ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.475
Committed: Wed Apr 1 06:57:41 2015 UTC (9 years, 1 month ago) by sf-exg
Content type: text/plain
Branch: MAIN
Changes since 1.474: +29 -8 lines
Log Message:
ecb upgrade.

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 # define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 #endif
248
249 #ifndef EV_USE_FLOOR
250 # define EV_USE_FLOOR 0
251 #endif
252
253 #ifndef EV_USE_CLOCK_SYSCALL
254 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 # else
257 # define EV_USE_CLOCK_SYSCALL 0
258 # endif
259 #endif
260
261 #if !(_POSIX_TIMERS > 0)
262 # ifndef EV_USE_MONOTONIC
263 # define EV_USE_MONOTONIC 0
264 # endif
265 # ifndef EV_USE_REALTIME
266 # define EV_USE_REALTIME 0
267 # endif
268 #endif
269
270 #ifndef EV_USE_MONOTONIC
271 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272 # define EV_USE_MONOTONIC EV_FEATURE_OS
273 # else
274 # define EV_USE_MONOTONIC 0
275 # endif
276 #endif
277
278 #ifndef EV_USE_REALTIME
279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280 #endif
281
282 #ifndef EV_USE_NANOSLEEP
283 # if _POSIX_C_SOURCE >= 199309L
284 # define EV_USE_NANOSLEEP EV_FEATURE_OS
285 # else
286 # define EV_USE_NANOSLEEP 0
287 # endif
288 #endif
289
290 #ifndef EV_USE_SELECT
291 # define EV_USE_SELECT EV_FEATURE_BACKENDS
292 #endif
293
294 #ifndef EV_USE_POLL
295 # ifdef _WIN32
296 # define EV_USE_POLL 0
297 # else
298 # define EV_USE_POLL EV_FEATURE_BACKENDS
299 # endif
300 #endif
301
302 #ifndef EV_USE_EPOLL
303 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
305 # else
306 # define EV_USE_EPOLL 0
307 # endif
308 #endif
309
310 #ifndef EV_USE_KQUEUE
311 # define EV_USE_KQUEUE 0
312 #endif
313
314 #ifndef EV_USE_PORT
315 # define EV_USE_PORT 0
316 #endif
317
318 #ifndef EV_USE_INOTIFY
319 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320 # define EV_USE_INOTIFY EV_FEATURE_OS
321 # else
322 # define EV_USE_INOTIFY 0
323 # endif
324 #endif
325
326 #ifndef EV_PID_HASHSIZE
327 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328 #endif
329
330 #ifndef EV_INOTIFY_HASHSIZE
331 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332 #endif
333
334 #ifndef EV_USE_EVENTFD
335 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336 # define EV_USE_EVENTFD EV_FEATURE_OS
337 # else
338 # define EV_USE_EVENTFD 0
339 # endif
340 #endif
341
342 #ifndef EV_USE_SIGNALFD
343 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344 # define EV_USE_SIGNALFD EV_FEATURE_OS
345 # else
346 # define EV_USE_SIGNALFD 0
347 # endif
348 #endif
349
350 #if 0 /* debugging */
351 # define EV_VERIFY 3
352 # define EV_USE_4HEAP 1
353 # define EV_HEAP_CACHE_AT 1
354 #endif
355
356 #ifndef EV_VERIFY
357 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358 #endif
359
360 #ifndef EV_USE_4HEAP
361 # define EV_USE_4HEAP EV_FEATURE_DATA
362 #endif
363
364 #ifndef EV_HEAP_CACHE_AT
365 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366 #endif
367
368 #ifdef ANDROID
369 /* supposedly, android doesn't typedef fd_mask */
370 # undef EV_USE_SELECT
371 # define EV_USE_SELECT 0
372 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373 # undef EV_USE_CLOCK_SYSCALL
374 # define EV_USE_CLOCK_SYSCALL 0
375 #endif
376
377 /* aix's poll.h seems to cause lots of trouble */
378 #ifdef _AIX
379 /* AIX has a completely broken poll.h header */
380 # undef EV_USE_POLL
381 # define EV_USE_POLL 0
382 #endif
383
384 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385 /* which makes programs even slower. might work on other unices, too. */
386 #if EV_USE_CLOCK_SYSCALL
387 # include <sys/syscall.h>
388 # ifdef SYS_clock_gettime
389 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390 # undef EV_USE_MONOTONIC
391 # define EV_USE_MONOTONIC 1
392 # else
393 # undef EV_USE_CLOCK_SYSCALL
394 # define EV_USE_CLOCK_SYSCALL 0
395 # endif
396 #endif
397
398 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
399
400 #ifndef CLOCK_MONOTONIC
401 # undef EV_USE_MONOTONIC
402 # define EV_USE_MONOTONIC 0
403 #endif
404
405 #ifndef CLOCK_REALTIME
406 # undef EV_USE_REALTIME
407 # define EV_USE_REALTIME 0
408 #endif
409
410 #if !EV_STAT_ENABLE
411 # undef EV_USE_INOTIFY
412 # define EV_USE_INOTIFY 0
413 #endif
414
415 #if !EV_USE_NANOSLEEP
416 /* hp-ux has it in sys/time.h, which we unconditionally include above */
417 # if !defined _WIN32 && !defined __hpux
418 # include <sys/select.h>
419 # endif
420 #endif
421
422 #if EV_USE_INOTIFY
423 # include <sys/statfs.h>
424 # include <sys/inotify.h>
425 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426 # ifndef IN_DONT_FOLLOW
427 # undef EV_USE_INOTIFY
428 # define EV_USE_INOTIFY 0
429 # endif
430 #endif
431
432 #if EV_USE_EVENTFD
433 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434 # include <stdint.h>
435 # ifndef EFD_NONBLOCK
436 # define EFD_NONBLOCK O_NONBLOCK
437 # endif
438 # ifndef EFD_CLOEXEC
439 # ifdef O_CLOEXEC
440 # define EFD_CLOEXEC O_CLOEXEC
441 # else
442 # define EFD_CLOEXEC 02000000
443 # endif
444 # endif
445 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446 #endif
447
448 #if EV_USE_SIGNALFD
449 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450 # include <stdint.h>
451 # ifndef SFD_NONBLOCK
452 # define SFD_NONBLOCK O_NONBLOCK
453 # endif
454 # ifndef SFD_CLOEXEC
455 # ifdef O_CLOEXEC
456 # define SFD_CLOEXEC O_CLOEXEC
457 # else
458 # define SFD_CLOEXEC 02000000
459 # endif
460 # endif
461 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463 struct signalfd_siginfo
464 {
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467 };
468 #endif
469
470 /**/
471
472 #if EV_VERIFY >= 3
473 # define EV_FREQUENT_CHECK ev_verify (EV_A)
474 #else
475 # define EV_FREQUENT_CHECK do { } while (0)
476 #endif
477
478 /*
479 * This is used to work around floating point rounding problems.
480 * This value is good at least till the year 4000.
481 */
482 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
484
485 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
486 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
487
488 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492 /* ECB.H BEGIN */
493 /*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533 #ifndef ECB_H
534 #define ECB_H
535
536 /* 16 bits major, 16 bits minor */
537 #define ECB_VERSION 0x00010004
538
539 #ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
546 #if __GNUC__
547 typedef signed long long int64_t;
548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
562 #else
563 #include <inttypes.h>
564 #if UINTMAX_MAX > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
568 #endif
569 #endif
570
571 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573
574 /* work around x32 idiocy by defining proper macros */
575 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
580 #endif
581 #endif
582
583 /* many compilers define _GNUC_ to some versions but then only implement
584 * what their idiot authors think are the "more important" extensions,
585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592 #else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594 #endif
595
596 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598 #if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600 #else
601 #define ECB_CLANG_BUILTIN(x) 0
602 #endif
603
604 #if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606 #else
607 #define ECB_CLANG_EXTENSION(x) 0
608 #endif
609
610 #define ECB_CPP (__cplusplus+0)
611 #define ECB_CPP11 (__cplusplus >= 201103L)
612
613 #if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616 #else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619 #endif
620
621 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624 #if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628 #else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632 #endif
633
634 /*****************************************************************************/
635
636 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639 #if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641 #endif
642
643 #if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645 #endif
646
647 #ifndef ECB_MEMORY_FENCE
648 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
649 #if __i386 || __i386__
650 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
651 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
652 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
653 #elif ECB_GCC_AMD64
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
655 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
656 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
657 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
658 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
659 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
660 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
662 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
663 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
664 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
665 #elif __aarch64__
666 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
667 #elif (__sparc || __sparc__) && !__sparcv8
668 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
669 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
670 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
671 #elif defined __s390__ || defined __s390x__
672 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
673 #elif defined __mips__
674 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
675 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
676 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
677 #elif defined __alpha__
678 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
679 #elif defined __hppa__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
681 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
682 #elif defined __ia64__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
684 #elif defined __m68k__
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
686 #elif defined __m88k__
687 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
688 #elif defined __sh__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
690 #endif
691 #endif
692 #endif
693
694 #ifndef ECB_MEMORY_FENCE
695 #if ECB_GCC_VERSION(4,7)
696 /* see comment below (stdatomic.h) about the C11 memory model. */
697 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
698 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
699 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
700
701 #elif ECB_CLANG_EXTENSION(c_atomic)
702 /* see comment below (stdatomic.h) about the C11 memory model. */
703 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
704 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
705 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
706
707 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
708 #define ECB_MEMORY_FENCE __sync_synchronize ()
709 #elif _MSC_VER >= 1500 /* VC++ 2008 */
710 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
711 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
712 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
713 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
714 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
715 #elif _MSC_VER >= 1400 /* VC++ 2005 */
716 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
717 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
718 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
719 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
720 #elif defined _WIN32
721 #include <WinNT.h>
722 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
723 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
724 #include <mbarrier.h>
725 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
726 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
727 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
728 #elif __xlC__
729 #define ECB_MEMORY_FENCE __sync ()
730 #endif
731 #endif
732
733 #ifndef ECB_MEMORY_FENCE
734 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
735 /* we assume that these memory fences work on all variables/all memory accesses, */
736 /* not just C11 atomics and atomic accesses */
737 #include <stdatomic.h>
738 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
739 /* any fence other than seq_cst, which isn't very efficient for us. */
740 /* Why that is, we don't know - either the C11 memory model is quite useless */
741 /* for most usages, or gcc and clang have a bug */
742 /* I *currently* lean towards the latter, and inefficiently implement */
743 /* all three of ecb's fences as a seq_cst fence */
744 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
745 /* for all __atomic_thread_fence's except seq_cst */
746 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
747 #endif
748 #endif
749
750 #ifndef ECB_MEMORY_FENCE
751 #if !ECB_AVOID_PTHREADS
752 /*
753 * if you get undefined symbol references to pthread_mutex_lock,
754 * or failure to find pthread.h, then you should implement
755 * the ECB_MEMORY_FENCE operations for your cpu/compiler
756 * OR provide pthread.h and link against the posix thread library
757 * of your system.
