ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.462
Committed: Sun Jan 5 02:59:36 2014 UTC (10 years, 3 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.461: +19 -6 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 # define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 #endif
248
249 #ifndef EV_USE_FLOOR
250 # define EV_USE_FLOOR 0
251 #endif
252
253 #ifndef EV_USE_CLOCK_SYSCALL
254 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 # else
257 # define EV_USE_CLOCK_SYSCALL 0
258 # endif
259 #endif
260
261 #ifndef EV_USE_MONOTONIC
262 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263 # define EV_USE_MONOTONIC EV_FEATURE_OS
264 # else
265 # define EV_USE_MONOTONIC 0
266 # endif
267 #endif
268
269 #ifndef EV_USE_REALTIME
270 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
271 #endif
272
273 #ifndef EV_USE_NANOSLEEP
274 # if _POSIX_C_SOURCE >= 199309L
275 # define EV_USE_NANOSLEEP EV_FEATURE_OS
276 # else
277 # define EV_USE_NANOSLEEP 0
278 # endif
279 #endif
280
281 #ifndef EV_USE_SELECT
282 # define EV_USE_SELECT EV_FEATURE_BACKENDS
283 #endif
284
285 #ifndef EV_USE_POLL
286 # ifdef _WIN32
287 # define EV_USE_POLL 0
288 # else
289 # define EV_USE_POLL EV_FEATURE_BACKENDS
290 # endif
291 #endif
292
293 #ifndef EV_USE_EPOLL
294 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
296 # else
297 # define EV_USE_EPOLL 0
298 # endif
299 #endif
300
301 #ifndef EV_USE_KQUEUE
302 # define EV_USE_KQUEUE 0
303 #endif
304
305 #ifndef EV_USE_PORT
306 # define EV_USE_PORT 0
307 #endif
308
309 #ifndef EV_USE_INOTIFY
310 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
311 # define EV_USE_INOTIFY EV_FEATURE_OS
312 # else
313 # define EV_USE_INOTIFY 0
314 # endif
315 #endif
316
317 #ifndef EV_PID_HASHSIZE
318 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
319 #endif
320
321 #ifndef EV_INOTIFY_HASHSIZE
322 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
323 #endif
324
325 #ifndef EV_USE_EVENTFD
326 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
327 # define EV_USE_EVENTFD EV_FEATURE_OS
328 # else
329 # define EV_USE_EVENTFD 0
330 # endif
331 #endif
332
333 #ifndef EV_USE_SIGNALFD
334 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335 # define EV_USE_SIGNALFD EV_FEATURE_OS
336 # else
337 # define EV_USE_SIGNALFD 0
338 # endif
339 #endif
340
341 #if 0 /* debugging */
342 # define EV_VERIFY 3
343 # define EV_USE_4HEAP 1
344 # define EV_HEAP_CACHE_AT 1
345 #endif
346
347 #ifndef EV_VERIFY
348 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
349 #endif
350
351 #ifndef EV_USE_4HEAP
352 # define EV_USE_4HEAP EV_FEATURE_DATA
353 #endif
354
355 #ifndef EV_HEAP_CACHE_AT
356 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357 #endif
358
359 #ifdef ANDROID
360 /* supposedly, android doesn't typedef fd_mask */
361 # undef EV_USE_SELECT
362 # define EV_USE_SELECT 0
363 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364 # undef EV_USE_CLOCK_SYSCALL
365 # define EV_USE_CLOCK_SYSCALL 0
366 #endif
367
368 /* aix's poll.h seems to cause lots of trouble */
369 #ifdef _AIX
370 /* AIX has a completely broken poll.h header */
371 # undef EV_USE_POLL
372 # define EV_USE_POLL 0
373 #endif
374
375 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376 /* which makes programs even slower. might work on other unices, too. */
377 #if EV_USE_CLOCK_SYSCALL
378 # include <sys/syscall.h>
379 # ifdef SYS_clock_gettime
380 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381 # undef EV_USE_MONOTONIC
382 # define EV_USE_MONOTONIC 1
383 # else
384 # undef EV_USE_CLOCK_SYSCALL
385 # define EV_USE_CLOCK_SYSCALL 0
386 # endif
387 #endif
388
389 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
390
391 #ifndef CLOCK_MONOTONIC
392 # undef EV_USE_MONOTONIC
393 # define EV_USE_MONOTONIC 0
394 #endif
395
396 #ifndef CLOCK_REALTIME
397 # undef EV_USE_REALTIME
398 # define EV_USE_REALTIME 0
399 #endif
400
401 #if !EV_STAT_ENABLE
402 # undef EV_USE_INOTIFY
403 # define EV_USE_INOTIFY 0
404 #endif
405
406 #if !EV_USE_NANOSLEEP
407 /* hp-ux has it in sys/time.h, which we unconditionally include above */
408 # if !defined _WIN32 && !defined __hpux
409 # include <sys/select.h>
410 # endif
411 #endif
412
413 #if EV_USE_INOTIFY
414 # include <sys/statfs.h>
415 # include <sys/inotify.h>
416 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417 # ifndef IN_DONT_FOLLOW
418 # undef EV_USE_INOTIFY
419 # define EV_USE_INOTIFY 0
420 # endif
421 #endif
422
423 #if EV_USE_EVENTFD
424 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
425 # include <stdint.h>
426 # ifndef EFD_NONBLOCK
427 # define EFD_NONBLOCK O_NONBLOCK
428 # endif
429 # ifndef EFD_CLOEXEC
430 # ifdef O_CLOEXEC
431 # define EFD_CLOEXEC O_CLOEXEC
432 # else
433 # define EFD_CLOEXEC 02000000
434 # endif
435 # endif
436 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437 #endif
438
439 #if EV_USE_SIGNALFD
440 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441 # include <stdint.h>
442 # ifndef SFD_NONBLOCK
443 # define SFD_NONBLOCK O_NONBLOCK
444 # endif
445 # ifndef SFD_CLOEXEC
446 # ifdef O_CLOEXEC
447 # define SFD_CLOEXEC O_CLOEXEC
448 # else
449 # define SFD_CLOEXEC 02000000
450 # endif
451 # endif
452 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454 struct signalfd_siginfo
455 {
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458 };
459 #endif
460
461 /**/
462
463 #if EV_VERIFY >= 3
464 # define EV_FREQUENT_CHECK ev_verify (EV_A)
465 #else
466 # define EV_FREQUENT_CHECK do { } while (0)
467 #endif
468
469 /*
470 * This is used to work around floating point rounding problems.
471 * This value is good at least till the year 4000.
472 */
473 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
475
476 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
477 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
478
479 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483 /* ECB.H BEGIN */
484 /*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2013 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 */
512
513 #ifndef ECB_H
514 #define ECB_H
515
516 /* 16 bits major, 16 bits minor */
517 #define ECB_VERSION 0x00010003
518
519 #ifdef _WIN32
520 typedef signed char int8_t;
521 typedef unsigned char uint8_t;
522 typedef signed short int16_t;
523 typedef unsigned short uint16_t;
524 typedef signed int int32_t;
525 typedef unsigned int uint32_t;
526 #if __GNUC__
527 typedef signed long long int64_t;
528 typedef unsigned long long uint64_t;
529 #else /* _MSC_VER || __BORLANDC__ */
530 typedef signed __int64 int64_t;
531 typedef unsigned __int64 uint64_t;
532 #endif
533 #ifdef _WIN64
534 #define ECB_PTRSIZE 8
535 typedef uint64_t uintptr_t;
536 typedef int64_t intptr_t;
537 #else
538 #define ECB_PTRSIZE 4
539 typedef uint32_t uintptr_t;
540 typedef int32_t intptr_t;
541 #endif
542 #else
543 #include <inttypes.h>
544 #if UINTMAX_MAX > 0xffffffffU
545 #define ECB_PTRSIZE 8
546 #else
547 #define ECB_PTRSIZE 4
548 #endif
549 #endif
550
551 /* work around x32 idiocy by defining proper macros */
552 #if __amd64 || __x86_64 || _M_AMD64 || _M_X64
553 #if _ILP32
554 #define ECB_AMD64_X32 1
555 #else
556 #define ECB_AMD64 1
557 #endif
558 #endif
559
560 /* many compilers define _GNUC_ to some versions but then only implement
561 * what their idiot authors think are the "more important" extensions,
562 * causing enormous grief in return for some better fake benchmark numbers.
563 * or so.
564 * we try to detect these and simply assume they are not gcc - if they have
565 * an issue with that they should have done it right in the first place.
566 */
567 #ifndef ECB_GCC_VERSION
568 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
569 #define ECB_GCC_VERSION(major,minor) 0
570 #else
571 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
572 #endif
573 #endif
574
575 #define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
576 #define ECB_C99 (__STDC_VERSION__ >= 199901L)
577 #define ECB_C11 (__STDC_VERSION__ >= 201112L)
578 #define ECB_CPP (__cplusplus+0)
579 #define ECB_CPP11 (__cplusplus >= 201103L)
580
581 #if ECB_CPP
582 #define ECB_EXTERN_C extern "C"
583 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
584 #define ECB_EXTERN_C_END }
585 #else
586 #define ECB_EXTERN_C extern
587 #define ECB_EXTERN_C_BEG
588 #define ECB_EXTERN_C_END
589 #endif
590
591 /*****************************************************************************/
592
593 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
594 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
595
596 #if ECB_NO_THREADS
597 #define ECB_NO_SMP 1
598 #endif
599
600 #if ECB_NO_SMP
601 #define ECB_MEMORY_FENCE do { } while (0)
602 #endif
603
604 #ifndef ECB_MEMORY_FENCE
605 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
606 #if __i386 || __i386__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
608 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
612 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
613 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
614 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
616 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
617 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
619 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
620 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
622 #elif (__sparc || __sparc__) && !__sparcv8
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
624 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
625 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
626 #elif defined __s390__ || defined __s390x__
627 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
628 #elif defined __mips__
629 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
630 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
631 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
632 #elif defined __alpha__
633 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
634 #elif defined __hppa__
635 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
636 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
637 #elif defined __ia64__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
639 #elif defined __m68k__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
641 #elif defined __m88k__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
643 #elif defined __sh__
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
645 #endif
646 #endif
647 #endif
648
649 #ifndef ECB_MEMORY_FENCE
650 #if ECB_GCC_VERSION(4,7)
651 /* see comment below (stdatomic.h) about the C11 memory model. */
652 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
653
654 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
655 * without risking compile time errors with other compilers. We *could*
656 * define our own ecb_clang_has_feature, but I just can't be bothered to work
657 * around this shit time and again.
658 * #elif defined __clang && __has_feature (cxx_atomic)
659 * // see comment below (stdatomic.h) about the C11 memory model.
660 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
661 */
662
663 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
664 #define ECB_MEMORY_FENCE __sync_synchronize ()
665 #elif _MSC_VER >= 1500 /* VC++ 2008 */
666 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
667 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
668 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
669 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
670 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
671 #elif _MSC_VER >= 1400 /* VC++ 2005 */
672 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
673 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
674 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
675 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
676 #elif defined _WIN32
677 #include <WinNT.h>
678 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
679 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
680 #include <mbarrier.h>
681 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
682 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
683 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
684 #elif __xlC__
685 #define ECB_MEMORY_FENCE __sync ()
686 #endif
687 #endif
688
689 #ifndef ECB_MEMORY_FENCE
690 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
691 /* we assume that these memory fences work on all variables/all memory accesses, */
692 /* not just C11 atomics and atomic accesses */
693 #include <stdatomic.h>
694 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
695 /* any fence other than seq_cst, which isn't very efficient for us. */
696 /* Why that is, we don't know - either the C11 memory model is quite useless */
697 /* for most usages, or gcc and clang have a bug */
698 /* I *currently* lean towards the latter, and inefficiently implement */
699 /* all three of ecb's fences as a seq_cst fence */
700 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
701 #endif
702 #endif
703
704 #ifndef ECB_MEMORY_FENCE
705 #if !ECB_AVOID_PTHREADS
706 /*
707 * if you get undefined symbol references to pthread_mutex_lock,
708 * or failure to find pthread.h, then you should implement
709 * the ECB_MEMORY_FENCE operations for your cpu/compiler
710 * OR provide pthread.h and link against the posix thread library
711 * of your system.
