ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.474
Committed: Wed Feb 11 19:20:21 2015 UTC (9 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.473: +132 -102 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 # define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 #endif
248
249 #ifndef EV_USE_FLOOR
250 # define EV_USE_FLOOR 0
251 #endif
252
253 #ifndef EV_USE_CLOCK_SYSCALL
254 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 # else
257 # define EV_USE_CLOCK_SYSCALL 0
258 # endif
259 #endif
260
261 #if !(_POSIX_TIMERS > 0)
262 # ifndef EV_USE_MONOTONIC
263 # define EV_USE_MONOTONIC 0
264 # endif
265 # ifndef EV_USE_REALTIME
266 # define EV_USE_REALTIME 0
267 # endif
268 #endif
269
270 #ifndef EV_USE_MONOTONIC
271 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272 # define EV_USE_MONOTONIC EV_FEATURE_OS
273 # else
274 # define EV_USE_MONOTONIC 0
275 # endif
276 #endif
277
278 #ifndef EV_USE_REALTIME
279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280 #endif
281
282 #ifndef EV_USE_NANOSLEEP
283 # if _POSIX_C_SOURCE >= 199309L
284 # define EV_USE_NANOSLEEP EV_FEATURE_OS
285 # else
286 # define EV_USE_NANOSLEEP 0
287 # endif
288 #endif
289
290 #ifndef EV_USE_SELECT
291 # define EV_USE_SELECT EV_FEATURE_BACKENDS
292 #endif
293
294 #ifndef EV_USE_POLL
295 # ifdef _WIN32
296 # define EV_USE_POLL 0
297 # else
298 # define EV_USE_POLL EV_FEATURE_BACKENDS
299 # endif
300 #endif
301
302 #ifndef EV_USE_EPOLL
303 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
305 # else
306 # define EV_USE_EPOLL 0
307 # endif
308 #endif
309
310 #ifndef EV_USE_KQUEUE
311 # define EV_USE_KQUEUE 0
312 #endif
313
314 #ifndef EV_USE_PORT
315 # define EV_USE_PORT 0
316 #endif
317
318 #ifndef EV_USE_INOTIFY
319 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320 # define EV_USE_INOTIFY EV_FEATURE_OS
321 # else
322 # define EV_USE_INOTIFY 0
323 # endif
324 #endif
325
326 #ifndef EV_PID_HASHSIZE
327 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328 #endif
329
330 #ifndef EV_INOTIFY_HASHSIZE
331 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332 #endif
333
334 #ifndef EV_USE_EVENTFD
335 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336 # define EV_USE_EVENTFD EV_FEATURE_OS
337 # else
338 # define EV_USE_EVENTFD 0
339 # endif
340 #endif
341
342 #ifndef EV_USE_SIGNALFD
343 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344 # define EV_USE_SIGNALFD EV_FEATURE_OS
345 # else
346 # define EV_USE_SIGNALFD 0
347 # endif
348 #endif
349
350 #if 0 /* debugging */
351 # define EV_VERIFY 3
352 # define EV_USE_4HEAP 1
353 # define EV_HEAP_CACHE_AT 1
354 #endif
355
356 #ifndef EV_VERIFY
357 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358 #endif
359
360 #ifndef EV_USE_4HEAP
361 # define EV_USE_4HEAP EV_FEATURE_DATA
362 #endif
363
364 #ifndef EV_HEAP_CACHE_AT
365 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366 #endif
367
368 #ifdef ANDROID
369 /* supposedly, android doesn't typedef fd_mask */
370 # undef EV_USE_SELECT
371 # define EV_USE_SELECT 0
372 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373 # undef EV_USE_CLOCK_SYSCALL
374 # define EV_USE_CLOCK_SYSCALL 0
375 #endif
376
377 /* aix's poll.h seems to cause lots of trouble */
378 #ifdef _AIX
379 /* AIX has a completely broken poll.h header */
380 # undef EV_USE_POLL
381 # define EV_USE_POLL 0
382 #endif
383
384 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385 /* which makes programs even slower. might work on other unices, too. */
386 #if EV_USE_CLOCK_SYSCALL
387 # include <sys/syscall.h>
388 # ifdef SYS_clock_gettime
389 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390 # undef EV_USE_MONOTONIC
391 # define EV_USE_MONOTONIC 1
392 # else
393 # undef EV_USE_CLOCK_SYSCALL
394 # define EV_USE_CLOCK_SYSCALL 0
395 # endif
396 #endif
397
398 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
399
400 #ifndef CLOCK_MONOTONIC
401 # undef EV_USE_MONOTONIC
402 # define EV_USE_MONOTONIC 0
403 #endif
404
405 #ifndef CLOCK_REALTIME
406 # undef EV_USE_REALTIME
407 # define EV_USE_REALTIME 0
408 #endif
409
410 #if !EV_STAT_ENABLE
411 # undef EV_USE_INOTIFY
412 # define EV_USE_INOTIFY 0
413 #endif
414
415 #if !EV_USE_NANOSLEEP
416 /* hp-ux has it in sys/time.h, which we unconditionally include above */
417 # if !defined _WIN32 && !defined __hpux
418 # include <sys/select.h>
419 # endif
420 #endif
421
422 #if EV_USE_INOTIFY
423 # include <sys/statfs.h>
424 # include <sys/inotify.h>
425 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426 # ifndef IN_DONT_FOLLOW
427 # undef EV_USE_INOTIFY
428 # define EV_USE_INOTIFY 0
429 # endif
430 #endif
431
432 #if EV_USE_EVENTFD
433 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434 # include <stdint.h>
435 # ifndef EFD_NONBLOCK
436 # define EFD_NONBLOCK O_NONBLOCK
437 # endif
438 # ifndef EFD_CLOEXEC
439 # ifdef O_CLOEXEC
440 # define EFD_CLOEXEC O_CLOEXEC
441 # else
442 # define EFD_CLOEXEC 02000000
443 # endif
444 # endif
445 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446 #endif
447
448 #if EV_USE_SIGNALFD
449 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450 # include <stdint.h>
451 # ifndef SFD_NONBLOCK
452 # define SFD_NONBLOCK O_NONBLOCK
453 # endif
454 # ifndef SFD_CLOEXEC
455 # ifdef O_CLOEXEC
456 # define SFD_CLOEXEC O_CLOEXEC
457 # else
458 # define SFD_CLOEXEC 02000000
459 # endif
460 # endif
461 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463 struct signalfd_siginfo
464 {
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467 };
468 #endif
469
470 /**/
471
472 #if EV_VERIFY >= 3
473 # define EV_FREQUENT_CHECK ev_verify (EV_A)
474 #else
475 # define EV_FREQUENT_CHECK do { } while (0)
476 #endif
477
478 /*
479 * This is used to work around floating point rounding problems.
480 * This value is good at least till the year 4000.
481 */
482 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
484
485 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
486 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
487
488 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492 /* ECB.H BEGIN */
493 /*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533 #ifndef ECB_H
534 #define ECB_H
535
536 /* 16 bits major, 16 bits minor */
537 #define ECB_VERSION 0x00010004
538
539 #ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
546 #if __GNUC__
547 typedef signed long long int64_t;
548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
562 #else
563 #include <inttypes.h>
564 #if UINTMAX_MAX > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
568 #endif
569 #endif
570
571 /* work around x32 idiocy by defining proper macros */
572 #if __amd64 || __x86_64 || _M_AMD64 || _M_X64
573 #if _ILP32
574 #define ECB_AMD64_X32 1
575 #else
576 #define ECB_AMD64 1
577 #endif
578 #endif
579
580 /* many compilers define _GNUC_ to some versions but then only implement
581 * what their idiot authors think are the "more important" extensions,
582 * causing enormous grief in return for some better fake benchmark numbers.
583 * or so.
584 * we try to detect these and simply assume they are not gcc - if they have
585 * an issue with that they should have done it right in the first place.
586 */
587 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
588 #define ECB_GCC_VERSION(major,minor) 0
589 #else
590 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
591 #endif
592
593 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
594
595 #if __clang__ && defined __has_builtin
596 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
597 #else
598 #define ECB_CLANG_BUILTIN(x) 0
599 #endif
600
601 #if __clang__ && defined __has_extension
602 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
603 #else
604 #define ECB_CLANG_EXTENSION(x) 0
605 #endif
606
607 #define ECB_CPP (__cplusplus+0)
608 #define ECB_CPP11 (__cplusplus >= 201103L)
609
610 #if ECB_CPP
611 #define ECB_C 0
612 #define ECB_STDC_VERSION 0
613 #else
614 #define ECB_C 1
615 #define ECB_STDC_VERSION __STDC_VERSION__
616 #endif
617
618 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
619 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
620
621 #if ECB_CPP
622 #define ECB_EXTERN_C extern "C"
623 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
624 #define ECB_EXTERN_C_END }
625 #else
626 #define ECB_EXTERN_C extern
627 #define ECB_EXTERN_C_BEG
628 #define ECB_EXTERN_C_END
629 #endif
630
631 /*****************************************************************************/
632
633 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
634 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
635
636 #if ECB_NO_THREADS
637 #define ECB_NO_SMP 1
638 #endif
639
640 #if ECB_NO_SMP
641 #define ECB_MEMORY_FENCE do { } while (0)
642 #endif
643
644 #ifndef ECB_MEMORY_FENCE
645 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
646 #if __i386 || __i386__
647 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
648 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
649 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
650 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
651 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
652 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
653 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
654 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
655 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
656 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
657 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
658 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
659 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
660 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
662 #elif __aarch64__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
664 #elif (__sparc || __sparc__) && !__sparcv8
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
666 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
667 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
668 #elif defined __s390__ || defined __s390x__
669 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
670 #elif defined __mips__
671 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
672 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
673 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
674 #elif defined __alpha__
675 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
676 #elif defined __hppa__
677 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
678 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
679 #elif defined __ia64__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
681 #elif defined __m68k__
682 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
683 #elif defined __m88k__
684 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
685 #elif defined __sh__
686 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
687 #endif
688 #endif
689 #endif
690
691 #ifndef ECB_MEMORY_FENCE
692 #if ECB_GCC_VERSION(4,7)
693 /* see comment below (stdatomic.h) about the C11 memory model. */
694 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
695 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
696 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
697
698 #elif ECB_CLANG_EXTENSION(c_atomic)
699 /* see comment below (stdatomic.h) about the C11 memory model. */
700 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
701 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
702 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
703
704 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
705 #define ECB_MEMORY_FENCE __sync_synchronize ()
706 #elif _MSC_VER >= 1500 /* VC++ 2008 */
707 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
708 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
709 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
710 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
711 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
712 #elif _MSC_VER >= 1400 /* VC++ 2005 */
713 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
714 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
715 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
716 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
717 #elif defined _WIN32
718 #include <WinNT.h>
719 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
720 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
721 #include <mbarrier.h>
722 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
723 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
724 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
725 #elif __xlC__
726 #define ECB_MEMORY_FENCE __sync ()
727 #endif
728 #endif
729
730 #ifndef ECB_MEMORY_FENCE
731 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
732 /* we assume that these memory fences work on all variables/all memory accesses, */
733 /* not just C11 atomics and atomic accesses */
734 #include <stdatomic.h>
735 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
736 /* any fence other than seq_cst, which isn't very efficient for us. */
737 /* Why that is, we don't know - either the C11 memory model is quite useless */
738 /* for most usages, or gcc and clang have a bug */
739 /* I *currently* lean towards the latter, and inefficiently implement */
740 /* all three of ecb's fences as a seq_cst fence */
741 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
742 /* for all __atomic_thread_fence's except seq_cst */
743 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
744 #endif
745 #endif
746
747 #ifndef ECB_MEMORY_FENCE
748 #if !ECB_AVOID_PTHREADS
749 /*
750 * if you get undefined symbol references to pthread_mutex_lock,
751 * or failure to find pthread.h, then you should implement
752 * the ECB_MEMORY_FENCE operations for your cpu/compiler
753 * OR provide pthread.h and link against the posix thread library
754 * of your system.