758 */
759 #include <pthread.h>
760 #define ECB_NEEDS_PTHREADS 1
761 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
762
763 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
764 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
765 #endif
766 #endif
767
768 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
769 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
770 #endif
771
772 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
773 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
774 #endif
775
776 /*****************************************************************************/
777
778 #if ECB_CPP
779 #define ecb_inline static inline
780 #elif ECB_GCC_VERSION(2,5)
781 #define ecb_inline static __inline__
782 #elif ECB_C99
783 #define ecb_inline static inline
784 #else
785 #define ecb_inline static
786 #endif
787
788 #if ECB_GCC_VERSION(3,3)
789 #define ecb_restrict __restrict__
790 #elif ECB_C99
791 #define ecb_restrict restrict
792 #else
793 #define ecb_restrict
794 #endif
795
796 typedef int ecb_bool;
797
798 #define ECB_CONCAT_(a, b) a ## b
799 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
800 #define ECB_STRINGIFY_(a) # a
801 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
802 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
803
804 #define ecb_function_ ecb_inline
805
806 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
807 #define ecb_attribute(attrlist) __attribute__ (attrlist)
808 #else
809 #define ecb_attribute(attrlist)
810 #endif
811
812 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
813 #define ecb_is_constant(expr) __builtin_constant_p (expr)
814 #else
815 /* possible C11 impl for integral types
816 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
817 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
818
819 #define ecb_is_constant(expr) 0
820 #endif
821
822 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
823 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
824 #else
825 #define ecb_expect(expr,value) (expr)
826 #endif
827
828 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
829 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
830 #else
831 #define ecb_prefetch(addr,rw,locality)
832 #endif
833
834 /* no emulation for ecb_decltype */
835 #if ECB_CPP11
836 // older implementations might have problems with decltype(x)::type, work around it
837 template<class T> struct ecb_decltype_t { typedef T type; };
838 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
839 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
840 #define ecb_decltype(x) __typeof__ (x)
841 #endif
842
843 #if _MSC_VER >= 1300
844 #define ecb_deprecated __declspec (deprecated)
845 #else
846 #define ecb_deprecated ecb_attribute ((__deprecated__))
847 #endif
848
849 #if __MSC_VER >= 1500
850 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
851 #elif ECB_GCC_VERSION(4,5)
852 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
853 #else
854 #define ecb_deprecated_message(msg) ecb_deprecated
855 #endif
856
857 #if _MSC_VER >= 1400
858 #define ecb_noinline __declspec (noinline)
859 #else
860 #define ecb_noinline ecb_attribute ((__noinline__))
861 #endif
862
863 #define ecb_unused ecb_attribute ((__unused__))
864 #define ecb_const ecb_attribute ((__const__))
865 #define ecb_pure ecb_attribute ((__pure__))
866
867 #if ECB_C11 || __IBMC_NORETURN
868 /* http://pic.dhe.ibm.com/infocenter/compbg/v121v141/topic/com.ibm.xlcpp121.bg.doc/language_ref/noreturn.html */
869 #define ecb_noreturn _Noreturn
870 #elif ECB_CPP11
871 #define ecb_noreturn [[noreturn]]
872 #elif _MSC_VER >= 1200
873 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
874 #define ecb_noreturn __declspec (noreturn)
875 #else
876 #define ecb_noreturn ecb_attribute ((__noreturn__))
877 #endif
878
879 #if ECB_GCC_VERSION(4,3)
880 #define ecb_artificial ecb_attribute ((__artificial__))
881 #define ecb_hot ecb_attribute ((__hot__))
882 #define ecb_cold ecb_attribute ((__cold__))
883 #else
884 #define ecb_artificial
885 #define ecb_hot
886 #define ecb_cold
887 #endif
888
889 /* put around conditional expressions if you are very sure that the */
890 /* expression is mostly true or mostly false. note that these return */
891 /* booleans, not the expression. */
892 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
893 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
894 /* for compatibility to the rest of the world */
895 #define ecb_likely(expr) ecb_expect_true (expr)
896 #define ecb_unlikely(expr) ecb_expect_false (expr)
897
898 /* count trailing zero bits and count # of one bits */
899 #if ECB_GCC_VERSION(3,4) \
900 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
901 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
902 && ECB_CLANG_BUILTIN(__builtin_popcount))
903 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
904 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
905 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
906 #define ecb_ctz32(x) __builtin_ctz (x)
907 #define ecb_ctz64(x) __builtin_ctzll (x)
908 #define ecb_popcount32(x) __builtin_popcount (x)
909 /* no popcountll */
910 #else
911 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
912 ecb_function_ ecb_const int
913 ecb_ctz32 (uint32_t x)
914 {
915 int r = 0;
916
917 x &= ~x + 1; /* this isolates the lowest bit */
918
919 #if ECB_branchless_on_i386
920 r += !!(x & 0xaaaaaaaa) << 0;
921 r += !!(x & 0xcccccccc) << 1;
922 r += !!(x & 0xf0f0f0f0) << 2;
923 r += !!(x & 0xff00ff00) << 3;
924 r += !!(x & 0xffff0000) << 4;
925 #else
926 if (x & 0xaaaaaaaa) r += 1;
927 if (x & 0xcccccccc) r += 2;
928 if (x & 0xf0f0f0f0) r += 4;
929 if (x & 0xff00ff00) r += 8;
930 if (x & 0xffff0000) r += 16;
931 #endif
932
933 return r;
934 }
935
936 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
937 ecb_function_ ecb_const int
938 ecb_ctz64 (uint64_t x)
939 {
940 int shift = x & 0xffffffffU ? 0 : 32;
941 return ecb_ctz32 (x >> shift) + shift;
942 }
943
944 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
945 ecb_function_ ecb_const int
946 ecb_popcount32 (uint32_t x)
947 {
948 x -= (x >> 1) & 0x55555555;
949 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
950 x = ((x >> 4) + x) & 0x0f0f0f0f;
951 x *= 0x01010101;
952
953 return x >> 24;
954 }
955
956 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
957 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
958 {
959 int r = 0;
960
961 if (x >> 16) { x >>= 16; r += 16; }
962 if (x >> 8) { x >>= 8; r += 8; }
963 if (x >> 4) { x >>= 4; r += 4; }
964 if (x >> 2) { x >>= 2; r += 2; }
965 if (x >> 1) { r += 1; }
966
967 return r;
968 }
969
970 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
971 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
972 {
973 int r = 0;
974
975 if (x >> 32) { x >>= 32; r += 32; }
976
977 return r + ecb_ld32 (x);
978 }
979 #endif
980
981 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
982 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
983 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
984 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
985
986 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
987 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
988 {
989 return ( (x * 0x0802U & 0x22110U)
990 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
991 }
992
993 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
994 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
995 {
996 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
997 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
998 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
999 x = ( x >> 8 ) | ( x << 8);
1000
1001 return x;
1002 }
1003
1004 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1005 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1006 {
1007 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1008 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1009 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1010 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1011 x = ( x >> 16 ) | ( x << 16);
1012
1013 return x;
1014 }
1015
1016 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1017 /* so for this version we are lazy */
1018 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1019 ecb_function_ ecb_const int
1020 ecb_popcount64 (uint64_t x)
1021 {
1022 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1023 }
1024
1025 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1026 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1027 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1028 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1029 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1030 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1031 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1032 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1033
1034 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1035 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1036 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1037 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1038 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1039 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1040 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1041 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1042
1043 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1044 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1045 #define ecb_bswap32(x) __builtin_bswap32 (x)
1046 #define ecb_bswap64(x) __builtin_bswap64 (x)
1047 #else
1048 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1049 ecb_function_ ecb_const uint16_t
1050 ecb_bswap16 (uint16_t x)
1051 {
1052 return ecb_rotl16 (x, 8);
1053 }
1054
1055 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1056 ecb_function_ ecb_const uint32_t
1057 ecb_bswap32 (uint32_t x)
1058 {
1059 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1060 }
1061
1062 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1063 ecb_function_ ecb_const uint64_t
1064 ecb_bswap64 (uint64_t x)
1065 {
1066 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1067 }
1068 #endif
1069
1070 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1071 #define ecb_unreachable() __builtin_unreachable ()
1072 #else
1073 /* this seems to work fine, but gcc always emits a warning for it :/ */
1074 ecb_inline ecb_noreturn void ecb_unreachable (void);
1075 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1076 #endif
1077
1078 /* try to tell the compiler that some condition is definitely true */
1079 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1080
1081 ecb_inline ecb_const unsigned char ecb_byteorder_helper (void);
1082 ecb_inline ecb_const unsigned char
1083 ecb_byteorder_helper (void)
1084 {
1085 /* the union code still generates code under pressure in gcc, */
1086 /* but less than using pointers, and always seems to */
1087 /* successfully return a constant. */
1088 /* the reason why we have this horrible preprocessor mess */
1089 /* is to avoid it in all cases, at least on common architectures */
1090 /* or when using a recent enough gcc version (>= 4.6) */
1091 #if ((__i386 || __i386__) && !__VOS__) || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64
1092 return 0x44;
1093 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1094 return 0x44;
1095 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1096 return 0x11;
1097 #else
1098 union
1099 {
1100 uint32_t i;
1101 uint8_t c;
1102 } u = { 0x11223344 };
1103 return u.c;
1104 #endif
1105 }
1106
1107 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1108 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1109 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1110 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1111
1112 #if ECB_GCC_VERSION(3,0) || ECB_C99
1113 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1114 #else
1115 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1116 #endif
1117
1118 #if ECB_CPP
1119 template<typename T>
1120 static inline T ecb_div_rd (T val, T div)
1121 {
1122 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1123 }
1124 template<typename T>
1125 static inline T ecb_div_ru (T val, T div)
1126 {
1127 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1128 }
1129 #else
1130 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1131 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1132 #endif
1133
1134 #if ecb_cplusplus_does_not_suck
1135 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1136 template<typename T, int N>
1137 static inline int ecb_array_length (const T (&arr)[N])
1138 {
1139 return N;
1140 }
1141 #else
1142 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1143 #endif
1144
1145 /*******************************************************************************/
1146 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1147
1148 /* basically, everything uses "ieee pure-endian" floating point numbers */
1149 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1150 #if 0 \
1151 || __i386 || __i386__ \
1152 || ECB_GCC_AMD64 \
1153 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1154 || defined __s390__ || defined __s390x__ \
1155 || defined __mips__ \
1156 || defined __alpha__ \
1157 || defined __hppa__ \
1158 || defined __ia64__ \
1159 || defined __m68k__ \
1160 || defined __m88k__ \
1161 || defined __sh__ \
1162 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1163 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1164 || defined __aarch64__
1165 #define ECB_STDFP 1
1166 #include <string.h> /* for memcpy */
1167 #else
1168 #define ECB_STDFP 0
1169 #endif
1170
1171 #ifndef ECB_NO_LIBM
1172
1173 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1174
1175 /* only the oldest of old doesn't have this one. solaris. */
1176 #ifdef INFINITY
1177 #define ECB_INFINITY INFINITY
1178 #else
1179 #define ECB_INFINITY HUGE_VAL
1180 #endif
1181
1182 #ifdef NAN
1183 #define ECB_NAN NAN
1184 #else
1185 #define ECB_NAN ECB_INFINITY
1186 #endif
1187
1188 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1189 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1190 #else
1191 #define ecb_ldexpf(x,e) (float) ldexp ((float) (x), (e))
1192 #endif
1193
1194 /* converts an ieee half/binary16 to a float */
1195 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1196 ecb_function_ ecb_const float
1197 ecb_binary16_to_float (uint16_t x)
1198 {
1199 int e = (x >> 10) & 0x1f;
1200 int m = x & 0x3ff;
1201 float r;
1202
1203 if (!e ) r = ecb_ldexpf (m , -24);
1204 else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25);
1205 else if (m ) r = ECB_NAN;
1206 else r = ECB_INFINITY;
1207
1208 return x & 0x8000 ? -r : r;
1209 }
1210
1211 /* convert a float to ieee single/binary32 */
1212 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1213 ecb_function_ ecb_const uint32_t
1214 ecb_float_to_binary32 (float x)
1215 {
1216 uint32_t r;
1217
1218 #if ECB_STDFP
1219 memcpy (&r, &x, 4);
1220 #else
1221 /* slow emulation, works for anything but -0 */
1222 uint32_t m;
1223 int e;
1224
1225 if (x == 0e0f ) return 0x00000000U;
1226 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1227 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1228 if (x != x ) return 0x7fbfffffU;
1229
1230 m = frexpf (x, &e) * 0x1000000U;
1231
1232 r = m & 0x80000000U;
1233
1234 if (r)
1235 m = -m;
1236
1237 if (e <= -126)
1238 {
1239 m &= 0xffffffU;
1240 m >>= (-125 - e);
1241 e = -126;
1242 }
1243
1244 r |= (e + 126) << 23;
1245 r |= m & 0x7fffffU;
1246 #endif
1247
1248 return r;
1249 }
1250
1251 /* converts an ieee single/binary32 to a float */
1252 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1253 ecb_function_ ecb_const float
1254 ecb_binary32_to_float (uint32_t x)
1255 {
1256 float r;
1257
1258 #if ECB_STDFP
1259 memcpy (&r, &x, 4);
1260 #else
1261 /* emulation, only works for normals and subnormals and +0 */
1262 int neg = x >> 31;
1263 int e = (x >> 23) & 0xffU;
1264
1265 x &= 0x7fffffU;
1266
1267 if (e)
1268 x |= 0x800000U;
1269 else
1270 e = 1;
1271
1272 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1273 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1274
1275 r = neg ? -r : r;
1276 #endif
1277
1278 return r;
1279 }
1280
1281 /* convert a double to ieee double/binary64 */
1282 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1283 ecb_function_ ecb_const uint64_t
1284 ecb_double_to_binary64 (double x)
1285 {
1286 uint64_t r;
1287
1288 #if ECB_STDFP
1289 memcpy (&r, &x, 8);
1290 #else
1291 /* slow emulation, works for anything but -0 */
1292 uint64_t m;
1293 int e;
1294
1295 if (x == 0e0 ) return 0x0000000000000000U;
1296 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1297 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1298 if (x != x ) return 0X7ff7ffffffffffffU;
1299
1300 m = frexp (x, &e) * 0x20000000000000U;
1301
1302 r = m & 0x8000000000000000;;
1303
1304 if (r)
1305 m = -m;
1306
1307 if (e <= -1022)
1308 {
1309 m &= 0x1fffffffffffffU;
1310 m >>= (-1021 - e);
1311 e = -1022;
1312 }
1313
1314 r |= ((uint64_t)(e + 1022)) << 52;
1315 r |= m & 0xfffffffffffffU;
1316 #endif
1317
1318 return r;
1319 }
1320
1321 /* converts an ieee double/binary64 to a double */
1322 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1323 ecb_function_ ecb_const double
1324 ecb_binary64_to_double (uint64_t x)
1325 {
1326 double r;
1327
1328 #if ECB_STDFP
1329 memcpy (&r, &x, 8);
1330 #else
1331 /* emulation, only works for normals and subnormals and +0 */
1332 int neg = x >> 63;
1333 int e = (x >> 52) & 0x7ffU;
1334
1335 x &= 0xfffffffffffffU;
1336
1337 if (e)
1338 x |= 0x10000000000000U;
1339 else
1340 e = 1;
1341
1342 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1343 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1344
1345 r = neg ? -r : r;
1346 #endif
1347
1348 return r;
1349 }
1350
1351 #endif
1352
1353 #endif
1354
1355 /* ECB.H END */
1356
1357 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1358 /* if your architecture doesn't need memory fences, e.g. because it is
1359 * single-cpu/core, or if you use libev in a project that doesn't use libev
1360 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1361 * libev, in which cases the memory fences become nops.
1362 * alternatively, you can remove this #error and link against libpthread,
1363 * which will then provide the memory fences.
1364 */
1365 # error "memory fences not defined for your architecture, please report"
1366 #endif
1367
1368 #ifndef ECB_MEMORY_FENCE
1369 # define ECB_MEMORY_FENCE do { } while (0)
1370 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1371 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1372 #endif
1373
1374 #define expect_false(cond) ecb_expect_false (cond)
1375 #define expect_true(cond) ecb_expect_true (cond)
1376 #define noinline ecb_noinline
1377
1378 #define inline_size ecb_inline
1379
1380 #if EV_FEATURE_CODE
1381 # define inline_speed ecb_inline
1382 #else
1383 # define inline_speed static noinline
1384 #endif
1385
1386 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1387
1388 #if EV_MINPRI == EV_MAXPRI
1389 # define ABSPRI(w) (((W)w), 0)
1390 #else
1391 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1392 #endif
1393
1394 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1395 #define EMPTY2(a,b) /* used to suppress some warnings */
1396
1397 typedef ev_watcher *W;
1398 typedef ev_watcher_list *WL;
1399 typedef ev_watcher_time *WT;
1400
1401 #define ev_active(w) ((W)(w))->active
1402 #define ev_at(w) ((WT)(w))->at
1403
1404 #if EV_USE_REALTIME
1405 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1406 /* giving it a reasonably high chance of working on typical architectures */
1407 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1408 #endif
1409
1410 #if EV_USE_MONOTONIC
1411 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1412 #endif
1413
1414 #ifndef EV_FD_TO_WIN32_HANDLE
1415 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1416 #endif
1417 #ifndef EV_WIN32_HANDLE_TO_FD
1418 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1419 #endif
1420 #ifndef EV_WIN32_CLOSE_FD
1421 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1422 #endif
1423
1424 #ifdef _WIN32
1425 # include "ev_win32.c"
1426 #endif
1427
1428 /*****************************************************************************/
1429
1430 /* define a suitable floor function (only used by periodics atm) */
1431
1432 #if EV_USE_FLOOR
1433 # include <math.h>
1434 # define ev_floor(v) floor (v)
1435 #else
1436
1437 #include <float.h>
1438
1439 /* a floor() replacement function, should be independent of ev_tstamp type */
1440 static ev_tstamp noinline
1441 ev_floor (ev_tstamp v)
1442 {
1443 /* the choice of shift factor is not terribly important */
1444 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1445 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1446 #else
1447 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1448 #endif
1449
1450 /* argument too large for an unsigned long? */
1451 if (expect_false (v >= shift))
1452 {
1453 ev_tstamp f;
1454
1455 if (v == v - 1.)
1456 return v; /* very large number */
1457
1458 f = shift * ev_floor (v * (1. / shift));
1459 return f + ev_floor (v - f);
1460 }
1461
1462 /* special treatment for negative args? */
1463 if (expect_false (v < 0.))
