ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.473
Committed: Tue Sep 9 21:51:35 2014 UTC (9 years, 7 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-4_19
Changes since 1.472: +1 -1 lines
Log Message:
c++ should die

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 # define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 #endif
248
249 #ifndef EV_USE_FLOOR
250 # define EV_USE_FLOOR 0
251 #endif
252
253 #ifndef EV_USE_CLOCK_SYSCALL
254 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 # else
257 # define EV_USE_CLOCK_SYSCALL 0
258 # endif
259 #endif
260
261 #if !(_POSIX_TIMERS > 0)
262 # ifndef EV_USE_MONOTONIC
263 # define EV_USE_MONOTONIC 0
264 # endif
265 # ifndef EV_USE_REALTIME
266 # define EV_USE_REALTIME 0
267 # endif
268 #endif
269
270 #ifndef EV_USE_MONOTONIC
271 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272 # define EV_USE_MONOTONIC EV_FEATURE_OS
273 # else
274 # define EV_USE_MONOTONIC 0
275 # endif
276 #endif
277
278 #ifndef EV_USE_REALTIME
279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280 #endif
281
282 #ifndef EV_USE_NANOSLEEP
283 # if _POSIX_C_SOURCE >= 199309L
284 # define EV_USE_NANOSLEEP EV_FEATURE_OS
285 # else
286 # define EV_USE_NANOSLEEP 0
287 # endif
288 #endif
289
290 #ifndef EV_USE_SELECT
291 # define EV_USE_SELECT EV_FEATURE_BACKENDS
292 #endif
293
294 #ifndef EV_USE_POLL
295 # ifdef _WIN32
296 # define EV_USE_POLL 0
297 # else
298 # define EV_USE_POLL EV_FEATURE_BACKENDS
299 # endif
300 #endif
301
302 #ifndef EV_USE_EPOLL
303 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
305 # else
306 # define EV_USE_EPOLL 0
307 # endif
308 #endif
309
310 #ifndef EV_USE_KQUEUE
311 # define EV_USE_KQUEUE 0
312 #endif
313
314 #ifndef EV_USE_PORT
315 # define EV_USE_PORT 0
316 #endif
317
318 #ifndef EV_USE_INOTIFY
319 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320 # define EV_USE_INOTIFY EV_FEATURE_OS
321 # else
322 # define EV_USE_INOTIFY 0
323 # endif
324 #endif
325
326 #ifndef EV_PID_HASHSIZE
327 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328 #endif
329
330 #ifndef EV_INOTIFY_HASHSIZE
331 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332 #endif
333
334 #ifndef EV_USE_EVENTFD
335 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336 # define EV_USE_EVENTFD EV_FEATURE_OS
337 # else
338 # define EV_USE_EVENTFD 0
339 # endif
340 #endif
341
342 #ifndef EV_USE_SIGNALFD
343 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344 # define EV_USE_SIGNALFD EV_FEATURE_OS
345 # else
346 # define EV_USE_SIGNALFD 0
347 # endif
348 #endif
349
350 #if 0 /* debugging */
351 # define EV_VERIFY 3
352 # define EV_USE_4HEAP 1
353 # define EV_HEAP_CACHE_AT 1
354 #endif
355
356 #ifndef EV_VERIFY
357 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358 #endif
359
360 #ifndef EV_USE_4HEAP
361 # define EV_USE_4HEAP EV_FEATURE_DATA
362 #endif
363
364 #ifndef EV_HEAP_CACHE_AT
365 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366 #endif
367
368 #ifdef ANDROID
369 /* supposedly, android doesn't typedef fd_mask */
370 # undef EV_USE_SELECT
371 # define EV_USE_SELECT 0
372 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373 # undef EV_USE_CLOCK_SYSCALL
374 # define EV_USE_CLOCK_SYSCALL 0
375 #endif
376
377 /* aix's poll.h seems to cause lots of trouble */
378 #ifdef _AIX
379 /* AIX has a completely broken poll.h header */
380 # undef EV_USE_POLL
381 # define EV_USE_POLL 0
382 #endif
383
384 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385 /* which makes programs even slower. might work on other unices, too. */
386 #if EV_USE_CLOCK_SYSCALL
387 # include <sys/syscall.h>
388 # ifdef SYS_clock_gettime
389 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390 # undef EV_USE_MONOTONIC
391 # define EV_USE_MONOTONIC 1
392 # else
393 # undef EV_USE_CLOCK_SYSCALL
394 # define EV_USE_CLOCK_SYSCALL 0
395 # endif
396 #endif
397
398 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
399
400 #ifndef CLOCK_MONOTONIC
401 # undef EV_USE_MONOTONIC
402 # define EV_USE_MONOTONIC 0
403 #endif
404
405 #ifndef CLOCK_REALTIME
406 # undef EV_USE_REALTIME
407 # define EV_USE_REALTIME 0
408 #endif
409
410 #if !EV_STAT_ENABLE
411 # undef EV_USE_INOTIFY
412 # define EV_USE_INOTIFY 0
413 #endif
414
415 #if !EV_USE_NANOSLEEP
416 /* hp-ux has it in sys/time.h, which we unconditionally include above */
417 # if !defined _WIN32 && !defined __hpux
418 # include <sys/select.h>
419 # endif
420 #endif
421
422 #if EV_USE_INOTIFY
423 # include <sys/statfs.h>
424 # include <sys/inotify.h>
425 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426 # ifndef IN_DONT_FOLLOW
427 # undef EV_USE_INOTIFY
428 # define EV_USE_INOTIFY 0
429 # endif
430 #endif
431
432 #if EV_USE_EVENTFD
433 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434 # include <stdint.h>
435 # ifndef EFD_NONBLOCK
436 # define EFD_NONBLOCK O_NONBLOCK
437 # endif
438 # ifndef EFD_CLOEXEC
439 # ifdef O_CLOEXEC
440 # define EFD_CLOEXEC O_CLOEXEC
441 # else
442 # define EFD_CLOEXEC 02000000
443 # endif
444 # endif
445 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446 #endif
447
448 #if EV_USE_SIGNALFD
449 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450 # include <stdint.h>
451 # ifndef SFD_NONBLOCK
452 # define SFD_NONBLOCK O_NONBLOCK
453 # endif
454 # ifndef SFD_CLOEXEC
455 # ifdef O_CLOEXEC
456 # define SFD_CLOEXEC O_CLOEXEC
457 # else
458 # define SFD_CLOEXEC 02000000
459 # endif
460 # endif
461 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463 struct signalfd_siginfo
464 {
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467 };
468 #endif
469
470 /**/
471
472 #if EV_VERIFY >= 3
473 # define EV_FREQUENT_CHECK ev_verify (EV_A)
474 #else
475 # define EV_FREQUENT_CHECK do { } while (0)
476 #endif
477
478 /*
479 * This is used to work around floating point rounding problems.
480 * This value is good at least till the year 4000.
481 */
482 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
484
485 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
486 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
487
488 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492 /* ECB.H BEGIN */
493 /*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533 #ifndef ECB_H
534 #define ECB_H
535
536 /* 16 bits major, 16 bits minor */
537 #define ECB_VERSION 0x00010003
538
539 #ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
546 #if __GNUC__
547 typedef signed long long int64_t;
548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
562 #else
563 #include <inttypes.h>
564 #if UINTMAX_MAX > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
568 #endif
569 #endif
570
571 /* work around x32 idiocy by defining proper macros */
572 #if __amd64 || __x86_64 || _M_AMD64 || _M_X64
573 #if _ILP32
574 #define ECB_AMD64_X32 1
575 #else
576 #define ECB_AMD64 1
577 #endif
578 #endif
579
580 /* many compilers define _GNUC_ to some versions but then only implement
581 * what their idiot authors think are the "more important" extensions,
582 * causing enormous grief in return for some better fake benchmark numbers.
583 * or so.
584 * we try to detect these and simply assume they are not gcc - if they have
585 * an issue with that they should have done it right in the first place.
586 */
587 #ifndef ECB_GCC_VERSION
588 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
589 #define ECB_GCC_VERSION(major,minor) 0
590 #else
591 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
592 #endif
593 #endif
594
595 #define ECB_CPP (__cplusplus+0)
596 #define ECB_CPP11 (__cplusplus >= 201103L)
597
598 #if ECB_CPP
599 #define ECB_C 0
600 #define ECB_STDC_VERSION 0
601 #else
602 #define ECB_C 1
603 #define ECB_STDC_VERSION __STDC_VERSION__
604 #endif
605
606 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
607 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
608
609 #if ECB_CPP
610 #define ECB_EXTERN_C extern "C"
611 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
612 #define ECB_EXTERN_C_END }
613 #else
614 #define ECB_EXTERN_C extern
615 #define ECB_EXTERN_C_BEG
616 #define ECB_EXTERN_C_END
617 #endif
618
619 /*****************************************************************************/
620
621 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
622 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
623
624 #if ECB_NO_THREADS
625 #define ECB_NO_SMP 1
626 #endif
627
628 #if ECB_NO_SMP
629 #define ECB_MEMORY_FENCE do { } while (0)
630 #endif
631
632 #ifndef ECB_MEMORY_FENCE
633 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
634 #if __i386 || __i386__
635 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
636 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
637 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
638 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
639 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
640 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
641 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
642 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
643 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
644 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
645 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
646 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
647 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
648 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
649 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
650 #elif __aarch64__
651 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
652 #elif (__sparc || __sparc__) && !__sparcv8
653 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
654 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
655 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
656 #elif defined __s390__ || defined __s390x__
657 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
658 #elif defined __mips__
659 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
660 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
662 #elif defined __alpha__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
664 #elif defined __hppa__
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
666 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
667 #elif defined __ia64__
668 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
669 #elif defined __m68k__
670 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
671 #elif defined __m88k__
672 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
673 #elif defined __sh__
674 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
675 #endif
676 #endif
677 #endif
678
679 #ifndef ECB_MEMORY_FENCE
680 #if ECB_GCC_VERSION(4,7)
681 /* see comment below (stdatomic.h) about the C11 memory model. */
682 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
683 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
684 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
685
686 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
687 * without risking compile time errors with other compilers. We *could*
688 * define our own ecb_clang_has_feature, but I just can't be bothered to work
689 * around this shit time and again.
690 * #elif defined __clang && __has_feature (cxx_atomic)
691 * // see comment below (stdatomic.h) about the C11 memory model.
692 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
693 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
694 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
695 */
696
697 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
698 #define ECB_MEMORY_FENCE __sync_synchronize ()
699 #elif _MSC_VER >= 1500 /* VC++ 2008 */
700 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
701 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
702 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
703 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
704 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
705 #elif _MSC_VER >= 1400 /* VC++ 2005 */
706 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
707 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
708 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
709 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
710 #elif defined _WIN32
711 #include <WinNT.h>
712 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
713 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
714 #include <mbarrier.h>
715 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
716 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
717 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
718 #elif __xlC__
719 #define ECB_MEMORY_FENCE __sync ()
720 #endif
721 #endif
722
723 #ifndef ECB_MEMORY_FENCE
724 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
725 /* we assume that these memory fences work on all variables/all memory accesses, */
726 /* not just C11 atomics and atomic accesses */
727 #include <stdatomic.h>
728 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
729 /* any fence other than seq_cst, which isn't very efficient for us. */
730 /* Why that is, we don't know - either the C11 memory model is quite useless */
731 /* for most usages, or gcc and clang have a bug */
732 /* I *currently* lean towards the latter, and inefficiently implement */
733 /* all three of ecb's fences as a seq_cst fence */
734 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
735 /* for all __atomic_thread_fence's except seq_cst */
736 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
737 #endif
738 #endif
739
740 #ifndef ECB_MEMORY_FENCE
741 #if !ECB_AVOID_PTHREADS
742 /*
743 * if you get undefined symbol references to pthread_mutex_lock,
744 * or failure to find pthread.h, then you should implement
745 * the ECB_MEMORY_FENCE operations for your cpu/compiler
746 * OR provide pthread.h and link against the posix thread library
747 * of your system.
