ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.467
Committed: Fri May 16 15:15:39 2014 UTC (10 years, 2 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.466: +11 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 # define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 #endif
248
249 #ifndef EV_USE_FLOOR
250 # define EV_USE_FLOOR 0
251 #endif
252
253 #ifndef EV_USE_CLOCK_SYSCALL
254 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 # else
257 # define EV_USE_CLOCK_SYSCALL 0
258 # endif
259 #endif
260
261 #ifndef EV_USE_MONOTONIC
262 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263 # define EV_USE_MONOTONIC EV_FEATURE_OS
264 # else
265 # define EV_USE_MONOTONIC 0
266 # endif
267 #endif
268
269 #ifndef EV_USE_REALTIME
270 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
271 #endif
272
273 #ifndef EV_USE_NANOSLEEP
274 # if _POSIX_C_SOURCE >= 199309L
275 # define EV_USE_NANOSLEEP EV_FEATURE_OS
276 # else
277 # define EV_USE_NANOSLEEP 0
278 # endif
279 #endif
280
281 #ifndef EV_USE_SELECT
282 # define EV_USE_SELECT EV_FEATURE_BACKENDS
283 #endif
284
285 #ifndef EV_USE_POLL
286 # ifdef _WIN32
287 # define EV_USE_POLL 0
288 # else
289 # define EV_USE_POLL EV_FEATURE_BACKENDS
290 # endif
291 #endif
292
293 #ifndef EV_USE_EPOLL
294 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
296 # else
297 # define EV_USE_EPOLL 0
298 # endif
299 #endif
300
301 #ifndef EV_USE_KQUEUE
302 # define EV_USE_KQUEUE 0
303 #endif
304
305 #ifndef EV_USE_PORT
306 # define EV_USE_PORT 0
307 #endif
308
309 #ifndef EV_USE_INOTIFY
310 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
311 # define EV_USE_INOTIFY EV_FEATURE_OS
312 # else
313 # define EV_USE_INOTIFY 0
314 # endif
315 #endif
316
317 #ifndef EV_PID_HASHSIZE
318 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
319 #endif
320
321 #ifndef EV_INOTIFY_HASHSIZE
322 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
323 #endif
324
325 #ifndef EV_USE_EVENTFD
326 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
327 # define EV_USE_EVENTFD EV_FEATURE_OS
328 # else
329 # define EV_USE_EVENTFD 0
330 # endif
331 #endif
332
333 #ifndef EV_USE_SIGNALFD
334 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335 # define EV_USE_SIGNALFD EV_FEATURE_OS
336 # else
337 # define EV_USE_SIGNALFD 0
338 # endif
339 #endif
340
341 #if 0 /* debugging */
342 # define EV_VERIFY 3
343 # define EV_USE_4HEAP 1
344 # define EV_HEAP_CACHE_AT 1
345 #endif
346
347 #ifndef EV_VERIFY
348 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
349 #endif
350
351 #ifndef EV_USE_4HEAP
352 # define EV_USE_4HEAP EV_FEATURE_DATA
353 #endif
354
355 #ifndef EV_HEAP_CACHE_AT
356 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357 #endif
358
359 #ifdef ANDROID
360 /* supposedly, android doesn't typedef fd_mask */
361 # undef EV_USE_SELECT
362 # define EV_USE_SELECT 0
363 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364 # undef EV_USE_CLOCK_SYSCALL
365 # define EV_USE_CLOCK_SYSCALL 0
366 #endif
367
368 /* aix's poll.h seems to cause lots of trouble */
369 #ifdef _AIX
370 /* AIX has a completely broken poll.h header */
371 # undef EV_USE_POLL
372 # define EV_USE_POLL 0
373 #endif
374
375 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376 /* which makes programs even slower. might work on other unices, too. */
377 #if EV_USE_CLOCK_SYSCALL
378 # include <sys/syscall.h>
379 # ifdef SYS_clock_gettime
380 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381 # undef EV_USE_MONOTONIC
382 # define EV_USE_MONOTONIC 1
383 # else
384 # undef EV_USE_CLOCK_SYSCALL
385 # define EV_USE_CLOCK_SYSCALL 0
386 # endif
387 #endif
388
389 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
390
391 #ifndef CLOCK_MONOTONIC
392 # undef EV_USE_MONOTONIC
393 # define EV_USE_MONOTONIC 0
394 #endif
395
396 #ifndef CLOCK_REALTIME
397 # undef EV_USE_REALTIME
398 # define EV_USE_REALTIME 0
399 #endif
400
401 #if !EV_STAT_ENABLE
402 # undef EV_USE_INOTIFY
403 # define EV_USE_INOTIFY 0
404 #endif
405
406 #if !EV_USE_NANOSLEEP
407 /* hp-ux has it in sys/time.h, which we unconditionally include above */
408 # if !defined _WIN32 && !defined __hpux
409 # include <sys/select.h>
410 # endif
411 #endif
412
413 #if EV_USE_INOTIFY
414 # include <sys/statfs.h>
415 # include <sys/inotify.h>
416 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417 # ifndef IN_DONT_FOLLOW
418 # undef EV_USE_INOTIFY
419 # define EV_USE_INOTIFY 0
420 # endif
421 #endif
422
423 #if EV_USE_EVENTFD
424 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
425 # include <stdint.h>
426 # ifndef EFD_NONBLOCK
427 # define EFD_NONBLOCK O_NONBLOCK
428 # endif
429 # ifndef EFD_CLOEXEC
430 # ifdef O_CLOEXEC
431 # define EFD_CLOEXEC O_CLOEXEC
432 # else
433 # define EFD_CLOEXEC 02000000
434 # endif
435 # endif
436 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437 #endif
438
439 #if EV_USE_SIGNALFD
440 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441 # include <stdint.h>
442 # ifndef SFD_NONBLOCK
443 # define SFD_NONBLOCK O_NONBLOCK
444 # endif
445 # ifndef SFD_CLOEXEC
446 # ifdef O_CLOEXEC
447 # define SFD_CLOEXEC O_CLOEXEC
448 # else
449 # define SFD_CLOEXEC 02000000
450 # endif
451 # endif
452 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454 struct signalfd_siginfo
455 {
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458 };
459 #endif
460
461 /**/
462
463 #if EV_VERIFY >= 3
464 # define EV_FREQUENT_CHECK ev_verify (EV_A)
465 #else
466 # define EV_FREQUENT_CHECK do { } while (0)
467 #endif
468
469 /*
470 * This is used to work around floating point rounding problems.
471 * This value is good at least till the year 4000.
472 */
473 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
475
476 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
477 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
478
479 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483 /* ECB.H BEGIN */
484 /*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 *
512 * Alternatively, the contents of this file may be used under the terms of
513 * the GNU General Public License ("GPL") version 2 or any later version,
514 * in which case the provisions of the GPL are applicable instead of
515 * the above. If you wish to allow the use of your version of this file
516 * only under the terms of the GPL and not to allow others to use your
517 * version of this file under the BSD license, indicate your decision
518 * by deleting the provisions above and replace them with the notice
519 * and other provisions required by the GPL. If you do not delete the
520 * provisions above, a recipient may use your version of this file under
521 * either the BSD or the GPL.
522 */
523
524 #ifndef ECB_H
525 #define ECB_H
526
527 /* 16 bits major, 16 bits minor */
528 #define ECB_VERSION 0x00010003
529
530 #ifdef _WIN32
531 typedef signed char int8_t;
532 typedef unsigned char uint8_t;
533 typedef signed short int16_t;
534 typedef unsigned short uint16_t;
535 typedef signed int int32_t;
536 typedef unsigned int uint32_t;
537 #if __GNUC__
538 typedef signed long long int64_t;
539 typedef unsigned long long uint64_t;
540 #else /* _MSC_VER || __BORLANDC__ */
541 typedef signed __int64 int64_t;
542 typedef unsigned __int64 uint64_t;
543 #endif
544 #ifdef _WIN64
545 #define ECB_PTRSIZE 8
546 typedef uint64_t uintptr_t;
547 typedef int64_t intptr_t;
548 #else
549 #define ECB_PTRSIZE 4
550 typedef uint32_t uintptr_t;
551 typedef int32_t intptr_t;
552 #endif
553 #else
554 #include <inttypes.h>
555 #if UINTMAX_MAX > 0xffffffffU
556 #define ECB_PTRSIZE 8
557 #else
558 #define ECB_PTRSIZE 4
559 #endif
560 #endif
561
562 /* work around x32 idiocy by defining proper macros */
563 #if __amd64 || __x86_64 || _M_AMD64 || _M_X64
564 #if _ILP32
565 #define ECB_AMD64_X32 1
566 #else
567 #define ECB_AMD64 1
568 #endif
569 #endif
570
571 /* many compilers define _GNUC_ to some versions but then only implement
572 * what their idiot authors think are the "more important" extensions,
573 * causing enormous grief in return for some better fake benchmark numbers.
574 * or so.
575 * we try to detect these and simply assume they are not gcc - if they have
576 * an issue with that they should have done it right in the first place.
577 */
578 #ifndef ECB_GCC_VERSION
579 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
580 #define ECB_GCC_VERSION(major,minor) 0
581 #else
582 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
583 #endif
584 #endif
585
586 #define ECB_CPP (__cplusplus+0)
587 #define ECB_CPP11 (__cplusplus >= 201103L)
588
589 #if ECB_CPP
590 #define ECB_C 0
591 #define ECB_STDC_VERSION 0
592 #else
593 #define ECB_C 1
594 #define ECB_STDC_VERSION __STDC_VERSION__
595 #endif
596
597 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
598 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
599
600 #if ECB_CPP
601 #define ECB_EXTERN_C extern "C"
602 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
603 #define ECB_EXTERN_C_END }
604 #else
605 #define ECB_EXTERN_C extern
606 #define ECB_EXTERN_C_BEG
607 #define ECB_EXTERN_C_END
608 #endif
609
610 /*****************************************************************************/
611
612 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
613 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
614
615 #if ECB_NO_THREADS
616 #define ECB_NO_SMP 1
617 #endif
618
619 #if ECB_NO_SMP
620 #define ECB_MEMORY_FENCE do { } while (0)
621 #endif
622
623 #ifndef ECB_MEMORY_FENCE
624 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
625 #if __i386 || __i386__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
631 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
632 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
633 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
635 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
636 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
637 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
638 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
639 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
641 #elif __aarch64__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
643 #elif (__sparc || __sparc__) && !__sparcv8
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
645 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
646 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
647 #elif defined __s390__ || defined __s390x__
648 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
649 #elif defined __mips__
650 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
651 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
652 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
653 #elif defined __alpha__
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
655 #elif defined __hppa__
656 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
657 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658 #elif defined __ia64__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
660 #elif defined __m68k__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
662 #elif defined __m88k__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
664 #elif defined __sh__
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
666 #endif
667 #endif
668 #endif
669
670 #ifndef ECB_MEMORY_FENCE
671 #if ECB_GCC_VERSION(4,7)
672 /* see comment below (stdatomic.h) about the C11 memory model. */
673 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
674 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
675 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
676
677 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
678 * without risking compile time errors with other compilers. We *could*
679 * define our own ecb_clang_has_feature, but I just can't be bothered to work
680 * around this shit time and again.
681 * #elif defined __clang && __has_feature (cxx_atomic)
682 * // see comment below (stdatomic.h) about the C11 memory model.
683 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
684 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
685 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
686 */
687
688 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
689 #define ECB_MEMORY_FENCE __sync_synchronize ()
690 #elif _MSC_VER >= 1500 /* VC++ 2008 */
691 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
692 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
693 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
694 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
695 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
696 #elif _MSC_VER >= 1400 /* VC++ 2005 */
697 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
698 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
699 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
700 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
701 #elif defined _WIN32
702 #include <WinNT.h>
703 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
704 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
705 #include <mbarrier.h>
706 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
707 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
708 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
709 #elif __xlC__
710 #define ECB_MEMORY_FENCE __sync ()
711 #endif
712 #endif
713
714 #ifndef ECB_MEMORY_FENCE
715 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
716 /* we assume that these memory fences work on all variables/all memory accesses, */
717 /* not just C11 atomics and atomic accesses */
718 #include <stdatomic.h>
719 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
720 /* any fence other than seq_cst, which isn't very efficient for us. */
721 /* Why that is, we don't know - either the C11 memory model is quite useless */
722 /* for most usages, or gcc and clang have a bug */
723 /* I *currently* lean towards the latter, and inefficiently implement */
724 /* all three of ecb's fences as a seq_cst fence */
725 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
726 /* for all __atomic_thread_fence's except seq_cst */
727 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
728 #endif
729 #endif
730
731 #ifndef ECB_MEMORY_FENCE
732 #if !ECB_AVOID_PTHREADS
733 /*
734 * if you get undefined symbol references to pthread_mutex_lock,
735 * or failure to find pthread.h, then you should implement
736 * the ECB_MEMORY_FENCE operations for your cpu/compiler
737 * OR provide pthread.h and link against the posix thread library
738 * of your system.