755 */
756 #include <pthread.h>
757 #define ECB_NEEDS_PTHREADS 1
758 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
759
760 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
761 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
762 #endif
763 #endif
764
765 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
766 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
767 #endif
768
769 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
770 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
771 #endif
772
773 /*****************************************************************************/
774
775 #if ECB_CPP
776 #define ecb_inline static inline
777 #elif ECB_GCC_VERSION(2,5)
778 #define ecb_inline static __inline__
779 #elif ECB_C99
780 #define ecb_inline static inline
781 #else
782 #define ecb_inline static
783 #endif
784
785 #if ECB_GCC_VERSION(3,3)
786 #define ecb_restrict __restrict__
787 #elif ECB_C99
788 #define ecb_restrict restrict
789 #else
790 #define ecb_restrict
791 #endif
792
793 typedef int ecb_bool;
794
795 #define ECB_CONCAT_(a, b) a ## b
796 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
797 #define ECB_STRINGIFY_(a) # a
798 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
799
800 #define ecb_function_ ecb_inline
801
802 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
803 #define ecb_attribute(attrlist) __attribute__ (attrlist)
804 #else
805 #define ecb_attribute(attrlist)
806 #endif
807
808 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
809 #define ecb_is_constant(expr) __builtin_constant_p (expr)
810 #else
811 /* possible C11 impl for integral types
812 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
813 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
814
815 #define ecb_is_constant(expr) 0
816 #endif
817
818 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
819 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
820 #else
821 #define ecb_expect(expr,value) (expr)
822 #endif
823
824 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
825 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
826 #else
827 #define ecb_prefetch(addr,rw,locality)
828 #endif
829
830 /* no emulation for ecb_decltype */
831 #if ECB_CPP11
832 // older implementations might have problems with decltype(x)::type, work around it
833 template<class T> struct ecb_decltype_t { typedef T type; };
834 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
835 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
836 #define ecb_decltype(x) __typeof__ (x)
837 #endif
838
839 #if _MSC_VER >= 1300
840 #define ecb_deprecated __declspec (deprecated)
841 #else
842 #define ecb_deprecated ecb_attribute ((__deprecated__))
843 #endif
844
845 #define ecb_noinline ecb_attribute ((__noinline__))
846 #define ecb_unused ecb_attribute ((__unused__))
847 #define ecb_const ecb_attribute ((__const__))
848 #define ecb_pure ecb_attribute ((__pure__))
849
850 /* TODO http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */
851 #if ECB_C11 || __IBMC_NORETURN
852 /* http://pic.dhe.ibm.com/infocenter/compbg/v121v141/topic/com.ibm.xlcpp121.bg.doc/language_ref/noreturn.html */
853 #define ecb_noreturn _Noreturn
854 #else
855 #define ecb_noreturn ecb_attribute ((__noreturn__))
856 #endif
857
858 #if ECB_GCC_VERSION(4,3)
859 #define ecb_artificial ecb_attribute ((__artificial__))
860 #define ecb_hot ecb_attribute ((__hot__))
861 #define ecb_cold ecb_attribute ((__cold__))
862 #else
863 #define ecb_artificial
864 #define ecb_hot
865 #define ecb_cold
866 #endif
867
868 /* put around conditional expressions if you are very sure that the */
869 /* expression is mostly true or mostly false. note that these return */
870 /* booleans, not the expression. */
871 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
872 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
873 /* for compatibility to the rest of the world */
874 #define ecb_likely(expr) ecb_expect_true (expr)
875 #define ecb_unlikely(expr) ecb_expect_false (expr)
876
877 /* count trailing zero bits and count # of one bits */
878 #if ECB_GCC_VERSION(3,4) \
879 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
880 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
881 && ECB_CLANG_BUILTIN(__builtin_popcount))
882 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
883 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
884 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
885 #define ecb_ctz32(x) __builtin_ctz (x)
886 #define ecb_ctz64(x) __builtin_ctzll (x)
887 #define ecb_popcount32(x) __builtin_popcount (x)
888 /* no popcountll */
889 #else
890 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
891 ecb_function_ ecb_const int
892 ecb_ctz32 (uint32_t x)
893 {
894 int r = 0;
895
896 x &= ~x + 1; /* this isolates the lowest bit */
897
898 #if ECB_branchless_on_i386
899 r += !!(x & 0xaaaaaaaa) << 0;
900 r += !!(x & 0xcccccccc) << 1;
901 r += !!(x & 0xf0f0f0f0) << 2;
902 r += !!(x & 0xff00ff00) << 3;
903 r += !!(x & 0xffff0000) << 4;
904 #else
905 if (x & 0xaaaaaaaa) r += 1;
906 if (x & 0xcccccccc) r += 2;
907 if (x & 0xf0f0f0f0) r += 4;
908 if (x & 0xff00ff00) r += 8;
909 if (x & 0xffff0000) r += 16;
910 #endif
911
912 return r;
913 }
914
915 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
916 ecb_function_ ecb_const int
917 ecb_ctz64 (uint64_t x)
918 {
919 int shift = x & 0xffffffffU ? 0 : 32;
920 return ecb_ctz32 (x >> shift) + shift;
921 }
922
923 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
924 ecb_function_ ecb_const int
925 ecb_popcount32 (uint32_t x)
926 {
927 x -= (x >> 1) & 0x55555555;
928 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
929 x = ((x >> 4) + x) & 0x0f0f0f0f;
930 x *= 0x01010101;
931
932 return x >> 24;
933 }
934
935 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
936 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
937 {
938 int r = 0;
939
940 if (x >> 16) { x >>= 16; r += 16; }
941 if (x >> 8) { x >>= 8; r += 8; }
942 if (x >> 4) { x >>= 4; r += 4; }
943 if (x >> 2) { x >>= 2; r += 2; }
944 if (x >> 1) { r += 1; }
945
946 return r;
947 }
948
949 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
950 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
951 {
952 int r = 0;
953
954 if (x >> 32) { x >>= 32; r += 32; }
955
956 return r + ecb_ld32 (x);
957 }
958 #endif
959
960 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
961 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
962 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
963 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
964
965 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
966 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
967 {
968 return ( (x * 0x0802U & 0x22110U)
969 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
970 }
971
972 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
973 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
974 {
975 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
976 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
977 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
978 x = ( x >> 8 ) | ( x << 8);
979
980 return x;
981 }
982
983 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
984 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
985 {
986 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
987 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
988 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
989 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
990 x = ( x >> 16 ) | ( x << 16);
991
992 return x;
993 }
994
995 /* popcount64 is only available on 64 bit cpus as gcc builtin */
996 /* so for this version we are lazy */
997 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
998 ecb_function_ ecb_const int
999 ecb_popcount64 (uint64_t x)
1000 {
1001 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1002 }
1003
1004 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1005 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1006 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1007 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1008 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1009 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1010 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1011 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1012
1013 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1014 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1015 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1016 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1017 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1018 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1019 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1020 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1021
1022 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1023 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1024 #define ecb_bswap32(x) __builtin_bswap32 (x)
1025 #define ecb_bswap64(x) __builtin_bswap64 (x)
1026 #else
1027 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1028 ecb_function_ ecb_const uint16_t
1029 ecb_bswap16 (uint16_t x)
1030 {
1031 return ecb_rotl16 (x, 8);
1032 }
1033
1034 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1035 ecb_function_ ecb_const uint32_t
1036 ecb_bswap32 (uint32_t x)
1037 {
1038 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1039 }
1040
1041 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1042 ecb_function_ ecb_const uint64_t
1043 ecb_bswap64 (uint64_t x)
1044 {
1045 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1046 }
1047 #endif
1048
1049 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1050 #define ecb_unreachable() __builtin_unreachable ()
1051 #else
1052 /* this seems to work fine, but gcc always emits a warning for it :/ */
1053 ecb_inline ecb_noreturn void ecb_unreachable (void);
1054 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1055 #endif
1056
1057 /* try to tell the compiler that some condition is definitely true */
1058 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1059
1060 ecb_inline ecb_const unsigned char ecb_byteorder_helper (void);
1061 ecb_inline ecb_const unsigned char
1062 ecb_byteorder_helper (void)
1063 {
1064 /* the union code still generates code under pressure in gcc, */
1065 /* but less than using pointers, and always seems to */
1066 /* successfully return a constant. */
1067 /* the reason why we have this horrible preprocessor mess */
1068 /* is to avoid it in all cases, at least on common architectures */
1069 /* or when using a recent enough gcc version (>= 4.6) */
1070 #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1071 return 0x44;
1072 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1073 return 0x44;
1074 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1075 return 0x11;
1076 #else
1077 union
1078 {
1079 uint32_t i;
1080 uint8_t c;
1081 } u = { 0x11223344 };
1082 return u.c;
1083 #endif
1084 }
1085
1086 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1087 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1088 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1089 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1090
1091 #if ECB_GCC_VERSION(3,0) || ECB_C99
1092 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1093 #else
1094 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1095 #endif
1096
1097 #if ECB_CPP
1098 template<typename T>
1099 static inline T ecb_div_rd (T val, T div)
1100 {
1101 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1102 }
1103 template<typename T>
1104 static inline T ecb_div_ru (T val, T div)
1105 {
1106 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1107 }
1108 #else
1109 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1110 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1111 #endif
1112
1113 #if ecb_cplusplus_does_not_suck
1114 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1115 template<typename T, int N>
1116 static inline int ecb_array_length (const T (&arr)[N])
1117 {
1118 return N;
1119 }
1120 #else
1121 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1122 #endif
1123
1124 /*******************************************************************************/
1125 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1126
1127 /* basically, everything uses "ieee pure-endian" floating point numbers */
1128 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1129 #if 0 \
1130 || __i386 || __i386__ \
1131 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1132 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1133 || defined __s390__ || defined __s390x__ \
1134 || defined __mips__ \
1135 || defined __alpha__ \
1136 || defined __hppa__ \
1137 || defined __ia64__ \
1138 || defined __m68k__ \
1139 || defined __m88k__ \
1140 || defined __sh__ \
1141 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1142 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1143 || defined __aarch64__
1144 #define ECB_STDFP 1
1145 #include <string.h> /* for memcpy */
1146 #else
1147 #define ECB_STDFP 0
1148 #endif
1149
1150 #ifndef ECB_NO_LIBM
1151
1152 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1153
1154 /* only the oldest of old doesn't have this one. solaris. */
1155 #ifdef INFINITY
1156 #define ECB_INFINITY INFINITY
1157 #else
1158 #define ECB_INFINITY HUGE_VAL
1159 #endif
1160
1161 #ifdef NAN
1162 #define ECB_NAN NAN
1163 #else
1164 #define ECB_NAN ECB_INFINITY
1165 #endif
1166
1167 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1168 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1169 #else
1170 #define ecb_ldexpf(x,e) (float) ldexp ((x), (e))
1171 #endif
1172
1173 /* converts an ieee half/binary16 to a float */
1174 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1175 ecb_function_ ecb_const float
1176 ecb_binary16_to_float (uint16_t x)
1177 {
1178 int e = (x >> 10) & 0x1f;
1179 int m = x & 0x3ff;
1180 float r;
1181
1182 if (!e ) r = ecb_ldexpf (m , -24);
1183 else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25);
1184 else if (m ) r = ECB_NAN;
1185 else r = ECB_INFINITY;
1186
1187 return x & 0x8000 ? -r : r;
1188 }
1189
1190 /* convert a float to ieee single/binary32 */
1191 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1192 ecb_function_ ecb_const uint32_t
1193 ecb_float_to_binary32 (float x)
1194 {
1195 uint32_t r;
1196
1197 #if ECB_STDFP
1198 memcpy (&r, &x, 4);
1199 #else
1200 /* slow emulation, works for anything but -0 */
1201 uint32_t m;
1202 int e;
1203
1204 if (x == 0e0f ) return 0x00000000U;
1205 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1206 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1207 if (x != x ) return 0x7fbfffffU;
1208
1209 m = frexpf (x, &e) * 0x1000000U;
1210
1211 r = m & 0x80000000U;
1212
1213 if (r)
1214 m = -m;
1215
1216 if (e <= -126)
1217 {
1218 m &= 0xffffffU;
1219 m >>= (-125 - e);
1220 e = -126;
1221 }
1222
1223 r |= (e + 126) << 23;
1224 r |= m & 0x7fffffU;
1225 #endif
1226
1227 return r;
1228 }
1229
1230 /* converts an ieee single/binary32 to a float */
1231 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1232 ecb_function_ ecb_const float
1233 ecb_binary32_to_float (uint32_t x)
1234 {
1235 float r;
1236
1237 #if ECB_STDFP
1238 memcpy (&r, &x, 4);
1239 #else
1240 /* emulation, only works for normals and subnormals and +0 */
1241 int neg = x >> 31;
1242 int e = (x >> 23) & 0xffU;
1243
1244 x &= 0x7fffffU;
1245
1246 if (e)
1247 x |= 0x800000U;
1248 else
1249 e = 1;
1250
1251 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1252 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1253
1254 r = neg ? -r : r;
1255 #endif
1256
1257 return r;
1258 }
1259
1260 /* convert a double to ieee double/binary64 */
1261 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1262 ecb_function_ ecb_const uint64_t
1263 ecb_double_to_binary64 (double x)
1264 {
1265 uint64_t r;
1266
1267 #if ECB_STDFP
1268 memcpy (&r, &x, 8);
1269 #else
1270 /* slow emulation, works for anything but -0 */
1271 uint64_t m;
1272 int e;
1273
1274 if (x == 0e0 ) return 0x0000000000000000U;
1275 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1276 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1277 if (x != x ) return 0X7ff7ffffffffffffU;
1278
1279 m = frexp (x, &e) * 0x20000000000000U;
1280
1281 r = m & 0x8000000000000000;;
1282
1283 if (r)
1284 m = -m;
1285
1286 if (e <= -1022)
1287 {
1288 m &= 0x1fffffffffffffU;
1289 m >>= (-1021 - e);
1290 e = -1022;
1291 }
1292
1293 r |= ((uint64_t)(e + 1022)) << 52;
1294 r |= m & 0xfffffffffffffU;
1295 #endif
1296
1297 return r;
1298 }
1299
1300 /* converts an ieee double/binary64 to a double */
1301 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1302 ecb_function_ ecb_const double
1303 ecb_binary64_to_double (uint64_t x)
1304 {
1305 double r;
1306
1307 #if ECB_STDFP
1308 memcpy (&r, &x, 8);
1309 #else
1310 /* emulation, only works for normals and subnormals and +0 */
1311 int neg = x >> 63;
1312 int e = (x >> 52) & 0x7ffU;
1313
1314 x &= 0xfffffffffffffU;
1315
1316 if (e)
1317 x |= 0x10000000000000U;
1318 else
1319 e = 1;
1320
1321 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1322 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1323
1324 r = neg ? -r : r;
1325 #endif
1326
1327 return r;
1328 }
1329
1330 #endif
1331
1332 #endif
1333
1334 /* ECB.H END */
1335
1336 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1337 /* if your architecture doesn't need memory fences, e.g. because it is
1338 * single-cpu/core, or if you use libev in a project that doesn't use libev
1339 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1340 * libev, in which cases the memory fences become nops.
1341 * alternatively, you can remove this #error and link against libpthread,
1342 * which will then provide the memory fences.
1343 */
1344 # error "memory fences not defined for your architecture, please report"
1345 #endif
1346
1347 #ifndef ECB_MEMORY_FENCE
1348 # define ECB_MEMORY_FENCE do { } while (0)
1349 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1350 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1351 #endif
1352
1353 #define expect_false(cond) ecb_expect_false (cond)
1354 #define expect_true(cond) ecb_expect_true (cond)
1355 #define noinline ecb_noinline
1356
1357 #define inline_size ecb_inline
1358
1359 #if EV_FEATURE_CODE
1360 # define inline_speed ecb_inline
1361 #else
1362 # define inline_speed static noinline
1363 #endif
1364
1365 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1366
1367 #if EV_MINPRI == EV_MAXPRI
1368 # define ABSPRI(w) (((W)w), 0)
1369 #else
1370 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1371 #endif
1372
1373 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1374 #define EMPTY2(a,b) /* used to suppress some warnings */
1375
1376 typedef ev_watcher *W;
1377 typedef ev_watcher_list *WL;
1378 typedef ev_watcher_time *WT;
1379
1380 #define ev_active(w) ((W)(w))->active
1381 #define ev_at(w) ((WT)(w))->at
1382
1383 #if EV_USE_REALTIME
1384 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1385 /* giving it a reasonably high chance of working on typical architectures */
1386 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1387 #endif
1388
1389 #if EV_USE_MONOTONIC
1390 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1391 #endif
1392
1393 #ifndef EV_FD_TO_WIN32_HANDLE
1394 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1395 #endif
1396 #ifndef EV_WIN32_HANDLE_TO_FD
1397 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1398 #endif
1399 #ifndef EV_WIN32_CLOSE_FD
1400 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1401 #endif
1402
1403 #ifdef _WIN32
1404 # include "ev_win32.c"
1405 #endif
1406
1407 /*****************************************************************************/
1408
1409 /* define a suitable floor function (only used by periodics atm) */
1410
1411 #if EV_USE_FLOOR
1412 # include <math.h>
1413 # define ev_floor(v) floor (v)
1414 #else
1415
1416 #include <float.h>
1417
1418 /* a floor() replacement function, should be independent of ev_tstamp type */
1419 static ev_tstamp noinline
1420 ev_floor (ev_tstamp v)
1421 {
1422 /* the choice of shift factor is not terribly important */
1423 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1424 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1425 #else
1426 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1427 #endif
1428
1429 /* argument too large for an unsigned long? */
1430 if (expect_false (v >= shift))
1431 {
1432 ev_tstamp f;
1433
1434 if (v == v - 1.)
1435 return v; /* very large number */
1436
1437 f = shift * ev_floor (v * (1. / shift));
1438 return f + ev_floor (v - f);
1439 }
1440
1441 /* special treatment for negative args? */
1442 if (expect_false (v < 0.))