748 */
749 #include <pthread.h>
750 #define ECB_NEEDS_PTHREADS 1
751 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
752
753 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
754 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
755 #endif
756 #endif
757
758 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
759 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
760 #endif
761
762 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
763 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
764 #endif
765
766 /*****************************************************************************/
767
768 #if __cplusplus
769 #define ecb_inline static inline
770 #elif ECB_GCC_VERSION(2,5)
771 #define ecb_inline static __inline__
772 #elif ECB_C99
773 #define ecb_inline static inline
774 #else
775 #define ecb_inline static
776 #endif
777
778 #if ECB_GCC_VERSION(3,3)
779 #define ecb_restrict __restrict__
780 #elif ECB_C99
781 #define ecb_restrict restrict
782 #else
783 #define ecb_restrict
784 #endif
785
786 typedef int ecb_bool;
787
788 #define ECB_CONCAT_(a, b) a ## b
789 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
790 #define ECB_STRINGIFY_(a) # a
791 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
792
793 #define ecb_function_ ecb_inline
794
795 #if ECB_GCC_VERSION(3,1)
796 #define ecb_attribute(attrlist) __attribute__(attrlist)
797 #define ecb_is_constant(expr) __builtin_constant_p (expr)
798 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
799 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
800 #else
801 #define ecb_attribute(attrlist)
802
803 /* possible C11 impl for integral types
804 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
805 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
806
807 #define ecb_is_constant(expr) 0
808 #define ecb_expect(expr,value) (expr)
809 #define ecb_prefetch(addr,rw,locality)
810 #endif
811
812 /* no emulation for ecb_decltype */
813 #if ECB_GCC_VERSION(4,5)
814 #define ecb_decltype(x) __decltype(x)
815 #elif ECB_GCC_VERSION(3,0)
816 #define ecb_decltype(x) __typeof(x)
817 #endif
818
819 #if _MSC_VER >= 1300
820 #define ecb_deprecated __declspec(deprecated)
821 #else
822 #define ecb_deprecated ecb_attribute ((__deprecated__))
823 #endif
824
825 #define ecb_noinline ecb_attribute ((__noinline__))
826 #define ecb_unused ecb_attribute ((__unused__))
827 #define ecb_const ecb_attribute ((__const__))
828 #define ecb_pure ecb_attribute ((__pure__))
829
830 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */
831 #if ECB_C11
832 #define ecb_noreturn _Noreturn
833 #else
834 #define ecb_noreturn ecb_attribute ((__noreturn__))
835 #endif
836
837 #if ECB_GCC_VERSION(4,3)
838 #define ecb_artificial ecb_attribute ((__artificial__))
839 #define ecb_hot ecb_attribute ((__hot__))
840 #define ecb_cold ecb_attribute ((__cold__))
841 #else
842 #define ecb_artificial
843 #define ecb_hot
844 #define ecb_cold
845 #endif
846
847 /* put around conditional expressions if you are very sure that the */
848 /* expression is mostly true or mostly false. note that these return */
849 /* booleans, not the expression. */
850 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
851 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
852 /* for compatibility to the rest of the world */
853 #define ecb_likely(expr) ecb_expect_true (expr)
854 #define ecb_unlikely(expr) ecb_expect_false (expr)
855
856 /* count trailing zero bits and count # of one bits */
857 #if ECB_GCC_VERSION(3,4)
858 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
859 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
860 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
861 #define ecb_ctz32(x) __builtin_ctz (x)
862 #define ecb_ctz64(x) __builtin_ctzll (x)
863 #define ecb_popcount32(x) __builtin_popcount (x)
864 /* no popcountll */
865 #else
866 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
867 ecb_function_ int
868 ecb_ctz32 (uint32_t x)
869 {
870 int r = 0;
871
872 x &= ~x + 1; /* this isolates the lowest bit */
873
874 #if ECB_branchless_on_i386
875 r += !!(x & 0xaaaaaaaa) << 0;
876 r += !!(x & 0xcccccccc) << 1;
877 r += !!(x & 0xf0f0f0f0) << 2;
878 r += !!(x & 0xff00ff00) << 3;
879 r += !!(x & 0xffff0000) << 4;
880 #else
881 if (x & 0xaaaaaaaa) r += 1;
882 if (x & 0xcccccccc) r += 2;
883 if (x & 0xf0f0f0f0) r += 4;
884 if (x & 0xff00ff00) r += 8;
885 if (x & 0xffff0000) r += 16;
886 #endif
887
888 return r;
889 }
890
891 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
892 ecb_function_ int
893 ecb_ctz64 (uint64_t x)
894 {
895 int shift = x & 0xffffffffU ? 0 : 32;
896 return ecb_ctz32 (x >> shift) + shift;
897 }
898
899 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
900 ecb_function_ int
901 ecb_popcount32 (uint32_t x)
902 {
903 x -= (x >> 1) & 0x55555555;
904 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
905 x = ((x >> 4) + x) & 0x0f0f0f0f;
906 x *= 0x01010101;
907
908 return x >> 24;
909 }
910
911 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
912 ecb_function_ int ecb_ld32 (uint32_t x)
913 {
914 int r = 0;
915
916 if (x >> 16) { x >>= 16; r += 16; }
917 if (x >> 8) { x >>= 8; r += 8; }
918 if (x >> 4) { x >>= 4; r += 4; }
919 if (x >> 2) { x >>= 2; r += 2; }
920 if (x >> 1) { r += 1; }
921
922 return r;
923 }
924
925 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
926 ecb_function_ int ecb_ld64 (uint64_t x)
927 {
928 int r = 0;
929
930 if (x >> 32) { x >>= 32; r += 32; }
931
932 return r + ecb_ld32 (x);
933 }
934 #endif
935
936 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
937 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
938 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
939 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
940
941 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
942 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
943 {
944 return ( (x * 0x0802U & 0x22110U)
945 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
946 }
947
948 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
949 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
950 {
951 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
952 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
953 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
954 x = ( x >> 8 ) | ( x << 8);
955
956 return x;
957 }
958
959 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
960 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
961 {
962 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
963 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
964 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
965 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
966 x = ( x >> 16 ) | ( x << 16);
967
968 return x;
969 }
970
971 /* popcount64 is only available on 64 bit cpus as gcc builtin */
972 /* so for this version we are lazy */
973 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
974 ecb_function_ int
975 ecb_popcount64 (uint64_t x)
976 {
977 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
978 }
979
980 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
981 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
982 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
983 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
984 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
985 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
986 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
987 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
988
989 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
990 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
991 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
992 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
993 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
994 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
995 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
996 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
997
998 #if ECB_GCC_VERSION(4,3)
999 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1000 #define ecb_bswap32(x) __builtin_bswap32 (x)
1001 #define ecb_bswap64(x) __builtin_bswap64 (x)
1002 #else
1003 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
1004 ecb_function_ uint16_t
1005 ecb_bswap16 (uint16_t x)
1006 {
1007 return ecb_rotl16 (x, 8);
1008 }
1009
1010 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
1011 ecb_function_ uint32_t
1012 ecb_bswap32 (uint32_t x)
1013 {
1014 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1015 }
1016
1017 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
1018 ecb_function_ uint64_t
1019 ecb_bswap64 (uint64_t x)
1020 {
1021 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1022 }
1023 #endif
1024
1025 #if ECB_GCC_VERSION(4,5)
1026 #define ecb_unreachable() __builtin_unreachable ()
1027 #else
1028 /* this seems to work fine, but gcc always emits a warning for it :/ */
1029 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1030 ecb_inline void ecb_unreachable (void) { }
1031 #endif
1032
1033 /* try to tell the compiler that some condition is definitely true */
1034 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1035
1036 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1037 ecb_inline unsigned char
1038 ecb_byteorder_helper (void)
1039 {
1040 /* the union code still generates code under pressure in gcc, */
1041 /* but less than using pointers, and always seems to */
1042 /* successfully return a constant. */
1043 /* the reason why we have this horrible preprocessor mess */
1044 /* is to avoid it in all cases, at least on common architectures */
1045 /* or when using a recent enough gcc version (>= 4.6) */
1046 #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1047 return 0x44;
1048 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1049 return 0x44;
1050 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1051 return 0x11;
1052 #else
1053 union
1054 {
1055 uint32_t i;
1056 uint8_t c;
1057 } u = { 0x11223344 };
1058 return u.c;
1059 #endif
1060 }
1061
1062 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1063 ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1064 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1065 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1066
1067 #if ECB_GCC_VERSION(3,0) || ECB_C99
1068 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1069 #else
1070 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1071 #endif
1072
1073 #if __cplusplus
1074 template<typename T>
1075 static inline T ecb_div_rd (T val, T div)
1076 {
1077 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1078 }
1079 template<typename T>
1080 static inline T ecb_div_ru (T val, T div)
1081 {
1082 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1083 }
1084 #else
1085 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1086 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1087 #endif
1088
1089 #if ecb_cplusplus_does_not_suck
1090 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1091 template<typename T, int N>
1092 static inline int ecb_array_length (const T (&arr)[N])
1093 {
1094 return N;
1095 }
1096 #else
1097 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1098 #endif
1099
1100 /*******************************************************************************/
1101 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1102
1103 /* basically, everything uses "ieee pure-endian" floating point numbers */
1104 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1105 #if 0 \
1106 || __i386 || __i386__ \
1107 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1108 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1109 || defined __s390__ || defined __s390x__ \
1110 || defined __mips__ \
1111 || defined __alpha__ \
1112 || defined __hppa__ \
1113 || defined __ia64__ \
1114 || defined __m68k__ \
1115 || defined __m88k__ \
1116 || defined __sh__ \
1117 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1118 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1119 || defined __aarch64__
1120 #define ECB_STDFP 1
1121 #include <string.h> /* for memcpy */
1122 #else
1123 #define ECB_STDFP 0
1124 #endif
1125
1126 #ifndef ECB_NO_LIBM
1127
1128 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1129
1130 /* only the oldest of old doesn't have this one. solaris. */
1131 #ifdef INFINITY
1132 #define ECB_INFINITY INFINITY
1133 #else
1134 #define ECB_INFINITY HUGE_VAL
1135 #endif
1136
1137 #ifdef NAN
1138 #define ECB_NAN NAN
1139 #else
1140 #define ECB_NAN ECB_INFINITY
1141 #endif
1142
1143 /* converts an ieee half/binary16 to a float */
1144 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1145 ecb_function_ float
1146 ecb_binary16_to_float (uint16_t x)
1147 {
1148 int e = (x >> 10) & 0x1f;
1149 int m = x & 0x3ff;
1150 float r;
1151
1152 if (!e ) r = ldexpf (m , -24);
1153 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1154 else if (m ) r = ECB_NAN;
1155 else r = ECB_INFINITY;
1156
1157 return x & 0x8000 ? -r : r;
1158 }
1159
1160 /* convert a float to ieee single/binary32 */
1161 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1162 ecb_function_ uint32_t
1163 ecb_float_to_binary32 (float x)
1164 {
1165 uint32_t r;
1166
1167 #if ECB_STDFP
1168 memcpy (&r, &x, 4);
1169 #else
1170 /* slow emulation, works for anything but -0 */
1171 uint32_t m;
1172 int e;
1173
1174 if (x == 0e0f ) return 0x00000000U;
1175 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1176 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1177 if (x != x ) return 0x7fbfffffU;
1178
1179 m = frexpf (x, &e) * 0x1000000U;
1180
1181 r = m & 0x80000000U;
1182
1183 if (r)
1184 m = -m;
1185
1186 if (e <= -126)
1187 {
1188 m &= 0xffffffU;
1189 m >>= (-125 - e);
1190 e = -126;
1191 }
1192
1193 r |= (e + 126) << 23;
1194 r |= m & 0x7fffffU;
1195 #endif
1196
1197 return r;
1198 }
1199
1200 /* converts an ieee single/binary32 to a float */
1201 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1202 ecb_function_ float
1203 ecb_binary32_to_float (uint32_t x)
1204 {
1205 float r;
1206
1207 #if ECB_STDFP
1208 memcpy (&r, &x, 4);
1209 #else
1210 /* emulation, only works for normals and subnormals and +0 */
1211 int neg = x >> 31;
1212 int e = (x >> 23) & 0xffU;
1213
1214 x &= 0x7fffffU;
1215
1216 if (e)
1217 x |= 0x800000U;
1218 else
1219 e = 1;
1220
1221 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1222 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1223
1224 r = neg ? -r : r;
1225 #endif
1226
1227 return r;
1228 }
1229
1230 /* convert a double to ieee double/binary64 */
1231 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1232 ecb_function_ uint64_t
1233 ecb_double_to_binary64 (double x)
1234 {
1235 uint64_t r;
1236
1237 #if ECB_STDFP
1238 memcpy (&r, &x, 8);
1239 #else
1240 /* slow emulation, works for anything but -0 */
1241 uint64_t m;
1242 int e;
1243
1244 if (x == 0e0 ) return 0x0000000000000000U;
1245 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1246 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1247 if (x != x ) return 0X7ff7ffffffffffffU;
1248
1249 m = frexp (x, &e) * 0x20000000000000U;
1250
1251 r = m & 0x8000000000000000;;
1252
1253 if (r)
1254 m = -m;
1255
1256 if (e <= -1022)
1257 {
1258 m &= 0x1fffffffffffffU;
1259 m >>= (-1021 - e);
1260 e = -1022;
1261 }
1262
1263 r |= ((uint64_t)(e + 1022)) << 52;
1264 r |= m & 0xfffffffffffffU;
1265 #endif
1266
1267 return r;
1268 }
1269
1270 /* converts an ieee double/binary64 to a double */
1271 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1272 ecb_function_ double
1273 ecb_binary64_to_double (uint64_t x)
1274 {
1275 double r;
1276
1277 #if ECB_STDFP
1278 memcpy (&r, &x, 8);
1279 #else
1280 /* emulation, only works for normals and subnormals and +0 */
1281 int neg = x >> 63;
1282 int e = (x >> 52) & 0x7ffU;
1283
1284 x &= 0xfffffffffffffU;
1285
1286 if (e)
1287 x |= 0x10000000000000U;
1288 else
1289 e = 1;
1290
1291 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1292 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1293
1294 r = neg ? -r : r;
1295 #endif
1296
1297 return r;
1298 }
1299
1300 #endif
1301
1302 #endif
1303
1304 /* ECB.H END */
1305
1306 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1307 /* if your architecture doesn't need memory fences, e.g. because it is
1308 * single-cpu/core, or if you use libev in a project that doesn't use libev
1309 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1310 * libev, in which cases the memory fences become nops.
1311 * alternatively, you can remove this #error and link against libpthread,
1312 * which will then provide the memory fences.
1313 */
1314 # error "memory fences not defined for your architecture, please report"
1315 #endif
1316
1317 #ifndef ECB_MEMORY_FENCE
1318 # define ECB_MEMORY_FENCE do { } while (0)
1319 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1320 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1321 #endif
1322
1323 #define expect_false(cond) ecb_expect_false (cond)
1324 #define expect_true(cond) ecb_expect_true (cond)
1325 #define noinline ecb_noinline
1326
1327 #define inline_size ecb_inline
1328
1329 #if EV_FEATURE_CODE
1330 # define inline_speed ecb_inline
1331 #else
1332 # define inline_speed static noinline
1333 #endif
1334
1335 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1336
1337 #if EV_MINPRI == EV_MAXPRI
1338 # define ABSPRI(w) (((W)w), 0)
1339 #else
1340 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1341 #endif
1342
1343 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1344 #define EMPTY2(a,b) /* used to suppress some warnings */
1345
1346 typedef ev_watcher *W;
1347 typedef ev_watcher_list *WL;
1348 typedef ev_watcher_time *WT;
1349
1350 #define ev_active(w) ((W)(w))->active
1351 #define ev_at(w) ((WT)(w))->at
1352
1353 #if EV_USE_REALTIME
1354 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1355 /* giving it a reasonably high chance of working on typical architectures */
1356 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1357 #endif
1358
1359 #if EV_USE_MONOTONIC
1360 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1361 #endif
1362
1363 #ifndef EV_FD_TO_WIN32_HANDLE
1364 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1365 #endif
1366 #ifndef EV_WIN32_HANDLE_TO_FD
1367 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1368 #endif
1369 #ifndef EV_WIN32_CLOSE_FD
1370 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1371 #endif
1372
1373 #ifdef _WIN32
1374 # include "ev_win32.c"
1375 #endif
1376
1377 /*****************************************************************************/
1378
1379 /* define a suitable floor function (only used by periodics atm) */
1380
1381 #if EV_USE_FLOOR
1382 # include <math.h>
1383 # define ev_floor(v) floor (v)
1384 #else
1385
1386 #include <float.h>
1387
1388 /* a floor() replacement function, should be independent of ev_tstamp type */
1389 static ev_tstamp noinline
1390 ev_floor (ev_tstamp v)
1391 {
1392 /* the choice of shift factor is not terribly important */
1393 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1394 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1395 #else
1396 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1397 #endif
1398
1399 /* argument too large for an unsigned long? */
1400 if (expect_false (v >= shift))
1401 {
1402 ev_tstamp f;
1403
1404 if (v == v - 1.)
1405 return v; /* very large number */
1406
1407 f = shift * ev_floor (v * (1. / shift));
1408 return f + ev_floor (v - f);
1409 }
1410
1411 /* special treatment for negative args? */
1412 if (expect_false (v < 0.))