712 */
713 #include <pthread.h>
714 #define ECB_NEEDS_PTHREADS 1
715 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
716
717 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
718 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
719 #endif
720 #endif
721
722 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
723 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
724 #endif
725
726 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
727 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
728 #endif
729
730 /*****************************************************************************/
731
732 #if __cplusplus
733 #define ecb_inline static inline
734 #elif ECB_GCC_VERSION(2,5)
735 #define ecb_inline static __inline__
736 #elif ECB_C99
737 #define ecb_inline static inline
738 #else
739 #define ecb_inline static
740 #endif
741
742 #if ECB_GCC_VERSION(3,3)
743 #define ecb_restrict __restrict__
744 #elif ECB_C99
745 #define ecb_restrict restrict
746 #else
747 #define ecb_restrict
748 #endif
749
750 typedef int ecb_bool;
751
752 #define ECB_CONCAT_(a, b) a ## b
753 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
754 #define ECB_STRINGIFY_(a) # a
755 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
756
757 #define ecb_function_ ecb_inline
758
759 #if ECB_GCC_VERSION(3,1)
760 #define ecb_attribute(attrlist) __attribute__(attrlist)
761 #define ecb_is_constant(expr) __builtin_constant_p (expr)
762 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
763 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
764 #else
765 #define ecb_attribute(attrlist)
766 #define ecb_is_constant(expr) 0
767 #define ecb_expect(expr,value) (expr)
768 #define ecb_prefetch(addr,rw,locality)
769 #endif
770
771 /* no emulation for ecb_decltype */
772 #if ECB_GCC_VERSION(4,5)
773 #define ecb_decltype(x) __decltype(x)
774 #elif ECB_GCC_VERSION(3,0)
775 #define ecb_decltype(x) __typeof(x)
776 #endif
777
778 #define ecb_noinline ecb_attribute ((__noinline__))
779 #define ecb_unused ecb_attribute ((__unused__))
780 #define ecb_const ecb_attribute ((__const__))
781 #define ecb_pure ecb_attribute ((__pure__))
782
783 #if ECB_C11
784 #define ecb_noreturn _Noreturn
785 #else
786 #define ecb_noreturn ecb_attribute ((__noreturn__))
787 #endif
788
789 #if ECB_GCC_VERSION(4,3)
790 #define ecb_artificial ecb_attribute ((__artificial__))
791 #define ecb_hot ecb_attribute ((__hot__))
792 #define ecb_cold ecb_attribute ((__cold__))
793 #else
794 #define ecb_artificial
795 #define ecb_hot
796 #define ecb_cold
797 #endif
798
799 /* put around conditional expressions if you are very sure that the */
800 /* expression is mostly true or mostly false. note that these return */
801 /* booleans, not the expression. */
802 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
803 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
804 /* for compatibility to the rest of the world */
805 #define ecb_likely(expr) ecb_expect_true (expr)
806 #define ecb_unlikely(expr) ecb_expect_false (expr)
807
808 /* count trailing zero bits and count # of one bits */
809 #if ECB_GCC_VERSION(3,4)
810 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
811 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
812 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
813 #define ecb_ctz32(x) __builtin_ctz (x)
814 #define ecb_ctz64(x) __builtin_ctzll (x)
815 #define ecb_popcount32(x) __builtin_popcount (x)
816 /* no popcountll */
817 #else
818 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
819 ecb_function_ int
820 ecb_ctz32 (uint32_t x)
821 {
822 int r = 0;
823
824 x &= ~x + 1; /* this isolates the lowest bit */
825
826 #if ECB_branchless_on_i386
827 r += !!(x & 0xaaaaaaaa) << 0;
828 r += !!(x & 0xcccccccc) << 1;
829 r += !!(x & 0xf0f0f0f0) << 2;
830 r += !!(x & 0xff00ff00) << 3;
831 r += !!(x & 0xffff0000) << 4;
832 #else
833 if (x & 0xaaaaaaaa) r += 1;
834 if (x & 0xcccccccc) r += 2;
835 if (x & 0xf0f0f0f0) r += 4;
836 if (x & 0xff00ff00) r += 8;
837 if (x & 0xffff0000) r += 16;
838 #endif
839
840 return r;
841 }
842
843 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
844 ecb_function_ int
845 ecb_ctz64 (uint64_t x)
846 {
847 int shift = x & 0xffffffffU ? 0 : 32;
848 return ecb_ctz32 (x >> shift) + shift;
849 }
850
851 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
852 ecb_function_ int
853 ecb_popcount32 (uint32_t x)
854 {
855 x -= (x >> 1) & 0x55555555;
856 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
857 x = ((x >> 4) + x) & 0x0f0f0f0f;
858 x *= 0x01010101;
859
860 return x >> 24;
861 }
862
863 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
864 ecb_function_ int ecb_ld32 (uint32_t x)
865 {
866 int r = 0;
867
868 if (x >> 16) { x >>= 16; r += 16; }
869 if (x >> 8) { x >>= 8; r += 8; }
870 if (x >> 4) { x >>= 4; r += 4; }
871 if (x >> 2) { x >>= 2; r += 2; }
872 if (x >> 1) { r += 1; }
873
874 return r;
875 }
876
877 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
878 ecb_function_ int ecb_ld64 (uint64_t x)
879 {
880 int r = 0;
881
882 if (x >> 32) { x >>= 32; r += 32; }
883
884 return r + ecb_ld32 (x);
885 }
886 #endif
887
888 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
889 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
890 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
891 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
892
893 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
894 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
895 {
896 return ( (x * 0x0802U & 0x22110U)
897 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
898 }
899
900 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
901 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
902 {
903 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
904 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
905 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
906 x = ( x >> 8 ) | ( x << 8);
907
908 return x;
909 }
910
911 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
912 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
913 {
914 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
915 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
916 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
917 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
918 x = ( x >> 16 ) | ( x << 16);
919
920 return x;
921 }
922
923 /* popcount64 is only available on 64 bit cpus as gcc builtin */
924 /* so for this version we are lazy */
925 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
926 ecb_function_ int
927 ecb_popcount64 (uint64_t x)
928 {
929 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
930 }
931
932 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
933 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
934 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
935 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
936 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
937 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
938 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
939 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
940
941 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
942 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
943 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
944 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
945 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
946 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
947 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
948 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
949
950 #if ECB_GCC_VERSION(4,3)
951 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
952 #define ecb_bswap32(x) __builtin_bswap32 (x)
953 #define ecb_bswap64(x) __builtin_bswap64 (x)
954 #else
955 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
956 ecb_function_ uint16_t
957 ecb_bswap16 (uint16_t x)
958 {
959 return ecb_rotl16 (x, 8);
960 }
961
962 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
963 ecb_function_ uint32_t
964 ecb_bswap32 (uint32_t x)
965 {
966 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
967 }
968
969 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
970 ecb_function_ uint64_t
971 ecb_bswap64 (uint64_t x)
972 {
973 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
974 }
975 #endif
976
977 #if ECB_GCC_VERSION(4,5)
978 #define ecb_unreachable() __builtin_unreachable ()
979 #else
980 /* this seems to work fine, but gcc always emits a warning for it :/ */
981 ecb_inline void ecb_unreachable (void) ecb_noreturn;
982 ecb_inline void ecb_unreachable (void) { }
983 #endif
984
985 /* try to tell the compiler that some condition is definitely true */
986 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
987
988 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
989 ecb_inline unsigned char
990 ecb_byteorder_helper (void)
991 {
992 /* the union code still generates code under pressure in gcc, */
993 /* but less than using pointers, and always seems to */
994 /* successfully return a constant. */
995 /* the reason why we have this horrible preprocessor mess */
996 /* is to avoid it in all cases, at least on common architectures */
997 /* or when using a recent enough gcc version (>= 4.6) */
998 #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
999 return 0x44;
1000 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1001 return 0x44;
1002 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1003 return 0x11;
1004 #else
1005 union
1006 {
1007 uint32_t i;
1008 uint8_t c;
1009 } u = { 0x11223344 };
1010 return u.c;
1011 #endif
1012 }
1013
1014 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1015 ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1016 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1017 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1018
1019 #if ECB_GCC_VERSION(3,0) || ECB_C99
1020 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1021 #else
1022 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1023 #endif
1024
1025 #if __cplusplus
1026 template<typename T>
1027 static inline T ecb_div_rd (T val, T div)
1028 {
1029 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1030 }
1031 template<typename T>
1032 static inline T ecb_div_ru (T val, T div)
1033 {
1034 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1035 }
1036 #else
1037 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1038 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1039 #endif
1040
1041 #if ecb_cplusplus_does_not_suck
1042 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1043 template<typename T, int N>
1044 static inline int ecb_array_length (const T (&arr)[N])
1045 {
1046 return N;
1047 }
1048 #else
1049 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1050 #endif
1051
1052 /*******************************************************************************/
1053 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1054
1055 /* basically, everything uses "ieee pure-endian" floating point numbers */
1056 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1057 #if 0 \
1058 || __i386 || __i386__ \
1059 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1060 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1061 || defined __arm__ && defined __ARM_EABI__ \
1062 || defined __s390__ || defined __s390x__ \
1063 || defined __mips__ \
1064 || defined __alpha__ \
1065 || defined __hppa__ \
1066 || defined __ia64__ \
1067 || defined __m68k__ \
1068 || defined __m88k__ \
1069 || defined __sh__ \
1070 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1071 #define ECB_STDFP 1
1072 #include <string.h> /* for memcpy */
1073 #else
1074 #define ECB_STDFP 0
1075 #endif
1076
1077 #ifndef ECB_NO_LIBM
1078
1079 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1080
1081 /* only the oldest of old doesn't have this one. solaris. */
1082 #ifdef INFINITY
1083 #define ECB_INFINITY INFINITY
1084 #else
1085 #define ECB_INFINITY HUGE_VAL
1086 #endif
1087
1088 #ifdef NAN
1089 #define ECB_NAN NAN
1090 #else
1091 #define ECB_NAN ECB_INFINITY
1092 #endif
1093
1094 /* converts an ieee half/binary16 to a float */
1095 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1096 ecb_function_ float
1097 ecb_binary16_to_float (uint16_t x)
1098 {
1099 int e = (x >> 10) & 0x1f;
1100 int m = x & 0x3ff;
1101 float r;
1102
1103 if (!e ) r = ldexpf (m , -24);
1104 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1105 else if (m ) r = ECB_NAN;
1106 else r = ECB_INFINITY;
1107
1108 return x & 0x8000 ? -r : r;
1109 }
1110
1111 /* convert a float to ieee single/binary32 */
1112 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1113 ecb_function_ uint32_t
1114 ecb_float_to_binary32 (float x)
1115 {
1116 uint32_t r;
1117
1118 #if ECB_STDFP
1119 memcpy (&r, &x, 4);
1120 #else
1121 /* slow emulation, works for anything but -0 */
1122 uint32_t m;
1123 int e;
1124
1125 if (x == 0e0f ) return 0x00000000U;
1126 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1127 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1128 if (x != x ) return 0x7fbfffffU;
1129
1130 m = frexpf (x, &e) * 0x1000000U;
1131
1132 r = m & 0x80000000U;
1133
1134 if (r)
1135 m = -m;
1136
1137 if (e <= -126)
1138 {
1139 m &= 0xffffffU;
1140 m >>= (-125 - e);
1141 e = -126;
1142 }
1143
1144 r |= (e + 126) << 23;
1145 r |= m & 0x7fffffU;
1146 #endif
1147
1148 return r;
1149 }
1150
1151 /* converts an ieee single/binary32 to a float */
1152 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1153 ecb_function_ float
1154 ecb_binary32_to_float (uint32_t x)
1155 {
1156 float r;
1157
1158 #if ECB_STDFP
1159 memcpy (&r, &x, 4);
1160 #else
1161 /* emulation, only works for normals and subnormals and +0 */
1162 int neg = x >> 31;
1163 int e = (x >> 23) & 0xffU;
1164
1165 x &= 0x7fffffU;
1166
1167 if (e)
1168 x |= 0x800000U;
1169 else
1170 e = 1;
1171
1172 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1173 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1174
1175 r = neg ? -r : r;
1176 #endif
1177
1178 return r;
1179 }
1180
1181 /* convert a double to ieee double/binary64 */
1182 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1183 ecb_function_ uint64_t
1184 ecb_double_to_binary64 (double x)
1185 {
1186 uint64_t r;
1187
1188 #if ECB_STDFP
1189 memcpy (&r, &x, 8);
1190 #else
1191 /* slow emulation, works for anything but -0 */
1192 uint64_t m;
1193 int e;
1194
1195 if (x == 0e0 ) return 0x0000000000000000U;
1196 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1197 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1198 if (x != x ) return 0X7ff7ffffffffffffU;
1199
1200 m = frexp (x, &e) * 0x20000000000000U;
1201
1202 r = m & 0x8000000000000000;;
1203
1204 if (r)
1205 m = -m;
1206
1207 if (e <= -1022)
1208 {
1209 m &= 0x1fffffffffffffU;
1210 m >>= (-1021 - e);
1211 e = -1022;
1212 }
1213
1214 r |= ((uint64_t)(e + 1022)) << 52;
1215 r |= m & 0xfffffffffffffU;
1216 #endif
1217
1218 return r;
1219 }
1220
1221 /* converts an ieee double/binary64 to a double */
1222 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1223 ecb_function_ double
1224 ecb_binary64_to_double (uint64_t x)
1225 {
1226 double r;
1227
1228 #if ECB_STDFP
1229 memcpy (&r, &x, 8);
1230 #else
1231 /* emulation, only works for normals and subnormals and +0 */
1232 int neg = x >> 63;
1233 int e = (x >> 52) & 0x7ffU;
1234
1235 x &= 0xfffffffffffffU;
1236
1237 if (e)
1238 x |= 0x10000000000000U;
1239 else
1240 e = 1;
1241
1242 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1243 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1244
1245 r = neg ? -r : r;
1246 #endif
1247
1248 return r;
1249 }
1250
1251 #endif
1252
1253 #endif
1254
1255 /* ECB.H END */
1256
1257 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1258 /* if your architecture doesn't need memory fences, e.g. because it is
1259 * single-cpu/core, or if you use libev in a project that doesn't use libev
1260 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1261 * libev, in which cases the memory fences become nops.
1262 * alternatively, you can remove this #error and link against libpthread,
1263 * which will then provide the memory fences.
1264 */
1265 # error "memory fences not defined for your architecture, please report"
1266 #endif
1267
1268 #ifndef ECB_MEMORY_FENCE
1269 # define ECB_MEMORY_FENCE do { } while (0)
1270 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1271 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1272 #endif
1273
1274 #define expect_false(cond) ecb_expect_false (cond)
1275 #define expect_true(cond) ecb_expect_true (cond)
1276 #define noinline ecb_noinline
1277
1278 #define inline_size ecb_inline
1279
1280 #if EV_FEATURE_CODE
1281 # define inline_speed ecb_inline
1282 #else
1283 # define inline_speed static noinline
1284 #endif
1285
1286 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1287
1288 #if EV_MINPRI == EV_MAXPRI
1289 # define ABSPRI(w) (((W)w), 0)
1290 #else
1291 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1292 #endif
1293
1294 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1295 #define EMPTY2(a,b) /* used to suppress some warnings */
1296
1297 typedef ev_watcher *W;
1298 typedef ev_watcher_list *WL;
1299 typedef ev_watcher_time *WT;
1300
1301 #define ev_active(w) ((W)(w))->active
1302 #define ev_at(w) ((WT)(w))->at
1303
1304 #if EV_USE_REALTIME
1305 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1306 /* giving it a reasonably high chance of working on typical architectures */
1307 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1308 #endif
1309
1310 #if EV_USE_MONOTONIC
1311 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1312 #endif
1313
1314 #ifndef EV_FD_TO_WIN32_HANDLE
1315 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1316 #endif
1317 #ifndef EV_WIN32_HANDLE_TO_FD
1318 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1319 #endif
1320 #ifndef EV_WIN32_CLOSE_FD
1321 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1322 #endif
1323
1324 #ifdef _WIN32
1325 # include "ev_win32.c"
1326 #endif
1327
1328 /*****************************************************************************/
1329
1330 /* define a suitable floor function (only used by periodics atm) */
1331
1332 #if EV_USE_FLOOR
1333 # include <math.h>
1334 # define ev_floor(v) floor (v)
1335 #else
1336
1337 #include <float.h>
1338
1339 /* a floor() replacement function, should be independent of ev_tstamp type */
1340 static ev_tstamp noinline
1341 ev_floor (ev_tstamp v)
1342 {
1343 /* the choice of shift factor is not terribly important */
1344 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1345 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1346 #else
1347 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1348 #endif
1349
1350 /* argument too large for an unsigned long? */
1351 if (expect_false (v >= shift))
1352 {
1353 ev_tstamp f;
1354
1355 if (v == v - 1.)
1356 return v; /* very large number */
1357
1358 f = shift * ev_floor (v * (1. / shift));
1359 return f + ev_floor (v - f);
1360 }
1361
1362 /* special treatment for negative args? */
1363 if (expect_false (v < 0.))