1443 {
1444 ev_tstamp f = -ev_floor (-v);
1445
1446 return f - (f == v ? 0 : 1);
1447 }
1448
1449 /* fits into an unsigned long */
1450 return (unsigned long)v;
1451 }
1452
1453 #endif
1454
1455 /*****************************************************************************/
1456
1457 #ifdef __linux
1458 # include <sys/utsname.h>
1459 #endif
1460
1461 static unsigned int noinline ecb_cold
1462 ev_linux_version (void)
1463 {
1464 #ifdef __linux
1465 unsigned int v = 0;
1466 struct utsname buf;
1467 int i;
1468 char *p = buf.release;
1469
1470 if (uname (&buf))
1471 return 0;
1472
1473 for (i = 3+1; --i; )
1474 {
1475 unsigned int c = 0;
1476
1477 for (;;)
1478 {
1479 if (*p >= '0' && *p <= '9')
1480 c = c * 10 + *p++ - '0';
1481 else
1482 {
1483 p += *p == '.';
1484 break;
1485 }
1486 }
1487
1488 v = (v << 8) | c;
1489 }
1490
1491 return v;
1492 #else
1493 return 0;
1494 #endif
1495 }
1496
1497 /*****************************************************************************/
1498
1499 #if EV_AVOID_STDIO
1500 static void noinline ecb_cold
1501 ev_printerr (const char *msg)
1502 {
1503 write (STDERR_FILENO, msg, strlen (msg));
1504 }
1505 #endif
1506
1507 static void (*syserr_cb)(const char *msg) EV_THROW;
1508
1509 void ecb_cold
1510 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1511 {
1512 syserr_cb = cb;
1513 }
1514
1515 static void noinline ecb_cold
1516 ev_syserr (const char *msg)
1517 {
1518 if (!msg)
1519 msg = "(libev) system error";
1520
1521 if (syserr_cb)
1522 syserr_cb (msg);
1523 else
1524 {
1525 #if EV_AVOID_STDIO
1526 ev_printerr (msg);
1527 ev_printerr (": ");
1528 ev_printerr (strerror (errno));
1529 ev_printerr ("\n");
1530 #else
1531 perror (msg);
1532 #endif
1533 abort ();
1534 }
1535 }
1536
1537 static void *
1538 ev_realloc_emul (void *ptr, long size) EV_THROW
1539 {
1540 /* some systems, notably openbsd and darwin, fail to properly
1541 * implement realloc (x, 0) (as required by both ansi c-89 and
1542 * the single unix specification, so work around them here.
1543 * recently, also (at least) fedora and debian started breaking it,
1544 * despite documenting it otherwise.
1545 */
1546
1547 if (size)
1548 return realloc (ptr, size);
1549
1550 free (ptr);
1551 return 0;
1552 }
1553
1554 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1555
1556 void ecb_cold
1557 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1558 {
1559 alloc = cb;
1560 }
1561
1562 inline_speed void *
1563 ev_realloc (void *ptr, long size)
1564 {
1565 ptr = alloc (ptr, size);
1566
1567 if (!ptr && size)
1568 {
1569 #if EV_AVOID_STDIO
1570 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1571 #else
1572 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1573 #endif
1574 abort ();
1575 }
1576
1577 return ptr;
1578 }
1579
1580 #define ev_malloc(size) ev_realloc (0, (size))
1581 #define ev_free(ptr) ev_realloc ((ptr), 0)
1582
1583 /*****************************************************************************/
1584
1585 /* set in reify when reification needed */
1586 #define EV_ANFD_REIFY 1
1587
1588 /* file descriptor info structure */
1589 typedef struct
1590 {
1591 WL head;
1592 unsigned char events; /* the events watched for */
1593 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1594 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1595 unsigned char unused;
1596 #if EV_USE_EPOLL
1597 unsigned int egen; /* generation counter to counter epoll bugs */
1598 #endif
1599 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1600 SOCKET handle;
1601 #endif
1602 #if EV_USE_IOCP
1603 OVERLAPPED or, ow;
1604 #endif
1605 } ANFD;
1606
1607 /* stores the pending event set for a given watcher */
1608 typedef struct
1609 {
1610 W w;
1611 int events; /* the pending event set for the given watcher */
1612 } ANPENDING;
1613
1614 #if EV_USE_INOTIFY
1615 /* hash table entry per inotify-id */
1616 typedef struct
1617 {
1618 WL head;
1619 } ANFS;
1620 #endif
1621
1622 /* Heap Entry */
1623 #if EV_HEAP_CACHE_AT
1624 /* a heap element */
1625 typedef struct {
1626 ev_tstamp at;
1627 WT w;
1628 } ANHE;
1629
1630 #define ANHE_w(he) (he).w /* access watcher, read-write */
1631 #define ANHE_at(he) (he).at /* access cached at, read-only */
1632 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1633 #else
1634 /* a heap element */
1635 typedef WT ANHE;
1636
1637 #define ANHE_w(he) (he)
1638 #define ANHE_at(he) (he)->at
1639 #define ANHE_at_cache(he)
1640 #endif
1641
1642 #if EV_MULTIPLICITY
1643
1644 struct ev_loop
1645 {
1646 ev_tstamp ev_rt_now;
1647 #define ev_rt_now ((loop)->ev_rt_now)
1648 #define VAR(name,decl) decl;
1649 #include "ev_vars.h"
1650 #undef VAR
1651 };
1652 #include "ev_wrap.h"
1653
1654 static struct ev_loop default_loop_struct;
1655 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1656
1657 #else
1658
1659 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1660 #define VAR(name,decl) static decl;
1661 #include "ev_vars.h"
1662 #undef VAR
1663
1664 static int ev_default_loop_ptr;
1665
1666 #endif
1667
1668 #if EV_FEATURE_API
1669 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1670 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1671 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1672 #else
1673 # define EV_RELEASE_CB (void)0
1674 # define EV_ACQUIRE_CB (void)0
1675 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1676 #endif
1677
1678 #define EVBREAK_RECURSE 0x80
1679
1680 /*****************************************************************************/
1681
1682 #ifndef EV_HAVE_EV_TIME
1683 ev_tstamp
1684 ev_time (void) EV_THROW
1685 {
1686 #if EV_USE_REALTIME
1687 if (expect_true (have_realtime))
1688 {
1689 struct timespec ts;
1690 clock_gettime (CLOCK_REALTIME, &ts);
1691 return ts.tv_sec + ts.tv_nsec * 1e-9;
1692 }
1693 #endif
1694
1695 struct timeval tv;
1696 gettimeofday (&tv, 0);
1697 return tv.tv_sec + tv.tv_usec * 1e-6;
1698 }
1699 #endif
1700
1701 inline_size ev_tstamp
1702 get_clock (void)
1703 {
1704 #if EV_USE_MONOTONIC
1705 if (expect_true (have_monotonic))
1706 {
1707 struct timespec ts;
1708 clock_gettime (CLOCK_MONOTONIC, &ts);
1709 return ts.tv_sec + ts.tv_nsec * 1e-9;
1710 }
1711 #endif
1712
1713 return ev_time ();
1714 }
1715
1716 #if EV_MULTIPLICITY
1717 ev_tstamp
1718 ev_now (EV_P) EV_THROW
1719 {
1720 return ev_rt_now;
1721 }
1722 #endif
1723
1724 void
1725 ev_sleep (ev_tstamp delay) EV_THROW
1726 {
1727 if (delay > 0.)
1728 {
1729 #if EV_USE_NANOSLEEP
1730 struct timespec ts;
1731
1732 EV_TS_SET (ts, delay);
1733 nanosleep (&ts, 0);
1734 #elif defined _WIN32
1735 Sleep ((unsigned long)(delay * 1e3));
1736 #else
1737 struct timeval tv;
1738
1739 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1740 /* something not guaranteed by newer posix versions, but guaranteed */
1741 /* by older ones */
1742 EV_TV_SET (tv, delay);
1743 select (0, 0, 0, 0, &tv);
1744 #endif
1745 }
1746 }
1747
1748 /*****************************************************************************/
1749
1750 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1751
1752 /* find a suitable new size for the given array, */
1753 /* hopefully by rounding to a nice-to-malloc size */
1754 inline_size int
1755 array_nextsize (int elem, int cur, int cnt)
1756 {
1757 int ncur = cur + 1;
1758
1759 do
1760 ncur <<= 1;
1761 while (cnt > ncur);
1762
1763 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1764 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1765 {
1766 ncur *= elem;
1767 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1768 ncur = ncur - sizeof (void *) * 4;
1769 ncur /= elem;
1770 }
1771
1772 return ncur;
1773 }
1774
1775 static void * noinline ecb_cold
1776 array_realloc (int elem, void *base, int *cur, int cnt)
1777 {
1778 *cur = array_nextsize (elem, *cur, cnt);
1779 return ev_realloc (base, elem * *cur);
1780 }
1781
1782 #define array_init_zero(base,count) \
1783 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1784
1785 #define array_needsize(type,base,cur,cnt,init) \
1786 if (expect_false ((cnt) > (cur))) \
1787 { \
1788 int ecb_unused ocur_ = (cur); \
1789 (base) = (type *)array_realloc \
1790 (sizeof (type), (base), &(cur), (cnt)); \
1791 init ((base) + (ocur_), (cur) - ocur_); \
1792 }
1793
1794 #if 0
1795 #define array_slim(type,stem) \
1796 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1797 { \
1798 stem ## max = array_roundsize (stem ## cnt >> 1); \
1799 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1800 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1801 }
1802 #endif
1803
1804 #define array_free(stem, idx) \
1805 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1806
1807 /*****************************************************************************/
1808
1809 /* dummy callback for pending events */
1810 static void noinline
1811 pendingcb (EV_P_ ev_prepare *w, int revents)
1812 {
1813 }
1814
1815 void noinline
1816 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1817 {
1818 W w_ = (W)w;
1819 int pri = ABSPRI (w_);
1820
1821 if (expect_false (w_->pending))
1822 pendings [pri][w_->pending - 1].events |= revents;
1823 else
1824 {
1825 w_->pending = ++pendingcnt [pri];
1826 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1827 pendings [pri][w_->pending - 1].w = w_;
1828 pendings [pri][w_->pending - 1].events = revents;
1829 }
1830
1831 pendingpri = NUMPRI - 1;
1832 }
1833
1834 inline_speed void
1835 feed_reverse (EV_P_ W w)
1836 {
1837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1838 rfeeds [rfeedcnt++] = w;
1839 }
1840
1841 inline_size void
1842 feed_reverse_done (EV_P_ int revents)
1843 {
1844 do
1845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1846 while (rfeedcnt);
1847 }
1848
1849 inline_speed void
1850 queue_events (EV_P_ W *events, int eventcnt, int type)
1851 {
1852 int i;
1853
1854 for (i = 0; i < eventcnt; ++i)
1855 ev_feed_event (EV_A_ events [i], type);
1856 }
1857
1858 /*****************************************************************************/
1859
1860 inline_speed void
1861 fd_event_nocheck (EV_P_ int fd, int revents)
1862 {
1863 ANFD *anfd = anfds + fd;
1864 ev_io *w;
1865
1866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1867 {
1868 int ev = w->events & revents;
1869
1870 if (ev)
1871 ev_feed_event (EV_A_ (W)w, ev);
1872 }
1873 }
1874
1875 /* do not submit kernel events for fds that have reify set */
1876 /* because that means they changed while we were polling for new events */
1877 inline_speed void
1878 fd_event (EV_P_ int fd, int revents)
1879 {
1880 ANFD *anfd = anfds + fd;
1881
1882 if (expect_true (!anfd->reify))
1883 fd_event_nocheck (EV_A_ fd, revents);
1884 }
1885
1886 void
1887 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1888 {
1889 if (fd >= 0 && fd < anfdmax)
1890 fd_event_nocheck (EV_A_ fd, revents);
1891 }
1892
1893 /* make sure the external fd watch events are in-sync */
1894 /* with the kernel/libev internal state */
1895 inline_size void
1896 fd_reify (EV_P)
1897 {
1898 int i;
1899
1900 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1901 for (i = 0; i < fdchangecnt; ++i)
1902 {
1903 int fd = fdchanges [i];
1904 ANFD *anfd = anfds + fd;
1905
1906 if (anfd->reify & EV__IOFDSET && anfd->head)
1907 {
1908 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1909
1910 if (handle != anfd->handle)
1911 {
1912 unsigned long arg;
1913
1914 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1915
1916 /* handle changed, but fd didn't - we need to do it in two steps */
1917 backend_modify (EV_A_ fd, anfd->events, 0);
1918 anfd->events = 0;
1919 anfd->handle = handle;
1920 }
1921 }
1922 }
1923 #endif
1924
1925 for (i = 0; i < fdchangecnt; ++i)
1926 {
1927 int fd = fdchanges [i];
1928 ANFD *anfd = anfds + fd;
1929 ev_io *w;
1930
1931 unsigned char o_events = anfd->events;
1932 unsigned char o_reify = anfd->reify;
1933
1934 anfd->reify = 0;
1935
1936 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1937 {
1938 anfd->events = 0;
1939
1940 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1941 anfd->events |= (unsigned char)w->events;
1942
1943 if (o_events != anfd->events)
1944 o_reify = EV__IOFDSET; /* actually |= */
1945 }
1946
1947 if (o_reify & EV__IOFDSET)
1948 backend_modify (EV_A_ fd, o_events, anfd->events);
1949 }
1950
1951 fdchangecnt = 0;
1952 }
1953
1954 /* something about the given fd changed */
1955 inline_size void
1956 fd_change (EV_P_ int fd, int flags)
1957 {
1958 unsigned char reify = anfds [fd].reify;
1959 anfds [fd].reify |= flags;
1960
1961 if (expect_true (!reify))
1962 {
1963 ++fdchangecnt;
1964 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1965 fdchanges [fdchangecnt - 1] = fd;
1966 }
1967 }
1968
1969 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1970 inline_speed void ecb_cold
1971 fd_kill (EV_P_ int fd)
1972 {
1973 ev_io *w;
1974
1975 while ((w = (ev_io *)anfds [fd].head))
1976 {
1977 ev_io_stop (EV_A_ w);
1978 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1979 }
1980 }
1981
1982 /* check whether the given fd is actually valid, for error recovery */
1983 inline_size int ecb_cold
1984 fd_valid (int fd)
1985 {
1986 #ifdef _WIN32
1987 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1988 #else
1989 return fcntl (fd, F_GETFD) != -1;
1990 #endif
1991 }
1992
1993 /* called on EBADF to verify fds */
1994 static void noinline ecb_cold
1995 fd_ebadf (EV_P)
1996 {
1997 int fd;
1998
1999 for (fd = 0; fd < anfdmax; ++fd)
2000 if (anfds [fd].events)
2001 if (!fd_valid (fd) && errno == EBADF)
2002 fd_kill (EV_A_ fd);
2003 }
2004
2005 /* called on ENOMEM in select/poll to kill some fds and retry */
2006 static void noinline ecb_cold
2007 fd_enomem (EV_P)
2008 {
2009 int fd;
2010
2011 for (fd = anfdmax; fd--; )
2012 if (anfds [fd].events)
2013 {
2014 fd_kill (EV_A_ fd);
2015 break;
2016 }
2017 }
2018
2019 /* usually called after fork if backend needs to re-arm all fds from scratch */
2020 static void noinline
2021 fd_rearm_all (EV_P)
2022 {
2023 int fd;
2024
2025 for (fd = 0; fd < anfdmax; ++fd)
2026 if (anfds [fd].events)
2027 {
2028 anfds [fd].events = 0;
2029 anfds [fd].emask = 0;
2030 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2031 }
2032 }
2033
2034 /* used to prepare libev internal fd's */
2035 /* this is not fork-safe */
2036 inline_speed void
2037 fd_intern (int fd)
2038 {
2039 #ifdef _WIN32
2040 unsigned long arg = 1;
2041 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2042 #else
2043 fcntl (fd, F_SETFD, FD_CLOEXEC);
2044 fcntl (fd, F_SETFL, O_NONBLOCK);
2045 #endif
2046 }
2047
2048 /*****************************************************************************/
2049
2050 /*
2051 * the heap functions want a real array index. array index 0 is guaranteed to not
2052 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2053 * the branching factor of the d-tree.