1413 {
1414 ev_tstamp f = -ev_floor (-v);
1415
1416 return f - (f == v ? 0 : 1);
1417 }
1418
1419 /* fits into an unsigned long */
1420 return (unsigned long)v;
1421 }
1422
1423 #endif
1424
1425 /*****************************************************************************/
1426
1427 #ifdef __linux
1428 # include <sys/utsname.h>
1429 #endif
1430
1431 static unsigned int noinline ecb_cold
1432 ev_linux_version (void)
1433 {
1434 #ifdef __linux
1435 unsigned int v = 0;
1436 struct utsname buf;
1437 int i;
1438 char *p = buf.release;
1439
1440 if (uname (&buf))
1441 return 0;
1442
1443 for (i = 3+1; --i; )
1444 {
1445 unsigned int c = 0;
1446
1447 for (;;)
1448 {
1449 if (*p >= '0' && *p <= '9')
1450 c = c * 10 + *p++ - '0';
1451 else
1452 {
1453 p += *p == '.';
1454 break;
1455 }
1456 }
1457
1458 v = (v << 8) | c;
1459 }
1460
1461 return v;
1462 #else
1463 return 0;
1464 #endif
1465 }
1466
1467 /*****************************************************************************/
1468
1469 #if EV_AVOID_STDIO
1470 static void noinline ecb_cold
1471 ev_printerr (const char *msg)
1472 {
1473 write (STDERR_FILENO, msg, strlen (msg));
1474 }
1475 #endif
1476
1477 static void (*syserr_cb)(const char *msg) EV_THROW;
1478
1479 void ecb_cold
1480 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1481 {
1482 syserr_cb = cb;
1483 }
1484
1485 static void noinline ecb_cold
1486 ev_syserr (const char *msg)
1487 {
1488 if (!msg)
1489 msg = "(libev) system error";
1490
1491 if (syserr_cb)
1492 syserr_cb (msg);
1493 else
1494 {
1495 #if EV_AVOID_STDIO
1496 ev_printerr (msg);
1497 ev_printerr (": ");
1498 ev_printerr (strerror (errno));
1499 ev_printerr ("\n");
1500 #else
1501 perror (msg);
1502 #endif
1503 abort ();
1504 }
1505 }
1506
1507 static void *
1508 ev_realloc_emul (void *ptr, long size) EV_THROW
1509 {
1510 /* some systems, notably openbsd and darwin, fail to properly
1511 * implement realloc (x, 0) (as required by both ansi c-89 and
1512 * the single unix specification, so work around them here.
1513 * recently, also (at least) fedora and debian started breaking it,
1514 * despite documenting it otherwise.
1515 */
1516
1517 if (size)
1518 return realloc (ptr, size);
1519
1520 free (ptr);
1521 return 0;
1522 }
1523
1524 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1525
1526 void ecb_cold
1527 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1528 {
1529 alloc = cb;
1530 }
1531
1532 inline_speed void *
1533 ev_realloc (void *ptr, long size)
1534 {
1535 ptr = alloc (ptr, size);
1536
1537 if (!ptr && size)
1538 {
1539 #if EV_AVOID_STDIO
1540 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1541 #else
1542 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1543 #endif
1544 abort ();
1545 }
1546
1547 return ptr;
1548 }
1549
1550 #define ev_malloc(size) ev_realloc (0, (size))
1551 #define ev_free(ptr) ev_realloc ((ptr), 0)
1552
1553 /*****************************************************************************/
1554
1555 /* set in reify when reification needed */
1556 #define EV_ANFD_REIFY 1
1557
1558 /* file descriptor info structure */
1559 typedef struct
1560 {
1561 WL head;
1562 unsigned char events; /* the events watched for */
1563 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1564 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1565 unsigned char unused;
1566 #if EV_USE_EPOLL
1567 unsigned int egen; /* generation counter to counter epoll bugs */
1568 #endif
1569 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1570 SOCKET handle;
1571 #endif
1572 #if EV_USE_IOCP
1573 OVERLAPPED or, ow;
1574 #endif
1575 } ANFD;
1576
1577 /* stores the pending event set for a given watcher */
1578 typedef struct
1579 {
1580 W w;
1581 int events; /* the pending event set for the given watcher */
1582 } ANPENDING;
1583
1584 #if EV_USE_INOTIFY
1585 /* hash table entry per inotify-id */
1586 typedef struct
1587 {
1588 WL head;
1589 } ANFS;
1590 #endif
1591
1592 /* Heap Entry */
1593 #if EV_HEAP_CACHE_AT
1594 /* a heap element */
1595 typedef struct {
1596 ev_tstamp at;
1597 WT w;
1598 } ANHE;
1599
1600 #define ANHE_w(he) (he).w /* access watcher, read-write */
1601 #define ANHE_at(he) (he).at /* access cached at, read-only */
1602 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1603 #else
1604 /* a heap element */
1605 typedef WT ANHE;
1606
1607 #define ANHE_w(he) (he)
1608 #define ANHE_at(he) (he)->at
1609 #define ANHE_at_cache(he)
1610 #endif
1611
1612 #if EV_MULTIPLICITY
1613
1614 struct ev_loop
1615 {
1616 ev_tstamp ev_rt_now;
1617 #define ev_rt_now ((loop)->ev_rt_now)
1618 #define VAR(name,decl) decl;
1619 #include "ev_vars.h"
1620 #undef VAR
1621 };
1622 #include "ev_wrap.h"
1623
1624 static struct ev_loop default_loop_struct;
1625 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1626
1627 #else
1628
1629 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1630 #define VAR(name,decl) static decl;
1631 #include "ev_vars.h"
1632 #undef VAR
1633
1634 static int ev_default_loop_ptr;
1635
1636 #endif
1637
1638 #if EV_FEATURE_API
1639 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1640 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1641 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1642 #else
1643 # define EV_RELEASE_CB (void)0
1644 # define EV_ACQUIRE_CB (void)0
1645 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1646 #endif
1647
1648 #define EVBREAK_RECURSE 0x80
1649
1650 /*****************************************************************************/
1651
1652 #ifndef EV_HAVE_EV_TIME
1653 ev_tstamp
1654 ev_time (void) EV_THROW
1655 {
1656 #if EV_USE_REALTIME
1657 if (expect_true (have_realtime))
1658 {
1659 struct timespec ts;
1660 clock_gettime (CLOCK_REALTIME, &ts);
1661 return ts.tv_sec + ts.tv_nsec * 1e-9;
1662 }
1663 #endif
1664
1665 struct timeval tv;
1666 gettimeofday (&tv, 0);
1667 return tv.tv_sec + tv.tv_usec * 1e-6;
1668 }
1669 #endif
1670
1671 inline_size ev_tstamp
1672 get_clock (void)
1673 {
1674 #if EV_USE_MONOTONIC
1675 if (expect_true (have_monotonic))
1676 {
1677 struct timespec ts;
1678 clock_gettime (CLOCK_MONOTONIC, &ts);
1679 return ts.tv_sec + ts.tv_nsec * 1e-9;
1680 }
1681 #endif
1682
1683 return ev_time ();
1684 }
1685
1686 #if EV_MULTIPLICITY
1687 ev_tstamp
1688 ev_now (EV_P) EV_THROW
1689 {
1690 return ev_rt_now;
1691 }
1692 #endif
1693
1694 void
1695 ev_sleep (ev_tstamp delay) EV_THROW
1696 {
1697 if (delay > 0.)
1698 {
1699 #if EV_USE_NANOSLEEP
1700 struct timespec ts;
1701
1702 EV_TS_SET (ts, delay);
1703 nanosleep (&ts, 0);
1704 #elif defined _WIN32
1705 Sleep ((unsigned long)(delay * 1e3));
1706 #else
1707 struct timeval tv;
1708
1709 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1710 /* something not guaranteed by newer posix versions, but guaranteed */
1711 /* by older ones */
1712 EV_TV_SET (tv, delay);
1713 select (0, 0, 0, 0, &tv);
1714 #endif
1715 }
1716 }
1717
1718 /*****************************************************************************/
1719
1720 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1721
1722 /* find a suitable new size for the given array, */
1723 /* hopefully by rounding to a nice-to-malloc size */
1724 inline_size int
1725 array_nextsize (int elem, int cur, int cnt)
1726 {
1727 int ncur = cur + 1;
1728
1729 do
1730 ncur <<= 1;
1731 while (cnt > ncur);
1732
1733 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1734 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1735 {
1736 ncur *= elem;
1737 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1738 ncur = ncur - sizeof (void *) * 4;
1739 ncur /= elem;
1740 }
1741
1742 return ncur;
1743 }
1744
1745 static void * noinline ecb_cold
1746 array_realloc (int elem, void *base, int *cur, int cnt)
1747 {
1748 *cur = array_nextsize (elem, *cur, cnt);
1749 return ev_realloc (base, elem * *cur);
1750 }
1751
1752 #define array_init_zero(base,count) \
1753 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1754
1755 #define array_needsize(type,base,cur,cnt,init) \
1756 if (expect_false ((cnt) > (cur))) \
1757 { \
1758 int ecb_unused ocur_ = (cur); \
1759 (base) = (type *)array_realloc \
1760 (sizeof (type), (base), &(cur), (cnt)); \
1761 init ((base) + (ocur_), (cur) - ocur_); \
1762 }
1763
1764 #if 0
1765 #define array_slim(type,stem) \
1766 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1767 { \
1768 stem ## max = array_roundsize (stem ## cnt >> 1); \
1769 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1770 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1771 }
1772 #endif
1773
1774 #define array_free(stem, idx) \
1775 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1776
1777 /*****************************************************************************/
1778
1779 /* dummy callback for pending events */
1780 static void noinline
1781 pendingcb (EV_P_ ev_prepare *w, int revents)
1782 {
1783 }
1784
1785 void noinline
1786 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1787 {
1788 W w_ = (W)w;
1789 int pri = ABSPRI (w_);
1790
1791 if (expect_false (w_->pending))
1792 pendings [pri][w_->pending - 1].events |= revents;
1793 else
1794 {
1795 w_->pending = ++pendingcnt [pri];
1796 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1797 pendings [pri][w_->pending - 1].w = w_;
1798 pendings [pri][w_->pending - 1].events = revents;
1799 }
1800
1801 pendingpri = NUMPRI - 1;
1802 }
1803
1804 inline_speed void
1805 feed_reverse (EV_P_ W w)
1806 {
1807 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1808 rfeeds [rfeedcnt++] = w;
1809 }
1810
1811 inline_size void
1812 feed_reverse_done (EV_P_ int revents)
1813 {
1814 do
1815 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1816 while (rfeedcnt);
1817 }
1818
1819 inline_speed void
1820 queue_events (EV_P_ W *events, int eventcnt, int type)
1821 {
1822 int i;
1823
1824 for (i = 0; i < eventcnt; ++i)
1825 ev_feed_event (EV_A_ events [i], type);
1826 }
1827
1828 /*****************************************************************************/
1829
1830 inline_speed void
1831 fd_event_nocheck (EV_P_ int fd, int revents)
1832 {
1833 ANFD *anfd = anfds + fd;
1834 ev_io *w;
1835
1836 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1837 {
1838 int ev = w->events & revents;
1839
1840 if (ev)
1841 ev_feed_event (EV_A_ (W)w, ev);
1842 }
1843 }
1844
1845 /* do not submit kernel events for fds that have reify set */
1846 /* because that means they changed while we were polling for new events */
1847 inline_speed void
1848 fd_event (EV_P_ int fd, int revents)
1849 {
1850 ANFD *anfd = anfds + fd;
1851
1852 if (expect_true (!anfd->reify))
1853 fd_event_nocheck (EV_A_ fd, revents);
1854 }
1855
1856 void
1857 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1858 {
1859 if (fd >= 0 && fd < anfdmax)
1860 fd_event_nocheck (EV_A_ fd, revents);
1861 }
1862
1863 /* make sure the external fd watch events are in-sync */
1864 /* with the kernel/libev internal state */
1865 inline_size void
1866 fd_reify (EV_P)
1867 {
1868 int i;
1869
1870 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1871 for (i = 0; i < fdchangecnt; ++i)
1872 {
1873 int fd = fdchanges [i];
1874 ANFD *anfd = anfds + fd;
1875
1876 if (anfd->reify & EV__IOFDSET && anfd->head)
1877 {
1878 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1879
1880 if (handle != anfd->handle)
1881 {
1882 unsigned long arg;
1883
1884 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1885
1886 /* handle changed, but fd didn't - we need to do it in two steps */
1887 backend_modify (EV_A_ fd, anfd->events, 0);
1888 anfd->events = 0;
1889 anfd->handle = handle;
1890 }
1891 }
1892 }
1893 #endif
1894
1895 for (i = 0; i < fdchangecnt; ++i)
1896 {
1897 int fd = fdchanges [i];
1898 ANFD *anfd = anfds + fd;
1899 ev_io *w;
1900
1901 unsigned char o_events = anfd->events;
1902 unsigned char o_reify = anfd->reify;
1903
1904 anfd->reify = 0;
1905
1906 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1907 {
1908 anfd->events = 0;
1909
1910 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1911 anfd->events |= (unsigned char)w->events;
1912
1913 if (o_events != anfd->events)
1914 o_reify = EV__IOFDSET; /* actually |= */
1915 }
1916
1917 if (o_reify & EV__IOFDSET)
1918 backend_modify (EV_A_ fd, o_events, anfd->events);
1919 }
1920
1921 fdchangecnt = 0;
1922 }
1923
1924 /* something about the given fd changed */
1925 inline_size void
1926 fd_change (EV_P_ int fd, int flags)
1927 {
1928 unsigned char reify = anfds [fd].reify;
1929 anfds [fd].reify |= flags;
1930
1931 if (expect_true (!reify))
1932 {
1933 ++fdchangecnt;
1934 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1935 fdchanges [fdchangecnt - 1] = fd;
1936 }
1937 }
1938
1939 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1940 inline_speed void ecb_cold
1941 fd_kill (EV_P_ int fd)
1942 {
1943 ev_io *w;
1944
1945 while ((w = (ev_io *)anfds [fd].head))
1946 {
1947 ev_io_stop (EV_A_ w);
1948 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1949 }
1950 }
1951
1952 /* check whether the given fd is actually valid, for error recovery */
1953 inline_size int ecb_cold
1954 fd_valid (int fd)
1955 {
1956 #ifdef _WIN32
1957 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1958 #else
1959 return fcntl (fd, F_GETFD) != -1;
1960 #endif
1961 }
1962
1963 /* called on EBADF to verify fds */
1964 static void noinline ecb_cold
1965 fd_ebadf (EV_P)
1966 {
1967 int fd;
1968
1969 for (fd = 0; fd < anfdmax; ++fd)
1970 if (anfds [fd].events)
1971 if (!fd_valid (fd) && errno == EBADF)
1972 fd_kill (EV_A_ fd);
1973 }
1974
1975 /* called on ENOMEM in select/poll to kill some fds and retry */
1976 static void noinline ecb_cold
1977 fd_enomem (EV_P)
1978 {
1979 int fd;
1980
1981 for (fd = anfdmax; fd--; )
1982 if (anfds [fd].events)
1983 {
1984 fd_kill (EV_A_ fd);
1985 break;
1986 }
1987 }
1988
1989 /* usually called after fork if backend needs to re-arm all fds from scratch */
1990 static void noinline
1991 fd_rearm_all (EV_P)
1992 {
1993 int fd;
1994
1995 for (fd = 0; fd < anfdmax; ++fd)
1996 if (anfds [fd].events)
1997 {
1998 anfds [fd].events = 0;
1999 anfds [fd].emask = 0;
2000 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2001 }
2002 }
2003
2004 /* used to prepare libev internal fd's */
2005 /* this is not fork-safe */
2006 inline_speed void
2007 fd_intern (int fd)
2008 {
2009 #ifdef _WIN32
2010 unsigned long arg = 1;
2011 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2012 #else
2013 fcntl (fd, F_SETFD, FD_CLOEXEC);
2014 fcntl (fd, F_SETFL, O_NONBLOCK);
2015 #endif
2016 }
2017
2018 /*****************************************************************************/
2019
2020 /*
2021 * the heap functions want a real array index. array index 0 is guaranteed to not
2022 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2023 * the branching factor of the d-tree.
