ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.481
Committed: Thu Jun 1 20:25:50 2017 UTC (6 years, 11 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.480: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 # define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 #endif
248
249 #ifndef EV_USE_FLOOR
250 # define EV_USE_FLOOR 0
251 #endif
252
253 #ifndef EV_USE_CLOCK_SYSCALL
254 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 # else
257 # define EV_USE_CLOCK_SYSCALL 0
258 # endif
259 #endif
260
261 #if !(_POSIX_TIMERS > 0)
262 # ifndef EV_USE_MONOTONIC
263 # define EV_USE_MONOTONIC 0
264 # endif
265 # ifndef EV_USE_REALTIME
266 # define EV_USE_REALTIME 0
267 # endif
268 #endif
269
270 #ifndef EV_USE_MONOTONIC
271 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272 # define EV_USE_MONOTONIC EV_FEATURE_OS
273 # else
274 # define EV_USE_MONOTONIC 0
275 # endif
276 #endif
277
278 #ifndef EV_USE_REALTIME
279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280 #endif
281
282 #ifndef EV_USE_NANOSLEEP
283 # if _POSIX_C_SOURCE >= 199309L
284 # define EV_USE_NANOSLEEP EV_FEATURE_OS
285 # else
286 # define EV_USE_NANOSLEEP 0
287 # endif
288 #endif
289
290 #ifndef EV_USE_SELECT
291 # define EV_USE_SELECT EV_FEATURE_BACKENDS
292 #endif
293
294 #ifndef EV_USE_POLL
295 # ifdef _WIN32
296 # define EV_USE_POLL 0
297 # else
298 # define EV_USE_POLL EV_FEATURE_BACKENDS
299 # endif
300 #endif
301
302 #ifndef EV_USE_EPOLL
303 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
305 # else
306 # define EV_USE_EPOLL 0
307 # endif
308 #endif
309
310 #ifndef EV_USE_KQUEUE
311 # define EV_USE_KQUEUE 0
312 #endif
313
314 #ifndef EV_USE_PORT
315 # define EV_USE_PORT 0
316 #endif
317
318 #ifndef EV_USE_INOTIFY
319 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320 # define EV_USE_INOTIFY EV_FEATURE_OS
321 # else
322 # define EV_USE_INOTIFY 0
323 # endif
324 #endif
325
326 #ifndef EV_PID_HASHSIZE
327 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328 #endif
329
330 #ifndef EV_INOTIFY_HASHSIZE
331 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332 #endif
333
334 #ifndef EV_USE_EVENTFD
335 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336 # define EV_USE_EVENTFD EV_FEATURE_OS
337 # else
338 # define EV_USE_EVENTFD 0
339 # endif
340 #endif
341
342 #ifndef EV_USE_SIGNALFD
343 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344 # define EV_USE_SIGNALFD EV_FEATURE_OS
345 # else
346 # define EV_USE_SIGNALFD 0
347 # endif
348 #endif
349
350 #if 0 /* debugging */
351 # define EV_VERIFY 3
352 # define EV_USE_4HEAP 1
353 # define EV_HEAP_CACHE_AT 1
354 #endif
355
356 #ifndef EV_VERIFY
357 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358 #endif
359
360 #ifndef EV_USE_4HEAP
361 # define EV_USE_4HEAP EV_FEATURE_DATA
362 #endif
363
364 #ifndef EV_HEAP_CACHE_AT
365 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366 #endif
367
368 #ifdef __ANDROID__
369 /* supposedly, android doesn't typedef fd_mask */
370 # undef EV_USE_SELECT
371 # define EV_USE_SELECT 0
372 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373 # undef EV_USE_CLOCK_SYSCALL
374 # define EV_USE_CLOCK_SYSCALL 0
375 #endif
376
377 /* aix's poll.h seems to cause lots of trouble */
378 #ifdef _AIX
379 /* AIX has a completely broken poll.h header */
380 # undef EV_USE_POLL
381 # define EV_USE_POLL 0
382 #endif
383
384 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385 /* which makes programs even slower. might work on other unices, too. */
386 #if EV_USE_CLOCK_SYSCALL
387 # include <sys/syscall.h>
388 # ifdef SYS_clock_gettime
389 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390 # undef EV_USE_MONOTONIC
391 # define EV_USE_MONOTONIC 1
392 # else
393 # undef EV_USE_CLOCK_SYSCALL
394 # define EV_USE_CLOCK_SYSCALL 0
395 # endif
396 #endif
397
398 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
399
400 #ifndef CLOCK_MONOTONIC
401 # undef EV_USE_MONOTONIC
402 # define EV_USE_MONOTONIC 0
403 #endif
404
405 #ifndef CLOCK_REALTIME
406 # undef EV_USE_REALTIME
407 # define EV_USE_REALTIME 0
408 #endif
409
410 #if !EV_STAT_ENABLE
411 # undef EV_USE_INOTIFY
412 # define EV_USE_INOTIFY 0
413 #endif
414
415 #if !EV_USE_NANOSLEEP
416 /* hp-ux has it in sys/time.h, which we unconditionally include above */
417 # if !defined _WIN32 && !defined __hpux
418 # include <sys/select.h>
419 # endif
420 #endif
421
422 #if EV_USE_INOTIFY
423 # include <sys/statfs.h>
424 # include <sys/inotify.h>
425 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426 # ifndef IN_DONT_FOLLOW
427 # undef EV_USE_INOTIFY
428 # define EV_USE_INOTIFY 0
429 # endif
430 #endif
431
432 #if EV_USE_EVENTFD
433 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434 # include <stdint.h>
435 # ifndef EFD_NONBLOCK
436 # define EFD_NONBLOCK O_NONBLOCK
437 # endif
438 # ifndef EFD_CLOEXEC
439 # ifdef O_CLOEXEC
440 # define EFD_CLOEXEC O_CLOEXEC
441 # else
442 # define EFD_CLOEXEC 02000000
443 # endif
444 # endif
445 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446 #endif
447
448 #if EV_USE_SIGNALFD
449 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450 # include <stdint.h>
451 # ifndef SFD_NONBLOCK
452 # define SFD_NONBLOCK O_NONBLOCK
453 # endif
454 # ifndef SFD_CLOEXEC
455 # ifdef O_CLOEXEC
456 # define SFD_CLOEXEC O_CLOEXEC
457 # else
458 # define SFD_CLOEXEC 02000000
459 # endif
460 # endif
461 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463 struct signalfd_siginfo
464 {
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467 };
468 #endif
469
470 /**/
471
472 #if EV_VERIFY >= 3
473 # define EV_FREQUENT_CHECK ev_verify (EV_A)
474 #else
475 # define EV_FREQUENT_CHECK do { } while (0)
476 #endif
477
478 /*
479 * This is used to work around floating point rounding problems.
480 * This value is good at least till the year 4000.
481 */
482 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
484
485 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
486 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
487
488 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492 /* ECB.H BEGIN */
493 /*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533 #ifndef ECB_H
534 #define ECB_H
535
536 /* 16 bits major, 16 bits minor */
537 #define ECB_VERSION 0x00010005
538
539 #ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
546 #if __GNUC__
547 typedef signed long long int64_t;
548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
562 #else
563 #include <inttypes.h>
564 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
568 #endif
569 #endif
570
571 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573
574 /* work around x32 idiocy by defining proper macros */
575 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
580 #endif
581 #endif
582
583 /* many compilers define _GNUC_ to some versions but then only implement
584 * what their idiot authors think are the "more important" extensions,
585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592 #else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594 #endif
595
596 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598 #if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600 #else
601 #define ECB_CLANG_BUILTIN(x) 0
602 #endif
603
604 #if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606 #else
607 #define ECB_CLANG_EXTENSION(x) 0
608 #endif
609
610 #define ECB_CPP (__cplusplus+0)
611 #define ECB_CPP11 (__cplusplus >= 201103L)
612
613 #if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616 #else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619 #endif
620
621 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624 #if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628 #else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632 #endif
633
634 /*****************************************************************************/
635
636 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639 #if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641 #endif
642
643 #if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645 #endif
646
647 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648 #if __xlC__ && ECB_CPP
649 #include <builtins.h>
650 #endif
651
652 #if 1400 <= _MSC_VER
653 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
654 #endif
655
656 #ifndef ECB_MEMORY_FENCE
657 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
658 #if __i386 || __i386__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
660 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
661 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662 #elif ECB_GCC_AMD64
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
664 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
665 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
666 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
667 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
668 #elif defined __ARM_ARCH_2__ \
669 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
670 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
671 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
672 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
673 || defined __ARM_ARCH_5TEJ__
674 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
675 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
676 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
677 || defined __ARM_ARCH_6T2__
678 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
679 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
680 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
681 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
682 #elif __aarch64__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
684 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
686 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
687 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
688 #elif defined __s390__ || defined __s390x__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
690 #elif defined __mips__
691 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
692 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
693 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
694 #elif defined __alpha__
695 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
696 #elif defined __hppa__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
698 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
699 #elif defined __ia64__
700 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
701 #elif defined __m68k__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
703 #elif defined __m88k__
704 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
705 #elif defined __sh__
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
707 #endif
708 #endif
709 #endif
710
711 #ifndef ECB_MEMORY_FENCE
712 #if ECB_GCC_VERSION(4,7)
713 /* see comment below (stdatomic.h) about the C11 memory model. */
714 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
715 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
716 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
717
718 #elif ECB_CLANG_EXTENSION(c_atomic)
719 /* see comment below (stdatomic.h) about the C11 memory model. */
720 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
721 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
722 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
723
724 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
725 #define ECB_MEMORY_FENCE __sync_synchronize ()
726 #elif _MSC_VER >= 1500 /* VC++ 2008 */
727 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
728 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
729 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
730 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
731 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
732 #elif _MSC_VER >= 1400 /* VC++ 2005 */
733 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
735 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
736 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
737 #elif defined _WIN32
738 #include <WinNT.h>
739 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
740 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
741 #include <mbarrier.h>
742 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
743 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
744 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
745 #elif __xlC__
746 #define ECB_MEMORY_FENCE __sync ()
747 #endif
748 #endif
749
750 #ifndef ECB_MEMORY_FENCE
751 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
752 /* we assume that these memory fences work on all variables/all memory accesses, */
753 /* not just C11 atomics and atomic accesses */
754 #include <stdatomic.h>
755 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
756 /* any fence other than seq_cst, which isn't very efficient for us. */
757 /* Why that is, we don't know - either the C11 memory model is quite useless */
758 /* for most usages, or gcc and clang have a bug */
759 /* I *currently* lean towards the latter, and inefficiently implement */
760 /* all three of ecb's fences as a seq_cst fence */
761 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
762 /* for all __atomic_thread_fence's except seq_cst */
763 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
764 #endif
765 #endif
766
767 #ifndef ECB_MEMORY_FENCE
768 #if !ECB_AVOID_PTHREADS
769 /*
770 * if you get undefined symbol references to pthread_mutex_lock,
771 * or failure to find pthread.h, then you should implement
772 * the ECB_MEMORY_FENCE operations for your cpu/compiler
773 * OR provide pthread.h and link against the posix thread library
774 * of your system.