2054 */
2055
2056 /*
2057 * at the moment we allow libev the luxury of two heaps,
2058 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2059 * which is more cache-efficient.
2060 * the difference is about 5% with 50000+ watchers.
2061 */
2062 #if EV_USE_4HEAP
2063
2064 #define DHEAP 4
2065 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2066 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2067 #define UPHEAP_DONE(p,k) ((p) == (k))
2068
2069 /* away from the root */
2070 inline_speed void
2071 downheap (ANHE *heap, int N, int k)
2072 {
2073 ANHE he = heap [k];
2074 ANHE *E = heap + N + HEAP0;
2075
2076 for (;;)
2077 {
2078 ev_tstamp minat;
2079 ANHE *minpos;
2080 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2081
2082 /* find minimum child */
2083 if (expect_true (pos + DHEAP - 1 < E))
2084 {
2085 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2086 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2087 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2088 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2089 }
2090 else if (pos < E)
2091 {
2092 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2093 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2094 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2095 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2096 }
2097 else
2098 break;
2099
2100 if (ANHE_at (he) <= minat)
2101 break;
2102
2103 heap [k] = *minpos;
2104 ev_active (ANHE_w (*minpos)) = k;
2105
2106 k = minpos - heap;
2107 }
2108
2109 heap [k] = he;
2110 ev_active (ANHE_w (he)) = k;
2111 }
2112
2113 #else /* 4HEAP */
2114
2115 #define HEAP0 1
2116 #define HPARENT(k) ((k) >> 1)
2117 #define UPHEAP_DONE(p,k) (!(p))
2118
2119 /* away from the root */
2120 inline_speed void
2121 downheap (ANHE *heap, int N, int k)
2122 {
2123 ANHE he = heap [k];
2124
2125 for (;;)
2126 {
2127 int c = k << 1;
2128
2129 if (c >= N + HEAP0)
2130 break;
2131
2132 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2133 ? 1 : 0;
2134
2135 if (ANHE_at (he) <= ANHE_at (heap [c]))
2136 break;
2137
2138 heap [k] = heap [c];
2139 ev_active (ANHE_w (heap [k])) = k;
2140
2141 k = c;
2142 }
2143
2144 heap [k] = he;
2145 ev_active (ANHE_w (he)) = k;
2146 }
2147 #endif
2148
2149 /* towards the root */
2150 inline_speed void
2151 upheap (ANHE *heap, int k)
2152 {
2153 ANHE he = heap [k];
2154
2155 for (;;)
2156 {
2157 int p = HPARENT (k);
2158
2159 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2160 break;
2161
2162 heap [k] = heap [p];
2163 ev_active (ANHE_w (heap [k])) = k;
2164 k = p;
2165 }
2166
2167 heap [k] = he;
2168 ev_active (ANHE_w (he)) = k;
2169 }
2170
2171 /* move an element suitably so it is in a correct place */
2172 inline_size void
2173 adjustheap (ANHE *heap, int N, int k)
2174 {
2175 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2176 upheap (heap, k);
2177 else
2178 downheap (heap, N, k);
2179 }
2180
2181 /* rebuild the heap: this function is used only once and executed rarely */
2182 inline_size void
2183 reheap (ANHE *heap, int N)
2184 {
2185 int i;
2186
2187 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2188 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2189 for (i = 0; i < N; ++i)
2190 upheap (heap, i + HEAP0);
2191 }
2192
2193 /*****************************************************************************/
2194
2195 /* associate signal watchers to a signal signal */
2196 typedef struct
2197 {
2198 EV_ATOMIC_T pending;
2199 #if EV_MULTIPLICITY
2200 EV_P;
2201 #endif
2202 WL head;
2203 } ANSIG;
2204
2205 static ANSIG signals [EV_NSIG - 1];
2206
2207 /*****************************************************************************/
2208
2209 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2210
2211 static void noinline ecb_cold
2212 evpipe_init (EV_P)
2213 {
2214 if (!ev_is_active (&pipe_w))
2215 {
2216 int fds [2];
2217
2218 # if EV_USE_EVENTFD
2219 fds [0] = -1;
2220 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2221 if (fds [1] < 0 && errno == EINVAL)
2222 fds [1] = eventfd (0, 0);
2223
2224 if (fds [1] < 0)
2225 # endif
2226 {
2227 while (pipe (fds))
2228 ev_syserr ("(libev) error creating signal/async pipe");
2229
2230 fd_intern (fds [0]);
2231 }
2232
2233 evpipe [0] = fds [0];
2234
2235 if (evpipe [1] < 0)
2236 evpipe [1] = fds [1]; /* first call, set write fd */
2237 else
2238 {
2239 /* on subsequent calls, do not change evpipe [1] */
2240 /* so that evpipe_write can always rely on its value. */
2241 /* this branch does not do anything sensible on windows, */
2242 /* so must not be executed on windows */
2243
2244 dup2 (fds [1], evpipe [1]);
2245 close (fds [1]);
2246 }
2247
2248 fd_intern (evpipe [1]);
2249
2250 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2251 ev_io_start (EV_A_ &pipe_w);
2252 ev_unref (EV_A); /* watcher should not keep loop alive */
2253 }
2254 }
2255
2256 inline_speed void
2257 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2258 {
2259 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2260
2261 if (expect_true (*flag))
2262 return;
2263
2264 *flag = 1;
2265 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2266
2267 pipe_write_skipped = 1;
2268
2269 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2270
2271 if (pipe_write_wanted)
2272 {
2273 int old_errno;
2274
2275 pipe_write_skipped = 0;
2276 ECB_MEMORY_FENCE_RELEASE;
2277
2278 old_errno = errno; /* save errno because write will clobber it */
2279
2280 #if EV_USE_EVENTFD
2281 if (evpipe [0] < 0)
2282 {
2283 uint64_t counter = 1;
2284 write (evpipe [1], &counter, sizeof (uint64_t));
2285 }
2286 else
2287 #endif
2288 {
2289 #ifdef _WIN32
2290 WSABUF buf;
2291 DWORD sent;
2292 buf.buf = &buf;
2293 buf.len = 1;
2294 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2295 #else
2296 write (evpipe [1], &(evpipe [1]), 1);
2297 #endif
2298 }
2299
2300 errno = old_errno;
2301 }
2302 }
2303
2304 /* called whenever the libev signal pipe */
2305 /* got some events (signal, async) */
2306 static void
2307 pipecb (EV_P_ ev_io *iow, int revents)
2308 {
2309 int i;
2310
2311 if (revents & EV_READ)
2312 {
2313 #if EV_USE_EVENTFD
2314 if (evpipe [0] < 0)
2315 {
2316 uint64_t counter;
2317 read (evpipe [1], &counter, sizeof (uint64_t));
2318 }
2319 else
2320 #endif
2321 {
2322 char dummy[4];
2323 #ifdef _WIN32
2324 WSABUF buf;
2325 DWORD recvd;
2326 DWORD flags = 0;
2327 buf.buf = dummy;
2328 buf.len = sizeof (dummy);
2329 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2330 #else
2331 read (evpipe [0], &dummy, sizeof (dummy));
2332 #endif
2333 }
2334 }
2335
2336 pipe_write_skipped = 0;
2337
2338 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2339
2340 #if EV_SIGNAL_ENABLE
2341 if (sig_pending)
2342 {
2343 sig_pending = 0;
2344
2345 ECB_MEMORY_FENCE;
2346
2347 for (i = EV_NSIG - 1; i--; )
2348 if (expect_false (signals [i].pending))
2349 ev_feed_signal_event (EV_A_ i + 1);
2350 }
2351 #endif
2352
2353 #if EV_ASYNC_ENABLE
2354 if (async_pending)
2355 {
2356 async_pending = 0;
2357
2358 ECB_MEMORY_FENCE;
2359
2360 for (i = asynccnt; i--; )
2361 if (asyncs [i]->sent)
2362 {
2363 asyncs [i]->sent = 0;
2364 ECB_MEMORY_FENCE_RELEASE;
2365 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2366 }
2367 }
2368 #endif
2369 }
2370
2371 /*****************************************************************************/
2372
2373 void
2374 ev_feed_signal (int signum) EV_THROW
2375 {
2376 #if EV_MULTIPLICITY
2377 EV_P;
2378 ECB_MEMORY_FENCE_ACQUIRE;
2379 EV_A = signals [signum - 1].loop;
2380
2381 if (!EV_A)
2382 return;
2383 #endif
2384
2385 signals [signum - 1].pending = 1;
2386 evpipe_write (EV_A_ &sig_pending);
2387 }
2388
2389 static void
2390 ev_sighandler (int signum)
2391 {
2392 #ifdef _WIN32
2393 signal (signum, ev_sighandler);
2394 #endif
2395
2396 ev_feed_signal (signum);
2397 }
2398
2399 void noinline
2400 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2401 {
2402 WL w;
2403
2404 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2405 return;
2406
2407 --signum;
2408
2409 #if EV_MULTIPLICITY
2410 /* it is permissible to try to feed a signal to the wrong loop */
2411 /* or, likely more useful, feeding a signal nobody is waiting for */
2412
2413 if (expect_false (signals [signum].loop != EV_A))
2414 return;
2415 #endif
2416
2417 signals [signum].pending = 0;
2418 ECB_MEMORY_FENCE_RELEASE;
2419
2420 for (w = signals [signum].head; w; w = w->next)
2421 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2422 }
2423
2424 #if EV_USE_SIGNALFD
2425 static void
2426 sigfdcb (EV_P_ ev_io *iow, int revents)
2427 {
2428 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2429
2430 for (;;)
2431 {
2432 ssize_t res = read (sigfd, si, sizeof (si));
2433
2434 /* not ISO-C, as res might be -1, but works with SuS */
2435 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2436 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2437
2438 if (res < (ssize_t)sizeof (si))
2439 break;
2440 }
2441 }
2442 #endif
2443
2444 #endif
2445
2446 /*****************************************************************************/
2447
2448 #if EV_CHILD_ENABLE
2449 static WL childs [EV_PID_HASHSIZE];
2450
2451 static ev_signal childev;
2452
2453 #ifndef WIFCONTINUED
2454 # define WIFCONTINUED(status) 0
2455 #endif
2456
2457 /* handle a single child status event */
2458 inline_speed void
2459 child_reap (EV_P_ int chain, int pid, int status)
2460 {
2461 ev_child *w;
2462 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2463
2464 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2465 {
2466 if ((w->pid == pid || !w->pid)
2467 && (!traced || (w->flags & 1)))
2468 {
2469 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2470 w->rpid = pid;
2471 w->rstatus = status;
2472 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2473 }
2474 }
2475 }
2476
2477 #ifndef WCONTINUED
2478 # define WCONTINUED 0
2479 #endif
2480
2481 /* called on sigchld etc., calls waitpid */
2482 static void
2483 childcb (EV_P_ ev_signal *sw, int revents)
2484 {
2485 int pid, status;
2486
2487 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2488 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2489 if (!WCONTINUED
2490 || errno != EINVAL
2491 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2492 return;
2493
2494 /* make sure we are called again until all children have been reaped */
2495 /* we need to do it this way so that the callback gets called before we continue */
2496 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2497
2498 child_reap (EV_A_ pid, pid, status);
2499 if ((EV_PID_HASHSIZE) > 1)
2500 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2501 }
2502
2503 #endif
2504
2505 /*****************************************************************************/
2506
2507 #if EV_USE_IOCP
2508 # include "ev_iocp.c"
2509 #endif
2510 #if EV_USE_PORT
2511 # include "ev_port.c"
2512 #endif
2513 #if EV_USE_KQUEUE
2514 # include "ev_kqueue.c"
2515 #endif
2516 #if EV_USE_EPOLL
2517 # include "ev_epoll.c"
2518 #endif
2519 #if EV_USE_POLL
2520 # include "ev_poll.c"
2521 #endif
2522 #if EV_USE_SELECT
2523 # include "ev_select.c"
2524 #endif
2525
2526 int ecb_cold
2527 ev_version_major (void) EV_THROW
2528 {
2529 return EV_VERSION_MAJOR;
2530 }
2531
2532 int ecb_cold
2533 ev_version_minor (void) EV_THROW
2534 {
2535 return EV_VERSION_MINOR;
2536 }
2537
2538 /* return true if we are running with elevated privileges and should ignore env variables */
2539 int inline_size ecb_cold
2540 enable_secure (void)
2541 {
2542 #ifdef _WIN32
2543 return 0;
2544 #else
2545 return getuid () != geteuid ()
2546 || getgid () != getegid ();
2547 #endif
2548 }
2549
2550 unsigned int ecb_cold
2551 ev_supported_backends (void) EV_THROW
2552 {
2553 unsigned int flags = 0;
2554
2555 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2556 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2557 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2558 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2559 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2560
2561 return flags;
2562 }
2563
2564 unsigned int ecb_cold
2565 ev_recommended_backends (void) EV_THROW
2566 {
2567 unsigned int flags = ev_supported_backends ();
2568
2569 #ifndef __NetBSD__
2570 /* kqueue is borked on everything but netbsd apparently */
2571 /* it usually doesn't work correctly on anything but sockets and pipes */
2572 flags &= ~EVBACKEND_KQUEUE;
2573 #endif
2574 #ifdef __APPLE__
2575 /* only select works correctly on that "unix-certified" platform */
2576 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2577 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2578 #endif
2579 #ifdef __FreeBSD__
2580 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2581 #endif
2582
2583 return flags;
2584 }
2585
2586 unsigned int ecb_cold
2587 ev_embeddable_backends (void) EV_THROW
2588 {
2589 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2590
2591 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2592 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2593 flags &= ~EVBACKEND_EPOLL;
2594
2595 return flags;
2596 }
2597
2598 unsigned int
2599 ev_backend (EV_P) EV_THROW
2600 {
2601 return backend;
2602 }
2603
2604 #if EV_FEATURE_API
2605 unsigned int
2606 ev_iteration (EV_P) EV_THROW
2607 {
2608 return loop_count;
2609 }
2610
2611 unsigned int
2612 ev_depth (EV_P) EV_THROW
2613 {
2614 return loop_depth;
2615 }
2616
2617 void
2618 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2619 {
2620 io_blocktime = interval;
2621 }
2622
2623 void
2624 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2625 {
2626 timeout_blocktime = interval;
2627 }
2628
2629 void
2630 ev_set_userdata (EV_P_ void *data) EV_THROW
2631 {
2632 userdata = data;
2633 }
2634
2635 void *
2636 ev_userdata (EV_P) EV_THROW
2637 {
2638 return userdata;
2639 }
2640
2641 void
2642 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2643 {
2644 invoke_cb = invoke_pending_cb;
2645 }
2646
2647 void
2648 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2649 {
2650 release_cb = release;
2651 acquire_cb = acquire;
2652 }
2653 #endif
2654
2655 /* initialise a loop structure, must be zero-initialised */
2656 static void noinline ecb_cold
2657 loop_init (EV_P_ unsigned int flags) EV_THROW
2658 {
2659 if (!backend)
2660 {
2661 origflags = flags;
2662
2663 #if EV_USE_REALTIME
2664 if (!have_realtime)
2665 {
2666 struct timespec ts;
2667
2668 if (!clock_gettime (CLOCK_REALTIME, &ts))
2669 have_realtime = 1;
2670 }
2671 #endif
2672
2673 #if EV_USE_MONOTONIC
2674 if (!have_monotonic)
2675 {
2676 struct timespec ts;
2677
2678 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2679 have_monotonic = 1;
2680 }
2681 #endif
2682
2683 /* pid check not overridable via env */
2684 #ifndef _WIN32
2685 if (flags & EVFLAG_FORKCHECK)
2686 curpid = getpid ();
2687 #endif
2688
2689 if (!(flags & EVFLAG_NOENV)