1464 {
1465 ev_tstamp f = -ev_floor (-v);
1466
1467 return f - (f == v ? 0 : 1);
1468 }
1469
1470 /* fits into an unsigned long */
1471 return (unsigned long)v;
1472 }
1473
1474 #endif
1475
1476 /*****************************************************************************/
1477
1478 #ifdef __linux
1479 # include <sys/utsname.h>
1480 #endif
1481
1482 static unsigned int noinline ecb_cold
1483 ev_linux_version (void)
1484 {
1485 #ifdef __linux
1486 unsigned int v = 0;
1487 struct utsname buf;
1488 int i;
1489 char *p = buf.release;
1490
1491 if (uname (&buf))
1492 return 0;
1493
1494 for (i = 3+1; --i; )
1495 {
1496 unsigned int c = 0;
1497
1498 for (;;)
1499 {
1500 if (*p >= '0' && *p <= '9')
1501 c = c * 10 + *p++ - '0';
1502 else
1503 {
1504 p += *p == '.';
1505 break;
1506 }
1507 }
1508
1509 v = (v << 8) | c;
1510 }
1511
1512 return v;
1513 #else
1514 return 0;
1515 #endif
1516 }
1517
1518 /*****************************************************************************/
1519
1520 #if EV_AVOID_STDIO
1521 static void noinline ecb_cold
1522 ev_printerr (const char *msg)
1523 {
1524 write (STDERR_FILENO, msg, strlen (msg));
1525 }
1526 #endif
1527
1528 static void (*syserr_cb)(const char *msg) EV_THROW;
1529
1530 void ecb_cold
1531 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1532 {
1533 syserr_cb = cb;
1534 }
1535
1536 static void noinline ecb_cold
1537 ev_syserr (const char *msg)
1538 {
1539 if (!msg)
1540 msg = "(libev) system error";
1541
1542 if (syserr_cb)
1543 syserr_cb (msg);
1544 else
1545 {
1546 #if EV_AVOID_STDIO
1547 ev_printerr (msg);
1548 ev_printerr (": ");
1549 ev_printerr (strerror (errno));
1550 ev_printerr ("\n");
1551 #else
1552 perror (msg);
1553 #endif
1554 abort ();
1555 }
1556 }
1557
1558 static void *
1559 ev_realloc_emul (void *ptr, long size) EV_THROW
1560 {
1561 /* some systems, notably openbsd and darwin, fail to properly
1562 * implement realloc (x, 0) (as required by both ansi c-89 and
1563 * the single unix specification, so work around them here.
1564 * recently, also (at least) fedora and debian started breaking it,
1565 * despite documenting it otherwise.
1566 */
1567
1568 if (size)
1569 return realloc (ptr, size);
1570
1571 free (ptr);
1572 return 0;
1573 }
1574
1575 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1576
1577 void ecb_cold
1578 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1579 {
1580 alloc = cb;
1581 }
1582
1583 inline_speed void *
1584 ev_realloc (void *ptr, long size)
1585 {
1586 ptr = alloc (ptr, size);
1587
1588 if (!ptr && size)
1589 {
1590 #if EV_AVOID_STDIO
1591 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1592 #else
1593 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1594 #endif
1595 abort ();
1596 }
1597
1598 return ptr;
1599 }
1600
1601 #define ev_malloc(size) ev_realloc (0, (size))
1602 #define ev_free(ptr) ev_realloc ((ptr), 0)
1603
1604 /*****************************************************************************/
1605
1606 /* set in reify when reification needed */
1607 #define EV_ANFD_REIFY 1
1608
1609 /* file descriptor info structure */
1610 typedef struct
1611 {
1612 WL head;
1613 unsigned char events; /* the events watched for */
1614 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1615 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1616 unsigned char unused;
1617 #if EV_USE_EPOLL
1618 unsigned int egen; /* generation counter to counter epoll bugs */
1619 #endif
1620 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1621 SOCKET handle;
1622 #endif
1623 #if EV_USE_IOCP
1624 OVERLAPPED or, ow;
1625 #endif
1626 } ANFD;
1627
1628 /* stores the pending event set for a given watcher */
1629 typedef struct
1630 {
1631 W w;
1632 int events; /* the pending event set for the given watcher */
1633 } ANPENDING;
1634
1635 #if EV_USE_INOTIFY
1636 /* hash table entry per inotify-id */
1637 typedef struct
1638 {
1639 WL head;
1640 } ANFS;
1641 #endif
1642
1643 /* Heap Entry */
1644 #if EV_HEAP_CACHE_AT
1645 /* a heap element */
1646 typedef struct {
1647 ev_tstamp at;
1648 WT w;
1649 } ANHE;
1650
1651 #define ANHE_w(he) (he).w /* access watcher, read-write */
1652 #define ANHE_at(he) (he).at /* access cached at, read-only */
1653 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1654 #else
1655 /* a heap element */
1656 typedef WT ANHE;
1657
1658 #define ANHE_w(he) (he)
1659 #define ANHE_at(he) (he)->at
1660 #define ANHE_at_cache(he)
1661 #endif
1662
1663 #if EV_MULTIPLICITY
1664
1665 struct ev_loop
1666 {
1667 ev_tstamp ev_rt_now;
1668 #define ev_rt_now ((loop)->ev_rt_now)
1669 #define VAR(name,decl) decl;
1670 #include "ev_vars.h"
1671 #undef VAR
1672 };
1673 #include "ev_wrap.h"
1674
1675 static struct ev_loop default_loop_struct;
1676 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1677
1678 #else
1679
1680 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1681 #define VAR(name,decl) static decl;
1682 #include "ev_vars.h"
1683 #undef VAR
1684
1685 static int ev_default_loop_ptr;
1686
1687 #endif
1688
1689 #if EV_FEATURE_API
1690 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1691 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1692 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1693 #else
1694 # define EV_RELEASE_CB (void)0
1695 # define EV_ACQUIRE_CB (void)0
1696 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1697 #endif
1698
1699 #define EVBREAK_RECURSE 0x80
1700
1701 /*****************************************************************************/
1702
1703 #ifndef EV_HAVE_EV_TIME
1704 ev_tstamp
1705 ev_time (void) EV_THROW
1706 {
1707 #if EV_USE_REALTIME
1708 if (expect_true (have_realtime))
1709 {
1710 struct timespec ts;
1711 clock_gettime (CLOCK_REALTIME, &ts);
1712 return ts.tv_sec + ts.tv_nsec * 1e-9;
1713 }
1714 #endif
1715
1716 struct timeval tv;
1717 gettimeofday (&tv, 0);
1718 return tv.tv_sec + tv.tv_usec * 1e-6;
1719 }
1720 #endif
1721
1722 inline_size ev_tstamp
1723 get_clock (void)
1724 {
1725 #if EV_USE_MONOTONIC
1726 if (expect_true (have_monotonic))
1727 {
1728 struct timespec ts;
1729 clock_gettime (CLOCK_MONOTONIC, &ts);
1730 return ts.tv_sec + ts.tv_nsec * 1e-9;
1731 }
1732 #endif
1733
1734 return ev_time ();
1735 }
1736
1737 #if EV_MULTIPLICITY
1738 ev_tstamp
1739 ev_now (EV_P) EV_THROW
1740 {
1741 return ev_rt_now;
1742 }
1743 #endif
1744
1745 void
1746 ev_sleep (ev_tstamp delay) EV_THROW
1747 {
1748 if (delay > 0.)
1749 {
1750 #if EV_USE_NANOSLEEP
1751 struct timespec ts;
1752
1753 EV_TS_SET (ts, delay);
1754 nanosleep (&ts, 0);
1755 #elif defined _WIN32
1756 Sleep ((unsigned long)(delay * 1e3));
1757 #else
1758 struct timeval tv;
1759
1760 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1761 /* something not guaranteed by newer posix versions, but guaranteed */
1762 /* by older ones */
1763 EV_TV_SET (tv, delay);
1764 select (0, 0, 0, 0, &tv);
1765 #endif
1766 }
1767 }
1768
1769 /*****************************************************************************/
1770
1771 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1772
1773 /* find a suitable new size for the given array, */
1774 /* hopefully by rounding to a nice-to-malloc size */
1775 inline_size int
1776 array_nextsize (int elem, int cur, int cnt)
1777 {
1778 int ncur = cur + 1;
1779
1780 do
1781 ncur <<= 1;
1782 while (cnt > ncur);
1783
1784 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1785 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1786 {
1787 ncur *= elem;
1788 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1789 ncur = ncur - sizeof (void *) * 4;
1790 ncur /= elem;
1791 }
1792
1793 return ncur;
1794 }
1795
1796 static void * noinline ecb_cold
1797 array_realloc (int elem, void *base, int *cur, int cnt)
1798 {
1799 *cur = array_nextsize (elem, *cur, cnt);
1800 return ev_realloc (base, elem * *cur);
1801 }
1802
1803 #define array_init_zero(base,count) \
1804 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1805
1806 #define array_needsize(type,base,cur,cnt,init) \
1807 if (expect_false ((cnt) > (cur))) \
1808 { \
1809 int ecb_unused ocur_ = (cur); \
1810 (base) = (type *)array_realloc \
1811 (sizeof (type), (base), &(cur), (cnt)); \
1812 init ((base) + (ocur_), (cur) - ocur_); \
1813 }
1814
1815 #if 0
1816 #define array_slim(type,stem) \
1817 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1818 { \
1819 stem ## max = array_roundsize (stem ## cnt >> 1); \
1820 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1821 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1822 }
1823 #endif
1824
1825 #define array_free(stem, idx) \
1826 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1827
1828 /*****************************************************************************/
1829
1830 /* dummy callback for pending events */
1831 static void noinline
1832 pendingcb (EV_P_ ev_prepare *w, int revents)
1833 {
1834 }
1835
1836 void noinline
1837 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1838 {
1839 W w_ = (W)w;
1840 int pri = ABSPRI (w_);
1841
1842 if (expect_false (w_->pending))
1843 pendings [pri][w_->pending - 1].events |= revents;
1844 else
1845 {
1846 w_->pending = ++pendingcnt [pri];
1847 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1848 pendings [pri][w_->pending - 1].w = w_;
1849 pendings [pri][w_->pending - 1].events = revents;
1850 }
1851
1852 pendingpri = NUMPRI - 1;
1853 }
1854
1855 inline_speed void
1856 feed_reverse (EV_P_ W w)
1857 {
1858 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1859 rfeeds [rfeedcnt++] = w;
1860 }
1861
1862 inline_size void
1863 feed_reverse_done (EV_P_ int revents)
1864 {
1865 do
1866 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1867 while (rfeedcnt);
1868 }
1869
1870 inline_speed void
1871 queue_events (EV_P_ W *events, int eventcnt, int type)
1872 {
1873 int i;
1874
1875 for (i = 0; i < eventcnt; ++i)
1876 ev_feed_event (EV_A_ events [i], type);
1877 }
1878
1879 /*****************************************************************************/
1880
1881 inline_speed void
1882 fd_event_nocheck (EV_P_ int fd, int revents)
1883 {
1884 ANFD *anfd = anfds + fd;
1885 ev_io *w;
1886
1887 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1888 {
1889 int ev = w->events & revents;
1890
1891 if (ev)
1892 ev_feed_event (EV_A_ (W)w, ev);
1893 }
1894 }
1895
1896 /* do not submit kernel events for fds that have reify set */
1897 /* because that means they changed while we were polling for new events */
1898 inline_speed void
1899 fd_event (EV_P_ int fd, int revents)
1900 {
1901 ANFD *anfd = anfds + fd;
1902
1903 if (expect_true (!anfd->reify))
1904 fd_event_nocheck (EV_A_ fd, revents);
1905 }
1906
1907 void
1908 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1909 {
1910 if (fd >= 0 && fd < anfdmax)
1911 fd_event_nocheck (EV_A_ fd, revents);
1912 }
1913
1914 /* make sure the external fd watch events are in-sync */
1915 /* with the kernel/libev internal state */
1916 inline_size void
1917 fd_reify (EV_P)
1918 {
1919 int i;
1920
1921 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1922 for (i = 0; i < fdchangecnt; ++i)
1923 {
1924 int fd = fdchanges [i];
1925 ANFD *anfd = anfds + fd;
1926
1927 if (anfd->reify & EV__IOFDSET && anfd->head)
1928 {
1929 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1930
1931 if (handle != anfd->handle)
1932 {
1933 unsigned long arg;
1934
1935 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1936
1937 /* handle changed, but fd didn't - we need to do it in two steps */
1938 backend_modify (EV_A_ fd, anfd->events, 0);
1939 anfd->events = 0;
1940 anfd->handle = handle;
1941 }
1942 }
1943 }
1944 #endif
1945
1946 for (i = 0; i < fdchangecnt; ++i)
1947 {
1948 int fd = fdchanges [i];
1949 ANFD *anfd = anfds + fd;
1950 ev_io *w;
1951
1952 unsigned char o_events = anfd->events;
1953 unsigned char o_reify = anfd->reify;
1954
1955 anfd->reify = 0;
1956
1957 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1958 {
1959 anfd->events = 0;
1960
1961 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1962 anfd->events |= (unsigned char)w->events;
1963
1964 if (o_events != anfd->events)
1965 o_reify = EV__IOFDSET; /* actually |= */
1966 }
1967
1968 if (o_reify & EV__IOFDSET)
1969 backend_modify (EV_A_ fd, o_events, anfd->events);
1970 }
1971
1972 fdchangecnt = 0;
1973 }
1974
1975 /* something about the given fd changed */
1976 inline_size void
1977 fd_change (EV_P_ int fd, int flags)
1978 {
1979 unsigned char reify = anfds [fd].reify;
1980 anfds [fd].reify |= flags;
1981
1982 if (expect_true (!reify))
1983 {
1984 ++fdchangecnt;
1985 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1986 fdchanges [fdchangecnt - 1] = fd;
1987 }
1988 }
1989
1990 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1991 inline_speed void ecb_cold
1992 fd_kill (EV_P_ int fd)
1993 {
1994 ev_io *w;
1995
1996 while ((w = (ev_io *)anfds [fd].head))
1997 {
1998 ev_io_stop (EV_A_ w);
1999 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2000 }
2001 }
2002
2003 /* check whether the given fd is actually valid, for error recovery */
2004 inline_size int ecb_cold
2005 fd_valid (int fd)
2006 {
2007 #ifdef _WIN32
2008 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2009 #else
2010 return fcntl (fd, F_GETFD) != -1;
2011 #endif
2012 }
2013
2014 /* called on EBADF to verify fds */
2015 static void noinline ecb_cold
2016 fd_ebadf (EV_P)
2017 {
2018 int fd;
2019
2020 for (fd = 0; fd < anfdmax; ++fd)
2021 if (anfds [fd].events)
2022 if (!fd_valid (fd) && errno == EBADF)
2023 fd_kill (EV_A_ fd);
2024 }
2025
2026 /* called on ENOMEM in select/poll to kill some fds and retry */
2027 static void noinline ecb_cold
2028 fd_enomem (EV_P)
2029 {
2030 int fd;
2031
2032 for (fd = anfdmax; fd--; )
2033 if (anfds [fd].events)
2034 {
2035 fd_kill (EV_A_ fd);
2036 break;
2037 }
2038 }
2039
2040 /* usually called after fork if backend needs to re-arm all fds from scratch */
2041 static void noinline
2042 fd_rearm_all (EV_P)
2043 {
2044 int fd;
2045
2046 for (fd = 0; fd < anfdmax; ++fd)
2047 if (anfds [fd].events)
2048 {
2049 anfds [fd].events = 0;
2050 anfds [fd].emask = 0;
2051 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2052 }
2053 }
2054
2055 /* used to prepare libev internal fd's */
2056 /* this is not fork-safe */
2057 inline_speed void
2058 fd_intern (int fd)
2059 {
2060 #ifdef _WIN32
2061 unsigned long arg = 1;
2062 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2063 #else
2064 fcntl (fd, F_SETFD, FD_CLOEXEC);
2065 fcntl (fd, F_SETFL, O_NONBLOCK);
2066 #endif
2067 }
2068
2069 /*****************************************************************************/
2070
2071 /*
2072 * the heap functions want a real array index. array index 0 is guaranteed to not
2073 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2074 * the branching factor of the d-tree.