739 */
740 #include <pthread.h>
741 #define ECB_NEEDS_PTHREADS 1
742 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
743
744 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
745 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
746 #endif
747 #endif
748
749 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
750 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
751 #endif
752
753 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
754 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
755 #endif
756
757 /*****************************************************************************/
758
759 #if __cplusplus
760 #define ecb_inline static inline
761 #elif ECB_GCC_VERSION(2,5)
762 #define ecb_inline static __inline__
763 #elif ECB_C99
764 #define ecb_inline static inline
765 #else
766 #define ecb_inline static
767 #endif
768
769 #if ECB_GCC_VERSION(3,3)
770 #define ecb_restrict __restrict__
771 #elif ECB_C99
772 #define ecb_restrict restrict
773 #else
774 #define ecb_restrict
775 #endif
776
777 typedef int ecb_bool;
778
779 #define ECB_CONCAT_(a, b) a ## b
780 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
781 #define ECB_STRINGIFY_(a) # a
782 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
783
784 #define ecb_function_ ecb_inline
785
786 #if ECB_GCC_VERSION(3,1)
787 #define ecb_attribute(attrlist) __attribute__(attrlist)
788 #define ecb_is_constant(expr) __builtin_constant_p (expr)
789 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
790 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
791 #else
792 #define ecb_attribute(attrlist)
793
794 /* possible C11 impl for integral types
795 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
796 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
797
798 #define ecb_is_constant(expr) 0
799 #define ecb_expect(expr,value) (expr)
800 #define ecb_prefetch(addr,rw,locality)
801 #endif
802
803 /* no emulation for ecb_decltype */
804 #if ECB_GCC_VERSION(4,5)
805 #define ecb_decltype(x) __decltype(x)
806 #elif ECB_GCC_VERSION(3,0)
807 #define ecb_decltype(x) __typeof(x)
808 #endif
809
810 #define ecb_noinline ecb_attribute ((__noinline__))
811 #define ecb_unused ecb_attribute ((__unused__))
812 #define ecb_const ecb_attribute ((__const__))
813 #define ecb_pure ecb_attribute ((__pure__))
814
815 #if ECB_C11
816 #define ecb_noreturn _Noreturn
817 #else
818 #define ecb_noreturn ecb_attribute ((__noreturn__))
819 #endif
820
821 #if ECB_GCC_VERSION(4,3)
822 #define ecb_artificial ecb_attribute ((__artificial__))
823 #define ecb_hot ecb_attribute ((__hot__))
824 #define ecb_cold ecb_attribute ((__cold__))
825 #else
826 #define ecb_artificial
827 #define ecb_hot
828 #define ecb_cold
829 #endif
830
831 /* put around conditional expressions if you are very sure that the */
832 /* expression is mostly true or mostly false. note that these return */
833 /* booleans, not the expression. */
834 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
835 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
836 /* for compatibility to the rest of the world */
837 #define ecb_likely(expr) ecb_expect_true (expr)
838 #define ecb_unlikely(expr) ecb_expect_false (expr)
839
840 /* count trailing zero bits and count # of one bits */
841 #if ECB_GCC_VERSION(3,4)
842 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
843 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
844 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
845 #define ecb_ctz32(x) __builtin_ctz (x)
846 #define ecb_ctz64(x) __builtin_ctzll (x)
847 #define ecb_popcount32(x) __builtin_popcount (x)
848 /* no popcountll */
849 #else
850 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
851 ecb_function_ int
852 ecb_ctz32 (uint32_t x)
853 {
854 int r = 0;
855
856 x &= ~x + 1; /* this isolates the lowest bit */
857
858 #if ECB_branchless_on_i386
859 r += !!(x & 0xaaaaaaaa) << 0;
860 r += !!(x & 0xcccccccc) << 1;
861 r += !!(x & 0xf0f0f0f0) << 2;
862 r += !!(x & 0xff00ff00) << 3;
863 r += !!(x & 0xffff0000) << 4;
864 #else
865 if (x & 0xaaaaaaaa) r += 1;
866 if (x & 0xcccccccc) r += 2;
867 if (x & 0xf0f0f0f0) r += 4;
868 if (x & 0xff00ff00) r += 8;
869 if (x & 0xffff0000) r += 16;
870 #endif
871
872 return r;
873 }
874
875 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
876 ecb_function_ int
877 ecb_ctz64 (uint64_t x)
878 {
879 int shift = x & 0xffffffffU ? 0 : 32;
880 return ecb_ctz32 (x >> shift) + shift;
881 }
882
883 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
884 ecb_function_ int
885 ecb_popcount32 (uint32_t x)
886 {
887 x -= (x >> 1) & 0x55555555;
888 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
889 x = ((x >> 4) + x) & 0x0f0f0f0f;
890 x *= 0x01010101;
891
892 return x >> 24;
893 }
894
895 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
896 ecb_function_ int ecb_ld32 (uint32_t x)
897 {
898 int r = 0;
899
900 if (x >> 16) { x >>= 16; r += 16; }
901 if (x >> 8) { x >>= 8; r += 8; }
902 if (x >> 4) { x >>= 4; r += 4; }
903 if (x >> 2) { x >>= 2; r += 2; }
904 if (x >> 1) { r += 1; }
905
906 return r;
907 }
908
909 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
910 ecb_function_ int ecb_ld64 (uint64_t x)
911 {
912 int r = 0;
913
914 if (x >> 32) { x >>= 32; r += 32; }
915
916 return r + ecb_ld32 (x);
917 }
918 #endif
919
920 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
921 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
922 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
923 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
924
925 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
926 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
927 {
928 return ( (x * 0x0802U & 0x22110U)
929 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
930 }
931
932 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
933 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
934 {
935 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
936 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
937 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
938 x = ( x >> 8 ) | ( x << 8);
939
940 return x;
941 }
942
943 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
944 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
945 {
946 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
947 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
948 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
949 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
950 x = ( x >> 16 ) | ( x << 16);
951
952 return x;
953 }
954
955 /* popcount64 is only available on 64 bit cpus as gcc builtin */
956 /* so for this version we are lazy */
957 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
958 ecb_function_ int
959 ecb_popcount64 (uint64_t x)
960 {
961 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
962 }
963
964 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
965 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
966 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
967 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
968 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
969 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
970 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
971 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
972
973 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
974 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
975 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
976 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
977 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
978 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
979 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
980 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
981
982 #if ECB_GCC_VERSION(4,3)
983 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
984 #define ecb_bswap32(x) __builtin_bswap32 (x)
985 #define ecb_bswap64(x) __builtin_bswap64 (x)
986 #else
987 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
988 ecb_function_ uint16_t
989 ecb_bswap16 (uint16_t x)
990 {
991 return ecb_rotl16 (x, 8);
992 }
993
994 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
995 ecb_function_ uint32_t
996 ecb_bswap32 (uint32_t x)
997 {
998 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
999 }
1000
1001 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
1002 ecb_function_ uint64_t
1003 ecb_bswap64 (uint64_t x)
1004 {
1005 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1006 }
1007 #endif
1008
1009 #if ECB_GCC_VERSION(4,5)
1010 #define ecb_unreachable() __builtin_unreachable ()
1011 #else
1012 /* this seems to work fine, but gcc always emits a warning for it :/ */
1013 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1014 ecb_inline void ecb_unreachable (void) { }
1015 #endif
1016
1017 /* try to tell the compiler that some condition is definitely true */
1018 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1019
1020 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1021 ecb_inline unsigned char
1022 ecb_byteorder_helper (void)
1023 {
1024 /* the union code still generates code under pressure in gcc, */
1025 /* but less than using pointers, and always seems to */
1026 /* successfully return a constant. */
1027 /* the reason why we have this horrible preprocessor mess */
1028 /* is to avoid it in all cases, at least on common architectures */
1029 /* or when using a recent enough gcc version (>= 4.6) */
1030 #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1031 return 0x44;
1032 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1033 return 0x44;
1034 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1035 return 0x11;
1036 #else
1037 union
1038 {
1039 uint32_t i;
1040 uint8_t c;
1041 } u = { 0x11223344 };
1042 return u.c;
1043 #endif
1044 }
1045
1046 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1047 ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1048 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1049 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1050
1051 #if ECB_GCC_VERSION(3,0) || ECB_C99
1052 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1053 #else
1054 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1055 #endif
1056
1057 #if __cplusplus
1058 template<typename T>
1059 static inline T ecb_div_rd (T val, T div)
1060 {
1061 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1062 }
1063 template<typename T>
1064 static inline T ecb_div_ru (T val, T div)
1065 {
1066 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1067 }
1068 #else
1069 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1070 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1071 #endif
1072
1073 #if ecb_cplusplus_does_not_suck
1074 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1075 template<typename T, int N>
1076 static inline int ecb_array_length (const T (&arr)[N])
1077 {
1078 return N;
1079 }
1080 #else
1081 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1082 #endif
1083
1084 /*******************************************************************************/
1085 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1086
1087 /* basically, everything uses "ieee pure-endian" floating point numbers */
1088 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1089 #if 0 \
1090 || __i386 || __i386__ \
1091 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1092 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1093 || defined __s390__ || defined __s390x__ \
1094 || defined __mips__ \
1095 || defined __alpha__ \
1096 || defined __hppa__ \
1097 || defined __ia64__ \
1098 || defined __m68k__ \
1099 || defined __m88k__ \
1100 || defined __sh__ \
1101 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1102 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1103 || defined __aarch64__
1104 #define ECB_STDFP 1
1105 #include <string.h> /* for memcpy */
1106 #else
1107 #define ECB_STDFP 0
1108 #endif
1109
1110 #ifndef ECB_NO_LIBM
1111
1112 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1113
1114 /* only the oldest of old doesn't have this one. solaris. */
1115 #ifdef INFINITY
1116 #define ECB_INFINITY INFINITY
1117 #else
1118 #define ECB_INFINITY HUGE_VAL
1119 #endif
1120
1121 #ifdef NAN
1122 #define ECB_NAN NAN
1123 #else
1124 #define ECB_NAN ECB_INFINITY
1125 #endif
1126
1127 /* converts an ieee half/binary16 to a float */
1128 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1129 ecb_function_ float
1130 ecb_binary16_to_float (uint16_t x)
1131 {
1132 int e = (x >> 10) & 0x1f;
1133 int m = x & 0x3ff;
1134 float r;
1135
1136 if (!e ) r = ldexpf (m , -24);
1137 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1138 else if (m ) r = ECB_NAN;
1139 else r = ECB_INFINITY;
1140
1141 return x & 0x8000 ? -r : r;
1142 }
1143
1144 /* convert a float to ieee single/binary32 */
1145 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1146 ecb_function_ uint32_t
1147 ecb_float_to_binary32 (float x)
1148 {
1149 uint32_t r;
1150
1151 #if ECB_STDFP
1152 memcpy (&r, &x, 4);
1153 #else
1154 /* slow emulation, works for anything but -0 */
1155 uint32_t m;
1156 int e;
1157
1158 if (x == 0e0f ) return 0x00000000U;
1159 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1160 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1161 if (x != x ) return 0x7fbfffffU;
1162
1163 m = frexpf (x, &e) * 0x1000000U;
1164
1165 r = m & 0x80000000U;
1166
1167 if (r)
1168 m = -m;
1169
1170 if (e <= -126)
1171 {
1172 m &= 0xffffffU;
1173 m >>= (-125 - e);
1174 e = -126;
1175 }
1176
1177 r |= (e + 126) << 23;
1178 r |= m & 0x7fffffU;
1179 #endif
1180
1181 return r;
1182 }
1183
1184 /* converts an ieee single/binary32 to a float */
1185 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1186 ecb_function_ float
1187 ecb_binary32_to_float (uint32_t x)
1188 {
1189 float r;
1190
1191 #if ECB_STDFP
1192 memcpy (&r, &x, 4);
1193 #else
1194 /* emulation, only works for normals and subnormals and +0 */
1195 int neg = x >> 31;
1196 int e = (x >> 23) & 0xffU;
1197
1198 x &= 0x7fffffU;
1199
1200 if (e)
1201 x |= 0x800000U;
1202 else
1203 e = 1;
1204
1205 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1206 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1207
1208 r = neg ? -r : r;
1209 #endif
1210
1211 return r;
1212 }
1213
1214 /* convert a double to ieee double/binary64 */
1215 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1216 ecb_function_ uint64_t
1217 ecb_double_to_binary64 (double x)
1218 {
1219 uint64_t r;
1220
1221 #if ECB_STDFP
1222 memcpy (&r, &x, 8);
1223 #else
1224 /* slow emulation, works for anything but -0 */
1225 uint64_t m;
1226 int e;
1227
1228 if (x == 0e0 ) return 0x0000000000000000U;
1229 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1230 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1231 if (x != x ) return 0X7ff7ffffffffffffU;
1232
1233 m = frexp (x, &e) * 0x20000000000000U;
1234
1235 r = m & 0x8000000000000000;;
1236
1237 if (r)
1238 m = -m;
1239
1240 if (e <= -1022)
1241 {
1242 m &= 0x1fffffffffffffU;
1243 m >>= (-1021 - e);
1244 e = -1022;
1245 }
1246
1247 r |= ((uint64_t)(e + 1022)) << 52;
1248 r |= m & 0xfffffffffffffU;
1249 #endif
1250
1251 return r;
1252 }
1253
1254 /* converts an ieee double/binary64 to a double */
1255 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1256 ecb_function_ double
1257 ecb_binary64_to_double (uint64_t x)
1258 {
1259 double r;
1260
1261 #if ECB_STDFP
1262 memcpy (&r, &x, 8);
1263 #else
1264 /* emulation, only works for normals and subnormals and +0 */
1265 int neg = x >> 63;
1266 int e = (x >> 52) & 0x7ffU;
1267
1268 x &= 0xfffffffffffffU;
1269
1270 if (e)
1271 x |= 0x10000000000000U;
1272 else
1273 e = 1;
1274
1275 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1276 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1277
1278 r = neg ? -r : r;
1279 #endif
1280
1281 return r;
1282 }
1283
1284 #endif
1285
1286 #endif
1287
1288 /* ECB.H END */
1289
1290 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1291 /* if your architecture doesn't need memory fences, e.g. because it is
1292 * single-cpu/core, or if you use libev in a project that doesn't use libev
1293 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1294 * libev, in which cases the memory fences become nops.
1295 * alternatively, you can remove this #error and link against libpthread,
1296 * which will then provide the memory fences.
1297 */
1298 # error "memory fences not defined for your architecture, please report"
1299 #endif
1300
1301 #ifndef ECB_MEMORY_FENCE
1302 # define ECB_MEMORY_FENCE do { } while (0)
1303 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1304 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1305 #endif
1306
1307 #define expect_false(cond) ecb_expect_false (cond)
1308 #define expect_true(cond) ecb_expect_true (cond)
1309 #define noinline ecb_noinline
1310
1311 #define inline_size ecb_inline
1312
1313 #if EV_FEATURE_CODE
1314 # define inline_speed ecb_inline
1315 #else
1316 # define inline_speed static noinline
1317 #endif
1318
1319 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1320
1321 #if EV_MINPRI == EV_MAXPRI
1322 # define ABSPRI(w) (((W)w), 0)
1323 #else
1324 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1325 #endif
1326
1327 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1328 #define EMPTY2(a,b) /* used to suppress some warnings */
1329
1330 typedef ev_watcher *W;
1331 typedef ev_watcher_list *WL;
1332 typedef ev_watcher_time *WT;
1333
1334 #define ev_active(w) ((W)(w))->active
1335 #define ev_at(w) ((WT)(w))->at
1336
1337 #if EV_USE_REALTIME
1338 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1339 /* giving it a reasonably high chance of working on typical architectures */
1340 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1341 #endif
1342
1343 #if EV_USE_MONOTONIC
1344 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1345 #endif
1346
1347 #ifndef EV_FD_TO_WIN32_HANDLE
1348 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1349 #endif
1350 #ifndef EV_WIN32_HANDLE_TO_FD
1351 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1352 #endif
1353 #ifndef EV_WIN32_CLOSE_FD
1354 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1355 #endif
1356
1357 #ifdef _WIN32
1358 # include "ev_win32.c"
1359 #endif
1360
1361 /*****************************************************************************/
1362
1363 /* define a suitable floor function (only used by periodics atm) */
1364
1365 #if EV_USE_FLOOR
1366 # include <math.h>
1367 # define ev_floor(v) floor (v)
1368 #else
1369
1370 #include <float.h>
1371
1372 /* a floor() replacement function, should be independent of ev_tstamp type */
1373 static ev_tstamp noinline
1374 ev_floor (ev_tstamp v)
1375 {
1376 /* the choice of shift factor is not terribly important */
1377 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1378 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1379 #else
1380 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1381 #endif
1382
1383 /* argument too large for an unsigned long? */
1384 if (expect_false (v >= shift))
1385 {
1386 ev_tstamp f;
1387
1388 if (v == v - 1.)
1389 return v; /* very large number */
1390
1391 f = shift * ev_floor (v * (1. / shift));
1392 return f + ev_floor (v - f);
1393 }
1394
1395 /* special treatment for negative args? */
1396 if (expect_false (v < 0.))