2690 && !enable_secure ()
2691 && getenv ("LIBEV_FLAGS"))
2692 flags = atoi (getenv ("LIBEV_FLAGS"));
2693
2694 ev_rt_now = ev_time ();
2695 mn_now = get_clock ();
2696 now_floor = mn_now;
2697 rtmn_diff = ev_rt_now - mn_now;
2698 #if EV_FEATURE_API
2699 invoke_cb = ev_invoke_pending;
2700 #endif
2701
2702 io_blocktime = 0.;
2703 timeout_blocktime = 0.;
2704 backend = 0;
2705 backend_fd = -1;
2706 sig_pending = 0;
2707 #if EV_ASYNC_ENABLE
2708 async_pending = 0;
2709 #endif
2710 pipe_write_skipped = 0;
2711 pipe_write_wanted = 0;
2712 evpipe [0] = -1;
2713 evpipe [1] = -1;
2714 #if EV_USE_INOTIFY
2715 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2716 #endif
2717 #if EV_USE_SIGNALFD
2718 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2719 #endif
2720
2721 if (!(flags & EVBACKEND_MASK))
2722 flags |= ev_recommended_backends ();
2723
2724 #if EV_USE_IOCP
2725 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2726 #endif
2727 #if EV_USE_PORT
2728 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2729 #endif
2730 #if EV_USE_KQUEUE
2731 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2732 #endif
2733 #if EV_USE_EPOLL
2734 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2735 #endif
2736 #if EV_USE_POLL
2737 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2738 #endif
2739 #if EV_USE_SELECT
2740 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2741 #endif
2742
2743 ev_prepare_init (&pending_w, pendingcb);
2744
2745 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2746 ev_init (&pipe_w, pipecb);
2747 ev_set_priority (&pipe_w, EV_MAXPRI);
2748 #endif
2749 }
2750 }
2751
2752 /* free up a loop structure */
2753 void ecb_cold
2754 ev_loop_destroy (EV_P)
2755 {
2756 int i;
2757
2758 #if EV_MULTIPLICITY
2759 /* mimic free (0) */
2760 if (!EV_A)
2761 return;
2762 #endif
2763
2764 #if EV_CLEANUP_ENABLE
2765 /* queue cleanup watchers (and execute them) */
2766 if (expect_false (cleanupcnt))
2767 {
2768 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2769 EV_INVOKE_PENDING;
2770 }
2771 #endif
2772
2773 #if EV_CHILD_ENABLE
2774 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2775 {
2776 ev_ref (EV_A); /* child watcher */
2777 ev_signal_stop (EV_A_ &childev);
2778 }
2779 #endif
2780
2781 if (ev_is_active (&pipe_w))
2782 {
2783 /*ev_ref (EV_A);*/
2784 /*ev_io_stop (EV_A_ &pipe_w);*/
2785
2786 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2787 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2788 }
2789
2790 #if EV_USE_SIGNALFD
2791 if (ev_is_active (&sigfd_w))
2792 close (sigfd);
2793 #endif
2794
2795 #if EV_USE_INOTIFY
2796 if (fs_fd >= 0)
2797 close (fs_fd);
2798 #endif
2799
2800 if (backend_fd >= 0)
2801 close (backend_fd);
2802
2803 #if EV_USE_IOCP
2804 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2805 #endif
2806 #if EV_USE_PORT
2807 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2808 #endif
2809 #if EV_USE_KQUEUE
2810 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2811 #endif
2812 #if EV_USE_EPOLL
2813 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2814 #endif
2815 #if EV_USE_POLL
2816 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2817 #endif
2818 #if EV_USE_SELECT
2819 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2820 #endif
2821
2822 for (i = NUMPRI; i--; )
2823 {
2824 array_free (pending, [i]);
2825 #if EV_IDLE_ENABLE
2826 array_free (idle, [i]);
2827 #endif
2828 }
2829
2830 ev_free (anfds); anfds = 0; anfdmax = 0;
2831
2832 /* have to use the microsoft-never-gets-it-right macro */
2833 array_free (rfeed, EMPTY);
2834 array_free (fdchange, EMPTY);
2835 array_free (timer, EMPTY);
2836 #if EV_PERIODIC_ENABLE
2837 array_free (periodic, EMPTY);
2838 #endif
2839 #if EV_FORK_ENABLE
2840 array_free (fork, EMPTY);
2841 #endif
2842 #if EV_CLEANUP_ENABLE
2843 array_free (cleanup, EMPTY);
2844 #endif
2845 array_free (prepare, EMPTY);
2846 array_free (check, EMPTY);
2847 #if EV_ASYNC_ENABLE
2848 array_free (async, EMPTY);
2849 #endif
2850
2851 backend = 0;
2852
2853 #if EV_MULTIPLICITY
2854 if (ev_is_default_loop (EV_A))
2855 #endif
2856 ev_default_loop_ptr = 0;
2857 #if EV_MULTIPLICITY
2858 else
2859 ev_free (EV_A);
2860 #endif
2861 }
2862
2863 #if EV_USE_INOTIFY
2864 inline_size void infy_fork (EV_P);
2865 #endif
2866
2867 inline_size void
2868 loop_fork (EV_P)
2869 {
2870 #if EV_USE_PORT
2871 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2872 #endif
2873 #if EV_USE_KQUEUE
2874 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2875 #endif
2876 #if EV_USE_EPOLL
2877 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2878 #endif
2879 #if EV_USE_INOTIFY
2880 infy_fork (EV_A);
2881 #endif
2882
2883 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2884 if (ev_is_active (&pipe_w))
2885 {
2886 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2887
2888 ev_ref (EV_A);
2889 ev_io_stop (EV_A_ &pipe_w);
2890
2891 if (evpipe [0] >= 0)
2892 EV_WIN32_CLOSE_FD (evpipe [0]);
2893
2894 evpipe_init (EV_A);
2895 /* iterate over everything, in case we missed something before */
2896 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2897 }
2898 #endif
2899
2900 postfork = 0;
2901 }
2902
2903 #if EV_MULTIPLICITY
2904
2905 struct ev_loop * ecb_cold
2906 ev_loop_new (unsigned int flags) EV_THROW
2907 {
2908 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2909
2910 memset (EV_A, 0, sizeof (struct ev_loop));
2911 loop_init (EV_A_ flags);
2912
2913 if (ev_backend (EV_A))
2914 return EV_A;
2915
2916 ev_free (EV_A);
2917 return 0;
2918 }
2919
2920 #endif /* multiplicity */
2921
2922 #if EV_VERIFY
2923 static void noinline ecb_cold
2924 verify_watcher (EV_P_ W w)
2925 {
2926 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2927
2928 if (w->pending)
2929 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2930 }
2931
2932 static void noinline ecb_cold
2933 verify_heap (EV_P_ ANHE *heap, int N)
2934 {
2935 int i;
2936
2937 for (i = HEAP0; i < N + HEAP0; ++i)
2938 {
2939 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2940 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2941 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2942
2943 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2944 }
2945 }
2946
2947 static void noinline ecb_cold
2948 array_verify (EV_P_ W *ws, int cnt)
2949 {
2950 while (cnt--)
2951 {
2952 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2953 verify_watcher (EV_A_ ws [cnt]);
2954 }
2955 }
2956 #endif
2957
2958 #if EV_FEATURE_API
2959 void ecb_cold
2960 ev_verify (EV_P) EV_THROW
2961 {
2962 #if EV_VERIFY
2963 int i;
2964 WL w, w2;
2965
2966 assert (activecnt >= -1);
2967
2968 assert (fdchangemax >= fdchangecnt);
2969 for (i = 0; i < fdchangecnt; ++i)
2970 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2971
2972 assert (anfdmax >= 0);
2973 for (i = 0; i < anfdmax; ++i)
2974 {
2975 int j = 0;
2976
2977 for (w = w2 = anfds [i].head; w; w = w->next)
2978 {
2979 verify_watcher (EV_A_ (W)w);
2980
2981 if (j++ & 1)
2982 {
2983 assert (("libev: io watcher list contains a loop", w != w2));
2984 w2 = w2->next;
2985 }
2986
2987 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2988 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2989 }
2990 }
2991
2992 assert (timermax >= timercnt);
2993 verify_heap (EV_A_ timers, timercnt);
2994
2995 #if EV_PERIODIC_ENABLE
2996 assert (periodicmax >= periodiccnt);
2997 verify_heap (EV_A_ periodics, periodiccnt);
2998 #endif
2999
3000 for (i = NUMPRI; i--; )
3001 {
3002 assert (pendingmax [i] >= pendingcnt [i]);
3003 #if EV_IDLE_ENABLE
3004 assert (idleall >= 0);
3005 assert (idlemax [i] >= idlecnt [i]);
3006 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3007 #endif
3008 }
3009
3010 #if EV_FORK_ENABLE
3011 assert (forkmax >= forkcnt);
3012 array_verify (EV_A_ (W *)forks, forkcnt);
3013 #endif
3014
3015 #if EV_CLEANUP_ENABLE
3016 assert (cleanupmax >= cleanupcnt);
3017 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3018 #endif
3019
3020 #if EV_ASYNC_ENABLE
3021 assert (asyncmax >= asynccnt);
3022 array_verify (EV_A_ (W *)asyncs, asynccnt);
3023 #endif
3024
3025 #if EV_PREPARE_ENABLE
3026 assert (preparemax >= preparecnt);
3027 array_verify (EV_A_ (W *)prepares, preparecnt);
3028 #endif
3029
3030 #if EV_CHECK_ENABLE
3031 assert (checkmax >= checkcnt);
3032 array_verify (EV_A_ (W *)checks, checkcnt);
3033 #endif
3034
3035 # if 0
3036 #if EV_CHILD_ENABLE
3037 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3038 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3039 #endif
3040 # endif
3041 #endif
3042 }
3043 #endif
3044
3045 #if EV_MULTIPLICITY
3046 struct ev_loop * ecb_cold
3047 #else
3048 int
3049 #endif
3050 ev_default_loop (unsigned int flags) EV_THROW
3051 {
3052 if (!ev_default_loop_ptr)
3053 {
3054 #if EV_MULTIPLICITY
3055 EV_P = ev_default_loop_ptr = &default_loop_struct;
3056 #else
3057 ev_default_loop_ptr = 1;
3058 #endif
3059
3060 loop_init (EV_A_ flags);
3061
3062 if (ev_backend (EV_A))
3063 {
3064 #if EV_CHILD_ENABLE
3065 ev_signal_init (&childev, childcb, SIGCHLD);
3066 ev_set_priority (&childev, EV_MAXPRI);
3067 ev_signal_start (EV_A_ &childev);
3068 ev_unref (EV_A); /* child watcher should not keep loop alive */
3069 #endif
3070 }
3071 else
3072 ev_default_loop_ptr = 0;
3073 }
3074
3075 return ev_default_loop_ptr;
3076 }
3077
3078 void
3079 ev_loop_fork (EV_P) EV_THROW
3080 {
3081 postfork = 1;
3082 }
3083
3084 /*****************************************************************************/
3085
3086 void
3087 ev_invoke (EV_P_ void *w, int revents)
3088 {
3089 EV_CB_INVOKE ((W)w, revents);
3090 }
3091
3092 unsigned int
3093 ev_pending_count (EV_P) EV_THROW
3094 {
3095 int pri;
3096 unsigned int count = 0;
3097
3098 for (pri = NUMPRI; pri--; )
3099 count += pendingcnt [pri];
3100
3101 return count;
3102 }
3103
3104 void noinline
3105 ev_invoke_pending (EV_P)
3106 {
3107 pendingpri = NUMPRI;
3108
3109 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3110 {
3111 --pendingpri;
3112
3113 while (pendingcnt [pendingpri])
3114 {
3115 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3116
3117 p->w->pending = 0;
3118 EV_CB_INVOKE (p->w, p->events);
3119 EV_FREQUENT_CHECK;
3120 }
3121 }
3122 }
3123
3124 #if EV_IDLE_ENABLE
3125 /* make idle watchers pending. this handles the "call-idle */
3126 /* only when higher priorities are idle" logic */
3127 inline_size void
3128 idle_reify (EV_P)
3129 {
3130 if (expect_false (idleall))
3131 {
3132 int pri;
3133
3134 for (pri = NUMPRI; pri--; )
3135 {
3136 if (pendingcnt [pri])
3137 break;
3138
3139 if (idlecnt [pri])
3140 {
3141 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3142 break;
3143 }
3144 }
3145 }
3146 }
3147 #endif
3148
3149 /* make timers pending */
3150 inline_size void
3151 timers_reify (EV_P)
3152 {
3153 EV_FREQUENT_CHECK;
3154
3155 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3156 {
3157 do
3158 {
3159 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3160
3161 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3162
3163 /* first reschedule or stop timer */
3164 if (w->repeat)
3165 {
3166 ev_at (w) += w->repeat;
3167 if (ev_at (w) < mn_now)
3168 ev_at (w) = mn_now;
3169
3170 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3171
3172 ANHE_at_cache (timers [HEAP0]);
3173 downheap (timers, timercnt, HEAP0);
3174 }
3175 else
3176 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3177
3178 EV_FREQUENT_CHECK;
3179 feed_reverse (EV_A_ (W)w);
3180 }
3181 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3182
3183 feed_reverse_done (EV_A_ EV_TIMER);
3184 }
3185 }
3186
3187 #if EV_PERIODIC_ENABLE
3188
3189 static void noinline
3190 periodic_recalc (EV_P_ ev_periodic *w)
3191 {
3192 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3193 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3194
3195 /* the above almost always errs on the low side */
3196 while (at <= ev_rt_now)
3197 {
3198 ev_tstamp nat = at + w->interval;
3199
3200 /* when resolution fails us, we use ev_rt_now */
3201 if (expect_false (nat == at))
3202 {
3203 at = ev_rt_now;
3204 break;
3205 }
3206
3207 at = nat;
3208 }
3209
3210 ev_at (w) = at;
3211 }
3212
3213 /* make periodics pending */
3214 inline_size void
3215 periodics_reify (EV_P)
3216 {
3217 EV_FREQUENT_CHECK;
3218
3219 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3220 {
3221 do
3222 {
3223 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3224
3225 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3226
3227 /* first reschedule or stop timer */
3228 if (w->reschedule_cb)
3229 {
3230 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3231
3232 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3233
3234 ANHE_at_cache (periodics [HEAP0]);
3235 downheap (periodics, periodiccnt, HEAP0);
3236 }
3237 else if (w->interval)
3238 {
3239 periodic_recalc (EV_A_ w);
3240 ANHE_at_cache (periodics [HEAP0]);
3241 downheap (periodics, periodiccnt, HEAP0);
3242 }
3243 else
3244 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3245
3246 EV_FREQUENT_CHECK;
3247 feed_reverse (EV_A_ (W)w);
3248 }
3249 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3250
3251 feed_reverse_done (EV_A_ EV_PERIODIC);
3252 }
3253 }
3254
3255 /* simply recalculate all periodics */
3256 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3257 static void noinline ecb_cold
3258 periodics_reschedule (EV_P)
3259 {
3260 int i;
3261
3262 /* adjust periodics after time jump */
3263 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3264 {
3265 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3266
3267 if (w->reschedule_cb)
3268 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3269 else if (w->interval)
3270 periodic_recalc (EV_A_ w);
3271
3272 ANHE_at_cache (periodics [i]);
3273 }
3274
3275 reheap (periodics, periodiccnt);
3276 }
3277 #endif
3278
3279 /* adjust all timers by a given offset */
3280 static void noinline ecb_cold
3281 timers_reschedule (EV_P_ ev_tstamp adjust)
3282 {
3283 int i;
3284
3285 for (i = 0; i < timercnt; ++i)
3286 {
3287 ANHE *he = timers + i + HEAP0;
3288 ANHE_w (*he)->at += adjust;
3289 ANHE_at_cache (*he);
3290 }
3291 }
3292
3293 /* fetch new monotonic and realtime times from the kernel */
3294 /* also detect if there was a timejump, and act accordingly */
3295 inline_speed void
3296 time_update (EV_P_ ev_tstamp max_block)
3297 {
3298 #if EV_USE_MONOTONIC
3299 if (expect_true (have_monotonic))
3300 {
3301 int i;
3302 ev_tstamp odiff = rtmn_diff;
3303
3304 mn_now = get_clock ();
3305
3306 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3307 /* interpolate in the meantime */
3308 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3309 {
3310 ev_rt_now = rtmn_diff + mn_now;
3311 return;
3312 }
3313
3314 now_floor = mn_now;
3315 ev_rt_now = ev_time ();
3316
3317 /* loop a few times, before making important decisions.