2075 */
2076
2077 /*
2078 * at the moment we allow libev the luxury of two heaps,
2079 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2080 * which is more cache-efficient.
2081 * the difference is about 5% with 50000+ watchers.
2082 */
2083 #if EV_USE_4HEAP
2084
2085 #define DHEAP 4
2086 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2087 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2088 #define UPHEAP_DONE(p,k) ((p) == (k))
2089
2090 /* away from the root */
2091 inline_speed void
2092 downheap (ANHE *heap, int N, int k)
2093 {
2094 ANHE he = heap [k];
2095 ANHE *E = heap + N + HEAP0;
2096
2097 for (;;)
2098 {
2099 ev_tstamp minat;
2100 ANHE *minpos;
2101 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2102
2103 /* find minimum child */
2104 if (expect_true (pos + DHEAP - 1 < E))
2105 {
2106 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2107 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2108 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2109 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2110 }
2111 else if (pos < E)
2112 {
2113 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2114 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2115 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2116 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2117 }
2118 else
2119 break;
2120
2121 if (ANHE_at (he) <= minat)
2122 break;
2123
2124 heap [k] = *minpos;
2125 ev_active (ANHE_w (*minpos)) = k;
2126
2127 k = minpos - heap;
2128 }
2129
2130 heap [k] = he;
2131 ev_active (ANHE_w (he)) = k;
2132 }
2133
2134 #else /* 4HEAP */
2135
2136 #define HEAP0 1
2137 #define HPARENT(k) ((k) >> 1)
2138 #define UPHEAP_DONE(p,k) (!(p))
2139
2140 /* away from the root */
2141 inline_speed void
2142 downheap (ANHE *heap, int N, int k)
2143 {
2144 ANHE he = heap [k];
2145
2146 for (;;)
2147 {
2148 int c = k << 1;
2149
2150 if (c >= N + HEAP0)
2151 break;
2152
2153 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2154 ? 1 : 0;
2155
2156 if (ANHE_at (he) <= ANHE_at (heap [c]))
2157 break;
2158
2159 heap [k] = heap [c];
2160 ev_active (ANHE_w (heap [k])) = k;
2161
2162 k = c;
2163 }
2164
2165 heap [k] = he;
2166 ev_active (ANHE_w (he)) = k;
2167 }
2168 #endif
2169
2170 /* towards the root */
2171 inline_speed void
2172 upheap (ANHE *heap, int k)
2173 {
2174 ANHE he = heap [k];
2175
2176 for (;;)
2177 {
2178 int p = HPARENT (k);
2179
2180 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2181 break;
2182
2183 heap [k] = heap [p];
2184 ev_active (ANHE_w (heap [k])) = k;
2185 k = p;
2186 }
2187
2188 heap [k] = he;
2189 ev_active (ANHE_w (he)) = k;
2190 }
2191
2192 /* move an element suitably so it is in a correct place */
2193 inline_size void
2194 adjustheap (ANHE *heap, int N, int k)
2195 {
2196 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2197 upheap (heap, k);
2198 else
2199 downheap (heap, N, k);
2200 }
2201
2202 /* rebuild the heap: this function is used only once and executed rarely */
2203 inline_size void
2204 reheap (ANHE *heap, int N)
2205 {
2206 int i;
2207
2208 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2209 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2210 for (i = 0; i < N; ++i)
2211 upheap (heap, i + HEAP0);
2212 }
2213
2214 /*****************************************************************************/
2215
2216 /* associate signal watchers to a signal signal */
2217 typedef struct
2218 {
2219 EV_ATOMIC_T pending;
2220 #if EV_MULTIPLICITY
2221 EV_P;
2222 #endif
2223 WL head;
2224 } ANSIG;
2225
2226 static ANSIG signals [EV_NSIG - 1];
2227
2228 /*****************************************************************************/
2229
2230 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2231
2232 static void noinline ecb_cold
2233 evpipe_init (EV_P)
2234 {
2235 if (!ev_is_active (&pipe_w))
2236 {
2237 int fds [2];
2238
2239 # if EV_USE_EVENTFD
2240 fds [0] = -1;
2241 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2242 if (fds [1] < 0 && errno == EINVAL)
2243 fds [1] = eventfd (0, 0);
2244
2245 if (fds [1] < 0)
2246 # endif
2247 {
2248 while (pipe (fds))
2249 ev_syserr ("(libev) error creating signal/async pipe");
2250
2251 fd_intern (fds [0]);
2252 }
2253
2254 evpipe [0] = fds [0];
2255
2256 if (evpipe [1] < 0)
2257 evpipe [1] = fds [1]; /* first call, set write fd */
2258 else
2259 {
2260 /* on subsequent calls, do not change evpipe [1] */
2261 /* so that evpipe_write can always rely on its value. */
2262 /* this branch does not do anything sensible on windows, */
2263 /* so must not be executed on windows */
2264
2265 dup2 (fds [1], evpipe [1]);
2266 close (fds [1]);
2267 }
2268
2269 fd_intern (evpipe [1]);
2270
2271 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2272 ev_io_start (EV_A_ &pipe_w);
2273 ev_unref (EV_A); /* watcher should not keep loop alive */
2274 }
2275 }
2276
2277 inline_speed void
2278 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2279 {
2280 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2281
2282 if (expect_true (*flag))
2283 return;
2284
2285 *flag = 1;
2286 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2287
2288 pipe_write_skipped = 1;
2289
2290 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2291
2292 if (pipe_write_wanted)
2293 {
2294 int old_errno;
2295
2296 pipe_write_skipped = 0;
2297 ECB_MEMORY_FENCE_RELEASE;
2298
2299 old_errno = errno; /* save errno because write will clobber it */
2300
2301 #if EV_USE_EVENTFD
2302 if (evpipe [0] < 0)
2303 {
2304 uint64_t counter = 1;
2305 write (evpipe [1], &counter, sizeof (uint64_t));
2306 }
2307 else
2308 #endif
2309 {
2310 #ifdef _WIN32
2311 WSABUF buf;
2312 DWORD sent;
2313 buf.buf = &buf;
2314 buf.len = 1;
2315 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2316 #else
2317 write (evpipe [1], &(evpipe [1]), 1);
2318 #endif
2319 }
2320
2321 errno = old_errno;
2322 }
2323 }
2324
2325 /* called whenever the libev signal pipe */
2326 /* got some events (signal, async) */
2327 static void
2328 pipecb (EV_P_ ev_io *iow, int revents)
2329 {
2330 int i;
2331
2332 if (revents & EV_READ)
2333 {
2334 #if EV_USE_EVENTFD
2335 if (evpipe [0] < 0)
2336 {
2337 uint64_t counter;
2338 read (evpipe [1], &counter, sizeof (uint64_t));
2339 }
2340 else
2341 #endif
2342 {
2343 char dummy[4];
2344 #ifdef _WIN32
2345 WSABUF buf;
2346 DWORD recvd;
2347 DWORD flags = 0;
2348 buf.buf = dummy;
2349 buf.len = sizeof (dummy);
2350 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2351 #else
2352 read (evpipe [0], &dummy, sizeof (dummy));
2353 #endif
2354 }
2355 }
2356
2357 pipe_write_skipped = 0;
2358
2359 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2360
2361 #if EV_SIGNAL_ENABLE
2362 if (sig_pending)
2363 {
2364 sig_pending = 0;
2365
2366 ECB_MEMORY_FENCE;
2367
2368 for (i = EV_NSIG - 1; i--; )
2369 if (expect_false (signals [i].pending))
2370 ev_feed_signal_event (EV_A_ i + 1);
2371 }
2372 #endif
2373
2374 #if EV_ASYNC_ENABLE
2375 if (async_pending)
2376 {
2377 async_pending = 0;
2378
2379 ECB_MEMORY_FENCE;
2380
2381 for (i = asynccnt; i--; )
2382 if (asyncs [i]->sent)
2383 {
2384 asyncs [i]->sent = 0;
2385 ECB_MEMORY_FENCE_RELEASE;
2386 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2387 }
2388 }
2389 #endif
2390 }
2391
2392 /*****************************************************************************/
2393
2394 void
2395 ev_feed_signal (int signum) EV_THROW
2396 {
2397 #if EV_MULTIPLICITY
2398 EV_P;
2399 ECB_MEMORY_FENCE_ACQUIRE;
2400 EV_A = signals [signum - 1].loop;
2401
2402 if (!EV_A)
2403 return;
2404 #endif
2405
2406 signals [signum - 1].pending = 1;
2407 evpipe_write (EV_A_ &sig_pending);
2408 }
2409
2410 static void
2411 ev_sighandler (int signum)
2412 {
2413 #ifdef _WIN32
2414 signal (signum, ev_sighandler);
2415 #endif
2416
2417 ev_feed_signal (signum);
2418 }
2419
2420 void noinline
2421 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2422 {
2423 WL w;
2424
2425 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2426 return;
2427
2428 --signum;
2429
2430 #if EV_MULTIPLICITY
2431 /* it is permissible to try to feed a signal to the wrong loop */
2432 /* or, likely more useful, feeding a signal nobody is waiting for */
2433
2434 if (expect_false (signals [signum].loop != EV_A))
2435 return;
2436 #endif
2437
2438 signals [signum].pending = 0;
2439 ECB_MEMORY_FENCE_RELEASE;
2440
2441 for (w = signals [signum].head; w; w = w->next)
2442 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2443 }
2444
2445 #if EV_USE_SIGNALFD
2446 static void
2447 sigfdcb (EV_P_ ev_io *iow, int revents)
2448 {
2449 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2450
2451 for (;;)
2452 {
2453 ssize_t res = read (sigfd, si, sizeof (si));
2454
2455 /* not ISO-C, as res might be -1, but works with SuS */
2456 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2457 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2458
2459 if (res < (ssize_t)sizeof (si))
2460 break;
2461 }
2462 }
2463 #endif
2464
2465 #endif
2466
2467 /*****************************************************************************/
2468
2469 #if EV_CHILD_ENABLE
2470 static WL childs [EV_PID_HASHSIZE];
2471
2472 static ev_signal childev;
2473
2474 #ifndef WIFCONTINUED
2475 # define WIFCONTINUED(status) 0
2476 #endif
2477
2478 /* handle a single child status event */
2479 inline_speed void
2480 child_reap (EV_P_ int chain, int pid, int status)
2481 {
2482 ev_child *w;
2483 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2484
2485 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2486 {
2487 if ((w->pid == pid || !w->pid)
2488 && (!traced || (w->flags & 1)))
2489 {
2490 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2491 w->rpid = pid;
2492 w->rstatus = status;
2493 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2494 }
2495 }
2496 }
2497
2498 #ifndef WCONTINUED
2499 # define WCONTINUED 0
2500 #endif
2501
2502 /* called on sigchld etc., calls waitpid */
2503 static void
2504 childcb (EV_P_ ev_signal *sw, int revents)
2505 {
2506 int pid, status;
2507
2508 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2509 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2510 if (!WCONTINUED
2511 || errno != EINVAL
2512 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2513 return;
2514
2515 /* make sure we are called again until all children have been reaped */
2516 /* we need to do it this way so that the callback gets called before we continue */
2517 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2518
2519 child_reap (EV_A_ pid, pid, status);
2520 if ((EV_PID_HASHSIZE) > 1)
2521 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2522 }
2523
2524 #endif
2525
2526 /*****************************************************************************/
2527
2528 #if EV_USE_IOCP
2529 # include "ev_iocp.c"
2530 #endif
2531 #if EV_USE_PORT
2532 # include "ev_port.c"
2533 #endif
2534 #if EV_USE_KQUEUE
2535 # include "ev_kqueue.c"
2536 #endif
2537 #if EV_USE_EPOLL
2538 # include "ev_epoll.c"
2539 #endif
2540 #if EV_USE_POLL
2541 # include "ev_poll.c"
2542 #endif
2543 #if EV_USE_SELECT
2544 # include "ev_select.c"
2545 #endif
2546
2547 int ecb_cold
2548 ev_version_major (void) EV_THROW
2549 {
2550 return EV_VERSION_MAJOR;
2551 }
2552
2553 int ecb_cold
2554 ev_version_minor (void) EV_THROW
2555 {
2556 return EV_VERSION_MINOR;
2557 }
2558
2559 /* return true if we are running with elevated privileges and should ignore env variables */
2560 int inline_size ecb_cold
2561 enable_secure (void)
2562 {
2563 #ifdef _WIN32
2564 return 0;
2565 #else
2566 return getuid () != geteuid ()
2567 || getgid () != getegid ();
2568 #endif
2569 }
2570
2571 unsigned int ecb_cold
2572 ev_supported_backends (void) EV_THROW
2573 {
2574 unsigned int flags = 0;
2575
2576 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2577 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2578 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2579 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2580 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2581
2582 return flags;
2583 }
2584
2585 unsigned int ecb_cold
2586 ev_recommended_backends (void) EV_THROW
2587 {
2588 unsigned int flags = ev_supported_backends ();
2589
2590 #ifndef __NetBSD__
2591 /* kqueue is borked on everything but netbsd apparently */
2592 /* it usually doesn't work correctly on anything but sockets and pipes */
2593 flags &= ~EVBACKEND_KQUEUE;
2594 #endif
2595 #ifdef __APPLE__
2596 /* only select works correctly on that "unix-certified" platform */
2597 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2598 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2599 #endif
2600 #ifdef __FreeBSD__
2601 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2602 #endif
2603
2604 return flags;
2605 }
2606
2607 unsigned int ecb_cold
2608 ev_embeddable_backends (void) EV_THROW
2609 {
2610 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2611
2612 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2613 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2614 flags &= ~EVBACKEND_EPOLL;
2615
2616 return flags;
2617 }
2618
2619 unsigned int
2620 ev_backend (EV_P) EV_THROW
2621 {
2622 return backend;
2623 }
2624
2625 #if EV_FEATURE_API
2626 unsigned int
2627 ev_iteration (EV_P) EV_THROW
2628 {
2629 return loop_count;
2630 }
2631
2632 unsigned int
2633 ev_depth (EV_P) EV_THROW
2634 {
2635 return loop_depth;
2636 }
2637
2638 void
2639 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2640 {
2641 io_blocktime = interval;
2642 }
2643
2644 void
2645 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2646 {
2647 timeout_blocktime = interval;
2648 }
2649
2650 void
2651 ev_set_userdata (EV_P_ void *data) EV_THROW
2652 {
2653 userdata = data;
2654 }
2655
2656 void *
2657 ev_userdata (EV_P) EV_THROW
2658 {
2659 return userdata;
2660 }
2661
2662 void
2663 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2664 {
2665 invoke_cb = invoke_pending_cb;
2666 }
2667
2668 void
2669 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2670 {
2671 release_cb = release;
2672 acquire_cb = acquire;
2673 }
2674 #endif
2675
2676 /* initialise a loop structure, must be zero-initialised */
2677 static void noinline ecb_cold
2678 loop_init (EV_P_ unsigned int flags) EV_THROW
2679 {
2680 if (!backend)
2681 {
2682 origflags = flags;
2683
2684 #if EV_USE_REALTIME
2685 if (!have_realtime)
2686 {
2687 struct timespec ts;
2688
2689 if (!clock_gettime (CLOCK_REALTIME, &ts))
2690 have_realtime = 1;
2691 }
2692 #endif
2693
2694 #if EV_USE_MONOTONIC
2695 if (!have_monotonic)
2696 {
2697 struct timespec ts;
2698
2699 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2700 have_monotonic = 1;
2701 }
2702 #endif
2703
2704 /* pid check not overridable via env */
2705 #ifndef _WIN32
2706 if (flags & EVFLAG_FORKCHECK)
2707 curpid = getpid ();
2708 #endif
2709
2710 if (!(flags & EVFLAG_NOENV)
