + 1022)) << 52;
1205 r |= m & 0xfffffffffffffU;
1206 #endif
1207
1208 return r;
1209 }
1210
1211 /* converts an ieee double/binary64 to a double */
1212 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1213 ecb_function_ double
1214 ecb_binary64_to_double (uint64_t x)
1215 {
1216 double r;
1217
1218 #if ECB_STDFP
1219 memcpy (&r, &x, 8);
1220 #else
1221 /* emulation, only works for normals and subnormals and +0 */
1222 int neg = x >> 63;
1223 int e = (x >> 52) & 0x7ffU;
1224
1225 x &= 0xfffffffffffffU;
1226
1227 if (e)
1228 x |= 0x10000000000000U;
1229 else
1230 e = 1;
1231
1232 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1233 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1234
1235 r = neg ? -r : r;
1236 #endif
1237
1238 return r;
1239 }
1240
1241 #endif
1242
1243 #endif
1244
1245 /* ECB.H END */
1246
1247 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1248 /* if your architecture doesn't need memory fences, e.g. because it is
1249 * single-cpu/core, or if you use libev in a project that doesn't use libev
1250 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1251 * libev, in which cases the memory fences become nops.
1252 * alternatively, you can remove this #error and link against libpthread,
1253 * which will then provide the memory fences.
1254 */
1255 # error "memory fences not defined for your architecture, please report"
1256 #endif
1257
1258 #ifndef ECB_MEMORY_FENCE
1259 # define ECB_MEMORY_FENCE do { } while (0)
1260 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1261 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1262 #endif
1263
1264 #define expect_false(cond) ecb_expect_false (cond)
1265 #define expect_true(cond) ecb_expect_true (cond)
1266 #define noinline ecb_noinline
1267
1268 #define inline_size ecb_inline
1269
1270 #if EV_FEATURE_CODE
1271 # define inline_speed ecb_inline
1272 #else
1273 # define inline_speed static noinline
1274 #endif
1275
1276 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1277
1278 #if EV_MINPRI == EV_MAXPRI
1279 # define ABSPRI(w) (((W)w), 0)
1280 #else
1281 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1282 #endif
1283
1284 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1285 #define EMPTY2(a,b) /* used to suppress some warnings */
1286
1287 typedef ev_watcher *W;
1288 typedef ev_watcher_list *WL;
1289 typedef ev_watcher_time *WT;
1290
1291 #define ev_active(w) ((W)(w))->active
1292 #define ev_at(w) ((WT)(w))->at
1293
1294 #if EV_USE_REALTIME
1295 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1296 /* giving it a reasonably high chance of working on typical architectures */
1297 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1298 #endif
1299
1300 #if EV_USE_MONOTONIC
1301 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1302 #endif
1303
1304 #ifndef EV_FD_TO_WIN32_HANDLE
1305 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1306 #endif
1307 #ifndef EV_WIN32_HANDLE_TO_FD
1308 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1309 #endif
1310 #ifndef EV_WIN32_CLOSE_FD
1311 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1312 #endif
1313
1314 #ifdef _WIN32
1315 # include "ev_win32.c"
1316 #endif
1317
1318 /*****************************************************************************/
1319
1320 /* define a suitable floor function (only used by periodics atm) */
1321
1322 #if EV_USE_FLOOR
1323 # include <math.h>
1324 # define ev_floor(v) floor (v)
1325 #else
1326
1327 #include <float.h>
1328
1329 /* a floor() replacement function, should be independent of ev_tstamp type */
1330 static ev_tstamp noinline
1331 ev_floor (ev_tstamp v)
1332 {
1333 /* the choice of shift factor is not terribly important */
1334 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1335 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1336 #else
1337 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1338 #endif
1339
1340 /* argument too large for an unsigned long? */
1341 if (expect_false (v >= shift))
1342 {
1343 ev_tstamp f;
1344
1345 if (v == v - 1.)
1346 return v; /* very large number */
1347
1348 f = shift * ev_floor (v * (1. / shift));
1349 return f + ev_floor (v - f);
1350 }
1351
1352 /* special treatment for negative args? */
1353 if (expect_false (v < 0.))
1354 {
1355 ev_tstamp f = -ev_floor (-v);
1356
1357 return f - (f == v ? 0 : 1);
1358 }
1359
1360 /* fits into an unsigned long */
1361 return (unsigned long)v;
1362 }
1363
1364 #endif
1365
1366 /*****************************************************************************/
1367
1368 #ifdef __linux
1369 # include <sys/utsname.h>
1370 #endif
1371
1372 static unsigned int noinline ecb_cold
1373 ev_linux_version (void)
1374 {
1375 #ifdef __linux
1376 unsigned int v = 0;
1377 struct utsname buf;
1378 int i;
1379 char *p = buf.release;
1380
1381 if (uname (&buf))
1382 return 0;
1383
1384 for (i = 3+1; --i; )
1385 {
1386 unsigned int c = 0;
1387
1388 for (;;)
1389 {
1390 if (*p >= '0' && *p <= '9')
1391 c = c * 10 + *p++ - '0';
1392 else
1393 {
1394 p += *p == '.';
1395 break;
1396 }
1397 }
1398
1399 v = (v << 8) | c;
1400 }
1401
1402 return v;
1403 #else
1404 return 0;
1405 #endif
1406 }
1407
1408 /*****************************************************************************/
1409
1410 #if EV_AVOID_STDIO
1411 static void noinline ecb_cold
1412 ev_printerr (const char *msg)
1413 {
1414 write (STDERR_FILENO, msg, strlen (msg));
1415 }
1416 #endif
1417
1418 static void (*syserr_cb)(const char *msg) EV_THROW;
1419
1420 void ecb_cold
1421 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1422 {
1423 syserr_cb = cb;
1424 }
1425
1426 static void noinline ecb_cold
1427 ev_syserr (const char *msg)
1428 {
1429 if (!msg)
1430 msg = "(libev) system error";
1431
1432 if (syserr_cb)
1433 syserr_cb (msg);
1434 else
1435 {
1436 #if EV_AVOID_STDIO
1437 ev_printerr (msg);
1438 ev_printerr (": ");
1439 ev_printerr (strerror (errno));
1440 ev_printerr ("\n");
1441 #else
1442 perror (msg);
1443 #endif
1444 abort ();
1445 }
1446 }
1447
1448 static void *
1449 ev_realloc_emul (void *ptr, long size) EV_THROW
1450 {
1451 /* some systems, notably openbsd and darwin, fail to properly
1452 * implement realloc (x, 0) (as required by both ansi c-89 and
1453 * the single unix specification, so work around them here.
1454 * recently, also (at least) fedora and debian started breaking it,
1455 * despite documenting it otherwise.
1456 */
1457
1458 if (size)
1459 return realloc (ptr, size);
1460
1461 free (ptr);
1462 return 0;
1463 }
1464
1465 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1466
1467 void ecb_cold
1468 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1469 {
1470 alloc = cb;
1471 }
1472
1473 inline_speed void *
1474 ev_realloc (void *ptr, long size)
1475 {
1476 ptr = alloc (ptr, size);
1477
1478 if (!ptr && size)
1479 {
1480 #if EV_AVOID_STDIO
1481 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1482 #else
1483 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1484 #endif
1485 abort ();
1486 }
1487
1488 return ptr;
1489 }
1490
1491 #define ev_malloc(size) ev_realloc (0, (size))
1492 #define ev_free(ptr) ev_realloc ((ptr), 0)
1493
1494 /*****************************************************************************/
1495
1496 /* set in reify when reification needed */
1497 #define EV_ANFD_REIFY 1
1498
1499 /* file descriptor info structure */
1500 typedef struct
1501 {
1502 WL head;
1503 unsigned char events; /* the events watched for */
1504 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1505 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1506 unsigned char unused;
1507 #if EV_USE_EPOLL
1508 unsigned int egen; /* generation counter to counter epoll bugs */
1509 #endif
1510 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1511 SOCKET handle;
1512 #endif
1513 #if EV_USE_IOCP
1514 OVERLAPPED or, ow;
1515 #endif
1516 } ANFD;
1517
1518 /* stores the pending event set for a given watcher */
1519 typedef struct
1520 {
1521 W w;
1522 int events; /* the pending event set for the given watcher */
1523 } ANPENDING;
1524
1525 #if EV_USE_INOTIFY
1526 /* hash table entry per inotify-id */
1527 typedef struct
1528 {
1529 WL head;
1530 } ANFS;
1531 #endif
1532
1533 /* Heap Entry */
1534 #if EV_HEAP_CACHE_AT
1535 /* a heap element */
1536 typedef struct {
1537 ev_tstamp at;
1538 WT w;
1539 } ANHE;
1540
1541 #define ANHE_w(he) (he).w /* access watcher, read-write */
1542 #define ANHE_at(he) (he).at /* access cached at, read-only */
1543 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1544 #else
1545 /* a heap element */
1546 typedef WT ANHE;
1547
1548 #define ANHE_w(he) (he)
1549 #define ANHE_at(he) (he)->at
1550 #define ANHE_at_cache(he)
1551 #endif
1552
1553 #if EV_MULTIPLICITY
1554
1555 struct ev_loop
1556 {
1557 ev_tstamp ev_rt_now;
1558 #define ev_rt_now ((loop)->ev_rt_now)
1559 #define VAR(name,decl) decl;
1560 #include "ev_vars.h"
1561 #undef VAR
1562 };
1563 #include "ev_wrap.h"
1564
1565 static struct ev_loop default_loop_struct;
1566 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1567
1568 #else
1569
1570 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1571 #define VAR(name,decl) static decl;
1572 #include "ev_vars.h"
1573 #undef VAR
1574
1575 static int ev_default_loop_ptr;
1576
1577 #endif
1578
1579 #if EV_FEATURE_API
1580 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1581 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1582 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1583 #else
1584 # define EV_RELEASE_CB (void)0
1585 # define EV_ACQUIRE_CB (void)0
1586 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1587 #endif
1588
1589 #define EVBREAK_RECURSE 0x80
1590
1591 /*****************************************************************************/
1592
1593 #ifndef EV_HAVE_EV_TIME
1594 ev_tstamp
1595 ev_time (void) EV_THROW
1596 {
1597 #if EV_USE_REALTIME
1598 if (expect_true (have_realtime))
1599 {
1600 struct timespec ts;
1601 clock_gettime (CLOCK_REALTIME, &ts);
1602 return ts.tv_sec + ts.tv_nsec * 1e-9;
1603 }
1604 #endif
1605
1606 struct timeval tv;
1607 gettimeofday (&tv, 0);
1608 return tv.tv_sec + tv.tv_usec * 1e-6;
1609 }
1610 #endif
1611
1612 inline_size ev_tstamp
1613 get_clock (void)
1614 {
1615 #if EV_USE_MONOTONIC
1616 if (expect_true (have_monotonic))
1617 {
1618 struct timespec ts;
1619 clock_gettime (CLOCK_MONOTONIC, &ts);
1620 return ts.tv_sec + ts.tv_nsec * 1e-9;
1621 }
1622 #endif
1623
1624 return ev_time ();
1625 }
1626
1627 #if EV_MULTIPLICITY
1628 ev_tstamp
1629 ev_now (EV_P) EV_THROW
1630 {
1631 return ev_rt_now;
1632 }
1633 #endif
1634
1635 void
1636 ev_sleep (ev_tstamp delay) EV_THROW
1637 {
1638 if (delay > 0.)