2024 */
2025
2026 /*
2027 * at the moment we allow libev the luxury of two heaps,
2028 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2029 * which is more cache-efficient.
2030 * the difference is about 5% with 50000+ watchers.
2031 */
2032 #if EV_USE_4HEAP
2033
2034 #define DHEAP 4
2035 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2036 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2037 #define UPHEAP_DONE(p,k) ((p) == (k))
2038
2039 /* away from the root */
2040 inline_speed void
2041 downheap (ANHE *heap, int N, int k)
2042 {
2043 ANHE he = heap [k];
2044 ANHE *E = heap + N + HEAP0;
2045
2046 for (;;)
2047 {
2048 ev_tstamp minat;
2049 ANHE *minpos;
2050 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2051
2052 /* find minimum child */
2053 if (expect_true (pos + DHEAP - 1 < E))
2054 {
2055 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2056 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2057 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2058 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2059 }
2060 else if (pos < E)
2061 {
2062 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2063 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2064 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2065 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2066 }
2067 else
2068 break;
2069
2070 if (ANHE_at (he) <= minat)
2071 break;
2072
2073 heap [k] = *minpos;
2074 ev_active (ANHE_w (*minpos)) = k;
2075
2076 k = minpos - heap;
2077 }
2078
2079 heap [k] = he;
2080 ev_active (ANHE_w (he)) = k;
2081 }
2082
2083 #else /* 4HEAP */
2084
2085 #define HEAP0 1
2086 #define HPARENT(k) ((k) >> 1)
2087 #define UPHEAP_DONE(p,k) (!(p))
2088
2089 /* away from the root */
2090 inline_speed void
2091 downheap (ANHE *heap, int N, int k)
2092 {
2093 ANHE he = heap [k];
2094
2095 for (;;)
2096 {
2097 int c = k << 1;
2098
2099 if (c >= N + HEAP0)
2100 break;
2101
2102 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2103 ? 1 : 0;
2104
2105 if (ANHE_at (he) <= ANHE_at (heap [c]))
2106 break;
2107
2108 heap [k] = heap [c];
2109 ev_active (ANHE_w (heap [k])) = k;
2110
2111 k = c;
2112 }
2113
2114 heap [k] = he;
2115 ev_active (ANHE_w (he)) = k;
2116 }
2117 #endif
2118
2119 /* towards the root */
2120 inline_speed void
2121 upheap (ANHE *heap, int k)
2122 {
2123 ANHE he = heap [k];
2124
2125 for (;;)
2126 {
2127 int p = HPARENT (k);
2128
2129 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2130 break;
2131
2132 heap [k] = heap [p];
2133 ev_active (ANHE_w (heap [k])) = k;
2134 k = p;
2135 }
2136
2137 heap [k] = he;
2138 ev_active (ANHE_w (he)) = k;
2139 }
2140
2141 /* move an element suitably so it is in a correct place */
2142 inline_size void
2143 adjustheap (ANHE *heap, int N, int k)
2144 {
2145 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2146 upheap (heap, k);
2147 else
2148 downheap (heap, N, k);
2149 }
2150
2151 /* rebuild the heap: this function is used only once and executed rarely */
2152 inline_size void
2153 reheap (ANHE *heap, int N)
2154 {
2155 int i;
2156
2157 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2158 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2159 for (i = 0; i < N; ++i)
2160 upheap (heap, i + HEAP0);
2161 }
2162
2163 /*****************************************************************************/
2164
2165 /* associate signal watchers to a signal signal */
2166 typedef struct
2167 {
2168 EV_ATOMIC_T pending;
2169 #if EV_MULTIPLICITY
2170 EV_P;
2171 #endif
2172 WL head;
2173 } ANSIG;
2174
2175 static ANSIG signals [EV_NSIG - 1];
2176
2177 /*****************************************************************************/
2178
2179 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2180
2181 static void noinline ecb_cold
2182 evpipe_init (EV_P)
2183 {
2184 if (!ev_is_active (&pipe_w))
2185 {
2186 int fds [2];
2187
2188 # if EV_USE_EVENTFD
2189 fds [0] = -1;
2190 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2191 if (fds [1] < 0 && errno == EINVAL)
2192 fds [1] = eventfd (0, 0);
2193
2194 if (fds [1] < 0)
2195 # endif
2196 {
2197 while (pipe (fds))
2198 ev_syserr ("(libev) error creating signal/async pipe");
2199
2200 fd_intern (fds [0]);
2201 }
2202
2203 evpipe [0] = fds [0];
2204
2205 if (evpipe [1] < 0)
2206 evpipe [1] = fds [1]; /* first call, set write fd */
2207 else
2208 {
2209 /* on subsequent calls, do not change evpipe [1] */
2210 /* so that evpipe_write can always rely on its value. */
2211 /* this branch does not do anything sensible on windows, */
2212 /* so must not be executed on windows */
2213
2214 dup2 (fds [1], evpipe [1]);
2215 close (fds [1]);
2216 }
2217
2218 fd_intern (evpipe [1]);
2219
2220 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2221 ev_io_start (EV_A_ &pipe_w);
2222 ev_unref (EV_A); /* watcher should not keep loop alive */
2223 }
2224 }
2225
2226 inline_speed void
2227 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2228 {
2229 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2230
2231 if (expect_true (*flag))
2232 return;
2233
2234 *flag = 1;
2235 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2236
2237 pipe_write_skipped = 1;
2238
2239 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2240
2241 if (pipe_write_wanted)
2242 {
2243 int old_errno;
2244
2245 pipe_write_skipped = 0;
2246 ECB_MEMORY_FENCE_RELEASE;
2247
2248 old_errno = errno; /* save errno because write will clobber it */
2249
2250 #if EV_USE_EVENTFD
2251 if (evpipe [0] < 0)
2252 {
2253 uint64_t counter = 1;
2254 write (evpipe [1], &counter, sizeof (uint64_t));
2255 }
2256 else
2257 #endif
2258 {
2259 #ifdef _WIN32
2260 WSABUF buf;
2261 DWORD sent;
2262 buf.buf = &buf;
2263 buf.len = 1;
2264 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2265 #else
2266 write (evpipe [1], &(evpipe [1]), 1);
2267 #endif
2268 }
2269
2270 errno = old_errno;
2271 }
2272 }
2273
2274 /* called whenever the libev signal pipe */
2275 /* got some events (signal, async) */
2276 static void
2277 pipecb (EV_P_ ev_io *iow, int revents)
2278 {
2279 int i;
2280
2281 if (revents & EV_READ)
2282 {
2283 #if EV_USE_EVENTFD
2284 if (evpipe [0] < 0)
2285 {
2286 uint64_t counter;
2287 read (evpipe [1], &counter, sizeof (uint64_t));
2288 }
2289 else
2290 #endif
2291 {
2292 char dummy[4];
2293 #ifdef _WIN32
2294 WSABUF buf;
2295 DWORD recvd;
2296 DWORD flags = 0;
2297 buf.buf = dummy;
2298 buf.len = sizeof (dummy);
2299 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2300 #else
2301 read (evpipe [0], &dummy, sizeof (dummy));
2302 #endif
2303 }
2304 }
2305
2306 pipe_write_skipped = 0;
2307
2308 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2309
2310 #if EV_SIGNAL_ENABLE
2311 if (sig_pending)
2312 {
2313 sig_pending = 0;
2314
2315 ECB_MEMORY_FENCE;
2316
2317 for (i = EV_NSIG - 1; i--; )
2318 if (expect_false (signals [i].pending))
2319 ev_feed_signal_event (EV_A_ i + 1);
2320 }
2321 #endif
2322
2323 #if EV_ASYNC_ENABLE
2324 if (async_pending)
2325 {
2326 async_pending = 0;
2327
2328 ECB_MEMORY_FENCE;
2329
2330 for (i = asynccnt; i--; )
2331 if (asyncs [i]->sent)
2332 {
2333 asyncs [i]->sent = 0;
2334 ECB_MEMORY_FENCE_RELEASE;
2335 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2336 }
2337 }
2338 #endif
2339 }
2340
2341 /*****************************************************************************/
2342
2343 void
2344 ev_feed_signal (int signum) EV_THROW
2345 {
2346 #if EV_MULTIPLICITY
2347 EV_P;
2348 ECB_MEMORY_FENCE_ACQUIRE;
2349 EV_A = signals [signum - 1].loop;
2350
2351 if (!EV_A)
2352 return;
2353 #endif
2354
2355 signals [signum - 1].pending = 1;
2356 evpipe_write (EV_A_ &sig_pending);
2357 }
2358
2359 static void
2360 ev_sighandler (int signum)
2361 {
2362 #ifdef _WIN32
2363 signal (signum, ev_sighandler);
2364 #endif
2365
2366 ev_feed_signal (signum);
2367 }
2368
2369 void noinline
2370 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2371 {
2372 WL w;
2373
2374 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2375 return;
2376
2377 --signum;
2378
2379 #if EV_MULTIPLICITY
2380 /* it is permissible to try to feed a signal to the wrong loop */
2381 /* or, likely more useful, feeding a signal nobody is waiting for */
2382
2383 if (expect_false (signals [signum].loop != EV_A))
2384 return;
2385 #endif
2386
2387 signals [signum].pending = 0;
2388 ECB_MEMORY_FENCE_RELEASE;
2389
2390 for (w = signals [signum].head; w; w = w->next)
2391 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2392 }
2393
2394 #if EV_USE_SIGNALFD
2395 static void
2396 sigfdcb (EV_P_ ev_io *iow, int revents)
2397 {
2398 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2399
2400 for (;;)
2401 {
2402 ssize_t res = read (sigfd, si, sizeof (si));
2403
2404 /* not ISO-C, as res might be -1, but works with SuS */
2405 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2406 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2407
2408 if (res < (ssize_t)sizeof (si))
2409 break;
2410 }
2411 }
2412 #endif
2413
2414 #endif
2415
2416 /*****************************************************************************/
2417
2418 #if EV_CHILD_ENABLE
2419 static WL childs [EV_PID_HASHSIZE];
2420
2421 static ev_signal childev;
2422
2423 #ifndef WIFCONTINUED
2424 # define WIFCONTINUED(status) 0
2425 #endif
2426
2427 /* handle a single child status event */
2428 inline_speed void
2429 child_reap (EV_P_ int chain, int pid, int status)
2430 {
2431 ev_child *w;
2432 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2433
2434 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2435 {
2436 if ((w->pid == pid || !w->pid)
2437 && (!traced || (w->flags & 1)))
2438 {
2439 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2440 w->rpid = pid;
2441 w->rstatus = status;
2442 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2443 }
2444 }
2445 }
2446
2447 #ifndef WCONTINUED
2448 # define WCONTINUED 0
2449 #endif
2450
2451 /* called on sigchld etc., calls waitpid */
2452 static void
2453 childcb (EV_P_ ev_signal *sw, int revents)
2454 {
2455 int pid, status;
2456
2457 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2458 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2459 if (!WCONTINUED
2460 || errno != EINVAL
2461 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2462 return;
2463
2464 /* make sure we are called again until all children have been reaped */
2465 /* we need to do it this way so that the callback gets called before we continue */
2466 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2467
2468 child_reap (EV_A_ pid, pid, status);
2469 if ((EV_PID_HASHSIZE) > 1)
2470 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2471 }
2472
2473 #endif
2474
2475 /*****************************************************************************/
2476
2477 #if EV_USE_IOCP
2478 # include "ev_iocp.c"
2479 #endif
2480 #if EV_USE_PORT
2481 # include "ev_port.c"
2482 #endif
2483 #if EV_USE_KQUEUE
2484 # include "ev_kqueue.c"
2485 #endif
2486 #if EV_USE_EPOLL
2487 # include "ev_epoll.c"
2488 #endif
2489 #if EV_USE_POLL
2490 # include "ev_poll.c"
2491 #endif
2492 #if EV_USE_SELECT
2493 # include "ev_select.c"
2494 #endif
2495
2496 int ecb_cold
2497 ev_version_major (void) EV_THROW
2498 {
2499 return EV_VERSION_MAJOR;
2500 }
2501
2502 int ecb_cold
2503 ev_version_minor (void) EV_THROW
2504 {
2505 return EV_VERSION_MINOR;
2506 }
2507
2508 /* return true if we are running with elevated privileges and should ignore env variables */
2509 int inline_size ecb_cold
2510 enable_secure (void)
2511 {
2512 #ifdef _WIN32
2513 return 0;
2514 #else
2515 return getuid () != geteuid ()
2516 || getgid () != getegid ();
2517 #endif
2518 }
2519
2520 unsigned int ecb_cold
2521 ev_supported_backends (void) EV_THROW
2522 {
2523 unsigned int flags = 0;
2524
2525 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2526 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2527 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2528 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2529 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2530
2531 return flags;
2532 }
2533
2534 unsigned int ecb_cold
2535 ev_recommended_backends (void) EV_THROW
2536 {
2537 unsigned int flags = ev_supported_backends ();
2538
2539 #ifndef __NetBSD__
2540 /* kqueue is borked on everything but netbsd apparently */
2541 /* it usually doesn't work correctly on anything but sockets and pipes */
2542 flags &= ~EVBACKEND_KQUEUE;
2543 #endif
2544 #ifdef __APPLE__
2545 /* only select works correctly on that "unix-certified" platform */
2546 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2547 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2548 #endif
2549 #ifdef __FreeBSD__
2550 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2551 #endif
2552
2553 return flags;
2554 }
2555
2556 unsigned int ecb_cold
2557 ev_embeddable_backends (void) EV_THROW
2558 {
2559 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2560
2561 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2562 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2563 flags &= ~EVBACKEND_EPOLL;
2564
2565 return flags;
2566 }
2567
2568 unsigned int
2569 ev_backend (EV_P) EV_THROW
2570 {
2571 return backend;
2572 }
2573
2574 #if EV_FEATURE_API
2575 unsigned int
2576 ev_iteration (EV_P) EV_THROW
2577 {
2578 return loop_count;
2579 }
2580
2581 unsigned int
2582 ev_depth (EV_P) EV_THROW
2583 {
2584 return loop_depth;
2585 }
2586
2587 void
2588 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2589 {
2590 io_blocktime = interval;
2591 }
2592
2593 void
2594 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2595 {
2596 timeout_blocktime = interval;
2597 }
2598
2599 void
2600 ev_set_userdata (EV_P_ void *data) EV_THROW
2601 {
2602 userdata = data;
2603 }
2604
2605 void *
2606 ev_userdata (EV_P) EV_THROW
2607 {
2608 return userdata;
2609 }
2610
2611 void
2612 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2613 {
2614 invoke_cb = invoke_pending_cb;
2615 }
2616
2617 void
2618 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2619 {
2620 release_cb = release;
2621 acquire_cb = acquire;
2622 }
2623 #endif
2624
2625 /* initialise a loop structure, must be zero-initialised */
2626 static void noinline ecb_cold
2627 loop_init (EV_P_ unsigned int flags) EV_THROW
2628 {
2629 if (!backend)
2630 {
2631 origflags = flags;
2632
2633 #if EV_USE_REALTIME
2634 if (!have_realtime)
2635 {
2636 struct timespec ts;
2637
2638 if (!clock_gettime (CLOCK_REALTIME, &ts))
2639 have_realtime = 1;
2640 }
2641 #endif
2642
2643 #if EV_USE_MONOTONIC
2644 if (!have_monotonic)
2645 {
2646 struct timespec ts;
2647
2648 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2649 have_monotonic = 1;
2650 }
2651 #endif
2652
2653 /* pid check not overridable via env */
2654 #ifndef _WIN32
2655 if (flags & EVFLAG_FORKCHECK)
2656 curpid = getpid ();
2657 #endif
2658
2659 if (!(flags & EVFLAG_NOENV)