1397 {
1398 ev_tstamp f = -ev_floor (-v);
1399
1400 return f - (f == v ? 0 : 1);
1401 }
1402
1403 /* fits into an unsigned long */
1404 return (unsigned long)v;
1405 }
1406
1407 #endif
1408
1409 /*****************************************************************************/
1410
1411 #ifdef __linux
1412 # include <sys/utsname.h>
1413 #endif
1414
1415 static unsigned int noinline ecb_cold
1416 ev_linux_version (void)
1417 {
1418 #ifdef __linux
1419 unsigned int v = 0;
1420 struct utsname buf;
1421 int i;
1422 char *p = buf.release;
1423
1424 if (uname (&buf))
1425 return 0;
1426
1427 for (i = 3+1; --i; )
1428 {
1429 unsigned int c = 0;
1430
1431 for (;;)
1432 {
1433 if (*p >= '0' && *p <= '9')
1434 c = c * 10 + *p++ - '0';
1435 else
1436 {
1437 p += *p == '.';
1438 break;
1439 }
1440 }
1441
1442 v = (v << 8) | c;
1443 }
1444
1445 return v;
1446 #else
1447 return 0;
1448 #endif
1449 }
1450
1451 /*****************************************************************************/
1452
1453 #if EV_AVOID_STDIO
1454 static void noinline ecb_cold
1455 ev_printerr (const char *msg)
1456 {
1457 write (STDERR_FILENO, msg, strlen (msg));
1458 }
1459 #endif
1460
1461 static void (*syserr_cb)(const char *msg) EV_THROW;
1462
1463 void ecb_cold
1464 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1465 {
1466 syserr_cb = cb;
1467 }
1468
1469 static void noinline ecb_cold
1470 ev_syserr (const char *msg)
1471 {
1472 if (!msg)
1473 msg = "(libev) system error";
1474
1475 if (syserr_cb)
1476 syserr_cb (msg);
1477 else
1478 {
1479 #if EV_AVOID_STDIO
1480 ev_printerr (msg);
1481 ev_printerr (": ");
1482 ev_printerr (strerror (errno));
1483 ev_printerr ("\n");
1484 #else
1485 perror (msg);
1486 #endif
1487 abort ();
1488 }
1489 }
1490
1491 static void *
1492 ev_realloc_emul (void *ptr, long size) EV_THROW
1493 {
1494 /* some systems, notably openbsd and darwin, fail to properly
1495 * implement realloc (x, 0) (as required by both ansi c-89 and
1496 * the single unix specification, so work around them here.
1497 * recently, also (at least) fedora and debian started breaking it,
1498 * despite documenting it otherwise.
1499 */
1500
1501 if (size)
1502 return realloc (ptr, size);
1503
1504 free (ptr);
1505 return 0;
1506 }
1507
1508 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1509
1510 void ecb_cold
1511 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1512 {
1513 alloc = cb;
1514 }
1515
1516 inline_speed void *
1517 ev_realloc (void *ptr, long size)
1518 {
1519 ptr = alloc (ptr, size);
1520
1521 if (!ptr && size)
1522 {
1523 #if EV_AVOID_STDIO
1524 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1525 #else
1526 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1527 #endif
1528 abort ();
1529 }
1530
1531 return ptr;
1532 }
1533
1534 #define ev_malloc(size) ev_realloc (0, (size))
1535 #define ev_free(ptr) ev_realloc ((ptr), 0)
1536
1537 /*****************************************************************************/
1538
1539 /* set in reify when reification needed */
1540 #define EV_ANFD_REIFY 1
1541
1542 /* file descriptor info structure */
1543 typedef struct
1544 {
1545 WL head;
1546 unsigned char events; /* the events watched for */
1547 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1548 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1549 unsigned char unused;
1550 #if EV_USE_EPOLL
1551 unsigned int egen; /* generation counter to counter epoll bugs */
1552 #endif
1553 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1554 SOCKET handle;
1555 #endif
1556 #if EV_USE_IOCP
1557 OVERLAPPED or, ow;
1558 #endif
1559 } ANFD;
1560
1561 /* stores the pending event set for a given watcher */
1562 typedef struct
1563 {
1564 W w;
1565 int events; /* the pending event set for the given watcher */
1566 } ANPENDING;
1567
1568 #if EV_USE_INOTIFY
1569 /* hash table entry per inotify-id */
1570 typedef struct
1571 {
1572 WL head;
1573 } ANFS;
1574 #endif
1575
1576 /* Heap Entry */
1577 #if EV_HEAP_CACHE_AT
1578 /* a heap element */
1579 typedef struct {
1580 ev_tstamp at;
1581 WT w;
1582 } ANHE;
1583
1584 #define ANHE_w(he) (he).w /* access watcher, read-write */
1585 #define ANHE_at(he) (he).at /* access cached at, read-only */
1586 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1587 #else
1588 /* a heap element */
1589 typedef WT ANHE;
1590
1591 #define ANHE_w(he) (he)
1592 #define ANHE_at(he) (he)->at
1593 #define ANHE_at_cache(he)
1594 #endif
1595
1596 #if EV_MULTIPLICITY
1597
1598 struct ev_loop
1599 {
1600 ev_tstamp ev_rt_now;
1601 #define ev_rt_now ((loop)->ev_rt_now)
1602 #define VAR(name,decl) decl;
1603 #include "ev_vars.h"
1604 #undef VAR
1605 };
1606 #include "ev_wrap.h"
1607
1608 static struct ev_loop default_loop_struct;
1609 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1610
1611 #else
1612
1613 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1614 #define VAR(name,decl) static decl;
1615 #include "ev_vars.h"
1616 #undef VAR
1617
1618 static int ev_default_loop_ptr;
1619
1620 #endif
1621
1622 #if EV_FEATURE_API
1623 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1624 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1625 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1626 #else
1627 # define EV_RELEASE_CB (void)0
1628 # define EV_ACQUIRE_CB (void)0
1629 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1630 #endif
1631
1632 #define EVBREAK_RECURSE 0x80
1633
1634 /*****************************************************************************/
1635
1636 #ifndef EV_HAVE_EV_TIME
1637 ev_tstamp
1638 ev_time (void) EV_THROW
1639 {
1640 #if EV_USE_REALTIME
1641 if (expect_true (have_realtime))
1642 {
1643 struct timespec ts;
1644 clock_gettime (CLOCK_REALTIME, &ts);
1645 return ts.tv_sec + ts.tv_nsec * 1e-9;
1646 }
1647 #endif
1648
1649 struct timeval tv;
1650 gettimeofday (&tv, 0);
1651 return tv.tv_sec + tv.tv_usec * 1e-6;
1652 }
1653 #endif
1654
1655 inline_size ev_tstamp
1656 get_clock (void)
1657 {
1658 #if EV_USE_MONOTONIC
1659 if (expect_true (have_monotonic))
1660 {
1661 struct timespec ts;
1662 clock_gettime (CLOCK_MONOTONIC, &ts);
1663 return ts.tv_sec + ts.tv_nsec * 1e-9;
1664 }
1665 #endif
1666
1667 return ev_time ();
1668 }
1669
1670 #if EV_MULTIPLICITY
1671 ev_tstamp
1672 ev_now (EV_P) EV_THROW
1673 {
1674 return ev_rt_now;
1675 }
1676 #endif
1677
1678 void
1679 ev_sleep (ev_tstamp delay) EV_THROW
1680 {
1681 if (delay > 0.)
1682 {
1683 #if EV_USE_NANOSLEEP
1684 struct timespec ts;
1685
1686 EV_TS_SET (ts, delay);
1687 nanosleep (&ts, 0);
1688 #elif defined _WIN32
1689 Sleep ((unsigned long)(delay * 1e3));
1690 #else
1691 struct timeval tv;
1692
1693 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1694 /* something not guaranteed by newer posix versions, but guaranteed */
1695 /* by older ones */
1696 EV_TV_SET (tv, delay);
1697 select (0, 0, 0, 0, &tv);
1698 #endif
1699 }
1700 }
1701
1702 /*****************************************************************************/
1703
1704 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1705
1706 /* find a suitable new size for the given array, */
1707 /* hopefully by rounding to a nice-to-malloc size */
1708 inline_size int
1709 array_nextsize (int elem, int cur, int cnt)
1710 {
1711 int ncur = cur + 1;
1712
1713 do
1714 ncur <<= 1;
1715 while (cnt > ncur);
1716
1717 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1718 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1719 {
1720 ncur *= elem;
1721 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1722 ncur = ncur - sizeof (void *) * 4;
1723 ncur /= elem;
1724 }
1725
1726 return ncur;
1727 }
1728
1729 static void * noinline ecb_cold
1730 array_realloc (int elem, void *base, int *cur, int cnt)
1731 {
1732 *cur = array_nextsize (elem, *cur, cnt);
1733 return ev_realloc (base, elem * *cur);
1734 }
1735
1736 #define array_init_zero(base,count) \
1737 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1738
1739 #define array_needsize(type,base,cur,cnt,init) \
1740 if (expect_false ((cnt) > (cur))) \
1741 { \
1742 int ecb_unused ocur_ = (cur); \
1743 (base) = (type *)array_realloc \
1744 (sizeof (type), (base), &(cur), (cnt)); \
1745 init ((base) + (ocur_), (cur) - ocur_); \
1746 }
1747
1748 #if 0
1749 #define array_slim(type,stem) \
1750 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1751 { \
1752 stem ## max = array_roundsize (stem ## cnt >> 1); \
1753 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1754 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1755 }
1756 #endif
1757
1758 #define array_free(stem, idx) \
1759 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1760
1761 /*****************************************************************************/
1762
1763 /* dummy callback for pending events */
1764 static void noinline
1765 pendingcb (EV_P_ ev_prepare *w, int revents)
1766 {
1767 }
1768
1769 void noinline
1770 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1771 {
1772 W w_ = (W)w;
1773 int pri = ABSPRI (w_);
1774
1775 if (expect_false (w_->pending))
1776 pendings [pri][w_->pending - 1].events |= revents;
1777 else
1778 {
1779 w_->pending = ++pendingcnt [pri];
1780 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1781 pendings [pri][w_->pending - 1].w = w_;
1782 pendings [pri][w_->pending - 1].events = revents;
1783 }
1784
1785 pendingpri = NUMPRI - 1;
1786 }
1787
1788 inline_speed void
1789 feed_reverse (EV_P_ W w)
1790 {
1791 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1792 rfeeds [rfeedcnt++] = w;
1793 }
1794
1795 inline_size void
1796 feed_reverse_done (EV_P_ int revents)
1797 {
1798 do
1799 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1800 while (rfeedcnt);
1801 }
1802
1803 inline_speed void
1804 queue_events (EV_P_ W *events, int eventcnt, int type)
1805 {
1806 int i;
1807
1808 for (i = 0; i < eventcnt; ++i)
1809 ev_feed_event (EV_A_ events [i], type);
1810 }
1811
1812 /*****************************************************************************/
1813
1814 inline_speed void
1815 fd_event_nocheck (EV_P_ int fd, int revents)
1816 {
1817 ANFD *anfd = anfds + fd;
1818 ev_io *w;
1819
1820 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1821 {
1822 int ev = w->events & revents;
1823
1824 if (ev)
1825 ev_feed_event (EV_A_ (W)w, ev);
1826 }
1827 }
1828
1829 /* do not submit kernel events for fds that have reify set */
1830 /* because that means they changed while we were polling for new events */
1831 inline_speed void
1832 fd_event (EV_P_ int fd, int revents)
1833 {
1834 ANFD *anfd = anfds + fd;
1835
1836 if (expect_true (!anfd->reify))
1837 fd_event_nocheck (EV_A_ fd, revents);
1838 }
1839
1840 void
1841 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1842 {
1843 if (fd >= 0 && fd < anfdmax)
1844 fd_event_nocheck (EV_A_ fd, revents);
1845 }
1846
1847 /* make sure the external fd watch events are in-sync */
1848 /* with the kernel/libev internal state */
1849 inline_size void
1850 fd_reify (EV_P)
1851 {
1852 int i;
1853
1854 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1855 for (i = 0; i < fdchangecnt; ++i)
1856 {
1857 int fd = fdchanges [i];
1858 ANFD *anfd = anfds + fd;
1859
1860 if (anfd->reify & EV__IOFDSET && anfd->head)
1861 {
1862 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1863
1864 if (handle != anfd->handle)
1865 {
1866 unsigned long arg;
1867
1868 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1869
1870 /* handle changed, but fd didn't - we need to do it in two steps */
1871 backend_modify (EV_A_ fd, anfd->events, 0);
1872 anfd->events = 0;
1873 anfd->handle = handle;
1874 }
1875 }
1876 }
1877 #endif
1878
1879 for (i = 0; i < fdchangecnt; ++i)
1880 {
1881 int fd = fdchanges [i];
1882 ANFD *anfd = anfds + fd;
1883 ev_io *w;
1884
1885 unsigned char o_events = anfd->events;
1886 unsigned char o_reify = anfd->reify;
1887
1888 anfd->reify = 0;
1889
1890 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1891 {
1892 anfd->events = 0;
1893
1894 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1895 anfd->events |= (unsigned char)w->events;
1896
1897 if (o_events != anfd->events)
1898 o_reify = EV__IOFDSET; /* actually |= */
1899 }
1900
1901 if (o_reify & EV__IOFDSET)
1902 backend_modify (EV_A_ fd, o_events, anfd->events);
1903 }
1904
1905 fdchangecnt = 0;
1906 }
1907
1908 /* something about the given fd changed */
1909 inline_size void
1910 fd_change (EV_P_ int fd, int flags)
1911 {
1912 unsigned char reify = anfds [fd].reify;
1913 anfds [fd].reify |= flags;
1914
1915 if (expect_true (!reify))
1916 {
1917 ++fdchangecnt;
1918 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1919 fdchanges [fdchangecnt - 1] = fd;
1920 }
1921 }
1922
1923 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1924 inline_speed void ecb_cold
1925 fd_kill (EV_P_ int fd)
1926 {
1927 ev_io *w;
1928
1929 while ((w = (ev_io *)anfds [fd].head))
1930 {
1931 ev_io_stop (EV_A_ w);
1932 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1933 }
1934 }
1935
1936 /* check whether the given fd is actually valid, for error recovery */
1937 inline_size int ecb_cold
1938 fd_valid (int fd)
1939 {
1940 #ifdef _WIN32
1941 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1942 #else
1943 return fcntl (fd, F_GETFD) != -1;
1944 #endif
1945 }
1946
1947 /* called on EBADF to verify fds */
1948 static void noinline ecb_cold
1949 fd_ebadf (EV_P)
1950 {
1951 int fd;
1952
1953 for (fd = 0; fd < anfdmax; ++fd)
1954 if (anfds [fd].events)
1955 if (!fd_valid (fd) && errno == EBADF)
1956 fd_kill (EV_A_ fd);
1957 }
1958
1959 /* called on ENOMEM in select/poll to kill some fds and retry */
1960 static void noinline ecb_cold
1961 fd_enomem (EV_P)
1962 {
1963 int fd;
1964
1965 for (fd = anfdmax; fd--; )
1966 if (anfds [fd].events)
1967 {
1968 fd_kill (EV_A_ fd);
1969 break;
1970 }
1971 }
1972
1973 /* usually called after fork if backend needs to re-arm all fds from scratch */
1974 static void noinline
1975 fd_rearm_all (EV_P)
1976 {
1977 int fd;
1978
1979 for (fd = 0; fd < anfdmax; ++fd)
1980 if (anfds [fd].events)
1981 {
1982 anfds [fd].events = 0;
1983 anfds [fd].emask = 0;
1984 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1985 }
1986 }
1987
1988 /* used to prepare libev internal fd's */
1989 /* this is not fork-safe */
1990 inline_speed void
1991 fd_intern (int fd)
1992 {
1993 #ifdef _WIN32
1994 unsigned long arg = 1;
1995 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1996 #else
1997 fcntl (fd, F_SETFD, FD_CLOEXEC);
1998 fcntl (fd, F_SETFL, O_NONBLOCK);
1999 #endif
2000 }
2001
2002 /*****************************************************************************/
2003
2004 /*
2005 * the heap functions want a real array index. array index 0 is guaranteed to not
2006 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2007 * the branching factor of the d-tree.