1639 {
1640 #if EV_USE_NANOSLEEP
1641 struct timespec ts;
1642
1643 EV_TS_SET (ts, delay);
1644 nanosleep (&ts, 0);
1645 #elif defined _WIN32
1646 Sleep ((unsigned long)(delay * 1e3));
1647 #else
1648 struct timeval tv;
1649
1650 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1651 /* something not guaranteed by newer posix versions, but guaranteed */
1652 /* by older ones */
1653 EV_TV_SET (tv, delay);
1654 select (0, 0, 0, 0, &tv);
1655 #endif
1656 }
1657 }
1658
1659 /*****************************************************************************/
1660
1661 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1662
1663 /* find a suitable new size for the given array, */
1664 /* hopefully by rounding to a nice-to-malloc size */
1665 inline_size int
1666 array_nextsize (int elem, int cur, int cnt)
1667 {
1668 int ncur = cur + 1;
1669
1670 do
1671 ncur <<= 1;
1672 while (cnt > ncur);
1673
1674 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1675 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1676 {
1677 ncur *= elem;
1678 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1679 ncur = ncur - sizeof (void *) * 4;
1680 ncur /= elem;
1681 }
1682
1683 return ncur;
1684 }
1685
1686 static void * noinline ecb_cold
1687 array_realloc (int elem, void *base, int *cur, int cnt)
1688 {
1689 *cur = array_nextsize (elem, *cur, cnt);
1690 return ev_realloc (base, elem * *cur);
1691 }
1692
1693 #define array_init_zero(base,count) \
1694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1695
1696 #define array_needsize(type,base,cur,cnt,init) \
1697 if (expect_false ((cnt) > (cur))) \
1698 { \
1699 int ecb_unused ocur_ = (cur); \
1700 (base) = (type *)array_realloc \
1701 (sizeof (type), (base), &(cur), (cnt)); \
1702 init ((base) + (ocur_), (cur) - ocur_); \
1703 }
1704
1705 #if 0
1706 #define array_slim(type,stem) \
1707 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1708 { \
1709 stem ## max = array_roundsize (stem ## cnt >> 1); \
1710 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1712 }
1713 #endif
1714
1715 #define array_free(stem, idx) \
1716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1717
1718 /*****************************************************************************/
1719
1720 /* dummy callback for pending events */
1721 static void noinline
1722 pendingcb (EV_P_ ev_prepare *w, int revents)
1723 {
1724 }
1725
1726 void noinline
1727 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1728 {
1729 W w_ = (W)w;
1730 int pri = ABSPRI (w_);
1731
1732 if (expect_false (w_->pending))
1733 pendings [pri][w_->pending - 1].events |= revents;
1734 else
1735 {
1736 w_->pending = ++pendingcnt [pri];
1737 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1738 pendings [pri][w_->pending - 1].w = w_;
1739 pendings [pri][w_->pending - 1].events = revents;
1740 }
1741
1742 pendingpri = NUMPRI - 1;
1743 }
1744
1745 inline_speed void
1746 feed_reverse (EV_P_ W w)
1747 {
1748 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1749 rfeeds [rfeedcnt++] = w;
1750 }
1751
1752 inline_size void
1753 feed_reverse_done (EV_P_ int revents)
1754 {
1755 do
1756 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1757 while (rfeedcnt);
1758 }
1759
1760 inline_speed void
1761 queue_events (EV_P_ W *events, int eventcnt, int type)
1762 {
1763 int i;
1764
1765 for (i = 0; i < eventcnt; ++i)
1766 ev_feed_event (EV_A_ events [i], type);
1767 }
1768
1769 /*****************************************************************************/
1770
1771 inline_speed void
1772 fd_event_nocheck (EV_P_ int fd, int revents)
1773 {
1774 ANFD *anfd = anfds + fd;
1775 ev_io *w;
1776
1777 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1778 {
1779 int ev = w->events & revents;
1780
1781 if (ev)
1782 ev_feed_event (EV_A_ (W)w, ev);
1783 }
1784 }
1785
1786 /* do not submit kernel events for fds that have reify set */
1787 /* because that means they changed while we were polling for new events */
1788 inline_speed void
1789 fd_event (EV_P_ int fd, int revents)
1790 {
1791 ANFD *anfd = anfds + fd;
1792
1793 if (expect_true (!anfd->reify))
1794 fd_event_nocheck (EV_A_ fd, revents);
1795 }
1796
1797 void
1798 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1799 {
1800 if (fd >= 0 && fd < anfdmax)
1801 fd_event_nocheck (EV_A_ fd, revents);
1802 }
1803
1804 /* make sure the external fd watch events are in-sync */
1805 /* with the kernel/libev internal state */
1806 inline_size void
1807 fd_reify (EV_P)
1808 {
1809 int i;
1810
1811 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1812 for (i = 0; i < fdchangecnt; ++i)
1813 {
1814 int fd = fdchanges [i];
1815 ANFD *anfd = anfds + fd;
1816
1817 if (anfd->reify & EV__IOFDSET && anfd->head)
1818 {
1819 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1820
1821 if (handle != anfd->handle)
1822 {
1823 unsigned long arg;
1824
1825 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1826
1827 /* handle changed, but fd didn't - we need to do it in two steps */
1828 backend_modify (EV_A_ fd, anfd->events, 0);
1829 anfd->events = 0;
1830 anfd->handle = handle;
1831 }
1832 }
1833 }
1834 #endif
1835
1836 for (i = 0; i < fdchangecnt; ++i)
1837 {
1838 int fd = fdchanges [i];
1839 ANFD *anfd = anfds + fd;
1840 ev_io *w;
1841
1842 unsigned char o_events = anfd->events;
1843 unsigned char o_reify = anfd->reify;
1844
1845 anfd->reify = 0;
1846
1847 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1848 {
1849 anfd->events = 0;
1850
1851 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1852 anfd->events |= (unsigned char)w->events;
1853
1854 if (o_events != anfd->events)
1855 o_reify = EV__IOFDSET; /* actually |= */
1856 }
1857
1858 if (o_reify & EV__IOFDSET)
1859 backend_modify (EV_A_ fd, o_events, anfd->events);
1860 }
1861
1862 fdchangecnt = 0;
1863 }
1864
1865 /* something about the given fd changed */
1866 inline_size void
1867 fd_change (EV_P_ int fd, int flags)
1868 {
1869 unsigned char reify = anfds [fd].reify;
1870 anfds [fd].reify |= flags;
1871
1872 if (expect_true (!reify))
1873 {
1874 ++fdchangecnt;
1875 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1876 fdchanges [fdchangecnt - 1] = fd;
1877 }
1878 }
1879
1880 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1881 inline_speed void ecb_cold
1882 fd_kill (EV_P_ int fd)
1883 {
1884 ev_io *w;
1885
1886 while ((w = (ev_io *)anfds [fd].head))
1887 {
1888 ev_io_stop (EV_A_ w);
1889 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1890 }
1891 }
1892
1893 /* check whether the given fd is actually valid, for error recovery */
1894 inline_size int ecb_cold
1895 fd_valid (int fd)
1896 {
1897 #ifdef _WIN32
1898 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1899 #else
1900 return fcntl (fd, F_GETFD) != -1;
1901 #endif
1902 }
1903
1904 /* called on EBADF to verify fds */
1905 static void noinline ecb_cold
1906 fd_ebadf (EV_P)
1907 {
1908 int fd;
1909
1910 for (fd = 0; fd < anfdmax; ++fd)
1911 if (anfds [fd].events)
1912 if (!fd_valid (fd) && errno == EBADF)
1913 fd_kill (EV_A_ fd);
1914 }
1915
1916 /* called on ENOMEM in select/poll to kill some fds and retry */
1917 static void noinline ecb_cold
1918 fd_enomem (EV_P)
1919 {
1920 int fd;
1921
1922 for (fd = anfdmax; fd--; )
1923 if (anfds [fd].events)
1924 {
1925 fd_kill (EV_A_ fd);
1926 break;
1927 }
1928 }
1929
1930 /* usually called after fork if backend needs to re-arm all fds from scratch */
1931 static void noinline
1932 fd_rearm_all (EV_P)
1933 {
1934 int fd;
1935
1936 for (fd = 0; fd < anfdmax; ++fd)
1937 if (anfds [fd].events)
1938 {
1939 anfds [fd].events = 0;
1940 anfds [fd].emask = 0;
1941 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1942 }
1943 }
1944
1945 /* used to prepare libev internal fd's */
1946 /* this is not fork-safe */
1947 inline_speed void
1948 fd_intern (int fd)
1949 {
1950 #ifdef _WIN32
1951 unsigned long arg = 1;
1952 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1953 #else
1954 fcntl (fd, F_SETFD, FD_CLOEXEC);
1955 fcntl (fd, F_SETFL, O_NONBLOCK);
1956 #endif
1957 }
1958
1959 /*****************************************************************************/
1960
1961 /*
1962 * the heap functions want a real array index. array index 0 is guaranteed to not
1963 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1964 * the branching factor of the d-tree.
1965 */
1966
1967 /*
1968 * at the moment we allow libev the luxury of two heaps,
1969 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1970 * which is more cache-efficient.
1971 * the difference is about 5% with 50000+ watchers.
