ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.490
Committed: Thu Jun 20 22:44:59 2019 UTC (4 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.489: +59 -37 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 /* OS X, in its infinite idiocy, actually HARDCODES
168 * a limit of 1024 into their select. Where people have brains,
169 * OS X engineers apparently have a vacuum. Or maybe they were
170 * ordered to have a vacuum, or they do anything for money.
171 * This might help. Or not.
172 * Note that this must be defined early, as other include files
173 * will rely on this define as well.
174 */
175 #define _DARWIN_UNLIMITED_SELECT 1
176
177 #include <stdlib.h>
178 #include <string.h>
179 #include <fcntl.h>
180 #include <stddef.h>
181
182 #include <stdio.h>
183
184 #include <assert.h>
185 #include <errno.h>
186 #include <sys/types.h>
187 #include <time.h>
188 #include <limits.h>
189
190 #include <signal.h>
191
192 #ifdef EV_H
193 # include EV_H
194 #else
195 # include "ev.h"
196 #endif
197
198 #if EV_NO_THREADS
199 # undef EV_NO_SMP
200 # define EV_NO_SMP 1
201 # undef ECB_NO_THREADS
202 # define ECB_NO_THREADS 1
203 #endif
204 #if EV_NO_SMP
205 # undef EV_NO_SMP
206 # define ECB_NO_SMP 1
207 #endif
208
209 #ifndef _WIN32
210 # include <sys/time.h>
211 # include <sys/wait.h>
212 # include <unistd.h>
213 #else
214 # include <io.h>
215 # define WIN32_LEAN_AND_MEAN
216 # include <winsock2.h>
217 # include <windows.h>
218 # ifndef EV_SELECT_IS_WINSOCKET
219 # define EV_SELECT_IS_WINSOCKET 1
220 # endif
221 # undef EV_AVOID_STDIO
222 #endif
223
224 /* this block tries to deduce configuration from header-defined symbols and defaults */
225
226 /* try to deduce the maximum number of signals on this platform */
227 #if defined EV_NSIG
228 /* use what's provided */
229 #elif defined NSIG
230 # define EV_NSIG (NSIG)
231 #elif defined _NSIG
232 # define EV_NSIG (_NSIG)
233 #elif defined SIGMAX
234 # define EV_NSIG (SIGMAX+1)
235 #elif defined SIG_MAX
236 # define EV_NSIG (SIG_MAX+1)
237 #elif defined _SIG_MAX
238 # define EV_NSIG (_SIG_MAX+1)
239 #elif defined MAXSIG
240 # define EV_NSIG (MAXSIG+1)
241 #elif defined MAX_SIG
242 # define EV_NSIG (MAX_SIG+1)
243 #elif defined SIGARRAYSIZE
244 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
245 #elif defined _sys_nsig
246 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
247 #else
248 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
249 #endif
250
251 #ifndef EV_USE_FLOOR
252 # define EV_USE_FLOOR 0
253 #endif
254
255 #ifndef EV_USE_CLOCK_SYSCALL
256 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
257 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258 # else
259 # define EV_USE_CLOCK_SYSCALL 0
260 # endif
261 #endif
262
263 #if !(_POSIX_TIMERS > 0)
264 # ifndef EV_USE_MONOTONIC
265 # define EV_USE_MONOTONIC 0
266 # endif
267 # ifndef EV_USE_REALTIME
268 # define EV_USE_REALTIME 0
269 # endif
270 #endif
271
272 #ifndef EV_USE_MONOTONIC
273 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
274 # define EV_USE_MONOTONIC EV_FEATURE_OS
275 # else
276 # define EV_USE_MONOTONIC 0
277 # endif
278 #endif
279
280 #ifndef EV_USE_REALTIME
281 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
282 #endif
283
284 #ifndef EV_USE_NANOSLEEP
285 # if _POSIX_C_SOURCE >= 199309L
286 # define EV_USE_NANOSLEEP EV_FEATURE_OS
287 # else
288 # define EV_USE_NANOSLEEP 0
289 # endif
290 #endif
291
292 #ifndef EV_USE_SELECT
293 # define EV_USE_SELECT EV_FEATURE_BACKENDS
294 #endif
295
296 #ifndef EV_USE_POLL
297 # ifdef _WIN32
298 # define EV_USE_POLL 0
299 # else
300 # define EV_USE_POLL EV_FEATURE_BACKENDS
301 # endif
302 #endif
303
304 #ifndef EV_USE_EPOLL