1364 {
1365 ev_tstamp f = -ev_floor (-v);
1366
1367 return f - (f == v ? 0 : 1);
1368 }
1369
1370 /* fits into an unsigned long */
1371 return (unsigned long)v;
1372 }
1373
1374 #endif
1375
1376 /*****************************************************************************/
1377
1378 #ifdef __linux
1379 # include <sys/utsname.h>
1380 #endif
1381
1382 static unsigned int noinline ecb_cold
1383 ev_linux_version (void)
1384 {
1385 #ifdef __linux
1386 unsigned int v = 0;
1387 struct utsname buf;
1388 int i;
1389 char *p = buf.release;
1390
1391 if (uname (&buf))
1392 return 0;
1393
1394 for (i = 3+1; --i; )
1395 {
1396 unsigned int c = 0;
1397
1398 for (;;)
1399 {
1400 if (*p >= '0' && *p <= '9')
1401 c = c * 10 + *p++ - '0';
1402 else
1403 {
1404 p += *p == '.';
1405 break;
1406 }
1407 }
1408
1409 v = (v << 8) | c;
1410 }
1411
1412 return v;
1413 #else
1414 return 0;
1415 #endif
1416 }
1417
1418 /*****************************************************************************/
1419
1420 #if EV_AVOID_STDIO
1421 static void noinline ecb_cold
1422 ev_printerr (const char *msg)
1423 {
1424 write (STDERR_FILENO, msg, strlen (msg));
1425 }
1426 #endif
1427
1428 static void (*syserr_cb)(const char *msg) EV_THROW;
1429
1430 void ecb_cold
1431 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1432 {
1433 syserr_cb = cb;
1434 }
1435
1436 static void noinline ecb_cold
1437 ev_syserr (const char *msg)
1438 {
1439 if (!msg)
1440 msg = "(libev) system error";
1441
1442 if (syserr_cb)
1443 syserr_cb (msg);
1444 else
1445 {
1446 #if EV_AVOID_STDIO
1447 ev_printerr (msg);
1448 ev_printerr (": ");
1449 ev_printerr (strerror (errno));
1450 ev_printerr ("\n");
1451 #else
1452 perror (msg);
1453 #endif
1454 abort ();
1455 }
1456 }
1457
1458 static void *
1459 ev_realloc_emul (void *ptr, long size) EV_THROW
1460 {
1461 /* some systems, notably openbsd and darwin, fail to properly
1462 * implement realloc (x, 0) (as required by both ansi c-89 and
1463 * the single unix specification, so work around them here.
1464 * recently, also (at least) fedora and debian started breaking it,
1465 * despite documenting it otherwise.
1466 */
1467
1468 if (size)
1469 return realloc (ptr, size);
1470
1471 free (ptr);
1472 return 0;
1473 }
1474
1475 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1476
1477 void ecb_cold
1478 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1479 {
1480 alloc = cb;
1481 }
1482
1483 inline_speed void *
1484 ev_realloc (void *ptr, long size)
1485 {
1486 ptr = alloc (ptr, size);
1487
1488 if (!ptr && size)
1489 {
1490 #if EV_AVOID_STDIO
1491 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1492 #else
1493 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1494 #endif
1495 abort ();
1496 }
1497
1498 return ptr;
1499 }
1500
1501 #define ev_malloc(size) ev_realloc (0, (size))
1502 #define ev_free(ptr) ev_realloc ((ptr), 0)
1503
1504 /*****************************************************************************/
1505
1506 /* set in reify when reification needed */
1507 #define EV_ANFD_REIFY 1
1508
1509 /* file descriptor info structure */
1510 typedef struct
1511 {
1512 WL head;
1513 unsigned char events; /* the events watched for */
1514 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1515 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1516 unsigned char unused;
1517 #if EV_USE_EPOLL
1518 unsigned int egen; /* generation counter to counter epoll bugs */
1519 #endif
1520 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1521 SOCKET handle;
1522 #endif
1523 #if EV_USE_IOCP
1524 OVERLAPPED or, ow;
1525 #endif
1526 } ANFD;
1527
1528 /* stores the pending event set for a given watcher */
1529 typedef struct
1530 {
1531 W w;
1532 int events; /* the pending event set for the given watcher */
1533 } ANPENDING;
1534
1535 #if EV_USE_INOTIFY
1536 /* hash table entry per inotify-id */
1537 typedef struct
1538 {
1539 WL head;
1540 } ANFS;
1541 #endif
1542
1543 /* Heap Entry */
1544 #if EV_HEAP_CACHE_AT
1545 /* a heap element */
1546 typedef struct {
1547 ev_tstamp at;
1548 WT w;
1549 } ANHE;
1550
1551 #define ANHE_w(he) (he).w /* access watcher, read-write */
1552 #define ANHE_at(he) (he).at /* access cached at, read-only */
1553 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1554 #else
1555 /* a heap element */
1556 typedef WT ANHE;
1557
1558 #define ANHE_w(he) (he)
1559 #define ANHE_at(he) (he)->at
1560 #define ANHE_at_cache(he)
1561 #endif
1562
1563 #if EV_MULTIPLICITY
1564
1565 struct ev_loop
1566 {
1567 ev_tstamp ev_rt_now;
1568 #define ev_rt_now ((loop)->ev_rt_now)
1569 #define VAR(name,decl) decl;
1570 #include "ev_vars.h"
1571 #undef VAR
1572 };
1573 #include "ev_wrap.h"
1574
1575 static struct ev_loop default_loop_struct;
1576 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1577
1578 #else
1579
1580 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1581 #define VAR(name,decl) static decl;
1582 #include "ev_vars.h"
1583 #undef VAR
1584
1585 static int ev_default_loop_ptr;
1586
1587 #endif
1588
1589 #if EV_FEATURE_API
1590 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1591 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1592 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1593 #else
1594 # define EV_RELEASE_CB (void)0
1595 # define EV_ACQUIRE_CB (void)0
1596 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1597 #endif
1598
1599 #define EVBREAK_RECURSE 0x80
1600
1601 /*****************************************************************************/
1602
1603 #ifndef EV_HAVE_EV_TIME
1604 ev_tstamp
1605 ev_time (void) EV_THROW
1606 {
1607 #if EV_USE_REALTIME
1608 if (expect_true (have_realtime))
1609 {
1610 struct timespec ts;
1611 clock_gettime (CLOCK_REALTIME, &ts);
1612 return ts.tv_sec + ts.tv_nsec * 1e-9;
1613 }
1614 #endif
1615
1616 struct timeval tv;
1617 gettimeofday (&tv, 0);
1618 return tv.tv_sec + tv.tv_usec * 1e-6;
1619 }
1620 #endif
1621
1622 inline_size ev_tstamp
1623 get_clock (void)
1624 {
1625 #if EV_USE_MONOTONIC
1626 if (expect_true (have_monotonic))
1627 {
1628 struct timespec ts;
1629 clock_gettime (CLOCK_MONOTONIC, &ts);
1630 return ts.tv_sec + ts.tv_nsec * 1e-9;
1631 }
1632 #endif
1633
1634 return ev_time ();
1635 }
1636
1637 #if EV_MULTIPLICITY
1638 ev_tstamp
1639 ev_now (EV_P) EV_THROW
1640 {
1641 return ev_rt_now;
1642 }
1643 #endif
1644
1645 void
1646 ev_sleep (ev_tstamp delay) EV_THROW
1647 {
1648 if (delay > 0.)
1649 {
1650 #if EV_USE_NANOSLEEP
1651 struct timespec ts;
1652
1653 EV_TS_SET (ts, delay);
1654 nanosleep (&ts, 0);
1655 #elif defined _WIN32
1656 Sleep ((unsigned long)(delay * 1e3));
1657 #else
1658 struct timeval tv;
1659
1660 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1661 /* something not guaranteed by newer posix versions, but guaranteed */
1662 /* by older ones */
1663 EV_TV_SET (tv, delay);
1664 select (0, 0, 0, 0, &tv);
1665 #endif
1666 }
1667 }
1668
1669 /*****************************************************************************/
1670
1671 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1672
1673 /* find a suitable new size for the given array, */
1674 /* hopefully by rounding to a nice-to-malloc size */
1675 inline_size int
1676 array_nextsize (int elem, int cur, int cnt)
1677 {
1678 int ncur = cur + 1;
1679
1680 do
1681 ncur <<= 1;
1682 while (cnt > ncur);
1683
1684 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1685 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1686 {
1687 ncur *= elem;
1688 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1689 ncur = ncur - sizeof (void *) * 4;
1690 ncur /= elem;
1691 }
1692
1693 return ncur;
1694 }
1695
1696 static void * noinline ecb_cold
1697 array_realloc (int elem, void *base, int *cur, int cnt)
1698 {
1699 *cur = array_nextsize (elem, *cur, cnt);
1700 return ev_realloc (base, elem * *cur);
1701 }
1702
1703 #define array_init_zero(base,count) \
1704 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1705
1706 #define array_needsize(type,base,cur,cnt,init) \
1707 if (expect_false ((cnt) > (cur))) \
1708 { \
1709 int ecb_unused ocur_ = (cur); \
1710 (base) = (type *)array_realloc \
1711 (sizeof (type), (base), &(cur), (cnt)); \
1712 init ((base) + (ocur_), (cur) - ocur_); \
1713 }
1714
1715 #if 0
1716 #define array_slim(type,stem) \
1717 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1718 { \
1719 stem ## max = array_roundsize (stem ## cnt >> 1); \
1720 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1721 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1722 }
1723 #endif
1724
1725 #define array_free(stem, idx) \
1726 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1727
1728 /*****************************************************************************/
1729
1730 /* dummy callback for pending events */
1731 static void noinline
1732 pendingcb (EV_P_ ev_prepare *w, int revents)
1733 {
1734 }
1735
1736 void noinline
1737 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1738 {
1739 W w_ = (W)w;
1740 int pri = ABSPRI (w_);
1741
1742 if (expect_false (w_->pending))
1743 pendings [pri][w_->pending - 1].events |= revents;
1744 else
1745 {
1746 w_->pending = ++pendingcnt [pri];
1747 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1748 pendings [pri][w_->pending - 1].w = w_;
1749 pendings [pri][w_->pending - 1].events = revents;
1750 }
1751
1752 pendingpri = NUMPRI - 1;
1753 }
1754
1755 inline_speed void
1756 feed_reverse (EV_P_ W w)
1757 {
1758 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1759 rfeeds [rfeedcnt++] = w;
1760 }
1761
1762 inline_size void
1763 feed_reverse_done (EV_P_ int revents)
1764 {
1765 do
1766 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1767 while (rfeedcnt);
1768 }
1769
1770 inline_speed void
1771 queue_events (EV_P_ W *events, int eventcnt, int type)
1772 {
1773 int i;
1774
1775 for (i = 0; i < eventcnt; ++i)
1776 ev_feed_event (EV_A_ events [i], type);
1777 }
1778
1779 /*****************************************************************************/
1780
1781 inline_speed void
1782 fd_event_nocheck (EV_P_ int fd, int revents)
1783 {
1784 ANFD *anfd = anfds + fd;
1785 ev_io *w;
1786
1787 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1788 {
1789 int ev = w->events & revents;
1790
1791 if (ev)
1792 ev_feed_event (EV_A_ (W)w, ev);
1793 }
1794 }
1795
1796 /* do not submit kernel events for fds that have reify set */
1797 /* because that means they changed while we were polling for new events */
1798 inline_speed void
1799 fd_event (EV_P_ int fd, int revents)
1800 {
1801 ANFD *anfd = anfds + fd;
1802
1803 if (expect_true (!anfd->reify))
1804 fd_event_nocheck (EV_A_ fd, revents);
1805 }
1806
1807 void
1808 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1809 {
1810 if (fd >= 0 && fd < anfdmax)
1811 fd_event_nocheck (EV_A_ fd, revents);
1812 }
1813
1814 /* make sure the external fd watch events are in-sync */
1815 /* with the kernel/libev internal state */
1816 inline_size void
1817 fd_reify (EV_P)
1818 {
1819 int i;
1820
1821 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1822 for (i = 0; i < fdchangecnt; ++i)
1823 {
1824 int fd = fdchanges [i];
1825 ANFD *anfd = anfds + fd;
1826
1827 if (anfd->reify & EV__IOFDSET && anfd->head)
1828 {
1829 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1830
1831 if (handle != anfd->handle)
1832 {
1833 unsigned long arg;
1834
1835 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1836
1837 /* handle changed, but fd didn't - we need to do it in two steps */
1838 backend_modify (EV_A_ fd, anfd->events, 0);
1839 anfd->events = 0;
1840 anfd->handle = handle;
1841 }
1842 }
1843 }
1844 #endif
1845
1846 for (i = 0; i < fdchangecnt; ++i)
1847 {
1848 int fd = fdchanges [i];
1849 ANFD *anfd = anfds + fd;
1850 ev_io *w;
1851
1852 unsigned char o_events = anfd->events;
1853 unsigned char o_reify = anfd->reify;
1854
1855 anfd->reify = 0;
1856
1857 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1858 {
1859 anfd->events = 0;
1860
1861 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1862 anfd->events |= (unsigned char)w->events;
1863
1864 if (o_events != anfd->events)
1865 o_reify = EV__IOFDSET; /* actually |= */
1866 }
1867
1868 if (o_reify & EV__IOFDSET)
1869 backend_modify (EV_A_ fd, o_events, anfd->events);
1870 }
1871
1872 fdchangecnt = 0;
1873 }
1874
1875 /* something about the given fd changed */
1876 inline_size void
1877 fd_change (EV_P_ int fd, int flags)
1878 {
1879 unsigned char reify = anfds [fd].reify;
1880 anfds [fd].reify |= flags;
1881
1882 if (expect_true (!reify))
1883 {
1884 ++fdchangecnt;
1885 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1886 fdchanges [fdchangecnt - 1] = fd;
1887 }
1888 }
1889
1890 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1891 inline_speed void ecb_cold
1892 fd_kill (EV_P_ int fd)
1893 {
1894 ev_io *w;
1895
1896 while ((w = (ev_io *)anfds [fd].head))
1897 {
1898 ev_io_stop (EV_A_ w);
1899 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1900 }
1901 }
1902
1903 /* check whether the given fd is actually valid, for error recovery */
1904 inline_size int ecb_cold
1905 fd_valid (int fd)
1906 {
1907 #ifdef _WIN32
1908 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1909 #else
1910 return fcntl (fd, F_GETFD) != -1;
1911 #endif
1912 }
1913
1914 /* called on EBADF to verify fds */
1915 static void noinline ecb_cold
1916 fd_ebadf (EV_P)
1917 {
1918 int fd;
1919
1920 for (fd = 0; fd < anfdmax; ++fd)
1921 if (anfds [fd].events)
1922 if (!fd_valid (fd) && errno == EBADF)
1923 fd_kill (EV_A_ fd);
1924 }
1925
1926 /* called on ENOMEM in select/poll to kill some fds and retry */
1927 static void noinline ecb_cold
1928 fd_enomem (EV_P)
1929 {
1930 int fd;
1931
1932 for (fd = anfdmax; fd--; )
1933 if (anfds [fd].events)
1934 {
1935 fd_kill (EV_A_ fd);
1936 break;
1937 }
1938 }
1939
1940 /* usually called after fork if backend needs to re-arm all fds from scratch */
1941 static void noinline
1942 fd_rearm_all (EV_P)
1943 {
1944 int fd;
1945
1946 for (fd = 0; fd < anfdmax; ++fd)
1947 if (anfds [fd].events)
1948 {
1949 anfds [fd].events = 0;
1950 anfds [fd].emask = 0;
1951 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1952 }
1953 }
1954
1955 /* used to prepare libev internal fd's */
1956 /* this is not fork-safe */
1957 inline_speed void
1958 fd_intern (int fd)
1959 {
1960 #ifdef _WIN32
1961 unsigned long arg = 1;
1962 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1963 #else
1964 fcntl (fd, F_SETFD, FD_CLOEXEC);
1965 fcntl (fd, F_SETFL, O_NONBLOCK);
1966 #endif
1967 }
1968
1969 /*****************************************************************************/
1970
1971 /*
1972 * the heap functions want a real array index. array index 0 is guaranteed to not
1973 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1974 * the branching factor of the d-tree.