1972 */
1973 #if EV_USE_4HEAP
1974
1975 #define DHEAP 4
1976 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1977 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1978 #define UPHEAP_DONE(p,k) ((p) == (k))
1979
1980 /* away from the root */
1981 inline_speed void
1982 downheap (ANHE *heap, int N, int k)
1983 {
1984 ANHE he = heap [k];
1985 ANHE *E = heap + N + HEAP0;
1986
1987 for (;;)
1988 {
1989 ev_tstamp minat;
1990 ANHE *minpos;
1991 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1992
1993 /* find minimum child */
1994 if (expect_true (pos + DHEAP - 1 < E))
1995 {
1996 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1997 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1998 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1999 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2000 }
2001 else if (pos < E)
2002 {
2003 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2004 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2005 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2006 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2007 }
2008 else
2009 break;
2010
2011 if (ANHE_at (he) <= minat)
2012 break;
2013
2014 heap [k] = *minpos;
2015 ev_active (ANHE_w (*minpos)) = k;
2016
2017 k = minpos - heap;
2018 }
2019
2020 heap [k] = he;
2021 ev_active (ANHE_w (he)) = k;
2022 }
2023
2024 #else /* 4HEAP */
2025
2026 #define HEAP0 1
2027 #define HPARENT(k) ((k) >> 1)
2028 #define UPHEAP_DONE(p,k) (!(p))
2029
2030 /* away from the root */
2031 inline_speed void
2032 downheap (ANHE *heap, int N, int k)
2033 {
2034 ANHE he = heap [k];
2035
2036 for (;;)
2037 {
2038 int c = k << 1;
2039
2040 if (c >= N + HEAP0)
2041 break;
2042
2043 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2044 ? 1 : 0;
2045
2046 if (ANHE_at (he) <= ANHE_at (heap [c]))
2047 break;
2048
2049 heap [k] = heap [c];
2050 ev_active (ANHE_w (heap [k])) = k;
2051
2052 k = c;
2053 }
2054
2055 heap [k] = he;
2056 ev_active (ANHE_w (he)) = k;
2057 }
2058 #endif
2059
2060 /* towards the root */
2061 inline_speed void
2062 upheap (ANHE *heap, int k)
2063 {
2064 ANHE he = heap [k];
2065
2066 for (;;)
2067 {
2068 int p = HPARENT (k);
2069
2070 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2071 break;
2072
2073 heap [k] = heap [p];
2074 ev_active (ANHE_w (heap [k])) = k;
2075 k = p;
2076 }
2077
2078 heap [k] = he;
2079 ev_active (ANHE_w (he)) = k;
2080 }
2081
2082 /* move an element suitably so it is in a correct place */
2083 inline_size void
2084 adjustheap (ANHE *heap, int N, int k)
2085 {
2086 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2087 upheap (heap, k);
2088 else
2089 downheap (heap, N, k);
2090 }
2091
2092 /* rebuild the heap: this function is used only once and executed rarely */
2093 inline_size void
2094 reheap (ANHE *heap, int N)
2095 {
2096 int i;
2097
2098 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2099 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2100 for (i = 0; i < N; ++i)
2101 upheap (heap, i + HEAP0);
2102 }
2103
2104 /*****************************************************************************/
2105
2106 /* associate signal watchers to a signal signal */
2107 typedef struct
2108 {
2109 EV_ATOMIC_T pending;
2110 #if EV_MULTIPLICITY
2111 EV_P;
2112 #endif
2113 WL head;
2114 } ANSIG;
2115
2116 static ANSIG signals [EV_NSIG - 1];
2117
2118 /*****************************************************************************/
2119
2120 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2121
2122 static void noinline ecb_cold
2123 evpipe_init (EV_P)
2124 {
2125 if (!ev_is_active (&pipe_w))
2126 {
2127 int fds [2];
2128
2129 # if EV_USE_EVENTFD
2130 fds [0] = -1;
2131 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2132 if (fds [1] < 0 && errno == EINVAL)
2133 fds [1] = eventfd (0, 0);
2134
2135 if (fds [1] < 0)
2136 # endif
2137 {
2138 while (pipe (fds))
2139 ev_syserr ("(libev) error creating signal/async pipe");
2140
2141 fd_intern (fds [0]);
2142 }
2143
2144 evpipe [0] = fds [0];
2145
2146 if (evpipe [1] < 0)
2147 evpipe [1] = fds [1]; /* first call, set write fd */
2148 else
2149 {
2150 /* on subsequent calls, do not change evpipe [1] */
2151 /* so that evpipe_write can always rely on its value. */
2152 /* this branch does not do anything sensible on windows, */
2153 /* so must not be executed on windows */
2154
2155 dup2 (fds [1], evpipe [1]);
2156 close (fds [1]);
2157 }
2158
2159 fd_intern (evpipe [1]);
2160
2161 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2162 ev_io_start (EV_A_ &pipe_w);
2163 ev_unref (EV_A); /* watcher should not keep loop alive */
2164 }
2165 }
2166
2167 inline_speed void
2168 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2169 {
2170 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2171
2172 if (expect_true (*flag))
2173 return;
2174
2175 *flag = 1;
2176 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2177
2178 pipe_write_skipped = 1;
2179
2180 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2181
2182 if (pipe_write_wanted)
2183 {
2184 int old_errno;
2185
2186 pipe_write_skipped = 0;
2187 ECB_MEMORY_FENCE_RELEASE;
2188
2189 old_errno = errno; /* save errno because write will clobber it */
2190
2191 #if EV_USE_EVENTFD
2192 if (evpipe [0] < 0)
2193 {
2194 uint64_t counter = 1;
2195 write (evpipe [1], &counter, sizeof (uint64_t));
2196 }
2197 else
2198 #endif
2199 {
2200 #ifdef _WIN32
2201 WSABUF buf;
2202 DWORD sent;
2203 buf.buf = &buf;
2204 buf.len = 1;
2205 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2206 #else
2207 write (evpipe [1], &(evpipe [1]), 1);
2208 #endif
2209 }
2210
2211 errno = old_errno;
2212 }
2213 }
2214
2215 /* called whenever the libev signal pipe */
2216 /* got some events (signal, async) */
2217 static void
2218 pipecb (EV_P_ ev_io *iow, int revents)
2219 {
2220 int i;
2221
2222 if (revents & EV_READ)
2223 {
2224 #if EV_USE_EVENTFD
2225 if (evpipe [0] < 0)
2226 {
2227 uint64_t counter;
2228 read (evpipe [1], &counter, sizeof (uint64_t));
2229 }
2230 else
2231 #endif
2232 {
2233 char dummy[4];
2234 #ifdef _WIN32
2235 WSABUF buf;
2236 DWORD recvd;
2237 DWORD flags = 0;
2238 buf.buf = dummy;
2239 buf.len = sizeof (dummy);
2240 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2241 #else
2242 read (evpipe [0], &dummy, sizeof (dummy));
2243 #endif
2244 }
2245 }
2246
2247 pipe_write_skipped = 0;
2248
2249 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2250
2251 #if EV_SIGNAL_ENABLE
2252 if (sig_pending)
2253 {
2254 sig_pending = 0;
2255
2256 ECB_MEMORY_FENCE;
2257
2258 for (i = EV_NSIG - 1; i--; )
2259 if (expect_false (signals [i].pending))
2260 ev_feed_signal_event (EV_A_ i + 1);
2261 }
2262 #endif
2263
2264 #if EV_ASYNC_ENABLE
2265 if (async_pending)
2266 {
2267 async_pending = 0;
2268
2269 ECB_MEMORY_FENCE;
2270
2271 for (i = asynccnt; i--; )
2272 if (asyncs [i]->sent)
2273 {
2274 asyncs [i]->sent = 0;
2275 ECB_MEMORY_FENCE_RELEASE;
2276 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2277 }
2278 }
2279 #endif
2280 }
2281
2282 /*****************************************************************************/
2283
2284 void
2285 ev_feed_signal (int signum) EV_THROW
2286 {
2287 #if EV_MULTIPLICITY
2288 EV_P;
2289 ECB_MEMORY_FENCE_ACQUIRE;
2290 EV_A = signals [signum - 1].loop;
2291
2292 if (!EV_A)
2293 return;
2294 #endif
2295
2296 signals [signum - 1].pending = 1;
2297 evpipe_write (EV_A_ &sig_pending);
2298 }
2299
2300 static void
2301 ev_sighandler (int signum)
2302 {
2303 #ifdef _WIN32
2304 signal (signum, ev_sighandler);
2305 #endif
2306
2307 ev_feed_signal (signum);
2308 }
2309
2310 void noinline
2311 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2312 {
2313 WL w;
2314
2315 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2316 return;
2317
2318 --signum;
2319
2320 #if EV_MULTIPLICITY
2321 /* it is permissible to try to feed a signal to the wrong loop */
2322 /* or, likely more useful, feeding a signal nobody is waiting for */
2323
2324 if (expect_false (signals [signum].loop != EV_A))
2325 return;
2326 #endif
2327
2328 signals [signum].pending = 0;
2329 ECB_MEMORY_FENCE_RELEASE;
2330
2331 for (w = signals [signum].head; w; w = w->next)
2332 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2333 }
2334
2335 #if EV_USE_SIGNALFD
2336 static void
2337 sigfdcb (EV_P_ ev_io *iow, int revents)
2338 {
2339 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2340
2341 for (;;)
2342 {
2343 ssize_t res = read (sigfd, si, sizeof (si));
2344
2345 /* not ISO-C, as res might be -1, but works with SuS */
2346 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2347 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2348
2349 if (res < (ssize_t)sizeof (si))
2350 break;
2351 }
2352 }
2353 #endif
2354
2355 #endif
2356
2357 /*****************************************************************************/
2358
2359 #if EV_CHILD_ENABLE
2360 static WL childs [EV_PID_HASHSIZE];
2361
2362 static ev_signal childev;
2363
2364 #ifndef WIFCONTINUED
2365 # define WIFCONTINUED(status) 0
2366 #endif
2367
2368 /* handle a single child status event */
2369 inline_speed void
2370 child_reap (EV_P_ int chain, int pid, int status)
2371 {
2372 ev_child *w;
2373 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2374
2375 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2376 {
2377 if ((w->pid == pid || !w->pid)
2378 && (!traced || (w->flags & 1)))
2379 {
2380 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2381 w->rpid = pid;
2382 w->rstatus = status;
2383 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2384 }
2385 }
2386 }
2387
2388 #ifndef WCONTINUED
2389 # define WCONTINUED 0
2390 #endif
2391
2392 /* called on sigchld etc., calls waitpid */
2393 static void
2394 childcb (EV_P_ ev_signal *sw, int revents)
2395 {
2396 int pid, status;
2397
2398 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2399 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2400 if (!WCONTINUED
2401 || errno != EINVAL
2402 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2403 return;
2404
2405 /* make sure we are called again until all children have been reaped */
2406 /* we need to do it this way so that the callback gets called before we continue */
2407 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2408
2409 child_reap (EV_A_ pid, pid, status);
2410 if ((EV_PID_HASHSIZE) > 1)
2411 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2412 }
2413
2414 #endif
2415
2416 /*****************************************************************************/
2417
2418 #if EV_USE_IOCP
2419 # include "ev_iocp.c"
2420 #endif
2421 #if EV_USE_PORT
2422 # include "ev_port.c"
2423 #endif
2424 #if EV_USE_KQUEUE
2425 # include "ev_kqueue.c"
2426 #endif
2427 #if EV_USE_EPOLL
2428 # include "ev_epoll.c"
2429 #endif
2430 #if EV_USE_POLL
2431 # include "ev_poll.c"
2432 #endif
2433 #if EV_USE_SELECT
2434 # include "ev_select.c"
2435 #endif
2436
2437 int ecb_cold
2438 ev_version_major (void) EV_THROW
2439 {
2440 return EV_VERSION_MAJOR;
2441 }
2442
2443 int ecb_cold
2444 ev_version_minor (void) EV_THROW
2445 {
2446 return EV_VERSION_MINOR;
2447 }
2448
2449 /* return true if we are running with elevated privileges and should ignore env variables */
2450 int inline_size ecb_cold