775 */
776 #include <pthread.h>
777 #define ECB_NEEDS_PTHREADS 1
778 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
779
780 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
781 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
782 #endif
783 #endif
784
785 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
786 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
787 #endif
788
789 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
790 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
791 #endif
792
793 /*****************************************************************************/
794
795 #if ECB_CPP
796 #define ecb_inline static inline
797 #elif ECB_GCC_VERSION(2,5)
798 #define ecb_inline static __inline__
799 #elif ECB_C99
800 #define ecb_inline static inline
801 #else
802 #define ecb_inline static
803 #endif
804
805 #if ECB_GCC_VERSION(3,3)
806 #define ecb_restrict __restrict__
807 #elif ECB_C99
808 #define ecb_restrict restrict
809 #else
810 #define ecb_restrict
811 #endif
812
813 typedef int ecb_bool;
814
815 #define ECB_CONCAT_(a, b) a ## b
816 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
817 #define ECB_STRINGIFY_(a) # a
818 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
819 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
820
821 #define ecb_function_ ecb_inline
822
823 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
824 #define ecb_attribute(attrlist) __attribute__ (attrlist)
825 #else
826 #define ecb_attribute(attrlist)
827 #endif
828
829 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
830 #define ecb_is_constant(expr) __builtin_constant_p (expr)
831 #else
832 /* possible C11 impl for integral types
833 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
834 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
835
836 #define ecb_is_constant(expr) 0
837 #endif
838
839 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
840 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
841 #else
842 #define ecb_expect(expr,value) (expr)
843 #endif
844
845 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
846 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
847 #else
848 #define ecb_prefetch(addr,rw,locality)
849 #endif
850
851 /* no emulation for ecb_decltype */
852 #if ECB_CPP11
853 // older implementations might have problems with decltype(x)::type, work around it
854 template<class T> struct ecb_decltype_t { typedef T type; };
855 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
856 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
857 #define ecb_decltype(x) __typeof__ (x)
858 #endif
859
860 #if _MSC_VER >= 1300
861 #define ecb_deprecated __declspec (deprecated)
862 #else
863 #define ecb_deprecated ecb_attribute ((__deprecated__))
864 #endif
865
866 #if _MSC_VER >= 1500
867 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
868 #elif ECB_GCC_VERSION(4,5)
869 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
870 #else
871 #define ecb_deprecated_message(msg) ecb_deprecated
872 #endif
873
874 #if _MSC_VER >= 1400
875 #define ecb_noinline __declspec (noinline)
876 #else
877 #define ecb_noinline ecb_attribute ((__noinline__))
878 #endif
879
880 #define ecb_unused ecb_attribute ((__unused__))
881 #define ecb_const ecb_attribute ((__const__))
882 #define ecb_pure ecb_attribute ((__pure__))
883
884 #if ECB_C11 || __IBMC_NORETURN
885 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
886 #define ecb_noreturn _Noreturn
887 #elif ECB_CPP11
888 #define ecb_noreturn [[noreturn]]
889 #elif _MSC_VER >= 1200
890 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
891 #define ecb_noreturn __declspec (noreturn)
892 #else
893 #define ecb_noreturn ecb_attribute ((__noreturn__))
894 #endif
895
896 #if ECB_GCC_VERSION(4,3)
897 #define ecb_artificial ecb_attribute ((__artificial__))
898 #define ecb_hot ecb_attribute ((__hot__))
899 #define ecb_cold ecb_attribute ((__cold__))
900 #else
901 #define ecb_artificial
902 #define ecb_hot
903 #define ecb_cold
904 #endif
905
906 /* put around conditional expressions if you are very sure that the */
907 /* expression is mostly true or mostly false. note that these return */
908 /* booleans, not the expression. */
909 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
910 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
911 /* for compatibility to the rest of the world */
912 #define ecb_likely(expr) ecb_expect_true (expr)
913 #define ecb_unlikely(expr) ecb_expect_false (expr)
914
915 /* count trailing zero bits and count # of one bits */
916 #if ECB_GCC_VERSION(3,4) \
917 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
918 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
919 && ECB_CLANG_BUILTIN(__builtin_popcount))
920 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
921 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
922 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
923 #define ecb_ctz32(x) __builtin_ctz (x)
924 #define ecb_ctz64(x) __builtin_ctzll (x)
925 #define ecb_popcount32(x) __builtin_popcount (x)
926 /* no popcountll */
927 #else
928 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
929 ecb_function_ ecb_const int
930 ecb_ctz32 (uint32_t x)
931 {
932 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
933 unsigned long r;
934 _BitScanForward (&r, x);
935 return (int)r;
936 #else
937 int r = 0;
938
939 x &= ~x + 1; /* this isolates the lowest bit */
940
941 #if ECB_branchless_on_i386
942 r += !!(x & 0xaaaaaaaa) << 0;
943 r += !!(x & 0xcccccccc) << 1;
944 r += !!(x & 0xf0f0f0f0) << 2;
945 r += !!(x & 0xff00ff00) << 3;
946 r += !!(x & 0xffff0000) << 4;
947 #else
948 if (x & 0xaaaaaaaa) r += 1;
949 if (x & 0xcccccccc) r += 2;
950 if (x & 0xf0f0f0f0) r += 4;
951 if (x & 0xff00ff00) r += 8;
952 if (x & 0xffff0000) r += 16;
953 #endif
954
955 return r;
956 #endif
957 }
958
959 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
960 ecb_function_ ecb_const int
961 ecb_ctz64 (uint64_t x)
962 {
963 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
964 unsigned long r;
965 _BitScanForward64 (&r, x);
966 return (int)r;
967 #else
968 int shift = x & 0xffffffff ? 0 : 32;
969 return ecb_ctz32 (x >> shift) + shift;
970 #endif
971 }
972
973 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
974 ecb_function_ ecb_const int
975 ecb_popcount32 (uint32_t x)
976 {
977 x -= (x >> 1) & 0x55555555;
978 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
979 x = ((x >> 4) + x) & 0x0f0f0f0f;
980 x *= 0x01010101;
981
982 return x >> 24;
983 }
984
985 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
986 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
987 {
988 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
989 unsigned long r;
990 _BitScanReverse (&r, x);
991 return (int)r;
992 #else
993 int r = 0;
994
995 if (x >> 16) { x >>= 16; r += 16; }
996 if (x >> 8) { x >>= 8; r += 8; }
997 if (x >> 4) { x >>= 4; r += 4; }
998 if (x >> 2) { x >>= 2; r += 2; }
999 if (x >> 1) { r += 1; }
1000
1001 return r;
1002 #endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1006 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1007 {
1008 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1009 unsigned long r;
1010 _BitScanReverse64 (&r, x);
1011 return (int)r;
1012 #else
1013 int r = 0;
1014
1015 if (x >> 32) { x >>= 32; r += 32; }
1016
1017 return r + ecb_ld32 (x);
1018 #endif
1019 }
1020 #endif
1021
1022 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1023 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1024 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1025 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1026
1027 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1028 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1029 {
1030 return ( (x * 0x0802U & 0x22110U)
1031 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1032 }
1033
1034 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1035 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1036 {
1037 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1038 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1039 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1040 x = ( x >> 8 ) | ( x << 8);
1041
1042 return x;
1043 }
1044
1045 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1046 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1047 {
1048 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1049 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1050 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1051 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1052 x = ( x >> 16 ) | ( x << 16);
1053
1054 return x;
1055 }
1056
1057 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1058 /* so for this version we are lazy */
1059 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1060 ecb_function_ ecb_const int
1061 ecb_popcount64 (uint64_t x)
1062 {
1063 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1064 }
1065
1066 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1067 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1068 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1069 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1070 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1071 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1072 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1073 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1074
1075 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1076 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1077 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1078 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1079 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1080 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1081 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1082 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1083
1084 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1085 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1086 #define ecb_bswap16(x) __builtin_bswap16 (x)
1087 #else
1088 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1089 #endif
1090 #define ecb_bswap32(x) __builtin_bswap32 (x)
1091 #define ecb_bswap64(x) __builtin_bswap64 (x)
1092 #elif _MSC_VER
1093 #include <stdlib.h>
1094 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1095 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1096 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1097 #else
1098 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1099 ecb_function_ ecb_const uint16_t
1100 ecb_bswap16 (uint16_t x)
1101 {
1102 return ecb_rotl16 (x, 8);
1103 }
1104
1105 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1106 ecb_function_ ecb_const uint32_t
1107 ecb_bswap32 (uint32_t x)
1108 {
1109 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1110 }
1111
1112 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1113 ecb_function_ ecb_const uint64_t
1114 ecb_bswap64 (uint64_t x)
1115 {
1116 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1117 }
1118 #endif
1119
1120 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1121 #define ecb_unreachable() __builtin_unreachable ()
1122 #else
1123 /* this seems to work fine, but gcc always emits a warning for it :/ */
1124 ecb_inline ecb_noreturn void ecb_unreachable (void);
1125 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1126 #endif
1127
1128 /* try to tell the compiler that some condition is definitely true */
1129 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1130
1131 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1132 ecb_inline ecb_const uint32_t
1133 ecb_byteorder_helper (void)
1134 {
1135 /* the union code still generates code under pressure in gcc, */
1136 /* but less than using pointers, and always seems to */
1137 /* successfully return a constant. */
1138 /* the reason why we have this horrible preprocessor mess */
1139 /* is to avoid it in all cases, at least on common architectures */
1140 /* or when using a recent enough gcc version (>= 4.6) */
1141 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1142 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1143 #define ECB_LITTLE_ENDIAN 1
1144 return 0x44332211;
1145 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1146 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1147 #define ECB_BIG_ENDIAN 1
1148 return 0x11223344;
1149 #else
1150 union
1151 {
1152 uint8_t c[4];
1153 uint32_t u;
1154 } u = { 0x11, 0x22, 0x33, 0x44 };
1155 return u.u;
1156 #endif
1157 }
1158
1159 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1160 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1161 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1162 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1163
1164 #if ECB_GCC_VERSION(3,0) || ECB_C99
1165 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1166 #else
1167 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1168 #endif
1169
1170 #if ECB_CPP
1171 template<typename T>
1172 static inline T ecb_div_rd (T val, T div)
1173 {
1174 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1175 }
1176 template<typename T>
1177 static inline T ecb_div_ru (T val, T div)
1178 {
1179 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1180 }
1181 #else
1182 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1183 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1184 #endif
1185
1186 #if ecb_cplusplus_does_not_suck
1187 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1188 template<typename T, int N>
1189 static inline int ecb_array_length (const T (&arr)[N])
1190 {
1191 return N;
1192 }
1193 #else
1194 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1195 #endif
1196
1197 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1198 ecb_function_ ecb_const uint32_t
1199 ecb_binary16_to_binary32 (uint32_t x)
1200 {
1201 unsigned int s = (x & 0x8000) << (31 - 15);
1202 int e = (x >> 10) & 0x001f;
1203 unsigned int m = x & 0x03ff;
1204
1205 if (ecb_expect_false (e == 31))
1206 /* infinity or NaN */
1207 e = 255 - (127 - 15);
1208 else if (ecb_expect_false (!e))
1209 {
1210 if (ecb_expect_true (!m))
1211 /* zero, handled by code below by forcing e to 0 */
1212 e = 0 - (127 - 15);
1213 else
1214 {
1215 /* subnormal, renormalise */
1216 unsigned int s = 10 - ecb_ld32 (m);
1217
1218 m = (m << s) & 0x3ff; /* mask implicit bit */
1219 e -= s - 1;
1220 }
1221 }
1222
1223 /* e and m now are normalised, or zero, (or inf or nan) */
1224 e += 127 - 15;
1225
1226 return s | (e << 23) | (m << (23 - 10));
1227 }
1228
1229 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1230 ecb_function_ ecb_const uint16_t
1231 ecb_binary32_to_binary16 (uint32_t x)
1232 {
1233 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1234 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1235 unsigned int m = x & 0x007fffff;
1236
1237 x &= 0x7fffffff;
1238
1239 /* if it's within range of binary16 normals, use fast path */
1240 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1241 {
1242 /* mantissa round-to-even */
1243 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1244
1245 /* handle overflow */
1246 if (ecb_expect_false (m >= 0x00800000))
1247 {
1248 m >>= 1;
1249 e += 1;
1250 }
1251
1252 return s | (e << 10) | (m >> (23 - 10));
1253 }
1254
1255 /* handle large numbers and infinity */
1256 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1257 return s | 0x7c00;
1258
1259 /* handle zero, subnormals and small numbers */
1260 if (ecb_expect_true (x < 0x38800000))
1261 {
1262 /* zero */
1263 if (ecb_expect_true (!x))
1264 return s;
1265
1266 /* handle subnormals */
1267
1268 /* too small, will be zero */
1269 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1270 return s;
1271
1272 m |= 0x00800000; /* make implicit bit explicit */
1273
1274 /* very tricky - we need to round to the nearest e (+10) bit value */
1275 {
1276 unsigned int bits = 14 - e;
1277 unsigned int half = (1 << (bits - 1)) - 1;
1278 unsigned int even = (m >> bits) & 1;
1279
1280 /* if this overflows, we will end up with a normalised number */
1281 m = (m + half + even) >> bits;
1282 }
1283
1284 return s | m;
1285 }
1286
1287 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1288 m >>= 13;
1289
1290 return s | 0x7c00 | m | !m;
1291 }
1292
1293 /*******************************************************************************/
1294 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1295
1296 /* basically, everything uses "ieee pure-endian" floating point numbers */
1297 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1298 #if 0 \
1299 || __i386 || __i386__ \
1300 || ECB_GCC_AMD64 \
1301 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1302 || defined __s390__ || defined __s390x__ \
1303 || defined __mips__ \
1304 || defined __alpha__ \
1305 || defined __hppa__ \
1306 || defined __ia64__ \
1307 || defined __m68k__ \
1308 || defined __m88k__ \
1309 || defined __sh__ \
1310 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1311 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1312 || defined __aarch64__
1313 #define ECB_STDFP 1
1314 #include <string.h> /* for memcpy */
1315 #else
1316 #define ECB_STDFP 0
1317 #endif
1318
1319 #ifndef ECB_NO_LIBM
1320
1321 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1322
1323 /* only the oldest of old doesn't have this one. solaris. */
1324 #ifdef INFINITY
1325 #define ECB_INFINITY INFINITY
1326 #else
1327 #define ECB_INFINITY HUGE_VAL
1328 #endif
1329
1330 #ifdef NAN
1331 #define ECB_NAN NAN
1332 #else
1333 #define ECB_NAN ECB_INFINITY
1334 #endif
1335
1336 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1337 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1338 #define ecb_frexpf(x,e) frexpf ((x), (e))
1339 #else
1340 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1341 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1342 #endif
1343
1344 /* convert a float to ieee single/binary32 */
1345 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1346 ecb_function_ ecb_const uint32_t
1347 ecb_float_to_binary32 (float x)
1348 {
1349 uint32_t r;
1350
1351 #if ECB_STDFP
1352 memcpy (&r, &x, 4);
1353 #else
1354 /* slow emulation, works for anything but -0 */
1355 uint32_t m;
1356 int e;
1357
1358 if (x == 0e0f ) return 0x00000000U;
1359 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1360 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1361 if (x != x ) return 0x7fbfffffU;
1362
1363 m = ecb_frexpf (x, &e) * 0x1000000U;
1364
1365 r = m & 0x80000000U;
1366
1367 if (r)
1368 m = -m;
1369
1370 if (e <= -126)
1371 {
1372 m &= 0xffffffU;
1373 m >>= (-125 - e);
1374 e = -126;
1375 }
1376
1377 r |= (e + 126) << 23;
1378 r |= m & 0x7fffffU;
1379 #endif
1380
1381 return r;
1382 }
1383
1384 /* converts an ieee single/binary32 to a float */
1385 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1386 ecb_function_ ecb_const float
1387 ecb_binary32_to_float (uint32_t x)
1388 {
1389 float r;
1390
1391 #if ECB_STDFP
1392 memcpy (&r, &x, 4);
1393 #else
1394 /* emulation, only works for normals and subnormals and +0 */
1395 int neg = x >> 31;
1396 int e = (x >> 23) & 0xffU;
1397
1398 x &= 0x7fffffU;
1399
1400 if (e)
1401 x |= 0x800000U;
1402 else
1403 e = 1;
1404
1405 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1406 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1407
1408 r = neg ? -r : r;
1409 #endif
1410
1411 return r;
1412 }
1413
1414 /* convert a double to ieee double/binary64 */
1415 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1416 ecb_function_ ecb_const uint64_t
1417 ecb_double_to_binary64 (double x)
1418 {
1419 uint64_t r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 8);
1423 #else
1424 /* slow emulation, works for anything but -0 */
1425 uint64_t m;
1426 int e;
1427
1428 if (x == 0e0 ) return 0x0000000000000000U;
1429 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1430 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1431 if (x != x ) return 0X7ff7ffffffffffffU;
1432
1433 m = frexp (x, &e) * 0x20000000000000U;
1434
1435 r = m & 0x8000000000000000;;
1436
1437 if (r)
1438 m = -m;
1439
1440 if (e <= -1022)
1441 {
1442 m &= 0x1fffffffffffffU;
1443 m >>= (-1021 - e);
1444 e = -1022;
1445 }
1446
1447 r |= ((uint64_t)(e + 1022)) << 52;
1448 r |= m & 0xfffffffffffffU;
1449 #endif
1450
1451 return r;
1452 }
1453
1454 /* converts an ieee double/binary64 to a double */
1455 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1456 ecb_function_ ecb_const double
1457 ecb_binary64_to_double (uint64_t x)
1458 {
1459 double r;
1460
1461 #if ECB_STDFP
1462 memcpy (&r, &x, 8);
1463 #else
1464 /* emulation, only works for normals and subnormals and +0 */
1465 int neg = x >> 63;
1466 int e = (x >> 52) & 0x7ffU;
1467
1468 x &= 0xfffffffffffffU;
1469
1470 if (e)
1471 x |= 0x10000000000000U;
1472 else
1473 e = 1;
1474
1475 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1476 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1477
1478 r = neg ? -r : r;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* convert a float to ieee half/binary16 */
1485 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1486 ecb_function_ ecb_const uint16_t
1487 ecb_float_to_binary16 (float x)
1488 {
1489 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1490 }
1491
1492 /* convert an ieee half/binary16 to float */
1493 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1494 ecb_function_ ecb_const float
1495 ecb_binary16_to_float (uint16_t x)
1496 {
1497 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1498 }
1499
1500 #endif
1501
1502 #endif
1503
1504 /* ECB.H END */
1505
1506 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1507 /* if your architecture doesn't need memory fences, e.g. because it is
1508 * single-cpu/core, or if you use libev in a project that doesn't use libev
1509 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1510 * libev, in which cases the memory fences become nops.
1511 * alternatively, you can remove this #error and link against libpthread,
1512 * which will then provide the memory fences.