1975 */
1976
1977 /*
1978 * at the moment we allow libev the luxury of two heaps,
1979 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1980 * which is more cache-efficient.
1981 * the difference is about 5% with 50000+ watchers.
1982 */
1983 #if EV_USE_4HEAP
1984
1985 #define DHEAP 4
1986 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1987 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1988 #define UPHEAP_DONE(p,k) ((p) == (k))
1989
1990 /* away from the root */
1991 inline_speed void
1992 downheap (ANHE *heap, int N, int k)
1993 {
1994 ANHE he = heap [k];
1995 ANHE *E = heap + N + HEAP0;
1996
1997 for (;;)
1998 {
1999 ev_tstamp minat;
2000 ANHE *minpos;
2001 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2002
2003 /* find minimum child */
2004 if (expect_true (pos + DHEAP - 1 < E))
2005 {
2006 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2007 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2008 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2009 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2010 }
2011 else if (pos < E)
2012 {
2013 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2014 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2015 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2016 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2017 }
2018 else
2019 break;
2020
2021 if (ANHE_at (he) <= minat)
2022 break;
2023
2024 heap [k] = *minpos;
2025 ev_active (ANHE_w (*minpos)) = k;
2026
2027 k = minpos - heap;
2028 }
2029
2030 heap [k] = he;
2031 ev_active (ANHE_w (he)) = k;
2032 }
2033
2034 #else /* 4HEAP */
2035
2036 #define HEAP0 1
2037 #define HPARENT(k) ((k) >> 1)
2038 #define UPHEAP_DONE(p,k) (!(p))
2039
2040 /* away from the root */
2041 inline_speed void
2042 downheap (ANHE *heap, int N, int k)
2043 {
2044 ANHE he = heap [k];
2045
2046 for (;;)
2047 {
2048 int c = k << 1;
2049
2050 if (c >= N + HEAP0)
2051 break;
2052
2053 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2054 ? 1 : 0;
2055
2056 if (ANHE_at (he) <= ANHE_at (heap [c]))
2057 break;
2058
2059 heap [k] = heap [c];
2060 ev_active (ANHE_w (heap [k])) = k;
2061
2062 k = c;
2063 }
2064
2065 heap [k] = he;
2066 ev_active (ANHE_w (he)) = k;
2067 }
2068 #endif
2069
2070 /* towards the root */
2071 inline_speed void
2072 upheap (ANHE *heap, int k)
2073 {
2074 ANHE he = heap [k];
2075
2076 for (;;)
2077 {
2078 int p = HPARENT (k);
2079
2080 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2081 break;
2082
2083 heap [k] = heap [p];
2084 ev_active (ANHE_w (heap [k])) = k;
2085 k = p;
2086 }
2087
2088 heap [k] = he;
2089 ev_active (ANHE_w (he)) = k;
2090 }
2091
2092 /* move an element suitably so it is in a correct place */
2093 inline_size void
2094 adjustheap (ANHE *heap, int N, int k)
2095 {
2096 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2097 upheap (heap, k);
2098 else
2099 downheap (heap, N, k);
2100 }
2101
2102 /* rebuild the heap: this function is used only once and executed rarely */
2103 inline_size void
2104 reheap (ANHE *heap, int N)
2105 {
2106 int i;
2107
2108 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2109 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2110 for (i = 0; i < N; ++i)
2111 upheap (heap, i + HEAP0);
2112 }
2113
2114 /*****************************************************************************/
2115
2116 /* associate signal watchers to a signal signal */
2117 typedef struct
2118 {
2119 EV_ATOMIC_T pending;
2120 #if EV_MULTIPLICITY
2121 EV_P;
2122 #endif
2123 WL head;
2124 } ANSIG;
2125
2126 static ANSIG signals [EV_NSIG - 1];
2127
2128 /*****************************************************************************/
2129
2130 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2131
2132 static void noinline ecb_cold
2133 evpipe_init (EV_P)
2134 {
2135 if (!ev_is_active (&pipe_w))
2136 {
2137 int fds [2];
2138
2139 # if EV_USE_EVENTFD
2140 fds [0] = -1;
2141 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2142 if (fds [1] < 0 && errno == EINVAL)
2143 fds [1] = eventfd (0, 0);
2144
2145 if (fds [1] < 0)
2146 # endif
2147 {
2148 while (pipe (fds))
2149 ev_syserr ("(libev) error creating signal/async pipe");
2150
2151 fd_intern (fds [0]);
2152 }
2153
2154 evpipe [0] = fds [0];
2155
2156 if (evpipe [1] < 0)
2157 evpipe [1] = fds [1]; /* first call, set write fd */
2158 else
2159 {
2160 /* on subsequent calls, do not change evpipe [1] */
2161 /* so that evpipe_write can always rely on its value. */
2162 /* this branch does not do anything sensible on windows, */
2163 /* so must not be executed on windows */
2164
2165 dup2 (fds [1], evpipe [1]);
2166 close (fds [1]);
2167 }
2168
2169 fd_intern (evpipe [1]);
2170
2171 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2172 ev_io_start (EV_A_ &pipe_w);
2173 ev_unref (EV_A); /* watcher should not keep loop alive */
2174 }
2175 }
2176
2177 inline_speed void
2178 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2179 {
2180 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2181
2182 if (expect_true (*flag))
2183 return;
2184
2185 *flag = 1;
2186 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2187
2188 pipe_write_skipped = 1;
2189
2190 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2191
2192 if (pipe_write_wanted)
2193 {
2194 int old_errno;
2195
2196 pipe_write_skipped = 0;
2197 ECB_MEMORY_FENCE_RELEASE;
2198
2199 old_errno = errno; /* save errno because write will clobber it */
2200
2201 #if EV_USE_EVENTFD
2202 if (evpipe [0] < 0)
2203 {
2204 uint64_t counter = 1;
2205 write (evpipe [1], &counter, sizeof (uint64_t));
2206 }
2207 else
2208 #endif
2209 {
2210 #ifdef _WIN32
2211 WSABUF buf;
2212 DWORD sent;
2213 buf.buf = &buf;
2214 buf.len = 1;
2215 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2216 #else
2217 write (evpipe [1], &(evpipe [1]), 1);
2218 #endif
2219 }
2220
2221 errno = old_errno;
2222 }
2223 }
2224
2225 /* called whenever the libev signal pipe */
2226 /* got some events (signal, async) */
2227 static void
2228 pipecb (EV_P_ ev_io *iow, int revents)
2229 {
2230 int i;
2231
2232 if (revents & EV_READ)
2233 {
2234 #if EV_USE_EVENTFD
2235 if (evpipe [0] < 0)
2236 {
2237 uint64_t counter;
2238 read (evpipe [1], &counter, sizeof (uint64_t));
2239 }
2240 else
2241 #endif
2242 {
2243 char dummy[4];
2244 #ifdef _WIN32
2245 WSABUF buf;
2246 DWORD recvd;
2247 DWORD flags = 0;
2248 buf.buf = dummy;
2249 buf.len = sizeof (dummy);
2250 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2251 #else
2252 read (evpipe [0], &dummy, sizeof (dummy));
2253 #endif
2254 }
2255 }
2256
2257 pipe_write_skipped = 0;
2258
2259 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2260
2261 #if EV_SIGNAL_ENABLE
2262 if (sig_pending)
2263 {
2264 sig_pending = 0;
2265
2266 ECB_MEMORY_FENCE;
2267
2268 for (i = EV_NSIG - 1; i--; )
2269 if (expect_false (signals [i].pending))
2270 ev_feed_signal_event (EV_A_ i + 1);
2271 }
2272 #endif
2273
2274 #if EV_ASYNC_ENABLE
2275 if (async_pending)
2276 {
2277 async_pending = 0;
2278
2279 ECB_MEMORY_FENCE;
2280
2281 for (i = asynccnt; i--; )
2282 if (asyncs [i]->sent)
2283 {
2284 asyncs [i]->sent = 0;
2285 ECB_MEMORY_FENCE_RELEASE;
2286 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2287 }
2288 }
2289 #endif
2290 }
2291
2292 /*****************************************************************************/
2293
2294 void
2295 ev_feed_signal (int signum) EV_THROW
2296 {
2297 #if EV_MULTIPLICITY
2298 EV_P;
2299 ECB_MEMORY_FENCE_ACQUIRE;
2300 EV_A = signals [signum - 1].loop;
2301
2302 if (!EV_A)
2303 return;
2304 #endif
2305
2306 signals [signum - 1].pending = 1;
2307 evpipe_write (EV_A_ &sig_pending);
2308 }
2309
2310 static void
2311 ev_sighandler (int signum)
2312 {
2313 #ifdef _WIN32
2314 signal (signum, ev_sighandler);
2315 #endif
2316
2317 ev_feed_signal (signum);
2318 }
2319
2320 void noinline
2321 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2322 {
2323 WL w;
2324
2325 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2326 return;
2327
2328 --signum;
2329
2330 #if EV_MULTIPLICITY
2331 /* it is permissible to try to feed a signal to the wrong loop */
2332 /* or, likely more useful, feeding a signal nobody is waiting for */
2333
2334 if (expect_false (signals [signum].loop != EV_A))
2335 return;
2336 #endif
2337
2338 signals [signum].pending = 0;
2339 ECB_MEMORY_FENCE_RELEASE;
2340
2341 for (w = signals [signum].head; w; w = w->next)
2342 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2343 }
2344
2345 #if EV_USE_SIGNALFD
2346 static void
2347 sigfdcb (EV_P_ ev_io *iow, int revents)
2348 {
2349 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2350
2351 for (;;)
2352 {
2353 ssize_t res = read (sigfd, si, sizeof (si));
2354
2355 /* not ISO-C, as res might be -1, but works with SuS */
2356 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2357 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2358
2359 if (res < (ssize_t)sizeof (si))
2360 break;
2361 }
2362 }
2363 #endif
2364
2365 #endif
2366
2367 /*****************************************************************************/
2368
2369 #if EV_CHILD_ENABLE
2370 static WL childs [EV_PID_HASHSIZE];
2371
2372 static ev_signal childev;
2373
2374 #ifndef WIFCONTINUED
2375 # define WIFCONTINUED(status) 0
2376 #endif
2377
2378 /* handle a single child status event */
2379 inline_speed void
2380 child_reap (EV_P_ int chain, int pid, int status)
2381 {
2382 ev_child *w;
2383 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2384
2385 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2386 {
2387 if ((w->pid == pid || !w->pid)
2388 && (!traced || (w->flags & 1)))
2389 {
2390 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2391 w->rpid = pid;
2392 w->rstatus = status;
2393 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2394 }
2395 }
2396 }
2397
2398 #ifndef WCONTINUED
2399 # define WCONTINUED 0
2400 #endif
2401
2402 /* called on sigchld etc., calls waitpid */
2403 static void
2404 childcb (EV_P_ ev_signal *sw, int revents)
2405 {
2406 int pid, status;
2407
2408 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2409 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2410 if (!WCONTINUED
2411 || errno != EINVAL
2412 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2413 return;
2414
2415 /* make sure we are called again until all children have been reaped */
2416 /* we need to do it this way so that the callback gets called before we continue */
2417 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2418
2419 child_reap (EV_A_ pid, pid, status);
2420 if ((EV_PID_HASHSIZE) > 1)
2421 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2422 }
2423
2424 #endif
2425
2426 /*****************************************************************************/
2427
2428 #if EV_USE_IOCP
2429 # include "ev_iocp.c"
2430 #endif
2431 #if EV_USE_PORT
2432 # include "ev_port.c"
2433 #endif
2434 #if EV_USE_KQUEUE
2435 # include "ev_kqueue.c"
2436 #endif
2437 #if EV_USE_EPOLL
2438 # include "ev_epoll.c"
2439 #endif
2440 #if EV_USE_POLL
2441 # include "ev_poll.c"
2442 #endif
2443 #if EV_USE_SELECT
2444 # include "ev_select.c"
2445 #endif
2446
2447 int ecb_cold
2448 ev_version_major (void) EV_THROW
2449 {
2450 return EV_VERSION_MAJOR;
2451 }
2452
2453 int ecb_cold
2454 ev_version_minor (void) EV_THROW
2455 {
2456 return EV_VERSION_MINOR;
2457 }
2458
2459 /* return true if we are running with elevated privileges and should ignore env variables */
2460 int inline_size ecb_cold
2461 enable_secure (void)
2462 {
2463 #ifdef _WIN32
2464 return 0;
2465 #else
2466 return getuid () != geteuid ()
2467 || getgid () != getegid ();
2468 #endif
2469 }
2470
2471 unsigned int ecb_cold
2472 ev_supported_backends (void) EV_THROW
2473 {
2474 unsigned int flags = 0;
2475
2476 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2477 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2478 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2479 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2480 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2481
2482 return flags;
2483 }
2484
2485 unsigned int ecb_cold
2486 ev_recommended_backends (void) EV_THROW
2487 {
2488 unsigned int flags = ev_supported_backends ();
2489
2490 #ifndef __NetBSD__
2491 /* kqueue is borked on everything but netbsd apparently */
2492 /* it usually doesn't work correctly on anything but sockets and pipes */
2493 flags &= ~EVBACKEND_KQUEUE;
2494 #endif
2495 #ifdef __APPLE__
2496 /* only select works correctly on that "unix-certified" platform */
2497 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2498 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2499 #endif
2500 #ifdef __FreeBSD__
2501 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2502 #endif
2503
2504 return flags;
2505 }
2506
2507 unsigned int ecb_cold
2508 ev_embeddable_backends (void) EV_THROW
2509 {
2510 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2511
2512 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2513 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2514 flags &= ~EVBACKEND_EPOLL;
2515
2516 return flags;
2517 }
2518
2519 unsigned int
2520 ev_backend (EV_P) EV_THROW
2521 {
2522 return backend;
2523 }
2524
2525 #if EV_FEATURE_API
2526 unsigned int
2527 ev_iteration (EV_P) EV_THROW
2528 {
2529 return loop_count;
2530 }
2531
2532 unsigned int
2533 ev_depth (EV_P) EV_THROW
2534 {
2535 return loop_depth;
2536 }
2537
2538 void
2539 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2540 {
2541 io_blocktime = interval;
2542 }
2543
2544 void
2545 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2546 {
2547 timeout_blocktime = interval;
2548 }
2549
2550 void
2551 ev_set_userdata (EV_P_ void *data) EV_THROW
2552 {
2553 userdata = data;
2554 }
2555
2556 void *
2557 ev_userdata (EV_P) EV_THROW
2558 {
2559 return userdata;
2560 }
2561
2562 void
2563 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2564 {
2565 invoke_cb = invoke_pending_cb;
2566 }
2567
2568 void
2569 ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2570 {
2571 release_cb = release;
2572 acquire_cb = acquire;
2573 }
2574 #endif
2575
2576 /* initialise a loop structure, must be zero-initialised */
2577 static void noinline ecb_cold
2578 loop_init (EV_P_ unsigned int flags) EV_THROW
2579 {
2580 if (!backend)
2581 {
2582 origflags = flags;
2583
2584 #if EV_USE_REALTIME
2585 if (!have_realtime)
2586 {
2587 struct timespec ts;
2588
2589 if (!clock_gettime (CLOCK_REALTIME, &ts))
2590 have_realtime = 1;
2591 }
2592 #endif
2593
2594 #if EV_USE_MONOTONIC
2595 if (!have_monotonic)
2596 {
2597 struct timespec ts;
2598
2599 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2600 have_monotonic = 1;
2601 }
2602 #endif
2603
2604 /* pid check not overridable via env */
2605 #ifndef _WIN32
2606 if (flags & EVFLAG_FORKCHECK)
2607 curpid = getpid ();
2608 #endif
2609
2610 if (!(flags & EVFLAG_NOENV)