2660 && !enable_secure ()
2661 && getenv ("LIBEV_FLAGS"))
2662 flags = atoi (getenv ("LIBEV_FLAGS"));
2663
2664 ev_rt_now = ev_time ();
2665 mn_now = get_clock ();
2666 now_floor = mn_now;
2667 rtmn_diff = ev_rt_now - mn_now;
2668 #if EV_FEATURE_API
2669 invoke_cb = ev_invoke_pending;
2670 #endif
2671
2672 io_blocktime = 0.;
2673 timeout_blocktime = 0.;
2674 backend = 0;
2675 backend_fd = -1;
2676 sig_pending = 0;
2677 #if EV_ASYNC_ENABLE
2678 async_pending = 0;
2679 #endif
2680 pipe_write_skipped = 0;
2681 pipe_write_wanted = 0;
2682 evpipe [0] = -1;
2683 evpipe [1] = -1;
2684 #if EV_USE_INOTIFY
2685 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2686 #endif
2687 #if EV_USE_SIGNALFD
2688 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2689 #endif
2690
2691 if (!(flags & EVBACKEND_MASK))
2692 flags |= ev_recommended_backends ();
2693
2694 #if EV_USE_IOCP
2695 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2696 #endif
2697 #if EV_USE_PORT
2698 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2699 #endif
2700 #if EV_USE_KQUEUE
2701 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2702 #endif
2703 #if EV_USE_EPOLL
2704 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2705 #endif
2706 #if EV_USE_POLL
2707 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2708 #endif
2709 #if EV_USE_SELECT
2710 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2711 #endif
2712
2713 ev_prepare_init (&pending_w, pendingcb);
2714
2715 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2716 ev_init (&pipe_w, pipecb);
2717 ev_set_priority (&pipe_w, EV_MAXPRI);
2718 #endif
2719 }
2720 }
2721
2722 /* free up a loop structure */
2723 void ecb_cold
2724 ev_loop_destroy (EV_P)
2725 {
2726 int i;
2727
2728 #if EV_MULTIPLICITY
2729 /* mimic free (0) */
2730 if (!EV_A)
2731 return;
2732 #endif
2733
2734 #if EV_CLEANUP_ENABLE
2735 /* queue cleanup watchers (and execute them) */
2736 if (expect_false (cleanupcnt))
2737 {
2738 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2739 EV_INVOKE_PENDING;
2740 }
2741 #endif
2742
2743 #if EV_CHILD_ENABLE
2744 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2745 {
2746 ev_ref (EV_A); /* child watcher */
2747 ev_signal_stop (EV_A_ &childev);
2748 }
2749 #endif
2750
2751 if (ev_is_active (&pipe_w))
2752 {
2753 /*ev_ref (EV_A);*/
2754 /*ev_io_stop (EV_A_ &pipe_w);*/
2755
2756 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2757 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2758 }
2759
2760 #if EV_USE_SIGNALFD
2761 if (ev_is_active (&sigfd_w))
2762 close (sigfd);
2763 #endif
2764
2765 #if EV_USE_INOTIFY
2766 if (fs_fd >= 0)
2767 close (fs_fd);
2768 #endif
2769
2770 if (backend_fd >= 0)
2771 close (backend_fd);
2772
2773 #if EV_USE_IOCP
2774 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2775 #endif
2776 #if EV_USE_PORT
2777 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2778 #endif
2779 #if EV_USE_KQUEUE
2780 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2781 #endif
2782 #if EV_USE_EPOLL
2783 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2784 #endif
2785 #if EV_USE_POLL
2786 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2787 #endif
2788 #if EV_USE_SELECT
2789 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2790 #endif
2791
2792 for (i = NUMPRI; i--; )
2793 {
2794 array_free (pending, [i]);
2795 #if EV_IDLE_ENABLE
2796 array_free (idle, [i]);
2797 #endif
2798 }
2799
2800 ev_free (anfds); anfds = 0; anfdmax = 0;
2801
2802 /* have to use the microsoft-never-gets-it-right macro */
2803 array_free (rfeed, EMPTY);
2804 array_free (fdchange, EMPTY);
2805 array_free (timer, EMPTY);
2806 #if EV_PERIODIC_ENABLE
2807 array_free (periodic, EMPTY);
2808 #endif
2809 #if EV_FORK_ENABLE
2810 array_free (fork, EMPTY);
2811 #endif
2812 #if EV_CLEANUP_ENABLE
2813 array_free (cleanup, EMPTY);
2814 #endif
2815 array_free (prepare, EMPTY);
2816 array_free (check, EMPTY);
2817 #if EV_ASYNC_ENABLE
2818 array_free (async, EMPTY);
2819 #endif
2820
2821 backend = 0;
2822
2823 #if EV_MULTIPLICITY
2824 if (ev_is_default_loop (EV_A))
2825 #endif
2826 ev_default_loop_ptr = 0;
2827 #if EV_MULTIPLICITY
2828 else
2829 ev_free (EV_A);
2830 #endif
2831 }
2832
2833 #if EV_USE_INOTIFY
2834 inline_size void infy_fork (EV_P);
2835 #endif
2836
2837 inline_size void
2838 loop_fork (EV_P)
2839 {
2840 #if EV_USE_PORT
2841 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2842 #endif
2843 #if EV_USE_KQUEUE
2844 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2845 #endif
2846 #if EV_USE_EPOLL
2847 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2848 #endif
2849 #if EV_USE_INOTIFY
2850 infy_fork (EV_A);
2851 #endif
2852
2853 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2854 if (ev_is_active (&pipe_w))
2855 {
2856 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2857
2858 ev_ref (EV_A);
2859 ev_io_stop (EV_A_ &pipe_w);
2860
2861 if (evpipe [0] >= 0)
2862 EV_WIN32_CLOSE_FD (evpipe [0]);
2863
2864 evpipe_init (EV_A);
2865 /* iterate over everything, in case we missed something before */
2866 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2867 }
2868 #endif
2869
2870 postfork = 0;
2871 }
2872
2873 #if EV_MULTIPLICITY
2874
2875 struct ev_loop * ecb_cold
2876 ev_loop_new (unsigned int flags) EV_THROW
2877 {
2878 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2879
2880 memset (EV_A, 0, sizeof (struct ev_loop));
2881 loop_init (EV_A_ flags);
2882
2883 if (ev_backend (EV_A))
2884 return EV_A;
2885
2886 ev_free (EV_A);
2887 return 0;
2888 }
2889
2890 #endif /* multiplicity */
2891
2892 #if EV_VERIFY
2893 static void noinline ecb_cold
2894 verify_watcher (EV_P_ W w)
2895 {
2896 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2897
2898 if (w->pending)
2899 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2900 }
2901
2902 static void noinline ecb_cold
2903 verify_heap (EV_P_ ANHE *heap, int N)
2904 {
2905 int i;
2906
2907 for (i = HEAP0; i < N + HEAP0; ++i)
2908 {
2909 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2910 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2911 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2912
2913 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2914 }
2915 }
2916
2917 static void noinline ecb_cold
2918 array_verify (EV_P_ W *ws, int cnt)
2919 {
2920 while (cnt--)
2921 {
2922 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2923 verify_watcher (EV_A_ ws [cnt]);
2924 }
2925 }
2926 #endif
2927
2928 #if EV_FEATURE_API
2929 void ecb_cold
2930 ev_verify (EV_P) EV_THROW
2931 {
2932 #if EV_VERIFY
2933 int i;
2934 WL w, w2;
2935
2936 assert (activecnt >= -1);
2937
2938 assert (fdchangemax >= fdchangecnt);
2939 for (i = 0; i < fdchangecnt; ++i)
2940 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2941
2942 assert (anfdmax >= 0);
2943 for (i = 0; i < anfdmax; ++i)
2944 {
2945 int j = 0;
2946
2947 for (w = w2 = anfds [i].head; w; w = w->next)
2948 {
2949 verify_watcher (EV_A_ (W)w);
2950
2951 if (j++ & 1)
2952 {
2953 assert (("libev: io watcher list contains a loop", w != w2));
2954 w2 = w2->next;
2955 }
2956
2957 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2958 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2959 }
2960 }
2961
2962 assert (timermax >= timercnt);
2963 verify_heap (EV_A_ timers, timercnt);
2964
2965 #if EV_PERIODIC_ENABLE
2966 assert (periodicmax >= periodiccnt);
2967 verify_heap (EV_A_ periodics, periodiccnt);
2968 #endif
2969
2970 for (i = NUMPRI; i--; )
2971 {
2972 assert (pendingmax [i] >= pendingcnt [i]);
2973 #if EV_IDLE_ENABLE
2974 assert (idleall >= 0);
2975 assert (idlemax [i] >= idlecnt [i]);
2976 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2977 #endif
2978 }
2979
2980 #if EV_FORK_ENABLE
2981 assert (forkmax >= forkcnt);
2982 array_verify (EV_A_ (W *)forks, forkcnt);
2983 #endif
2984
2985 #if EV_CLEANUP_ENABLE
2986 assert (cleanupmax >= cleanupcnt);
2987 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2988 #endif
2989
2990 #if EV_ASYNC_ENABLE
2991 assert (asyncmax >= asynccnt);
2992 array_verify (EV_A_ (W *)asyncs, asynccnt);
2993 #endif
2994
2995 #if EV_PREPARE_ENABLE
2996 assert (preparemax >= preparecnt);
2997 array_verify (EV_A_ (W *)prepares, preparecnt);
2998 #endif
2999
3000 #if EV_CHECK_ENABLE
3001 assert (checkmax >= checkcnt);
3002 array_verify (EV_A_ (W *)checks, checkcnt);
3003 #endif
3004
3005 # if 0
3006 #if EV_CHILD_ENABLE
3007 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3008 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3009 #endif
3010 # endif
3011 #endif
3012 }
3013 #endif
3014
3015 #if EV_MULTIPLICITY
3016 struct ev_loop * ecb_cold
3017 #else
3018 int
3019 #endif
3020 ev_default_loop (unsigned int flags) EV_THROW
3021 {
3022 if (!ev_default_loop_ptr)
3023 {
3024 #if EV_MULTIPLICITY
3025 EV_P = ev_default_loop_ptr = &default_loop_struct;
3026 #else
3027 ev_default_loop_ptr = 1;
3028 #endif
3029
3030 loop_init (EV_A_ flags);
3031
3032 if (ev_backend (EV_A))
3033 {
3034 #if EV_CHILD_ENABLE
3035 ev_signal_init (&childev, childcb, SIGCHLD);
3036 ev_set_priority (&childev, EV_MAXPRI);
3037 ev_signal_start (EV_A_ &childev);
3038 ev_unref (EV_A); /* child watcher should not keep loop alive */
3039 #endif
3040 }
3041 else
3042 ev_default_loop_ptr = 0;
3043 }
3044
3045 return ev_default_loop_ptr;
3046 }
3047
3048 void
3049 ev_loop_fork (EV_P) EV_THROW
3050 {
3051 postfork = 1;
3052 }
3053
3054 /*****************************************************************************/
3055
3056 void
3057 ev_invoke (EV_P_ void *w, int revents)
3058 {
3059 EV_CB_INVOKE ((W)w, revents);
3060 }
3061
3062 unsigned int
3063 ev_pending_count (EV_P) EV_THROW
3064 {
3065 int pri;
3066 unsigned int count = 0;
3067
3068 for (pri = NUMPRI; pri--; )
3069 count += pendingcnt [pri];
3070
3071 return count;
3072 }
3073
3074 void noinline
3075 ev_invoke_pending (EV_P)
3076 {
3077 pendingpri = NUMPRI;
3078
3079 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3080 {
3081 --pendingpri;
3082
3083 while (pendingcnt [pendingpri])
3084 {
3085 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3086
3087 p->w->pending = 0;
3088 EV_CB_INVOKE (p->w, p->events);
3089 EV_FREQUENT_CHECK;
3090 }
3091 }
3092 }
3093
3094 #if EV_IDLE_ENABLE
3095 /* make idle watchers pending. this handles the "call-idle */
3096 /* only when higher priorities are idle" logic */
3097 inline_size void
3098 idle_reify (EV_P)
3099 {
3100 if (expect_false (idleall))
3101 {
3102 int pri;
3103
3104 for (pri = NUMPRI; pri--; )
3105 {
3106 if (pendingcnt [pri])
3107 break;
3108
3109 if (idlecnt [pri])
3110 {
3111 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3112 break;
3113 }
3114 }
3115 }
3116 }
3117 #endif
3118
3119 /* make timers pending */
3120 inline_size void
3121 timers_reify (EV_P)
3122 {
3123 EV_FREQUENT_CHECK;
3124
3125 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3126 {
3127 do
3128 {
3129 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3130
3131 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3132
3133 /* first reschedule or stop timer */
3134 if (w->repeat)
3135 {
3136 ev_at (w) += w->repeat;
3137 if (ev_at (w) < mn_now)
3138 ev_at (w) = mn_now;
3139
3140 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3141
3142 ANHE_at_cache (timers [HEAP0]);
3143 downheap (timers, timercnt, HEAP0);
3144 }
3145 else
3146 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3147
3148 EV_FREQUENT_CHECK;
3149 feed_reverse (EV_A_ (W)w);
3150 }
3151 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3152
3153 feed_reverse_done (EV_A_ EV_TIMER);
3154 }
3155 }
3156
3157 #if EV_PERIODIC_ENABLE
3158
3159 static void noinline
3160 periodic_recalc (EV_P_ ev_periodic *w)
3161 {
3162 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3163 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3164
3165 /* the above almost always errs on the low side */
3166 while (at <= ev_rt_now)
3167 {
3168 ev_tstamp nat = at + w->interval;
3169
3170 /* when resolution fails us, we use ev_rt_now */
3171 if (expect_false (nat == at))
3172 {
3173 at = ev_rt_now;
3174 break;
3175 }
3176
3177 at = nat;
3178 }
3179
3180 ev_at (w) = at;
3181 }
3182
3183 /* make periodics pending */
3184 inline_size void
3185 periodics_reify (EV_P)
3186 {
3187 EV_FREQUENT_CHECK;
3188
3189 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3190 {
3191 do
3192 {
3193 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3194
3195 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3196
3197 /* first reschedule or stop timer */
3198 if (w->reschedule_cb)
3199 {
3200 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3201
3202 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3203
3204 ANHE_at_cache (periodics [HEAP0]);
3205 downheap (periodics, periodiccnt, HEAP0);
3206 }
3207 else if (w->interval)
3208 {
3209 periodic_recalc (EV_A_ w);
3210 ANHE_at_cache (periodics [HEAP0]);
3211 downheap (periodics, periodiccnt, HEAP0);
3212 }
3213 else
3214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3215
3216 EV_FREQUENT_CHECK;
3217 feed_reverse (EV_A_ (W)w);
3218 }
3219 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3220
3221 feed_reverse_done (EV_A_ EV_PERIODIC);
3222 }
3223 }
3224
3225 /* simply recalculate all periodics */
3226 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3227 static void noinline ecb_cold
3228 periodics_reschedule (EV_P)
3229 {
3230 int i;
3231
3232 /* adjust periodics after time jump */
3233 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3234 {
3235 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3236
3237 if (w->reschedule_cb)
3238 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3239 else if (w->interval)
3240 periodic_recalc (EV_A_ w);
3241
3242 ANHE_at_cache (periodics [i]);
3243 }
3244
3245 reheap (periodics, periodiccnt);
3246 }
3247 #endif
3248
3249 /* adjust all timers by a given offset */
3250 static void noinline ecb_cold
3251 timers_reschedule (EV_P_ ev_tstamp adjust)
3252 {
3253 int i;
3254
3255 for (i = 0; i < timercnt; ++i)
3256 {
3257 ANHE *he = timers + i + HEAP0;
3258 ANHE_w (*he)->at += adjust;
3259 ANHE_at_cache (*he);
3260 }
3261 }
3262
3263 /* fetch new monotonic and realtime times from the kernel */
3264 /* also detect if there was a timejump, and act accordingly */
3265 inline_speed void
3266 time_update (EV_P_ ev_tstamp max_block)
3267 {
3268 #if EV_USE_MONOTONIC
3269 if (expect_true (have_monotonic))
3270 {
3271 int i;
3272 ev_tstamp odiff = rtmn_diff;
3273
3274 mn_now = get_clock ();
3275
3276 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3277 /* interpolate in the meantime */
3278 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3279 {
3280 ev_rt_now = rtmn_diff + mn_now;
3281 return;
3282 }
3283
3284 now_floor = mn_now;
3285 ev_rt_now = ev_time ();
3286
3287 /* loop a few times, before making important decisions.