2711 && !enable_secure ()
2712 && getenv ("LIBEV_FLAGS"))
2713 flags = atoi (getenv ("LIBEV_FLAGS"));
2714
2715 ev_rt_now = ev_time ();
2716 mn_now = get_clock ();
2717 now_floor = mn_now;
2718 rtmn_diff = ev_rt_now - mn_now;
2719 #if EV_FEATURE_API
2720 invoke_cb = ev_invoke_pending;
2721 #endif
2722
2723 io_blocktime = 0.;
2724 timeout_blocktime = 0.;
2725 backend = 0;
2726 backend_fd = -1;
2727 sig_pending = 0;
2728 #if EV_ASYNC_ENABLE
2729 async_pending = 0;
2730 #endif
2731 pipe_write_skipped = 0;
2732 pipe_write_wanted = 0;
2733 evpipe [0] = -1;
2734 evpipe [1] = -1;
2735 #if EV_USE_INOTIFY
2736 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2737 #endif
2738 #if EV_USE_SIGNALFD
2739 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2740 #endif
2741
2742 if (!(flags & EVBACKEND_MASK))
2743 flags |= ev_recommended_backends ();
2744
2745 #if EV_USE_IOCP
2746 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2747 #endif
2748 #if EV_USE_PORT
2749 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2750 #endif
2751 #if EV_USE_KQUEUE
2752 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2753 #endif
2754 #if EV_USE_EPOLL
2755 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2756 #endif
2757 #if EV_USE_POLL
2758 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2759 #endif
2760 #if EV_USE_SELECT
2761 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2762 #endif
2763
2764 ev_prepare_init (&pending_w, pendingcb);
2765
2766 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2767 ev_init (&pipe_w, pipecb);
2768 ev_set_priority (&pipe_w, EV_MAXPRI);
2769 #endif
2770 }
2771 }
2772
2773 /* free up a loop structure */
2774 void ecb_cold
2775 ev_loop_destroy (EV_P)
2776 {
2777 int i;
2778
2779 #if EV_MULTIPLICITY
2780 /* mimic free (0) */
2781 if (!EV_A)
2782 return;
2783 #endif
2784
2785 #if EV_CLEANUP_ENABLE
2786 /* queue cleanup watchers (and execute them) */
2787 if (expect_false (cleanupcnt))
2788 {
2789 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2790 EV_INVOKE_PENDING;
2791 }
2792 #endif
2793
2794 #if EV_CHILD_ENABLE
2795 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2796 {
2797 ev_ref (EV_A); /* child watcher */
2798 ev_signal_stop (EV_A_ &childev);
2799 }
2800 #endif
2801
2802 if (ev_is_active (&pipe_w))
2803 {
2804 /*ev_ref (EV_A);*/
2805 /*ev_io_stop (EV_A_ &pipe_w);*/
2806
2807 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2808 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2809 }
2810
2811 #if EV_USE_SIGNALFD
2812 if (ev_is_active (&sigfd_w))
2813 close (sigfd);
2814 #endif
2815
2816 #if EV_USE_INOTIFY
2817 if (fs_fd >= 0)
2818 close (fs_fd);
2819 #endif
2820
2821 if (backend_fd >= 0)
2822 close (backend_fd);
2823
2824 #if EV_USE_IOCP
2825 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2826 #endif
2827 #if EV_USE_PORT
2828 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2829 #endif
2830 #if EV_USE_KQUEUE
2831 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2832 #endif
2833 #if EV_USE_EPOLL
2834 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2835 #endif
2836 #if EV_USE_POLL
2837 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2838 #endif
2839 #if EV_USE_SELECT
2840 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2841 #endif
2842
2843 for (i = NUMPRI; i--; )
2844 {
2845 array_free (pending, [i]);
2846 #if EV_IDLE_ENABLE
2847 array_free (idle, [i]);
2848 #endif
2849 }
2850
2851 ev_free (anfds); anfds = 0; anfdmax = 0;
2852
2853 /* have to use the microsoft-never-gets-it-right macro */
2854 array_free (rfeed, EMPTY);
2855 array_free (fdchange, EMPTY);
2856 array_free (timer, EMPTY);
2857 #if EV_PERIODIC_ENABLE
2858 array_free (periodic, EMPTY);
2859 #endif
2860 #if EV_FORK_ENABLE
2861 array_free (fork, EMPTY);
2862 #endif
2863 #if EV_CLEANUP_ENABLE
2864 array_free (cleanup, EMPTY);
2865 #endif
2866 array_free (prepare, EMPTY);
2867 array_free (check, EMPTY);
2868 #if EV_ASYNC_ENABLE
2869 array_free (async, EMPTY);
2870 #endif
2871
2872 backend = 0;
2873
2874 #if EV_MULTIPLICITY
2875 if (ev_is_default_loop (EV_A))
2876 #endif
2877 ev_default_loop_ptr = 0;
2878 #if EV_MULTIPLICITY
2879 else
2880 ev_free (EV_A);
2881 #endif
2882 }
2883
2884 #if EV_USE_INOTIFY
2885 inline_size void infy_fork (EV_P);
2886 #endif
2887
2888 inline_size void
2889 loop_fork (EV_P)
2890 {
2891 #if EV_USE_PORT
2892 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2893 #endif
2894 #if EV_USE_KQUEUE
2895 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2896 #endif
2897 #if EV_USE_EPOLL
2898 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2899 #endif
2900 #if EV_USE_INOTIFY
2901 infy_fork (EV_A);
2902 #endif
2903
2904 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2905 if (ev_is_active (&pipe_w))
2906 {
2907 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2908
2909 ev_ref (EV_A);
2910 ev_io_stop (EV_A_ &pipe_w);
2911
2912 if (evpipe [0] >= 0)
2913 EV_WIN32_CLOSE_FD (evpipe [0]);
2914
2915 evpipe_init (EV_A);
2916 /* iterate over everything, in case we missed something before */
2917 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2918 }
2919 #endif
2920
2921 postfork = 0;
2922 }
2923
2924 #if EV_MULTIPLICITY
2925
2926 struct ev_loop * ecb_cold
2927 ev_loop_new (unsigned int flags) EV_THROW
2928 {
2929 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2930
2931 memset (EV_A, 0, sizeof (struct ev_loop));
2932 loop_init (EV_A_ flags);
2933
2934 if (ev_backend (EV_A))
2935 return EV_A;
2936
2937 ev_free (EV_A);
2938 return 0;
2939 }
2940
2941 #endif /* multiplicity */
2942
2943 #if EV_VERIFY
2944 static void noinline ecb_cold
2945 verify_watcher (EV_P_ W w)
2946 {
2947 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2948
2949 if (w->pending)
2950 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2951 }
2952
2953 static void noinline ecb_cold
2954 verify_heap (EV_P_ ANHE *heap, int N)
2955 {
2956 int i;
2957
2958 for (i = HEAP0; i < N + HEAP0; ++i)
2959 {
2960 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2961 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2962 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2963
2964 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2965 }
2966 }
2967
2968 static void noinline ecb_cold
2969 array_verify (EV_P_ W *ws, int cnt)
2970 {
2971 while (cnt--)
2972 {
2973 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2974 verify_watcher (EV_A_ ws [cnt]);
2975 }
2976 }
2977 #endif
2978
2979 #if EV_FEATURE_API
2980 void ecb_cold
2981 ev_verify (EV_P) EV_THROW
2982 {
2983 #if EV_VERIFY
2984 int i;
2985 WL w, w2;
2986
2987 assert (activecnt >= -1);
2988
2989 assert (fdchangemax >= fdchangecnt);
2990 for (i = 0; i < fdchangecnt; ++i)
2991 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2992
2993 assert (anfdmax >= 0);
2994 for (i = 0; i < anfdmax; ++i)
2995 {
2996 int j = 0;
2997
2998 for (w = w2 = anfds [i].head; w; w = w->next)
2999 {
3000 verify_watcher (EV_A_ (W)w);
3001
3002 if (j++ & 1)
3003 {
3004 assert (("libev: io watcher list contains a loop", w != w2));
3005 w2 = w2->next;
3006 }
3007
3008 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3009 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3010 }
3011 }
3012
3013 assert (timermax >= timercnt);
3014 verify_heap (EV_A_ timers, timercnt);
3015
3016 #if EV_PERIODIC_ENABLE
3017 assert (periodicmax >= periodiccnt);
3018 verify_heap (EV_A_ periodics, periodiccnt);
3019 #endif
3020
3021 for (i = NUMPRI; i--; )
3022 {
3023 assert (pendingmax [i] >= pendingcnt [i]);
3024 #if EV_IDLE_ENABLE
3025 assert (idleall >= 0);
3026 assert (idlemax [i] >= idlecnt [i]);
3027 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3028 #endif
3029 }
3030
3031 #if EV_FORK_ENABLE
3032 assert (forkmax >= forkcnt);
3033 array_verify (EV_A_ (W *)forks, forkcnt);
3034 #endif
3035
3036 #if EV_CLEANUP_ENABLE
3037 assert (cleanupmax >= cleanupcnt);
3038 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3039 #endif
3040
3041 #if EV_ASYNC_ENABLE
3042 assert (asyncmax >= asynccnt);
3043 array_verify (EV_A_ (W *)asyncs, asynccnt);
3044 #endif
3045
3046 #if EV_PREPARE_ENABLE
3047 assert (preparemax >= preparecnt);
3048 array_verify (EV_A_ (W *)prepares, preparecnt);
3049 #endif
3050
3051 #if EV_CHECK_ENABLE
3052 assert (checkmax >= checkcnt);
3053 array_verify (EV_A_ (W *)checks, checkcnt);
3054 #endif
3055
3056 # if 0
3057 #if EV_CHILD_ENABLE
3058 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3059 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3060 #endif
3061 # endif
3062 #endif
3063 }
3064 #endif
3065
3066 #if EV_MULTIPLICITY
3067 struct ev_loop * ecb_cold
3068 #else
3069 int
3070 #endif
3071 ev_default_loop (unsigned int flags) EV_THROW
3072 {
3073 if (!ev_default_loop_ptr)
3074 {
3075 #if EV_MULTIPLICITY
3076 EV_P = ev_default_loop_ptr = &default_loop_struct;
3077 #else
3078 ev_default_loop_ptr = 1;
3079 #endif
3080
3081 loop_init (EV_A_ flags);
3082
3083 if (ev_backend (EV_A))
3084 {
3085 #if EV_CHILD_ENABLE
3086 ev_signal_init (&childev, childcb, SIGCHLD);
3087 ev_set_priority (&childev, EV_MAXPRI);
3088 ev_signal_start (EV_A_ &childev);
3089 ev_unref (EV_A); /* child watcher should not keep loop alive */
3090 #endif
3091 }
3092 else
3093 ev_default_loop_ptr = 0;
3094 }
3095
3096 return ev_default_loop_ptr;
3097 }
3098
3099 void
3100 ev_loop_fork (EV_P) EV_THROW
3101 {
3102 postfork = 1;
3103 }
3104
3105 /*****************************************************************************/
3106
3107 void
3108 ev_invoke (EV_P_ void *w, int revents)
3109 {
3110 EV_CB_INVOKE ((W)w, revents);
3111 }
3112
3113 unsigned int
3114 ev_pending_count (EV_P) EV_THROW
3115 {
3116 int pri;
3117 unsigned int count = 0;
3118
3119 for (pri = NUMPRI; pri--; )
3120 count += pendingcnt [pri];
3121
3122 return count;
3123 }
3124
3125 void noinline
3126 ev_invoke_pending (EV_P)
3127 {
3128 pendingpri = NUMPRI;
3129
3130 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3131 {
3132 --pendingpri;
3133
3134 while (pendingcnt [pendingpri])
3135 {
3136 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3137
3138 p->w->pending = 0;
3139 EV_CB_INVOKE (p->w, p->events);
3140 EV_FREQUENT_CHECK;
3141 }
3142 }
3143 }
3144
3145 #if EV_IDLE_ENABLE
3146 /* make idle watchers pending. this handles the "call-idle */
3147 /* only when higher priorities are idle" logic */
3148 inline_size void
3149 idle_reify (EV_P)
3150 {
3151 if (expect_false (idleall))
3152 {
3153 int pri;
3154
3155 for (pri = NUMPRI; pri--; )
3156 {
3157 if (pendingcnt [pri])
3158 break;
3159
3160 if (idlecnt [pri])
3161 {
3162 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3163 break;
3164 }
3165 }
3166 }
3167 }
3168 #endif
3169
3170 /* make timers pending */
3171 inline_size void
3172 timers_reify (EV_P)
3173 {
3174 EV_FREQUENT_CHECK;
3175
3176 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3177 {
3178 do
3179 {
3180 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3181
3182 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3183
3184 /* first reschedule or stop timer */
3185 if (w->repeat)
3186 {
3187 ev_at (w) += w->repeat;
3188 if (ev_at (w) < mn_now)
3189 ev_at (w) = mn_now;
3190
3191 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3192
3193 ANHE_at_cache (timers [HEAP0]);
3194 downheap (timers, timercnt, HEAP0);
3195 }
3196 else
3197 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3198
3199 EV_FREQUENT_CHECK;
3200 feed_reverse (EV_A_ (W)w);
3201 }
3202 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3203
3204 feed_reverse_done (EV_A_ EV_TIMER);
3205 }
3206 }
3207
3208 #if EV_PERIODIC_ENABLE
3209
3210 static void noinline
3211 periodic_recalc (EV_P_ ev_periodic *w)
3212 {
3213 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3214 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3215
3216 /* the above almost always errs on the low side */
3217 while (at <= ev_rt_now)
3218 {
3219 ev_tstamp nat = at + w->interval;
3220
3221 /* when resolution fails us, we use ev_rt_now */
3222 if (expect_false (nat == at))
3223 {
3224 at = ev_rt_now;
3225 break;
3226 }
3227
3228 at = nat;
3229 }
3230
3231 ev_at (w) = at;
3232 }
3233
3234 /* make periodics pending */
3235 inline_size void
3236 periodics_reify (EV_P)
3237 {
3238 EV_FREQUENT_CHECK;
3239
3240 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3241 {
3242 do
3243 {
3244 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3245
3246 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3247
3248 /* first reschedule or stop timer */
3249 if (w->reschedule_cb)
3250 {
3251 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3252
3253 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3254
3255 ANHE_at_cache (periodics [HEAP0]);
3256 downheap (periodics, periodiccnt, HEAP0);
3257 }
3258 else if (w->interval)
3259 {
3260 periodic_recalc (EV_A_ w);
3261 ANHE_at_cache (periodics [HEAP0]);
3262 downheap (periodics, periodiccnt, HEAP0);
3263 }
3264 else
3265 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3266
3267 EV_FREQUENT_CHECK;
3268 feed_reverse (EV_A_ (W)w);
3269 }
3270 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3271
3272 feed_reverse_done (EV_A_ EV_PERIODIC);
3273 }
3274 }
3275
3276 /* simply recalculate all periodics */
3277 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3278 static void noinline ecb_cold
3279 periodics_reschedule (EV_P)
3280 {
3281 int i;
3282
3283 /* adjust periodics after time jump */
3284 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3285 {
3286 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3287
3288 if (w->reschedule_cb)
3289 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3290 else if (w->interval)
3291 periodic_recalc (EV_A_ w);
3292
3293 ANHE_at_cache (periodics [i]);
3294 }
3295
3296 reheap (periodics, periodiccnt);
3297 }
3298 #endif
3299
3300 /* adjust all timers by a given offset */
3301 static void noinline ecb_cold
3302 timers_reschedule (EV_P_ ev_tstamp adjust)
3303 {
3304 int i;
3305
3306 for (i = 0; i < timercnt; ++i)
3307 {
3308 ANHE *he = timers + i + HEAP0;
3309 ANHE_w (*he)->at += adjust;
3310 ANHE_at_cache (*he);
3311 }
3312 }
3313
3314 /* fetch new monotonic and realtime times from the kernel */
3315 /* also detect if there was a timejump, and act accordingly */
3316 inline_speed void
3317 time_update (EV_P_ ev_tstamp max_block)
3318 {
3319 #if EV_USE_MONOTONIC
3320 if (expect_true (have_monotonic))
3321 {
3322 int i;
3323 ev_tstamp odiff = rtmn_diff;
3324
3325 mn_now = get_clock ();
3326
3327 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3328 /* interpolate in the meantime */
3329 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3330 {
3331 ev_rt_now = rtmn_diff + mn_now;
3332 return;
3333 }
3334
3335 now_floor = mn_now;
3336 ev_rt_now = ev_time ();
3337
3338 /* loop a few times, before making important decisions.