3318 * on the choice of "4": one iteration isn't enough,
3319 * in case we get preempted during the calls to
3320 * ev_time and get_clock. a second call is almost guaranteed
3321 * to succeed in that case, though. and looping a few more times
3322 * doesn't hurt either as we only do this on time-jumps or
3323 * in the unlikely event of having been preempted here.
3324 */
3325 for (i = 4; --i; )
3326 {
3327 ev_tstamp diff;
3328 rtmn_diff = ev_rt_now - mn_now;
3329
3330 diff = odiff - rtmn_diff;
3331
3332 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3333 return; /* all is well */
3334
3335 ev_rt_now = ev_time ();
3336 mn_now = get_clock ();
3337 now_floor = mn_now;
3338 }
3339
3340 /* no timer adjustment, as the monotonic clock doesn't jump */
3341 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3342 # if EV_PERIODIC_ENABLE
3343 periodics_reschedule (EV_A);
3344 # endif
3345 }
3346 else
3347 #endif
3348 {
3349 ev_rt_now = ev_time ();
3350
3351 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3352 {
3353 /* adjust timers. this is easy, as the offset is the same for all of them */
3354 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3355 #if EV_PERIODIC_ENABLE
3356 periodics_reschedule (EV_A);
3357 #endif
3358 }
3359
3360 mn_now = ev_rt_now;
3361 }
3362 }
3363
3364 int
3365 ev_run (EV_P_ int flags)
3366 {
3367 #if EV_FEATURE_API
3368 ++loop_depth;
3369 #endif
3370
3371 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3372
3373 loop_done = EVBREAK_CANCEL;
3374
3375 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3376
3377 do
3378 {
3379 #if EV_VERIFY >= 2
3380 ev_verify (EV_A);
3381 #endif
3382
3383 #ifndef _WIN32
3384 if (expect_false (curpid)) /* penalise the forking check even more */
3385 if (expect_false (getpid () != curpid))
3386 {
3387 curpid = getpid ();
3388 postfork = 1;
3389 }
3390 #endif
3391
3392 #if EV_FORK_ENABLE
3393 /* we might have forked, so queue fork handlers */
3394 if (expect_false (postfork))
3395 if (forkcnt)
3396 {
3397 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3398 EV_INVOKE_PENDING;
3399 }
3400 #endif
3401
3402 #if EV_PREPARE_ENABLE
3403 /* queue prepare watchers (and execute them) */
3404 if (expect_false (preparecnt))
3405 {
3406 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3407 EV_INVOKE_PENDING;
3408 }
3409 #endif
3410
3411 if (expect_false (loop_done))
3412 break;
3413
3414 /* we might have forked, so reify kernel state if necessary */
3415 if (expect_false (postfork))
3416 loop_fork (EV_A);
3417
3418 /* update fd-related kernel structures */
3419 fd_reify (EV_A);
3420
3421 /* calculate blocking time */
3422 {
3423 ev_tstamp waittime = 0.;
3424 ev_tstamp sleeptime = 0.;
3425
3426 /* remember old timestamp for io_blocktime calculation */
3427 ev_tstamp prev_mn_now = mn_now;
3428
3429 /* update time to cancel out callback processing overhead */
3430 time_update (EV_A_ 1e100);
3431
3432 /* from now on, we want a pipe-wake-up */
3433 pipe_write_wanted = 1;
3434
3435 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3436
3437 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3438 {
3439 waittime = MAX_BLOCKTIME;
3440
3441 if (timercnt)
3442 {
3443 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3444 if (waittime > to) waittime = to;
3445 }
3446
3447 #if EV_PERIODIC_ENABLE
3448 if (periodiccnt)
3449 {
3450 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3451 if (waittime > to) waittime = to;
3452 }
3453 #endif
3454
3455 /* don't let timeouts decrease the waittime below timeout_blocktime */
3456 if (expect_false (waittime < timeout_blocktime))
3457 waittime = timeout_blocktime;
3458
3459 /* at this point, we NEED to wait, so we have to ensure */
3460 /* to pass a minimum nonzero value to the backend */
3461 if (expect_false (waittime < backend_mintime))
3462 waittime = backend_mintime;
3463
3464 /* extra check because io_blocktime is commonly 0 */
3465 if (expect_false (io_blocktime))
3466 {
3467 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3468
3469 if (sleeptime > waittime - backend_mintime)
3470 sleeptime = waittime - backend_mintime;
3471
3472 if (expect_true (sleeptime > 0.))
3473 {
3474 ev_sleep (sleeptime);
3475 waittime -= sleeptime;
3476 }
3477 }
3478 }
3479
3480 #if EV_FEATURE_API
3481 ++loop_count;
3482 #endif
3483 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3484 backend_poll (EV_A_ waittime);
3485 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3486
3487 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3488
3489 ECB_MEMORY_FENCE_ACQUIRE;
3490 if (pipe_write_skipped)
3491 {
3492 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3493 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3494 }
3495
3496
3497 /* update ev_rt_now, do magic */
3498 time_update (EV_A_ waittime + sleeptime);
3499 }
3500
3501 /* queue pending timers and reschedule them */
3502 timers_reify (EV_A); /* relative timers called last */
3503 #if EV_PERIODIC_ENABLE
3504 periodics_reify (EV_A); /* absolute timers called first */
3505 #endif
3506
3507 #if EV_IDLE_ENABLE
3508 /* queue idle watchers unless other events are pending */
3509 idle_reify (EV_A);
3510 #endif
3511
3512 #if EV_CHECK_ENABLE
3513 /* queue check watchers, to be executed first */
3514 if (expect_false (checkcnt))
3515 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3516 #endif
3517
3518 EV_INVOKE_PENDING;
3519 }
3520 while (expect_true (
3521 activecnt
3522 && !loop_done
3523 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3524 ));
3525
3526 if (loop_done == EVBREAK_ONE)
3527 loop_done = EVBREAK_CANCEL;
3528
3529 #if EV_FEATURE_API
3530 --loop_depth;
3531 #endif
3532
3533 return activecnt;
3534 }
3535
3536 void
3537 ev_break (EV_P_ int how) EV_THROW
3538 {
3539 loop_done = how;
3540 }
3541
3542 void
3543 ev_ref (EV_P) EV_THROW
3544 {
3545 ++activecnt;
3546 }
3547
3548 void
3549 ev_unref (EV_P) EV_THROW
3550 {
3551 --activecnt;
3552 }
3553
3554 void
3555 ev_now_update (EV_P) EV_THROW
3556 {
3557 time_update (EV_A_ 1e100);
3558 }
3559
3560 void
3561 ev_suspend (EV_P) EV_THROW
3562 {
3563 ev_now_update (EV_A);
3564 }
3565
3566 void
3567 ev_resume (EV_P) EV_THROW
3568 {
3569 ev_tstamp mn_prev = mn_now;
3570
3571 ev_now_update (EV_A);
3572 timers_reschedule (EV_A_ mn_now - mn_prev);
3573 #if EV_PERIODIC_ENABLE
3574 /* TODO: really do this? */
3575 periodics_reschedule (EV_A);
3576 #endif
3577 }
3578
3579 /*****************************************************************************/
3580 /* singly-linked list management, used when the expected list length is short */
3581
3582 inline_size void
3583 wlist_add (WL *head, WL elem)
3584 {
3585 elem->next = *head;
3586 *head = elem;
3587 }
3588
3589 inline_size void
3590 wlist_del (WL *head, WL elem)
3591 {
3592 while (*head)
3593 {
3594 if (expect_true (*head == elem))
3595 {
3596 *head = elem->next;
3597 break;
3598 }
3599
3600 head = &(*head)->next;
3601 }
3602 }
3603
3604 /* internal, faster, version of ev_clear_pending */
3605 inline_speed void
3606 clear_pending (EV_P_ W w)
3607 {
3608 if (w->pending)
3609 {
3610 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3611 w->pending = 0;
3612 }
3613 }
3614
3615 int
3616 ev_clear_pending (EV_P_ void *w) EV_THROW
3617 {
3618 W w_ = (W)w;
3619 int pending = w_->pending;
3620
3621 if (expect_true (pending))
3622 {
3623 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3624 p->w = (W)&pending_w;
3625 w_->pending = 0;
3626 return p->events;
3627 }
3628 else
3629 return 0;
3630 }
3631
3632 inline_size void
3633 pri_adjust (EV_P_ W w)
3634 {
3635 int pri = ev_priority (w);
3636 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3637 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3638 ev_set_priority (w, pri);
3639 }
3640
3641 inline_speed void
3642 ev_start (EV_P_ W w, int active)
3643 {
3644 pri_adjust (EV_A_ w);
3645 w->active = active;
3646 ev_ref (EV_A);
3647 }
3648
3649 inline_size void
3650 ev_stop (EV_P_ W w)
3651 {
3652 ev_unref (EV_A);
3653 w->active = 0;
3654 }
3655
3656 /*****************************************************************************/
3657
3658 void noinline
3659 ev_io_start (EV_P_ ev_io *w) EV_THROW
3660 {
3661 int fd = w->fd;
3662
3663 if (expect_false (ev_is_active (w)))
3664 return;
3665
3666 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3667 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3668
3669 EV_FREQUENT_CHECK;
3670
3671 ev_start (EV_A_ (W)w, 1);
3672 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3673 wlist_add (&anfds[fd].head, (WL)w);
3674
3675 /* common bug, apparently */
3676 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3677
3678 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3679 w->events &= ~EV__IOFDSET;
3680
3681 EV_FREQUENT_CHECK;
3682 }
3683
3684 void noinline
3685 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3686 {
3687 clear_pending (EV_A_ (W)w);
3688 if (expect_false (!ev_is_active (w)))
3689 return;
3690
3691 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3692
3693 EV_FREQUENT_CHECK;
3694
3695 wlist_del (&anfds[w->fd].head, (WL)w);
3696 ev_stop (EV_A_ (W)w);
3697
3698 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3699
3700 EV_FREQUENT_CHECK;
3701 }
3702
3703 void noinline
3704 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3705 {
3706 if (expect_false (ev_is_active (w)))
3707 return;
3708
3709 ev_at (w) += mn_now;
3710
3711 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3712
3713 EV_FREQUENT_CHECK;
3714
3715 ++timercnt;
3716 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3717 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3718 ANHE_w (timers [ev_active (w)]) = (WT)w;
3719 ANHE_at_cache (timers [ev_active (w)]);
3720 upheap (timers, ev_active (w));
3721
3722 EV_FREQUENT_CHECK;
3723
3724 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3725 }
3726
3727 void noinline
3728 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3729 {
3730 clear_pending (EV_A_ (W)w);
3731 if (expect_false (!ev_is_active (w)))
3732 return;
3733
3734 EV_FREQUENT_CHECK;
3735
3736 {
3737 int active = ev_active (w);
3738
3739 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3740
3741 --timercnt;
3742
3743 if (expect_true (active < timercnt + HEAP0))
3744 {
3745 timers [active] = timers [timercnt + HEAP0];
3746 adjustheap (timers, timercnt, active);
3747 }
3748 }
3749
3750 ev_at (w) -= mn_now;
3751
3752 ev_stop (EV_A_ (W)w);
3753
3754 EV_FREQUENT_CHECK;
3755 }
3756
3757 void noinline
3758 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3759 {
3760 EV_FREQUENT_CHECK;
3761
3762 clear_pending (EV_A_ (W)w);
3763
3764 if (ev_is_active (w))
3765 {
3766 if (w->repeat)
3767 {
3768 ev_at (w) = mn_now + w->repeat;
3769 ANHE_at_cache (timers [ev_active (w)]);
3770 adjustheap (timers, timercnt, ev_active (w));
3771 }
3772 else
3773 ev_timer_stop (EV_A_ w);
3774 }
3775 else if (w->repeat)
3776 {
3777 ev_at (w) = w->repeat;
3778 ev_timer_start (EV_A_ w);
3779 }
3780
3781 EV_FREQUENT_CHECK;
3782 }
3783
3784 ev_tstamp
3785 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3786 {
3787 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3788 }
3789
3790 #if EV_PERIODIC_ENABLE
3791 void noinline
3792 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3793 {
3794 if (expect_false (ev_is_active (w)))
3795 return;
3796
3797 if (w->reschedule_cb)
3798 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3799 else if (w->interval)
3800 {
3801 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3802 periodic_recalc (EV_A_ w);
3803 }
3804 else
3805 ev_at (w) = w->offset;
3806
3807 EV_FREQUENT_CHECK;
3808
3809 ++periodiccnt;
3810 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3811 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3812 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3813 ANHE_at_cache (periodics [ev_active (w)]);
3814 upheap (periodics, ev_active (w));
3815
3816 EV_FREQUENT_CHECK;
3817
3818 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3819 }
3820
3821 void noinline
3822 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3823 {
3824 clear_pending (EV_A_ (W)w);
3825 if (expect_false (!ev_is_active (w)))
3826 return;
3827
3828 EV_FREQUENT_CHECK;
3829
3830 {
3831 int active = ev_active (w);
3832
3833 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3834
3835 --periodiccnt;
3836
3837 if (expect_true (active < periodiccnt + HEAP0))
3838 {
3839 periodics [active] = periodics [periodiccnt + HEAP0];
3840 adjustheap (periodics, periodiccnt, active);
3841 }
3842 }
3843
3844 ev_stop (EV_A_ (W)w);