3288 * on the choice of "4": one iteration isn't enough,
3289 * in case we get preempted during the calls to
3290 * ev_time and get_clock. a second call is almost guaranteed
3291 * to succeed in that case, though. and looping a few more times
3292 * doesn't hurt either as we only do this on time-jumps or
3293 * in the unlikely event of having been preempted here.
3294 */
3295 for (i = 4; --i; )
3296 {
3297 ev_tstamp diff;
3298 rtmn_diff = ev_rt_now - mn_now;
3299
3300 diff = odiff - rtmn_diff;
3301
3302 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3303 return; /* all is well */
3304
3305 ev_rt_now = ev_time ();
3306 mn_now = get_clock ();
3307 now_floor = mn_now;
3308 }
3309
3310 /* no timer adjustment, as the monotonic clock doesn't jump */
3311 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3312 # if EV_PERIODIC_ENABLE
3313 periodics_reschedule (EV_A);
3314 # endif
3315 }
3316 else
3317 #endif
3318 {
3319 ev_rt_now = ev_time ();
3320
3321 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3322 {
3323 /* adjust timers. this is easy, as the offset is the same for all of them */
3324 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3325 #if EV_PERIODIC_ENABLE
3326 periodics_reschedule (EV_A);
3327 #endif
3328 }
3329
3330 mn_now = ev_rt_now;
3331 }
3332 }
3333
3334 int
3335 ev_run (EV_P_ int flags)
3336 {
3337 #if EV_FEATURE_API
3338 ++loop_depth;
3339 #endif
3340
3341 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3342
3343 loop_done = EVBREAK_CANCEL;
3344
3345 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3346
3347 do
3348 {
3349 #if EV_VERIFY >= 2
3350 ev_verify (EV_A);
3351 #endif
3352
3353 #ifndef _WIN32
3354 if (expect_false (curpid)) /* penalise the forking check even more */
3355 if (expect_false (getpid () != curpid))
3356 {
3357 curpid = getpid ();
3358 postfork = 1;
3359 }
3360 #endif
3361
3362 #if EV_FORK_ENABLE
3363 /* we might have forked, so queue fork handlers */
3364 if (expect_false (postfork))
3365 if (forkcnt)
3366 {
3367 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3368 EV_INVOKE_PENDING;
3369 }
3370 #endif
3371
3372 #if EV_PREPARE_ENABLE
3373 /* queue prepare watchers (and execute them) */
3374 if (expect_false (preparecnt))
3375 {
3376 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3377 EV_INVOKE_PENDING;
3378 }
3379 #endif
3380
3381 if (expect_false (loop_done))
3382 break;
3383
3384 /* we might have forked, so reify kernel state if necessary */
3385 if (expect_false (postfork))
3386 loop_fork (EV_A);
3387
3388 /* update fd-related kernel structures */
3389 fd_reify (EV_A);
3390
3391 /* calculate blocking time */
3392 {
3393 ev_tstamp waittime = 0.;
3394 ev_tstamp sleeptime = 0.;
3395
3396 /* remember old timestamp for io_blocktime calculation */
3397 ev_tstamp prev_mn_now = mn_now;
3398
3399 /* update time to cancel out callback processing overhead */
3400 time_update (EV_A_ 1e100);
3401
3402 /* from now on, we want a pipe-wake-up */
3403 pipe_write_wanted = 1;
3404
3405 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3406
3407 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3408 {
3409 waittime = MAX_BLOCKTIME;
3410
3411 if (timercnt)
3412 {
3413 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3414 if (waittime > to) waittime = to;
3415 }
3416
3417 #if EV_PERIODIC_ENABLE
3418 if (periodiccnt)
3419 {
3420 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3421 if (waittime > to) waittime = to;
3422 }
3423 #endif
3424
3425 /* don't let timeouts decrease the waittime below timeout_blocktime */
3426 if (expect_false (waittime < timeout_blocktime))
3427 waittime = timeout_blocktime;
3428
3429 /* at this point, we NEED to wait, so we have to ensure */
3430 /* to pass a minimum nonzero value to the backend */
3431 if (expect_false (waittime < backend_mintime))
3432 waittime = backend_mintime;
3433
3434 /* extra check because io_blocktime is commonly 0 */
3435 if (expect_false (io_blocktime))
3436 {
3437 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3438
3439 if (sleeptime > waittime - backend_mintime)
3440 sleeptime = waittime - backend_mintime;
3441
3442 if (expect_true (sleeptime > 0.))
3443 {
3444 ev_sleep (sleeptime);
3445 waittime -= sleeptime;
3446 }
3447 }
3448 }
3449
3450 #if EV_FEATURE_API
3451 ++loop_count;
3452 #endif
3453 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3454 backend_poll (EV_A_ waittime);
3455 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3456
3457 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3458
3459 ECB_MEMORY_FENCE_ACQUIRE;
3460 if (pipe_write_skipped)
3461 {
3462 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3463 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3464 }
3465
3466
3467 /* update ev_rt_now, do magic */
3468 time_update (EV_A_ waittime + sleeptime);
3469 }
3470
3471 /* queue pending timers and reschedule them */
3472 timers_reify (EV_A); /* relative timers called last */
3473 #if EV_PERIODIC_ENABLE
3474 periodics_reify (EV_A); /* absolute timers called first */
3475 #endif
3476
3477 #if EV_IDLE_ENABLE
3478 /* queue idle watchers unless other events are pending */
3479 idle_reify (EV_A);
3480 #endif
3481
3482 #if EV_CHECK_ENABLE
3483 /* queue check watchers, to be executed first */
3484 if (expect_false (checkcnt))
3485 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3486 #endif
3487
3488 EV_INVOKE_PENDING;
3489 }
3490 while (expect_true (
3491 activecnt
3492 && !loop_done
3493 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3494 ));
3495
3496 if (loop_done == EVBREAK_ONE)
3497 loop_done = EVBREAK_CANCEL;
3498
3499 #if EV_FEATURE_API
3500 --loop_depth;
3501 #endif
3502
3503 return activecnt;
3504 }
3505
3506 void
3507 ev_break (EV_P_ int how) EV_THROW
3508 {
3509 loop_done = how;
3510 }
3511
3512 void
3513 ev_ref (EV_P) EV_THROW
3514 {
3515 ++activecnt;
3516 }
3517
3518 void
3519 ev_unref (EV_P) EV_THROW
3520 {
3521 --activecnt;
3522 }
3523
3524 void
3525 ev_now_update (EV_P) EV_THROW
3526 {
3527 time_update (EV_A_ 1e100);
3528 }
3529
3530 void
3531 ev_suspend (EV_P) EV_THROW
3532 {
3533 ev_now_update (EV_A);
3534 }
3535
3536 void
3537 ev_resume (EV_P) EV_THROW
3538 {
3539 ev_tstamp mn_prev = mn_now;
3540
3541 ev_now_update (EV_A);
3542 timers_reschedule (EV_A_ mn_now - mn_prev);
3543 #if EV_PERIODIC_ENABLE
3544 /* TODO: really do this? */
3545 periodics_reschedule (EV_A);
3546 #endif
3547 }
3548
3549 /*****************************************************************************/
3550 /* singly-linked list management, used when the expected list length is short */
3551
3552 inline_size void
3553 wlist_add (WL *head, WL elem)
3554 {
3555 elem->next = *head;
3556 *head = elem;
3557 }
3558
3559 inline_size void
3560 wlist_del (WL *head, WL elem)
3561 {
3562 while (*head)
3563 {
3564 if (expect_true (*head == elem))
3565 {
3566 *head = elem->next;
3567 break;
3568 }
3569
3570 head = &(*head)->next;
3571 }
3572 }
3573
3574 /* internal, faster, version of ev_clear_pending */
3575 inline_speed void
3576 clear_pending (EV_P_ W w)
3577 {
3578 if (w->pending)
3579 {
3580 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3581 w->pending = 0;
3582 }
3583 }
3584
3585 int
3586 ev_clear_pending (EV_P_ void *w) EV_THROW
3587 {
3588 W w_ = (W)w;
3589 int pending = w_->pending;
3590
3591 if (expect_true (pending))
3592 {
3593 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3594 p->w = (W)&pending_w;
3595 w_->pending = 0;
3596 return p->events;
3597 }
3598 else
3599 return 0;
3600 }
3601
3602 inline_size void
3603 pri_adjust (EV_P_ W w)
3604 {
3605 int pri = ev_priority (w);
3606 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3607 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3608 ev_set_priority (w, pri);
3609 }
3610
3611 inline_speed void
3612 ev_start (EV_P_ W w, int active)
3613 {
3614 pri_adjust (EV_A_ w);
3615 w->active = active;
3616 ev_ref (EV_A);
3617 }
3618
3619 inline_size void
3620 ev_stop (EV_P_ W w)
3621 {
3622 ev_unref (EV_A);
3623 w->active = 0;
3624 }
3625
3626 /*****************************************************************************/
3627
3628 void noinline
3629 ev_io_start (EV_P_ ev_io *w) EV_THROW
3630 {
3631 int fd = w->fd;
3632
3633 if (expect_false (ev_is_active (w)))
3634 return;
3635
3636 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3637 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3638
3639 EV_FREQUENT_CHECK;
3640
3641 ev_start (EV_A_ (W)w, 1);
3642 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3643 wlist_add (&anfds[fd].head, (WL)w);
3644
3645 /* common bug, apparently */
3646 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3647
3648 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3649 w->events &= ~EV__IOFDSET;
3650
3651 EV_FREQUENT_CHECK;
3652 }
3653
3654 void noinline
3655 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3656 {
3657 clear_pending (EV_A_ (W)w);
3658 if (expect_false (!ev_is_active (w)))
3659 return;
3660
3661 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3662
3663 EV_FREQUENT_CHECK;
3664
3665 wlist_del (&anfds[w->fd].head, (WL)w);
3666 ev_stop (EV_A_ (W)w);
3667
3668 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3669
3670 EV_FREQUENT_CHECK;
3671 }
3672
3673 void noinline
3674 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3675 {
3676 if (expect_false (ev_is_active (w)))
3677 return;
3678
3679 ev_at (w) += mn_now;
3680
3681 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3682
3683 EV_FREQUENT_CHECK;
3684
3685 ++timercnt;
3686 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3687 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3688 ANHE_w (timers [ev_active (w)]) = (WT)w;
3689 ANHE_at_cache (timers [ev_active (w)]);
3690 upheap (timers, ev_active (w));
3691
3692 EV_FREQUENT_CHECK;
3693
3694 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3695 }
3696
3697 void noinline
3698 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3699 {
3700 clear_pending (EV_A_ (W)w);
3701 if (expect_false (!ev_is_active (w)))
3702 return;
3703
3704 EV_FREQUENT_CHECK;
3705
3706 {
3707 int active = ev_active (w);
3708
3709 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3710
3711 --timercnt;
3712
3713 if (expect_true (active < timercnt + HEAP0))
3714 {
3715 timers [active] = timers [timercnt + HEAP0];
3716 adjustheap (timers, timercnt, active);
3717 }
3718 }
3719
3720 ev_at (w) -= mn_now;
3721
3722 ev_stop (EV_A_ (W)w);
3723
3724 EV_FREQUENT_CHECK;
3725 }
3726
3727 void noinline
3728 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3729 {
3730 EV_FREQUENT_CHECK;
3731
3732 clear_pending (EV_A_ (W)w);
3733
3734 if (ev_is_active (w))
3735 {
3736 if (w->repeat)
3737 {
3738 ev_at (w) = mn_now + w->repeat;
3739 ANHE_at_cache (timers [ev_active (w)]);
3740 adjustheap (timers, timercnt, ev_active (w));
3741 }
3742 else
3743 ev_timer_stop (EV_A_ w);
3744 }
3745 else if (w->repeat)
3746 {
3747 ev_at (w) = w->repeat;
3748 ev_timer_start (EV_A_ w);
3749 }
3750
3751 EV_FREQUENT_CHECK;
3752 }
3753
3754 ev_tstamp
3755 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3756 {
3757 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3758 }
3759
3760 #if EV_PERIODIC_ENABLE
3761 void noinline
3762 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3763 {
3764 if (expect_false (ev_is_active (w)))
3765 return;
3766
3767 if (w->reschedule_cb)
3768 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3769 else if (w->interval)
3770 {
3771 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3772 periodic_recalc (EV_A_ w);
3773 }
3774 else
3775 ev_at (w) = w->offset;
3776
3777 EV_FREQUENT_CHECK;
3778
3779 ++periodiccnt;
3780 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3781 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3782 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3783 ANHE_at_cache (periodics [ev_active (w)]);
3784 upheap (periodics, ev_active (w));
3785
3786 EV_FREQUENT_CHECK;
3787
3788 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3789 }
3790
3791 void noinline
3792 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3793 {
3794 clear_pending (EV_A_ (W)w);
3795 if (expect_false (!ev_is_active (w)))
3796 return;
3797
3798 EV_FREQUENT_CHECK;
3799
3800 {
3801 int active = ev_active (w);
3802
3803 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3804
3805 --periodiccnt;
3806
3807 if (expect_true (active < periodiccnt + HEAP0))
3808 {
3809 periodics [active] = periodics [periodiccnt + HEAP0];
3810 adjustheap (periodics, periodiccnt, active);
3811 }
3812 }
3813
3814 ev_stop (EV_A_ (W)w);