2008 */
2009
2010 /*
2011 * at the moment we allow libev the luxury of two heaps,
2012 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2013 * which is more cache-efficient.
2014 * the difference is about 5% with 50000+ watchers.
2015 */
2016 #if EV_USE_4HEAP
2017
2018 #define DHEAP 4
2019 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2020 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2021 #define UPHEAP_DONE(p,k) ((p) == (k))
2022
2023 /* away from the root */
2024 inline_speed void
2025 downheap (ANHE *heap, int N, int k)
2026 {
2027 ANHE he = heap [k];
2028 ANHE *E = heap + N + HEAP0;
2029
2030 for (;;)
2031 {
2032 ev_tstamp minat;
2033 ANHE *minpos;
2034 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2035
2036 /* find minimum child */
2037 if (expect_true (pos + DHEAP - 1 < E))
2038 {
2039 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2040 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2041 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2042 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2043 }
2044 else if (pos < E)
2045 {
2046 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2047 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2048 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2049 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2050 }
2051 else
2052 break;
2053
2054 if (ANHE_at (he) <= minat)
2055 break;
2056
2057 heap [k] = *minpos;
2058 ev_active (ANHE_w (*minpos)) = k;
2059
2060 k = minpos - heap;
2061 }
2062
2063 heap [k] = he;
2064 ev_active (ANHE_w (he)) = k;
2065 }
2066
2067 #else /* 4HEAP */
2068
2069 #define HEAP0 1
2070 #define HPARENT(k) ((k) >> 1)
2071 #define UPHEAP_DONE(p,k) (!(p))
2072
2073 /* away from the root */
2074 inline_speed void
2075 downheap (ANHE *heap, int N, int k)
2076 {
2077 ANHE he = heap [k];
2078
2079 for (;;)
2080 {
2081 int c = k << 1;
2082
2083 if (c >= N + HEAP0)
2084 break;
2085
2086 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2087 ? 1 : 0;
2088
2089 if (ANHE_at (he) <= ANHE_at (heap [c]))
2090 break;
2091
2092 heap [k] = heap [c];
2093 ev_active (ANHE_w (heap [k])) = k;
2094
2095 k = c;
2096 }
2097
2098 heap [k] = he;
2099 ev_active (ANHE_w (he)) = k;
2100 }
2101 #endif
2102
2103 /* towards the root */
2104 inline_speed void
2105 upheap (ANHE *heap, int k)
2106 {
2107 ANHE he = heap [k];
2108
2109 for (;;)
2110 {
2111 int p = HPARENT (k);
2112
2113 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2114 break;
2115
2116 heap [k] = heap [p];
2117 ev_active (ANHE_w (heap [k])) = k;
2118 k = p;
2119 }
2120
2121 heap [k] = he;
2122 ev_active (ANHE_w (he)) = k;
2123 }
2124
2125 /* move an element suitably so it is in a correct place */
2126 inline_size void
2127 adjustheap (ANHE *heap, int N, int k)
2128 {
2129 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2130 upheap (heap, k);
2131 else
2132 downheap (heap, N, k);
2133 }
2134
2135 /* rebuild the heap: this function is used only once and executed rarely */
2136 inline_size void
2137 reheap (ANHE *heap, int N)
2138 {
2139 int i;
2140
2141 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2142 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2143 for (i = 0; i < N; ++i)
2144 upheap (heap, i + HEAP0);
2145 }
2146
2147 /*****************************************************************************/
2148
2149 /* associate signal watchers to a signal signal */
2150 typedef struct
2151 {
2152 EV_ATOMIC_T pending;
2153 #if EV_MULTIPLICITY
2154 EV_P;
2155 #endif
2156 WL head;
2157 } ANSIG;
2158
2159 static ANSIG signals [EV_NSIG - 1];
2160
2161 /*****************************************************************************/
2162
2163 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2164
2165 static void noinline ecb_cold
2166 evpipe_init (EV_P)
2167 {
2168 if (!ev_is_active (&pipe_w))
2169 {
2170 int fds [2];
2171
2172 # if EV_USE_EVENTFD
2173 fds [0] = -1;
2174 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2175 if (fds [1] < 0 && errno == EINVAL)
2176 fds [1] = eventfd (0, 0);
2177
2178 if (fds [1] < 0)
2179 # endif
2180 {
2181 while (pipe (fds))
2182 ev_syserr ("(libev) error creating signal/async pipe");
2183
2184 fd_intern (fds [0]);
2185 }
2186
2187 evpipe [0] = fds [0];
2188
2189 if (evpipe [1] < 0)
2190 evpipe [1] = fds [1]; /* first call, set write fd */
2191 else
2192 {
2193 /* on subsequent calls, do not change evpipe [1] */
2194 /* so that evpipe_write can always rely on its value. */
2195 /* this branch does not do anything sensible on windows, */
2196 /* so must not be executed on windows */
2197
2198 dup2 (fds [1], evpipe [1]);
2199 close (fds [1]);
2200 }
2201
2202 fd_intern (evpipe [1]);
2203
2204 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2205 ev_io_start (EV_A_ &pipe_w);
2206 ev_unref (EV_A); /* watcher should not keep loop alive */
2207 }
2208 }
2209
2210 inline_speed void
2211 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2212 {
2213 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2214
2215 if (expect_true (*flag))
2216 return;
2217
2218 *flag = 1;
2219 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2220
2221 pipe_write_skipped = 1;
2222
2223 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2224
2225 if (pipe_write_wanted)
2226 {
2227 int old_errno;
2228
2229 pipe_write_skipped = 0;
2230 ECB_MEMORY_FENCE_RELEASE;
2231
2232 old_errno = errno; /* save errno because write will clobber it */
2233
2234 #if EV_USE_EVENTFD
2235 if (evpipe [0] < 0)
2236 {
2237 uint64_t counter = 1;
2238 write (evpipe [1], &counter, sizeof (uint64_t));
2239 }
2240 else
2241 #endif
2242 {
2243 #ifdef _WIN32
2244 WSABUF buf;
2245 DWORD sent;
2246 buf.buf = &buf;
2247 buf.len = 1;
2248 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2249 #else
2250 write (evpipe [1], &(evpipe [1]), 1);
2251 #endif
2252 }
2253
2254 errno = old_errno;
2255 }
2256 }
2257
2258 /* called whenever the libev signal pipe */
2259 /* got some events (signal, async) */
2260 static void
2261 pipecb (EV_P_ ev_io *iow, int revents)
2262 {
2263 int i;
2264
2265 if (revents & EV_READ)
2266 {
2267 #if EV_USE_EVENTFD
2268 if (evpipe [0] < 0)
2269 {
2270 uint64_t counter;
2271 read (evpipe [1], &counter, sizeof (uint64_t));
2272 }
2273 else
2274 #endif
2275 {
2276 char dummy[4];
2277 #ifdef _WIN32
2278 WSABUF buf;
2279 DWORD recvd;
2280 DWORD flags = 0;
2281 buf.buf = dummy;
2282 buf.len = sizeof (dummy);
2283 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2284 #else
2285 read (evpipe [0], &dummy, sizeof (dummy));
2286 #endif
2287 }
2288 }
2289
2290 pipe_write_skipped = 0;
2291
2292 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2293
2294 #if EV_SIGNAL_ENABLE
2295 if (sig_pending)
2296 {
2297 sig_pending = 0;
2298
2299 ECB_MEMORY_FENCE;
2300
2301 for (i = EV_NSIG - 1; i--; )
2302 if (expect_false (signals [i].pending))
2303 ev_feed_signal_event (EV_A_ i + 1);
2304 }
2305 #endif
2306
2307 #if EV_ASYNC_ENABLE
2308 if (async_pending)
2309 {
2310 async_pending = 0;
2311
2312 ECB_MEMORY_FENCE;
2313
2314 for (i = asynccnt; i--; )
2315 if (asyncs [i]->sent)
2316 {
2317 asyncs [i]->sent = 0;
2318 ECB_MEMORY_FENCE_RELEASE;
2319 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2320 }
2321 }
2322 #endif
2323 }
2324
2325 /*****************************************************************************/
2326
2327 void
2328 ev_feed_signal (int signum) EV_THROW
2329 {
2330 #if EV_MULTIPLICITY
2331 EV_P;
2332 ECB_MEMORY_FENCE_ACQUIRE;
2333 EV_A = signals [signum - 1].loop;
2334
2335 if (!EV_A)
2336 return;
2337 #endif
2338
2339 signals [signum - 1].pending = 1;
2340 evpipe_write (EV_A_ &sig_pending);
2341 }
2342
2343 static void
2344 ev_sighandler (int signum)
2345 {
2346 #ifdef _WIN32
2347 signal (signum, ev_sighandler);
2348 #endif
2349
2350 ev_feed_signal (signum);
2351 }
2352
2353 void noinline
2354 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2355 {
2356 WL w;
2357
2358 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2359 return;
2360
2361 --signum;
2362
2363 #if EV_MULTIPLICITY
2364 /* it is permissible to try to feed a signal to the wrong loop */
2365 /* or, likely more useful, feeding a signal nobody is waiting for */
2366
2367 if (expect_false (signals [signum].loop != EV_A))
2368 return;
2369 #endif
2370
2371 signals [signum].pending = 0;
2372 ECB_MEMORY_FENCE_RELEASE;
2373
2374 for (w = signals [signum].head; w; w = w->next)
2375 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2376 }
2377
2378 #if EV_USE_SIGNALFD
2379 static void
2380 sigfdcb (EV_P_ ev_io *iow, int revents)
2381 {
2382 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2383
2384 for (;;)
2385 {
2386 ssize_t res = read (sigfd, si, sizeof (si));
2387
2388 /* not ISO-C, as res might be -1, but works with SuS */
2389 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2390 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2391
2392 if (res < (ssize_t)sizeof (si))
2393 break;
2394 }
2395 }
2396 #endif
2397
2398 #endif
2399
2400 /*****************************************************************************/
2401
2402 #if EV_CHILD_ENABLE
2403 static WL childs [EV_PID_HASHSIZE];
2404
2405 static ev_signal childev;
2406
2407 #ifndef WIFCONTINUED
2408 # define WIFCONTINUED(status) 0
2409 #endif
2410
2411 /* handle a single child status event */
2412 inline_speed void
2413 child_reap (EV_P_ int chain, int pid, int status)
2414 {
2415 ev_child *w;
2416 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2417
2418 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2419 {
2420 if ((w->pid == pid || !w->pid)
2421 && (!traced || (w->flags & 1)))
2422 {
2423 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2424 w->rpid = pid;
2425 w->rstatus = status;
2426 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2427 }
2428 }
2429 }
2430
2431 #ifndef WCONTINUED
2432 # define WCONTINUED 0
2433 #endif
2434
2435 /* called on sigchld etc., calls waitpid */
2436 static void
2437 childcb (EV_P_ ev_signal *sw, int revents)
2438 {
2439 int pid, status;
2440
2441 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2442 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2443 if (!WCONTINUED
2444 || errno != EINVAL
2445 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2446 return;
2447
2448 /* make sure we are called again until all children have been reaped */
2449 /* we need to do it this way so that the callback gets called before we continue */
2450 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2451
2452 child_reap (EV_A_ pid, pid, status);
2453 if ((EV_PID_HASHSIZE) > 1)
2454 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2455 }
2456
2457 #endif
2458
2459 /*****************************************************************************/
2460
2461 #if EV_USE_IOCP
2462 # include "ev_iocp.c"
2463 #endif
2464 #if EV_USE_PORT
2465 # include "ev_port.c"
2466 #endif
2467 #if EV_USE_KQUEUE
2468 # include "ev_kqueue.c"
2469 #endif
2470 #if EV_USE_EPOLL
2471 # include "ev_epoll.c"
2472 #endif
2473 #if EV_USE_POLL
2474 # include "ev_poll.c"
2475 #endif
2476 #if EV_USE_SELECT
2477 # include "ev_select.c"
2478 #endif
2479
2480 int ecb_cold
2481 ev_version_major (void) EV_THROW
2482 {
2483 return EV_VERSION_MAJOR;
2484 }
2485
2486 int ecb_cold
2487 ev_version_minor (void) EV_THROW
2488 {
2489 return EV_VERSION_MINOR;
2490 }
2491
2492 /* return true if we are running with elevated privileges and should ignore env variables */
2493 int inline_size ecb_cold
2494 enable_secure (void)
2495 {
2496 #ifdef _WIN32
2497 return 0;
2498 #else
2499 return getuid () != geteuid ()
2500 || getgid () != getegid ();
2501 #endif
2502 }
2503
2504 unsigned int ecb_cold
2505 ev_supported_backends (void) EV_THROW
2506 {
2507 unsigned int flags = 0;
2508
2509 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2510 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2511 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2512 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2513 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2514
2515 return flags;
2516 }
2517
2518 unsigned int ecb_cold
2519 ev_recommended_backends (void) EV_THROW
2520 {
2521 unsigned int flags = ev_supported_backends ();
2522
2523 #ifndef __NetBSD__
2524 /* kqueue is borked on everything but netbsd apparently */
2525 /* it usually doesn't work correctly on anything but sockets and pipes */
2526 flags &= ~EVBACKEND_KQUEUE;
2527 #endif
2528 #ifdef __APPLE__
2529 /* only select works correctly on that "unix-certified" platform */
2530 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2531 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2532 #endif
2533 #ifdef __FreeBSD__
2534 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2535 #endif
2536
2537 return flags;
2538 }
2539
2540 unsigned int ecb_cold
2541 ev_embeddable_backends (void) EV_THROW
2542 {
2543 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2544
2545 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2546 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2547 flags &= ~EVBACKEND_EPOLL;
2548
2549 return flags;
2550 }
2551
2552 unsigned int
2553 ev_backend (EV_P) EV_THROW
2554 {
2555 return backend;
2556 }
2557
2558 #if EV_FEATURE_API
2559 unsigned int
2560 ev_iteration (EV_P) EV_THROW
2561 {
2562 return loop_count;
2563 }
2564
2565 unsigned int
2566 ev_depth (EV_P) EV_THROW
2567 {
2568 return loop_depth;
2569 }
2570
2571 void
2572 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2573 {
2574 io_blocktime = interval;
2575 }
2576
2577 void
2578 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2579 {
2580 timeout_blocktime = interval;
2581 }
2582
2583 void
2584 ev_set_userdata (EV_P_ void *data) EV_THROW
2585 {
2586 userdata = data;
2587 }
2588
2589 void *
2590 ev_userdata (EV_P) EV_THROW
2591 {
2592 return userdata;
2593 }
2594
2595 void
2596 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2597 {
2598 invoke_cb = invoke_pending_cb;
2599 }
2600
2601 void
2602 ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2603 {
2604 release_cb = release;
2605 acquire_cb = acquire;
2606 }
2607 #endif
2608
2609 /* initialise a loop structure, must be zero-initialised */
2610 static void noinline ecb_cold
2611 loop_init (EV_P_ unsigned int flags) EV_THROW
2612 {
2613 if (!backend)
2614 {
2615 origflags = flags;
2616
2617 #if EV_USE_REALTIME
2618 if (!have_realtime)
2619 {
2620 struct timespec ts;
2621
2622 if (!clock_gettime (CLOCK_REALTIME, &ts))
2623 have_realtime = 1;
2624 }
2625 #endif
2626
2627 #if EV_USE_MONOTONIC
2628 if (!have_monotonic)
2629 {
2630 struct timespec ts;
2631
2632 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2633 have_monotonic = 1;
2634 }
2635 #endif
2636
2637 /* pid check not overridable via env */
2638 #ifndef _WIN32
2639 if (flags & EVFLAG_FORKCHECK)
2640 curpid = getpid ();
2641 #endif
2642
2643 if (!(flags & EVFLAG_NOENV)