3845
3846 EV_FREQUENT_CHECK;
3847 }
3848
3849 void noinline
3850 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3851 {
3852 /* TODO: use adjustheap and recalculation */
3853 ev_periodic_stop (EV_A_ w);
3854 ev_periodic_start (EV_A_ w);
3855 }
3856 #endif
3857
3858 #ifndef SA_RESTART
3859 # define SA_RESTART 0
3860 #endif
3861
3862 #if EV_SIGNAL_ENABLE
3863
3864 void noinline
3865 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3866 {
3867 if (expect_false (ev_is_active (w)))
3868 return;
3869
3870 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3871
3872 #if EV_MULTIPLICITY
3873 assert (("libev: a signal must not be attached to two different loops",
3874 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3875
3876 signals [w->signum - 1].loop = EV_A;
3877 ECB_MEMORY_FENCE_RELEASE;
3878 #endif
3879
3880 EV_FREQUENT_CHECK;
3881
3882 #if EV_USE_SIGNALFD
3883 if (sigfd == -2)
3884 {
3885 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3886 if (sigfd < 0 && errno == EINVAL)
3887 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3888
3889 if (sigfd >= 0)
3890 {
3891 fd_intern (sigfd); /* doing it twice will not hurt */
3892
3893 sigemptyset (&sigfd_set);
3894
3895 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3896 ev_set_priority (&sigfd_w, EV_MAXPRI);
3897 ev_io_start (EV_A_ &sigfd_w);
3898 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3899 }
3900 }
3901
3902 if (sigfd >= 0)
3903 {
3904 /* TODO: check .head */
3905 sigaddset (&sigfd_set, w->signum);
3906 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3907
3908 signalfd (sigfd, &sigfd_set, 0);
3909 }
3910 #endif
3911
3912 ev_start (EV_A_ (W)w, 1);
3913 wlist_add (&signals [w->signum - 1].head, (WL)w);
3914
3915 if (!((WL)w)->next)
3916 # if EV_USE_SIGNALFD
3917 if (sigfd < 0) /*TODO*/
3918 # endif
3919 {
3920 # ifdef _WIN32
3921 evpipe_init (EV_A);
3922
3923 signal (w->signum, ev_sighandler);
3924 # else
3925 struct sigaction sa;
3926
3927 evpipe_init (EV_A);
3928
3929 sa.sa_handler = ev_sighandler;
3930 sigfillset (&sa.sa_mask);
3931 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3932 sigaction (w->signum, &sa, 0);
3933
3934 if (origflags & EVFLAG_NOSIGMASK)
3935 {
3936 sigemptyset (&sa.sa_mask);
3937 sigaddset (&sa.sa_mask, w->signum);
3938 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3939 }
3940 #endif
3941 }
3942
3943 EV_FREQUENT_CHECK;
3944 }
3945
3946 void noinline
3947 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3948 {
3949 clear_pending (EV_A_ (W)w);
3950 if (expect_false (!ev_is_active (w)))
3951 return;
3952
3953 EV_FREQUENT_CHECK;
3954
3955 wlist_del (&signals [w->signum - 1].head, (WL)w);
3956 ev_stop (EV_A_ (W)w);
3957
3958 if (!signals [w->signum - 1].head)
3959 {
3960 #if EV_MULTIPLICITY
3961 signals [w->signum - 1].loop = 0; /* unattach from signal */
3962 #endif
3963 #if EV_USE_SIGNALFD
3964 if (sigfd >= 0)
3965 {
3966 sigset_t ss;
3967
3968 sigemptyset (&ss);
3969 sigaddset (&ss, w->signum);
3970 sigdelset (&sigfd_set, w->signum);
3971
3972 signalfd (sigfd, &sigfd_set, 0);
3973 sigprocmask (SIG_UNBLOCK, &ss, 0);
3974 }
3975 else
3976 #endif
3977 signal (w->signum, SIG_DFL);
3978 }
3979
3980 EV_FREQUENT_CHECK;
3981 }
3982
3983 #endif
3984
3985 #if EV_CHILD_ENABLE
3986
3987 void
3988 ev_child_start (EV_P_ ev_child *w) EV_THROW
3989 {
3990 #if EV_MULTIPLICITY
3991 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3992 #endif
3993 if (expect_false (ev_is_active (w)))
3994 return;
3995
3996 EV_FREQUENT_CHECK;
3997
3998 ev_start (EV_A_ (W)w, 1);
3999 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4000
4001 EV_FREQUENT_CHECK;
4002 }
4003
4004 void
4005 ev_child_stop (EV_P_ ev_child *w) EV_THROW
4006 {
4007 clear_pending (EV_A_ (W)w);
4008 if (expect_false (!ev_is_active (w)))
4009 return;
4010
4011 EV_FREQUENT_CHECK;
4012
4013 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4014 ev_stop (EV_A_ (W)w);
4015
4016 EV_FREQUENT_CHECK;
4017 }
4018
4019 #endif
4020
4021 #if EV_STAT_ENABLE
4022
4023 # ifdef _WIN32
4024 # undef lstat
4025 # define lstat(a,b) _stati64 (a,b)
4026 # endif
4027
4028 #define DEF_STAT_INTERVAL 5.0074891
4029 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4030 #define MIN_STAT_INTERVAL 0.1074891
4031
4032 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4033
4034 #if EV_USE_INOTIFY
4035
4036 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4037 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4038
4039 static void noinline
4040 infy_add (EV_P_ ev_stat *w)
4041 {
4042 w->wd = inotify_add_watch (fs_fd, w->path,
4043 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4044 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4045 | IN_DONT_FOLLOW | IN_MASK_ADD);
4046
4047 if (w->wd >= 0)
4048 {
4049 struct statfs sfs;
4050
4051 /* now local changes will be tracked by inotify, but remote changes won't */
4052 /* unless the filesystem is known to be local, we therefore still poll */
4053 /* also do poll on <2.6.25, but with normal frequency */
4054
4055 if (!fs_2625)
4056 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4057 else if (!statfs (w->path, &sfs)
4058 && (sfs.f_type == 0x1373 /* devfs */
4059 || sfs.f_type == 0x4006 /* fat */
4060 || sfs.f_type == 0x4d44 /* msdos */
4061 || sfs.f_type == 0xEF53 /* ext2/3 */
4062 || sfs.f_type == 0x72b6 /* jffs2 */
4063 || sfs.f_type == 0x858458f6 /* ramfs */
4064 || sfs.f_type == 0x5346544e /* ntfs */
4065 || sfs.f_type == 0x3153464a /* jfs */
4066 || sfs.f_type == 0x9123683e /* btrfs */
4067 || sfs.f_type == 0x52654973 /* reiser3 */
4068 || sfs.f_type == 0x01021994 /* tmpfs */
4069 || sfs.f_type == 0x58465342 /* xfs */))
4070 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4071 else
4072 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4073 }
4074 else
4075 {
4076 /* can't use inotify, continue to stat */
4077 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4078
4079 /* if path is not there, monitor some parent directory for speedup hints */
4080 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4081 /* but an efficiency issue only */
4082 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4083 {
4084 char path [4096];
4085 strcpy (path, w->path);
4086
4087 do
4088 {
4089 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4090 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4091
4092 char *pend = strrchr (path, '/');
4093
4094 if (!pend || pend == path)
4095 break;
4096
4097 *pend = 0;
4098 w->wd = inotify_add_watch (fs_fd, path, mask);
4099 }
4100 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4101 }
4102 }
4103
4104 if (w->wd >= 0)
4105 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4106
4107 /* now re-arm timer, if required */
4108 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4109 ev_timer_again (EV_A_ &w->timer);
4110 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4111 }
4112
4113 static void noinline
4114 infy_del (EV_P_ ev_stat *w)
4115 {
4116 int slot;
4117 int wd = w->wd;
4118
4119 if (wd < 0)
4120 return;
4121
4122 w->wd = -2;
4123 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4124 wlist_del (&fs_hash [slot].head, (WL)w);
4125
4126 /* remove this watcher, if others are watching it, they will rearm */
4127 inotify_rm_watch (fs_fd, wd);
4128 }
4129
4130 static void noinline
4131 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4132 {
4133 if (slot < 0)
4134 /* overflow, need to check for all hash slots */
4135 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4136 infy_wd (EV_A_ slot, wd, ev);
4137 else
4138 {
4139 WL w_;
4140
4141 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4142 {
4143 ev_stat *w = (ev_stat *)w_;
4144 w_ = w_->next; /* lets us remove this watcher and all before it */
4145
4146 if (w->wd == wd || wd == -1)
4147 {
4148 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4149 {
4150 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4151 w->wd = -1;
4152 infy_add (EV_A_ w); /* re-add, no matter what */
4153 }
4154
4155 stat_timer_cb (EV_A_ &w->timer, 0);
4156 }
4157 }
4158 }
4159 }
4160
4161 static void
4162 infy_cb (EV_P_ ev_io *w, int revents)
4163 {
4164 char buf [EV_INOTIFY_BUFSIZE];
4165 int ofs;
4166 int len = read (fs_fd, buf, sizeof (buf));
4167
4168 for (ofs = 0; ofs < len; )
4169 {
4170 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4171 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4172 ofs += sizeof (struct inotify_event) + ev->len;
4173 }
4174 }
4175
4176 inline_size void ecb_cold
4177 ev_check_2625 (EV_P)
4178 {
4179 /* kernels < 2.6.25 are borked
4180 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4181 */
4182 if (ev_linux_version () < 0x020619)
4183 return;
4184
4185 fs_2625 = 1;
4186 }
4187
4188 inline_size int
4189 infy_newfd (void)
4190 {
4191 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4192 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4193 if (fd >= 0)
4194 return fd;
4195 #endif
4196 return inotify_init ();
4197 }
4198
4199 inline_size void
4200 infy_init (EV_P)
4201 {
4202 if (fs_fd != -2)
4203 return;
4204
4205 fs_fd = -1;
4206
4207 ev_check_2625 (EV_A);
4208
4209 fs_fd = infy_newfd ();
4210
4211 if (fs_fd >= 0)
4212 {
4213 fd_intern (fs_fd);
4214 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4215 ev_set_priority (&fs_w, EV_MAXPRI);
4216 ev_io_start (EV_A_ &fs_w);
4217 ev_unref (EV_A);
4218 }
4219 }
4220
4221 inline_size void
4222 infy_fork (EV_P)
4223 {
4224 int slot;
4225
4226 if (fs_fd < 0)
4227 return;
4228
4229 ev_ref (EV_A);
4230 ev_io_stop (EV_A_ &fs_w);
4231 close (fs_fd);
4232 fs_fd = infy_newfd ();
4233
4234 if (fs_fd >= 0)
4235 {
4236 fd_intern (fs_fd);
4237 ev_io_set (&fs_w, fs_fd, EV_READ);
4238 ev_io_start (EV_A_ &fs_w);
4239 ev_unref (EV_A);
4240 }
4241
4242 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4243 {
4244 WL w_ = fs_hash [slot].head;
4245 fs_hash [slot].head = 0;
4246
4247 while (w_)
4248 {
4249 ev_stat *w = (ev_stat *)w_;
4250 w_ = w_->next; /* lets us add this watcher */
4251
4252 w->wd = -1;
4253
4254 if (fs_fd >= 0)
4255 infy_add (EV_A_ w); /* re-add, no matter what */
4256 else
4257 {
4258 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4259 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4260 ev_timer_again (EV_A_ &w->timer);
4261 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4262 }
4263 }
4264 }
4265 }
4266
4267 #endif
4268
4269 #ifdef _WIN32
4270 # define EV_LSTAT(p,b) _stati64 (p, b)
4271 #else
4272 # define EV_LSTAT(p,b) lstat (p, b)
4273 #endif
4274
4275 void
4276 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4277 {
4278 if (lstat (w->path, &w->attr) < 0)
4279 w->attr.st_nlink = 0;
4280 else if (!w->attr.st_nlink)
4281 w->attr.st_nlink = 1;
4282 }
4283
4284 static void noinline
4285 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4286 {
4287 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4288
4289 ev_statdata prev = w->attr;
4290 ev_stat_stat (EV_A_ w);
4291
4292 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4293 if (
4294 prev.st_dev != w->attr.st_dev
4295 || prev.st_ino != w->attr.st_ino
4296 || prev.st_mode != w->attr.st_mode
4297 || prev.st_nlink != w->attr.st_nlink
4298 || prev.st_uid != w->attr.st_uid
4299 || prev.st_gid != w->attr.st_gid
4300 || prev.st_rdev != w->attr.st_rdev
4301 || prev.st_size != w->attr.st_size
4302 || prev.st_atime != w->attr.st_atime
4303 || prev.st_mtime != w->attr.st_mtime
4304 || prev.st_ctime != w->attr.st_ctime
4305 ) {
4306 /* we only update w->prev on actual differences */
4307 /* in case we test more often than invoke the callback, */
4308 /* to ensure that prev is always different to attr */
4309 w->prev = prev;
4310
4311 #if EV_USE_INOTIFY
4312 if (fs_fd >= 0)
4313 {
4314 infy_del (EV_A_ w);
4315 infy_add (EV_A_ w);
4316 ev_stat_stat (EV_A_ w); /* avoid race... */
4317 }
4318 #endif
4319
4320 ev_feed_event (EV_A_ w, EV_STAT);
4321 }
4322 }
4323
4324 void
4325 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4326 {
4327 if (expect_false (ev_is_active (w)))
4328 return;
4329
4330 ev_stat_stat (EV_A_ w);
4331
4332 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4333 w->interval = MIN_STAT_INTERVAL;
4334
4335 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4336 ev_set_priority (&w->timer, ev_priority (w));
4337
4338 #if EV_USE_INOTIFY
4339 infy_init (EV_A);
4340
4341 if (fs_fd >= 0)
4342 infy_add (EV_A_ w);
4343 else
4344 #endif
4345 {
4346 ev_timer_again (EV_A_ &w->timer);
4347 ev_unref (EV_A);
4348 }
4349
4350 ev_start (EV_A_ (W)w, 1);
4351
4352 EV_FREQUENT_CHECK;