3815
3816 EV_FREQUENT_CHECK;
3817 }
3818
3819 void noinline
3820 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3821 {
3822 /* TODO: use adjustheap and recalculation */
3823 ev_periodic_stop (EV_A_ w);
3824 ev_periodic_start (EV_A_ w);
3825 }
3826 #endif
3827
3828 #ifndef SA_RESTART
3829 # define SA_RESTART 0
3830 #endif
3831
3832 #if EV_SIGNAL_ENABLE
3833
3834 void noinline
3835 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3836 {
3837 if (expect_false (ev_is_active (w)))
3838 return;
3839
3840 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3841
3842 #if EV_MULTIPLICITY
3843 assert (("libev: a signal must not be attached to two different loops",
3844 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3845
3846 signals [w->signum - 1].loop = EV_A;
3847 ECB_MEMORY_FENCE_RELEASE;
3848 #endif
3849
3850 EV_FREQUENT_CHECK;
3851
3852 #if EV_USE_SIGNALFD
3853 if (sigfd == -2)
3854 {
3855 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3856 if (sigfd < 0 && errno == EINVAL)
3857 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3858
3859 if (sigfd >= 0)
3860 {
3861 fd_intern (sigfd); /* doing it twice will not hurt */
3862
3863 sigemptyset (&sigfd_set);
3864
3865 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3866 ev_set_priority (&sigfd_w, EV_MAXPRI);
3867 ev_io_start (EV_A_ &sigfd_w);
3868 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3869 }
3870 }
3871
3872 if (sigfd >= 0)
3873 {
3874 /* TODO: check .head */
3875 sigaddset (&sigfd_set, w->signum);
3876 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3877
3878 signalfd (sigfd, &sigfd_set, 0);
3879 }
3880 #endif
3881
3882 ev_start (EV_A_ (W)w, 1);
3883 wlist_add (&signals [w->signum - 1].head, (WL)w);
3884
3885 if (!((WL)w)->next)
3886 # if EV_USE_SIGNALFD
3887 if (sigfd < 0) /*TODO*/
3888 # endif
3889 {
3890 # ifdef _WIN32
3891 evpipe_init (EV_A);
3892
3893 signal (w->signum, ev_sighandler);
3894 # else
3895 struct sigaction sa;
3896
3897 evpipe_init (EV_A);
3898
3899 sa.sa_handler = ev_sighandler;
3900 sigfillset (&sa.sa_mask);
3901 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3902 sigaction (w->signum, &sa, 0);
3903
3904 if (origflags & EVFLAG_NOSIGMASK)
3905 {
3906 sigemptyset (&sa.sa_mask);
3907 sigaddset (&sa.sa_mask, w->signum);
3908 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3909 }
3910 #endif
3911 }
3912
3913 EV_FREQUENT_CHECK;
3914 }
3915
3916 void noinline
3917 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3918 {
3919 clear_pending (EV_A_ (W)w);
3920 if (expect_false (!ev_is_active (w)))
3921 return;
3922
3923 EV_FREQUENT_CHECK;
3924
3925 wlist_del (&signals [w->signum - 1].head, (WL)w);
3926 ev_stop (EV_A_ (W)w);
3927
3928 if (!signals [w->signum - 1].head)
3929 {
3930 #if EV_MULTIPLICITY
3931 signals [w->signum - 1].loop = 0; /* unattach from signal */
3932 #endif
3933 #if EV_USE_SIGNALFD
3934 if (sigfd >= 0)
3935 {
3936 sigset_t ss;
3937
3938 sigemptyset (&ss);
3939 sigaddset (&ss, w->signum);
3940 sigdelset (&sigfd_set, w->signum);
3941
3942 signalfd (sigfd, &sigfd_set, 0);
3943 sigprocmask (SIG_UNBLOCK, &ss, 0);
3944 }
3945 else
3946 #endif
3947 signal (w->signum, SIG_DFL);
3948 }
3949
3950 EV_FREQUENT_CHECK;
3951 }
3952
3953 #endif
3954
3955 #if EV_CHILD_ENABLE
3956
3957 void
3958 ev_child_start (EV_P_ ev_child *w) EV_THROW
3959 {
3960 #if EV_MULTIPLICITY
3961 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3962 #endif
3963 if (expect_false (ev_is_active (w)))
3964 return;
3965
3966 EV_FREQUENT_CHECK;
3967
3968 ev_start (EV_A_ (W)w, 1);
3969 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3970
3971 EV_FREQUENT_CHECK;
3972 }
3973
3974 void
3975 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3976 {
3977 clear_pending (EV_A_ (W)w);
3978 if (expect_false (!ev_is_active (w)))
3979 return;
3980
3981 EV_FREQUENT_CHECK;
3982
3983 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3984 ev_stop (EV_A_ (W)w);
3985
3986 EV_FREQUENT_CHECK;
3987 }
3988
3989 #endif
3990
3991 #if EV_STAT_ENABLE
3992
3993 # ifdef _WIN32
3994 # undef lstat
3995 # define lstat(a,b) _stati64 (a,b)
3996 # endif
3997
3998 #define DEF_STAT_INTERVAL 5.0074891
3999 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4000 #define MIN_STAT_INTERVAL 0.1074891
4001
4002 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4003
4004 #if EV_USE_INOTIFY
4005
4006 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4007 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4008
4009 static void noinline
4010 infy_add (EV_P_ ev_stat *w)
4011 {
4012 w->wd = inotify_add_watch (fs_fd, w->path,
4013 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4014 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4015 | IN_DONT_FOLLOW | IN_MASK_ADD);
4016
4017 if (w->wd >= 0)
4018 {
4019 struct statfs sfs;
4020
4021 /* now local changes will be tracked by inotify, but remote changes won't */
4022 /* unless the filesystem is known to be local, we therefore still poll */
4023 /* also do poll on <2.6.25, but with normal frequency */
4024
4025 if (!fs_2625)
4026 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4027 else if (!statfs (w->path, &sfs)
4028 && (sfs.f_type == 0x1373 /* devfs */
4029 || sfs.f_type == 0x4006 /* fat */
4030 || sfs.f_type == 0x4d44 /* msdos */
4031 || sfs.f_type == 0xEF53 /* ext2/3 */
4032 || sfs.f_type == 0x72b6 /* jffs2 */
4033 || sfs.f_type == 0x858458f6 /* ramfs */
4034 || sfs.f_type == 0x5346544e /* ntfs */
4035 || sfs.f_type == 0x3153464a /* jfs */
4036 || sfs.f_type == 0x9123683e /* btrfs */
4037 || sfs.f_type == 0x52654973 /* reiser3 */
4038 || sfs.f_type == 0x01021994 /* tmpfs */
4039 || sfs.f_type == 0x58465342 /* xfs */))
4040 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4041 else
4042 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4043 }
4044 else
4045 {
4046 /* can't use inotify, continue to stat */
4047 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4048
4049 /* if path is not there, monitor some parent directory for speedup hints */
4050 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4051 /* but an efficiency issue only */
4052 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4053 {
4054 char path [4096];
4055 strcpy (path, w->path);
4056
4057 do
4058 {
4059 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4060 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4061
4062 char *pend = strrchr (path, '/');
4063
4064 if (!pend || pend == path)
4065 break;
4066
4067 *pend = 0;
4068 w->wd = inotify_add_watch (fs_fd, path, mask);
4069 }
4070 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4071 }
4072 }
4073
4074 if (w->wd >= 0)
4075 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4076
4077 /* now re-arm timer, if required */
4078 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4079 ev_timer_again (EV_A_ &w->timer);
4080 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4081 }
4082
4083 static void noinline
4084 infy_del (EV_P_ ev_stat *w)
4085 {
4086 int slot;
4087 int wd = w->wd;
4088
4089 if (wd < 0)
4090 return;
4091
4092 w->wd = -2;
4093 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4094 wlist_del (&fs_hash [slot].head, (WL)w);
4095
4096 /* remove this watcher, if others are watching it, they will rearm */
4097 inotify_rm_watch (fs_fd, wd);
4098 }
4099
4100 static void noinline
4101 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4102 {
4103 if (slot < 0)
4104 /* overflow, need to check for all hash slots */
4105 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4106 infy_wd (EV_A_ slot, wd, ev);
4107 else
4108 {
4109 WL w_;
4110
4111 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4112 {
4113 ev_stat *w = (ev_stat *)w_;
4114 w_ = w_->next; /* lets us remove this watcher and all before it */
4115
4116 if (w->wd == wd || wd == -1)
4117 {
4118 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4119 {
4120 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4121 w->wd = -1;
4122 infy_add (EV_A_ w); /* re-add, no matter what */
4123 }
4124
4125 stat_timer_cb (EV_A_ &w->timer, 0);
4126 }
4127 }
4128 }
4129 }
4130
4131 static void
4132 infy_cb (EV_P_ ev_io *w, int revents)
4133 {
4134 char buf [EV_INOTIFY_BUFSIZE];
4135 int ofs;
4136 int len = read (fs_fd, buf, sizeof (buf));
4137
4138 for (ofs = 0; ofs < len; )
4139 {
4140 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4141 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4142 ofs += sizeof (struct inotify_event) + ev->len;
4143 }
4144 }
4145
4146 inline_size void ecb_cold
4147 ev_check_2625 (EV_P)
4148 {
4149 /* kernels < 2.6.25 are borked
4150 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4151 */
4152 if (ev_linux_version () < 0x020619)
4153 return;
4154
4155 fs_2625 = 1;
4156 }
4157
4158 inline_size int
4159 infy_newfd (void)
4160 {
4161 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4162 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4163 if (fd >= 0)
4164 return fd;
4165 #endif
4166 return inotify_init ();
4167 }
4168
4169 inline_size void
4170 infy_init (EV_P)
4171 {
4172 if (fs_fd != -2)
4173 return;
4174
4175 fs_fd = -1;
4176
4177 ev_check_2625 (EV_A);
4178
4179 fs_fd = infy_newfd ();
4180
4181 if (fs_fd >= 0)
4182 {
4183 fd_intern (fs_fd);
4184 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4185 ev_set_priority (&fs_w, EV_MAXPRI);
4186 ev_io_start (EV_A_ &fs_w);
4187 ev_unref (EV_A);
4188 }
4189 }
4190
4191 inline_size void
4192 infy_fork (EV_P)
4193 {
4194 int slot;
4195
4196 if (fs_fd < 0)
4197 return;
4198
4199 ev_ref (EV_A);
4200 ev_io_stop (EV_A_ &fs_w);
4201 close (fs_fd);
4202 fs_fd = infy_newfd ();
4203
4204 if (fs_fd >= 0)
4205 {
4206 fd_intern (fs_fd);
4207 ev_io_set (&fs_w, fs_fd, EV_READ);
4208 ev_io_start (EV_A_ &fs_w);
4209 ev_unref (EV_A);
4210 }
4211
4212 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4213 {
4214 WL w_ = fs_hash [slot].head;
4215 fs_hash [slot].head = 0;
4216
4217 while (w_)
4218 {
4219 ev_stat *w = (ev_stat *)w_;
4220 w_ = w_->next; /* lets us add this watcher */
4221
4222 w->wd = -1;
4223
4224 if (fs_fd >= 0)
4225 infy_add (EV_A_ w); /* re-add, no matter what */
4226 else
4227 {
4228 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4229 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4230 ev_timer_again (EV_A_ &w->timer);
4231 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4232 }
4233 }
4234 }
4235 }
4236
4237 #endif
4238
4239 #ifdef _WIN32
4240 # define EV_LSTAT(p,b) _stati64 (p, b)
4241 #else
4242 # define EV_LSTAT(p,b) lstat (p, b)
4243 #endif
4244
4245 void
4246 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4247 {
4248 if (lstat (w->path, &w->attr) < 0)
4249 w->attr.st_nlink = 0;
4250 else if (!w->attr.st_nlink)
4251 w->attr.st_nlink = 1;
4252 }
4253
4254 static void noinline
4255 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4256 {
4257 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4258
4259 ev_statdata prev = w->attr;
4260 ev_stat_stat (EV_A_ w);
4261
4262 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4263 if (
4264 prev.st_dev != w->attr.st_dev
4265 || prev.st_ino != w->attr.st_ino
4266 || prev.st_mode != w->attr.st_mode
4267 || prev.st_nlink != w->attr.st_nlink
4268 || prev.st_uid != w->attr.st_uid
4269 || prev.st_gid != w->attr.st_gid
4270 || prev.st_rdev != w->attr.st_rdev
4271 || prev.st_size != w->attr.st_size
4272 || prev.st_atime != w->attr.st_atime
4273 || prev.st_mtime != w->attr.st_mtime
4274 || prev.st_ctime != w->attr.st_ctime
4275 ) {
4276 /* we only update w->prev on actual differences */
4277 /* in case we test more often than invoke the callback, */
4278 /* to ensure that prev is always different to attr */
4279 w->prev = prev;
4280
4281 #if EV_USE_INOTIFY
4282 if (fs_fd >= 0)
4283 {
4284 infy_del (EV_A_ w);
4285 infy_add (EV_A_ w);
4286 ev_stat_stat (EV_A_ w); /* avoid race... */
4287 }
4288 #endif
4289
4290 ev_feed_event (EV_A_ w, EV_STAT);
4291 }
4292 }
4293
4294 void
4295 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4296 {
4297 if (expect_false (ev_is_active (w)))
4298 return;
4299
4300 ev_stat_stat (EV_A_ w);
4301
4302 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4303 w->interval = MIN_STAT_INTERVAL;
4304
4305 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4306 ev_set_priority (&w->timer, ev_priority (w));
4307
4308 #if EV_USE_INOTIFY
4309 infy_init (EV_A);
4310
4311 if (fs_fd >= 0)
4312 infy_add (EV_A_ w);
4313 else
4314 #endif
4315 {
4316 ev_timer_again (EV_A_ &w->timer);
4317 ev_unref (EV_A);
4318 }
4319
4320 ev_start (EV_A_ (W)w, 1);
4321
4322 EV_FREQUENT_CHECK;