2451 enable_secure (void)
2452 {
2453 #ifdef _WIN32
2454 return 0;
2455 #else
2456 return getuid () != geteuid ()
2457 || getgid () != getegid ();
2458 #endif
2459 }
2460
2461 unsigned int ecb_cold
2462 ev_supported_backends (void) EV_THROW
2463 {
2464 unsigned int flags = 0;
2465
2466 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2467 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2468 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2469 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2470 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2471
2472 return flags;
2473 }
2474
2475 unsigned int ecb_cold
2476 ev_recommended_backends (void) EV_THROW
2477 {
2478 unsigned int flags = ev_supported_backends ();
2479
2480 #ifndef __NetBSD__
2481 /* kqueue is borked on everything but netbsd apparently */
2482 /* it usually doesn't work correctly on anything but sockets and pipes */
2483 flags &= ~EVBACKEND_KQUEUE;
2484 #endif
2485 #ifdef __APPLE__
2486 /* only select works correctly on that "unix-certified" platform */
2487 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2488 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2489 #endif
2490 #ifdef __FreeBSD__
2491 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2492 #endif
2493
2494 return flags;
2495 }
2496
2497 unsigned int ecb_cold
2498 ev_embeddable_backends (void) EV_THROW
2499 {
2500 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2501
2502 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2503 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2504 flags &= ~EVBACKEND_EPOLL;
2505
2506 return flags;
2507 }
2508
2509 unsigned int
2510 ev_backend (EV_P) EV_THROW
2511 {
2512 return backend;
2513 }
2514
2515 #if EV_FEATURE_API
2516 unsigned int
2517 ev_iteration (EV_P) EV_THROW
2518 {
2519 return loop_count;
2520 }
2521
2522 unsigned int
2523 ev_depth (EV_P) EV_THROW
2524 {
2525 return loop_depth;
2526 }
2527
2528 void
2529 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2530 {
2531 io_blocktime = interval;
2532 }
2533
2534 void
2535 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2536 {
2537 timeout_blocktime = interval;
2538 }
2539
2540 void
2541 ev_set_userdata (EV_P_ void *data) EV_THROW
2542 {
2543 userdata = data;
2544 }
2545
2546 void *
2547 ev_userdata (EV_P) EV_THROW
2548 {
2549 return userdata;
2550 }
2551
2552 void
2553 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2554 {
2555 invoke_cb = invoke_pending_cb;
2556 }
2557
2558 void
2559 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2560 {
2561 release_cb = release;
2562 acquire_cb = acquire;
2563 }
2564 #endif
2565
2566 /* initialise a loop structure, must be zero-initialised */
2567 static void noinline ecb_cold
2568 loop_init (EV_P_ unsigned int flags) EV_THROW
2569 {
2570 if (!backend)
2571 {
2572 origflags = flags;
2573
2574 #if EV_USE_REALTIME
2575 if (!have_realtime)
2576 {
2577 struct timespec ts;
2578
2579 if (!clock_gettime (CLOCK_REALTIME, &ts))
2580 have_realtime = 1;
2581 }
2582 #endif
2583
2584 #if EV_USE_MONOTONIC
2585 if (!have_monotonic)
2586 {
2587 struct timespec ts;
2588
2589 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2590 have_monotonic = 1;
2591 }
2592 #endif
2593
2594 /* pid check not overridable via env */
2595 #ifndef _WIN32
2596 if (flags & EVFLAG_FORKCHECK)
2597 curpid = getpid ();
2598 #endif
2599
2600 if (!(flags & EVFLAG_NOENV)
2601 && !enable_secure ()
2602 && getenv ("LIBEV_FLAGS"))
2603 flags = atoi (getenv ("LIBEV_FLAGS"));
2604
2605 ev_rt_now = ev_time ();
2606 mn_now = get_clock ();
2607 now_floor = mn_now;
2608 rtmn_diff = ev_rt_now - mn_now;
2609 #if EV_FEATURE_API
2610 invoke_cb = ev_invoke_pending;
2611 #endif
2612
2613 io_blocktime = 0.;
2614 timeout_blocktime = 0.;
2615 backend = 0;
2616 backend_fd = -1;
2617 sig_pending = 0;
2618 #if EV_ASYNC_ENABLE
2619 async_pending = 0;
2620 #endif
2621 pipe_write_skipped = 0;
2622 pipe_write_wanted = 0;
2623 evpipe [0] = -1;
2624 evpipe [1] = -1;
2625 #if EV_USE_INOTIFY
2626 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2627 #endif
2628 #if EV_USE_SIGNALFD
2629 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2630 #endif
2631
2632 if (!(flags & EVBACKEND_MASK))
2633 flags |= ev_recommended_backends ();
2634
2635 #if EV_USE_IOCP
2636 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2637 #endif
2638 #if EV_USE_PORT
2639 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2640 #endif
2641 #if EV_USE_KQUEUE
2642 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2643 #endif
2644 #if EV_USE_EPOLL
2645 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2646 #endif
2647 #if EV_USE_POLL
2648 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2649 #endif
2650 #if EV_USE_SELECT
2651 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2652 #endif
2653
2654 ev_prepare_init (&pending_w, pendingcb);
2655
2656 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2657 ev_init (&pipe_w, pipecb);
2658 ev_set_priority (&pipe_w, EV_MAXPRI);
2659 #endif
2660 }
2661 }
2662
2663 /* free up a loop structure */
2664 void ecb_cold
2665 ev_loop_destroy (EV_P)
2666 {
2667 int i;
2668
2669 #if EV_MULTIPLICITY
2670 /* mimic free (0) */
2671 if (!EV_A)
2672 return;
2673 #endif
2674
2675 #if EV_CLEANUP_ENABLE
2676 /* queue cleanup watchers (and execute them) */
2677 if (expect_false (cleanupcnt))
2678 {
2679 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2680 EV_INVOKE_PENDING;
2681 }
2682 #endif
2683
2684 #if EV_CHILD_ENABLE
2685 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2686 {
2687 ev_ref (EV_A); /* child watcher */
2688 ev_signal_stop (EV_A_ &childev);
2689 }
2690 #endif
2691
2692 if (ev_is_active (&pipe_w))
2693 {
2694 /*ev_ref (EV_A);*/
2695 /*ev_io_stop (EV_A_ &pipe_w);*/
2696
2697 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2698 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2699 }
2700
2701 #if EV_USE_SIGNALFD
2702 if (ev_is_active (&sigfd_w))
2703 close (sigfd);
2704 #endif
2705
2706 #if EV_USE_INOTIFY
2707 if (fs_fd >= 0)
2708 close (fs_fd);
2709 #endif
2710
2711 if (backend_fd >= 0)
2712 close (backend_fd);
2713
2714 #if EV_USE_IOCP
2715 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2716 #endif
2717 #if EV_USE_PORT
2718 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2719 #endif
2720 #if EV_USE_KQUEUE
2721 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2722 #endif
2723 #if EV_USE_EPOLL
2724 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2725 #endif
2726 #if EV_USE_POLL
2727 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2728 #endif
2729 #if EV_USE_SELECT
2730 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2731 #endif
2732
2733 for (i = NUMPRI; i--; )
2734 {
2735 array_free (pending, [i]);
2736 #if EV_IDLE_ENABLE
2737 array_free (idle, [i]);
2738 #endif
2739 }
2740
2741 ev_free (anfds); anfds = 0; anfdmax = 0;
2742
2743 /* have to use the microsoft-never-gets-it-right macro */
2744 array_free (rfeed, EMPTY);
2745 array_free (fdchange, EMPTY);
2746 array_free (timer, EMPTY);
2747 #if EV_PERIODIC_ENABLE
2748 array_free (periodic, EMPTY);
2749 #endif
2750 #if EV_FORK_ENABLE
2751 array_free (fork, EMPTY);
2752 #endif
2753 #if EV_CLEANUP_ENABLE
2754 array_free (cleanup, EMPTY);
2755 #endif
2756 array_free (prepare, EMPTY);
2757 array_free (check, EMPTY);
2758 #if EV_ASYNC_ENABLE
2759 array_free (async, EMPTY);
2760 #endif
2761
2762 backend = 0;
2763
2764 #if EV_MULTIPLICITY
2765 if (ev_is_default_loop (EV_A))
2766 #endif
2767 ev_default_loop_ptr = 0;
2768 #if EV_MULTIPLICITY
2769 else
2770 ev_free (EV_A);
2771 #endif
2772 }
2773
2774 #if EV_USE_INOTIFY
2775 inline_size void infy_fork (EV_P);
2776 #endif
2777
2778 inline_size void
2779 loop_fork (EV_P)
2780 {
2781 #if EV_USE_PORT
2782 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2783 #endif
2784 #if EV_USE_KQUEUE
2785 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2786 #endif
2787 #if EV_USE_EPOLL
2788 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2789 #endif
2790 #if EV_USE_INOTIFY
2791 infy_fork (EV_A);
2792 #endif
2793
2794 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2795 if (ev_is_active (&pipe_w))
2796 {
2797 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2798
2799 ev_ref (EV_A);
2800 ev_io_stop (EV_A_ &pipe_w);
2801
2802 if (evpipe [0] >= 0)
2803 EV_WIN32_CLOSE_FD (evpipe [0]);
2804
2805 evpipe_init (EV_A);
2806 /* iterate over everything, in case we missed something before */
2807 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2808 }
2809 #endif
2810
2811 postfork = 0;
2812 }
2813
2814 #if EV_MULTIPLICITY
2815
2816 struct ev_loop * ecb_cold
2817 ev_loop_new (unsigned int flags) EV_THROW
2818 {
2819 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2820
2821 memset (EV_A, 0, sizeof (struct ev_loop));
2822 loop_init (EV_A_ flags);
2823
2824 if (ev_backend (EV_A))
2825 return EV_A;
2826
2827 ev_free (EV_A);
2828 return 0;
2829 }
2830
2831 #endif /* multiplicity */
2832
2833 #if EV_VERIFY
2834 static void noinline ecb_cold
2835 verify_watcher (EV_P_ W w)
2836 {
2837 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2838
2839 if (w->pending)
2840 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2841 }
2842
2843 static void noinline ecb_cold
2844 verify_heap (EV_P_ ANHE *heap, int N)
2845 {
2846 int i;
2847
2848 for (i = HEAP0; i < N + HEAP0; ++i)
2849 {
2850 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2851 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2852 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2853
2854 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2855 }
2856 }
2857
2858 static void noinline ecb_cold
2859 array_verify (EV_P_ W *ws, int cnt)
2860 {
2861 while (cnt--)
2862 {
2863 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2864 verify_watcher (EV_A_ ws [cnt]);
2865 }
2866 }
2867 #endif
2868
2869 #if EV_FEATURE_API
2870 void ecb_cold
2871 ev_verify (EV_P) EV_THROW
2872 {
2873 #if EV_VERIFY
2874 int i;
2875 WL w, w2;
2876
2877 assert (activecnt >= -1);
2878
2879 assert (fdchangemax >= fdchangecnt);
2880 for (i = 0; i < fdchangecnt; ++i)
2881 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2882
2883 assert (anfdmax >= 0);
2884 for (i = 0; i < anfdmax; ++i)
2885 {
2886 int j = 0;
2887
2888 for (w = w2 = anfds [i].head; w; w = w->next)
2889 {
2890 verify_watcher (EV_A_ (W)w);
2891
2892 if (j++ & 1)
2893 {
2894 assert (("libev: io watcher list contains a loop", w != w2));
2895 w2 = w2->next;
2896 }
2897
2898 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2899 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2900 }
2901 }
2902
2903 assert (timermax >= timercnt);
2904 verify_heap (EV_A_ timers, timercnt);
2905
2906 #if EV_PERIODIC_ENABLE
2907 assert (periodicmax >= periodiccnt);
2908 verify_heap (EV_A_ periodics, periodiccnt);
2909 #endif
2910
2911 for (i = NUMPRI; i--; )
2912 {
2913 assert (pendingmax [i] >= pendingcnt [i]);
2914 #if EV_IDLE_ENABLE
2915 assert (idleall >= 0);
2916 assert (idlemax [i] >= idlecnt [i]);
2917 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2918 #endif
2919 }
2920
2921 #if EV_FORK_ENABLE
2922 assert (forkmax >= forkcnt);
2923 array_verify (EV_A_ (W *)forks, forkcnt);