2611 && !enable_secure ()
2612 && getenv ("LIBEV_FLAGS"))
2613 flags = atoi (getenv ("LIBEV_FLAGS"));
2614
2615 ev_rt_now = ev_time ();
2616 mn_now = get_clock ();
2617 now_floor = mn_now;
2618 rtmn_diff = ev_rt_now - mn_now;
2619 #if EV_FEATURE_API
2620 invoke_cb = ev_invoke_pending;
2621 #endif
2622
2623 io_blocktime = 0.;
2624 timeout_blocktime = 0.;
2625 backend = 0;
2626 backend_fd = -1;
2627 sig_pending = 0;
2628 #if EV_ASYNC_ENABLE
2629 async_pending = 0;
2630 #endif
2631 pipe_write_skipped = 0;
2632 pipe_write_wanted = 0;
2633 evpipe [0] = -1;
2634 evpipe [1] = -1;
2635 #if EV_USE_INOTIFY
2636 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2637 #endif
2638 #if EV_USE_SIGNALFD
2639 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2640 #endif
2641
2642 if (!(flags & EVBACKEND_MASK))
2643 flags |= ev_recommended_backends ();
2644
2645 #if EV_USE_IOCP
2646 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2647 #endif
2648 #if EV_USE_PORT
2649 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2650 #endif
2651 #if EV_USE_KQUEUE
2652 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2653 #endif
2654 #if EV_USE_EPOLL
2655 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2656 #endif
2657 #if EV_USE_POLL
2658 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2659 #endif
2660 #if EV_USE_SELECT
2661 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2662 #endif
2663
2664 ev_prepare_init (&pending_w, pendingcb);
2665
2666 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2667 ev_init (&pipe_w, pipecb);
2668 ev_set_priority (&pipe_w, EV_MAXPRI);
2669 #endif
2670 }
2671 }
2672
2673 /* free up a loop structure */
2674 void ecb_cold
2675 ev_loop_destroy (EV_P)
2676 {
2677 int i;
2678
2679 #if EV_MULTIPLICITY
2680 /* mimic free (0) */
2681 if (!EV_A)
2682 return;
2683 #endif
2684
2685 #if EV_CLEANUP_ENABLE
2686 /* queue cleanup watchers (and execute them) */
2687 if (expect_false (cleanupcnt))
2688 {
2689 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2690 EV_INVOKE_PENDING;
2691 }
2692 #endif
2693
2694 #if EV_CHILD_ENABLE
2695 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2696 {
2697 ev_ref (EV_A); /* child watcher */
2698 ev_signal_stop (EV_A_ &childev);
2699 }
2700 #endif
2701
2702 if (ev_is_active (&pipe_w))
2703 {
2704 /*ev_ref (EV_A);*/
2705 /*ev_io_stop (EV_A_ &pipe_w);*/
2706
2707 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2708 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2709 }
2710
2711 #if EV_USE_SIGNALFD
2712 if (ev_is_active (&sigfd_w))
2713 close (sigfd);
2714 #endif
2715
2716 #if EV_USE_INOTIFY
2717 if (fs_fd >= 0)
2718 close (fs_fd);
2719 #endif
2720
2721 if (backend_fd >= 0)
2722 close (backend_fd);
2723
2724 #if EV_USE_IOCP
2725 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2726 #endif
2727 #if EV_USE_PORT
2728 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2729 #endif
2730 #if EV_USE_KQUEUE
2731 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2732 #endif
2733 #if EV_USE_EPOLL
2734 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2735 #endif
2736 #if EV_USE_POLL
2737 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2738 #endif
2739 #if EV_USE_SELECT
2740 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2741 #endif
2742
2743 for (i = NUMPRI; i--; )
2744 {
2745 array_free (pending, [i]);
2746 #if EV_IDLE_ENABLE
2747 array_free (idle, [i]);
2748 #endif
2749 }
2750
2751 ev_free (anfds); anfds = 0; anfdmax = 0;
2752
2753 /* have to use the microsoft-never-gets-it-right macro */
2754 array_free (rfeed, EMPTY);
2755 array_free (fdchange, EMPTY);
2756 array_free (timer, EMPTY);
2757 #if EV_PERIODIC_ENABLE
2758 array_free (periodic, EMPTY);
2759 #endif
2760 #if EV_FORK_ENABLE
2761 array_free (fork, EMPTY);
2762 #endif
2763 #if EV_CLEANUP_ENABLE
2764 array_free (cleanup, EMPTY);
2765 #endif
2766 array_free (prepare, EMPTY);
2767 array_free (check, EMPTY);
2768 #if EV_ASYNC_ENABLE
2769 array_free (async, EMPTY);
2770 #endif
2771
2772 backend = 0;
2773
2774 #if EV_MULTIPLICITY
2775 if (ev_is_default_loop (EV_A))
2776 #endif
2777 ev_default_loop_ptr = 0;
2778 #if EV_MULTIPLICITY
2779 else
2780 ev_free (EV_A);
2781 #endif
2782 }
2783
2784 #if EV_USE_INOTIFY
2785 inline_size void infy_fork (EV_P);
2786 #endif
2787
2788 inline_size void
2789 loop_fork (EV_P)
2790 {
2791 #if EV_USE_PORT
2792 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2793 #endif
2794 #if EV_USE_KQUEUE
2795 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2796 #endif
2797 #if EV_USE_EPOLL
2798 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2799 #endif
2800 #if EV_USE_INOTIFY
2801 infy_fork (EV_A);
2802 #endif
2803
2804 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2805 if (ev_is_active (&pipe_w))
2806 {
2807 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2808
2809 ev_ref (EV_A);
2810 ev_io_stop (EV_A_ &pipe_w);
2811
2812 if (evpipe [0] >= 0)
2813 EV_WIN32_CLOSE_FD (evpipe [0]);
2814
2815 evpipe_init (EV_A);
2816 /* iterate over everything, in case we missed something before */
2817 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2818 }
2819 #endif
2820
2821 postfork = 0;
2822 }
2823
2824 #if EV_MULTIPLICITY
2825
2826 struct ev_loop * ecb_cold
2827 ev_loop_new (unsigned int flags) EV_THROW
2828 {
2829 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2830
2831 memset (EV_A, 0, sizeof (struct ev_loop));
2832 loop_init (EV_A_ flags);
2833
2834 if (ev_backend (EV_A))
2835 return EV_A;
2836
2837 ev_free (EV_A);
2838 return 0;
2839 }
2840
2841 #endif /* multiplicity */
2842
2843 #if EV_VERIFY
2844 static void noinline ecb_cold
2845 verify_watcher (EV_P_ W w)
2846 {
2847 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2848
2849 if (w->pending)
2850 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2851 }
2852
2853 static void noinline ecb_cold
2854 verify_heap (EV_P_ ANHE *heap, int N)
2855 {
2856 int i;
2857
2858 for (i = HEAP0; i < N + HEAP0; ++i)
2859 {
2860 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2861 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2862 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2863
2864 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2865 }
2866 }
2867
2868 static void noinline ecb_cold
2869 array_verify (EV_P_ W *ws, int cnt)
2870 {
2871 while (cnt--)
2872 {
2873 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2874 verify_watcher (EV_A_ ws [cnt]);
2875 }
2876 }
2877 #endif
2878
2879 #if EV_FEATURE_API
2880 void ecb_cold
2881 ev_verify (EV_P) EV_THROW
2882 {
2883 #if EV_VERIFY
2884 int i;
2885 WL w, w2;
2886
2887 assert (activecnt >= -1);
2888
2889 assert (fdchangemax >= fdchangecnt);
2890 for (i = 0; i < fdchangecnt; ++i)
2891 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2892
2893 assert (anfdmax >= 0);
2894 for (i = 0; i < anfdmax; ++i)
2895 {
2896 int j = 0;
2897
2898 for (w = w2 = anfds [i].head; w; w = w->next)
2899 {
2900 verify_watcher (EV_A_ (W)w);
2901
2902 if (j++ & 1)
2903 {
2904 assert (("libev: io watcher list contains a loop", w != w2));
2905 w2 = w2->next;
2906 }
2907
2908 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2909 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2910 }
2911 }
2912
2913 assert (timermax >= timercnt);
2914 verify_heap (EV_A_ timers, timercnt);
2915
2916 #if EV_PERIODIC_ENABLE
2917 assert (periodicmax >= periodiccnt);
2918 verify_heap (EV_A_ periodics, periodiccnt);
2919 #endif
2920
2921 for (i = NUMPRI; i--; )
2922 {
2923 assert (pendingmax [i] >= pendingcnt [i]);
2924 #if EV_IDLE_ENABLE
2925 assert (idleall >= 0);
2926 assert (idlemax [i] >= idlecnt [i]);
2927 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2928 #endif
2929 }
2930
2931 #if EV_FORK_ENABLE
2932 assert (forkmax >= forkcnt);
2933 array_verify (EV_A_ (W *)forks, forkcnt);
2934 #endif
2935
2936 #if EV_CLEANUP_ENABLE
2937 assert (cleanupmax >= cleanupcnt);
2938 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2939 #endif
2940
2941 #if EV_ASYNC_ENABLE
2942 assert (asyncmax >= asynccnt);
2943 array_verify (EV_A_ (W *)asyncs, asynccnt);
2944 #endif
2945
2946 #if EV_PREPARE_ENABLE
2947 assert (preparemax >= preparecnt);
2948 array_verify (EV_A_ (W *)prepares, preparecnt);
2949 #endif
2950
2951 #if EV_CHECK_ENABLE
2952 assert (checkmax >= checkcnt);
2953 array_verify (EV_A_ (W *)checks, checkcnt);
2954 #endif
2955
2956 # if 0
2957 #if EV_CHILD_ENABLE
2958 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2959 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2960 #endif
2961 # endif
2962 #endif
2963 }
2964 #endif
2965
2966 #if EV_MULTIPLICITY
2967 struct ev_loop * ecb_cold
2968 #else
2969 int
2970 #endif
2971 ev_default_loop (unsigned int flags) EV_THROW
2972 {
2973 if (!ev_default_loop_ptr)
2974 {
2975 #if EV_MULTIPLICITY
2976 EV_P = ev_default_loop_ptr = &default_loop_struct;
2977 #else
2978 ev_default_loop_ptr = 1;
2979 #endif
2980
2981 loop_init (EV_A_ flags);
2982
2983 if (ev_backend (EV_A))
2984 {
2985 #if EV_CHILD_ENABLE
2986 ev_signal_init (&childev, childcb, SIGCHLD);
2987 ev_set_priority (&childev, EV_MAXPRI);
2988 ev_signal_start (EV_A_ &childev);
2989 ev_unref (EV_A); /* child watcher should not keep loop alive */
2990 #endif
2991 }
2992 else
2993 ev_default_loop_ptr = 0;
2994 }
2995
2996 return ev_default_loop_ptr;
2997 }
2998
2999 void
3000 ev_loop_fork (EV_P) EV_THROW
3001 {
3002 postfork = 1;
3003 }
3004
3005 /*****************************************************************************/
3006
3007 void
3008 ev_invoke (EV_P_ void *w, int revents)
3009 {
3010 EV_CB_INVOKE ((W)w, revents);
3011 }
3012
3013 unsigned int
3014 ev_pending_count (EV_P) EV_THROW
3015 {
3016 int pri;
3017 unsigned int count = 0;
3018
3019 for (pri = NUMPRI; pri--; )
3020 count += pendingcnt [pri];
3021
3022 return count;
3023 }
3024
3025 void noinline
3026 ev_invoke_pending (EV_P)
3027 {
3028 pendingpri = NUMPRI;
3029
3030 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3031 {
3032 --pendingpri;
3033
3034 while (pendingcnt [pendingpri])
3035 {
3036 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3037
3038 p->w->pending = 0;
3039 EV_CB_INVOKE (p->w, p->events);
3040 EV_FREQUENT_CHECK;
3041 }
3042 }
3043 }
3044
3045 #if EV_IDLE_ENABLE
3046 /* make idle watchers pending. this handles the "call-idle */
3047 /* only when higher priorities are idle" logic */
3048 inline_size void
3049 idle_reify (EV_P)
3050 {
3051 if (expect_false (idleall))
3052 {
3053 int pri;
3054
3055 for (pri = NUMPRI; pri--; )
3056 {
3057 if (pendingcnt [pri])
3058 break;
3059
3060 if (idlecnt [pri])
3061 {
3062 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3063 break;
3064 }
3065 }
3066 }
3067 }
3068 #endif
3069
3070 /* make timers pending */
3071 inline_size void
3072 timers_reify (EV_P)
3073 {
3074 EV_FREQUENT_CHECK;
3075
3076 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3077 {
3078 do
3079 {
3080 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3081
3082 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3083
3084 /* first reschedule or stop timer */
3085 if (w->repeat)
3086 {
3087 ev_at (w) += w->repeat;
3088 if (ev_at (w) < mn_now)
3089 ev_at (w) = mn_now;
3090
3091 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3092
3093 ANHE_at_cache (timers [HEAP0]);
3094 downheap (timers, timercnt, HEAP0);
3095 }
3096 else
3097 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3098
3099 EV_FREQUENT_CHECK;
3100 feed_reverse (EV_A_ (W)w);
3101 }
3102 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3103
3104 feed_reverse_done (EV_A_ EV_TIMER);
3105 }
3106 }
3107
3108 #if EV_PERIODIC_ENABLE
3109
3110 static void noinline
3111 periodic_recalc (EV_P_ ev_periodic *w)
3112 {
3113 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3114 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3115
3116 /* the above almost always errs on the low side */
3117 while (at <= ev_rt_now)
3118 {
3119 ev_tstamp nat = at + w->interval;
3120
3121 /* when resolution fails us, we use ev_rt_now */
3122 if (expect_false (nat == at))
3123 {
3124 at = ev_rt_now;
3125 break;
3126 }
3127
3128 at = nat;
3129 }
3130
3131 ev_at (w) = at;
3132 }
3133
3134 /* make periodics pending */
3135 inline_size void
3136 periodics_reify (EV_P)
3137 {
3138 EV_FREQUENT_CHECK;
3139
3140 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3141 {
3142 do
3143 {
3144 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3145
3146 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3147
3148 /* first reschedule or stop timer */
3149 if (w->reschedule_cb)
3150 {
3151 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3152
3153 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3154
3155 ANHE_at_cache (periodics [HEAP0]);
3156 downheap (periodics, periodiccnt, HEAP0);
3157 }
3158 else if (w->interval)
3159 {
3160 periodic_recalc (EV_A_ w);
3161 ANHE_at_cache (periodics [HEAP0]);
3162 downheap (periodics, periodiccnt, HEAP0);
3163 }
3164 else
3165 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3166
3167 EV_FREQUENT_CHECK;
3168 feed_reverse (EV_A_ (W)w);
3169 }
3170 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3171
3172 feed_reverse_done (EV_A_ EV_PERIODIC);
3173 }
3174 }
3175
3176 /* simply recalculate all periodics */
3177 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3178 static void noinline ecb_cold
3179 periodics_reschedule (EV_P)
3180 {
3181 int i;
3182
3183 /* adjust periodics after time jump */
3184 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3185 {
3186 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3187
3188 if (w->reschedule_cb)
3189 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3190 else if (w->interval)
3191 periodic_recalc (EV_A_ w);
3192
3193 ANHE_at_cache (periodics [i]);
3194 }
3195
3196 reheap (periodics, periodiccnt);
3197 }
3198 #endif
3199
3200 /* adjust all timers by a given offset */
3201 static void noinline ecb_cold
3202 timers_reschedule (EV_P_ ev_tstamp adjust)
3203 {
3204 int i;
3205
3206 for (i = 0; i < timercnt; ++i)
3207 {
3208 ANHE *he = timers + i + HEAP0;
3209 ANHE_w (*he)->at += adjust;
3210 ANHE_at_cache (*he);
3211 }
3212 }
3213
3214 /* fetch new monotonic and realtime times from the kernel */
3215 /* also detect if there was a timejump, and act accordingly */
3216 inline_speed void
3217 time_update (EV_P_ ev_tstamp max_block)
3218 {
3219 #if EV_USE_MONOTONIC
3220 if (expect_true (have_monotonic))
3221 {
3222 int i;
3223 ev_tstamp odiff = rtmn_diff;
3224
3225 mn_now = get_clock ();
3226
3227 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3228 /* interpolate in the meantime */
3229 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3230 {
3231 ev_rt_now = rtmn_diff + mn_now;
3232 return;
3233 }
3234
3235 now_floor = mn_now;
3236 ev_rt_now = ev_time ();
3237
3238 /* loop a few times, before making important decisions.