2644 && !enable_secure ()
2645 && getenv ("LIBEV_FLAGS"))
2646 flags = atoi (getenv ("LIBEV_FLAGS"));
2647
2648 ev_rt_now = ev_time ();
2649 mn_now = get_clock ();
2650 now_floor = mn_now;
2651 rtmn_diff = ev_rt_now - mn_now;
2652 #if EV_FEATURE_API
2653 invoke_cb = ev_invoke_pending;
2654 #endif
2655
2656 io_blocktime = 0.;
2657 timeout_blocktime = 0.;
2658 backend = 0;
2659 backend_fd = -1;
2660 sig_pending = 0;
2661 #if EV_ASYNC_ENABLE
2662 async_pending = 0;
2663 #endif
2664 pipe_write_skipped = 0;
2665 pipe_write_wanted = 0;
2666 evpipe [0] = -1;
2667 evpipe [1] = -1;
2668 #if EV_USE_INOTIFY
2669 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2670 #endif
2671 #if EV_USE_SIGNALFD
2672 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2673 #endif
2674
2675 if (!(flags & EVBACKEND_MASK))
2676 flags |= ev_recommended_backends ();
2677
2678 #if EV_USE_IOCP
2679 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2680 #endif
2681 #if EV_USE_PORT
2682 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2683 #endif
2684 #if EV_USE_KQUEUE
2685 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2686 #endif
2687 #if EV_USE_EPOLL
2688 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2689 #endif
2690 #if EV_USE_POLL
2691 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2692 #endif
2693 #if EV_USE_SELECT
2694 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2695 #endif
2696
2697 ev_prepare_init (&pending_w, pendingcb);
2698
2699 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2700 ev_init (&pipe_w, pipecb);
2701 ev_set_priority (&pipe_w, EV_MAXPRI);
2702 #endif
2703 }
2704 }
2705
2706 /* free up a loop structure */
2707 void ecb_cold
2708 ev_loop_destroy (EV_P)
2709 {
2710 int i;
2711
2712 #if EV_MULTIPLICITY
2713 /* mimic free (0) */
2714 if (!EV_A)
2715 return;
2716 #endif
2717
2718 #if EV_CLEANUP_ENABLE
2719 /* queue cleanup watchers (and execute them) */
2720 if (expect_false (cleanupcnt))
2721 {
2722 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2723 EV_INVOKE_PENDING;
2724 }
2725 #endif
2726
2727 #if EV_CHILD_ENABLE
2728 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2729 {
2730 ev_ref (EV_A); /* child watcher */
2731 ev_signal_stop (EV_A_ &childev);
2732 }
2733 #endif
2734
2735 if (ev_is_active (&pipe_w))
2736 {
2737 /*ev_ref (EV_A);*/
2738 /*ev_io_stop (EV_A_ &pipe_w);*/
2739
2740 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2741 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2742 }
2743
2744 #if EV_USE_SIGNALFD
2745 if (ev_is_active (&sigfd_w))
2746 close (sigfd);
2747 #endif
2748
2749 #if EV_USE_INOTIFY
2750 if (fs_fd >= 0)
2751 close (fs_fd);
2752 #endif
2753
2754 if (backend_fd >= 0)
2755 close (backend_fd);
2756
2757 #if EV_USE_IOCP
2758 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2759 #endif
2760 #if EV_USE_PORT
2761 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2762 #endif
2763 #if EV_USE_KQUEUE
2764 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2765 #endif
2766 #if EV_USE_EPOLL
2767 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2768 #endif
2769 #if EV_USE_POLL
2770 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2771 #endif
2772 #if EV_USE_SELECT
2773 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2774 #endif
2775
2776 for (i = NUMPRI; i--; )
2777 {
2778 array_free (pending, [i]);
2779 #if EV_IDLE_ENABLE
2780 array_free (idle, [i]);
2781 #endif
2782 }
2783
2784 ev_free (anfds); anfds = 0; anfdmax = 0;
2785
2786 /* have to use the microsoft-never-gets-it-right macro */
2787 array_free (rfeed, EMPTY);
2788 array_free (fdchange, EMPTY);
2789 array_free (timer, EMPTY);
2790 #if EV_PERIODIC_ENABLE
2791 array_free (periodic, EMPTY);
2792 #endif
2793 #if EV_FORK_ENABLE
2794 array_free (fork, EMPTY);
2795 #endif
2796 #if EV_CLEANUP_ENABLE
2797 array_free (cleanup, EMPTY);
2798 #endif
2799 array_free (prepare, EMPTY);
2800 array_free (check, EMPTY);
2801 #if EV_ASYNC_ENABLE
2802 array_free (async, EMPTY);
2803 #endif
2804
2805 backend = 0;
2806
2807 #if EV_MULTIPLICITY
2808 if (ev_is_default_loop (EV_A))
2809 #endif
2810 ev_default_loop_ptr = 0;
2811 #if EV_MULTIPLICITY
2812 else
2813 ev_free (EV_A);
2814 #endif
2815 }
2816
2817 #if EV_USE_INOTIFY
2818 inline_size void infy_fork (EV_P);
2819 #endif
2820
2821 inline_size void
2822 loop_fork (EV_P)
2823 {
2824 #if EV_USE_PORT
2825 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2826 #endif
2827 #if EV_USE_KQUEUE
2828 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2829 #endif
2830 #if EV_USE_EPOLL
2831 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2832 #endif
2833 #if EV_USE_INOTIFY
2834 infy_fork (EV_A);
2835 #endif
2836
2837 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2838 if (ev_is_active (&pipe_w))
2839 {
2840 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2841
2842 ev_ref (EV_A);
2843 ev_io_stop (EV_A_ &pipe_w);
2844
2845 if (evpipe [0] >= 0)
2846 EV_WIN32_CLOSE_FD (evpipe [0]);
2847
2848 evpipe_init (EV_A);
2849 /* iterate over everything, in case we missed something before */
2850 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2851 }
2852 #endif
2853
2854 postfork = 0;
2855 }
2856
2857 #if EV_MULTIPLICITY
2858
2859 struct ev_loop * ecb_cold
2860 ev_loop_new (unsigned int flags) EV_THROW
2861 {
2862 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2863
2864 memset (EV_A, 0, sizeof (struct ev_loop));
2865 loop_init (EV_A_ flags);
2866
2867 if (ev_backend (EV_A))
2868 return EV_A;
2869
2870 ev_free (EV_A);
2871 return 0;
2872 }
2873
2874 #endif /* multiplicity */
2875
2876 #if EV_VERIFY
2877 static void noinline ecb_cold
2878 verify_watcher (EV_P_ W w)
2879 {
2880 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2881
2882 if (w->pending)
2883 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2884 }
2885
2886 static void noinline ecb_cold
2887 verify_heap (EV_P_ ANHE *heap, int N)
2888 {
2889 int i;
2890
2891 for (i = HEAP0; i < N + HEAP0; ++i)
2892 {
2893 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2894 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2895 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2896
2897 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2898 }
2899 }
2900
2901 static void noinline ecb_cold
2902 array_verify (EV_P_ W *ws, int cnt)
2903 {
2904 while (cnt--)
2905 {
2906 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2907 verify_watcher (EV_A_ ws [cnt]);
2908 }
2909 }
2910 #endif
2911
2912 #if EV_FEATURE_API
2913 void ecb_cold
2914 ev_verify (EV_P) EV_THROW
2915 {
2916 #if EV_VERIFY
2917 int i;
2918 WL w, w2;
2919
2920 assert (activecnt >= -1);
2921
2922 assert (fdchangemax >= fdchangecnt);
2923 for (i = 0; i < fdchangecnt; ++i)
2924 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2925
2926 assert (anfdmax >= 0);
2927 for (i = 0; i < anfdmax; ++i)
2928 {
2929 int j = 0;
2930
2931 for (w = w2 = anfds [i].head; w; w = w->next)
2932 {
2933 verify_watcher (EV_A_ (W)w);
2934
2935 if (j++ & 1)
2936 {
2937 assert (("libev: io watcher list contains a loop", w != w2));
2938 w2 = w2->next;
2939 }
2940
2941 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2942 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2943 }
2944 }
2945
2946 assert (timermax >= timercnt);
2947 verify_heap (EV_A_ timers, timercnt);
2948
2949 #if EV_PERIODIC_ENABLE
2950 assert (periodicmax >= periodiccnt);
2951 verify_heap (EV_A_ periodics, periodiccnt);
2952 #endif
2953
2954 for (i = NUMPRI; i--; )
2955 {
2956 assert (pendingmax [i] >= pendingcnt [i]);
2957 #if EV_IDLE_ENABLE
2958 assert (idleall >= 0);
2959 assert (idlemax [i] >= idlecnt [i]);
2960 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2961 #endif
2962 }
2963
2964 #if EV_FORK_ENABLE
2965 assert (forkmax >= forkcnt);
2966 array_verify (EV_A_ (W *)forks, forkcnt);
2967 #endif
2968
2969 #if EV_CLEANUP_ENABLE
2970 assert (cleanupmax >= cleanupcnt);
2971 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2972 #endif
2973
2974 #if EV_ASYNC_ENABLE
2975 assert (asyncmax >= asynccnt);
2976 array_verify (EV_A_ (W *)asyncs, asynccnt);
2977 #endif
2978
2979 #if EV_PREPARE_ENABLE
2980 assert (preparemax >= preparecnt);
2981 array_verify (EV_A_ (W *)prepares, preparecnt);
2982 #endif
2983
2984 #if EV_CHECK_ENABLE
2985 assert (checkmax >= checkcnt);
2986 array_verify (EV_A_ (W *)checks, checkcnt);
2987 #endif
2988
2989 # if 0
2990 #if EV_CHILD_ENABLE
2991 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2992 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2993 #endif
2994 # endif
2995 #endif
2996 }
2997 #endif
2998
2999 #if EV_MULTIPLICITY
3000 struct ev_loop * ecb_cold
3001 #else
3002 int
3003 #endif
3004 ev_default_loop (unsigned int flags) EV_THROW
3005 {
3006 if (!ev_default_loop_ptr)
3007 {
3008 #if EV_MULTIPLICITY
3009 EV_P = ev_default_loop_ptr = &default_loop_struct;
3010 #else
3011 ev_default_loop_ptr = 1;
3012 #endif
3013
3014 loop_init (EV_A_ flags);
3015
3016 if (ev_backend (EV_A))
3017 {
3018 #if EV_CHILD_ENABLE
3019 ev_signal_init (&childev, childcb, SIGCHLD);
3020 ev_set_priority (&childev, EV_MAXPRI);
3021 ev_signal_start (EV_A_ &childev);
3022 ev_unref (EV_A); /* child watcher should not keep loop alive */
3023 #endif
3024 }
3025 else
3026 ev_default_loop_ptr = 0;
3027 }
3028
3029 return ev_default_loop_ptr;
3030 }
3031
3032 void
3033 ev_loop_fork (EV_P) EV_THROW
3034 {
3035 postfork = 1;
3036 }
3037
3038 /*****************************************************************************/
3039
3040 void
3041 ev_invoke (EV_P_ void *w, int revents)
3042 {
3043 EV_CB_INVOKE ((W)w, revents);
3044 }
3045
3046 unsigned int
3047 ev_pending_count (EV_P) EV_THROW
3048 {
3049 int pri;
3050 unsigned int count = 0;
3051
3052 for (pri = NUMPRI; pri--; )
3053 count += pendingcnt [pri];
3054
3055 return count;
3056 }
3057
3058 void noinline
3059 ev_invoke_pending (EV_P)
3060 {
3061 pendingpri = NUMPRI;
3062
3063 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3064 {
3065 --pendingpri;
3066
3067 while (pendingcnt [pendingpri])
3068 {
3069 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3070
3071 p->w->pending = 0;
3072 EV_CB_INVOKE (p->w, p->events);
3073 EV_FREQUENT_CHECK;
3074 }
3075 }
3076 }
3077
3078 #if EV_IDLE_ENABLE
3079 /* make idle watchers pending. this handles the "call-idle */
3080 /* only when higher priorities are idle" logic */
3081 inline_size void
3082 idle_reify (EV_P)
3083 {
3084 if (expect_false (idleall))
3085 {
3086 int pri;
3087
3088 for (pri = NUMPRI; pri--; )
3089 {
3090 if (pendingcnt [pri])
3091 break;
3092
3093 if (idlecnt [pri])
3094 {
3095 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3096 break;
3097 }
3098 }
3099 }
3100 }
3101 #endif
3102
3103 /* make timers pending */
3104 inline_size void
3105 timers_reify (EV_P)
3106 {
3107 EV_FREQUENT_CHECK;
3108
3109 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3110 {
3111 do
3112 {
3113 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3114
3115 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3116
3117 /* first reschedule or stop timer */
3118 if (w->repeat)
3119 {
3120 ev_at (w) += w->repeat;
3121 if (ev_at (w) < mn_now)
3122 ev_at (w) = mn_now;
3123
3124 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3125
3126 ANHE_at_cache (timers [HEAP0]);
3127 downheap (timers, timercnt, HEAP0);
3128 }
3129 else
3130 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3131
3132 EV_FREQUENT_CHECK;
3133 feed_reverse (EV_A_ (W)w);
3134 }
3135 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3136
3137 feed_reverse_done (EV_A_ EV_TIMER);
3138 }
3139 }
3140
3141 #if EV_PERIODIC_ENABLE
3142
3143 static void noinline
3144 periodic_recalc (EV_P_ ev_periodic *w)
3145 {
3146 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3147 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3148
3149 /* the above almost always errs on the low side */
3150 while (at <= ev_rt_now)
3151 {
3152 ev_tstamp nat = at + w->interval;
3153
3154 /* when resolution fails us, we use ev_rt_now */
3155 if (expect_false (nat == at))
3156 {
3157 at = ev_rt_now;
3158 break;
3159 }
3160
3161 at = nat;
3162 }
3163
3164 ev_at (w) = at;
3165 }
3166
3167 /* make periodics pending */
3168 inline_size void
3169 periodics_reify (EV_P)
3170 {
3171 EV_FREQUENT_CHECK;
3172
3173 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3174 {
3175 do
3176 {
3177 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3178
3179 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3180
3181 /* first reschedule or stop timer */
3182 if (w->reschedule_cb)
3183 {
3184 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3185
3186 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3187
3188 ANHE_at_cache (periodics [HEAP0]);
3189 downheap (periodics, periodiccnt, HEAP0);
3190 }
3191 else if (w->interval)
3192 {
3193 periodic_recalc (EV_A_ w);
3194 ANHE_at_cache (periodics [HEAP0]);
3195 downheap (periodics, periodiccnt, HEAP0);
3196 }
3197 else
3198 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3199
3200 EV_FREQUENT_CHECK;
3201 feed_reverse (EV_A_ (W)w);
3202 }
3203 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3204
3205 feed_reverse_done (EV_A_ EV_PERIODIC);
3206 }
3207 }
3208
3209 /* simply recalculate all periodics */
3210 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3211 static void noinline ecb_cold
3212 periodics_reschedule (EV_P)
3213 {
3214 int i;
3215
3216 /* adjust periodics after time jump */
3217 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3218 {
3219 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3220
3221 if (w->reschedule_cb)
3222 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3223 else if (w->interval)
3224 periodic_recalc (EV_A_ w);
3225
3226 ANHE_at_cache (periodics [i]);
3227 }
3228
3229 reheap (periodics, periodiccnt);
3230 }
3231 #endif
3232
3233 /* adjust all timers by a given offset */
3234 static void noinline ecb_cold
3235 timers_reschedule (EV_P_ ev_tstamp adjust)
3236 {
3237 int i;
3238
3239 for (i = 0; i < timercnt; ++i)
3240 {
3241 ANHE *he = timers + i + HEAP0;
3242 ANHE_w (*he)->at += adjust;
3243 ANHE_at_cache (*he);
3244 }
3245 }
3246
3247 /* fetch new monotonic and realtime times from the kernel */
3248 /* also detect if there was a timejump, and act accordingly */
3249 inline_speed void
3250 time_update (EV_P_ ev_tstamp max_block)
3251 {
3252 #if EV_USE_MONOTONIC
3253 if (expect_true (have_monotonic))
3254 {
3255 int i;
3256 ev_tstamp odiff = rtmn_diff;
3257
3258 mn_now = get_clock ();
3259
3260 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3261 /* interpolate in the meantime */
3262 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3263 {
3264 ev_rt_now = rtmn_diff + mn_now;
3265 return;
3266 }
3267
3268 now_floor = mn_now;
3269 ev_rt_now = ev_time ();
3270
3271 /* loop a few times, before making important decisions.