1513 */
1514 # error "memory fences not defined for your architecture, please report"
1515 #endif
1516
1517 #ifndef ECB_MEMORY_FENCE
1518 # define ECB_MEMORY_FENCE do { } while (0)
1519 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1520 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1521 #endif
1522
1523 #define expect_false(cond) ecb_expect_false (cond)
1524 #define expect_true(cond) ecb_expect_true (cond)
1525 #define noinline ecb_noinline
1526
1527 #define inline_size ecb_inline
1528
1529 #if EV_FEATURE_CODE
1530 # define inline_speed ecb_inline
1531 #else
1532 # define inline_speed noinline static
1533 #endif
1534
1535 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1536
1537 #if EV_MINPRI == EV_MAXPRI
1538 # define ABSPRI(w) (((W)w), 0)
1539 #else
1540 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1541 #endif
1542
1543 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1544 #define EMPTY2(a,b) /* used to suppress some warnings */
1545
1546 typedef ev_watcher *W;
1547 typedef ev_watcher_list *WL;
1548 typedef ev_watcher_time *WT;
1549
1550 #define ev_active(w) ((W)(w))->active
1551 #define ev_at(w) ((WT)(w))->at
1552
1553 #if EV_USE_REALTIME
1554 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1555 /* giving it a reasonably high chance of working on typical architectures */
1556 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1557 #endif
1558
1559 #if EV_USE_MONOTONIC
1560 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1561 #endif
1562
1563 #ifndef EV_FD_TO_WIN32_HANDLE
1564 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1565 #endif
1566 #ifndef EV_WIN32_HANDLE_TO_FD
1567 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1568 #endif
1569 #ifndef EV_WIN32_CLOSE_FD
1570 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1571 #endif
1572
1573 #ifdef _WIN32
1574 # include "ev_win32.c"
1575 #endif
1576
1577 /*****************************************************************************/
1578
1579 /* define a suitable floor function (only used by periodics atm) */
1580
1581 #if EV_USE_FLOOR
1582 # include <math.h>
1583 # define ev_floor(v) floor (v)
1584 #else
1585
1586 #include <float.h>
1587
1588 /* a floor() replacement function, should be independent of ev_tstamp type */
1589 noinline
1590 static ev_tstamp
1591 ev_floor (ev_tstamp v)
1592 {
1593 /* the choice of shift factor is not terribly important */
1594 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1595 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1596 #else
1597 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1598 #endif
1599
1600 /* argument too large for an unsigned long? */
1601 if (expect_false (v >= shift))
1602 {
1603 ev_tstamp f;
1604
1605 if (v == v - 1.)
1606 return v; /* very large number */
1607
1608 f = shift * ev_floor (v * (1. / shift));
1609 return f + ev_floor (v - f);
1610 }
1611
1612 /* special treatment for negative args? */
1613 if (expect_false (v < 0.))
1614 {
1615 ev_tstamp f = -ev_floor (-v);
1616
1617 return f - (f == v ? 0 : 1);
1618 }
1619
1620 /* fits into an unsigned long */
1621 return (unsigned long)v;
1622 }
1623
1624 #endif
1625
1626 /*****************************************************************************/
1627
1628 #ifdef __linux
1629 # include <sys/utsname.h>
1630 #endif
1631
1632 noinline ecb_cold
1633 static unsigned int
1634 ev_linux_version (void)
1635 {
1636 #ifdef __linux
1637 unsigned int v = 0;
1638 struct utsname buf;
1639 int i;
1640 char *p = buf.release;
1641
1642 if (uname (&buf))
1643 return 0;
1644
1645 for (i = 3+1; --i; )
1646 {
1647 unsigned int c = 0;
1648
1649 for (;;)
1650 {
1651 if (*p >= '0' && *p <= '9')
1652 c = c * 10 + *p++ - '0';
1653 else
1654 {
1655 p += *p == '.';
1656 break;
1657 }
1658 }
1659
1660 v = (v << 8) | c;
1661 }
1662
1663 return v;
1664 #else
1665 return 0;
1666 #endif
1667 }
1668
1669 /*****************************************************************************/
1670
1671 #if EV_AVOID_STDIO
1672 noinline ecb_cold
1673 static void
1674 ev_printerr (const char *msg)
1675 {
1676 write (STDERR_FILENO, msg, strlen (msg));
1677 }
1678 #endif
1679
1680 static void (*syserr_cb)(const char *msg) EV_THROW;
1681
1682 ecb_cold
1683 void
1684 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1685 {
1686 syserr_cb = cb;
1687 }
1688
1689 noinline ecb_cold
1690 static void
1691 ev_syserr (const char *msg)
1692 {
1693 if (!msg)
1694 msg = "(libev) system error";
1695
1696 if (syserr_cb)
1697 syserr_cb (msg);
1698 else
1699 {
1700 #if EV_AVOID_STDIO
1701 ev_printerr (msg);
1702 ev_printerr (": ");
1703 ev_printerr (strerror (errno));
1704 ev_printerr ("\n");
1705 #else
1706 perror (msg);
1707 #endif
1708 abort ();
1709 }
1710 }
1711
1712 static void *
1713 ev_realloc_emul (void *ptr, long size) EV_THROW
1714 {
1715 /* some systems, notably openbsd and darwin, fail to properly
1716 * implement realloc (x, 0) (as required by both ansi c-89 and
1717 * the single unix specification, so work around them here.
1718 * recently, also (at least) fedora and debian started breaking it,
1719 * despite documenting it otherwise.
1720 */
1721
1722 if (size)
1723 return realloc (ptr, size);
1724
1725 free (ptr);
1726 return 0;
1727 }
1728
1729 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1730
1731 ecb_cold
1732 void
1733 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1734 {
1735 alloc = cb;
1736 }
1737
1738 inline_speed void *
1739 ev_realloc (void *ptr, long size)
1740 {
1741 ptr = alloc (ptr, size);
1742
1743 if (!ptr && size)
1744 {
1745 #if EV_AVOID_STDIO
1746 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1747 #else
1748 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1749 #endif
1750 abort ();
1751 }
1752
1753 return ptr;
1754 }
1755
1756 #define ev_malloc(size) ev_realloc (0, (size))
1757 #define ev_free(ptr) ev_realloc ((ptr), 0)
1758
1759 /*****************************************************************************/
1760
1761 /* set in reify when reification needed */
1762 #define EV_ANFD_REIFY 1
1763
1764 /* file descriptor info structure */
1765 typedef struct
1766 {
1767 WL head;
1768 unsigned char events; /* the events watched for */
1769 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1770 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1771 unsigned char unused;
1772 #if EV_USE_EPOLL
1773 unsigned int egen; /* generation counter to counter epoll bugs */
1774 #endif
1775 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1776 SOCKET handle;
1777 #endif
1778 #if EV_USE_IOCP
1779 OVERLAPPED or, ow;
1780 #endif
1781 } ANFD;
1782
1783 /* stores the pending event set for a given watcher */
1784 typedef struct
1785 {
1786 W w;
1787 int events; /* the pending event set for the given watcher */
1788 } ANPENDING;
1789
1790 #if EV_USE_INOTIFY
1791 /* hash table entry per inotify-id */
1792 typedef struct
1793 {
1794 WL head;
1795 } ANFS;
1796 #endif
1797
1798 /* Heap Entry */
1799 #if EV_HEAP_CACHE_AT
1800 /* a heap element */
1801 typedef struct {
1802 ev_tstamp at;
1803 WT w;
1804 } ANHE;
1805
1806 #define ANHE_w(he) (he).w /* access watcher, read-write */
1807 #define ANHE_at(he) (he).at /* access cached at, read-only */
1808 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1809 #else
1810 /* a heap element */
1811 typedef WT ANHE;
1812
1813 #define ANHE_w(he) (he)
1814 #define ANHE_at(he) (he)->at
1815 #define ANHE_at_cache(he)
1816 #endif
1817
1818 #if EV_MULTIPLICITY
1819
1820 struct ev_loop
1821 {
1822 ev_tstamp ev_rt_now;
1823 #define ev_rt_now ((loop)->ev_rt_now)
1824 #define VAR(name,decl) decl;
1825 #include "ev_vars.h"
1826 #undef VAR
1827 };
1828 #include "ev_wrap.h"
1829
1830 static struct ev_loop default_loop_struct;
1831 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1832
1833 #else
1834
1835 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1836 #define VAR(name,decl) static decl;
1837 #include "ev_vars.h"
1838 #undef VAR
1839
1840 static int ev_default_loop_ptr;
1841
1842 #endif
1843
1844 #if EV_FEATURE_API
1845 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1846 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1847 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1848 #else
1849 # define EV_RELEASE_CB (void)0
1850 # define EV_ACQUIRE_CB (void)0
1851 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1852 #endif
1853
1854 #define EVBREAK_RECURSE 0x80
1855
1856 /*****************************************************************************/
1857
1858 #ifndef EV_HAVE_EV_TIME
1859 ev_tstamp
1860 ev_time (void) EV_THROW
1861 {
1862 #if EV_USE_REALTIME
1863 if (expect_true (have_realtime))
1864 {
1865 struct timespec ts;
1866 clock_gettime (CLOCK_REALTIME, &ts);
1867 return ts.tv_sec + ts.tv_nsec * 1e-9;
1868 }
1869 #endif
1870
1871 struct timeval tv;
1872 gettimeofday (&tv, 0);
1873 return tv.tv_sec + tv.tv_usec * 1e-6;
1874 }
1875 #endif
1876
1877 inline_size ev_tstamp
1878 get_clock (void)
1879 {
1880 #if EV_USE_MONOTONIC
1881 if (expect_true (have_monotonic))
1882 {
1883 struct timespec ts;
1884 clock_gettime (CLOCK_MONOTONIC, &ts);
1885 return ts.tv_sec + ts.tv_nsec * 1e-9;
1886 }
1887 #endif
1888
1889 return ev_time ();
1890 }
1891
1892 #if EV_MULTIPLICITY
1893 ev_tstamp
1894 ev_now (EV_P) EV_THROW
1895 {
1896 return ev_rt_now;
1897 }
1898 #endif
1899
1900 void
1901 ev_sleep (ev_tstamp delay) EV_THROW
1902 {
1903 if (delay > 0.)
1904 {
1905 #if EV_USE_NANOSLEEP
1906 struct timespec ts;
1907
1908 EV_TS_SET (ts, delay);
1909 nanosleep (&ts, 0);
1910 #elif defined _WIN32
1911 Sleep ((unsigned long)(delay * 1e3));
1912 #else
1913 struct timeval tv;
1914
1915 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1916 /* something not guaranteed by newer posix versions, but guaranteed */
1917 /* by older ones */
1918 EV_TV_SET (tv, delay);
1919 select (0, 0, 0, 0, &tv);
1920 #endif
1921 }
1922 }
1923
1924 /*****************************************************************************/
1925
1926 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1927
1928 /* find a suitable new size for the given array, */
1929 /* hopefully by rounding to a nice-to-malloc size */
1930 inline_size int
1931 array_nextsize (int elem, int cur, int cnt)
1932 {
1933 int ncur = cur + 1;
1934
1935 do
1936 ncur <<= 1;
1937 while (cnt > ncur);
1938
1939 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1940 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1941 {
1942 ncur *= elem;
1943 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1944 ncur = ncur - sizeof (void *) * 4;
1945 ncur /= elem;
1946 }
1947
1948 return ncur;
1949 }
1950
1951 noinline ecb_cold
1952 static void *
1953 array_realloc (int elem, void *base, int *cur, int cnt)
1954 {
1955 *cur = array_nextsize (elem, *cur, cnt);
1956 return ev_realloc (base, elem * *cur);
1957 }
1958
1959 #define array_init_zero(base,count) \
1960 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1961
1962 #define array_needsize(type,base,cur,cnt,init) \
1963 if (expect_false ((cnt) > (cur))) \
1964 { \
1965 ecb_unused int ocur_ = (cur); \
1966 (base) = (type *)array_realloc \
1967 (sizeof (type), (base), &(cur), (cnt)); \
1968 init ((base) + (ocur_), (cur) - ocur_); \
1969 }
1970
1971 #if 0
1972 #define array_slim(type,stem) \
1973 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1974 { \
1975 stem ## max = array_roundsize (stem ## cnt >> 1); \
1976 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1977 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1978 }
1979 #endif
1980
1981 #define array_free(stem, idx) \
1982 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1983
1984 /*****************************************************************************/
1985
1986 /* dummy callback for pending events */
1987 noinline
1988 static void
1989 pendingcb (EV_P_ ev_prepare *w, int revents)
1990 {
1991 }
1992
1993 noinline
1994 void
1995 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1996 {
1997 W w_ = (W)w;
1998 int pri = ABSPRI (w_);
1999
2000 if (expect_false (w_->pending))
2001 pendings [pri][w_->pending - 1].events |= revents;
2002 else
2003 {
2004 w_->pending = ++pendingcnt [pri];
2005 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
2006 pendings [pri][w_->pending - 1].w = w_;
2007 pendings [pri][w_->pending - 1].events = revents;
2008 }
2009
2010 pendingpri = NUMPRI - 1;
2011 }
2012
2013 inline_speed void
2014 feed_reverse (EV_P_ W w)
2015 {
2016 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2017 rfeeds [rfeedcnt++] = w;
2018 }
2019
2020 inline_size void
2021 feed_reverse_done (EV_P_ int revents)
2022 {
2023 do
2024 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2025 while (rfeedcnt);
2026 }
2027
2028 inline_speed void
2029 queue_events (EV_P_ W *events, int eventcnt, int type)
2030 {
2031 int i;
2032
2033 for (i = 0; i < eventcnt; ++i)
2034 ev_feed_event (EV_A_ events [i], type);
2035 }
2036
2037 /*****************************************************************************/
2038
2039 inline_speed void
2040 fd_event_nocheck (EV_P_ int fd, int revents)
2041 {
2042 ANFD *anfd = anfds + fd;
2043 ev_io *w;
2044
2045 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2046 {
2047 int ev = w->events & revents;
2048
2049 if (ev)
2050 ev_feed_event (EV_A_ (W)w, ev);
2051 }
2052 }
2053
2054 /* do not submit kernel events for fds that have reify set */
2055 /* because that means they changed while we were polling for new events */
2056 inline_speed void
2057 fd_event (EV_P_ int fd, int revents)
2058 {
2059 ANFD *anfd = anfds + fd;
2060
2061 if (expect_true (!anfd->reify))
2062 fd_event_nocheck (EV_A_ fd, revents);
2063 }
2064
2065 void
2066 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
2067 {
2068 if (fd >= 0 && fd < anfdmax)
2069 fd_event_nocheck (EV_A_ fd, revents);
2070 }
2071
2072 /* make sure the external fd watch events are in-sync */
2073 /* with the kernel/libev internal state */
2074 inline_size void
2075 fd_reify (EV_P)
2076 {
2077 int i;
2078
2079 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2080 for (i = 0; i < fdchangecnt; ++i)
2081 {
2082 int fd = fdchanges [i];
2083 ANFD *anfd = anfds + fd;
2084
2085 if (anfd->reify & EV__IOFDSET && anfd->head)
2086 {
2087 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2088
2089 if (handle != anfd->handle)
2090 {
2091 unsigned long arg;
2092
2093 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2094
2095 /* handle changed, but fd didn't - we need to do it in two steps */
2096 backend_modify (EV_A_ fd, anfd->events, 0);
2097 anfd->events = 0;
2098 anfd->handle = handle;
2099 }
2100 }
2101 }
2102 #endif
2103
2104 for (i = 0; i < fdchangecnt; ++i)
2105 {
2106 int fd = fdchanges [i];
2107 ANFD *anfd = anfds + fd;
2108 ev_io *w;
2109
2110 unsigned char o_events = anfd->events;
2111 unsigned char o_reify = anfd->reify;
2112
2113 anfd->reify = 0;
2114
2115 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2116 {
2117 anfd->events = 0;
2118
2119 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2120 anfd->events |= (unsigned char)w->events;
2121
2122 if (o_events != anfd->events)
2123 o_reify = EV__IOFDSET; /* actually |= */
2124 }
2125
2126 if (o_reify & EV__IOFDSET)
2127 backend_modify (EV_A_ fd, o_events, anfd->events);
2128 }
2129
2130 fdchangecnt = 0;
2131 }
2132
2133 /* something about the given fd changed */
2134 inline_size
2135 void
2136 fd_change (EV_P_ int fd, int flags)
2137 {
2138 unsigned char reify = anfds [fd].reify;
2139 anfds [fd].reify |= flags;
2140
2141 if (expect_true (!reify))
2142 {
2143 ++fdchangecnt;
2144 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
2145 fdchanges [fdchangecnt - 1] = fd;
2146 }
2147 }
2148
2149 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2150 inline_speed ecb_cold void
2151 fd_kill (EV_P_ int fd)
2152 {
2153 ev_io *w;
2154
2155 while ((w = (ev_io *)anfds [fd].head))
2156 {
2157 ev_io_stop (EV_A_ w);
2158 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2159 }
2160 }
2161
2162 /* check whether the given fd is actually valid, for error recovery */
2163 inline_size ecb_cold int
2164 fd_valid (int fd)
2165 {
2166 #ifdef _WIN32
2167 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2168 #else
2169 return fcntl (fd, F_GETFD) != -1;
2170 #endif
2171 }
2172
2173 /* called on EBADF to verify fds */
2174 noinline ecb_cold
2175 static void
2176 fd_ebadf (EV_P)
2177 {
2178 int fd;
2179
2180 for (fd = 0; fd < anfdmax; ++fd)
2181 if (anfds [fd].events)
2182 if (!fd_valid (fd) && errno == EBADF)
2183 fd_kill (EV_A_ fd);
2184 }
2185
2186 /* called on ENOMEM in select/poll to kill some fds and retry */
2187 noinline ecb_cold
2188 static void
2189 fd_enomem (EV_P)
2190 {
2191 int fd;
2192
2193 for (fd = anfdmax; fd--; )
2194 if (anfds [fd].events)
2195 {
2196 fd_kill (EV_A_ fd);
2197 break;
2198 }
2199 }
2200
2201 /* usually called after fork if backend needs to re-arm all fds from scratch */
2202 noinline
2203 static void
2204 fd_rearm_all (EV_P)
2205 {
2206 int fd;
2207
2208 for (fd = 0; fd < anfdmax; ++fd)
2209 if (anfds [fd].events)
2210 {
2211 anfds [fd].events = 0;
2212 anfds [fd].emask = 0;
2213 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2214 }
2215 }
2216
2217 /* used to prepare libev internal fd's */
2218 /* this is not fork-safe */
2219 inline_speed void
2220 fd_intern (int fd)
2221 {
2222 #ifdef _WIN32
2223 unsigned long arg = 1;
2224 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2225 #else
2226 fcntl (fd, F_SETFD, FD_CLOEXEC);
2227 fcntl (fd, F_SETFL, O_NONBLOCK);
2228 #endif
2229 }
2230
2231 /*****************************************************************************/
2232
2233 /*
2234 * the heap functions want a real array index. array index 0 is guaranteed to not
2235 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2236 * the branching factor of the d-tree.