3239 * on the choice of "4": one iteration isn't enough,
3240 * in case we get preempted during the calls to
3241 * ev_time and get_clock. a second call is almost guaranteed
3242 * to succeed in that case, though. and looping a few more times
3243 * doesn't hurt either as we only do this on time-jumps or
3244 * in the unlikely event of having been preempted here.
3245 */
3246 for (i = 4; --i; )
3247 {
3248 ev_tstamp diff;
3249 rtmn_diff = ev_rt_now - mn_now;
3250
3251 diff = odiff - rtmn_diff;
3252
3253 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3254 return; /* all is well */
3255
3256 ev_rt_now = ev_time ();
3257 mn_now = get_clock ();
3258 now_floor = mn_now;
3259 }
3260
3261 /* no timer adjustment, as the monotonic clock doesn't jump */
3262 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3263 # if EV_PERIODIC_ENABLE
3264 periodics_reschedule (EV_A);
3265 # endif
3266 }
3267 else
3268 #endif
3269 {
3270 ev_rt_now = ev_time ();
3271
3272 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3273 {
3274 /* adjust timers. this is easy, as the offset is the same for all of them */
3275 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3276 #if EV_PERIODIC_ENABLE
3277 periodics_reschedule (EV_A);
3278 #endif
3279 }
3280
3281 mn_now = ev_rt_now;
3282 }
3283 }
3284
3285 int
3286 ev_run (EV_P_ int flags)
3287 {
3288 #if EV_FEATURE_API
3289 ++loop_depth;
3290 #endif
3291
3292 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3293
3294 loop_done = EVBREAK_CANCEL;
3295
3296 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3297
3298 do
3299 {
3300 #if EV_VERIFY >= 2
3301 ev_verify (EV_A);
3302 #endif
3303
3304 #ifndef _WIN32
3305 if (expect_false (curpid)) /* penalise the forking check even more */
3306 if (expect_false (getpid () != curpid))
3307 {
3308 curpid = getpid ();
3309 postfork = 1;
3310 }
3311 #endif
3312
3313 #if EV_FORK_ENABLE
3314 /* we might have forked, so queue fork handlers */
3315 if (expect_false (postfork))
3316 if (forkcnt)
3317 {
3318 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3319 EV_INVOKE_PENDING;
3320 }
3321 #endif
3322
3323 #if EV_PREPARE_ENABLE
3324 /* queue prepare watchers (and execute them) */
3325 if (expect_false (preparecnt))
3326 {
3327 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3328 EV_INVOKE_PENDING;
3329 }
3330 #endif
3331
3332 if (expect_false (loop_done))
3333 break;
3334
3335 /* we might have forked, so reify kernel state if necessary */
3336 if (expect_false (postfork))
3337 loop_fork (EV_A);
3338
3339 /* update fd-related kernel structures */
3340 fd_reify (EV_A);
3341
3342 /* calculate blocking time */
3343 {
3344 ev_tstamp waittime = 0.;
3345 ev_tstamp sleeptime = 0.;
3346
3347 /* remember old timestamp for io_blocktime calculation */
3348 ev_tstamp prev_mn_now = mn_now;
3349
3350 /* update time to cancel out callback processing overhead */
3351 time_update (EV_A_ 1e100);
3352
3353 /* from now on, we want a pipe-wake-up */
3354 pipe_write_wanted = 1;
3355
3356 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3357
3358 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3359 {
3360 waittime = MAX_BLOCKTIME;
3361
3362 if (timercnt)
3363 {
3364 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3365 if (waittime > to) waittime = to;
3366 }
3367
3368 #if EV_PERIODIC_ENABLE
3369 if (periodiccnt)
3370 {
3371 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3372 if (waittime > to) waittime = to;
3373 }
3374 #endif
3375
3376 /* don't let timeouts decrease the waittime below timeout_blocktime */
3377 if (expect_false (waittime < timeout_blocktime))
3378 waittime = timeout_blocktime;
3379
3380 /* at this point, we NEED to wait, so we have to ensure */
3381 /* to pass a minimum nonzero value to the backend */
3382 if (expect_false (waittime < backend_mintime))
3383 waittime = backend_mintime;
3384
3385 /* extra check because io_blocktime is commonly 0 */
3386 if (expect_false (io_blocktime))
3387 {
3388 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3389
3390 if (sleeptime > waittime - backend_mintime)
3391 sleeptime = waittime - backend_mintime;
3392
3393 if (expect_true (sleeptime > 0.))
3394 {
3395 ev_sleep (sleeptime);
3396 waittime -= sleeptime;
3397 }
3398 }
3399 }
3400
3401 #if EV_FEATURE_API
3402 ++loop_count;
3403 #endif
3404 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3405 backend_poll (EV_A_ waittime);
3406 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3407
3408 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3409
3410 ECB_MEMORY_FENCE_ACQUIRE;
3411 if (pipe_write_skipped)
3412 {
3413 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3414 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3415 }
3416
3417
3418 /* update ev_rt_now, do magic */
3419 time_update (EV_A_ waittime + sleeptime);
3420 }
3421
3422 /* queue pending timers and reschedule them */
3423 timers_reify (EV_A); /* relative timers called last */
3424 #if EV_PERIODIC_ENABLE
3425 periodics_reify (EV_A); /* absolute timers called first */
3426 #endif
3427
3428 #if EV_IDLE_ENABLE
3429 /* queue idle watchers unless other events are pending */
3430 idle_reify (EV_A);
3431 #endif
3432
3433 #if EV_CHECK_ENABLE
3434 /* queue check watchers, to be executed first */
3435 if (expect_false (checkcnt))
3436 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3437 #endif
3438
3439 EV_INVOKE_PENDING;
3440 }
3441 while (expect_true (
3442 activecnt
3443 && !loop_done
3444 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3445 ));
3446
3447 if (loop_done == EVBREAK_ONE)
3448 loop_done = EVBREAK_CANCEL;
3449
3450 #if EV_FEATURE_API
3451 --loop_depth;
3452 #endif
3453
3454 return activecnt;
3455 }
3456
3457 void
3458 ev_break (EV_P_ int how) EV_THROW
3459 {
3460 loop_done = how;
3461 }
3462
3463 void
3464 ev_ref (EV_P) EV_THROW
3465 {
3466 ++activecnt;
3467 }
3468
3469 void
3470 ev_unref (EV_P) EV_THROW
3471 {
3472 --activecnt;
3473 }
3474
3475 void
3476 ev_now_update (EV_P) EV_THROW
3477 {
3478 time_update (EV_A_ 1e100);
3479 }
3480
3481 void
3482 ev_suspend (EV_P) EV_THROW
3483 {
3484 ev_now_update (EV_A);
3485 }
3486
3487 void
3488 ev_resume (EV_P) EV_THROW
3489 {
3490 ev_tstamp mn_prev = mn_now;
3491
3492 ev_now_update (EV_A);
3493 timers_reschedule (EV_A_ mn_now - mn_prev);
3494 #if EV_PERIODIC_ENABLE
3495 /* TODO: really do this? */
3496 periodics_reschedule (EV_A);
3497 #endif
3498 }
3499
3500 /*****************************************************************************/
3501 /* singly-linked list management, used when the expected list length is short */
3502
3503 inline_size void
3504 wlist_add (WL *head, WL elem)
3505 {
3506 elem->next = *head;
3507 *head = elem;
3508 }
3509
3510 inline_size void
3511 wlist_del (WL *head, WL elem)
3512 {
3513 while (*head)
3514 {
3515 if (expect_true (*head == elem))
3516 {
3517 *head = elem->next;
3518 break;
3519 }
3520
3521 head = &(*head)->next;
3522 }
3523 }
3524
3525 /* internal, faster, version of ev_clear_pending */
3526 inline_speed void
3527 clear_pending (EV_P_ W w)
3528 {
3529 if (w->pending)
3530 {
3531 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3532 w->pending = 0;
3533 }
3534 }
3535
3536 int
3537 ev_clear_pending (EV_P_ void *w) EV_THROW
3538 {
3539 W w_ = (W)w;
3540 int pending = w_->pending;
3541
3542 if (expect_true (pending))
3543 {
3544 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3545 p->w = (W)&pending_w;
3546 w_->pending = 0;
3547 return p->events;
3548 }
3549 else
3550 return 0;
3551 }
3552
3553 inline_size void
3554 pri_adjust (EV_P_ W w)
3555 {
3556 int pri = ev_priority (w);
3557 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3558 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3559 ev_set_priority (w, pri);
3560 }
3561
3562 inline_speed void
3563 ev_start (EV_P_ W w, int active)
3564 {
3565 pri_adjust (EV_A_ w);
3566 w->active = active;
3567 ev_ref (EV_A);
3568 }
3569
3570 inline_size void
3571 ev_stop (EV_P_ W w)
3572 {
3573 ev_unref (EV_A);
3574 w->active = 0;
3575 }
3576
3577 /*****************************************************************************/
3578
3579 void noinline
3580 ev_io_start (EV_P_ ev_io *w) EV_THROW
3581 {
3582 int fd = w->fd;
3583
3584 if (expect_false (ev_is_active (w)))
3585 return;
3586
3587 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3588 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3589
3590 EV_FREQUENT_CHECK;
3591
3592 ev_start (EV_A_ (W)w, 1);
3593 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3594 wlist_add (&anfds[fd].head, (WL)w);
3595
3596 /* common bug, apparently */
3597 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3598
3599 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3600 w->events &= ~EV__IOFDSET;
3601
3602 EV_FREQUENT_CHECK;
3603 }
3604
3605 void noinline
3606 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3607 {
3608 clear_pending (EV_A_ (W)w);
3609 if (expect_false (!ev_is_active (w)))
3610 return;
3611
3612 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3613
3614 EV_FREQUENT_CHECK;
3615
3616 wlist_del (&anfds[w->fd].head, (WL)w);
3617 ev_stop (EV_A_ (W)w);
3618
3619 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3620
3621 EV_FREQUENT_CHECK;
3622 }
3623
3624 void noinline
3625 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3626 {
3627 if (expect_false (ev_is_active (w)))
3628 return;
3629
3630 ev_at (w) += mn_now;
3631
3632 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3633
3634 EV_FREQUENT_CHECK;
3635
3636 ++timercnt;
3637 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3638 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3639 ANHE_w (timers [ev_active (w)]) = (WT)w;
3640 ANHE_at_cache (timers [ev_active (w)]);
3641 upheap (timers, ev_active (w));
3642
3643 EV_FREQUENT_CHECK;
3644
3645 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3646 }
3647
3648 void noinline
3649 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3650 {
3651 clear_pending (EV_A_ (W)w);
3652 if (expect_false (!ev_is_active (w)))
3653 return;
3654
3655 EV_FREQUENT_CHECK;
3656
3657 {
3658 int active = ev_active (w);
3659
3660 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3661
3662 --timercnt;
3663
3664 if (expect_true (active < timercnt + HEAP0))
3665 {
3666 timers [active] = timers [timercnt + HEAP0];
3667 adjustheap (timers, timercnt, active);
3668 }
3669 }
3670
3671 ev_at (w) -= mn_now;
3672
3673 ev_stop (EV_A_ (W)w);
3674
3675 EV_FREQUENT_CHECK;
3676 }
3677
3678 void noinline
3679 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3680 {
3681 EV_FREQUENT_CHECK;
3682
3683 clear_pending (EV_A_ (W)w);
3684
3685 if (ev_is_active (w))
3686 {
3687 if (w->repeat)
3688 {
3689 ev_at (w) = mn_now + w->repeat;
3690 ANHE_at_cache (timers [ev_active (w)]);
3691 adjustheap (timers, timercnt, ev_active (w));
3692 }
3693 else
3694 ev_timer_stop (EV_A_ w);
3695 }
3696 else if (w->repeat)
3697 {
3698 ev_at (w) = w->repeat;
3699 ev_timer_start (EV_A_ w);
3700 }
3701
3702 EV_FREQUENT_CHECK;
3703 }
3704
3705 ev_tstamp
3706 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3707 {
3708 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3709 }
3710
3711 #if EV_PERIODIC_ENABLE
3712 void noinline
3713 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3714 {
3715 if (expect_false (ev_is_active (w)))
3716 return;
3717
3718 if (w->reschedule_cb)
3719 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3720 else if (w->interval)
3721 {
3722 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3723 periodic_recalc (EV_A_ w);
3724 }
3725 else
3726 ev_at (w) = w->offset;
3727
3728 EV_FREQUENT_CHECK;
3729
3730 ++periodiccnt;
3731 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3732 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3733 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3734 ANHE_at_cache (periodics [ev_active (w)]);
3735 upheap (periodics, ev_active (w));
3736
3737 EV_FREQUENT_CHECK;
3738
3739 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3740 }
3741
3742 void noinline
3743 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3744 {
3745 clear_pending (EV_A_ (W)w);
3746 if (expect_false (!ev_is_active (w)))
3747 return;
3748
3749 EV_FREQUENT_CHECK;
3750
3751 {
3752 int active = ev_active (w);
3753
3754 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3755
3756 --periodiccnt;
3757
3758 if (expect_true (active < periodiccnt + HEAP0))
3759 {
3760 periodics [active] = periodics [periodiccnt + HEAP0];
3761 adjustheap (periodics, periodiccnt, active);
3762 }
3763 }
3764
3765 ev_stop (EV_A_ (W)w);