2924 #endif
2925
2926 #if EV_CLEANUP_ENABLE
2927 assert (cleanupmax >= cleanupcnt);
2928 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2929 #endif
2930
2931 #if EV_ASYNC_ENABLE
2932 assert (asyncmax >= asynccnt);
2933 array_verify (EV_A_ (W *)asyncs, asynccnt);
2934 #endif
2935
2936 #if EV_PREPARE_ENABLE
2937 assert (preparemax >= preparecnt);
2938 array_verify (EV_A_ (W *)prepares, preparecnt);
2939 #endif
2940
2941 #if EV_CHECK_ENABLE
2942 assert (checkmax >= checkcnt);
2943 array_verify (EV_A_ (W *)checks, checkcnt);
2944 #endif
2945
2946 # if 0
2947 #if EV_CHILD_ENABLE
2948 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2949 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2950 #endif
2951 # endif
2952 #endif
2953 }
2954 #endif
2955
2956 #if EV_MULTIPLICITY
2957 struct ev_loop * ecb_cold
2958 #else
2959 int
2960 #endif
2961 ev_default_loop (unsigned int flags) EV_THROW
2962 {
2963 if (!ev_default_loop_ptr)
2964 {
2965 #if EV_MULTIPLICITY
2966 EV_P = ev_default_loop_ptr = &default_loop_struct;
2967 #else
2968 ev_default_loop_ptr = 1;
2969 #endif
2970
2971 loop_init (EV_A_ flags);
2972
2973 if (ev_backend (EV_A))
2974 {
2975 #if EV_CHILD_ENABLE
2976 ev_signal_init (&childev, childcb, SIGCHLD);
2977 ev_set_priority (&childev, EV_MAXPRI);
2978 ev_signal_start (EV_A_ &childev);
2979 ev_unref (EV_A); /* child watcher should not keep loop alive */
2980 #endif
2981 }
2982 else
2983 ev_default_loop_ptr = 0;
2984 }
2985
2986 return ev_default_loop_ptr;
2987 }
2988
2989 void
2990 ev_loop_fork (EV_P) EV_THROW
2991 {
2992 postfork = 1;
2993 }
2994
2995 /*****************************************************************************/
2996
2997 void
2998 ev_invoke (EV_P_ void *w, int revents)
2999 {
3000 EV_CB_INVOKE ((W)w, revents);
3001 }
3002
3003 unsigned int
3004 ev_pending_count (EV_P) EV_THROW
3005 {
3006 int pri;
3007 unsigned int count = 0;
3008
3009 for (pri = NUMPRI; pri--; )
3010 count += pendingcnt [pri];
3011
3012 return count;
3013 }
3014
3015 void noinline
3016 ev_invoke_pending (EV_P)
3017 {
3018 pendingpri = NUMPRI;
3019
3020 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3021 {
3022 --pendingpri;
3023
3024 while (pendingcnt [pendingpri])
3025 {
3026 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3027
3028 p->w->pending = 0;
3029 EV_CB_INVOKE (p->w, p->events);
3030 EV_FREQUENT_CHECK;
3031 }
3032 }
3033 }
3034
3035 #if EV_IDLE_ENABLE
3036 /* make idle watchers pending. this handles the "call-idle */
3037 /* only when higher priorities are idle" logic */
3038 inline_size void
3039 idle_reify (EV_P)
3040 {
3041 if (expect_false (idleall))
3042 {
3043 int pri;
3044
3045 for (pri = NUMPRI; pri--; )
3046 {
3047 if (pendingcnt [pri])
3048 break;
3049
3050 if (idlecnt [pri])
3051 {
3052 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3053 break;
3054 }
3055 }
3056 }
3057 }
3058 #endif
3059
3060 /* make timers pending */
3061 inline_size void
3062 timers_reify (EV_P)
3063 {
3064 EV_FREQUENT_CHECK;
3065
3066 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3067 {
3068 do
3069 {
3070 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3071
3072 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3073
3074 /* first reschedule or stop timer */
3075 if (w->repeat)
3076 {
3077 ev_at (w) += w->repeat;
3078 if (ev_at (w) < mn_now)
3079 ev_at (w) = mn_now;
3080
3081 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3082
3083 ANHE_at_cache (timers [HEAP0]);
3084 downheap (timers, timercnt, HEAP0);
3085 }
3086 else
3087 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3088
3089 EV_FREQUENT_CHECK;
3090 feed_reverse (EV_A_ (W)w);
3091 }
3092 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3093
3094 feed_reverse_done (EV_A_ EV_TIMER);
3095 }
3096 }
3097
3098 #if EV_PERIODIC_ENABLE
3099
3100 static void noinline
3101 periodic_recalc (EV_P_ ev_periodic *w)
3102 {
3103 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3104 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3105
3106 /* the above almost always errs on the low side */
3107 while (at <= ev_rt_now)
3108 {
3109 ev_tstamp nat = at + w->interval;
3110
3111 /* when resolution fails us, we use ev_rt_now */
3112 if (expect_false (nat == at))
3113 {
3114 at = ev_rt_now;
3115 break;
3116 }
3117
3118 at = nat;
3119 }
3120
3121 ev_at (w) = at;
3122 }
3123
3124 /* make periodics pending */
3125 inline_size void
3126 periodics_reify (EV_P)
3127 {
3128 EV_FREQUENT_CHECK;
3129
3130 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3131 {
3132 do
3133 {
3134 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3135
3136 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3137
3138 /* first reschedule or stop timer */
3139 if (w->reschedule_cb)
3140 {
3141 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3142
3143 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3144
3145 ANHE_at_cache (periodics [HEAP0]);
3146 downheap (periodics, periodiccnt, HEAP0);
3147 }
3148 else if (w->interval)
3149 {
3150 periodic_recalc (EV_A_ w);
3151 ANHE_at_cache (periodics [HEAP0]);
3152 downheap (periodics, periodiccnt, HEAP0);
3153 }
3154 else
3155 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3156
3157 EV_FREQUENT_CHECK;
3158 feed_reverse (EV_A_ (W)w);
3159 }
3160 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3161
3162 feed_reverse_done (EV_A_ EV_PERIODIC);
3163 }
3164 }
3165
3166 /* simply recalculate all periodics */
3167 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3168 static void noinline ecb_cold
3169 periodics_reschedule (EV_P)
3170 {
3171 int i;
3172
3173 /* adjust periodics after time jump */
3174 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3175 {
3176 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3177
3178 if (w->reschedule_cb)
3179 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3180 else if (w->interval)
3181 periodic_recalc (EV_A_ w);
3182
3183 ANHE_at_cache (periodics [i]);
3184 }
3185
3186 reheap (periodics, periodiccnt);
3187 }
3188 #endif
3189
3190 /* adjust all timers by a given offset */
3191 static void noinline ecb_cold
3192 timers_reschedule (EV_P_ ev_tstamp adjust)
3193 {
3194 int i;
3195
3196 for (i = 0; i < timercnt; ++i)
3197 {
3198 ANHE *he = timers + i + HEAP0;
3199 ANHE_w (*he)->at += adjust;
3200 ANHE_at_cache (*he);
3201 }
3202 }
3203
3204 /* fetch new monotonic and realtime times from the kernel */
3205 /* also detect if there was a timejump, and act accordingly */
3206 inline_speed void
3207 time_update (EV_P_ ev_tstamp max_block)
3208 {
3209 #if EV_USE_MONOTONIC
3210 if (expect_true (have_monotonic))
3211 {
3212 int i;
3213 ev_tstamp odiff = rtmn_diff;
3214
3215 mn_now = get_clock ();
3216
3217 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3218 /* interpolate in the meantime */
3219 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3220 {
3221 ev_rt_now = rtmn_diff + mn_now;
3222 return;
3223 }
3224
3225 now_floor = mn_now;
3226 ev_rt_now = ev_time ();
3227
3228 /* loop a few times, before making important decisions.
3229 * on the choice of "4": one iteration isn't enough,
3230 * in case we get preempted during the calls to
3231 * ev_time and get_clock. a second call is almost guaranteed
3232 * to succeed in that case, though. and looping a few more times
3233 * doesn't hurt either as we only do this on time-jumps or
3234 * in the unlikely event of having been preempted here.
3235 */
3236 for (i = 4; --i; )
3237 {
3238 ev_tstamp diff;
3239 rtmn_diff = ev_rt_now - mn_now;
3240
3241 diff = odiff - rtmn_diff;
3242
3243 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3244 return; /* all is well */
3245
3246 ev_rt_now = ev_time ();
3247 mn_now = get_clock ();
3248 now_floor = mn_now;
3249 }
3250
3251 /* no timer adjustment, as the monotonic clock doesn't jump */
3252 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3253 # if EV_PERIODIC_ENABLE
3254 periodics_reschedule (EV_A);
3255 # endif
3256 }
3257 else
3258 #endif
3259 {
3260 ev_rt_now = ev_time ();
3261
3262 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3263 {
3264 /* adjust timers. this is easy, as the offset is the same for all of them */
3265 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3266 #if EV_PERIODIC_ENABLE
3267 periodics_reschedule (EV_A);
3268 #endif
3269 }
3270
3271 mn_now = ev_rt_now;
3272 }
3273 }
3274
3275 int
3276 ev_run (EV_P_ int flags)
3277 {
3278 #if EV_FEATURE_API
3279 ++loop_depth;
3280 #endif
3281
3282 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3283
3284 loop_done = EVBREAK_CANCEL;
3285
3286 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3287
3288 do
3289 {
3290 #if EV_VERIFY >= 2
3291 ev_verify (EV_A);
3292 #endif
3293
3294 #ifndef _WIN32
3295 if (expect_false (curpid)) /* penalise the forking check even more */
3296 if (expect_false (getpid () != curpid))
3297 {
3298 curpid = getpid ();
3299 postfork = 1;
3300 }
3301 #endif
3302
3303 #if EV_FORK_ENABLE
3304 /* we might have forked, so queue fork handlers */
3305 if (expect_false (postfork))
3306 if (forkcnt)
3307 {
3308 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3309 EV_INVOKE_PENDING;
3310 }
3311 #endif
3312
3313 #if EV_PREPARE_ENABLE
3314 /* queue prepare watchers (and execute them) */
3315 if (expect_false (preparecnt))
3316 {
3317 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3318 EV_INVOKE_PENDING;
3319 }
3320 #endif
3321
3322 if (expect_false (loop_done))
3323 break;
3324
3325 /* we might have forked, so reify kernel state if necessary */
3326 if (expect_false (postfork))
3327 loop_fork (EV_A);
3328
3329 /* update fd-related kernel structures */
3330 fd_reify (EV_A);
3331
3332 /* calculate blocking time */
3333 {
3334 ev_tstamp waittime = 0.;
3335 ev_tstamp sleeptime = 0.;
3336
3337 /* remember old timestamp for io_blocktime calculation */
3338 ev_tstamp prev_mn_now = mn_now;
3339
3340 /* update time to cancel out callback processing overhead */
3341 time_update (EV_A_ 1e100);
3342
3343 /* from now on, we want a pipe-wake-up */
3344 pipe_write_wanted = 1;
3345
3346 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3347
3348 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3349 {
3350 waittime = MAX_BLOCKTIME;
3351
3352 if (timercnt)
3353 {
3354 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3355 if (waittime > to) waittime = to;
3356 }
3357
3358 #if EV_PERIODIC_ENABLE
3359 if (periodiccnt)
3360 {
3361 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3362 if (waittime > to) waittime = to;
3363 }
3364 #endif
3365
3366 /* don't let timeouts decrease the waittime below timeout_blocktime */
3367 if (expect_false (waittime < timeout_blocktime))
3368 waittime = timeout_blocktime;
3369
3370 /* at this point, we NEED to wait, so we have to ensure */
3371 /* to pass a minimum nonzero value to the backend */
3372 if (expect_false (waittime < backend_mintime))
3373 waittime = backend_mintime;
3374
3375 /* extra check because io_blocktime is commonly 0 */
3376 if (expect_false (io_blocktime))
3377 {
3378 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3379
3380 if (sleeptime > waittime - backend_mintime)
3381 sleeptime = waittime - backend_mintime;
3382
3383 if (expect_true (sleeptime > 0.))