2237 */
2238
2239 /*
2240 * at the moment we allow libev the luxury of two heaps,
2241 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2242 * which is more cache-efficient.
2243 * the difference is about 5% with 50000+ watchers.
2244 */
2245 #if EV_USE_4HEAP
2246
2247 #define DHEAP 4
2248 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2249 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2250 #define UPHEAP_DONE(p,k) ((p) == (k))
2251
2252 /* away from the root */
2253 inline_speed void
2254 downheap (ANHE *heap, int N, int k)
2255 {
2256 ANHE he = heap [k];
2257 ANHE *E = heap + N + HEAP0;
2258
2259 for (;;)
2260 {
2261 ev_tstamp minat;
2262 ANHE *minpos;
2263 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2264
2265 /* find minimum child */
2266 if (expect_true (pos + DHEAP - 1 < E))
2267 {
2268 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2269 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2270 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2271 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2272 }
2273 else if (pos < E)
2274 {
2275 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2276 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2277 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2278 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2279 }
2280 else
2281 break;
2282
2283 if (ANHE_at (he) <= minat)
2284 break;
2285
2286 heap [k] = *minpos;
2287 ev_active (ANHE_w (*minpos)) = k;
2288
2289 k = minpos - heap;
2290 }
2291
2292 heap [k] = he;
2293 ev_active (ANHE_w (he)) = k;
2294 }
2295
2296 #else /* 4HEAP */
2297
2298 #define HEAP0 1
2299 #define HPARENT(k) ((k) >> 1)
2300 #define UPHEAP_DONE(p,k) (!(p))
2301
2302 /* away from the root */
2303 inline_speed void
2304 downheap (ANHE *heap, int N, int k)
2305 {
2306 ANHE he = heap [k];
2307
2308 for (;;)
2309 {
2310 int c = k << 1;
2311
2312 if (c >= N + HEAP0)
2313 break;
2314
2315 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2316 ? 1 : 0;
2317
2318 if (ANHE_at (he) <= ANHE_at (heap [c]))
2319 break;
2320
2321 heap [k] = heap [c];
2322 ev_active (ANHE_w (heap [k])) = k;
2323
2324 k = c;
2325 }
2326
2327 heap [k] = he;
2328 ev_active (ANHE_w (he)) = k;
2329 }
2330 #endif
2331
2332 /* towards the root */
2333 inline_speed void
2334 upheap (ANHE *heap, int k)
2335 {
2336 ANHE he = heap [k];
2337
2338 for (;;)
2339 {
2340 int p = HPARENT (k);
2341
2342 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2343 break;
2344
2345 heap [k] = heap [p];
2346 ev_active (ANHE_w (heap [k])) = k;
2347 k = p;
2348 }
2349
2350 heap [k] = he;
2351 ev_active (ANHE_w (he)) = k;
2352 }
2353
2354 /* move an element suitably so it is in a correct place */
2355 inline_size void
2356 adjustheap (ANHE *heap, int N, int k)
2357 {
2358 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2359 upheap (heap, k);
2360 else
2361 downheap (heap, N, k);
2362 }
2363
2364 /* rebuild the heap: this function is used only once and executed rarely */
2365 inline_size void
2366 reheap (ANHE *heap, int N)
2367 {
2368 int i;
2369
2370 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2371 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2372 for (i = 0; i < N; ++i)
2373 upheap (heap, i + HEAP0);
2374 }
2375
2376 /*****************************************************************************/
2377
2378 /* associate signal watchers to a signal signal */
2379 typedef struct
2380 {
2381 EV_ATOMIC_T pending;
2382 #if EV_MULTIPLICITY
2383 EV_P;
2384 #endif
2385 WL head;
2386 } ANSIG;
2387
2388 static ANSIG signals [EV_NSIG - 1];
2389
2390 /*****************************************************************************/
2391
2392 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2393
2394 noinline ecb_cold
2395 static void
2396 evpipe_init (EV_P)
2397 {
2398 if (!ev_is_active (&pipe_w))
2399 {
2400 int fds [2];
2401
2402 # if EV_USE_EVENTFD
2403 fds [0] = -1;
2404 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2405 if (fds [1] < 0 && errno == EINVAL)
2406 fds [1] = eventfd (0, 0);
2407
2408 if (fds [1] < 0)
2409 # endif
2410 {
2411 while (pipe (fds))
2412 ev_syserr ("(libev) error creating signal/async pipe");
2413
2414 fd_intern (fds [0]);
2415 }
2416
2417 evpipe [0] = fds [0];
2418
2419 if (evpipe [1] < 0)
2420 evpipe [1] = fds [1]; /* first call, set write fd */
2421 else
2422 {
2423 /* on subsequent calls, do not change evpipe [1] */
2424 /* so that evpipe_write can always rely on its value. */
2425 /* this branch does not do anything sensible on windows, */
2426 /* so must not be executed on windows */
2427
2428 dup2 (fds [1], evpipe [1]);
2429 close (fds [1]);
2430 }
2431
2432 fd_intern (evpipe [1]);
2433
2434 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2435 ev_io_start (EV_A_ &pipe_w);
2436 ev_unref (EV_A); /* watcher should not keep loop alive */
2437 }
2438 }
2439
2440 inline_speed void
2441 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2442 {
2443 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2444
2445 if (expect_true (*flag))
2446 return;
2447
2448 *flag = 1;
2449 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2450
2451 pipe_write_skipped = 1;
2452
2453 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2454
2455 if (pipe_write_wanted)
2456 {
2457 int old_errno;
2458
2459 pipe_write_skipped = 0;
2460 ECB_MEMORY_FENCE_RELEASE;
2461
2462 old_errno = errno; /* save errno because write will clobber it */
2463
2464 #if EV_USE_EVENTFD
2465 if (evpipe [0] < 0)
2466 {
2467 uint64_t counter = 1;
2468 write (evpipe [1], &counter, sizeof (uint64_t));
2469 }
2470 else
2471 #endif
2472 {
2473 #ifdef _WIN32
2474 WSABUF buf;
2475 DWORD sent;
2476 buf.buf = &buf;
2477 buf.len = 1;
2478 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2479 #else
2480 write (evpipe [1], &(evpipe [1]), 1);
2481 #endif
2482 }
2483
2484 errno = old_errno;
2485 }
2486 }
2487
2488 /* called whenever the libev signal pipe */
2489 /* got some events (signal, async) */
2490 static void
2491 pipecb (EV_P_ ev_io *iow, int revents)
2492 {
2493 int i;
2494
2495 if (revents & EV_READ)
2496 {
2497 #if EV_USE_EVENTFD
2498 if (evpipe [0] < 0)
2499 {
2500 uint64_t counter;
2501 read (evpipe [1], &counter, sizeof (uint64_t));
2502 }
2503 else
2504 #endif
2505 {
2506 char dummy[4];
2507 #ifdef _WIN32
2508 WSABUF buf;
2509 DWORD recvd;
2510 DWORD flags = 0;
2511 buf.buf = dummy;
2512 buf.len = sizeof (dummy);
2513 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2514 #else
2515 read (evpipe [0], &dummy, sizeof (dummy));
2516 #endif
2517 }
2518 }
2519
2520 pipe_write_skipped = 0;
2521
2522 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2523
2524 #if EV_SIGNAL_ENABLE
2525 if (sig_pending)
2526 {
2527 sig_pending = 0;
2528
2529 ECB_MEMORY_FENCE;
2530
2531 for (i = EV_NSIG - 1; i--; )
2532 if (expect_false (signals [i].pending))
2533 ev_feed_signal_event (EV_A_ i + 1);
2534 }
2535 #endif
2536
2537 #if EV_ASYNC_ENABLE
2538 if (async_pending)
2539 {
2540 async_pending = 0;
2541
2542 ECB_MEMORY_FENCE;
2543
2544 for (i = asynccnt; i--; )
2545 if (asyncs [i]->sent)
2546 {
2547 asyncs [i]->sent = 0;
2548 ECB_MEMORY_FENCE_RELEASE;
2549 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2550 }
2551 }
2552 #endif
2553 }
2554
2555 /*****************************************************************************/
2556
2557 void
2558 ev_feed_signal (int signum) EV_THROW
2559 {
2560 #if EV_MULTIPLICITY
2561 EV_P;
2562 ECB_MEMORY_FENCE_ACQUIRE;
2563 EV_A = signals [signum - 1].loop;
2564
2565 if (!EV_A)
2566 return;
2567 #endif
2568
2569 signals [signum - 1].pending = 1;
2570 evpipe_write (EV_A_ &sig_pending);
2571 }
2572
2573 static void
2574 ev_sighandler (int signum)
2575 {
2576 #ifdef _WIN32
2577 signal (signum, ev_sighandler);
2578 #endif
2579
2580 ev_feed_signal (signum);
2581 }
2582
2583 noinline
2584 void
2585 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2586 {
2587 WL w;
2588
2589 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2590 return;
2591
2592 --signum;
2593
2594 #if EV_MULTIPLICITY
2595 /* it is permissible to try to feed a signal to the wrong loop */
2596 /* or, likely more useful, feeding a signal nobody is waiting for */
2597
2598 if (expect_false (signals [signum].loop != EV_A))
2599 return;
2600 #endif
2601
2602 signals [signum].pending = 0;
2603 ECB_MEMORY_FENCE_RELEASE;
2604
2605 for (w = signals [signum].head; w; w = w->next)
2606 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2607 }
2608
2609 #if EV_USE_SIGNALFD
2610 static void
2611 sigfdcb (EV_P_ ev_io *iow, int revents)
2612 {
2613 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2614
2615 for (;;)
2616 {
2617 ssize_t res = read (sigfd, si, sizeof (si));
2618
2619 /* not ISO-C, as res might be -1, but works with SuS */
2620 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2621 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2622
2623 if (res < (ssize_t)sizeof (si))
2624 break;
2625 }
2626 }
2627 #endif
2628
2629 #endif
2630
2631 /*****************************************************************************/
2632
2633 #if EV_CHILD_ENABLE
2634 static WL childs [EV_PID_HASHSIZE];
2635
2636 static ev_signal childev;
2637
2638 #ifndef WIFCONTINUED
2639 # define WIFCONTINUED(status) 0
2640 #endif
2641
2642 /* handle a single child status event */
2643 inline_speed void
2644 child_reap (EV_P_ int chain, int pid, int status)
2645 {
2646 ev_child *w;
2647 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2648
2649 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2650 {
2651 if ((w->pid == pid || !w->pid)
2652 && (!traced || (w->flags & 1)))
2653 {
2654 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2655 w->rpid = pid;
2656 w->rstatus = status;
2657 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2658 }
2659 }
2660 }
2661
2662 #ifndef WCONTINUED
2663 # define WCONTINUED 0
2664 #endif
2665
2666 /* called on sigchld etc., calls waitpid */
2667 static void
2668 childcb (EV_P_ ev_signal *sw, int revents)
2669 {
2670 int pid, status;
2671
2672 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2673 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2674 if (!WCONTINUED
2675 || errno != EINVAL
2676 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2677 return;
2678
2679 /* make sure we are called again until all children have been reaped */
2680 /* we need to do it this way so that the callback gets called before we continue */
2681 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2682
2683 child_reap (EV_A_ pid, pid, status);
2684 if ((EV_PID_HASHSIZE) > 1)
2685 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2686 }
2687
2688 #endif
2689
2690 /*****************************************************************************/
2691
2692 #if EV_USE_IOCP
2693 # include "ev_iocp.c"
2694 #endif
2695 #if EV_USE_PORT
2696 # include "ev_port.c"
2697 #endif
2698 #if EV_USE_KQUEUE
2699 # include "ev_kqueue.c"
2700 #endif
2701 #if EV_USE_EPOLL
2702 # include "ev_epoll.c"
2703 #endif
2704 #if EV_USE_POLL
2705 # include "ev_poll.c"
2706 #endif
2707 #if EV_USE_SELECT
2708 # include "ev_select.c"
2709 #endif
2710
2711 ecb_cold int
2712 ev_version_major (void) EV_THROW
2713 {
2714 return EV_VERSION_MAJOR;
2715 }
2716
2717 ecb_cold int
2718 ev_version_minor (void) EV_THROW
2719 {
2720 return EV_VERSION_MINOR;
2721 }
2722
2723 /* return true if we are running with elevated privileges and should ignore env variables */
2724 inline_size ecb_cold int
2725 enable_secure (void)
2726 {
2727 #ifdef _WIN32
2728 return 0;
2729 #else
2730 return getuid () != geteuid ()
2731 || getgid () != getegid ();
2732 #endif
2733 }
2734
2735 ecb_cold
2736 unsigned int
2737 ev_supported_backends (void) EV_THROW
2738 {
2739 unsigned int flags = 0;
2740
2741 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2742 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2743 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2744 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2745 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2746
2747 return flags;
2748 }
2749
2750 ecb_cold
2751 unsigned int
2752 ev_recommended_backends (void) EV_THROW
2753 {
2754 unsigned int flags = ev_supported_backends ();
2755
2756 #ifndef __NetBSD__
2757 /* kqueue is borked on everything but netbsd apparently */
2758 /* it usually doesn't work correctly on anything but sockets and pipes */
2759 flags &= ~EVBACKEND_KQUEUE;
2760 #endif
2761 #ifdef __APPLE__
2762 /* only select works correctly on that "unix-certified" platform */
2763 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2764 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2765 #endif
2766 #ifdef __FreeBSD__
2767 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2768 #endif
2769
2770 return flags;
2771 }
2772
2773 ecb_cold
2774 unsigned int
2775 ev_embeddable_backends (void) EV_THROW
2776 {
2777 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2778
2779 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2780 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2781 flags &= ~EVBACKEND_EPOLL;
2782
2783 return flags;
2784 }
2785
2786 unsigned int
2787 ev_backend (EV_P) EV_THROW
2788 {
2789 return backend;
2790 }
2791
2792 #if EV_FEATURE_API
2793 unsigned int
2794 ev_iteration (EV_P) EV_THROW
2795 {
2796 return loop_count;
2797 }
2798
2799 unsigned int
2800 ev_depth (EV_P) EV_THROW
2801 {
2802 return loop_depth;
2803 }
2804
2805 void
2806 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2807 {
2808 io_blocktime = interval;
2809 }
2810
2811 void
2812 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2813 {
2814 timeout_blocktime = interval;
2815 }
2816
2817 void
2818 ev_set_userdata (EV_P_ void *data) EV_THROW
2819 {
2820 userdata = data;
2821 }
2822
2823 void *
2824 ev_userdata (EV_P) EV_THROW
2825 {
2826 return userdata;
2827 }
2828
2829 void
2830 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2831 {
2832 invoke_cb = invoke_pending_cb;
2833 }
2834
2835 void
2836 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2837 {
2838 release_cb = release;
2839 acquire_cb = acquire;
2840 }
2841 #endif
2842
2843 /* initialise a loop structure, must be zero-initialised */
2844 noinline ecb_cold
2845 static void
2846 loop_init (EV_P_ unsigned int flags) EV_THROW
2847 {
2848 if (!backend)
2849 {
2850 origflags = flags;
2851
2852 #if EV_USE_REALTIME
2853 if (!have_realtime)
2854 {
2855 struct timespec ts;
2856
2857 if (!clock_gettime (CLOCK_REALTIME, &ts))
2858 have_realtime = 1;
2859 }
2860 #endif
2861
2862 #if EV_USE_MONOTONIC
2863 if (!have_monotonic)
2864 {
2865 struct timespec ts;
2866
2867 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2868 have_monotonic = 1;
2869 }
2870 #endif
2871
2872 /* pid check not overridable via env */
2873 #ifndef _WIN32
2874 if (flags & EVFLAG_FORKCHECK)
2875 curpid = getpid ();
2876 #endif
2877
2878 if (!(flags & EVFLAG_NOENV)