305 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
306 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
307 # else
308 # define EV_USE_EPOLL 0
309 # endif
310 #endif
311
312 #ifndef EV_USE_KQUEUE
313 # define EV_USE_KQUEUE 0
314 #endif
315
316 #ifndef EV_USE_PORT
317 # define EV_USE_PORT 0
318 #endif
319
320 #ifndef EV_USE_LINUXAIO
321 # define EV_USE_LINUXAIO 0
322 #endif
323
324 #ifndef EV_USE_INOTIFY
325 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
326 # define EV_USE_INOTIFY EV_FEATURE_OS
327 # else
328 # define EV_USE_INOTIFY 0
329 # endif
330 #endif
331
332 #ifndef EV_PID_HASHSIZE
333 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
334 #endif
335
336 #ifndef EV_INOTIFY_HASHSIZE
337 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
338 #endif
339
340 #ifndef EV_USE_EVENTFD
341 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
342 # define EV_USE_EVENTFD EV_FEATURE_OS
343 # else
344 # define EV_USE_EVENTFD 0
345 # endif
346 #endif
347
348 #ifndef EV_USE_SIGNALFD
349 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
350 # define EV_USE_SIGNALFD EV_FEATURE_OS
351 # else
352 # define EV_USE_SIGNALFD 0
353 # endif
354 #endif
355
356 #if 0 /* debugging */
357 # define EV_VERIFY 3
358 # define EV_USE_4HEAP 1
359 # define EV_HEAP_CACHE_AT 1
360 #endif
361
362 #ifndef EV_VERIFY
363 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
364 #endif
365
366 #ifndef EV_USE_4HEAP
367 # define EV_USE_4HEAP EV_FEATURE_DATA
368 #endif
369
370 #ifndef EV_HEAP_CACHE_AT
371 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
372 #endif
373
374 #ifdef __ANDROID__
375 /* supposedly, android doesn't typedef fd_mask */
376 # undef EV_USE_SELECT
377 # define EV_USE_SELECT 0
378 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
379 # undef EV_USE_CLOCK_SYSCALL
380 # define EV_USE_CLOCK_SYSCALL 0
381 #endif
382
383 /* aix's poll.h seems to cause lots of trouble */
384 #ifdef _AIX
385 /* AIX has a completely broken poll.h header */
386 # undef EV_USE_POLL
387 # define EV_USE_POLL 0
388 #endif
389
390 #if EV_USE_LINUXAIO
391 # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
392 #endif
393
394 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
395 /* which makes programs even slower. might work on other unices, too. */
396 #if EV_USE_CLOCK_SYSCALL
397 # include <sys/syscall.h>
398 # ifdef SYS_clock_gettime
399 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
400 # undef EV_USE_MONOTONIC
401 # define EV_USE_MONOTONIC 1
402 # else
403 # undef EV_USE_CLOCK_SYSCALL
404 # define EV_USE_CLOCK_SYSCALL 0
405 # endif
406 #endif
407
408 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
409
410 #ifndef CLOCK_MONOTONIC
411 # undef EV_USE_MONOTONIC
412 # define EV_USE_MONOTONIC 0
413 #endif
414
415 #ifndef CLOCK_REALTIME
416 # undef EV_USE_REALTIME
417 # define EV_USE_REALTIME 0
418 #endif
419
420 #if !EV_STAT_ENABLE
421 # undef EV_USE_INOTIFY
422 # define EV_USE_INOTIFY 0
423 #endif
424
425 #if !EV_USE_NANOSLEEP
426 /* hp-ux has it in sys/time.h, which we unconditionally include above */
427 # if !defined _WIN32 && !defined __hpux
428 # include <sys/select.h>
429 # endif
430 #endif
431
432 #if EV_USE_INOTIFY
433 # include <sys/statfs.h>
434 # include <sys/inotify.h>
435 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
436 # ifndef IN_DONT_FOLLOW
437 # undef EV_USE_INOTIFY
438 # define EV_USE_INOTIFY 0
439 # endif
440 #endif
441
442 #if EV_USE_EVENTFD
443 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444 # include <stdint.h>
445 # ifndef EFD_NONBLOCK
446 # define EFD_NONBLOCK O_NONBLOCK
447 # endif
448 # ifndef EFD_CLOEXEC
449 # ifdef O_CLOEXEC