4353 }
4354
4355 void
4356 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4357 {
4358 clear_pending (EV_A_ (W)w);
4359 if (expect_false (!ev_is_active (w)))
4360 return;
4361
4362 EV_FREQUENT_CHECK;
4363
4364 #if EV_USE_INOTIFY
4365 infy_del (EV_A_ w);
4366 #endif
4367
4368 if (ev_is_active (&w->timer))
4369 {
4370 ev_ref (EV_A);
4371 ev_timer_stop (EV_A_ &w->timer);
4372 }
4373
4374 ev_stop (EV_A_ (W)w);
4375
4376 EV_FREQUENT_CHECK;
4377 }
4378 #endif
4379
4380 #if EV_IDLE_ENABLE
4381 void
4382 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4383 {
4384 if (expect_false (ev_is_active (w)))
4385 return;
4386
4387 pri_adjust (EV_A_ (W)w);
4388
4389 EV_FREQUENT_CHECK;
4390
4391 {
4392 int active = ++idlecnt [ABSPRI (w)];
4393
4394 ++idleall;
4395 ev_start (EV_A_ (W)w, active);
4396
4397 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4398 idles [ABSPRI (w)][active - 1] = w;
4399 }
4400
4401 EV_FREQUENT_CHECK;
4402 }
4403
4404 void
4405 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4406 {
4407 clear_pending (EV_A_ (W)w);
4408 if (expect_false (!ev_is_active (w)))
4409 return;
4410
4411 EV_FREQUENT_CHECK;
4412
4413 {
4414 int active = ev_active (w);
4415
4416 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4417 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4418
4419 ev_stop (EV_A_ (W)w);
4420 --idleall;
4421 }
4422
4423 EV_FREQUENT_CHECK;
4424 }
4425 #endif
4426
4427 #if EV_PREPARE_ENABLE
4428 void
4429 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4430 {
4431 if (expect_false (ev_is_active (w)))
4432 return;
4433
4434 EV_FREQUENT_CHECK;
4435
4436 ev_start (EV_A_ (W)w, ++preparecnt);
4437 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4438 prepares [preparecnt - 1] = w;
4439
4440 EV_FREQUENT_CHECK;
4441 }
4442
4443 void
4444 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4445 {
4446 clear_pending (EV_A_ (W)w);
4447 if (expect_false (!ev_is_active (w)))
4448 return;
4449
4450 EV_FREQUENT_CHECK;
4451
4452 {
4453 int active = ev_active (w);
4454
4455 prepares [active - 1] = prepares [--preparecnt];
4456 ev_active (prepares [active - 1]) = active;
4457 }
4458
4459 ev_stop (EV_A_ (W)w);
4460
4461 EV_FREQUENT_CHECK;
4462 }
4463 #endif
4464
4465 #if EV_CHECK_ENABLE
4466 void
4467 ev_check_start (EV_P_ ev_check *w) EV_THROW
4468 {
4469 if (expect_false (ev_is_active (w)))
4470 return;
4471
4472 EV_FREQUENT_CHECK;
4473
4474 ev_start (EV_A_ (W)w, ++checkcnt);
4475 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4476 checks [checkcnt - 1] = w;
4477
4478 EV_FREQUENT_CHECK;
4479 }
4480
4481 void
4482 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4483 {
4484 clear_pending (EV_A_ (W)w);
4485 if (expect_false (!ev_is_active (w)))
4486 return;
4487
4488 EV_FREQUENT_CHECK;
4489
4490 {
4491 int active = ev_active (w);
4492
4493 checks [active - 1] = checks [--checkcnt];
4494 ev_active (checks [active - 1]) = active;
4495 }
4496
4497 ev_stop (EV_A_ (W)w);
4498
4499 EV_FREQUENT_CHECK;
4500 }
4501 #endif
4502
4503 #if EV_EMBED_ENABLE
4504 void noinline
4505 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4506 {
4507 ev_run (w->other, EVRUN_NOWAIT);
4508 }
4509
4510 static void
4511 embed_io_cb (EV_P_ ev_io *io, int revents)
4512 {
4513 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4514
4515 if (ev_cb (w))
4516 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4517 else
4518 ev_run (w->other, EVRUN_NOWAIT);
4519 }
4520
4521 static void
4522 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4523 {
4524 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4525
4526 {
4527 EV_P = w->other;
4528
4529 while (fdchangecnt)
4530 {
4531 fd_reify (EV_A);
4532 ev_run (EV_A_ EVRUN_NOWAIT);
4533 }
4534 }
4535 }
4536
4537 static void
4538 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4539 {
4540 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4541
4542 ev_embed_stop (EV_A_ w);
4543
4544 {
4545 EV_P = w->other;
4546
4547 ev_loop_fork (EV_A);
4548 ev_run (EV_A_ EVRUN_NOWAIT);
4549 }
4550
4551 ev_embed_start (EV_A_ w);
4552 }
4553
4554 #if 0
4555 static void
4556 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4557 {
4558 ev_idle_stop (EV_A_ idle);
4559 }
4560 #endif
4561
4562 void
4563 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4564 {
4565 if (expect_false (ev_is_active (w)))
4566 return;
4567
4568 {
4569 EV_P = w->other;
4570 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4571 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4572 }
4573
4574 EV_FREQUENT_CHECK;
4575
4576 ev_set_priority (&w->io, ev_priority (w));
4577 ev_io_start (EV_A_ &w->io);
4578
4579 ev_prepare_init (&w->prepare, embed_prepare_cb);
4580 ev_set_priority (&w->prepare, EV_MINPRI);
4581 ev_prepare_start (EV_A_ &w->prepare);
4582
4583 ev_fork_init (&w->fork, embed_fork_cb);
4584 ev_fork_start (EV_A_ &w->fork);
4585
4586 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4587
4588 ev_start (EV_A_ (W)w, 1);
4589
4590 EV_FREQUENT_CHECK;
4591 }
4592
4593 void
4594 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4595 {
4596 clear_pending (EV_A_ (W)w);
4597 if (expect_false (!ev_is_active (w)))
4598 return;
4599
4600 EV_FREQUENT_CHECK;
4601
4602 ev_io_stop (EV_A_ &w->io);
4603 ev_prepare_stop (EV_A_ &w->prepare);
4604 ev_fork_stop (EV_A_ &w->fork);
4605
4606 ev_stop (EV_A_ (W)w);
4607
4608 EV_FREQUENT_CHECK;
4609 }
4610 #endif
4611
4612 #if EV_FORK_ENABLE
4613 void
4614 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4615 {
4616 if (expect_false (ev_is_active (w)))
4617 return;
4618
4619 EV_FREQUENT_CHECK;
4620
4621 ev_start (EV_A_ (W)w, ++forkcnt);
4622 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4623 forks [forkcnt - 1] = w;
4624
4625 EV_FREQUENT_CHECK;
4626 }
4627
4628 void
4629 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4630 {
4631 clear_pending (EV_A_ (W)w);
4632 if (expect_false (!ev_is_active (w)))
4633 return;
4634
4635 EV_FREQUENT_CHECK;
4636
4637 {
4638 int active = ev_active (w);
4639
4640 forks [active - 1] = forks [--forkcnt];
4641 ev_active (forks [active - 1]) = active;
4642 }
4643
4644 ev_stop (EV_A_ (W)w);
4645
4646 EV_FREQUENT_CHECK;
4647 }
4648 #endif
4649
4650 #if EV_CLEANUP_ENABLE
4651 void
4652 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4653 {
4654 if (expect_false (ev_is_active (w)))
4655 return;
4656
4657 EV_FREQUENT_CHECK;
4658
4659 ev_start (EV_A_ (W)w, ++cleanupcnt);
4660 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4661 cleanups [cleanupcnt - 1] = w;
4662
4663 /* cleanup watchers should never keep a refcount on the loop */
4664 ev_unref (EV_A);
4665 EV_FREQUENT_CHECK;
4666 }
4667
4668 void
4669 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4670 {
4671 clear_pending (EV_A_ (W)w);
4672 if (expect_false (!ev_is_active (w)))
4673 return;
4674
4675 EV_FREQUENT_CHECK;
4676 ev_ref (EV_A);
4677
4678 {
4679 int active = ev_active (w);
4680
4681 cleanups [active - 1] = cleanups [--cleanupcnt];
4682 ev_active (cleanups [active - 1]) = active;
4683 }
4684
4685 ev_stop (EV_A_ (W)w);
4686
4687 EV_FREQUENT_CHECK;
4688 }
4689 #endif
4690
4691 #if EV_ASYNC_ENABLE
4692 void
4693 ev_async_start (EV_P_ ev_async *w) EV_THROW
4694 {
4695 if (expect_false (ev_is_active (w)))
4696 return;
4697
4698 w->sent = 0;
4699
4700 evpipe_init (EV_A);
4701
4702 EV_FREQUENT_CHECK;
4703
4704 ev_start (EV_A_ (W)w, ++asynccnt);
4705 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4706 asyncs [asynccnt - 1] = w;
4707
4708 EV_FREQUENT_CHECK;
4709 }
4710
4711 void
4712 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4713 {
4714 clear_pending (EV_A_ (W)w);
4715 if (expect_false (!ev_is_active (w)))
4716 return;
4717
4718 EV_FREQUENT_CHECK;
4719
4720 {
4721 int active = ev_active (w);
4722
4723 asyncs [active - 1] = asyncs [--asynccnt];
4724 ev_active (asyncs [active - 1]) = active;
4725 }
4726
4727 ev_stop (EV_A_ (W)w);
4728
4729 EV_FREQUENT_CHECK;
4730 }
4731
4732 void
4733 ev_async_send (EV_P_ ev_async *w) EV_THROW
4734 {
4735 w->sent = 1;
4736 evpipe_write (EV_A_ &async_pending);
4737 }
4738 #endif
4739
4740 /*****************************************************************************/
4741
4742 struct ev_once
4743 {
4744 ev_io io;
4745 ev_timer to;
4746 void (*cb)(int revents, void *arg);
4747 void *arg;
4748 };
4749
4750 static void
4751 once_cb (EV_P_ struct ev_once *once, int revents)
4752 {
4753 void (*cb)(int revents, void *arg) = once->cb;
4754 void *arg = once->arg;
4755
4756 ev_io_stop (EV_A_ &once->io);
4757 ev_timer_stop (EV_A_ &once->to);
4758 ev_free (once);
4759
4760 cb (revents, arg);
4761 }
4762
4763 static void
4764 once_cb_io (EV_P_ ev_io *w, int revents)
4765 {
4766 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4767
4768 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4769 }
4770
4771 static void
4772 once_cb_to (EV_P_ ev_timer *w, int revents)
4773 {
4774 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4775
4776 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4777 }
4778
4779 void
4780 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4781 {
4782 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4783
4784 if (expect_false (!once))
4785 {
4786 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4787 return;
4788 }
4789
4790 once->cb = cb;
4791 once->arg = arg;
4792
4793 ev_init (&once->io, once_cb_io);
4794 if (fd >= 0)
4795 {
4796 ev_io_set (&once->io, fd, events);
4797 ev_io_start (EV_A_ &once->io);
4798 }
4799
4800 ev_init (&once->to, once_cb_to);
4801 if (timeout >= 0.)
4802 {
4803 ev_timer_set (&once->to, timeout, 0.);
4804 ev_timer_start (EV_A_ &once->to);
4805 }
4806 }
4807
4808 /*****************************************************************************/
4809
4810 #if EV_WALK_ENABLE
4811 void ecb_cold
4812 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4813 {
4814 int i, j;
4815 ev_watcher_list *wl, *wn;
4816
4817 if (types & (EV_IO | EV_EMBED))
4818 for (i = 0; i < anfdmax; ++i)
4819 for (wl = anfds [i].head; wl; )
4820 {
4821 wn = wl->next;
4822
4823 #if EV_EMBED_ENABLE
4824 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4825 {
4826 if (types & EV_EMBED)
4827 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4828 }
4829 else
4830 #endif
4831 #if EV_USE_INOTIFY
4832 if (ev_cb ((ev_io *)wl) == infy_cb)
4833 ;
4834 else
4835 #endif
4836 if ((ev_io *)wl != &pipe_w)
4837 if (types & EV_IO)
4838 cb (EV_A_ EV_IO, wl);
4839
4840 wl = wn;
4841 }
4842
4843 if (types & (EV_TIMER | EV_STAT))
4844 for (i = timercnt + HEAP0; i-- > HEAP0; )
4845 #if EV_STAT_ENABLE
4846 /*TODO: timer is not always active*/
4847 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4848 {
4849 if (types & EV_STAT)
4850 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4851 }
4852 else
4853 #endif
4854 if (types & EV_TIMER)
4855 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4856
4857 #if EV_PERIODIC_ENABLE
4858 if (types & EV_PERIODIC)
4859 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4860 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4861 #endif
4862
4863 #if EV_IDLE_ENABLE
4864 if (types & EV_IDLE)
4865 for (j = NUMPRI; j--; )
4866 for (i = idlecnt [j]; i--; )
4867 cb (EV_A_ EV_IDLE, idles [j][i]);
4868 #endif
4869
4870 #if EV_FORK_ENABLE
4871 if (types & EV_FORK)
4872 for (i = forkcnt; i--; )
4873 if (ev_cb (forks [i]) != embed_fork_cb)
4874 cb (EV_A_ EV_FORK, forks [i]);
4875 #endif
4876
4877 #if EV_ASYNC_ENABLE
4878 if (types & EV_ASYNC)
4879 for (i = asynccnt; i--; )
4880 cb (EV_A_ EV_ASYNC, asyncs [i]);
4881 #endif
4882
4883 #if EV_PREPARE_ENABLE
4884 if (types & EV_PREPARE)
4885 for (i = preparecnt; i--; )
4886 # if EV_EMBED_ENABLE
4887 if (ev_cb (prepares [i]) != embed_prepare_cb)
4888 # endif
4889 cb (EV_A_ EV_PREPARE, prepares [i]);
4890 #endif
4891
4892 #if EV_CHECK_ENABLE
4893 if (types & EV_CHECK)
4894 for (i = checkcnt; i--; )
4895 cb (EV_A_ EV_CHECK, checks [i]);
4896 #endif
4897
4898 #if EV_SIGNAL_ENABLE
4899 if (types & EV_SIGNAL)
4900 for (i = 0; i < EV_NSIG - 1; ++i)
4901 for (wl = signals [i].head; wl; )
4902 {
4903 wn = wl->next;
4904 cb (EV_A_ EV_SIGNAL, wl);
4905 wl = wn;
4906 }
4907 #endif
4908
4909 #if EV_CHILD_ENABLE
4910 if (types & EV_CHILD)
4911 for (i = (EV_PID_HASHSIZE); i--; )
4912 for (wl = childs [i]; wl; )
4913 {
4914 wn = wl->next;
4915 cb (EV_A_ EV_CHILD, wl);
4916 wl = wn;
4917 }
4918 #endif
4919 /* EV_STAT 0x00001000 /* stat data changed */
4920 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4921 }
4922 #endif
4923
4924 #if EV_MULTIPLICITY
4925 #include "ev_wrap.h"
4926 #endif
4927