3766
3767 EV_FREQUENT_CHECK;
3768 }
3769
3770 void noinline
3771 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3772 {
3773 /* TODO: use adjustheap and recalculation */
3774 ev_periodic_stop (EV_A_ w);
3775 ev_periodic_start (EV_A_ w);
3776 }
3777 #endif
3778
3779 #ifndef SA_RESTART
3780 # define SA_RESTART 0
3781 #endif
3782
3783 #if EV_SIGNAL_ENABLE
3784
3785 void noinline
3786 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3787 {
3788 if (expect_false (ev_is_active (w)))
3789 return;
3790
3791 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3792
3793 #if EV_MULTIPLICITY
3794 assert (("libev: a signal must not be attached to two different loops",
3795 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3796
3797 signals [w->signum - 1].loop = EV_A;
3798 ECB_MEMORY_FENCE_RELEASE;
3799 #endif
3800
3801 EV_FREQUENT_CHECK;
3802
3803 #if EV_USE_SIGNALFD
3804 if (sigfd == -2)
3805 {
3806 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3807 if (sigfd < 0 && errno == EINVAL)
3808 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3809
3810 if (sigfd >= 0)
3811 {
3812 fd_intern (sigfd); /* doing it twice will not hurt */
3813
3814 sigemptyset (&sigfd_set);
3815
3816 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3817 ev_set_priority (&sigfd_w, EV_MAXPRI);
3818 ev_io_start (EV_A_ &sigfd_w);
3819 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3820 }
3821 }
3822
3823 if (sigfd >= 0)
3824 {
3825 /* TODO: check .head */
3826 sigaddset (&sigfd_set, w->signum);
3827 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3828
3829 signalfd (sigfd, &sigfd_set, 0);
3830 }
3831 #endif
3832
3833 ev_start (EV_A_ (W)w, 1);
3834 wlist_add (&signals [w->signum - 1].head, (WL)w);
3835
3836 if (!((WL)w)->next)
3837 # if EV_USE_SIGNALFD
3838 if (sigfd < 0) /*TODO*/
3839 # endif
3840 {
3841 # ifdef _WIN32
3842 evpipe_init (EV_A);
3843
3844 signal (w->signum, ev_sighandler);
3845 # else
3846 struct sigaction sa;
3847
3848 evpipe_init (EV_A);
3849
3850 sa.sa_handler = ev_sighandler;
3851 sigfillset (&sa.sa_mask);
3852 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3853 sigaction (w->signum, &sa, 0);
3854
3855 if (origflags & EVFLAG_NOSIGMASK)
3856 {
3857 sigemptyset (&sa.sa_mask);
3858 sigaddset (&sa.sa_mask, w->signum);
3859 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3860 }
3861 #endif
3862 }
3863
3864 EV_FREQUENT_CHECK;
3865 }
3866
3867 void noinline
3868 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3869 {
3870 clear_pending (EV_A_ (W)w);
3871 if (expect_false (!ev_is_active (w)))
3872 return;
3873
3874 EV_FREQUENT_CHECK;
3875
3876 wlist_del (&signals [w->signum - 1].head, (WL)w);
3877 ev_stop (EV_A_ (W)w);
3878
3879 if (!signals [w->signum - 1].head)
3880 {
3881 #if EV_MULTIPLICITY
3882 signals [w->signum - 1].loop = 0; /* unattach from signal */
3883 #endif
3884 #if EV_USE_SIGNALFD
3885 if (sigfd >= 0)
3886 {
3887 sigset_t ss;
3888
3889 sigemptyset (&ss);
3890 sigaddset (&ss, w->signum);
3891 sigdelset (&sigfd_set, w->signum);
3892
3893 signalfd (sigfd, &sigfd_set, 0);
3894 sigprocmask (SIG_UNBLOCK, &ss, 0);
3895 }
3896 else
3897 #endif
3898 signal (w->signum, SIG_DFL);
3899 }
3900
3901 EV_FREQUENT_CHECK;
3902 }
3903
3904 #endif
3905
3906 #if EV_CHILD_ENABLE
3907
3908 void
3909 ev_child_start (EV_P_ ev_child *w) EV_THROW
3910 {
3911 #if EV_MULTIPLICITY
3912 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3913 #endif
3914 if (expect_false (ev_is_active (w)))
3915 return;
3916
3917 EV_FREQUENT_CHECK;
3918
3919 ev_start (EV_A_ (W)w, 1);
3920 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3921
3922 EV_FREQUENT_CHECK;
3923 }
3924
3925 void
3926 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3927 {
3928 clear_pending (EV_A_ (W)w);
3929 if (expect_false (!ev_is_active (w)))
3930 return;
3931
3932 EV_FREQUENT_CHECK;
3933
3934 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3935 ev_stop (EV_A_ (W)w);
3936
3937 EV_FREQUENT_CHECK;
3938 }
3939
3940 #endif
3941
3942 #if EV_STAT_ENABLE
3943
3944 # ifdef _WIN32
3945 # undef lstat
3946 # define lstat(a,b) _stati64 (a,b)
3947 # endif
3948
3949 #define DEF_STAT_INTERVAL 5.0074891
3950 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3951 #define MIN_STAT_INTERVAL 0.1074891
3952
3953 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3954
3955 #if EV_USE_INOTIFY
3956
3957 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3958 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3959
3960 static void noinline
3961 infy_add (EV_P_ ev_stat *w)
3962 {
3963 w->wd = inotify_add_watch (fs_fd, w->path,
3964 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3965 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3966 | IN_DONT_FOLLOW | IN_MASK_ADD);
3967
3968 if (w->wd >= 0)
3969 {
3970 struct statfs sfs;
3971
3972 /* now local changes will be tracked by inotify, but remote changes won't */
3973 /* unless the filesystem is known to be local, we therefore still poll */
3974 /* also do poll on <2.6.25, but with normal frequency */
3975
3976 if (!fs_2625)
3977 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3978 else if (!statfs (w->path, &sfs)
3979 && (sfs.f_type == 0x1373 /* devfs */
3980 || sfs.f_type == 0x4006 /* fat */
3981 || sfs.f_type == 0x4d44 /* msdos */
3982 || sfs.f_type == 0xEF53 /* ext2/3 */
3983 || sfs.f_type == 0x72b6 /* jffs2 */
3984 || sfs.f_type == 0x858458f6 /* ramfs */
3985 || sfs.f_type == 0x5346544e /* ntfs */
3986 || sfs.f_type == 0x3153464a /* jfs */
3987 || sfs.f_type == 0x9123683e /* btrfs */
3988 || sfs.f_type == 0x52654973 /* reiser3 */
3989 || sfs.f_type == 0x01021994 /* tmpfs */
3990 || sfs.f_type == 0x58465342 /* xfs */))
3991 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3992 else
3993 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3994 }
3995 else
3996 {
3997 /* can't use inotify, continue to stat */
3998 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3999
4000 /* if path is not there, monitor some parent directory for speedup hints */
4001 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4002 /* but an efficiency issue only */
4003 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4004 {
4005 char path [4096];
4006 strcpy (path, w->path);
4007
4008 do
4009 {
4010 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4011 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4012
4013 char *pend = strrchr (path, '/');
4014
4015 if (!pend || pend == path)
4016 break;
4017
4018 *pend = 0;
4019 w->wd = inotify_add_watch (fs_fd, path, mask);
4020 }
4021 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4022 }
4023 }
4024
4025 if (w->wd >= 0)
4026 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4027
4028 /* now re-arm timer, if required */
4029 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4030 ev_timer_again (EV_A_ &w->timer);
4031 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4032 }
4033
4034 static void noinline
4035 infy_del (EV_P_ ev_stat *w)
4036 {
4037 int slot;
4038 int wd = w->wd;
4039
4040 if (wd < 0)
4041 return;
4042
4043 w->wd = -2;
4044 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4045 wlist_del (&fs_hash [slot].head, (WL)w);
4046
4047 /* remove this watcher, if others are watching it, they will rearm */
4048 inotify_rm_watch (fs_fd, wd);
4049 }
4050
4051 static void noinline
4052 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4053 {
4054 if (slot < 0)
4055 /* overflow, need to check for all hash slots */
4056 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4057 infy_wd (EV_A_ slot, wd, ev);
4058 else
4059 {
4060 WL w_;
4061
4062 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4063 {
4064 ev_stat *w = (ev_stat *)w_;
4065 w_ = w_->next; /* lets us remove this watcher and all before it */
4066
4067 if (w->wd == wd || wd == -1)
4068 {
4069 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4070 {
4071 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4072 w->wd = -1;
4073 infy_add (EV_A_ w); /* re-add, no matter what */
4074 }
4075
4076 stat_timer_cb (EV_A_ &w->timer, 0);
4077 }
4078 }
4079 }
4080 }
4081
4082 static void
4083 infy_cb (EV_P_ ev_io *w, int revents)
4084 {
4085 char buf [EV_INOTIFY_BUFSIZE];
4086 int ofs;
4087 int len = read (fs_fd, buf, sizeof (buf));
4088
4089 for (ofs = 0; ofs < len; )
4090 {
4091 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4092 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4093 ofs += sizeof (struct inotify_event) + ev->len;
4094 }
4095 }
4096
4097 inline_size void ecb_cold
4098 ev_check_2625 (EV_P)
4099 {
4100 /* kernels < 2.6.25 are borked
4101 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4102 */
4103 if (ev_linux_version () < 0x020619)
4104 return;
4105
4106 fs_2625 = 1;
4107 }
4108
4109 inline_size int
4110 infy_newfd (void)
4111 {
4112 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4113 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4114 if (fd >= 0)
4115 return fd;
4116 #endif
4117 return inotify_init ();
4118 }
4119
4120 inline_size void
4121 infy_init (EV_P)
4122 {
4123 if (fs_fd != -2)
4124 return;
4125
4126 fs_fd = -1;
4127
4128 ev_check_2625 (EV_A);
4129
4130 fs_fd = infy_newfd ();
4131
4132 if (fs_fd >= 0)
4133 {
4134 fd_intern (fs_fd);
4135 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4136 ev_set_priority (&fs_w, EV_MAXPRI);
4137 ev_io_start (EV_A_ &fs_w);
4138 ev_unref (EV_A);
4139 }
4140 }
4141
4142 inline_size void
4143 infy_fork (EV_P)
4144 {
4145 int slot;
4146
4147 if (fs_fd < 0)
4148 return;
4149
4150 ev_ref (EV_A);
4151 ev_io_stop (EV_A_ &fs_w);
4152 close (fs_fd);
4153 fs_fd = infy_newfd ();
4154
4155 if (fs_fd >= 0)
4156 {
4157 fd_intern (fs_fd);
4158 ev_io_set (&fs_w, fs_fd, EV_READ);
4159 ev_io_start (EV_A_ &fs_w);
4160 ev_unref (EV_A);
4161 }
4162
4163 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4164 {
4165 WL w_ = fs_hash [slot].head;
4166 fs_hash [slot].head = 0;
4167
4168 while (w_)
4169 {
4170 ev_stat *w = (ev_stat *)w_;
4171 w_ = w_->next; /* lets us add this watcher */
4172
4173 w->wd = -1;
4174
4175 if (fs_fd >= 0)
4176 infy_add (EV_A_ w); /* re-add, no matter what */
4177 else
4178 {
4179 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4180 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4181 ev_timer_again (EV_A_ &w->timer);
4182 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4183 }
4184 }
4185 }
4186 }
4187
4188 #endif
4189
4190 #ifdef _WIN32
4191 # define EV_LSTAT(p,b) _stati64 (p, b)
4192 #else
4193 # define EV_LSTAT(p,b) lstat (p, b)
4194 #endif
4195
4196 void
4197 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4198 {
4199 if (lstat (w->path, &w->attr) < 0)
4200 w->attr.st_nlink = 0;
4201 else if (!w->attr.st_nlink)
4202 w->attr.st_nlink = 1;
4203 }
4204
4205 static void noinline
4206 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4207 {
4208 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4209
4210 ev_statdata prev = w->attr;
4211 ev_stat_stat (EV_A_ w);
4212
4213 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4214 if (
4215 prev.st_dev != w->attr.st_dev
4216 || prev.st_ino != w->attr.st_ino
4217 || prev.st_mode != w->attr.st_mode
4218 || prev.st_nlink != w->attr.st_nlink
4219 || prev.st_uid != w->attr.st_uid
4220 || prev.st_gid != w->attr.st_gid
4221 || prev.st_rdev != w->attr.st_rdev
4222 || prev.st_size != w->attr.st_size
4223 || prev.st_atime != w->attr.st_atime
4224 || prev.st_mtime != w->attr.st_mtime
4225 || prev.st_ctime != w->attr.st_ctime
4226 ) {
4227 /* we only update w->prev on actual differences */
4228 /* in case we test more often than invoke the callback, */
4229 /* to ensure that prev is always different to attr */
4230 w->prev = prev;
4231
4232 #if EV_USE_INOTIFY
4233 if (fs_fd >= 0)
4234 {
4235 infy_del (EV_A_ w);
4236 infy_add (EV_A_ w);
4237 ev_stat_stat (EV_A_ w); /* avoid race... */
4238 }
4239 #endif
4240
4241 ev_feed_event (EV_A_ w, EV_STAT);
4242 }
4243 }
4244
4245 void
4246 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4247 {
4248 if (expect_false (ev_is_active (w)))
4249 return;
4250
4251 ev_stat_stat (EV_A_ w);
4252
4253 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4254 w->interval = MIN_STAT_INTERVAL;
4255
4256 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4257 ev_set_priority (&w->timer, ev_priority (w));
4258
4259 #if EV_USE_INOTIFY
4260 infy_init (EV_A);
4261
4262 if (fs_fd >= 0)
4263 infy_add (EV_A_ w);
4264 else
4265 #endif
4266 {
4267 ev_timer_again (EV_A_ &w->timer);
4268 ev_unref (EV_A);
4269 }
4270
4271 ev_start (EV_A_ (W)w, 1);
4272
4273 EV_FREQUENT_CHECK;