4323 }
4324
4325 void
4326 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4327 {
4328 clear_pending (EV_A_ (W)w);
4329 if (expect_false (!ev_is_active (w)))
4330 return;
4331
4332 EV_FREQUENT_CHECK;
4333
4334 #if EV_USE_INOTIFY
4335 infy_del (EV_A_ w);
4336 #endif
4337
4338 if (ev_is_active (&w->timer))
4339 {
4340 ev_ref (EV_A);
4341 ev_timer_stop (EV_A_ &w->timer);
4342 }
4343
4344 ev_stop (EV_A_ (W)w);
4345
4346 EV_FREQUENT_CHECK;
4347 }
4348 #endif
4349
4350 #if EV_IDLE_ENABLE
4351 void
4352 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4353 {
4354 if (expect_false (ev_is_active (w)))
4355 return;
4356
4357 pri_adjust (EV_A_ (W)w);
4358
4359 EV_FREQUENT_CHECK;
4360
4361 {
4362 int active = ++idlecnt [ABSPRI (w)];
4363
4364 ++idleall;
4365 ev_start (EV_A_ (W)w, active);
4366
4367 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4368 idles [ABSPRI (w)][active - 1] = w;
4369 }
4370
4371 EV_FREQUENT_CHECK;
4372 }
4373
4374 void
4375 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4376 {
4377 clear_pending (EV_A_ (W)w);
4378 if (expect_false (!ev_is_active (w)))
4379 return;
4380
4381 EV_FREQUENT_CHECK;
4382
4383 {
4384 int active = ev_active (w);
4385
4386 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4387 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4388
4389 ev_stop (EV_A_ (W)w);
4390 --idleall;
4391 }
4392
4393 EV_FREQUENT_CHECK;
4394 }
4395 #endif
4396
4397 #if EV_PREPARE_ENABLE
4398 void
4399 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4400 {
4401 if (expect_false (ev_is_active (w)))
4402 return;
4403
4404 EV_FREQUENT_CHECK;
4405
4406 ev_start (EV_A_ (W)w, ++preparecnt);
4407 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4408 prepares [preparecnt - 1] = w;
4409
4410 EV_FREQUENT_CHECK;
4411 }
4412
4413 void
4414 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4415 {
4416 clear_pending (EV_A_ (W)w);
4417 if (expect_false (!ev_is_active (w)))
4418 return;
4419
4420 EV_FREQUENT_CHECK;
4421
4422 {
4423 int active = ev_active (w);
4424
4425 prepares [active - 1] = prepares [--preparecnt];
4426 ev_active (prepares [active - 1]) = active;
4427 }
4428
4429 ev_stop (EV_A_ (W)w);
4430
4431 EV_FREQUENT_CHECK;
4432 }
4433 #endif
4434
4435 #if EV_CHECK_ENABLE
4436 void
4437 ev_check_start (EV_P_ ev_check *w) EV_THROW
4438 {
4439 if (expect_false (ev_is_active (w)))
4440 return;
4441
4442 EV_FREQUENT_CHECK;
4443
4444 ev_start (EV_A_ (W)w, ++checkcnt);
4445 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4446 checks [checkcnt - 1] = w;
4447
4448 EV_FREQUENT_CHECK;
4449 }
4450
4451 void
4452 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4453 {
4454 clear_pending (EV_A_ (W)w);
4455 if (expect_false (!ev_is_active (w)))
4456 return;
4457
4458 EV_FREQUENT_CHECK;
4459
4460 {
4461 int active = ev_active (w);
4462
4463 checks [active - 1] = checks [--checkcnt];
4464 ev_active (checks [active - 1]) = active;
4465 }
4466
4467 ev_stop (EV_A_ (W)w);
4468
4469 EV_FREQUENT_CHECK;
4470 }
4471 #endif
4472
4473 #if EV_EMBED_ENABLE
4474 void noinline
4475 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4476 {
4477 ev_run (w->other, EVRUN_NOWAIT);
4478 }
4479
4480 static void
4481 embed_io_cb (EV_P_ ev_io *io, int revents)
4482 {
4483 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4484
4485 if (ev_cb (w))
4486 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4487 else
4488 ev_run (w->other, EVRUN_NOWAIT);
4489 }
4490
4491 static void
4492 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4493 {
4494 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4495
4496 {
4497 EV_P = w->other;
4498
4499 while (fdchangecnt)
4500 {
4501 fd_reify (EV_A);
4502 ev_run (EV_A_ EVRUN_NOWAIT);
4503 }
4504 }
4505 }
4506
4507 static void
4508 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4509 {
4510 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4511
4512 ev_embed_stop (EV_A_ w);
4513
4514 {
4515 EV_P = w->other;
4516
4517 ev_loop_fork (EV_A);
4518 ev_run (EV_A_ EVRUN_NOWAIT);
4519 }
4520
4521 ev_embed_start (EV_A_ w);
4522 }
4523
4524 #if 0
4525 static void
4526 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4527 {
4528 ev_idle_stop (EV_A_ idle);
4529 }
4530 #endif
4531
4532 void
4533 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4534 {
4535 if (expect_false (ev_is_active (w)))
4536 return;
4537
4538 {
4539 EV_P = w->other;
4540 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4541 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4542 }
4543
4544 EV_FREQUENT_CHECK;
4545
4546 ev_set_priority (&w->io, ev_priority (w));
4547 ev_io_start (EV_A_ &w->io);
4548
4549 ev_prepare_init (&w->prepare, embed_prepare_cb);
4550 ev_set_priority (&w->prepare, EV_MINPRI);
4551 ev_prepare_start (EV_A_ &w->prepare);
4552
4553 ev_fork_init (&w->fork, embed_fork_cb);
4554 ev_fork_start (EV_A_ &w->fork);
4555
4556 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4557
4558 ev_start (EV_A_ (W)w, 1);
4559
4560 EV_FREQUENT_CHECK;
4561 }
4562
4563 void
4564 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4565 {
4566 clear_pending (EV_A_ (W)w);
4567 if (expect_false (!ev_is_active (w)))
4568 return;
4569
4570 EV_FREQUENT_CHECK;
4571
4572 ev_io_stop (EV_A_ &w->io);
4573 ev_prepare_stop (EV_A_ &w->prepare);
4574 ev_fork_stop (EV_A_ &w->fork);
4575
4576 ev_stop (EV_A_ (W)w);
4577
4578 EV_FREQUENT_CHECK;
4579 }
4580 #endif
4581
4582 #if EV_FORK_ENABLE
4583 void
4584 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4585 {
4586 if (expect_false (ev_is_active (w)))
4587 return;
4588
4589 EV_FREQUENT_CHECK;
4590
4591 ev_start (EV_A_ (W)w, ++forkcnt);
4592 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4593 forks [forkcnt - 1] = w;
4594
4595 EV_FREQUENT_CHECK;
4596 }
4597
4598 void
4599 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4600 {
4601 clear_pending (EV_A_ (W)w);
4602 if (expect_false (!ev_is_active (w)))
4603 return;
4604
4605 EV_FREQUENT_CHECK;
4606
4607 {
4608 int active = ev_active (w);
4609
4610 forks [active - 1] = forks [--forkcnt];
4611 ev_active (forks [active - 1]) = active;
4612 }
4613
4614 ev_stop (EV_A_ (W)w);
4615
4616 EV_FREQUENT_CHECK;
4617 }
4618 #endif
4619
4620 #if EV_CLEANUP_ENABLE
4621 void
4622 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4623 {
4624 if (expect_false (ev_is_active (w)))
4625 return;
4626
4627 EV_FREQUENT_CHECK;
4628
4629 ev_start (EV_A_ (W)w, ++cleanupcnt);
4630 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4631 cleanups [cleanupcnt - 1] = w;
4632
4633 /* cleanup watchers should never keep a refcount on the loop */
4634 ev_unref (EV_A);
4635 EV_FREQUENT_CHECK;
4636 }
4637
4638 void
4639 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4640 {
4641 clear_pending (EV_A_ (W)w);
4642 if (expect_false (!ev_is_active (w)))
4643 return;
4644
4645 EV_FREQUENT_CHECK;
4646 ev_ref (EV_A);
4647
4648 {
4649 int active = ev_active (w);
4650
4651 cleanups [active - 1] = cleanups [--cleanupcnt];
4652 ev_active (cleanups [active - 1]) = active;
4653 }
4654
4655 ev_stop (EV_A_ (W)w);
4656
4657 EV_FREQUENT_CHECK;
4658 }
4659 #endif
4660
4661 #if EV_ASYNC_ENABLE
4662 void
4663 ev_async_start (EV_P_ ev_async *w) EV_THROW
4664 {
4665 if (expect_false (ev_is_active (w)))
4666 return;
4667
4668 w->sent = 0;
4669
4670 evpipe_init (EV_A);
4671
4672 EV_FREQUENT_CHECK;
4673
4674 ev_start (EV_A_ (W)w, ++asynccnt);
4675 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4676 asyncs [asynccnt - 1] = w;
4677
4678 EV_FREQUENT_CHECK;
4679 }
4680
4681 void
4682 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4683 {
4684 clear_pending (EV_A_ (W)w);
4685 if (expect_false (!ev_is_active (w)))
4686 return;
4687
4688 EV_FREQUENT_CHECK;
4689
4690 {
4691 int active = ev_active (w);
4692
4693 asyncs [active - 1] = asyncs [--asynccnt];
4694 ev_active (asyncs [active - 1]) = active;
4695 }
4696
4697 ev_stop (EV_A_ (W)w);
4698
4699 EV_FREQUENT_CHECK;
4700 }
4701
4702 void
4703 ev_async_send (EV_P_ ev_async *w) EV_THROW
4704 {
4705 w->sent = 1;
4706 evpipe_write (EV_A_ &async_pending);
4707 }
4708 #endif
4709
4710 /*****************************************************************************/
4711
4712 struct ev_once
4713 {
4714 ev_io io;
4715 ev_timer to;
4716 void (*cb)(int revents, void *arg);
4717 void *arg;
4718 };
4719
4720 static void
4721 once_cb (EV_P_ struct ev_once *once, int revents)
4722 {
4723 void (*cb)(int revents, void *arg) = once->cb;
4724 void *arg = once->arg;
4725
4726 ev_io_stop (EV_A_ &once->io);
4727 ev_timer_stop (EV_A_ &once->to);
4728 ev_free (once);
4729
4730 cb (revents, arg);
4731 }
4732
4733 static void
4734 once_cb_io (EV_P_ ev_io *w, int revents)
4735 {
4736 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4737
4738 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4739 }
4740
4741 static void
4742 once_cb_to (EV_P_ ev_timer *w, int revents)
4743 {
4744 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4745
4746 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4747 }
4748
4749 void
4750 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4751 {
4752 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4753
4754 if (expect_false (!once))
4755 {
4756 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4757 return;
4758 }
4759
4760 once->cb = cb;
4761 once->arg = arg;
4762
4763 ev_init (&once->io, once_cb_io);
4764 if (fd >= 0)
4765 {
4766 ev_io_set (&once->io, fd, events);
4767 ev_io_start (EV_A_ &once->io);
4768 }
4769
4770 ev_init (&once->to, once_cb_to);
4771 if (timeout >= 0.)
4772 {
4773 ev_timer_set (&once->to, timeout, 0.);
4774 ev_timer_start (EV_A_ &once->to);
4775 }
4776 }
4777
4778 /*****************************************************************************/
4779
4780 #if EV_WALK_ENABLE
4781 void ecb_cold
4782 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4783 {
4784 int i, j;
4785 ev_watcher_list *wl, *wn;
4786
4787 if (types & (EV_IO | EV_EMBED))
4788 for (i = 0; i < anfdmax; ++i)
4789 for (wl = anfds [i].head; wl; )
4790 {
4791 wn = wl->next;
4792
4793 #if EV_EMBED_ENABLE
4794 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4795 {
4796 if (types & EV_EMBED)
4797 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4798 }
4799 else
4800 #endif
4801 #if EV_USE_INOTIFY
4802 if (ev_cb ((ev_io *)wl) == infy_cb)
4803 ;
4804 else
4805 #endif
4806 if ((ev_io *)wl != &pipe_w)
4807 if (types & EV_IO)
4808 cb (EV_A_ EV_IO, wl);
4809
4810 wl = wn;
4811 }
4812
4813 if (types & (EV_TIMER | EV_STAT))
4814 for (i = timercnt + HEAP0; i-- > HEAP0; )
4815 #if EV_STAT_ENABLE
4816 /*TODO: timer is not always active*/
4817 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4818 {
4819 if (types & EV_STAT)
4820 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4821 }
4822 else
4823 #endif
4824 if (types & EV_TIMER)
4825 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4826
4827 #if EV_PERIODIC_ENABLE
4828 if (types & EV_PERIODIC)
4829 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4830 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4831 #endif
4832
4833 #if EV_IDLE_ENABLE
4834 if (types & EV_IDLE)
4835 for (j = NUMPRI; j--; )
4836 for (i = idlecnt [j]; i--; )
4837 cb (EV_A_ EV_IDLE, idles [j][i]);
4838 #endif
4839
4840 #if EV_FORK_ENABLE
4841 if (types & EV_FORK)
4842 for (i = forkcnt; i--; )
4843 if (ev_cb (forks [i]) != embed_fork_cb)
4844 cb (EV_A_ EV_FORK, forks [i]);
4845 #endif
4846
4847 #if EV_ASYNC_ENABLE
4848 if (types & EV_ASYNC)
4849 for (i = asynccnt; i--; )
4850 cb (EV_A_ EV_ASYNC, asyncs [i]);
4851 #endif
4852
4853 #if EV_PREPARE_ENABLE
4854 if (types & EV_PREPARE)
4855 for (i = preparecnt; i--; )
4856 # if EV_EMBED_ENABLE
4857 if (ev_cb (prepares [i]) != embed_prepare_cb)
4858 # endif
4859 cb (EV_A_ EV_PREPARE, prepares [i]);
4860 #endif
4861
4862 #if EV_CHECK_ENABLE
4863 if (types & EV_CHECK)
4864 for (i = checkcnt; i--; )
4865 cb (EV_A_ EV_CHECK, checks [i]);
4866 #endif
4867
4868 #if EV_SIGNAL_ENABLE
4869 if (types & EV_SIGNAL)
4870 for (i = 0; i < EV_NSIG - 1; ++i)
4871 for (wl = signals [i].head; wl; )
4872 {
4873 wn = wl->next;
4874 cb (EV_A_ EV_SIGNAL, wl);
4875 wl = wn;
4876 }
4877 #endif
4878
4879 #if EV_CHILD_ENABLE
4880 if (types & EV_CHILD)
4881 for (i = (EV_PID_HASHSIZE); i--; )
4882 for (wl = childs [i]; wl; )
4883 {
4884 wn = wl->next;
4885 cb (EV_A_ EV_CHILD, wl);
4886 wl = wn;
4887 }
4888 #endif
4889 /* EV_STAT 0x00001000 /* stat data changed */
4890 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4891 }
4892 #endif
4893
4894 #if EV_MULTIPLICITY
4895 #include "ev_wrap.h"
4896 #endif
4897