3384 {
3385 ev_sleep (sleeptime);
3386 waittime -= sleeptime;
3387 }
3388 }
3389 }
3390
3391 #if EV_FEATURE_API
3392 ++loop_count;
3393 #endif
3394 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3395 backend_poll (EV_A_ waittime);
3396 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3397
3398 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3399
3400 ECB_MEMORY_FENCE_ACQUIRE;
3401 if (pipe_write_skipped)
3402 {
3403 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3404 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3405 }
3406
3407
3408 /* update ev_rt_now, do magic */
3409 time_update (EV_A_ waittime + sleeptime);
3410 }
3411
3412 /* queue pending timers and reschedule them */
3413 timers_reify (EV_A); /* relative timers called last */
3414 #if EV_PERIODIC_ENABLE
3415 periodics_reify (EV_A); /* absolute timers called first */
3416 #endif
3417
3418 #if EV_IDLE_ENABLE
3419 /* queue idle watchers unless other events are pending */
3420 idle_reify (EV_A);
3421 #endif
3422
3423 #if EV_CHECK_ENABLE
3424 /* queue check watchers, to be executed first */
3425 if (expect_false (checkcnt))
3426 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3427 #endif
3428
3429 EV_INVOKE_PENDING;
3430 }
3431 while (expect_true (
3432 activecnt
3433 && !loop_done
3434 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3435 ));
3436
3437 if (loop_done == EVBREAK_ONE)
3438 loop_done = EVBREAK_CANCEL;
3439
3440 #if EV_FEATURE_API
3441 --loop_depth;
3442 #endif
3443
3444 return activecnt;
3445 }
3446
3447 void
3448 ev_break (EV_P_ int how) EV_THROW
3449 {
3450 loop_done = how;
3451 }
3452
3453 void
3454 ev_ref (EV_P) EV_THROW
3455 {
3456 ++activecnt;
3457 }
3458
3459 void
3460 ev_unref (EV_P) EV_THROW
3461 {
3462 --activecnt;
3463 }
3464
3465 void
3466 ev_now_update (EV_P) EV_THROW
3467 {
3468 time_update (EV_A_ 1e100);
3469 }
3470
3471 void
3472 ev_suspend (EV_P) EV_THROW
3473 {
3474 ev_now_update (EV_A);
3475 }
3476
3477 void
3478 ev_resume (EV_P) EV_THROW
3479 {
3480 ev_tstamp mn_prev = mn_now;
3481
3482 ev_now_update (EV_A);
3483 timers_reschedule (EV_A_ mn_now - mn_prev);
3484 #if EV_PERIODIC_ENABLE
3485 /* TODO: really do this? */
3486 periodics_reschedule (EV_A);
3487 #endif
3488 }
3489
3490 /*****************************************************************************/
3491 /* singly-linked list management, used when the expected list length is short */
3492
3493 inline_size void
3494 wlist_add (WL *head, WL elem)
3495 {
3496 elem->next = *head;
3497 *head = elem;
3498 }
3499
3500 inline_size void
3501 wlist_del (WL *head, WL elem)
3502 {
3503 while (*head)
3504 {
3505 if (expect_true (*head == elem))
3506 {
3507 *head = elem->next;
3508 break;
3509 }
3510
3511 head = &(*head)->next;
3512 }
3513 }
3514
3515 /* internal, faster, version of ev_clear_pending */
3516 inline_speed void
3517 clear_pending (EV_P_ W w)
3518 {
3519 if (w->pending)
3520 {
3521 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3522 w->pending = 0;
3523 }
3524 }
3525
3526 int
3527 ev_clear_pending (EV_P_ void *w) EV_THROW
3528 {
3529 W w_ = (W)w;
3530 int pending = w_->pending;
3531
3532 if (expect_true (pending))
3533 {
3534 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3535 p->w = (W)&pending_w;
3536 w_->pending = 0;
3537 return p->events;
3538 }
3539 else
3540 return 0;
3541 }
3542
3543 inline_size void
3544 pri_adjust (EV_P_ W w)
3545 {
3546 int pri = ev_priority (w);
3547 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3548 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3549 ev_set_priority (w, pri);
3550 }
3551
3552 inline_speed void
3553 ev_start (EV_P_ W w, int active)
3554 {
3555 pri_adjust (EV_A_ w);
3556 w->active = active;
3557 ev_ref (EV_A);
3558 }
3559
3560 inline_size void
3561 ev_stop (EV_P_ W w)
3562 {
3563 ev_unref (EV_A);
3564 w->active = 0;
3565 }
3566
3567 /*****************************************************************************/
3568
3569 void noinline
3570 ev_io_start (EV_P_ ev_io *w) EV_THROW
3571 {
3572 int fd = w->fd;
3573
3574 if (expect_false (ev_is_active (w)))
3575 return;
3576
3577 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3578 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3579
3580 EV_FREQUENT_CHECK;
3581
3582 ev_start (EV_A_ (W)w, 1);
3583 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3584 wlist_add (&anfds[fd].head, (WL)w);
3585
3586 /* common bug, apparently */
3587 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3588
3589 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3590 w->events &= ~EV__IOFDSET;
3591
3592 EV_FREQUENT_CHECK;
3593 }
3594
3595 void noinline
3596 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3597 {
3598 clear_pending (EV_A_ (W)w);
3599 if (expect_false (!ev_is_active (w)))
3600 return;
3601
3602 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3603
3604 EV_FREQUENT_CHECK;
3605
3606 wlist_del (&anfds[w->fd].head, (WL)w);
3607 ev_stop (EV_A_ (W)w);
3608
3609 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3610
3611 EV_FREQUENT_CHECK;
3612 }
3613
3614 void noinline
3615 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3616 {
3617 if (expect_false (ev_is_active (w)))
3618 return;
3619
3620 ev_at (w) += mn_now;
3621
3622 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3623
3624 EV_FREQUENT_CHECK;
3625
3626 ++timercnt;
3627 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3628 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3629 ANHE_w (timers [ev_active (w)]) = (WT)w;
3630 ANHE_at_cache (timers [ev_active (w)]);
3631 upheap (timers, ev_active (w));
3632
3633 EV_FREQUENT_CHECK;
3634
3635 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3636 }
3637
3638 void noinline
3639 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3640 {
3641 clear_pending (EV_A_ (W)w);
3642 if (expect_false (!ev_is_active (w)))
3643 return;
3644
3645 EV_FREQUENT_CHECK;
3646
3647 {
3648 int active = ev_active (w);
3649
3650 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3651
3652 --timercnt;
3653
3654 if (expect_true (active < timercnt + HEAP0))
3655 {
3656 timers [active] = timers [timercnt + HEAP0];
3657 adjustheap (timers, timercnt, active);
3658 }
3659 }
3660
3661 ev_at (w) -= mn_now;
3662
3663 ev_stop (EV_A_ (W)w);
3664
3665 EV_FREQUENT_CHECK;
3666 }
3667
3668 void noinline
3669 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3670 {
3671 EV_FREQUENT_CHECK;
3672
3673 clear_pending (EV_A_ (W)w);
3674
3675 if (ev_is_active (w))
3676 {
3677 if (w->repeat)
3678 {
3679 ev_at (w) = mn_now + w->repeat;
3680 ANHE_at_cache (timers [ev_active (w)]);
3681 adjustheap (timers, timercnt, ev_active (w));
3682 }
3683 else
3684 ev_timer_stop (EV_A_ w);
3685 }
3686 else if (w->repeat)
3687 {
3688 ev_at (w) = w->repeat;
3689 ev_timer_start (EV_A_ w);
3690 }
3691
3692 EV_FREQUENT_CHECK;
3693 }
3694
3695 ev_tstamp
3696 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3697 {
3698 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3699 }
3700
3701 #if EV_PERIODIC_ENABLE
3702 void noinline
3703 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3704 {
3705 if (expect_false (ev_is_active (w)))
3706 return;
3707
3708 if (w->reschedule_cb)
3709 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3710 else if (w->interval)
3711 {
3712 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3713 periodic_recalc (EV_A_ w);
3714 }
3715 else
3716 ev_at (w) = w->offset;
3717
3718 EV_FREQUENT_CHECK;
3719
3720 ++periodiccnt;
3721 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3722 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3723 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3724 ANHE_at_cache (periodics [ev_active (w)]);
3725 upheap (periodics, ev_active (w));
3726
3727 EV_FREQUENT_CHECK;
3728
3729 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3730 }
3731
3732 void noinline
3733 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3734 {
3735 clear_pending (EV_A_ (W)w);
3736 if (expect_false (!ev_is_active (w)))
3737 return;
3738
3739 EV_FREQUENT_CHECK;
3740
3741 {
3742 int active = ev_active (w);
3743
3744 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3745
3746 --periodiccnt;
3747
3748 if (expect_true (active < periodiccnt + HEAP0))
3749 {
3750 periodics [active] = periodics [periodiccnt + HEAP0];
3751 adjustheap (periodics, periodiccnt, active);
3752 }
3753 }
3754
3755 ev_stop (EV_A_ (W)w);
3756
3757 EV_FREQUENT_CHECK;
3758 }
3759
3760 void noinline
3761 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3762 {
3763 /* TODO: use adjustheap and recalculation */
3764 ev_periodic_stop (EV_A_ w);
3765 ev_periodic_start (EV_A_ w);
3766 }
3767 #endif
3768
3769 #ifndef SA_RESTART
3770 # define SA_RESTART 0
3771 #endif
3772
3773 #if EV_SIGNAL_ENABLE
3774
3775 void noinline
3776 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3777 {
3778 if (expect_false (ev_is_active (w)))
3779 return;
3780
3781 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3782
3783 #if EV_MULTIPLICITY
3784 assert (("libev: a signal must not be attached to two different loops",
3785 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3786
3787 signals [w->signum - 1].loop = EV_A;
3788 ECB_MEMORY_FENCE_RELEASE;
3789 #endif
3790
3791 EV_FREQUENT_CHECK;
3792
3793 #if EV_USE_SIGNALFD
3794 if (sigfd == -2)
3795 {
3796 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3797 if (sigfd < 0 && errno == EINVAL)
3798 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3799
3800 if (sigfd >= 0)
3801 {
3802 fd_intern (sigfd); /* doing it twice will not hurt */
3803
3804 sigemptyset (&sigfd_set);
3805
3806 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3807 ev_set_priority (&sigfd_w, EV_MAXPRI);
3808 ev_io_start (EV_A_ &sigfd_w);
3809 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3810 }
3811 }
3812
3813 if (sigfd >= 0)
3814 {
3815 /* TODO: check .head */
3816 sigaddset (&sigfd_set, w->signum);
3817 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3818
3819 signalfd (sigfd, &sigfd_set, 0);
3820 }
3821 #endif
3822
3823 ev_start (EV_A_ (W)w, 1);
3824 wlist_add (&signals [w->signum - 1].head, (WL)w);
3825
3826 if (!((WL)w)->next)
3827 # if EV_USE_SIGNALFD
3828 if (sigfd < 0) /*TODO*/
3829 # endif
3830 {
3831 # ifdef _WIN32
3832 evpipe_init (EV_A);
3833
3834 signal (w->signum, ev_sighandler);
3835 # else
3836 struct sigaction sa;
3837
3838 evpipe_init (EV_A);
3839
3840 sa.sa_handler = ev_sighandler;
3841 sigfillset (&sa.sa_mask);
3842 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3843 sigaction (w->signum, &sa, 0);
3844
3845 if (origflags & EVFLAG_NOSIGMASK)
3846 {
3847 sigemptyset (&sa.sa_mask);
3848 sigaddset (&sa.sa_mask, w->signum);
3849 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3850 }
3851 #endif
3852 }
3853
3854 EV_FREQUENT_CHECK;
3855 }
3856
3857 void noinline
3858 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3859 {
3860 clear_pending (EV_A_ (W)w);
3861 if (expect_false (!ev_is_active (w)))
3862 return;
3863
3864 EV_FREQUENT_CHECK;
3865
3866 wlist_del (&signals [w->signum - 1].head, (WL)w);
3867 ev_stop (EV_A_ (W)w);
3868
3869 if (!signals [w->signum - 1].head)
3870 {
3871 #if EV_MULTIPLICITY