3272 * on the choice of "4": one iteration isn't enough,
3273 * in case we get preempted during the calls to
3274 * ev_time and get_clock. a second call is almost guaranteed
3275 * to succeed in that case, though. and looping a few more times
3276 * doesn't hurt either as we only do this on time-jumps or
3277 * in the unlikely event of having been preempted here.
3278 */
3279 for (i = 4; --i; )
3280 {
3281 ev_tstamp diff;
3282 rtmn_diff = ev_rt_now - mn_now;
3283
3284 diff = odiff - rtmn_diff;
3285
3286 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3287 return; /* all is well */
3288
3289 ev_rt_now = ev_time ();
3290 mn_now = get_clock ();
3291 now_floor = mn_now;
3292 }
3293
3294 /* no timer adjustment, as the monotonic clock doesn't jump */
3295 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3296 # if EV_PERIODIC_ENABLE
3297 periodics_reschedule (EV_A);
3298 # endif
3299 }
3300 else
3301 #endif
3302 {
3303 ev_rt_now = ev_time ();
3304
3305 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3306 {
3307 /* adjust timers. this is easy, as the offset is the same for all of them */
3308 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3309 #if EV_PERIODIC_ENABLE
3310 periodics_reschedule (EV_A);
3311 #endif
3312 }
3313
3314 mn_now = ev_rt_now;
3315 }
3316 }
3317
3318 int
3319 ev_run (EV_P_ int flags)
3320 {
3321 #if EV_FEATURE_API
3322 ++loop_depth;
3323 #endif
3324
3325 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3326
3327 loop_done = EVBREAK_CANCEL;
3328
3329 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3330
3331 do
3332 {
3333 #if EV_VERIFY >= 2
3334 ev_verify (EV_A);
3335 #endif
3336
3337 #ifndef _WIN32
3338 if (expect_false (curpid)) /* penalise the forking check even more */
3339 if (expect_false (getpid () != curpid))
3340 {
3341 curpid = getpid ();
3342 postfork = 1;
3343 }
3344 #endif
3345
3346 #if EV_FORK_ENABLE
3347 /* we might have forked, so queue fork handlers */
3348 if (expect_false (postfork))
3349 if (forkcnt)
3350 {
3351 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3352 EV_INVOKE_PENDING;
3353 }
3354 #endif
3355
3356 #if EV_PREPARE_ENABLE
3357 /* queue prepare watchers (and execute them) */
3358 if (expect_false (preparecnt))
3359 {
3360 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3361 EV_INVOKE_PENDING;
3362 }
3363 #endif
3364
3365 if (expect_false (loop_done))
3366 break;
3367
3368 /* we might have forked, so reify kernel state if necessary */
3369 if (expect_false (postfork))
3370 loop_fork (EV_A);
3371
3372 /* update fd-related kernel structures */
3373 fd_reify (EV_A);
3374
3375 /* calculate blocking time */
3376 {
3377 ev_tstamp waittime = 0.;
3378 ev_tstamp sleeptime = 0.;
3379
3380 /* remember old timestamp for io_blocktime calculation */
3381 ev_tstamp prev_mn_now = mn_now;
3382
3383 /* update time to cancel out callback processing overhead */
3384 time_update (EV_A_ 1e100);
3385
3386 /* from now on, we want a pipe-wake-up */
3387 pipe_write_wanted = 1;
3388
3389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3390
3391 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3392 {
3393 waittime = MAX_BLOCKTIME;
3394
3395 if (timercnt)
3396 {
3397 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3398 if (waittime > to) waittime = to;
3399 }
3400
3401 #if EV_PERIODIC_ENABLE
3402 if (periodiccnt)
3403 {
3404 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3405 if (waittime > to) waittime = to;
3406 }
3407 #endif
3408
3409 /* don't let timeouts decrease the waittime below timeout_blocktime */
3410 if (expect_false (waittime < timeout_blocktime))
3411 waittime = timeout_blocktime;
3412
3413 /* at this point, we NEED to wait, so we have to ensure */
3414 /* to pass a minimum nonzero value to the backend */
3415 if (expect_false (waittime < backend_mintime))
3416 waittime = backend_mintime;
3417
3418 /* extra check because io_blocktime is commonly 0 */
3419 if (expect_false (io_blocktime))
3420 {
3421 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3422
3423 if (sleeptime > waittime - backend_mintime)
3424 sleeptime = waittime - backend_mintime;
3425
3426 if (expect_true (sleeptime > 0.))
3427 {
3428 ev_sleep (sleeptime);
3429 waittime -= sleeptime;
3430 }
3431 }
3432 }
3433
3434 #if EV_FEATURE_API
3435 ++loop_count;
3436 #endif
3437 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3438 backend_poll (EV_A_ waittime);
3439 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3440
3441 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3442
3443 ECB_MEMORY_FENCE_ACQUIRE;
3444 if (pipe_write_skipped)
3445 {
3446 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3447 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3448 }
3449
3450
3451 /* update ev_rt_now, do magic */
3452 time_update (EV_A_ waittime + sleeptime);
3453 }
3454
3455 /* queue pending timers and reschedule them */
3456 timers_reify (EV_A); /* relative timers called last */
3457 #if EV_PERIODIC_ENABLE
3458 periodics_reify (EV_A); /* absolute timers called first */
3459 #endif
3460
3461 #if EV_IDLE_ENABLE
3462 /* queue idle watchers unless other events are pending */
3463 idle_reify (EV_A);
3464 #endif
3465
3466 #if EV_CHECK_ENABLE
3467 /* queue check watchers, to be executed first */
3468 if (expect_false (checkcnt))
3469 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3470 #endif
3471
3472 EV_INVOKE_PENDING;
3473 }
3474 while (expect_true (
3475 activecnt
3476 && !loop_done
3477 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3478 ));
3479
3480 if (loop_done == EVBREAK_ONE)
3481 loop_done = EVBREAK_CANCEL;
3482
3483 #if EV_FEATURE_API
3484 --loop_depth;
3485 #endif
3486
3487 return activecnt;
3488 }
3489
3490 void
3491 ev_break (EV_P_ int how) EV_THROW
3492 {
3493 loop_done = how;
3494 }
3495
3496 void
3497 ev_ref (EV_P) EV_THROW
3498 {
3499 ++activecnt;
3500 }
3501
3502 void
3503 ev_unref (EV_P) EV_THROW
3504 {
3505 --activecnt;
3506 }
3507
3508 void
3509 ev_now_update (EV_P) EV_THROW
3510 {
3511 time_update (EV_A_ 1e100);
3512 }
3513
3514 void
3515 ev_suspend (EV_P) EV_THROW
3516 {
3517 ev_now_update (EV_A);
3518 }
3519
3520 void
3521 ev_resume (EV_P) EV_THROW
3522 {
3523 ev_tstamp mn_prev = mn_now;
3524
3525 ev_now_update (EV_A);
3526 timers_reschedule (EV_A_ mn_now - mn_prev);
3527 #if EV_PERIODIC_ENABLE
3528 /* TODO: really do this? */
3529 periodics_reschedule (EV_A);
3530 #endif
3531 }
3532
3533 /*****************************************************************************/
3534 /* singly-linked list management, used when the expected list length is short */
3535
3536 inline_size void
3537 wlist_add (WL *head, WL elem)
3538 {
3539 elem->next = *head;
3540 *head = elem;
3541 }
3542
3543 inline_size void
3544 wlist_del (WL *head, WL elem)
3545 {
3546 while (*head)
3547 {
3548 if (expect_true (*head == elem))
3549 {
3550 *head = elem->next;
3551 break;
3552 }
3553
3554 head = &(*head)->next;
3555 }
3556 }
3557
3558 /* internal, faster, version of ev_clear_pending */
3559 inline_speed void
3560 clear_pending (EV_P_ W w)
3561 {
3562 if (w->pending)
3563 {
3564 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3565 w->pending = 0;
3566 }
3567 }
3568
3569 int
3570 ev_clear_pending (EV_P_ void *w) EV_THROW
3571 {
3572 W w_ = (W)w;
3573 int pending = w_->pending;
3574
3575 if (expect_true (pending))
3576 {
3577 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3578 p->w = (W)&pending_w;
3579 w_->pending = 0;
3580 return p->events;
3581 }
3582 else
3583 return 0;
3584 }
3585
3586 inline_size void
3587 pri_adjust (EV_P_ W w)
3588 {
3589 int pri = ev_priority (w);
3590 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3591 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3592 ev_set_priority (w, pri);
3593 }
3594
3595 inline_speed void
3596 ev_start (EV_P_ W w, int active)
3597 {
3598 pri_adjust (EV_A_ w);
3599 w->active = active;
3600 ev_ref (EV_A);
3601 }
3602
3603 inline_size void
3604 ev_stop (EV_P_ W w)
3605 {
3606 ev_unref (EV_A);
3607 w->active = 0;
3608 }
3609
3610 /*****************************************************************************/
3611
3612 void noinline
3613 ev_io_start (EV_P_ ev_io *w) EV_THROW
3614 {
3615 int fd = w->fd;
3616
3617 if (expect_false (ev_is_active (w)))
3618 return;
3619
3620 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3621 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3622
3623 EV_FREQUENT_CHECK;
3624
3625 ev_start (EV_A_ (W)w, 1);
3626 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3627 wlist_add (&anfds[fd].head, (WL)w);
3628
3629 /* common bug, apparently */
3630 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3631
3632 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3633 w->events &= ~EV__IOFDSET;
3634
3635 EV_FREQUENT_CHECK;
3636 }
3637
3638 void noinline
3639 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3640 {
3641 clear_pending (EV_A_ (W)w);
3642 if (expect_false (!ev_is_active (w)))
3643 return;
3644
3645 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3646
3647 EV_FREQUENT_CHECK;
3648
3649 wlist_del (&anfds[w->fd].head, (WL)w);
3650 ev_stop (EV_A_ (W)w);
3651
3652 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3653
3654 EV_FREQUENT_CHECK;
3655 }
3656
3657 void noinline
3658 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3659 {
3660 if (expect_false (ev_is_active (w)))
3661 return;
3662
3663 ev_at (w) += mn_now;
3664
3665 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3666
3667 EV_FREQUENT_CHECK;
3668
3669 ++timercnt;
3670 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3671 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3672 ANHE_w (timers [ev_active (w)]) = (WT)w;
3673 ANHE_at_cache (timers [ev_active (w)]);
3674 upheap (timers, ev_active (w));
3675
3676 EV_FREQUENT_CHECK;
3677
3678 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3679 }
3680
3681 void noinline
3682 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3683 {
3684 clear_pending (EV_A_ (W)w);
3685 if (expect_false (!ev_is_active (w)))
3686 return;
3687
3688 EV_FREQUENT_CHECK;
3689
3690 {
3691 int active = ev_active (w);
3692
3693 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3694
3695 --timercnt;
3696
3697 if (expect_true (active < timercnt + HEAP0))
3698 {
3699 timers [active] = timers [timercnt + HEAP0];
3700 adjustheap (timers, timercnt, active);
3701 }
3702 }
3703
3704 ev_at (w) -= mn_now;
3705
3706 ev_stop (EV_A_ (W)w);
3707
3708 EV_FREQUENT_CHECK;
3709 }
3710
3711 void noinline
3712 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3713 {
3714 EV_FREQUENT_CHECK;
3715
3716 clear_pending (EV_A_ (W)w);
3717
3718 if (ev_is_active (w))
3719 {
3720 if (w->repeat)
3721 {
3722 ev_at (w) = mn_now + w->repeat;
3723 ANHE_at_cache (timers [ev_active (w)]);
3724 adjustheap (timers, timercnt, ev_active (w));
3725 }
3726 else
3727 ev_timer_stop (EV_A_ w);
3728 }
3729 else if (w->repeat)
3730 {
3731 ev_at (w) = w->repeat;
3732 ev_timer_start (EV_A_ w);
3733 }
3734
3735 EV_FREQUENT_CHECK;
3736 }
3737
3738 ev_tstamp
3739 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3740 {
3741 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3742 }
3743
3744 #if EV_PERIODIC_ENABLE
3745 void noinline
3746 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3747 {
3748 if (expect_false (ev_is_active (w)))
3749 return;
3750
3751 if (w->reschedule_cb)
3752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3753 else if (w->interval)
3754 {
3755 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3756 periodic_recalc (EV_A_ w);
3757 }
3758 else
3759 ev_at (w) = w->offset;
3760
3761 EV_FREQUENT_CHECK;
3762
3763 ++periodiccnt;
3764 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3765 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3766 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3767 ANHE_at_cache (periodics [ev_active (w)]);
3768 upheap (periodics, ev_active (w));
3769
3770 EV_FREQUENT_CHECK;
3771
3772 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3773 }
3774
3775 void noinline
3776 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3777 {
3778 clear_pending (EV_A_ (W)w);
3779 if (expect_false (!ev_is_active (w)))
3780 return;
3781
3782 EV_FREQUENT_CHECK;
3783
3784 {
3785 int active = ev_active (w);
3786
3787 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3788
3789 --periodiccnt;
3790
3791 if (expect_true (active < periodiccnt + HEAP0))
3792 {
3793 periodics [active] = periodics [periodiccnt + HEAP0];
3794 adjustheap (periodics, periodiccnt, active);
3795 }
3796 }
3797
3798 ev_stop (EV_A_ (W)w);