3339 * on the choice of "4": one iteration isn't enough,
3340 * in case we get preempted during the calls to
3341 * ev_time and get_clock. a second call is almost guaranteed
3342 * to succeed in that case, though. and looping a few more times
3343 * doesn't hurt either as we only do this on time-jumps or
3344 * in the unlikely event of having been preempted here.
3345 */
3346 for (i = 4; --i; )
3347 {
3348 ev_tstamp diff;
3349 rtmn_diff = ev_rt_now - mn_now;
3350
3351 diff = odiff - rtmn_diff;
3352
3353 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3354 return; /* all is well */
3355
3356 ev_rt_now = ev_time ();
3357 mn_now = get_clock ();
3358 now_floor = mn_now;
3359 }
3360
3361 /* no timer adjustment, as the monotonic clock doesn't jump */
3362 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3363 # if EV_PERIODIC_ENABLE
3364 periodics_reschedule (EV_A);
3365 # endif
3366 }
3367 else
3368 #endif
3369 {
3370 ev_rt_now = ev_time ();
3371
3372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3373 {
3374 /* adjust timers. this is easy, as the offset is the same for all of them */
3375 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3376 #if EV_PERIODIC_ENABLE
3377 periodics_reschedule (EV_A);
3378 #endif
3379 }
3380
3381 mn_now = ev_rt_now;
3382 }
3383 }
3384
3385 int
3386 ev_run (EV_P_ int flags)
3387 {
3388 #if EV_FEATURE_API
3389 ++loop_depth;
3390 #endif
3391
3392 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3393
3394 loop_done = EVBREAK_CANCEL;
3395
3396 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3397
3398 do
3399 {
3400 #if EV_VERIFY >= 2
3401 ev_verify (EV_A);
3402 #endif
3403
3404 #ifndef _WIN32
3405 if (expect_false (curpid)) /* penalise the forking check even more */
3406 if (expect_false (getpid () != curpid))
3407 {
3408 curpid = getpid ();
3409 postfork = 1;
3410 }
3411 #endif
3412
3413 #if EV_FORK_ENABLE
3414 /* we might have forked, so queue fork handlers */
3415 if (expect_false (postfork))
3416 if (forkcnt)
3417 {
3418 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3419 EV_INVOKE_PENDING;
3420 }
3421 #endif
3422
3423 #if EV_PREPARE_ENABLE
3424 /* queue prepare watchers (and execute them) */
3425 if (expect_false (preparecnt))
3426 {
3427 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3428 EV_INVOKE_PENDING;
3429 }
3430 #endif
3431
3432 if (expect_false (loop_done))
3433 break;
3434
3435 /* we might have forked, so reify kernel state if necessary */
3436 if (expect_false (postfork))
3437 loop_fork (EV_A);
3438
3439 /* update fd-related kernel structures */
3440 fd_reify (EV_A);
3441
3442 /* calculate blocking time */
3443 {
3444 ev_tstamp waittime = 0.;
3445 ev_tstamp sleeptime = 0.;
3446
3447 /* remember old timestamp for io_blocktime calculation */
3448 ev_tstamp prev_mn_now = mn_now;
3449
3450 /* update time to cancel out callback processing overhead */
3451 time_update (EV_A_ 1e100);
3452
3453 /* from now on, we want a pipe-wake-up */
3454 pipe_write_wanted = 1;
3455
3456 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3457
3458 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3459 {
3460 waittime = MAX_BLOCKTIME;
3461
3462 if (timercnt)
3463 {
3464 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3465 if (waittime > to) waittime = to;
3466 }
3467
3468 #if EV_PERIODIC_ENABLE
3469 if (periodiccnt)
3470 {
3471 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3472 if (waittime > to) waittime = to;
3473 }
3474 #endif
3475
3476 /* don't let timeouts decrease the waittime below timeout_blocktime */
3477 if (expect_false (waittime < timeout_blocktime))
3478 waittime = timeout_blocktime;
3479
3480 /* at this point, we NEED to wait, so we have to ensure */
3481 /* to pass a minimum nonzero value to the backend */
3482 if (expect_false (waittime < backend_mintime))
3483 waittime = backend_mintime;
3484
3485 /* extra check because io_blocktime is commonly 0 */
3486 if (expect_false (io_blocktime))
3487 {
3488 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3489
3490 if (sleeptime > waittime - backend_mintime)
3491 sleeptime = waittime - backend_mintime;
3492
3493 if (expect_true (sleeptime > 0.))
3494 {
3495 ev_sleep (sleeptime);
3496 waittime -= sleeptime;
3497 }
3498 }
3499 }
3500
3501 #if EV_FEATURE_API
3502 ++loop_count;
3503 #endif
3504 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3505 backend_poll (EV_A_ waittime);
3506 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3507
3508 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3509
3510 ECB_MEMORY_FENCE_ACQUIRE;
3511 if (pipe_write_skipped)
3512 {
3513 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3514 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3515 }
3516
3517
3518 /* update ev_rt_now, do magic */
3519 time_update (EV_A_ waittime + sleeptime);
3520 }
3521
3522 /* queue pending timers and reschedule them */
3523 timers_reify (EV_A); /* relative timers called last */
3524 #if EV_PERIODIC_ENABLE
3525 periodics_reify (EV_A); /* absolute timers called first */
3526 #endif
3527
3528 #if EV_IDLE_ENABLE
3529 /* queue idle watchers unless other events are pending */
3530 idle_reify (EV_A);
3531 #endif
3532
3533 #if EV_CHECK_ENABLE
3534 /* queue check watchers, to be executed first */
3535 if (expect_false (checkcnt))
3536 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3537 #endif
3538
3539 EV_INVOKE_PENDING;
3540 }
3541 while (expect_true (
3542 activecnt
3543 && !loop_done
3544 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3545 ));
3546
3547 if (loop_done == EVBREAK_ONE)
3548 loop_done = EVBREAK_CANCEL;
3549
3550 #if EV_FEATURE_API
3551 --loop_depth;
3552 #endif
3553
3554 return activecnt;
3555 }
3556
3557 void
3558 ev_break (EV_P_ int how) EV_THROW
3559 {
3560 loop_done = how;
3561 }
3562
3563 void
3564 ev_ref (EV_P) EV_THROW
3565 {
3566 ++activecnt;
3567 }
3568
3569 void
3570 ev_unref (EV_P) EV_THROW
3571 {
3572 --activecnt;
3573 }
3574
3575 void
3576 ev_now_update (EV_P) EV_THROW
3577 {
3578 time_update (EV_A_ 1e100);
3579 }
3580
3581 void
3582 ev_suspend (EV_P) EV_THROW
3583 {
3584 ev_now_update (EV_A);
3585 }
3586
3587 void
3588 ev_resume (EV_P) EV_THROW
3589 {
3590 ev_tstamp mn_prev = mn_now;
3591
3592 ev_now_update (EV_A);
3593 timers_reschedule (EV_A_ mn_now - mn_prev);
3594 #if EV_PERIODIC_ENABLE
3595 /* TODO: really do this? */
3596 periodics_reschedule (EV_A);
3597 #endif
3598 }
3599
3600 /*****************************************************************************/
3601 /* singly-linked list management, used when the expected list length is short */
3602
3603 inline_size void
3604 wlist_add (WL *head, WL elem)
3605 {
3606 elem->next = *head;
3607 *head = elem;
3608 }
3609
3610 inline_size void
3611 wlist_del (WL *head, WL elem)
3612 {
3613 while (*head)
3614 {
3615 if (expect_true (*head == elem))
3616 {
3617 *head = elem->next;
3618 break;
3619 }
3620
3621 head = &(*head)->next;
3622 }
3623 }
3624
3625 /* internal, faster, version of ev_clear_pending */
3626 inline_speed void
3627 clear_pending (EV_P_ W w)
3628 {
3629 if (w->pending)
3630 {
3631 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3632 w->pending = 0;
3633 }
3634 }
3635
3636 int
3637 ev_clear_pending (EV_P_ void *w) EV_THROW
3638 {
3639 W w_ = (W)w;
3640 int pending = w_->pending;
3641
3642 if (expect_true (pending))
3643 {
3644 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3645 p->w = (W)&pending_w;
3646 w_->pending = 0;
3647 return p->events;
3648 }
3649 else
3650 return 0;
3651 }
3652
3653 inline_size void
3654 pri_adjust (EV_P_ W w)
3655 {
3656 int pri = ev_priority (w);
3657 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3658 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3659 ev_set_priority (w, pri);
3660 }
3661
3662 inline_speed void
3663 ev_start (EV_P_ W w, int active)
3664 {
3665 pri_adjust (EV_A_ w);
3666 w->active = active;
3667 ev_ref (EV_A);
3668 }
3669
3670 inline_size void
3671 ev_stop (EV_P_ W w)
3672 {
3673 ev_unref (EV_A);
3674 w->active = 0;
3675 }
3676
3677 /*****************************************************************************/
3678
3679 void noinline
3680 ev_io_start (EV_P_ ev_io *w) EV_THROW
3681 {
3682 int fd = w->fd;
3683
3684 if (expect_false (ev_is_active (w)))
3685 return;
3686
3687 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3688 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3689
3690 EV_FREQUENT_CHECK;
3691
3692 ev_start (EV_A_ (W)w, 1);
3693 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3694 wlist_add (&anfds[fd].head, (WL)w);
3695
3696 /* common bug, apparently */
3697 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3698
3699 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3700 w->events &= ~EV__IOFDSET;
3701
3702 EV_FREQUENT_CHECK;
3703 }
3704
3705 void noinline
3706 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3707 {
3708 clear_pending (EV_A_ (W)w);
3709 if (expect_false (!ev_is_active (w)))
3710 return;
3711
3712 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3713
3714 EV_FREQUENT_CHECK;
3715
3716 wlist_del (&anfds[w->fd].head, (WL)w);
3717 ev_stop (EV_A_ (W)w);
3718
3719 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3720
3721 EV_FREQUENT_CHECK;
3722 }
3723
3724 void noinline
3725 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3726 {
3727 if (expect_false (ev_is_active (w)))
3728 return;
3729
3730 ev_at (w) += mn_now;
3731
3732 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3733
3734 EV_FREQUENT_CHECK;
3735
3736 ++timercnt;
3737 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3738 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3739 ANHE_w (timers [ev_active (w)]) = (WT)w;
3740 ANHE_at_cache (timers [ev_active (w)]);
3741 upheap (timers, ev_active (w));
3742
3743 EV_FREQUENT_CHECK;
3744
3745 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3746 }
3747
3748 void noinline
3749 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3750 {
3751 clear_pending (EV_A_ (W)w);
3752 if (expect_false (!ev_is_active (w)))
3753 return;
3754
3755 EV_FREQUENT_CHECK;
3756
3757 {
3758 int active = ev_active (w);
3759
3760 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3761
3762 --timercnt;
3763
3764 if (expect_true (active < timercnt + HEAP0))
3765 {
3766 timers [active] = timers [timercnt + HEAP0];
3767 adjustheap (timers, timercnt, active);
3768 }
3769 }
3770
3771 ev_at (w) -= mn_now;
3772
3773 ev_stop (EV_A_ (W)w);
3774
3775 EV_FREQUENT_CHECK;
3776 }
3777
3778 void noinline
3779 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3780 {
3781 EV_FREQUENT_CHECK;
3782
3783 clear_pending (EV_A_ (W)w);
3784
3785 if (ev_is_active (w))
3786 {
3787 if (w->repeat)
3788 {
3789 ev_at (w) = mn_now + w->repeat;
3790 ANHE_at_cache (timers [ev_active (w)]);
3791 adjustheap (timers, timercnt, ev_active (w));
3792 }
3793 else
3794 ev_timer_stop (EV_A_ w);
3795 }
3796 else if (w->repeat)
3797 {
3798 ev_at (w) = w->repeat;
3799 ev_timer_start (EV_A_ w);
3800 }
3801
3802 EV_FREQUENT_CHECK;
3803 }
3804
3805 ev_tstamp
3806 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3807 {
3808 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3809 }
3810
3811 #if EV_PERIODIC_ENABLE
3812 void noinline
3813 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3814 {
3815 if (expect_false (ev_is_active (w)))
3816 return;
3817
3818 if (w->reschedule_cb)
3819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3820 else if (w->interval)
3821 {
3822 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3823 periodic_recalc (EV_A_ w);
3824 }
3825 else
3826 ev_at (w) = w->offset;
3827
3828 EV_FREQUENT_CHECK;
3829
3830 ++periodiccnt;
3831 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3832 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3833 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3834 ANHE_at_cache (periodics [ev_active (w)]);
3835 upheap (periodics, ev_active (w));
3836
3837 EV_FREQUENT_CHECK;
3838
3839 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3840 }
3841
3842 void noinline
3843 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3844 {
3845 clear_pending (EV_A_ (W)w);
3846 if (expect_false (!ev_is_active (w)))
3847 return;
3848
3849 EV_FREQUENT_CHECK;
3850
3851 {
3852 int active = ev_active (w);
3853
3854 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3855
3856 --periodiccnt;
3857
3858 if (expect_true (active < periodiccnt + HEAP0))
3859 {
3860 periodics [active] = periodics [periodiccnt + HEAP0];
3861 adjustheap (periodics, periodiccnt, active);
3862 }
3863 }
3864
3865 ev_stop (EV_A_ (W)w);