4274 }
4275
4276 void
4277 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4278 {
4279 clear_pending (EV_A_ (W)w);
4280 if (expect_false (!ev_is_active (w)))
4281 return;
4282
4283 EV_FREQUENT_CHECK;
4284
4285 #if EV_USE_INOTIFY
4286 infy_del (EV_A_ w);
4287 #endif
4288
4289 if (ev_is_active (&w->timer))
4290 {
4291 ev_ref (EV_A);
4292 ev_timer_stop (EV_A_ &w->timer);
4293 }
4294
4295 ev_stop (EV_A_ (W)w);
4296
4297 EV_FREQUENT_CHECK;
4298 }
4299 #endif
4300
4301 #if EV_IDLE_ENABLE
4302 void
4303 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4304 {
4305 if (expect_false (ev_is_active (w)))
4306 return;
4307
4308 pri_adjust (EV_A_ (W)w);
4309
4310 EV_FREQUENT_CHECK;
4311
4312 {
4313 int active = ++idlecnt [ABSPRI (w)];
4314
4315 ++idleall;
4316 ev_start (EV_A_ (W)w, active);
4317
4318 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4319 idles [ABSPRI (w)][active - 1] = w;
4320 }
4321
4322 EV_FREQUENT_CHECK;
4323 }
4324
4325 void
4326 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4327 {
4328 clear_pending (EV_A_ (W)w);
4329 if (expect_false (!ev_is_active (w)))
4330 return;
4331
4332 EV_FREQUENT_CHECK;
4333
4334 {
4335 int active = ev_active (w);
4336
4337 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4338 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4339
4340 ev_stop (EV_A_ (W)w);
4341 --idleall;
4342 }
4343
4344 EV_FREQUENT_CHECK;
4345 }
4346 #endif
4347
4348 #if EV_PREPARE_ENABLE
4349 void
4350 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4351 {
4352 if (expect_false (ev_is_active (w)))
4353 return;
4354
4355 EV_FREQUENT_CHECK;
4356
4357 ev_start (EV_A_ (W)w, ++preparecnt);
4358 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4359 prepares [preparecnt - 1] = w;
4360
4361 EV_FREQUENT_CHECK;
4362 }
4363
4364 void
4365 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4366 {
4367 clear_pending (EV_A_ (W)w);
4368 if (expect_false (!ev_is_active (w)))
4369 return;
4370
4371 EV_FREQUENT_CHECK;
4372
4373 {
4374 int active = ev_active (w);
4375
4376 prepares [active - 1] = prepares [--preparecnt];
4377 ev_active (prepares [active - 1]) = active;
4378 }
4379
4380 ev_stop (EV_A_ (W)w);
4381
4382 EV_FREQUENT_CHECK;
4383 }
4384 #endif
4385
4386 #if EV_CHECK_ENABLE
4387 void
4388 ev_check_start (EV_P_ ev_check *w) EV_THROW
4389 {
4390 if (expect_false (ev_is_active (w)))
4391 return;
4392
4393 EV_FREQUENT_CHECK;
4394
4395 ev_start (EV_A_ (W)w, ++checkcnt);
4396 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4397 checks [checkcnt - 1] = w;
4398
4399 EV_FREQUENT_CHECK;
4400 }
4401
4402 void
4403 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4404 {
4405 clear_pending (EV_A_ (W)w);
4406 if (expect_false (!ev_is_active (w)))
4407 return;
4408
4409 EV_FREQUENT_CHECK;
4410
4411 {
4412 int active = ev_active (w);
4413
4414 checks [active - 1] = checks [--checkcnt];
4415 ev_active (checks [active - 1]) = active;
4416 }
4417
4418 ev_stop (EV_A_ (W)w);
4419
4420 EV_FREQUENT_CHECK;
4421 }
4422 #endif
4423
4424 #if EV_EMBED_ENABLE
4425 void noinline
4426 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4427 {
4428 ev_run (w->other, EVRUN_NOWAIT);
4429 }
4430
4431 static void
4432 embed_io_cb (EV_P_ ev_io *io, int revents)
4433 {
4434 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4435
4436 if (ev_cb (w))
4437 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4438 else
4439 ev_run (w->other, EVRUN_NOWAIT);
4440 }
4441
4442 static void
4443 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4444 {
4445 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4446
4447 {
4448 EV_P = w->other;
4449
4450 while (fdchangecnt)
4451 {
4452 fd_reify (EV_A);
4453 ev_run (EV_A_ EVRUN_NOWAIT);
4454 }
4455 }
4456 }
4457
4458 static void
4459 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4460 {
4461 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4462
4463 ev_embed_stop (EV_A_ w);
4464
4465 {
4466 EV_P = w->other;
4467
4468 ev_loop_fork (EV_A);
4469 ev_run (EV_A_ EVRUN_NOWAIT);
4470 }
4471
4472 ev_embed_start (EV_A_ w);
4473 }
4474
4475 #if 0
4476 static void
4477 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4478 {
4479 ev_idle_stop (EV_A_ idle);
4480 }
4481 #endif
4482
4483 void
4484 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4485 {
4486 if (expect_false (ev_is_active (w)))
4487 return;
4488
4489 {
4490 EV_P = w->other;
4491 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4492 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4493 }
4494
4495 EV_FREQUENT_CHECK;
4496
4497 ev_set_priority (&w->io, ev_priority (w));
4498 ev_io_start (EV_A_ &w->io);
4499
4500 ev_prepare_init (&w->prepare, embed_prepare_cb);
4501 ev_set_priority (&w->prepare, EV_MINPRI);
4502 ev_prepare_start (EV_A_ &w->prepare);
4503
4504 ev_fork_init (&w->fork, embed_fork_cb);
4505 ev_fork_start (EV_A_ &w->fork);
4506
4507 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4508
4509 ev_start (EV_A_ (W)w, 1);
4510
4511 EV_FREQUENT_CHECK;
4512 }
4513
4514 void
4515 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4516 {
4517 clear_pending (EV_A_ (W)w);
4518 if (expect_false (!ev_is_active (w)))
4519 return;
4520
4521 EV_FREQUENT_CHECK;
4522
4523 ev_io_stop (EV_A_ &w->io);
4524 ev_prepare_stop (EV_A_ &w->prepare);
4525 ev_fork_stop (EV_A_ &w->fork);
4526
4527 ev_stop (EV_A_ (W)w);
4528
4529 EV_FREQUENT_CHECK;
4530 }
4531 #endif
4532
4533 #if EV_FORK_ENABLE
4534 void
4535 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4536 {
4537 if (expect_false (ev_is_active (w)))
4538 return;
4539
4540 EV_FREQUENT_CHECK;
4541
4542 ev_start (EV_A_ (W)w, ++forkcnt);
4543 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4544 forks [forkcnt - 1] = w;
4545
4546 EV_FREQUENT_CHECK;
4547 }
4548
4549 void
4550 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4551 {
4552 clear_pending (EV_A_ (W)w);
4553 if (expect_false (!ev_is_active (w)))
4554 return;
4555
4556 EV_FREQUENT_CHECK;
4557
4558 {
4559 int active = ev_active (w);
4560
4561 forks [active - 1] = forks [--forkcnt];
4562 ev_active (forks [active - 1]) = active;
4563 }
4564
4565 ev_stop (EV_A_ (W)w);
4566
4567 EV_FREQUENT_CHECK;
4568 }
4569 #endif
4570
4571 #if EV_CLEANUP_ENABLE
4572 void
4573 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4574 {
4575 if (expect_false (ev_is_active (w)))
4576 return;
4577
4578 EV_FREQUENT_CHECK;
4579
4580 ev_start (EV_A_ (W)w, ++cleanupcnt);
4581 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4582 cleanups [cleanupcnt - 1] = w;
4583
4584 /* cleanup watchers should never keep a refcount on the loop */
4585 ev_unref (EV_A);
4586 EV_FREQUENT_CHECK;
4587 }
4588
4589 void
4590 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4591 {
4592 clear_pending (EV_A_ (W)w);
4593 if (expect_false (!ev_is_active (w)))
4594 return;
4595
4596 EV_FREQUENT_CHECK;
4597 ev_ref (EV_A);
4598
4599 {
4600 int active = ev_active (w);
4601
4602 cleanups [active - 1] = cleanups [--cleanupcnt];
4603 ev_active (cleanups [active - 1]) = active;
4604 }
4605
4606 ev_stop (EV_A_ (W)w);
4607
4608 EV_FREQUENT_CHECK;
4609 }
4610 #endif
4611
4612 #if EV_ASYNC_ENABLE
4613 void
4614 ev_async_start (EV_P_ ev_async *w) EV_THROW
4615 {
4616 if (expect_false (ev_is_active (w)))
4617 return;
4618
4619 w->sent = 0;
4620
4621 evpipe_init (EV_A);
4622
4623 EV_FREQUENT_CHECK;
4624
4625 ev_start (EV_A_ (W)w, ++asynccnt);
4626 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4627 asyncs [asynccnt - 1] = w;
4628
4629 EV_FREQUENT_CHECK;
4630 }
4631
4632 void
4633 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4634 {
4635 clear_pending (EV_A_ (W)w);
4636 if (expect_false (!ev_is_active (w)))
4637 return;
4638
4639 EV_FREQUENT_CHECK;
4640
4641 {
4642 int active = ev_active (w);
4643
4644 asyncs [active - 1] = asyncs [--asynccnt];
4645 ev_active (asyncs [active - 1]) = active;
4646 }
4647
4648 ev_stop (EV_A_ (W)w);
4649
4650 EV_FREQUENT_CHECK;
4651 }
4652
4653 void
4654 ev_async_send (EV_P_ ev_async *w) EV_THROW
4655 {
4656 w->sent = 1;
4657 evpipe_write (EV_A_ &async_pending);
4658 }
4659 #endif
4660
4661 /*****************************************************************************/
4662
4663 struct ev_once
4664 {
4665 ev_io io;
4666 ev_timer to;
4667 void (*cb)(int revents, void *arg);
4668 void *arg;
4669 };
4670
4671 static void
4672 once_cb (EV_P_ struct ev_once *once, int revents)
4673 {
4674 void (*cb)(int revents, void *arg) = once->cb;
4675 void *arg = once->arg;
4676
4677 ev_io_stop (EV_A_ &once->io);
4678 ev_timer_stop (EV_A_ &once->to);
4679 ev_free (once);
4680
4681 cb (revents, arg);
4682 }
4683
4684 static void
4685 once_cb_io (EV_P_ ev_io *w, int revents)
4686 {
4687 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4688
4689 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4690 }
4691
4692 static void
4693 once_cb_to (EV_P_ ev_timer *w, int revents)
4694 {
4695 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4696
4697 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4698 }
4699
4700 void
4701 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4702 {
4703 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4704
4705 if (expect_false (!once))
4706 {
4707 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4708 return;
4709 }
4710
4711 once->cb = cb;
4712 once->arg = arg;
4713
4714 ev_init (&once->io, once_cb_io);
4715 if (fd >= 0)
4716 {
4717 ev_io_set (&once->io, fd, events);
4718 ev_io_start (EV_A_ &once->io);
4719 }
4720
4721 ev_init (&once->to, once_cb_to);
4722 if (timeout >= 0.)
4723 {
4724 ev_timer_set (&once->to, timeout, 0.);
4725 ev_timer_start (EV_A_ &once->to);
4726 }
4727 }
4728
4729 /*****************************************************************************/
4730
4731 #if EV_WALK_ENABLE
4732 void ecb_cold
4733 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4734 {
4735 int i, j;
4736 ev_watcher_list *wl, *wn;
4737
4738 if (types & (EV_IO | EV_EMBED))
4739 for (i = 0; i < anfdmax; ++i)
4740 for (wl = anfds [i].head; wl; )
4741 {
4742 wn = wl->next;
4743
4744 #if EV_EMBED_ENABLE
4745 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4746 {
4747 if (types & EV_EMBED)
4748 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4749 }
4750 else
4751 #endif
4752 #if EV_USE_INOTIFY
4753 if (ev_cb ((ev_io *)wl) == infy_cb)
4754 ;
4755 else
4756 #endif
4757 if ((ev_io *)wl != &pipe_w)
4758 if (types & EV_IO)
4759 cb (EV_A_ EV_IO, wl);
4760
4761 wl = wn;
4762 }
4763
4764 if (types & (EV_TIMER | EV_STAT))
4765 for (i = timercnt + HEAP0; i-- > HEAP0; )
4766 #if EV_STAT_ENABLE
4767 /*TODO: timer is not always active*/
4768 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4769 {
4770 if (types & EV_STAT)
4771 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4772 }
4773 else
4774 #endif
4775 if (types & EV_TIMER)
4776 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4777
4778 #if EV_PERIODIC_ENABLE
4779 if (types & EV_PERIODIC)
4780 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4781 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4782 #endif
4783
4784 #if EV_IDLE_ENABLE
4785 if (types & EV_IDLE)
4786 for (j = NUMPRI; j--; )
4787 for (i = idlecnt [j]; i--; )
4788 cb (EV_A_ EV_IDLE, idles [j][i]);
4789 #endif
4790
4791 #if EV_FORK_ENABLE
4792 if (types & EV_FORK)
4793 for (i = forkcnt; i--; )
4794 if (ev_cb (forks [i]) != embed_fork_cb)
4795 cb (EV_A_ EV_FORK, forks [i]);
4796 #endif
4797
4798 #if EV_ASYNC_ENABLE
4799 if (types & EV_ASYNC)
4800 for (i = asynccnt; i--; )
4801 cb (EV_A_ EV_ASYNC, asyncs [i]);
4802 #endif
4803
4804 #if EV_PREPARE_ENABLE
4805 if (types & EV_PREPARE)
4806 for (i = preparecnt; i--; )
4807 # if EV_EMBED_ENABLE
4808 if (ev_cb (prepares [i]) != embed_prepare_cb)
4809 # endif
4810 cb (EV_A_ EV_PREPARE, prepares [i]);
4811 #endif
4812
4813 #if EV_CHECK_ENABLE
4814 if (types & EV_CHECK)
4815 for (i = checkcnt; i--; )
4816 cb (EV_A_ EV_CHECK, checks [i]);
4817 #endif
4818
4819 #if EV_SIGNAL_ENABLE
4820 if (types & EV_SIGNAL)
4821 for (i = 0; i < EV_NSIG - 1; ++i)
4822 for (wl = signals [i].head; wl; )
4823 {
4824 wn = wl->next;
4825 cb (EV_A_ EV_SIGNAL, wl);
4826 wl = wn;
4827 }
4828 #endif
4829
4830 #if EV_CHILD_ENABLE
4831 if (types & EV_CHILD)
4832 for (i = (EV_PID_HASHSIZE); i--; )
4833 for (wl = childs [i]; wl; )
4834 {
4835 wn = wl->next;
4836 cb (EV_A_ EV_CHILD, wl);
4837 wl = wn;
4838 }
4839 #endif
4840 /* EV_STAT 0x00001000 /* stat data changed */
4841 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4842 }
4843 #endif
4844
4845 #if EV_MULTIPLICITY
4846 #include "ev_wrap.h"
4847 #endif
4848