3799
3800 EV_FREQUENT_CHECK;
3801 }
3802
3803 void noinline
3804 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3805 {
3806 /* TODO: use adjustheap and recalculation */
3807 ev_periodic_stop (EV_A_ w);
3808 ev_periodic_start (EV_A_ w);
3809 }
3810 #endif
3811
3812 #ifndef SA_RESTART
3813 # define SA_RESTART 0
3814 #endif
3815
3816 #if EV_SIGNAL_ENABLE
3817
3818 void noinline
3819 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3820 {
3821 if (expect_false (ev_is_active (w)))
3822 return;
3823
3824 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3825
3826 #if EV_MULTIPLICITY
3827 assert (("libev: a signal must not be attached to two different loops",
3828 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3829
3830 signals [w->signum - 1].loop = EV_A;
3831 ECB_MEMORY_FENCE_RELEASE;
3832 #endif
3833
3834 EV_FREQUENT_CHECK;
3835
3836 #if EV_USE_SIGNALFD
3837 if (sigfd == -2)
3838 {
3839 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3840 if (sigfd < 0 && errno == EINVAL)
3841 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3842
3843 if (sigfd >= 0)
3844 {
3845 fd_intern (sigfd); /* doing it twice will not hurt */
3846
3847 sigemptyset (&sigfd_set);
3848
3849 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3850 ev_set_priority (&sigfd_w, EV_MAXPRI);
3851 ev_io_start (EV_A_ &sigfd_w);
3852 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3853 }
3854 }
3855
3856 if (sigfd >= 0)
3857 {
3858 /* TODO: check .head */
3859 sigaddset (&sigfd_set, w->signum);
3860 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3861
3862 signalfd (sigfd, &sigfd_set, 0);
3863 }
3864 #endif
3865
3866 ev_start (EV_A_ (W)w, 1);
3867 wlist_add (&signals [w->signum - 1].head, (WL)w);
3868
3869 if (!((WL)w)->next)
3870 # if EV_USE_SIGNALFD
3871 if (sigfd < 0) /*TODO*/
3872 # endif
3873 {
3874 # ifdef _WIN32
3875 evpipe_init (EV_A);
3876
3877 signal (w->signum, ev_sighandler);
3878 # else
3879 struct sigaction sa;
3880
3881 evpipe_init (EV_A);
3882
3883 sa.sa_handler = ev_sighandler;
3884 sigfillset (&sa.sa_mask);
3885 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3886 sigaction (w->signum, &sa, 0);
3887
3888 if (origflags & EVFLAG_NOSIGMASK)
3889 {
3890 sigemptyset (&sa.sa_mask);
3891 sigaddset (&sa.sa_mask, w->signum);
3892 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3893 }
3894 #endif
3895 }
3896
3897 EV_FREQUENT_CHECK;
3898 }
3899
3900 void noinline
3901 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3902 {
3903 clear_pending (EV_A_ (W)w);
3904 if (expect_false (!ev_is_active (w)))
3905 return;
3906
3907 EV_FREQUENT_CHECK;
3908
3909 wlist_del (&signals [w->signum - 1].head, (WL)w);
3910 ev_stop (EV_A_ (W)w);
3911
3912 if (!signals [w->signum - 1].head)
3913 {
3914 #if EV_MULTIPLICITY
3915 signals [w->signum - 1].loop = 0; /* unattach from signal */
3916 #endif
3917 #if EV_USE_SIGNALFD
3918 if (sigfd >= 0)
3919 {
3920 sigset_t ss;
3921
3922 sigemptyset (&ss);
3923 sigaddset (&ss, w->signum);
3924 sigdelset (&sigfd_set, w->signum);
3925
3926 signalfd (sigfd, &sigfd_set, 0);
3927 sigprocmask (SIG_UNBLOCK, &ss, 0);
3928 }
3929 else
3930 #endif
3931 signal (w->signum, SIG_DFL);
3932 }
3933
3934 EV_FREQUENT_CHECK;
3935 }
3936
3937 #endif
3938
3939 #if EV_CHILD_ENABLE
3940
3941 void
3942 ev_child_start (EV_P_ ev_child *w) EV_THROW
3943 {
3944 #if EV_MULTIPLICITY
3945 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3946 #endif
3947 if (expect_false (ev_is_active (w)))
3948 return;
3949
3950 EV_FREQUENT_CHECK;
3951
3952 ev_start (EV_A_ (W)w, 1);
3953 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3954
3955 EV_FREQUENT_CHECK;
3956 }
3957
3958 void
3959 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3960 {
3961 clear_pending (EV_A_ (W)w);
3962 if (expect_false (!ev_is_active (w)))
3963 return;
3964
3965 EV_FREQUENT_CHECK;
3966
3967 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3968 ev_stop (EV_A_ (W)w);
3969
3970 EV_FREQUENT_CHECK;
3971 }
3972
3973 #endif
3974
3975 #if EV_STAT_ENABLE
3976
3977 # ifdef _WIN32
3978 # undef lstat
3979 # define lstat(a,b) _stati64 (a,b)
3980 # endif
3981
3982 #define DEF_STAT_INTERVAL 5.0074891
3983 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3984 #define MIN_STAT_INTERVAL 0.1074891
3985
3986 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3987
3988 #if EV_USE_INOTIFY
3989
3990 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3991 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3992
3993 static void noinline
3994 infy_add (EV_P_ ev_stat *w)
3995 {
3996 w->wd = inotify_add_watch (fs_fd, w->path,
3997 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3998 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3999 | IN_DONT_FOLLOW | IN_MASK_ADD);
4000
4001 if (w->wd >= 0)
4002 {
4003 struct statfs sfs;
4004
4005 /* now local changes will be tracked by inotify, but remote changes won't */
4006 /* unless the filesystem is known to be local, we therefore still poll */
4007 /* also do poll on <2.6.25, but with normal frequency */
4008
4009 if (!fs_2625)
4010 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4011 else if (!statfs (w->path, &sfs)
4012 && (sfs.f_type == 0x1373 /* devfs */
4013 || sfs.f_type == 0x4006 /* fat */
4014 || sfs.f_type == 0x4d44 /* msdos */
4015 || sfs.f_type == 0xEF53 /* ext2/3 */
4016 || sfs.f_type == 0x72b6 /* jffs2 */
4017 || sfs.f_type == 0x858458f6 /* ramfs */
4018 || sfs.f_type == 0x5346544e /* ntfs */
4019 || sfs.f_type == 0x3153464a /* jfs */
4020 || sfs.f_type == 0x9123683e /* btrfs */
4021 || sfs.f_type == 0x52654973 /* reiser3 */
4022 || sfs.f_type == 0x01021994 /* tmpfs */
4023 || sfs.f_type == 0x58465342 /* xfs */))
4024 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4025 else
4026 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4027 }
4028 else
4029 {
4030 /* can't use inotify, continue to stat */
4031 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4032
4033 /* if path is not there, monitor some parent directory for speedup hints */
4034 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4035 /* but an efficiency issue only */
4036 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4037 {
4038 char path [4096];
4039 strcpy (path, w->path);
4040
4041 do
4042 {
4043 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4044 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4045
4046 char *pend = strrchr (path, '/');
4047
4048 if (!pend || pend == path)
4049 break;
4050
4051 *pend = 0;
4052 w->wd = inotify_add_watch (fs_fd, path, mask);
4053 }
4054 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4055 }
4056 }
4057
4058 if (w->wd >= 0)
4059 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4060
4061 /* now re-arm timer, if required */
4062 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4063 ev_timer_again (EV_A_ &w->timer);
4064 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4065 }
4066
4067 static void noinline
4068 infy_del (EV_P_ ev_stat *w)
4069 {
4070 int slot;
4071 int wd = w->wd;
4072
4073 if (wd < 0)
4074 return;
4075
4076 w->wd = -2;
4077 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4078 wlist_del (&fs_hash [slot].head, (WL)w);
4079
4080 /* remove this watcher, if others are watching it, they will rearm */
4081 inotify_rm_watch (fs_fd, wd);
4082 }
4083
4084 static void noinline
4085 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4086 {
4087 if (slot < 0)
4088 /* overflow, need to check for all hash slots */
4089 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4090 infy_wd (EV_A_ slot, wd, ev);
4091 else
4092 {
4093 WL w_;
4094
4095 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4096 {
4097 ev_stat *w = (ev_stat *)w_;
4098 w_ = w_->next; /* lets us remove this watcher and all before it */
4099
4100 if (w->wd == wd || wd == -1)
4101 {
4102 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4103 {
4104 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4105 w->wd = -1;
4106 infy_add (EV_A_ w); /* re-add, no matter what */
4107 }
4108
4109 stat_timer_cb (EV_A_ &w->timer, 0);
4110 }
4111 }
4112 }
4113 }
4114
4115 static void
4116 infy_cb (EV_P_ ev_io *w, int revents)
4117 {
4118 char buf [EV_INOTIFY_BUFSIZE];
4119 int ofs;
4120 int len = read (fs_fd, buf, sizeof (buf));
4121
4122 for (ofs = 0; ofs < len; )
4123 {
4124 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4125 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4126 ofs += sizeof (struct inotify_event) + ev->len;
4127 }
4128 }
4129
4130 inline_size void ecb_cold
4131 ev_check_2625 (EV_P)
4132 {
4133 /* kernels < 2.6.25 are borked
4134 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4135 */
4136 if (ev_linux_version () < 0x020619)
4137 return;
4138
4139 fs_2625 = 1;
4140 }
4141
4142 inline_size int
4143 infy_newfd (void)
4144 {
4145 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4146 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4147 if (fd >= 0)
4148 return fd;
4149 #endif
4150 return inotify_init ();
4151 }
4152
4153 inline_size void
4154 infy_init (EV_P)
4155 {
4156 if (fs_fd != -2)
4157 return;
4158
4159 fs_fd = -1;
4160
4161 ev_check_2625 (EV_A);
4162
4163 fs_fd = infy_newfd ();
4164
4165 if (fs_fd >= 0)
4166 {
4167 fd_intern (fs_fd);
4168 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4169 ev_set_priority (&fs_w, EV_MAXPRI);
4170 ev_io_start (EV_A_ &fs_w);
4171 ev_unref (EV_A);
4172 }
4173 }
4174
4175 inline_size void
4176 infy_fork (EV_P)
4177 {
4178 int slot;
4179
4180 if (fs_fd < 0)
4181 return;
4182
4183 ev_ref (EV_A);
4184 ev_io_stop (EV_A_ &fs_w);
4185 close (fs_fd);
4186 fs_fd = infy_newfd ();
4187
4188 if (fs_fd >= 0)
4189 {
4190 fd_intern (fs_fd);
4191 ev_io_set (&fs_w, fs_fd, EV_READ);
4192 ev_io_start (EV_A_ &fs_w);
4193 ev_unref (EV_A);
4194 }
4195
4196 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4197 {
4198 WL w_ = fs_hash [slot].head;
4199 fs_hash [slot].head = 0;
4200
4201 while (w_)
4202 {
4203 ev_stat *w = (ev_stat *)w_;
4204 w_ = w_->next; /* lets us add this watcher */
4205
4206 w->wd = -1;
4207
4208 if (fs_fd >= 0)
4209 infy_add (EV_A_ w); /* re-add, no matter what */
4210 else
4211 {
4212 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4213 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4214 ev_timer_again (EV_A_ &w->timer);
4215 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4216 }
4217 }
4218 }
4219 }
4220
4221 #endif
4222
4223 #ifdef _WIN32
4224 # define EV_LSTAT(p,b) _stati64 (p, b)
4225 #else
4226 # define EV_LSTAT(p,b) lstat (p, b)
4227 #endif
4228
4229 void
4230 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4231 {
4232 if (lstat (w->path, &w->attr) < 0)
4233 w->attr.st_nlink = 0;
4234 else if (!w->attr.st_nlink)
4235 w->attr.st_nlink = 1;
4236 }
4237
4238 static void noinline
4239 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4240 {
4241 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4242
4243 ev_statdata prev = w->attr;
4244 ev_stat_stat (EV_A_ w);
4245
4246 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4247 if (
4248 prev.st_dev != w->attr.st_dev
4249 || prev.st_ino != w->attr.st_ino
4250 || prev.st_mode != w->attr.st_mode
4251 || prev.st_nlink != w->attr.st_nlink
4252 || prev.st_uid != w->attr.st_uid
4253 || prev.st_gid != w->attr.st_gid
4254 || prev.st_rdev != w->attr.st_rdev
4255 || prev.st_size != w->attr.st_size
4256 || prev.st_atime != w->attr.st_atime
4257 || prev.st_mtime != w->attr.st_mtime
4258 || prev.st_ctime != w->attr.st_ctime
4259 ) {
4260 /* we only update w->prev on actual differences */
4261 /* in case we test more often than invoke the callback, */
4262 /* to ensure that prev is always different to attr */
4263 w->prev = prev;
4264
4265 #if EV_USE_INOTIFY
4266 if (fs_fd >= 0)
4267 {
4268 infy_del (EV_A_ w);
4269 infy_add (EV_A_ w);
4270 ev_stat_stat (EV_A_ w); /* avoid race... */
4271 }
4272 #endif
4273
4274 ev_feed_event (EV_A_ w, EV_STAT);
4275 }
4276 }
4277
4278 void
4279 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4280 {
4281 if (expect_false (ev_is_active (w)))
4282 return;
4283
4284 ev_stat_stat (EV_A_ w);
4285
4286 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4287 w->interval = MIN_STAT_INTERVAL;
4288
4289 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4290 ev_set_priority (&w->timer, ev_priority (w));
4291
4292 #if EV_USE_INOTIFY
4293 infy_init (EV_A);
4294
4295 if (fs_fd >= 0)
4296 infy_add (EV_A_ w);
4297 else
4298 #endif
4299 {
4300 ev_timer_again (EV_A_ &w->timer);
4301 ev_unref (EV_A);
4302 }
4303
4304 ev_start (EV_A_ (W)w, 1);
4305
4306 EV_FREQUENT_CHECK;