2879 && !enable_secure ()
2880 && getenv ("LIBEV_FLAGS"))
2881 flags = atoi (getenv ("LIBEV_FLAGS"));
2882
2883 ev_rt_now = ev_time ();
2884 mn_now = get_clock ();
2885 now_floor = mn_now;
2886 rtmn_diff = ev_rt_now - mn_now;
2887 #if EV_FEATURE_API
2888 invoke_cb = ev_invoke_pending;
2889 #endif
2890
2891 io_blocktime = 0.;
2892 timeout_blocktime = 0.;
2893 backend = 0;
2894 backend_fd = -1;
2895 sig_pending = 0;
2896 #if EV_ASYNC_ENABLE
2897 async_pending = 0;
2898 #endif
2899 pipe_write_skipped = 0;
2900 pipe_write_wanted = 0;
2901 evpipe [0] = -1;
2902 evpipe [1] = -1;
2903 #if EV_USE_INOTIFY
2904 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2905 #endif
2906 #if EV_USE_SIGNALFD
2907 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2908 #endif
2909
2910 if (!(flags & EVBACKEND_MASK))
2911 flags |= ev_recommended_backends ();
2912
2913 #if EV_USE_IOCP
2914 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2915 #endif
2916 #if EV_USE_PORT
2917 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2918 #endif
2919 #if EV_USE_KQUEUE
2920 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2921 #endif
2922 #if EV_USE_EPOLL
2923 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2924 #endif
2925 #if EV_USE_POLL
2926 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2927 #endif
2928 #if EV_USE_SELECT
2929 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2930 #endif
2931
2932 ev_prepare_init (&pending_w, pendingcb);
2933
2934 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2935 ev_init (&pipe_w, pipecb);
2936 ev_set_priority (&pipe_w, EV_MAXPRI);
2937 #endif
2938 }
2939 }
2940
2941 /* free up a loop structure */
2942 ecb_cold
2943 void
2944 ev_loop_destroy (EV_P)
2945 {
2946 int i;
2947
2948 #if EV_MULTIPLICITY
2949 /* mimic free (0) */
2950 if (!EV_A)
2951 return;
2952 #endif
2953
2954 #if EV_CLEANUP_ENABLE
2955 /* queue cleanup watchers (and execute them) */
2956 if (expect_false (cleanupcnt))
2957 {
2958 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2959 EV_INVOKE_PENDING;
2960 }
2961 #endif
2962
2963 #if EV_CHILD_ENABLE
2964 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2965 {
2966 ev_ref (EV_A); /* child watcher */
2967 ev_signal_stop (EV_A_ &childev);
2968 }
2969 #endif
2970
2971 if (ev_is_active (&pipe_w))
2972 {
2973 /*ev_ref (EV_A);*/
2974 /*ev_io_stop (EV_A_ &pipe_w);*/
2975
2976 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2977 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2978 }
2979
2980 #if EV_USE_SIGNALFD
2981 if (ev_is_active (&sigfd_w))
2982 close (sigfd);
2983 #endif
2984
2985 #if EV_USE_INOTIFY
2986 if (fs_fd >= 0)
2987 close (fs_fd);
2988 #endif
2989
2990 if (backend_fd >= 0)
2991 close (backend_fd);
2992
2993 #if EV_USE_IOCP
2994 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2995 #endif
2996 #if EV_USE_PORT
2997 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2998 #endif
2999 #if EV_USE_KQUEUE
3000 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
3001 #endif
3002 #if EV_USE_EPOLL
3003 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3004 #endif
3005 #if EV_USE_POLL
3006 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3007 #endif
3008 #if EV_USE_SELECT
3009 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
3010 #endif
3011
3012 for (i = NUMPRI; i--; )
3013 {
3014 array_free (pending, [i]);
3015 #if EV_IDLE_ENABLE
3016 array_free (idle, [i]);
3017 #endif
3018 }
3019
3020 ev_free (anfds); anfds = 0; anfdmax = 0;
3021
3022 /* have to use the microsoft-never-gets-it-right macro */
3023 array_free (rfeed, EMPTY);
3024 array_free (fdchange, EMPTY);
3025 array_free (timer, EMPTY);
3026 #if EV_PERIODIC_ENABLE
3027 array_free (periodic, EMPTY);
3028 #endif
3029 #if EV_FORK_ENABLE
3030 array_free (fork, EMPTY);
3031 #endif
3032 #if EV_CLEANUP_ENABLE
3033 array_free (cleanup, EMPTY);
3034 #endif
3035 array_free (prepare, EMPTY);
3036 array_free (check, EMPTY);
3037 #if EV_ASYNC_ENABLE
3038 array_free (async, EMPTY);
3039 #endif
3040
3041 backend = 0;
3042
3043 #if EV_MULTIPLICITY
3044 if (ev_is_default_loop (EV_A))
3045 #endif
3046 ev_default_loop_ptr = 0;
3047 #if EV_MULTIPLICITY
3048 else
3049 ev_free (EV_A);
3050 #endif
3051 }
3052
3053 #if EV_USE_INOTIFY
3054 inline_size void infy_fork (EV_P);
3055 #endif
3056
3057 inline_size void
3058 loop_fork (EV_P)
3059 {
3060 #if EV_USE_PORT
3061 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3062 #endif
3063 #if EV_USE_KQUEUE
3064 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
3065 #endif
3066 #if EV_USE_EPOLL
3067 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3068 #endif
3069 #if EV_USE_INOTIFY
3070 infy_fork (EV_A);
3071 #endif
3072
3073 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3074 if (ev_is_active (&pipe_w) && postfork != 2)
3075 {
3076 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3077
3078 ev_ref (EV_A);
3079 ev_io_stop (EV_A_ &pipe_w);
3080
3081 if (evpipe [0] >= 0)
3082 EV_WIN32_CLOSE_FD (evpipe [0]);
3083
3084 evpipe_init (EV_A);
3085 /* iterate over everything, in case we missed something before */
3086 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3087 }
3088 #endif
3089
3090 postfork = 0;
3091 }
3092
3093 #if EV_MULTIPLICITY
3094
3095 ecb_cold
3096 struct ev_loop *
3097 ev_loop_new (unsigned int flags) EV_THROW
3098 {
3099 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3100
3101 memset (EV_A, 0, sizeof (struct ev_loop));
3102 loop_init (EV_A_ flags);
3103
3104 if (ev_backend (EV_A))
3105 return EV_A;
3106
3107 ev_free (EV_A);
3108 return 0;
3109 }
3110
3111 #endif /* multiplicity */
3112
3113 #if EV_VERIFY
3114 noinline ecb_cold
3115 static void
3116 verify_watcher (EV_P_ W w)
3117 {
3118 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3119
3120 if (w->pending)
3121 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3122 }
3123
3124 noinline ecb_cold
3125 static void
3126 verify_heap (EV_P_ ANHE *heap, int N)
3127 {
3128 int i;
3129
3130 for (i = HEAP0; i < N + HEAP0; ++i)
3131 {
3132 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3133 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3134 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3135
3136 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3137 }
3138 }
3139
3140 noinline ecb_cold
3141 static void
3142 array_verify (EV_P_ W *ws, int cnt)
3143 {
3144 while (cnt--)
3145 {
3146 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3147 verify_watcher (EV_A_ ws [cnt]);
3148 }
3149 }
3150 #endif
3151
3152 #if EV_FEATURE_API
3153 void ecb_cold
3154 ev_verify (EV_P) EV_THROW
3155 {
3156 #if EV_VERIFY
3157 int i;
3158 WL w, w2;
3159
3160 assert (activecnt >= -1);
3161
3162 assert (fdchangemax >= fdchangecnt);
3163 for (i = 0; i < fdchangecnt; ++i)
3164 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3165
3166 assert (anfdmax >= 0);
3167 for (i = 0; i < anfdmax; ++i)
3168 {
3169 int j = 0;
3170
3171 for (w = w2 = anfds [i].head; w; w = w->next)
3172 {
3173 verify_watcher (EV_A_ (W)w);
3174
3175 if (j++ & 1)
3176 {
3177 assert (("libev: io watcher list contains a loop", w != w2));
3178 w2 = w2->next;
3179 }
3180
3181 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3182 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3183 }
3184 }
3185
3186 assert (timermax >= timercnt);
3187 verify_heap (EV_A_ timers, timercnt);
3188
3189 #if EV_PERIODIC_ENABLE
3190 assert (periodicmax >= periodiccnt);
3191 verify_heap (EV_A_ periodics, periodiccnt);
3192 #endif
3193
3194 for (i = NUMPRI; i--; )
3195 {
3196 assert (pendingmax [i] >= pendingcnt [i]);
3197 #if EV_IDLE_ENABLE
3198 assert (idleall >= 0);
3199 assert (idlemax [i] >= idlecnt [i]);
3200 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3201 #endif
3202 }
3203
3204 #if EV_FORK_ENABLE
3205 assert (forkmax >= forkcnt);
3206 array_verify (EV_A_ (W *)forks, forkcnt);
3207 #endif
3208
3209 #if EV_CLEANUP_ENABLE
3210 assert (cleanupmax >= cleanupcnt);
3211 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3212 #endif
3213
3214 #if EV_ASYNC_ENABLE
3215 assert (asyncmax >= asynccnt);
3216 array_verify (EV_A_ (W *)asyncs, asynccnt);
3217 #endif
3218
3219 #if EV_PREPARE_ENABLE
3220 assert (preparemax >= preparecnt);
3221 array_verify (EV_A_ (W *)prepares, preparecnt);
3222 #endif
3223
3224 #if EV_CHECK_ENABLE
3225 assert (checkmax >= checkcnt);
3226 array_verify (EV_A_ (W *)checks, checkcnt);
3227 #endif
3228
3229 # if 0
3230 #if EV_CHILD_ENABLE
3231 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3232 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3233 #endif
3234 # endif
3235 #endif
3236 }
3237 #endif
3238
3239 #if EV_MULTIPLICITY
3240 ecb_cold
3241 struct ev_loop *
3242 #else
3243 int
3244 #endif
3245 ev_default_loop (unsigned int flags) EV_THROW
3246 {
3247 if (!ev_default_loop_ptr)
3248 {
3249 #if EV_MULTIPLICITY
3250 EV_P = ev_default_loop_ptr = &default_loop_struct;
3251 #else
3252 ev_default_loop_ptr = 1;
3253 #endif
3254
3255 loop_init (EV_A_ flags);
3256
3257 if (ev_backend (EV_A))
3258 {
3259 #if EV_CHILD_ENABLE
3260 ev_signal_init (&childev, childcb, SIGCHLD);
3261 ev_set_priority (&childev, EV_MAXPRI);
3262 ev_signal_start (EV_A_ &childev);
3263 ev_unref (EV_A); /* child watcher should not keep loop alive */
3264 #endif
3265 }
3266 else
3267 ev_default_loop_ptr = 0;
3268 }
3269
3270 return ev_default_loop_ptr;
3271 }
3272
3273 void
3274 ev_loop_fork (EV_P) EV_THROW
3275 {
3276 postfork = 1;
3277 }
3278
3279 /*****************************************************************************/
3280
3281 void
3282 ev_invoke (EV_P_ void *w, int revents)
3283 {
3284 EV_CB_INVOKE ((W)w, revents);
3285 }
3286
3287 unsigned int
3288 ev_pending_count (EV_P) EV_THROW
3289 {
3290 int pri;
3291 unsigned int count = 0;
3292
3293 for (pri = NUMPRI; pri--; )
3294 count += pendingcnt [pri];
3295
3296 return count;
3297 }
3298
3299 noinline
3300 void
3301 ev_invoke_pending (EV_P)
3302 {
3303 pendingpri = NUMPRI;
3304
3305 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3306 {
3307 --pendingpri;
3308
3309 while (pendingcnt [pendingpri])
3310 {
3311 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3312
3313 p->w->pending = 0;
3314 EV_CB_INVOKE (p->w, p->events);
3315 EV_FREQUENT_CHECK;
3316 }
3317 }
3318 }
3319
3320 #if EV_IDLE_ENABLE
3321 /* make idle watchers pending. this handles the "call-idle */
3322 /* only when higher priorities are idle" logic */
3323 inline_size void
3324 idle_reify (EV_P)
3325 {
3326 if (expect_false (idleall))
3327 {
3328 int pri;
3329
3330 for (pri = NUMPRI; pri--; )
3331 {
3332 if (pendingcnt [pri])
3333 break;
3334
3335 if (idlecnt [pri])
3336 {
3337 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3338 break;
3339 }
3340 }
3341 }
3342 }
3343 #endif
3344
3345 /* make timers pending */
3346 inline_size void
3347 timers_reify (EV_P)
3348 {
3349 EV_FREQUENT_CHECK;
3350
3351 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3352 {
3353 do
3354 {
3355 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3356
3357 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3358
3359 /* first reschedule or stop timer */
3360 if (w->repeat)
3361 {
3362 ev_at (w) += w->repeat;
3363 if (ev_at (w) < mn_now)
3364 ev_at (w) = mn_now;
3365
3366 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3367
3368 ANHE_at_cache (timers [HEAP0]);
3369 downheap (timers, timercnt, HEAP0);
3370 }
3371 else
3372 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3373
3374 EV_FREQUENT_CHECK;
3375 feed_reverse (EV_A_ (W)w);
3376 }
3377 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3378
3379 feed_reverse_done (EV_A_ EV_TIMER);
3380 }
3381 }
3382
3383 #if EV_PERIODIC_ENABLE
3384
3385 noinline
3386 static void
3387 periodic_recalc (EV_P_ ev_periodic *w)
3388 {
3389 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3390 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3391
3392 /* the above almost always errs on the low side */
3393 while (at <= ev_rt_now)
3394 {
3395 ev_tstamp nat = at + w->interval;
3396
3397 /* when resolution fails us, we use ev_rt_now */
3398 if (expect_false (nat == at))
3399 {
3400 at = ev_rt_now;
3401 break;
3402 }
3403
3404 at = nat;
3405 }
3406
3407 ev_at (w) = at;
3408 }
3409
3410 /* make periodics pending */
3411 inline_size void
3412 periodics_reify (EV_P)
3413 {
3414 EV_FREQUENT_CHECK;
3415
3416 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3417 {
3418 do
3419 {
3420 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3421
3422 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3423
3424 /* first reschedule or stop timer */
3425 if (w->reschedule_cb)
3426 {
3427 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3428
3429 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3430
3431 ANHE_at_cache (periodics [HEAP0]);
3432 downheap (periodics, periodiccnt, HEAP0);
3433 }
3434 else if (w->interval)
3435 {
3436 periodic_recalc (EV_A_ w);
3437 ANHE_at_cache (periodics [HEAP0]);
3438 downheap (periodics, periodiccnt, HEAP0);
3439 }
3440 else
3441 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3442
3443 EV_FREQUENT_CHECK;
3444 feed_reverse (EV_A_ (W)w);
3445 }
3446 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3447
3448 feed_reverse_done (EV_A_ EV_PERIODIC);
3449 }
3450 }
3451
3452 /* simply recalculate all periodics */
3453 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3454 noinline ecb_cold
3455 static void
3456 periodics_reschedule (EV_P)
3457 {
3458 int i;
3459
3460 /* adjust periodics after time jump */
3461 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3462 {
3463 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3464
3465 if (w->reschedule_cb)
3466 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3467 else if (w->interval)
3468 periodic_recalc (EV_A_ w);
3469
3470 ANHE_at_cache (periodics [i]);
3471 }
3472
3473 reheap (periodics, periodiccnt);
3474 }
3475 #endif
3476
3477 /* adjust all timers by a given offset */
3478 noinline ecb_cold
3479 static void
3480 timers_reschedule (EV_P_ ev_tstamp adjust)
3481 {
3482 int i;
3483
3484 for (i = 0; i < timercnt; ++i)
3485 {
3486 ANHE *he = timers + i + HEAP0;
3487 ANHE_w (*he)->at += adjust;
3488 ANHE_at_cache (*he);
3489 }
3490 }
3491
3492 /* fetch new monotonic and realtime times from the kernel */
3493 /* also detect if there was a timejump, and act accordingly */
3494 inline_speed void
3495 time_update (EV_P_ ev_tstamp max_block)
3496 {
3497 #if EV_USE_MONOTONIC
3498 if (expect_true (have_monotonic))
3499 {
3500 int i;
3501 ev_tstamp odiff = rtmn_diff;
3502
3503 mn_now = get_clock ();
3504
3505 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3506 /* interpolate in the meantime */
3507 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3508 {
3509 ev_rt_now = rtmn_diff + mn_now;
3510 return;
3511 }
3512
3513 now_floor = mn_now;
3514 ev_rt_now = ev_time ();
3515
3516 /* loop a few times, before making important decisions.