3872 signals [w->signum - 1].loop = 0; /* unattach from signal */
3873 #endif
3874 #if EV_USE_SIGNALFD
3875 if (sigfd >= 0)
3876 {
3877 sigset_t ss;
3878
3879 sigemptyset (&ss);
3880 sigaddset (&ss, w->signum);
3881 sigdelset (&sigfd_set, w->signum);
3882
3883 signalfd (sigfd, &sigfd_set, 0);
3884 sigprocmask (SIG_UNBLOCK, &ss, 0);
3885 }
3886 else
3887 #endif
3888 signal (w->signum, SIG_DFL);
3889 }
3890
3891 EV_FREQUENT_CHECK;
3892 }
3893
3894 #endif
3895
3896 #if EV_CHILD_ENABLE
3897
3898 void
3899 ev_child_start (EV_P_ ev_child *w) EV_THROW
3900 {
3901 #if EV_MULTIPLICITY
3902 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3903 #endif
3904 if (expect_false (ev_is_active (w)))
3905 return;
3906
3907 EV_FREQUENT_CHECK;
3908
3909 ev_start (EV_A_ (W)w, 1);
3910 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3911
3912 EV_FREQUENT_CHECK;
3913 }
3914
3915 void
3916 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3917 {
3918 clear_pending (EV_A_ (W)w);
3919 if (expect_false (!ev_is_active (w)))
3920 return;
3921
3922 EV_FREQUENT_CHECK;
3923
3924 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3925 ev_stop (EV_A_ (W)w);
3926
3927 EV_FREQUENT_CHECK;
3928 }
3929
3930 #endif
3931
3932 #if EV_STAT_ENABLE
3933
3934 # ifdef _WIN32
3935 # undef lstat
3936 # define lstat(a,b) _stati64 (a,b)
3937 # endif
3938
3939 #define DEF_STAT_INTERVAL 5.0074891
3940 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3941 #define MIN_STAT_INTERVAL 0.1074891
3942
3943 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3944
3945 #if EV_USE_INOTIFY
3946
3947 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3948 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3949
3950 static void noinline
3951 infy_add (EV_P_ ev_stat *w)
3952 {
3953 w->wd = inotify_add_watch (fs_fd, w->path,
3954 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3955 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3956 | IN_DONT_FOLLOW | IN_MASK_ADD);
3957
3958 if (w->wd >= 0)
3959 {
3960 struct statfs sfs;
3961
3962 /* now local changes will be tracked by inotify, but remote changes won't */
3963 /* unless the filesystem is known to be local, we therefore still poll */
3964 /* also do poll on <2.6.25, but with normal frequency */
3965
3966 if (!fs_2625)
3967 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3968 else if (!statfs (w->path, &sfs)
3969 && (sfs.f_type == 0x1373 /* devfs */
3970 || sfs.f_type == 0x4006 /* fat */
3971 || sfs.f_type == 0x4d44 /* msdos */
3972 || sfs.f_type == 0xEF53 /* ext2/3 */
3973 || sfs.f_type == 0x72b6 /* jffs2 */
3974 || sfs.f_type == 0x858458f6 /* ramfs */
3975 || sfs.f_type == 0x5346544e /* ntfs */
3976 || sfs.f_type == 0x3153464a /* jfs */
3977 || sfs.f_type == 0x9123683e /* btrfs */
3978 || sfs.f_type == 0x52654973 /* reiser3 */
3979 || sfs.f_type == 0x01021994 /* tmpfs */
3980 || sfs.f_type == 0x58465342 /* xfs */))
3981 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3982 else
3983 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3984 }
3985 else
3986 {
3987 /* can't use inotify, continue to stat */
3988 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3989
3990 /* if path is not there, monitor some parent directory for speedup hints */
3991 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3992 /* but an efficiency issue only */
3993 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3994 {
3995 char path [4096];
3996 strcpy (path, w->path);
3997
3998 do
3999 {
4000 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4001 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4002
4003 char *pend = strrchr (path, '/');
4004
4005 if (!pend || pend == path)
4006 break;
4007
4008 *pend = 0;
4009 w->wd = inotify_add_watch (fs_fd, path, mask);
4010 }
4011 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4012 }
4013 }
4014
4015 if (w->wd >= 0)
4016 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4017
4018 /* now re-arm timer, if required */
4019 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4020 ev_timer_again (EV_A_ &w->timer);
4021 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4022 }
4023
4024 static void noinline
4025 infy_del (EV_P_ ev_stat *w)
4026 {
4027 int slot;
4028 int wd = w->wd;
4029
4030 if (wd < 0)
4031 return;
4032
4033 w->wd = -2;
4034 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4035 wlist_del (&fs_hash [slot].head, (WL)w);
4036
4037 /* remove this watcher, if others are watching it, they will rearm */
4038 inotify_rm_watch (fs_fd, wd);
4039 }
4040
4041 static void noinline
4042 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4043 {
4044 if (slot < 0)
4045 /* overflow, need to check for all hash slots */
4046 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4047 infy_wd (EV_A_ slot, wd, ev);
4048 else
4049 {
4050 WL w_;
4051
4052 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4053 {
4054 ev_stat *w = (ev_stat *)w_;
4055 w_ = w_->next; /* lets us remove this watcher and all before it */
4056
4057 if (w->wd == wd || wd == -1)
4058 {
4059 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4060 {
4061 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4062 w->wd = -1;
4063 infy_add (EV_A_ w); /* re-add, no matter what */
4064 }
4065
4066 stat_timer_cb (EV_A_ &w->timer, 0);
4067 }
4068 }
4069 }
4070 }
4071
4072 static void
4073 infy_cb (EV_P_ ev_io *w, int revents)
4074 {
4075 char buf [EV_INOTIFY_BUFSIZE];
4076 int ofs;
4077 int len = read (fs_fd, buf, sizeof (buf));
4078
4079 for (ofs = 0; ofs < len; )
4080 {
4081 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4082 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4083 ofs += sizeof (struct inotify_event) + ev->len;
4084 }
4085 }
4086
4087 inline_size void ecb_cold
4088 ev_check_2625 (EV_P)
4089 {
4090 /* kernels < 2.6.25 are borked
4091 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4092 */
4093 if (ev_linux_version () < 0x020619)
4094 return;
4095
4096 fs_2625 = 1;
4097 }
4098
4099 inline_size int
4100 infy_newfd (void)
4101 {
4102 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4103 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4104 if (fd >= 0)
4105 return fd;
4106 #endif
4107 return inotify_init ();
4108 }
4109
4110 inline_size void
4111 infy_init (EV_P)
4112 {
4113 if (fs_fd != -2)
4114 return;
4115
4116 fs_fd = -1;
4117
4118 ev_check_2625 (EV_A);
4119
4120 fs_fd = infy_newfd ();
4121
4122 if (fs_fd >= 0)
4123 {
4124 fd_intern (fs_fd);
4125 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4126 ev_set_priority (&fs_w, EV_MAXPRI);
4127 ev_io_start (EV_A_ &fs_w);
4128 ev_unref (EV_A);
4129 }
4130 }
4131
4132 inline_size void
4133 infy_fork (EV_P)
4134 {
4135 int slot;
4136
4137 if (fs_fd < 0)
4138 return;
4139
4140 ev_ref (EV_A);
4141 ev_io_stop (EV_A_ &fs_w);
4142 close (fs_fd);
4143 fs_fd = infy_newfd ();
4144
4145 if (fs_fd >= 0)
4146 {
4147 fd_intern (fs_fd);
4148 ev_io_set (&fs_w, fs_fd, EV_READ);
4149 ev_io_start (EV_A_ &fs_w);
4150 ev_unref (EV_A);
4151 }
4152
4153 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4154 {
4155 WL w_ = fs_hash [slot].head;
4156 fs_hash [slot].head = 0;
4157
4158 while (w_)
4159 {
4160 ev_stat *w = (ev_stat *)w_;
4161 w_ = w_->next; /* lets us add this watcher */
4162
4163 w->wd = -1;
4164
4165 if (fs_fd >= 0)
4166 infy_add (EV_A_ w); /* re-add, no matter what */
4167 else
4168 {
4169 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4170 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4171 ev_timer_again (EV_A_ &w->timer);
4172 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4173 }
4174 }
4175 }
4176 }
4177
4178 #endif
4179
4180 #ifdef _WIN32
4181 # define EV_LSTAT(p,b) _stati64 (p, b)
4182 #else
4183 # define EV_LSTAT(p,b) lstat (p, b)
4184 #endif
4185
4186 void
4187 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4188 {
4189 if (lstat (w->path, &w->attr) < 0)
4190 w->attr.st_nlink = 0;
4191 else if (!w->attr.st_nlink)
4192 w->attr.st_nlink = 1;
4193 }
4194
4195 static void noinline
4196 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4197 {
4198 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4199
4200 ev_statdata prev = w->attr;
4201 ev_stat_stat (EV_A_ w);
4202
4203 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4204 if (
4205 prev.st_dev != w->attr.st_dev
4206 || prev.st_ino != w->attr.st_ino
4207 || prev.st_mode != w->attr.st_mode
4208 || prev.st_nlink != w->attr.st_nlink
4209 || prev.st_uid != w->attr.st_uid
4210 || prev.st_gid != w->attr.st_gid
4211 || prev.st_rdev != w->attr.st_rdev
4212 || prev.st_size != w->attr.st_size
4213 || prev.st_atime != w->attr.st_atime
4214 || prev.st_mtime != w->attr.st_mtime
4215 || prev.st_ctime != w->attr.st_ctime
4216 ) {
4217 /* we only update w->prev on actual differences */
4218 /* in case we test more often than invoke the callback, */
4219 /* to ensure that prev is always different to attr */
4220 w->prev = prev;
4221
4222 #if EV_USE_INOTIFY
4223 if (fs_fd >= 0)
4224 {
4225 infy_del (EV_A_ w);
4226 infy_add (EV_A_ w);
4227 ev_stat_stat (EV_A_ w); /* avoid race... */
4228 }
4229 #endif
4230
4231 ev_feed_event (EV_A_ w, EV_STAT);
4232 }
4233 }
4234
4235 void
4236 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4237 {
4238 if (expect_false (ev_is_active (w)))
4239 return;
4240
4241 ev_stat_stat (EV_A_ w);
4242
4243 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4244 w->interval = MIN_STAT_INTERVAL;
4245
4246 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4247 ev_set_priority (&w->timer, ev_priority (w));
4248
4249 #if EV_USE_INOTIFY
4250 infy_init (EV_A);
4251
4252 if (fs_fd >= 0)
4253 infy_add (EV_A_ w);
4254 else
4255 #endif
4256 {
4257 ev_timer_again (EV_A_ &w->timer);
4258 ev_unref (EV_A);
4259 }
4260
4261 ev_start (EV_A_ (W)w, 1);
4262
4263 EV_FREQUENT_CHECK;
4264 }
4265
4266 void
4267 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4268 {
4269 clear_pending (EV_A_ (W)w);
4270 if (expect_false (!ev_is_active (w)))
4271 return;
4272
4273 EV_FREQUENT_CHECK;
4274
4275 #if EV_USE_INOTIFY
4276 infy_del (EV_A_ w);
4277 #endif
4278
4279 if (ev_is_active (&w->timer))
4280 {
4281 ev_ref (EV_A);
4282 ev_timer_stop (EV_A_ &w->timer);
4283 }
4284
4285 ev_stop (EV_A_ (W)w);
4286
4287 EV_FREQUENT_CHECK;
4288 }
4289 #endif
4290
4291 #if EV_IDLE_ENABLE
4292 void
4293 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4294 {
4295 if (expect_false (ev_is_active (w)))
4296 return;
4297
4298 pri_adjust (EV_A_ (W)w);
4299
4300 EV_FREQUENT_CHECK;
4301
4302 {
4303 int active = ++idlecnt [ABSPRI (w)];
4304
4305 ++idleall;
4306 ev_start (EV_A_ (W)w, active);
4307
4308 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4309 idles [ABSPRI (w)][active - 1] = w;
4310 }
4311
4312 EV_FREQUENT_CHECK;
4313 }
4314
4315 void
4316 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4317 {
4318 clear_pending (EV_A_ (W)w);
4319 if (expect_false (!ev_is_active (w)))
4320 return;
4321
4322 EV_FREQUENT_CHECK;
4323
4324 {
4325 int active = ev_active (w);
4326
4327 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4328 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4329
4330 ev_stop (EV_A_ (W)w);
4331 --idleall;
4332 }
4333