3866
3867 EV_FREQUENT_CHECK;
3868 }
3869
3870 void noinline
3871 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3872 {
3873 /* TODO: use adjustheap and recalculation */
3874 ev_periodic_stop (EV_A_ w);
3875 ev_periodic_start (EV_A_ w);
3876 }
3877 #endif
3878
3879 #ifndef SA_RESTART
3880 # define SA_RESTART 0
3881 #endif
3882
3883 #if EV_SIGNAL_ENABLE
3884
3885 void noinline
3886 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3887 {
3888 if (expect_false (ev_is_active (w)))
3889 return;
3890
3891 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3892
3893 #if EV_MULTIPLICITY
3894 assert (("libev: a signal must not be attached to two different loops",
3895 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3896
3897 signals [w->signum - 1].loop = EV_A;
3898 ECB_MEMORY_FENCE_RELEASE;
3899 #endif
3900
3901 EV_FREQUENT_CHECK;
3902
3903 #if EV_USE_SIGNALFD
3904 if (sigfd == -2)
3905 {
3906 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3907 if (sigfd < 0 && errno == EINVAL)
3908 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3909
3910 if (sigfd >= 0)
3911 {
3912 fd_intern (sigfd); /* doing it twice will not hurt */
3913
3914 sigemptyset (&sigfd_set);
3915
3916 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3917 ev_set_priority (&sigfd_w, EV_MAXPRI);
3918 ev_io_start (EV_A_ &sigfd_w);
3919 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3920 }
3921 }
3922
3923 if (sigfd >= 0)
3924 {
3925 /* TODO: check .head */
3926 sigaddset (&sigfd_set, w->signum);
3927 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3928
3929 signalfd (sigfd, &sigfd_set, 0);
3930 }
3931 #endif
3932
3933 ev_start (EV_A_ (W)w, 1);
3934 wlist_add (&signals [w->signum - 1].head, (WL)w);
3935
3936 if (!((WL)w)->next)
3937 # if EV_USE_SIGNALFD
3938 if (sigfd < 0) /*TODO*/
3939 # endif
3940 {
3941 # ifdef _WIN32
3942 evpipe_init (EV_A);
3943
3944 signal (w->signum, ev_sighandler);
3945 # else
3946 struct sigaction sa;
3947
3948 evpipe_init (EV_A);
3949
3950 sa.sa_handler = ev_sighandler;
3951 sigfillset (&sa.sa_mask);
3952 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3953 sigaction (w->signum, &sa, 0);
3954
3955 if (origflags & EVFLAG_NOSIGMASK)
3956 {
3957 sigemptyset (&sa.sa_mask);
3958 sigaddset (&sa.sa_mask, w->signum);
3959 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3960 }
3961 #endif
3962 }
3963
3964 EV_FREQUENT_CHECK;
3965 }
3966
3967 void noinline
3968 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3969 {
3970 clear_pending (EV_A_ (W)w);
3971 if (expect_false (!ev_is_active (w)))
3972 return;
3973
3974 EV_FREQUENT_CHECK;
3975
3976 wlist_del (&signals [w->signum - 1].head, (WL)w);
3977 ev_stop (EV_A_ (W)w);
3978
3979 if (!signals [w->signum - 1].head)
3980 {
3981 #if EV_MULTIPLICITY
3982 signals [w->signum - 1].loop = 0; /* unattach from signal */
3983 #endif
3984 #if EV_USE_SIGNALFD
3985 if (sigfd >= 0)
3986 {
3987 sigset_t ss;
3988
3989 sigemptyset (&ss);
3990 sigaddset (&ss, w->signum);
3991 sigdelset (&sigfd_set, w->signum);
3992
3993 signalfd (sigfd, &sigfd_set, 0);
3994 sigprocmask (SIG_UNBLOCK, &ss, 0);
3995 }
3996 else
3997 #endif
3998 signal (w->signum, SIG_DFL);
3999 }
4000
4001 EV_FREQUENT_CHECK;
4002 }
4003
4004 #endif
4005
4006 #if EV_CHILD_ENABLE
4007
4008 void
4009 ev_child_start (EV_P_ ev_child *w) EV_THROW
4010 {
4011 #if EV_MULTIPLICITY
4012 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4013 #endif
4014 if (expect_false (ev_is_active (w)))
4015 return;
4016
4017 EV_FREQUENT_CHECK;
4018
4019 ev_start (EV_A_ (W)w, 1);
4020 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4021
4022 EV_FREQUENT_CHECK;
4023 }
4024
4025 void
4026 ev_child_stop (EV_P_ ev_child *w) EV_THROW
4027 {
4028 clear_pending (EV_A_ (W)w);
4029 if (expect_false (!ev_is_active (w)))
4030 return;
4031
4032 EV_FREQUENT_CHECK;
4033
4034 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4035 ev_stop (EV_A_ (W)w);
4036
4037 EV_FREQUENT_CHECK;
4038 }
4039
4040 #endif
4041
4042 #if EV_STAT_ENABLE
4043
4044 # ifdef _WIN32
4045 # undef lstat
4046 # define lstat(a,b) _stati64 (a,b)
4047 # endif
4048
4049 #define DEF_STAT_INTERVAL 5.0074891
4050 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4051 #define MIN_STAT_INTERVAL 0.1074891
4052
4053 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4054
4055 #if EV_USE_INOTIFY
4056
4057 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4058 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4059
4060 static void noinline
4061 infy_add (EV_P_ ev_stat *w)
4062 {
4063 w->wd = inotify_add_watch (fs_fd, w->path,
4064 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4065 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4066 | IN_DONT_FOLLOW | IN_MASK_ADD);
4067
4068 if (w->wd >= 0)
4069 {
4070 struct statfs sfs;
4071
4072 /* now local changes will be tracked by inotify, but remote changes won't */
4073 /* unless the filesystem is known to be local, we therefore still poll */
4074 /* also do poll on <2.6.25, but with normal frequency */
4075
4076 if (!fs_2625)
4077 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4078 else if (!statfs (w->path, &sfs)
4079 && (sfs.f_type == 0x1373 /* devfs */
4080 || sfs.f_type == 0x4006 /* fat */
4081 || sfs.f_type == 0x4d44 /* msdos */
4082 || sfs.f_type == 0xEF53 /* ext2/3 */
4083 || sfs.f_type == 0x72b6 /* jffs2 */
4084 || sfs.f_type == 0x858458f6 /* ramfs */
4085 || sfs.f_type == 0x5346544e /* ntfs */
4086 || sfs.f_type == 0x3153464a /* jfs */
4087 || sfs.f_type == 0x9123683e /* btrfs */
4088 || sfs.f_type == 0x52654973 /* reiser3 */
4089 || sfs.f_type == 0x01021994 /* tmpfs */
4090 || sfs.f_type == 0x58465342 /* xfs */))
4091 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4092 else
4093 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4094 }
4095 else
4096 {
4097 /* can't use inotify, continue to stat */
4098 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4099
4100 /* if path is not there, monitor some parent directory for speedup hints */
4101 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4102 /* but an efficiency issue only */
4103 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4104 {
4105 char path [4096];
4106 strcpy (path, w->path);
4107
4108 do
4109 {
4110 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4111 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4112
4113 char *pend = strrchr (path, '/');
4114
4115 if (!pend || pend == path)
4116 break;
4117
4118 *pend = 0;
4119 w->wd = inotify_add_watch (fs_fd, path, mask);
4120 }
4121 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4122 }
4123 }
4124
4125 if (w->wd >= 0)
4126 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4127
4128 /* now re-arm timer, if required */
4129 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4130 ev_timer_again (EV_A_ &w->timer);
4131 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4132 }
4133
4134 static void noinline
4135 infy_del (EV_P_ ev_stat *w)
4136 {
4137 int slot;
4138 int wd = w->wd;
4139
4140 if (wd < 0)
4141 return;
4142
4143 w->wd = -2;
4144 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4145 wlist_del (&fs_hash [slot].head, (WL)w);
4146
4147 /* remove this watcher, if others are watching it, they will rearm */
4148 inotify_rm_watch (fs_fd, wd);
4149 }
4150
4151 static void noinline
4152 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4153 {
4154 if (slot < 0)
4155 /* overflow, need to check for all hash slots */
4156 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4157 infy_wd (EV_A_ slot, wd, ev);
4158 else
4159 {
4160 WL w_;
4161
4162 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4163 {
4164 ev_stat *w = (ev_stat *)w_;
4165 w_ = w_->next; /* lets us remove this watcher and all before it */
4166
4167 if (w->wd == wd || wd == -1)
4168 {
4169 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4170 {
4171 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4172 w->wd = -1;
4173 infy_add (EV_A_ w); /* re-add, no matter what */
4174 }
4175
4176 stat_timer_cb (EV_A_ &w->timer, 0);
4177 }
4178 }
4179 }
4180 }
4181
4182 static void
4183 infy_cb (EV_P_ ev_io *w, int revents)
4184 {
4185 char buf [EV_INOTIFY_BUFSIZE];
4186 int ofs;
4187 int len = read (fs_fd, buf, sizeof (buf));
4188
4189 for (ofs = 0; ofs < len; )
4190 {
4191 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4192 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4193 ofs += sizeof (struct inotify_event) + ev->len;
4194 }
4195 }
4196
4197 inline_size void ecb_cold
4198 ev_check_2625 (EV_P)
4199 {
4200 /* kernels < 2.6.25 are borked
4201 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4202 */
4203 if (ev_linux_version () < 0x020619)
4204 return;
4205
4206 fs_2625 = 1;
4207 }
4208
4209 inline_size int
4210 infy_newfd (void)
4211 {
4212 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4213 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4214 if (fd >= 0)
4215 return fd;
4216 #endif
4217 return inotify_init ();
4218 }
4219
4220 inline_size void
4221 infy_init (EV_P)
4222 {
4223 if (fs_fd != -2)
4224 return;
4225
4226 fs_fd = -1;
4227
4228 ev_check_2625 (EV_A);
4229
4230 fs_fd = infy_newfd ();
4231
4232 if (fs_fd >= 0)
4233 {
4234 fd_intern (fs_fd);
4235 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4236 ev_set_priority (&fs_w, EV_MAXPRI);
4237 ev_io_start (EV_A_ &fs_w);
4238 ev_unref (EV_A);
4239 }
4240 }
4241
4242 inline_size void
4243 infy_fork (EV_P)
4244 {
4245 int slot;
4246
4247 if (fs_fd < 0)
4248 return;
4249
4250 ev_ref (EV_A);
4251 ev_io_stop (EV_A_ &fs_w);
4252 close (fs_fd);
4253 fs_fd = infy_newfd ();
4254
4255 if (fs_fd >= 0)
4256 {
4257 fd_intern (fs_fd);
4258 ev_io_set (&fs_w, fs_fd, EV_READ);
4259 ev_io_start (EV_A_ &fs_w);
4260 ev_unref (EV_A);
4261 }
4262
4263 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4264 {
4265 WL w_ = fs_hash [slot].head;
4266 fs_hash [slot].head = 0;
4267
4268 while (w_)
4269 {
4270 ev_stat *w = (ev_stat *)w_;
4271 w_ = w_->next; /* lets us add this watcher */
4272
4273 w->wd = -1;
4274
4275 if (fs_fd >= 0)
4276 infy_add (EV_A_ w); /* re-add, no matter what */
4277 else
4278 {
4279 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4280 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4281 ev_timer_again (EV_A_ &w->timer);
4282 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4283 }
4284 }
4285 }
4286 }
4287
4288 #endif
4289
4290 #ifdef _WIN32
4291 # define EV_LSTAT(p,b) _stati64 (p, b)
4292 #else
4293 # define EV_LSTAT(p,b) lstat (p, b)
4294 #endif
4295
4296 void
4297 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4298 {
4299 if (lstat (w->path, &w->attr) < 0)
4300 w->attr.st_nlink = 0;
4301 else if (!w->attr.st_nlink)
4302 w->attr.st_nlink = 1;
4303 }
4304
4305 static void noinline
4306 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4307 {
4308 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4309
4310 ev_statdata prev = w->attr;
4311 ev_stat_stat (EV_A_ w);
4312
4313 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4314 if (
4315 prev.st_dev != w->attr.st_dev
4316 || prev.st_ino != w->attr.st_ino
4317 || prev.st_mode != w->attr.st_mode
4318 || prev.st_nlink != w->attr.st_nlink
4319 || prev.st_uid != w->attr.st_uid
4320 || prev.st_gid != w->attr.st_gid
4321 || prev.st_rdev != w->attr.st_rdev
4322 || prev.st_size != w->attr.st_size
4323 || prev.st_atime != w->attr.st_atime
4324 || prev.st_mtime != w->attr.st_mtime
4325 || prev.st_ctime != w->attr.st_ctime
4326 ) {
4327 /* we only update w->prev on actual differences */
4328 /* in case we test more often than invoke the callback, */
4329 /* to ensure that prev is always different to attr */
4330 w->prev = prev;
4331
4332 #if EV_USE_INOTIFY
4333 if (fs_fd >= 0)
4334 {
4335 infy_del (EV_A_ w);
4336 infy_add (EV_A_ w);
4337 ev_stat_stat (EV_A_ w); /* avoid race... */
4338 }
4339 #endif
4340
4341 ev_feed_event (EV_A_ w, EV_STAT);
4342 }
4343 }
4344
4345 void
4346 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4347 {
4348 if (expect_false (ev_is_active (w)))
4349 return;
4350
4351 ev_stat_stat (EV_A_ w);
4352
4353 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4354 w->interval = MIN_STAT_INTERVAL;
4355
4356 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4357 ev_set_priority (&w->timer, ev_priority (w));
4358
4359 #if EV_USE_INOTIFY
4360 infy_init (EV_A);
4361
4362 if (fs_fd >= 0)
4363 infy_add (EV_A_ w);
4364 else
4365 #endif
4366 {
4367 ev_timer_again (EV_A_ &w->timer);
4368 ev_unref (EV_A);
4369 }
4370
4371 ev_start (EV_A_ (W)w, 1);
4372
4373 EV_FREQUENT_CHECK;