3517 * on the choice of "4": one iteration isn't enough,
3518 * in case we get preempted during the calls to
3519 * ev_time and get_clock. a second call is almost guaranteed
3520 * to succeed in that case, though. and looping a few more times
3521 * doesn't hurt either as we only do this on time-jumps or
3522 * in the unlikely event of having been preempted here.
3523 */
3524 for (i = 4; --i; )
3525 {
3526 ev_tstamp diff;
3527 rtmn_diff = ev_rt_now - mn_now;
3528
3529 diff = odiff - rtmn_diff;
3530
3531 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3532 return; /* all is well */
3533
3534 ev_rt_now = ev_time ();
3535 mn_now = get_clock ();
3536 now_floor = mn_now;
3537 }
3538
3539 /* no timer adjustment, as the monotonic clock doesn't jump */
3540 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3541 # if EV_PERIODIC_ENABLE
3542 periodics_reschedule (EV_A);
3543 # endif
3544 }
3545 else
3546 #endif
3547 {
3548 ev_rt_now = ev_time ();
3549
3550 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3551 {
3552 /* adjust timers. this is easy, as the offset is the same for all of them */
3553 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3554 #if EV_PERIODIC_ENABLE
3555 periodics_reschedule (EV_A);
3556 #endif
3557 }
3558
3559 mn_now = ev_rt_now;
3560 }
3561 }
3562
3563 int
3564 ev_run (EV_P_ int flags)
3565 {
3566 #if EV_FEATURE_API
3567 ++loop_depth;
3568 #endif
3569
3570 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3571
3572 loop_done = EVBREAK_CANCEL;
3573
3574 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3575
3576 do
3577 {
3578 #if EV_VERIFY >= 2
3579 ev_verify (EV_A);
3580 #endif
3581
3582 #ifndef _WIN32
3583 if (expect_false (curpid)) /* penalise the forking check even more */
3584 if (expect_false (getpid () != curpid))
3585 {
3586 curpid = getpid ();
3587 postfork = 1;
3588 }
3589 #endif
3590
3591 #if EV_FORK_ENABLE
3592 /* we might have forked, so queue fork handlers */
3593 if (expect_false (postfork))
3594 if (forkcnt)
3595 {
3596 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3597 EV_INVOKE_PENDING;
3598 }
3599 #endif
3600
3601 #if EV_PREPARE_ENABLE
3602 /* queue prepare watchers (and execute them) */
3603 if (expect_false (preparecnt))
3604 {
3605 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3606 EV_INVOKE_PENDING;
3607 }
3608 #endif
3609
3610 if (expect_false (loop_done))
3611 break;
3612
3613 /* we might have forked, so reify kernel state if necessary */
3614 if (expect_false (postfork))
3615 loop_fork (EV_A);
3616
3617 /* update fd-related kernel structures */
3618 fd_reify (EV_A);
3619
3620 /* calculate blocking time */
3621 {
3622 ev_tstamp waittime = 0.;
3623 ev_tstamp sleeptime = 0.;
3624
3625 /* remember old timestamp for io_blocktime calculation */
3626 ev_tstamp prev_mn_now = mn_now;
3627
3628 /* update time to cancel out callback processing overhead */
3629 time_update (EV_A_ 1e100);
3630
3631 /* from now on, we want a pipe-wake-up */
3632 pipe_write_wanted = 1;
3633
3634 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3635
3636 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3637 {
3638 waittime = MAX_BLOCKTIME;
3639
3640 if (timercnt)
3641 {
3642 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3643 if (waittime > to) waittime = to;
3644 }
3645
3646 #if EV_PERIODIC_ENABLE
3647 if (periodiccnt)
3648 {
3649 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3650 if (waittime > to) waittime = to;
3651 }
3652 #endif
3653
3654 /* don't let timeouts decrease the waittime below timeout_blocktime */
3655 if (expect_false (waittime < timeout_blocktime))
3656 waittime = timeout_blocktime;
3657
3658 /* at this point, we NEED to wait, so we have to ensure */
3659 /* to pass a minimum nonzero value to the backend */
3660 if (expect_false (waittime < backend_mintime))
3661 waittime = backend_mintime;
3662
3663 /* extra check because io_blocktime is commonly 0 */
3664 if (expect_false (io_blocktime))
3665 {
3666 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3667
3668 if (sleeptime > waittime - backend_mintime)
3669 sleeptime = waittime - backend_mintime;
3670
3671 if (expect_true (sleeptime > 0.))
3672 {
3673 ev_sleep (sleeptime);
3674 waittime -= sleeptime;
3675 }
3676 }
3677 }
3678
3679 #if EV_FEATURE_API
3680 ++loop_count;
3681 #endif
3682 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3683 backend_poll (EV_A_ waittime);
3684 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3685
3686 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3687
3688 ECB_MEMORY_FENCE_ACQUIRE;
3689 if (pipe_write_skipped)
3690 {
3691 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3692 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3693 }
3694
3695
3696 /* update ev_rt_now, do magic */
3697 time_update (EV_A_ waittime + sleeptime);
3698 }
3699
3700 /* queue pending timers and reschedule them */
3701 timers_reify (EV_A); /* relative timers called last */
3702 #if EV_PERIODIC_ENABLE
3703 periodics_reify (EV_A); /* absolute timers called first */
3704 #endif
3705
3706 #if EV_IDLE_ENABLE
3707 /* queue idle watchers unless other events are pending */
3708 idle_reify (EV_A);
3709 #endif
3710
3711 #if EV_CHECK_ENABLE
3712 /* queue check watchers, to be executed first */
3713 if (expect_false (checkcnt))
3714 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3715 #endif
3716
3717 EV_INVOKE_PENDING;
3718 }
3719 while (expect_true (
3720 activecnt
3721 && !loop_done
3722 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3723 ));
3724
3725 if (loop_done == EVBREAK_ONE)
3726 loop_done = EVBREAK_CANCEL;
3727
3728 #if EV_FEATURE_API
3729 --loop_depth;
3730 #endif
3731
3732 return activecnt;
3733 }
3734
3735 void
3736 ev_break (EV_P_ int how) EV_THROW
3737 {
3738 loop_done = how;
3739 }
3740
3741 void
3742 ev_ref (EV_P) EV_THROW
3743 {
3744 ++activecnt;
3745 }
3746
3747 void
3748 ev_unref (EV_P) EV_THROW
3749 {
3750 --activecnt;
3751 }
3752
3753 void
3754 ev_now_update (EV_P) EV_THROW
3755 {
3756 time_update (EV_A_ 1e100);
3757 }
3758
3759 void
3760 ev_suspend (EV_P) EV_THROW
3761 {
3762 ev_now_update (EV_A);
3763 }
3764
3765 void
3766 ev_resume (EV_P) EV_THROW
3767 {
3768 ev_tstamp mn_prev = mn_now;
3769
3770 ev_now_update (EV_A);
3771 timers_reschedule (EV_A_ mn_now - mn_prev);
3772 #if EV_PERIODIC_ENABLE
3773 /* TODO: really do this? */
3774 periodics_reschedule (EV_A);
3775 #endif
3776 }
3777
3778 /*****************************************************************************/
3779 /* singly-linked list management, used when the expected list length is short */
3780
3781 inline_size void
3782 wlist_add (WL *head, WL elem)
3783 {
3784 elem->next = *head;
3785 *head = elem;
3786 }
3787
3788 inline_size void
3789 wlist_del (WL *head, WL elem)
3790 {
3791 while (*head)
3792 {
3793 if (expect_true (*head == elem))
3794 {
3795 *head = elem->next;
3796 break;
3797 }
3798
3799 head = &(*head)->next;
3800 }
3801 }
3802
3803 /* internal, faster, version of ev_clear_pending */
3804 inline_speed void
3805 clear_pending (EV_P_ W w)
3806 {
3807 if (w->pending)
3808 {
3809 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3810 w->pending = 0;
3811 }
3812 }
3813
3814 int
3815 ev_clear_pending (EV_P_ void *w) EV_THROW
3816 {
3817 W w_ = (W)w;
3818 int pending = w_->pending;
3819
3820 if (expect_true (pending))
3821 {
3822 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3823 p->w = (W)&pending_w;
3824 w_->pending = 0;
3825 return p->events;
3826 }
3827 else
3828 return 0;
3829 }
3830
3831 inline_size void
3832 pri_adjust (EV_P_ W w)
3833 {
3834 int pri = ev_priority (w);
3835 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3836 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3837 ev_set_priority (w, pri);
3838 }
3839
3840 inline_speed void
3841 ev_start (EV_P_ W w, int active)
3842 {
3843 pri_adjust (EV_A_ w);
3844 w->active = active;
3845 ev_ref (EV_A);
3846 }
3847
3848 inline_size void
3849 ev_stop (EV_P_ W w)
3850 {
3851 ev_unref (EV_A);
3852 w->active = 0;
3853 }
3854
3855 /*****************************************************************************/
3856
3857 noinline
3858 void
3859 ev_io_start (EV_P_ ev_io *w) EV_THROW
3860 {
3861 int fd = w->fd;
3862
3863 if (expect_false (ev_is_active (w)))
3864 return;
3865
3866 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3867 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3868
3869 EV_FREQUENT_CHECK;
3870
3871 ev_start (EV_A_ (W)w, 1);
3872 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3873 wlist_add (&anfds[fd].head, (WL)w);
3874
3875 /* common bug, apparently */
3876 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3877
3878 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3879 w->events &= ~EV__IOFDSET;
3880
3881 EV_FREQUENT_CHECK;
3882 }
3883
3884 noinline
3885 void
3886 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3887 {
3888 clear_pending (EV_A_ (W)w);
3889 if (expect_false (!ev_is_active (w)))
3890 return;
3891
3892 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3893
3894 EV_FREQUENT_CHECK;
3895
3896 wlist_del (&anfds[w->fd].head, (WL)w);
3897 ev_stop (EV_A_ (W)w);
3898
3899 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3900
3901 EV_FREQUENT_CHECK;
3902 }
3903
3904 noinline
3905 void
3906 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3907 {
3908 if (expect_false (ev_is_active (w)))
3909 return;
3910
3911 ev_at (w) += mn_now;
3912
3913 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3914
3915 EV_FREQUENT_CHECK;
3916
3917 ++timercnt;
3918 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3919 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3920 ANHE_w (timers [ev_active (w)]) = (WT)w;
3921 ANHE_at_cache (timers [ev_active (w)]);
3922 upheap (timers, ev_active (w));
3923
3924 EV_FREQUENT_CHECK;
3925
3926 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3927 }
3928
3929 noinline
3930 void
3931 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3932 {
3933 clear_pending (EV_A_ (W)w);
3934 if (expect_false (!ev_is_active (w)))
3935 return;
3936
3937 EV_FREQUENT_CHECK;
3938
3939 {
3940 int active = ev_active (w);
3941
3942 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3943
3944 --timercnt;
3945
3946 if (expect_true (active < timercnt + HEAP0))
3947 {
3948 timers [active] = timers [timercnt + HEAP0];
3949 adjustheap (timers, timercnt, active);
3950 }
3951 }
3952
3953 ev_at (w) -= mn_now;
3954
3955 ev_stop (EV_A_ (W)w);
3956
3957 EV_FREQUENT_CHECK;
3958 }
3959
3960 noinline
3961 void
3962 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3963 {
3964 EV_FREQUENT_CHECK;
3965
3966 clear_pending (EV_A_ (W)w);
3967
3968 if (ev_is_active (w))
3969 {
3970 if (w->repeat)
3971 {
3972 ev_at (w) = mn_now + w->repeat;
3973 ANHE_at_cache (timers [ev_active (w)]);
3974 adjustheap (timers, timercnt, ev_active (w));
3975 }
3976 else
3977 ev_timer_stop (EV_A_ w);
3978 }
3979 else if (w->repeat)
3980 {
3981 ev_at (w) = w->repeat;
3982 ev_timer_start (EV_A_ w);
3983 }
3984
3985 EV_FREQUENT_CHECK;
3986 }
3987
3988 ev_tstamp
3989 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3990 {
3991 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3992 }
3993
3994 #if EV_PERIODIC_ENABLE
3995 noinline
3996 void
3997 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3998 {
3999 if (expect_false (ev_is_active (w)))
4000 return;
4001
4002 if (w->reschedule_cb)
4003 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4004 else if (w->interval)
4005 {
4006 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4007 periodic_recalc (EV_A_ w);
4008 }
4009 else
4010 ev_at (w) = w->offset;
4011
4012 EV_FREQUENT_CHECK;
4013
4014 ++periodiccnt;
4015 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4016 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
4017 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4018 ANHE_at_cache (periodics [ev_active (w)]);
4019 upheap (periodics, ev_active (w));
4020
4021 EV_FREQUENT_CHECK;
4022
4023 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4024 }
4025
4026 noinline
4027 void
4028 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
4029 {
4030 clear_pending (EV_A_ (W)w);
4031 if (expect_false (!ev_is_active (w)))
4032 return;
4033
4034 EV_FREQUENT_CHECK;
4035
4036 {
4037 int active = ev_active (w);
4038
4039 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4040
4041 --periodiccnt;
4042
4043 if (expect_true (active < periodiccnt + HEAP0))
4044 {
4045 periodics [active] = periodics [periodiccnt + HEAP0];
4046 adjustheap (periodics, periodiccnt, active);
4047 }
4048 }
4049
4050 ev_stop (EV_A_ (W)w);