4334 EV_FREQUENT_CHECK;
4335 }
4336 #endif
4337
4338 #if EV_PREPARE_ENABLE
4339 void
4340 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4341 {
4342 if (expect_false (ev_is_active (w)))
4343 return;
4344
4345 EV_FREQUENT_CHECK;
4346
4347 ev_start (EV_A_ (W)w, ++preparecnt);
4348 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4349 prepares [preparecnt - 1] = w;
4350
4351 EV_FREQUENT_CHECK;
4352 }
4353
4354 void
4355 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4356 {
4357 clear_pending (EV_A_ (W)w);
4358 if (expect_false (!ev_is_active (w)))
4359 return;
4360
4361 EV_FREQUENT_CHECK;
4362
4363 {
4364 int active = ev_active (w);
4365
4366 prepares [active - 1] = prepares [--preparecnt];
4367 ev_active (prepares [active - 1]) = active;
4368 }
4369
4370 ev_stop (EV_A_ (W)w);
4371
4372 EV_FREQUENT_CHECK;
4373 }
4374 #endif
4375
4376 #if EV_CHECK_ENABLE
4377 void
4378 ev_check_start (EV_P_ ev_check *w) EV_THROW
4379 {
4380 if (expect_false (ev_is_active (w)))
4381 return;
4382
4383 EV_FREQUENT_CHECK;
4384
4385 ev_start (EV_A_ (W)w, ++checkcnt);
4386 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4387 checks [checkcnt - 1] = w;
4388
4389 EV_FREQUENT_CHECK;
4390 }
4391
4392 void
4393 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4394 {
4395 clear_pending (EV_A_ (W)w);
4396 if (expect_false (!ev_is_active (w)))
4397 return;
4398
4399 EV_FREQUENT_CHECK;
4400
4401 {
4402 int active = ev_active (w);
4403
4404 checks [active - 1] = checks [--checkcnt];
4405 ev_active (checks [active - 1]) = active;
4406 }
4407
4408 ev_stop (EV_A_ (W)w);
4409
4410 EV_FREQUENT_CHECK;
4411 }
4412 #endif
4413
4414 #if EV_EMBED_ENABLE
4415 void noinline
4416 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4417 {
4418 ev_run (w->other, EVRUN_NOWAIT);
4419 }
4420
4421 static void
4422 embed_io_cb (EV_P_ ev_io *io, int revents)
4423 {
4424 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4425
4426 if (ev_cb (w))
4427 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4428 else
4429 ev_run (w->other, EVRUN_NOWAIT);
4430 }
4431
4432 static void
4433 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4434 {
4435 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4436
4437 {
4438 EV_P = w->other;
4439
4440 while (fdchangecnt)
4441 {
4442 fd_reify (EV_A);
4443 ev_run (EV_A_ EVRUN_NOWAIT);
4444 }
4445 }
4446 }
4447
4448 static void
4449 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4450 {
4451 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4452
4453 ev_embed_stop (EV_A_ w);
4454
4455 {
4456 EV_P = w->other;
4457
4458 ev_loop_fork (EV_A);
4459 ev_run (EV_A_ EVRUN_NOWAIT);
4460 }
4461
4462 ev_embed_start (EV_A_ w);
4463 }
4464
4465 #if 0
4466 static void
4467 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4468 {
4469 ev_idle_stop (EV_A_ idle);
4470 }
4471 #endif
4472
4473 void
4474 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4475 {
4476 if (expect_false (ev_is_active (w)))
4477 return;
4478
4479 {
4480 EV_P = w->other;
4481 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4482 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4483 }
4484
4485 EV_FREQUENT_CHECK;
4486
4487 ev_set_priority (&w->io, ev_priority (w));
4488 ev_io_start (EV_A_ &w->io);
4489
4490 ev_prepare_init (&w->prepare, embed_prepare_cb);
4491 ev_set_priority (&w->prepare, EV_MINPRI);
4492 ev_prepare_start (EV_A_ &w->prepare);
4493
4494 ev_fork_init (&w->fork, embed_fork_cb);
4495 ev_fork_start (EV_A_ &w->fork);
4496
4497 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4498
4499 ev_start (EV_A_ (W)w, 1);
4500
4501 EV_FREQUENT_CHECK;
4502 }
4503
4504 void
4505 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4506 {
4507 clear_pending (EV_A_ (W)w);
4508 if (expect_false (!ev_is_active (w)))
4509 return;
4510
4511 EV_FREQUENT_CHECK;
4512
4513 ev_io_stop (EV_A_ &w->io);
4514 ev_prepare_stop (EV_A_ &w->prepare);
4515 ev_fork_stop (EV_A_ &w->fork);
4516
4517 ev_stop (EV_A_ (W)w);
4518
4519 EV_FREQUENT_CHECK;
4520 }
4521 #endif
4522
4523 #if EV_FORK_ENABLE
4524 void
4525 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4526 {
4527 if (expect_false (ev_is_active (w)))
4528 return;
4529
4530 EV_FREQUENT_CHECK;
4531
4532 ev_start (EV_A_ (W)w, ++forkcnt);
4533 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4534 forks [forkcnt - 1] = w;
4535
4536 EV_FREQUENT_CHECK;
4537 }
4538
4539 void
4540 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4541 {
4542 clear_pending (EV_A_ (W)w);
4543 if (expect_false (!ev_is_active (w)))
4544 return;
4545
4546 EV_FREQUENT_CHECK;
4547
4548 {
4549 int active = ev_active (w);
4550
4551 forks [active - 1] = forks [--forkcnt];
4552 ev_active (forks [active - 1]) = active;
4553 }
4554
4555 ev_stop (EV_A_ (W)w);
4556
4557 EV_FREQUENT_CHECK;
4558 }
4559 #endif
4560
4561 #if EV_CLEANUP_ENABLE
4562 void
4563 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4564 {
4565 if (expect_false (ev_is_active (w)))
4566 return;
4567
4568 EV_FREQUENT_CHECK;
4569
4570 ev_start (EV_A_ (W)w, ++cleanupcnt);
4571 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4572 cleanups [cleanupcnt - 1] = w;
4573
4574 /* cleanup watchers should never keep a refcount on the loop */
4575 ev_unref (EV_A);
4576 EV_FREQUENT_CHECK;
4577 }
4578
4579 void
4580 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4581 {
4582 clear_pending (EV_A_ (W)w);
4583 if (expect_false (!ev_is_active (w)))
4584 return;
4585
4586 EV_FREQUENT_CHECK;
4587 ev_ref (EV_A);
4588
4589 {
4590 int active = ev_active (w);
4591
4592 cleanups [active - 1] = cleanups [--cleanupcnt];
4593 ev_active (cleanups [active - 1]) = active;
4594 }
4595
4596 ev_stop (EV_A_ (W)w);
4597
4598 EV_FREQUENT_CHECK;
4599 }
4600 #endif
4601
4602 #if EV_ASYNC_ENABLE
4603 void
4604 ev_async_start (EV_P_ ev_async *w) EV_THROW
4605 {
4606 if (expect_false (ev_is_active (w)))
4607 return;
4608
4609 w->sent = 0;
4610
4611 evpipe_init (EV_A);
4612
4613 EV_FREQUENT_CHECK;
4614
4615 ev_start (EV_A_ (W)w, ++asynccnt);
4616 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4617 asyncs [asynccnt - 1] = w;
4618
4619 EV_FREQUENT_CHECK;
4620 }
4621
4622 void
4623 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4624 {
4625 clear_pending (EV_A_ (W)w);
4626 if (expect_false (!ev_is_active (w)))
4627 return;
4628
4629 EV_FREQUENT_CHECK;
4630
4631 {
4632 int active = ev_active (w);
4633
4634 asyncs [active - 1] = asyncs [--asynccnt];
4635 ev_active (asyncs [active - 1]) = active;
4636 }
4637
4638 ev_stop (EV_A_ (W)w);
4639
4640 EV_FREQUENT_CHECK;
4641 }
4642
4643 void
4644 ev_async_send (EV_P_ ev_async *w) EV_THROW
4645 {
4646 w->sent = 1;
4647 evpipe_write (EV_A_ &async_pending);
4648 }
4649 #endif
4650
4651 /*****************************************************************************/
4652
4653 struct ev_once
4654 {
4655 ev_io io;
4656 ev_timer to;
4657 void (*cb)(int revents, void *arg);
4658 void *arg;
4659 };
4660
4661 static void
4662 once_cb (EV_P_ struct ev_once *once, int revents)
4663 {
4664 void (*cb)(int revents, void *arg) = once->cb;
4665 void *arg = once->arg;
4666
4667 ev_io_stop (EV_A_ &once->io);
4668 ev_timer_stop (EV_A_ &once->to);
4669 ev_free (once);
4670
4671 cb (revents, arg);
4672 }
4673
4674 static void
4675 once_cb_io (EV_P_ ev_io *w, int revents)
4676 {
4677 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4678
4679 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4680 }
4681
4682 static void
4683 once_cb_to (EV_P_ ev_timer *w, int revents)
4684 {
4685 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4686
4687 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4688 }
4689
4690 void
4691 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4692 {
4693 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4694
4695 if (expect_false (!once))
4696 {
4697 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4698 return;
4699 }
4700
4701 once->cb = cb;
4702 once->arg = arg;
4703
4704 ev_init (&once->io, once_cb_io);
4705 if (fd >= 0)
4706 {
4707 ev_io_set (&once->io, fd, events);
4708 ev_io_start (EV_A_ &once->io);
4709 }
4710
4711 ev_init (&once->to, once_cb_to);
4712 if (timeout >= 0.)
4713 {
4714 ev_timer_set (&once->to, timeout, 0.);
4715 ev_timer_start (EV_A_ &once->to);
4716 }
4717 }
4718
4719 /*****************************************************************************/
4720
4721 #if EV_WALK_ENABLE
4722 void ecb_cold
4723 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4724 {
4725 int i, j;
4726 ev_watcher_list *wl, *wn;
4727
4728 if (types & (EV_IO | EV_EMBED))
4729 for (i = 0; i < anfdmax; ++i)
4730 for (wl = anfds [i].head; wl; )
4731 {
4732 wn = wl->next;
4733
4734 #if EV_EMBED_ENABLE
4735 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4736 {
4737 if (types & EV_EMBED)
4738 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4739 }
4740 else
4741 #endif
4742 #if EV_USE_INOTIFY
4743 if (ev_cb ((ev_io *)wl) == infy_cb)
4744 ;
4745 else
4746 #endif
4747 if ((ev_io *)wl != &pipe_w)
4748 if (types & EV_IO)
4749 cb (EV_A_ EV_IO, wl);
4750
4751 wl = wn;
4752 }
4753
4754 if (types & (EV_TIMER | EV_STAT))
4755 for (i = timercnt + HEAP0; i-- > HEAP0; )
4756 #if EV_STAT_ENABLE
4757 /*TODO: timer is not always active*/
4758 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4759 {
4760 if (types & EV_STAT)
4761 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4762 }
4763 else
4764 #endif
4765 if (types & EV_TIMER)
4766 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4767
4768 #if EV_PERIODIC_ENABLE
4769 if (types & EV_PERIODIC)
4770 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4771 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4772 #endif
4773
4774 #if EV_IDLE_ENABLE
4775 if (types & EV_IDLE)
4776 for (j = NUMPRI; j--; )
4777 for (i = idlecnt [j]; i--; )
4778 cb (EV_A_ EV_IDLE, idles [j][i]);
4779 #endif
4780
4781 #if EV_FORK_ENABLE
4782 if (types & EV_FORK)
4783 for (i = forkcnt; i--; )
4784 if (ev_cb (forks [i]) != embed_fork_cb)
4785 cb (EV_A_ EV_FORK, forks [i]);
4786 #endif
4787
4788 #if EV_ASYNC_ENABLE
4789 if (types & EV_ASYNC)
4790 for (i = asynccnt; i--; )
4791 cb (EV_A_ EV_ASYNC, asyncs [i]);
4792 #endif
4793
4794 #if EV_PREPARE_ENABLE
4795 if (types & EV_PREPARE)
4796 for (i = preparecnt; i--; )
4797 # if EV_EMBED_ENABLE
4798 if (ev_cb (prepares [i]) != embed_prepare_cb)
4799 # endif
4800 cb (EV_A_ EV_PREPARE, prepares [i]);
4801 #endif
4802
4803 #if EV_CHECK_ENABLE
4804 if (types & EV_CHECK)
4805 for (i = checkcnt; i--; )
4806 cb (EV_A_ EV_CHECK, checks [i]);
4807 #endif
4808
4809 #if EV_SIGNAL_ENABLE
4810 if (types & EV_SIGNAL)
4811 for (i = 0; i < EV_NSIG - 1; ++i)
4812 for (wl = signals [i].head; wl; )
4813 {
4814 wn = wl->next;
4815 cb (EV_A_ EV_SIGNAL, wl);
4816 wl = wn;
4817 }
4818 #endif
4819
4820 #if EV_CHILD_ENABLE
4821 if (types & EV_CHILD)
4822 for (i = (EV_PID_HASHSIZE); i--; )
4823 for (wl = childs [i]; wl; )
4824 {
4825 wn = wl->next;
4826 cb (EV_A_ EV_CHILD, wl);
4827 wl = wn;
4828 }
4829 #endif
4830 /* EV_STAT 0x00001000 /* stat data changed */
4831 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4832 }
4833 #endif
4834
4835 #if EV_MULTIPLICITY
4836 #include "ev_wrap.h"
4837 #endif
4838