4374 }
4375
4376 void
4377 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4378 {
4379 clear_pending (EV_A_ (W)w);
4380 if (expect_false (!ev_is_active (w)))
4381 return;
4382
4383 EV_FREQUENT_CHECK;
4384
4385 #if EV_USE_INOTIFY
4386 infy_del (EV_A_ w);
4387 #endif
4388
4389 if (ev_is_active (&w->timer))
4390 {
4391 ev_ref (EV_A);
4392 ev_timer_stop (EV_A_ &w->timer);
4393 }
4394
4395 ev_stop (EV_A_ (W)w);
4396
4397 EV_FREQUENT_CHECK;
4398 }
4399 #endif
4400
4401 #if EV_IDLE_ENABLE
4402 void
4403 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4404 {
4405 if (expect_false (ev_is_active (w)))
4406 return;
4407
4408 pri_adjust (EV_A_ (W)w);
4409
4410 EV_FREQUENT_CHECK;
4411
4412 {
4413 int active = ++idlecnt [ABSPRI (w)];
4414
4415 ++idleall;
4416 ev_start (EV_A_ (W)w, active);
4417
4418 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4419 idles [ABSPRI (w)][active - 1] = w;
4420 }
4421
4422 EV_FREQUENT_CHECK;
4423 }
4424
4425 void
4426 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4427 {
4428 clear_pending (EV_A_ (W)w);
4429 if (expect_false (!ev_is_active (w)))
4430 return;
4431
4432 EV_FREQUENT_CHECK;
4433
4434 {
4435 int active = ev_active (w);
4436
4437 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4438 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4439
4440 ev_stop (EV_A_ (W)w);
4441 --idleall;
4442 }
4443
4444 EV_FREQUENT_CHECK;
4445 }
4446 #endif
4447
4448 #if EV_PREPARE_ENABLE
4449 void
4450 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4451 {
4452 if (expect_false (ev_is_active (w)))
4453 return;
4454
4455 EV_FREQUENT_CHECK;
4456
4457 ev_start (EV_A_ (W)w, ++preparecnt);
4458 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4459 prepares [preparecnt - 1] = w;
4460
4461 EV_FREQUENT_CHECK;
4462 }
4463
4464 void
4465 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4466 {
4467 clear_pending (EV_A_ (W)w);
4468 if (expect_false (!ev_is_active (w)))
4469 return;
4470
4471 EV_FREQUENT_CHECK;
4472
4473 {
4474 int active = ev_active (w);
4475
4476 prepares [active - 1] = prepares [--preparecnt];
4477 ev_active (prepares [active - 1]) = active;
4478 }
4479
4480 ev_stop (EV_A_ (W)w);
4481
4482 EV_FREQUENT_CHECK;
4483 }
4484 #endif
4485
4486 #if EV_CHECK_ENABLE
4487 void
4488 ev_check_start (EV_P_ ev_check *w) EV_THROW
4489 {
4490 if (expect_false (ev_is_active (w)))
4491 return;
4492
4493 EV_FREQUENT_CHECK;
4494
4495 ev_start (EV_A_ (W)w, ++checkcnt);
4496 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4497 checks [checkcnt - 1] = w;
4498
4499 EV_FREQUENT_CHECK;
4500 }
4501
4502 void
4503 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4504 {
4505 clear_pending (EV_A_ (W)w);
4506 if (expect_false (!ev_is_active (w)))
4507 return;
4508
4509 EV_FREQUENT_CHECK;
4510
4511 {
4512 int active = ev_active (w);
4513
4514 checks [active - 1] = checks [--checkcnt];
4515 ev_active (checks [active - 1]) = active;
4516 }
4517
4518 ev_stop (EV_A_ (W)w);
4519
4520 EV_FREQUENT_CHECK;
4521 }
4522 #endif
4523
4524 #if EV_EMBED_ENABLE
4525 void noinline
4526 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4527 {
4528 ev_run (w->other, EVRUN_NOWAIT);
4529 }
4530
4531 static void
4532 embed_io_cb (EV_P_ ev_io *io, int revents)
4533 {
4534 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4535
4536 if (ev_cb (w))
4537 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4538 else
4539 ev_run (w->other, EVRUN_NOWAIT);
4540 }
4541
4542 static void
4543 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4544 {
4545 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4546
4547 {
4548 EV_P = w->other;
4549
4550 while (fdchangecnt)
4551 {
4552 fd_reify (EV_A);
4553 ev_run (EV_A_ EVRUN_NOWAIT);
4554 }
4555 }
4556 }
4557
4558 static void
4559 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4560 {
4561 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4562
4563 ev_embed_stop (EV_A_ w);
4564
4565 {
4566 EV_P = w->other;
4567
4568 ev_loop_fork (EV_A);
4569 ev_run (EV_A_ EVRUN_NOWAIT);
4570 }
4571
4572 ev_embed_start (EV_A_ w);
4573 }
4574
4575 #if 0
4576 static void
4577 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4578 {
4579 ev_idle_stop (EV_A_ idle);
4580 }
4581 #endif
4582
4583 void
4584 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4585 {
4586 if (expect_false (ev_is_active (w)))
4587 return;
4588
4589 {
4590 EV_P = w->other;
4591 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4592 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4593 }
4594
4595 EV_FREQUENT_CHECK;
4596
4597 ev_set_priority (&w->io, ev_priority (w));
4598 ev_io_start (EV_A_ &w->io);
4599
4600 ev_prepare_init (&w->prepare, embed_prepare_cb);
4601 ev_set_priority (&w->prepare, EV_MINPRI);
4602 ev_prepare_start (EV_A_ &w->prepare);
4603
4604 ev_fork_init (&w->fork, embed_fork_cb);
4605 ev_fork_start (EV_A_ &w->fork);
4606
4607 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4608
4609 ev_start (EV_A_ (W)w, 1);
4610
4611 EV_FREQUENT_CHECK;
4612 }
4613
4614 void
4615 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4616 {
4617 clear_pending (EV_A_ (W)w);
4618 if (expect_false (!ev_is_active (w)))
4619 return;
4620
4621 EV_FREQUENT_CHECK;
4622
4623 ev_io_stop (EV_A_ &w->io);
4624 ev_prepare_stop (EV_A_ &w->prepare);
4625 ev_fork_stop (EV_A_ &w->fork);
4626
4627 ev_stop (EV_A_ (W)w);
4628
4629 EV_FREQUENT_CHECK;
4630 }
4631 #endif
4632
4633 #if EV_FORK_ENABLE
4634 void
4635 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4636 {
4637 if (expect_false (ev_is_active (w)))
4638 return;
4639
4640 EV_FREQUENT_CHECK;
4641
4642 ev_start (EV_A_ (W)w, ++forkcnt);
4643 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4644 forks [forkcnt - 1] = w;
4645
4646 EV_FREQUENT_CHECK;
4647 }
4648
4649 void
4650 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4651 {
4652 clear_pending (EV_A_ (W)w);
4653 if (expect_false (!ev_is_active (w)))
4654 return;
4655
4656 EV_FREQUENT_CHECK;
4657
4658 {
4659 int active = ev_active (w);
4660
4661 forks [active - 1] = forks [--forkcnt];
4662 ev_active (forks [active - 1]) = active;
4663 }
4664
4665 ev_stop (EV_A_ (W)w);
4666
4667 EV_FREQUENT_CHECK;
4668 }
4669 #endif
4670
4671 #if EV_CLEANUP_ENABLE
4672 void
4673 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4674 {
4675 if (expect_false (ev_is_active (w)))
4676 return;
4677
4678 EV_FREQUENT_CHECK;
4679
4680 ev_start (EV_A_ (W)w, ++cleanupcnt);
4681 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4682 cleanups [cleanupcnt - 1] = w;
4683
4684 /* cleanup watchers should never keep a refcount on the loop */
4685 ev_unref (EV_A);
4686 EV_FREQUENT_CHECK;
4687 }
4688
4689 void
4690 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4691 {
4692 clear_pending (EV_A_ (W)w);
4693 if (expect_false (!ev_is_active (w)))
4694 return;
4695
4696 EV_FREQUENT_CHECK;
4697 ev_ref (EV_A);
4698
4699 {
4700 int active = ev_active (w);
4701
4702 cleanups [active - 1] = cleanups [--cleanupcnt];
4703 ev_active (cleanups [active - 1]) = active;
4704 }
4705
4706 ev_stop (EV_A_ (W)w);
4707
4708 EV_FREQUENT_CHECK;
4709 }
4710 #endif
4711
4712 #if EV_ASYNC_ENABLE
4713 void
4714 ev_async_start (EV_P_ ev_async *w) EV_THROW
4715 {
4716 if (expect_false (ev_is_active (w)))
4717 return;
4718
4719 w->sent = 0;
4720
4721 evpipe_init (EV_A);
4722
4723 EV_FREQUENT_CHECK;
4724
4725 ev_start (EV_A_ (W)w, ++asynccnt);
4726 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4727 asyncs [asynccnt - 1] = w;
4728
4729 EV_FREQUENT_CHECK;
4730 }
4731
4732 void
4733 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4734 {
4735 clear_pending (EV_A_ (W)w);
4736 if (expect_false (!ev_is_active (w)))
4737 return;
4738
4739 EV_FREQUENT_CHECK;
4740
4741 {
4742 int active = ev_active (w);
4743
4744 asyncs [active - 1] = asyncs [--asynccnt];
4745 ev_active (asyncs [active - 1]) = active;
4746 }
4747
4748 ev_stop (EV_A_ (W)w);
4749
4750 EV_FREQUENT_CHECK;
4751 }
4752
4753 void
4754 ev_async_send (EV_P_ ev_async *w) EV_THROW
4755 {
4756 w->sent = 1;
4757 evpipe_write (EV_A_ &async_pending);
4758 }
4759 #endif
4760
4761 /*****************************************************************************/
4762
4763 struct ev_once
4764 {
4765 ev_io io;
4766 ev_timer to;
4767 void (*cb)(int revents, void *arg);
4768 void *arg;
4769 };
4770
4771 static void
4772 once_cb (EV_P_ struct ev_once *once, int revents)
4773 {
4774 void (*cb)(int revents, void *arg) = once->cb;
4775 void *arg = once->arg;
4776
4777 ev_io_stop (EV_A_ &once->io);
4778 ev_timer_stop (EV_A_ &once->to);
4779 ev_free (once);
4780
4781 cb (revents, arg);
4782 }
4783
4784 static void
4785 once_cb_io (EV_P_ ev_io *w, int revents)
4786 {
4787 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4788
4789 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4790 }
4791
4792 static void
4793 once_cb_to (EV_P_ ev_timer *w, int revents)
4794 {
4795 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4796
4797 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4798 }
4799
4800 void
4801 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4802 {
4803 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4804
4805 if (expect_false (!once))
4806 {
4807 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4808 return;
4809 }
4810
4811 once->cb = cb;
4812 once->arg = arg;
4813
4814 ev_init (&once->io, once_cb_io);
4815 if (fd >= 0)
4816 {
4817 ev_io_set (&once->io, fd, events);
4818 ev_io_start (EV_A_ &once->io);
4819 }
4820
4821 ev_init (&once->to, once_cb_to);
4822 if (timeout >= 0.)
4823 {
4824 ev_timer_set (&once->to, timeout, 0.);
4825 ev_timer_start (EV_A_ &once->to);
4826 }
4827 }
4828
4829 /*****************************************************************************/
4830
4831 #if EV_WALK_ENABLE
4832 void ecb_cold
4833 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4834 {
4835 int i, j;
4836 ev_watcher_list *wl, *wn;
4837
4838 if (types & (EV_IO | EV_EMBED))
4839 for (i = 0; i < anfdmax; ++i)
4840 for (wl = anfds [i].head; wl; )
4841 {
4842 wn = wl->next;
4843
4844 #if EV_EMBED_ENABLE
4845 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4846 {
4847 if (types & EV_EMBED)
4848 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4849 }
4850 else
4851 #endif
4852 #if EV_USE_INOTIFY
4853 if (ev_cb ((ev_io *)wl) == infy_cb)
4854 ;
4855 else
4856 #endif
4857 if ((ev_io *)wl != &pipe_w)
4858 if (types & EV_IO)
4859 cb (EV_A_ EV_IO, wl);
4860
4861 wl = wn;
4862 }
4863
4864 if (types & (EV_TIMER | EV_STAT))
4865 for (i = timercnt + HEAP0; i-- > HEAP0; )
4866 #if EV_STAT_ENABLE
4867 /*TODO: timer is not always active*/
4868 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4869 {
4870 if (types & EV_STAT)
4871 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4872 }
4873 else
4874 #endif
4875 if (types & EV_TIMER)
4876 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4877
4878 #if EV_PERIODIC_ENABLE
4879 if (types & EV_PERIODIC)
4880 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4881 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4882 #endif
4883
4884 #if EV_IDLE_ENABLE
4885 if (types & EV_IDLE)
4886 for (j = NUMPRI; j--; )
4887 for (i = idlecnt [j]; i--; )
4888 cb (EV_A_ EV_IDLE, idles [j][i]);
4889 #endif
4890
4891 #if EV_FORK_ENABLE
4892 if (types & EV_FORK)
4893 for (i = forkcnt; i--; )
4894 if (ev_cb (forks [i]) != embed_fork_cb)
4895 cb (EV_A_ EV_FORK, forks [i]);
4896 #endif
4897
4898 #if EV_ASYNC_ENABLE
4899 if (types & EV_ASYNC)
4900 for (i = asynccnt; i--; )
4901 cb (EV_A_ EV_ASYNC, asyncs [i]);
4902 #endif
4903
4904 #if EV_PREPARE_ENABLE
4905 if (types & EV_PREPARE)
4906 for (i = preparecnt; i--; )
4907 # if EV_EMBED_ENABLE
4908 if (ev_cb (prepares [i]) != embed_prepare_cb)
4909 # endif
4910 cb (EV_A_ EV_PREPARE, prepares [i]);
4911 #endif
4912
4913 #if EV_CHECK_ENABLE
4914 if (types & EV_CHECK)
4915 for (i = checkcnt; i--; )
4916 cb (EV_A_ EV_CHECK, checks [i]);
4917 #endif
4918
4919 #if EV_SIGNAL_ENABLE
4920 if (types & EV_SIGNAL)
4921 for (i = 0; i < EV_NSIG - 1; ++i)
4922 for (wl = signals [i].head; wl; )
4923 {
4924 wn = wl->next;
4925 cb (EV_A_ EV_SIGNAL, wl);
4926 wl = wn;
4927 }
4928 #endif
4929
4930 #if EV_CHILD_ENABLE
4931 if (types & EV_CHILD)
4932 for (i = (EV_PID_HASHSIZE); i--; )
4933 for (wl = childs [i]; wl; )
4934 {
4935 wn = wl->next;
4936 cb (EV_A_ EV_CHILD, wl);
4937 wl = wn;
4938 }
4939 #endif
4940 /* EV_STAT 0x00001000 /* stat data changed */
4941 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4942 }
4943 #endif
4944
4945 #if EV_MULTIPLICITY
4946 #include "ev_wrap.h"
4947 #endif
4948