4051
4052 EV_FREQUENT_CHECK;
4053 }
4054
4055 noinline
4056 void
4057 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
4058 {
4059 /* TODO: use adjustheap and recalculation */
4060 ev_periodic_stop (EV_A_ w);
4061 ev_periodic_start (EV_A_ w);
4062 }
4063 #endif
4064
4065 #ifndef SA_RESTART
4066 # define SA_RESTART 0
4067 #endif
4068
4069 #if EV_SIGNAL_ENABLE
4070
4071 noinline
4072 void
4073 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
4074 {
4075 if (expect_false (ev_is_active (w)))
4076 return;
4077
4078 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4079
4080 #if EV_MULTIPLICITY
4081 assert (("libev: a signal must not be attached to two different loops",
4082 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4083
4084 signals [w->signum - 1].loop = EV_A;
4085 ECB_MEMORY_FENCE_RELEASE;
4086 #endif
4087
4088 EV_FREQUENT_CHECK;
4089
4090 #if EV_USE_SIGNALFD
4091 if (sigfd == -2)
4092 {
4093 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4094 if (sigfd < 0 && errno == EINVAL)
4095 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4096
4097 if (sigfd >= 0)
4098 {
4099 fd_intern (sigfd); /* doing it twice will not hurt */
4100
4101 sigemptyset (&sigfd_set);
4102
4103 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4104 ev_set_priority (&sigfd_w, EV_MAXPRI);
4105 ev_io_start (EV_A_ &sigfd_w);
4106 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4107 }
4108 }
4109
4110 if (sigfd >= 0)
4111 {
4112 /* TODO: check .head */
4113 sigaddset (&sigfd_set, w->signum);
4114 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4115
4116 signalfd (sigfd, &sigfd_set, 0);
4117 }
4118 #endif
4119
4120 ev_start (EV_A_ (W)w, 1);
4121 wlist_add (&signals [w->signum - 1].head, (WL)w);
4122
4123 if (!((WL)w)->next)
4124 # if EV_USE_SIGNALFD
4125 if (sigfd < 0) /*TODO*/
4126 # endif
4127 {
4128 # ifdef _WIN32
4129 evpipe_init (EV_A);
4130
4131 signal (w->signum, ev_sighandler);
4132 # else
4133 struct sigaction sa;
4134
4135 evpipe_init (EV_A);
4136
4137 sa.sa_handler = ev_sighandler;
4138 sigfillset (&sa.sa_mask);
4139 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4140 sigaction (w->signum, &sa, 0);
4141
4142 if (origflags & EVFLAG_NOSIGMASK)
4143 {
4144 sigemptyset (&sa.sa_mask);
4145 sigaddset (&sa.sa_mask, w->signum);
4146 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4147 }
4148 #endif
4149 }
4150
4151 EV_FREQUENT_CHECK;
4152 }
4153
4154 noinline
4155 void
4156 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
4157 {
4158 clear_pending (EV_A_ (W)w);
4159 if (expect_false (!ev_is_active (w)))
4160 return;
4161
4162 EV_FREQUENT_CHECK;
4163
4164 wlist_del (&signals [w->signum - 1].head, (WL)w);
4165 ev_stop (EV_A_ (W)w);
4166
4167 if (!signals [w->signum - 1].head)
4168 {
4169 #if EV_MULTIPLICITY
4170 signals [w->signum - 1].loop = 0; /* unattach from signal */
4171 #endif
4172 #if EV_USE_SIGNALFD
4173 if (sigfd >= 0)
4174 {
4175 sigset_t ss;
4176
4177 sigemptyset (&ss);
4178 sigaddset (&ss, w->signum);
4179 sigdelset (&sigfd_set, w->signum);
4180
4181 signalfd (sigfd, &sigfd_set, 0);
4182 sigprocmask (SIG_UNBLOCK, &ss, 0);
4183 }
4184 else
4185 #endif
4186 signal (w->signum, SIG_DFL);
4187 }
4188
4189 EV_FREQUENT_CHECK;
4190 }
4191
4192 #endif
4193
4194 #if EV_CHILD_ENABLE
4195
4196 void
4197 ev_child_start (EV_P_ ev_child *w) EV_THROW
4198 {
4199 #if EV_MULTIPLICITY
4200 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4201 #endif
4202 if (expect_false (ev_is_active (w)))
4203 return;
4204
4205 EV_FREQUENT_CHECK;
4206
4207 ev_start (EV_A_ (W)w, 1);
4208 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4209
4210 EV_FREQUENT_CHECK;
4211 }
4212
4213 void
4214 ev_child_stop (EV_P_ ev_child *w) EV_THROW
4215 {
4216 clear_pending (EV_A_ (W)w);
4217 if (expect_false (!ev_is_active (w)))
4218 return;
4219
4220 EV_FREQUENT_CHECK;
4221
4222 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4223 ev_stop (EV_A_ (W)w);
4224
4225 EV_FREQUENT_CHECK;
4226 }
4227
4228 #endif
4229
4230 #if EV_STAT_ENABLE
4231
4232 # ifdef _WIN32
4233 # undef lstat
4234 # define lstat(a,b) _stati64 (a,b)
4235 # endif
4236
4237 #define DEF_STAT_INTERVAL 5.0074891
4238 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4239 #define MIN_STAT_INTERVAL 0.1074891
4240
4241 noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4242
4243 #if EV_USE_INOTIFY
4244
4245 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4246 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4247
4248 noinline
4249 static void
4250 infy_add (EV_P_ ev_stat *w)
4251 {
4252 w->wd = inotify_add_watch (fs_fd, w->path,
4253 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4254 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4255 | IN_DONT_FOLLOW | IN_MASK_ADD);
4256
4257 if (w->wd >= 0)
4258 {
4259 struct statfs sfs;
4260
4261 /* now local changes will be tracked by inotify, but remote changes won't */
4262 /* unless the filesystem is known to be local, we therefore still poll */
4263 /* also do poll on <2.6.25, but with normal frequency */
4264
4265 if (!fs_2625)
4266 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4267 else if (!statfs (w->path, &sfs)
4268 && (sfs.f_type == 0x1373 /* devfs */
4269 || sfs.f_type == 0x4006 /* fat */
4270 || sfs.f_type == 0x4d44 /* msdos */
4271 || sfs.f_type == 0xEF53 /* ext2/3 */
4272 || sfs.f_type == 0x72b6 /* jffs2 */
4273 || sfs.f_type == 0x858458f6 /* ramfs */
4274 || sfs.f_type == 0x5346544e /* ntfs */
4275 || sfs.f_type == 0x3153464a /* jfs */
4276 || sfs.f_type == 0x9123683e /* btrfs */
4277 || sfs.f_type == 0x52654973 /* reiser3 */
4278 || sfs.f_type == 0x01021994 /* tmpfs */
4279 || sfs.f_type == 0x58465342 /* xfs */))
4280 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4281 else
4282 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4283 }
4284 else
4285 {
4286 /* can't use inotify, continue to stat */
4287 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4288
4289 /* if path is not there, monitor some parent directory for speedup hints */
4290 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4291 /* but an efficiency issue only */
4292 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4293 {
4294 char path [4096];
4295 strcpy (path, w->path);
4296
4297 do
4298 {
4299 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4300 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4301
4302 char *pend = strrchr (path, '/');
4303
4304 if (!pend || pend == path)
4305 break;
4306
4307 *pend = 0;
4308 w->wd = inotify_add_watch (fs_fd, path, mask);
4309 }
4310 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4311 }
4312 }
4313
4314 if (w->wd >= 0)
4315 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4316
4317 /* now re-arm timer, if required */
4318 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4319 ev_timer_again (EV_A_ &w->timer);
4320 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4321 }
4322
4323 noinline
4324 static void
4325 infy_del (EV_P_ ev_stat *w)
4326 {
4327 int slot;
4328 int wd = w->wd;
4329
4330 if (wd < 0)
4331 return;
4332
4333 w->wd = -2;
4334 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4335 wlist_del (&fs_hash [slot].head, (WL)w);
4336
4337 /* remove this watcher, if others are watching it, they will rearm */
4338 inotify_rm_watch (fs_fd, wd);
4339 }
4340
4341 noinline
4342 static void
4343 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4344 {
4345 if (slot < 0)
4346 /* overflow, need to check for all hash slots */
4347 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4348 infy_wd (EV_A_ slot, wd, ev);
4349 else
4350 {
4351 WL w_;
4352
4353 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4354 {
4355 ev_stat *w = (ev_stat *)w_;
4356 w_ = w_->next; /* lets us remove this watcher and all before it */
4357
4358 if (w->wd == wd || wd == -1)
4359 {
4360 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4361 {
4362 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4363 w->wd = -1;
4364 infy_add (EV_A_ w); /* re-add, no matter what */
4365 }
4366
4367 stat_timer_cb (EV_A_ &w->timer, 0);
4368 }
4369 }
4370 }
4371 }
4372
4373 static void
4374 infy_cb (EV_P_ ev_io *w, int revents)
4375 {
4376 char buf [EV_INOTIFY_BUFSIZE];
4377 int ofs;
4378 int len = read (fs_fd, buf, sizeof (buf));
4379
4380 for (ofs = 0; ofs < len; )
4381 {
4382 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4383 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4384 ofs += sizeof (struct inotify_event) + ev->len;
4385 }
4386 }
4387
4388 inline_size ecb_cold
4389 void
4390 ev_check_2625 (EV_P)
4391 {
4392 /* kernels < 2.6.25 are borked
4393 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4394 */
4395 if (ev_linux_version () < 0x020619)
4396 return;
4397
4398 fs_2625 = 1;
4399 }
4400
4401 inline_size int
4402 infy_newfd (void)
4403 {
4404 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4405 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4406 if (fd >= 0)
4407 return fd;
4408 #endif
4409 return inotify_init ();
4410 }
4411
4412 inline_size void
4413 infy_init (EV_P)
4414 {
4415 if (fs_fd != -2)
4416 return;
4417
4418 fs_fd = -1;
4419
4420 ev_check_2625 (EV_A);
4421
4422 fs_fd = infy_newfd ();
4423
4424 if (fs_fd >= 0)
4425 {
4426 fd_intern (fs_fd);
4427 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4428 ev_set_priority (&fs_w, EV_MAXPRI);
4429 ev_io_start (EV_A_ &fs_w);
4430 ev_unref (EV_A);
4431 }
4432 }
4433
4434 inline_size void
4435 infy_fork (EV_P)
4436 {
4437 int slot;
4438
4439 if (fs_fd < 0)
4440 return;
4441
4442 ev_ref (EV_A);
4443 ev_io_stop (EV_A_ &fs_w);
4444 close (fs_fd);
4445 fs_fd = infy_newfd ();
4446
4447 if (fs_fd >= 0)
4448 {
4449 fd_intern (fs_fd);
4450 ev_io_set (&fs_w, fs_fd, EV_READ);
4451 ev_io_start (EV_A_ &fs_w);
4452 ev_unref (EV_A);
4453 }
4454
4455 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4456 {
4457 WL w_ = fs_hash [slot].head;
4458 fs_hash [slot].head = 0;
4459
4460 while (w_)
4461 {
4462 ev_stat *w = (ev_stat *)w_;
4463 w_ = w_->next; /* lets us add this watcher */
4464
4465 w->wd = -1;
4466
4467 if (fs_fd >= 0)
4468 infy_add (EV_A_ w); /* re-add, no matter what */
4469 else
4470 {
4471 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4472 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4473 ev_timer_again (EV_A_ &w->timer);
4474 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4475 }
4476 }
4477 }
4478 }
4479
4480 #endif
4481
4482 #ifdef _WIN32
4483 # define EV_LSTAT(p,b) _stati64 (p, b)
4484 #else
4485 # define EV_LSTAT(p,b) lstat (p, b)
4486 #endif
4487
4488 void
4489 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4490 {
4491 if (lstat (w->path, &w->attr) < 0)
4492 w->attr.st_nlink = 0;
4493 else if (!w->attr.st_nlink)
4494 w->attr.st_nlink = 1;
4495 }
4496
4497 noinline
4498 static void
4499 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4500 {
4501 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4502
4503 ev_statdata prev = w->attr;
4504 ev_stat_stat (EV_A_ w);
4505
4506 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4507 if (
4508 prev.st_dev != w->attr.st_dev
4509 || prev.st_ino != w->attr.st_ino
4510 || prev.st_mode != w->attr.st_mode
4511 || prev.st_nlink != w->attr.st_nlink
4512 || prev.st_uid != w->attr.st_uid
4513 || prev.st_gid != w->attr.st_gid
4514 || prev.st_rdev != w->attr.st_rdev
4515 || prev.st_size != w->attr.st_size
4516 || prev.st_atime != w->attr.st_atime
4517 || prev.st_mtime != w->attr.st_mtime
4518 || prev.st_ctime != w->attr.st_ctime
4519 ) {
4520 /* we only update w->prev on actual differences */
4521 /* in case we test more often than invoke the callback, */
4522 /* to ensure that prev is always different to attr */
4523 w->prev = prev;
4524
4525 #if EV_USE_INOTIFY
4526 if (fs_fd >= 0)
4527 {
4528 infy_del (EV_A_ w);
4529 infy_add (EV_A_ w);
4530 ev_stat_stat (EV_A_ w); /* avoid race... */
4531 }
4532 #endif
4533
4534 ev_feed_event (EV_A_ w, EV_STAT);
4535 }
4536 }
4537
4538 void
4539 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4540 {
4541 if (expect_false (ev_is_active (w)))
4542 return;
4543
4544 ev_stat_stat (EV_A_ w);
4545
4546 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4547 w->interval = MIN_STAT_INTERVAL;
4548
4549 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4550 ev_set_priority (&w->timer, ev_priority (w));
4551
4552 #if EV_USE_INOTIFY
4553 infy_init (EV_A);
4554
4555 if (fs_fd >= 0)
4556 infy_add (EV_A_ w);
4557 else
4558 #endif
4559 {
4560 ev_timer_again (EV_A_ &w->timer);
4561 ev_unref (EV_A);
4562 }
4563
4564 ev_start (EV_A_ (W)w, 1);
4565