4307 }
4308
4309 void
4310 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4311 {
4312 clear_pending (EV_A_ (W)w);
4313 if (expect_false (!ev_is_active (w)))
4314 return;
4315
4316 EV_FREQUENT_CHECK;
4317
4318 #if EV_USE_INOTIFY
4319 infy_del (EV_A_ w);
4320 #endif
4321
4322 if (ev_is_active (&w->timer))
4323 {
4324 ev_ref (EV_A);
4325 ev_timer_stop (EV_A_ &w->timer);
4326 }
4327
4328 ev_stop (EV_A_ (W)w);
4329
4330 EV_FREQUENT_CHECK;
4331 }
4332 #endif
4333
4334 #if EV_IDLE_ENABLE
4335 void
4336 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4337 {
4338 if (expect_false (ev_is_active (w)))
4339 return;
4340
4341 pri_adjust (EV_A_ (W)w);
4342
4343 EV_FREQUENT_CHECK;
4344
4345 {
4346 int active = ++idlecnt [ABSPRI (w)];
4347
4348 ++idleall;
4349 ev_start (EV_A_ (W)w, active);
4350
4351 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4352 idles [ABSPRI (w)][active - 1] = w;
4353 }
4354
4355 EV_FREQUENT_CHECK;
4356 }
4357
4358 void
4359 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4360 {
4361 clear_pending (EV_A_ (W)w);
4362 if (expect_false (!ev_is_active (w)))
4363 return;
4364
4365 EV_FREQUENT_CHECK;
4366
4367 {
4368 int active = ev_active (w);
4369
4370 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4371 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4372
4373 ev_stop (EV_A_ (W)w);
4374 --idleall;
4375 }
4376
4377 EV_FREQUENT_CHECK;
4378 }
4379 #endif
4380
4381 #if EV_PREPARE_ENABLE
4382 void
4383 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4384 {
4385 if (expect_false (ev_is_active (w)))
4386 return;
4387
4388 EV_FREQUENT_CHECK;
4389
4390 ev_start (EV_A_ (W)w, ++preparecnt);
4391 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4392 prepares [preparecnt - 1] = w;
4393
4394 EV_FREQUENT_CHECK;
4395 }
4396
4397 void
4398 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4399 {
4400 clear_pending (EV_A_ (W)w);
4401 if (expect_false (!ev_is_active (w)))
4402 return;
4403
4404 EV_FREQUENT_CHECK;
4405
4406 {
4407 int active = ev_active (w);
4408
4409 prepares [active - 1] = prepares [--preparecnt];
4410 ev_active (prepares [active - 1]) = active;
4411 }
4412
4413 ev_stop (EV_A_ (W)w);
4414
4415 EV_FREQUENT_CHECK;
4416 }
4417 #endif
4418
4419 #if EV_CHECK_ENABLE
4420 void
4421 ev_check_start (EV_P_ ev_check *w) EV_THROW
4422 {
4423 if (expect_false (ev_is_active (w)))
4424 return;
4425
4426 EV_FREQUENT_CHECK;
4427
4428 ev_start (EV_A_ (W)w, ++checkcnt);
4429 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4430 checks [checkcnt - 1] = w;
4431
4432 EV_FREQUENT_CHECK;
4433 }
4434
4435 void
4436 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4437 {
4438 clear_pending (EV_A_ (W)w);
4439 if (expect_false (!ev_is_active (w)))
4440 return;
4441
4442 EV_FREQUENT_CHECK;
4443
4444 {
4445 int active = ev_active (w);
4446
4447 checks [active - 1] = checks [--checkcnt];
4448 ev_active (checks [active - 1]) = active;
4449 }
4450
4451 ev_stop (EV_A_ (W)w);
4452
4453 EV_FREQUENT_CHECK;
4454 }
4455 #endif
4456
4457 #if EV_EMBED_ENABLE
4458 void noinline
4459 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4460 {
4461 ev_run (w->other, EVRUN_NOWAIT);
4462 }
4463
4464 static void
4465 embed_io_cb (EV_P_ ev_io *io, int revents)
4466 {
4467 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4468
4469 if (ev_cb (w))
4470 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4471 else
4472 ev_run (w->other, EVRUN_NOWAIT);
4473 }
4474
4475 static void
4476 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4477 {
4478 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4479
4480 {
4481 EV_P = w->other;
4482
4483 while (fdchangecnt)
4484 {
4485 fd_reify (EV_A);
4486 ev_run (EV_A_ EVRUN_NOWAIT);
4487 }
4488 }
4489 }
4490
4491 static void
4492 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4493 {
4494 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4495
4496 ev_embed_stop (EV_A_ w);
4497
4498 {
4499 EV_P = w->other;
4500
4501 ev_loop_fork (EV_A);
4502 ev_run (EV_A_ EVRUN_NOWAIT);
4503 }
4504
4505 ev_embed_start (EV_A_ w);
4506 }
4507
4508 #if 0
4509 static void
4510 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4511 {
4512 ev_idle_stop (EV_A_ idle);
4513 }
4514 #endif
4515
4516 void
4517 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4518 {
4519 if (expect_false (ev_is_active (w)))
4520 return;
4521
4522 {
4523 EV_P = w->other;
4524 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4525 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4526 }
4527
4528 EV_FREQUENT_CHECK;
4529
4530 ev_set_priority (&w->io, ev_priority (w));
4531 ev_io_start (EV_A_ &w->io);
4532
4533 ev_prepare_init (&w->prepare, embed_prepare_cb);
4534 ev_set_priority (&w->prepare, EV_MINPRI);
4535 ev_prepare_start (EV_A_ &w->prepare);
4536
4537 ev_fork_init (&w->fork, embed_fork_cb);
4538 ev_fork_start (EV_A_ &w->fork);
4539
4540 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4541
4542 ev_start (EV_A_ (W)w, 1);
4543
4544 EV_FREQUENT_CHECK;
4545 }
4546
4547 void
4548 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4549 {
4550 clear_pending (EV_A_ (W)w);
4551 if (expect_false (!ev_is_active (w)))
4552 return;
4553
4554 EV_FREQUENT_CHECK;
4555
4556 ev_io_stop (EV_A_ &w->io);
4557 ev_prepare_stop (EV_A_ &w->prepare);
4558 ev_fork_stop (EV_A_ &w->fork);
4559
4560 ev_stop (EV_A_ (W)w);
4561
4562 EV_FREQUENT_CHECK;
4563 }
4564 #endif
4565
4566 #if EV_FORK_ENABLE
4567 void
4568 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4569 {
4570 if (expect_false (ev_is_active (w)))
4571 return;
4572
4573 EV_FREQUENT_CHECK;
4574
4575 ev_start (EV_A_ (W)w, ++forkcnt);
4576 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4577 forks [forkcnt - 1] = w;
4578
4579 EV_FREQUENT_CHECK;
4580 }
4581
4582 void
4583 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4584 {
4585 clear_pending (EV_A_ (W)w);
4586 if (expect_false (!ev_is_active (w)))
4587 return;
4588
4589 EV_FREQUENT_CHECK;
4590
4591 {
4592 int active = ev_active (w);
4593
4594 forks [active - 1] = forks [--forkcnt];
4595 ev_active (forks [active - 1]) = active;
4596 }
4597
4598 ev_stop (EV_A_ (W)w);
4599
4600 EV_FREQUENT_CHECK;
4601 }
4602 #endif
4603
4604 #if EV_CLEANUP_ENABLE
4605 void
4606 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4607 {
4608 if (expect_false (ev_is_active (w)))
4609 return;
4610
4611 EV_FREQUENT_CHECK;
4612
4613 ev_start (EV_A_ (W)w, ++cleanupcnt);
4614 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4615 cleanups [cleanupcnt - 1] = w;
4616
4617 /* cleanup watchers should never keep a refcount on the loop */
4618 ev_unref (EV_A);
4619 EV_FREQUENT_CHECK;
4620 }
4621
4622 void
4623 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4624 {
4625 clear_pending (EV_A_ (W)w);
4626 if (expect_false (!ev_is_active (w)))
4627 return;
4628
4629 EV_FREQUENT_CHECK;
4630 ev_ref (EV_A);
4631
4632 {
4633 int active = ev_active (w);
4634
4635 cleanups [active - 1] = cleanups [--cleanupcnt];
4636 ev_active (cleanups [active - 1]) = active;
4637 }
4638
4639 ev_stop (EV_A_ (W)w);
4640
4641 EV_FREQUENT_CHECK;
4642 }
4643 #endif
4644
4645 #if EV_ASYNC_ENABLE
4646 void
4647 ev_async_start (EV_P_ ev_async *w) EV_THROW
4648 {
4649 if (expect_false (ev_is_active (w)))
4650 return;
4651
4652 w->sent = 0;
4653
4654 evpipe_init (EV_A);
4655
4656 EV_FREQUENT_CHECK;
4657
4658 ev_start (EV_A_ (W)w, ++asynccnt);
4659 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4660 asyncs [asynccnt - 1] = w;
4661
4662 EV_FREQUENT_CHECK;
4663 }
4664
4665 void
4666 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4667 {
4668 clear_pending (EV_A_ (W)w);
4669 if (expect_false (!ev_is_active (w)))
4670 return;
4671
4672 EV_FREQUENT_CHECK;
4673
4674 {
4675 int active = ev_active (w);
4676
4677 asyncs [active - 1] = asyncs [--asynccnt];
4678 ev_active (asyncs [active - 1]) = active;
4679 }
4680
4681 ev_stop (EV_A_ (W)w);
4682
4683 EV_FREQUENT_CHECK;
4684 }
4685
4686 void
4687 ev_async_send (EV_P_ ev_async *w) EV_THROW
4688 {
4689 w->sent = 1;
4690 evpipe_write (EV_A_ &async_pending);
4691 }
4692 #endif
4693
4694 /*****************************************************************************/
4695
4696 struct ev_once
4697 {
4698 ev_io io;
4699 ev_timer to;
4700 void (*cb)(int revents, void *arg);
4701 void *arg;
4702 };
4703
4704 static void
4705 once_cb (EV_P_ struct ev_once *once, int revents)
4706 {
4707 void (*cb)(int revents, void *arg) = once->cb;
4708 void *arg = once->arg;
4709
4710 ev_io_stop (EV_A_ &once->io);
4711 ev_timer_stop (EV_A_ &once->to);
4712 ev_free (once);
4713
4714 cb (revents, arg);
4715 }
4716
4717 static void
4718 once_cb_io (EV_P_ ev_io *w, int revents)
4719 {
4720 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4721
4722 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4723 }
4724
4725 static void
4726 once_cb_to (EV_P_ ev_timer *w, int revents)
4727 {
4728 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4729
4730 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4731 }
4732
4733 void
4734 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4735 {
4736 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4737
4738 if (expect_false (!once))
4739 {
4740 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4741 return;
4742 }
4743
4744 once->cb = cb;
4745 once->arg = arg;
4746
4747 ev_init (&once->io, once_cb_io);
4748 if (fd >= 0)
4749 {
4750 ev_io_set (&once->io, fd, events);
4751 ev_io_start (EV_A_ &once->io);
4752 }
4753
4754 ev_init (&once->to, once_cb_to);
4755 if (timeout >= 0.)
4756 {
4757 ev_timer_set (&once->to, timeout, 0.);
4758 ev_timer_start (EV_A_ &once->to);
4759 }
4760 }
4761
4762 /*****************************************************************************/
4763
4764 #if EV_WALK_ENABLE
4765 void ecb_cold
4766 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4767 {
4768 int i, j;
4769 ev_watcher_list *wl, *wn;
4770
4771 if (types & (EV_IO | EV_EMBED))
4772 for (i = 0; i < anfdmax; ++i)
4773 for (wl = anfds [i].head; wl; )
4774 {
4775 wn = wl->next;
4776
4777 #if EV_EMBED_ENABLE
4778 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4779 {
4780 if (types & EV_EMBED)
4781 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4782 }
4783 else
4784 #endif
4785 #if EV_USE_INOTIFY
4786 if (ev_cb ((ev_io *)wl) == infy_cb)
4787 ;
4788 else
4789 #endif
4790 if ((ev_io *)wl != &pipe_w)
4791 if (types & EV_IO)
4792 cb (EV_A_ EV_IO, wl);
4793
4794 wl = wn;
4795 }
4796
4797 if (types & (EV_TIMER | EV_STAT))
4798 for (i = timercnt + HEAP0; i-- > HEAP0; )
4799 #if EV_STAT_ENABLE
4800 /*TODO: timer is not always active*/
4801 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4802 {
4803 if (types & EV_STAT)
4804 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4805 }
4806 else
4807 #endif
4808 if (types & EV_TIMER)
4809 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4810
4811 #if EV_PERIODIC_ENABLE
4812 if (types & EV_PERIODIC)
4813 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4814 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4815 #endif
4816
4817 #if EV_IDLE_ENABLE
4818 if (types & EV_IDLE)
4819 for (j = NUMPRI; j--; )
4820 for (i = idlecnt [j]; i--; )
4821 cb (EV_A_ EV_IDLE, idles [j][i]);
4822 #endif
4823
4824 #if EV_FORK_ENABLE
4825 if (types & EV_FORK)
4826 for (i = forkcnt; i--; )
4827 if (ev_cb (forks [i]) != embed_fork_cb)
4828 cb (EV_A_ EV_FORK, forks [i]);
4829 #endif
4830
4831 #if EV_ASYNC_ENABLE
4832 if (types & EV_ASYNC)
4833 for (i = asynccnt; i--; )
4834 cb (EV_A_ EV_ASYNC, asyncs [i]);
4835 #endif
4836
4837 #if EV_PREPARE_ENABLE
4838 if (types & EV_PREPARE)
4839 for (i = preparecnt; i--; )
4840 # if EV_EMBED_ENABLE
4841 if (ev_cb (prepares [i]) != embed_prepare_cb)
4842 # endif
4843 cb (EV_A_ EV_PREPARE, prepares [i]);
4844 #endif
4845
4846 #if EV_CHECK_ENABLE
4847 if (types & EV_CHECK)
4848 for (i = checkcnt; i--; )
4849 cb (EV_A_ EV_CHECK, checks [i]);
4850 #endif
4851
4852 #if EV_SIGNAL_ENABLE
4853 if (types & EV_SIGNAL)
4854 for (i = 0; i < EV_NSIG - 1; ++i)
4855 for (wl = signals [i].head; wl; )
4856 {
4857 wn = wl->next;
4858 cb (EV_A_ EV_SIGNAL, wl);
4859 wl = wn;
4860 }
4861 #endif
4862
4863 #if EV_CHILD_ENABLE
4864 if (types & EV_CHILD)
4865 for (i = (EV_PID_HASHSIZE); i--; )
4866 for (wl = childs [i]; wl; )
4867 {
4868 wn = wl->next;
4869 cb (EV_A_ EV_CHILD, wl);
4870 wl = wn;
4871 }
4872 #endif
4873 /* EV_STAT 0x00001000 /* stat data changed */
4874 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4875 }
4876 #endif
4877
4878 #if EV_MULTIPLICITY
4879 #include "ev_wrap.h"
4880 #endif
4881