4566 EV_FREQUENT_CHECK;
4567 }
4568
4569 void
4570 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4571 {
4572 clear_pending (EV_A_ (W)w);
4573 if (expect_false (!ev_is_active (w)))
4574 return;
4575
4576 EV_FREQUENT_CHECK;
4577
4578 #if EV_USE_INOTIFY
4579 infy_del (EV_A_ w);
4580 #endif
4581
4582 if (ev_is_active (&w->timer))
4583 {
4584 ev_ref (EV_A);
4585 ev_timer_stop (EV_A_ &w->timer);
4586 }
4587
4588 ev_stop (EV_A_ (W)w);
4589
4590 EV_FREQUENT_CHECK;
4591 }
4592 #endif
4593
4594 #if EV_IDLE_ENABLE
4595 void
4596 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4597 {
4598 if (expect_false (ev_is_active (w)))
4599 return;
4600
4601 pri_adjust (EV_A_ (W)w);
4602
4603 EV_FREQUENT_CHECK;
4604
4605 {
4606 int active = ++idlecnt [ABSPRI (w)];
4607
4608 ++idleall;
4609 ev_start (EV_A_ (W)w, active);
4610
4611 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4612 idles [ABSPRI (w)][active - 1] = w;
4613 }
4614
4615 EV_FREQUENT_CHECK;
4616 }
4617
4618 void
4619 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4620 {
4621 clear_pending (EV_A_ (W)w);
4622 if (expect_false (!ev_is_active (w)))
4623 return;
4624
4625 EV_FREQUENT_CHECK;
4626
4627 {
4628 int active = ev_active (w);
4629
4630 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4631 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4632
4633 ev_stop (EV_A_ (W)w);
4634 --idleall;
4635 }
4636
4637 EV_FREQUENT_CHECK;
4638 }
4639 #endif
4640
4641 #if EV_PREPARE_ENABLE
4642 void
4643 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4644 {
4645 if (expect_false (ev_is_active (w)))
4646 return;
4647
4648 EV_FREQUENT_CHECK;
4649
4650 ev_start (EV_A_ (W)w, ++preparecnt);
4651 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4652 prepares [preparecnt - 1] = w;
4653
4654 EV_FREQUENT_CHECK;
4655 }
4656
4657 void
4658 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4659 {
4660 clear_pending (EV_A_ (W)w);
4661 if (expect_false (!ev_is_active (w)))
4662 return;
4663
4664 EV_FREQUENT_CHECK;
4665
4666 {
4667 int active = ev_active (w);
4668
4669 prepares [active - 1] = prepares [--preparecnt];
4670 ev_active (prepares [active - 1]) = active;
4671 }
4672
4673 ev_stop (EV_A_ (W)w);
4674
4675 EV_FREQUENT_CHECK;
4676 }
4677 #endif
4678
4679 #if EV_CHECK_ENABLE
4680 void
4681 ev_check_start (EV_P_ ev_check *w) EV_THROW
4682 {
4683 if (expect_false (ev_is_active (w)))
4684 return;
4685
4686 EV_FREQUENT_CHECK;
4687
4688 ev_start (EV_A_ (W)w, ++checkcnt);
4689 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4690 checks [checkcnt - 1] = w;
4691
4692 EV_FREQUENT_CHECK;
4693 }
4694
4695 void
4696 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4697 {
4698 clear_pending (EV_A_ (W)w);
4699 if (expect_false (!ev_is_active (w)))
4700 return;
4701
4702 EV_FREQUENT_CHECK;
4703
4704 {
4705 int active = ev_active (w);
4706
4707 checks [active - 1] = checks [--checkcnt];
4708 ev_active (checks [active - 1]) = active;
4709 }
4710
4711 ev_stop (EV_A_ (W)w);
4712
4713 EV_FREQUENT_CHECK;
4714 }
4715 #endif
4716
4717 #if EV_EMBED_ENABLE
4718 noinline
4719 void
4720 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4721 {
4722 ev_run (w->other, EVRUN_NOWAIT);
4723 }
4724
4725 static void
4726 embed_io_cb (EV_P_ ev_io *io, int revents)
4727 {
4728 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4729
4730 if (ev_cb (w))
4731 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4732 else
4733 ev_run (w->other, EVRUN_NOWAIT);
4734 }
4735
4736 static void
4737 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4738 {
4739 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4740
4741 {
4742 EV_P = w->other;
4743
4744 while (fdchangecnt)
4745 {
4746 fd_reify (EV_A);
4747 ev_run (EV_A_ EVRUN_NOWAIT);
4748 }
4749 }
4750 }
4751
4752 static void
4753 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4754 {
4755 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4756
4757 ev_embed_stop (EV_A_ w);
4758
4759 {
4760 EV_P = w->other;
4761
4762 ev_loop_fork (EV_A);
4763 ev_run (EV_A_ EVRUN_NOWAIT);
4764 }
4765
4766 ev_embed_start (EV_A_ w);
4767 }
4768
4769 #if 0
4770 static void
4771 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4772 {
4773 ev_idle_stop (EV_A_ idle);
4774 }
4775 #endif
4776
4777 void
4778 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4779 {
4780 if (expect_false (ev_is_active (w)))
4781 return;
4782
4783 {
4784 EV_P = w->other;
4785 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4786 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4787 }
4788
4789 EV_FREQUENT_CHECK;
4790
4791 ev_set_priority (&w->io, ev_priority (w));
4792 ev_io_start (EV_A_ &w->io);
4793
4794 ev_prepare_init (&w->prepare, embed_prepare_cb);
4795 ev_set_priority (&w->prepare, EV_MINPRI);
4796 ev_prepare_start (EV_A_ &w->prepare);
4797
4798 ev_fork_init (&w->fork, embed_fork_cb);
4799 ev_fork_start (EV_A_ &w->fork);
4800
4801 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4802
4803 ev_start (EV_A_ (W)w, 1);
4804
4805 EV_FREQUENT_CHECK;
4806 }
4807
4808 void
4809 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4810 {
4811 clear_pending (EV_A_ (W)w);
4812 if (expect_false (!ev_is_active (w)))
4813 return;
4814
4815 EV_FREQUENT_CHECK;
4816
4817 ev_io_stop (EV_A_ &w->io);
4818 ev_prepare_stop (EV_A_ &w->prepare);
4819 ev_fork_stop (EV_A_ &w->fork);
4820
4821 ev_stop (EV_A_ (W)w);
4822
4823 EV_FREQUENT_CHECK;
4824 }
4825 #endif
4826
4827 #if EV_FORK_ENABLE
4828 void
4829 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4830 {
4831 if (expect_false (ev_is_active (w)))
4832 return;
4833
4834 EV_FREQUENT_CHECK;
4835
4836 ev_start (EV_A_ (W)w, ++forkcnt);
4837 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4838 forks [forkcnt - 1] = w;
4839
4840 EV_FREQUENT_CHECK;
4841 }
4842
4843 void
4844 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4845 {
4846 clear_pending (EV_A_ (W)w);
4847 if (expect_false (!ev_is_active (w)))
4848 return;
4849
4850 EV_FREQUENT_CHECK;
4851
4852 {
4853 int active = ev_active (w);
4854
4855 forks [active - 1] = forks [--forkcnt];
4856 ev_active (forks [active - 1]) = active;
4857 }
4858
4859 ev_stop (EV_A_ (W)w);
4860
4861 EV_FREQUENT_CHECK;
4862 }
4863 #endif
4864
4865 #if EV_CLEANUP_ENABLE
4866 void
4867 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4868 {
4869 if (expect_false (ev_is_active (w)))
4870 return;
4871
4872 EV_FREQUENT_CHECK;
4873
4874 ev_start (EV_A_ (W)w, ++cleanupcnt);
4875 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4876 cleanups [cleanupcnt - 1] = w;
4877
4878 /* cleanup watchers should never keep a refcount on the loop */
4879 ev_unref (EV_A);
4880 EV_FREQUENT_CHECK;
4881 }
4882
4883 void
4884 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4885 {
4886 clear_pending (EV_A_ (W)w);
4887 if (expect_false (!ev_is_active (w)))
4888 return;
4889
4890 EV_FREQUENT_CHECK;
4891 ev_ref (EV_A);
4892
4893 {
4894 int active = ev_active (w);
4895
4896 cleanups [active - 1] = cleanups [--cleanupcnt];
4897 ev_active (cleanups [active - 1]) = active;
4898 }
4899
4900 ev_stop (EV_A_ (W)w);
4901
4902 EV_FREQUENT_CHECK;
4903 }
4904 #endif
4905
4906 #if EV_ASYNC_ENABLE
4907 void
4908 ev_async_start (EV_P_ ev_async *w) EV_THROW
4909 {
4910 if (expect_false (ev_is_active (w)))
4911 return;
4912
4913 w->sent = 0;
4914
4915 evpipe_init (EV_A);
4916
4917 EV_FREQUENT_CHECK;
4918
4919 ev_start (EV_A_ (W)w, ++asynccnt);
4920 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4921 asyncs [asynccnt - 1] = w;
4922
4923 EV_FREQUENT_CHECK;
4924 }
4925
4926 void
4927 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4928 {
4929 clear_pending (EV_A_ (W)w);
4930 if (expect_false (!ev_is_active (w)))
4931 return;
4932
4933 EV_FREQUENT_CHECK;
4934
4935 {
4936 int active = ev_active (w);
4937
4938 asyncs [active - 1] = asyncs [--asynccnt];
4939 ev_active (asyncs [active - 1]) = active;
4940 }
4941
4942 ev_stop (EV_A_ (W)w);
4943
4944 EV_FREQUENT_CHECK;
4945 }
4946
4947 void
4948 ev_async_send (EV_P_ ev_async *w) EV_THROW
4949 {
4950 w->sent = 1;
4951 evpipe_write (EV_A_ &async_pending);
4952 }
4953 #endif
4954
4955 /*****************************************************************************/
4956
4957 struct ev_once
4958 {
4959 ev_io io;
4960 ev_timer to;
4961 void (*cb)(int revents, void *arg);
4962 void *arg;
4963 };
4964
4965 static void
4966 once_cb (EV_P_ struct ev_once *once, int revents)
4967 {
4968 void (*cb)(int revents, void *arg) = once->cb;
4969 void *arg = once->arg;
4970
4971 ev_io_stop (EV_A_ &once->io);
4972 ev_timer_stop (EV_A_ &once->to);
4973 ev_free (once);
4974
4975 cb (revents, arg);
4976 }
4977
4978 static void
4979 once_cb_io (EV_P_ ev_io *w, int revents)
4980 {
4981 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4982
4983 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4984 }
4985
4986 static void
4987 once_cb_to (EV_P_ ev_timer *w, int revents)
4988 {
4989 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4990
4991 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4992 }
4993
4994 void
4995 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4996 {
4997 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4998
4999 if (expect_false (!once))
5000 {
5001 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
5002 return;
5003 }
5004
5005 once->cb = cb;
5006 once->arg = arg;
5007
5008 ev_init (&once->io, once_cb_io);
5009 if (fd >= 0)
5010 {
5011 ev_io_set (&once->io, fd, events);
5012 ev_io_start (EV_A_ &once->io);
5013 }
5014
5015 ev_init (&once->to, once_cb_to);
5016 if (timeout >= 0.)
5017 {
5018 ev_timer_set (&once->to, timeout, 0.);
5019 ev_timer_start (EV_A_ &once->to);
5020 }
5021 }
5022
5023 /*****************************************************************************/
5024
5025 #if EV_WALK_ENABLE
5026 ecb_cold
5027 void
5028 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
5029 {
5030 int i, j;
5031 ev_watcher_list *wl, *wn;
5032
5033 if (types & (EV_IO | EV_EMBED))
5034 for (i = 0; i < anfdmax; ++i)
5035 for (wl = anfds [i].head; wl; )
5036 {
5037 wn = wl->next;
5038
5039 #if EV_EMBED_ENABLE
5040 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5041 {
5042 if (types & EV_EMBED)
5043 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5044 }
5045 else
5046 #endif
5047 #if EV_USE_INOTIFY
5048 if (ev_cb ((ev_io *)wl) == infy_cb)
5049 ;
5050 else
5051 #endif
5052 if ((ev_io *)wl != &pipe_w)
5053 if (types & EV_IO)
5054 cb (EV_A_ EV_IO, wl);
5055
5056 wl = wn;
5057 }
5058
5059 if (types & (EV_TIMER | EV_STAT))
5060 for (i = timercnt + HEAP0; i-- > HEAP0; )
5061 #if EV_STAT_ENABLE
5062 /*TODO: timer is not always active*/
5063 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5064 {
5065 if (types & EV_STAT)
5066 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5067 }
5068 else
5069 #endif
5070 if (types & EV_TIMER)
5071 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5072
5073 #if EV_PERIODIC_ENABLE
5074 if (types & EV_PERIODIC)
5075 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5076 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5077 #endif
5078
5079 #if EV_IDLE_ENABLE
5080 if (types & EV_IDLE)
5081 for (j = NUMPRI; j--; )
5082 for (i = idlecnt [j]; i--; )
5083 cb (EV_A_ EV_IDLE, idles [j][i]);
5084 #endif
5085
5086 #if EV_FORK_ENABLE
5087 if (types & EV_FORK)
5088 for (i = forkcnt; i--; )
5089 if (ev_cb (forks [i]) != embed_fork_cb)
5090 cb (EV_A_ EV_FORK, forks [i]);
5091 #endif
5092
5093 #if EV_ASYNC_ENABLE
5094 if (types & EV_ASYNC)
5095 for (i = asynccnt; i--; )
5096 cb (EV_A_ EV_ASYNC, asyncs [i]);
5097 #endif
5098
5099 #if EV_PREPARE_ENABLE
5100 if (types & EV_PREPARE)
5101 for (i = preparecnt; i--; )
5102 # if EV_EMBED_ENABLE
5103 if (ev_cb (prepares [i]) != embed_prepare_cb)
5104 # endif
5105 cb (EV_A_ EV_PREPARE, prepares [i]);
5106 #endif
5107
5108 #if EV_CHECK_ENABLE
5109 if (types & EV_CHECK)
5110 for (i = checkcnt; i--; )
5111 cb (EV_A_ EV_CHECK, checks [i]);
5112 #endif
5113
5114 #if EV_SIGNAL_ENABLE
5115 if (types & EV_SIGNAL)
5116 for (i = 0; i < EV_NSIG - 1; ++i)
5117 for (wl = signals [i].head; wl; )
5118 {
5119 wn = wl->next;
5120 cb (EV_A_ EV_SIGNAL, wl);
5121 wl = wn;
5122 }
5123 #endif
5124
5125 #if EV_CHILD_ENABLE
5126 if (types & EV_CHILD)
5127 for (i = (EV_PID_HASHSIZE); i--; )
5128 for (wl = childs [i]; wl; )
5129 {
5130 wn = wl->next;
5131 cb (EV_A_ EV_CHILD, wl);
5132 wl = wn;
5133 }
5134 #endif
5135 /* EV_STAT 0x00001000 /* stat data changed */
5136 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5137 }
5138 #endif
5139
5140 #if EV_MULTIPLICITY
5141 #include "ev_wrap.h"
5142 #endif
5143