450 # define EFD_CLOEXEC O_CLOEXEC
451 # else
452 # define EFD_CLOEXEC 02000000
453 # endif
454 # endif
455 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
456 #endif
457
458 #if EV_USE_SIGNALFD
459 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
460 # include <stdint.h>
461 # ifndef SFD_NONBLOCK
462 # define SFD_NONBLOCK O_NONBLOCK
463 # endif
464 # ifndef SFD_CLOEXEC
465 # ifdef O_CLOEXEC
466 # define SFD_CLOEXEC O_CLOEXEC
467 # else
468 # define SFD_CLOEXEC 02000000
469 # endif
470 # endif
471 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
472
473 struct signalfd_siginfo
474 {
475 uint32_t ssi_signo;
476 char pad[128 - sizeof (uint32_t)];
477 };
478 #endif
479
480 /**/
481
482 #if EV_VERIFY >= 3
483 # define EV_FREQUENT_CHECK ev_verify (EV_A)
484 #else
485 # define EV_FREQUENT_CHECK do { } while (0)
486 #endif
487
488 /*
489 * This is used to work around floating point rounding problems.
490 * This value is good at least till the year 4000.
491 */
492 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
493 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
494
495 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
496 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
497
498 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
499 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
500
501 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
502 /* ECB.H BEGIN */
503 /*
504 * libecb - http://software.schmorp.de/pkg/libecb
505 *
506 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
507 * Copyright (©) 2011 Emanuele Giaquinta
508 * All rights reserved.
509 *
510 * Redistribution and use in source and binary forms, with or without modifica-
511 * tion, are permitted provided that the following conditions are met:
512 *
513 * 1. Redistributions of source code must retain the above copyright notice,
514 * this list of conditions and the following disclaimer.
515 *
516 * 2. Redistributions in binary form must reproduce the above copyright
517 * notice, this list of conditions and the following disclaimer in the
518 * documentation and/or other materials provided with the distribution.
519 *
520 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
521 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
522 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
523 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
524 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
525 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
526 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
527 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
528 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
529 * OF THE POSSIBILITY OF SUCH DAMAGE.
530 *
531 * Alternatively, the contents of this file may be used under the terms of
532 * the GNU General Public License ("GPL") version 2 or any later version,
533 * in which case the provisions of the GPL are applicable instead of
534 * the above. If you wish to allow the use of your version of this file
535 * only under the terms of the GPL and not to allow others to use your
536 * version of this file under the BSD license, indicate your decision
537 * by deleting the provisions above and replace them with the notice
538 * and other provisions required by the GPL. If you do not delete the
539 * provisions above, a recipient may use your version of this file under
540 * either the BSD or the GPL.
541 */
542
543 #ifndef ECB_H
544 #define ECB_H
545
546 /* 16 bits major, 16 bits minor */
547 #define ECB_VERSION 0x00010005
548
549 #ifdef _WIN32
550 typedef signed char int8_t;
551 typedef unsigned char uint8_t;
552 typedef signed short int16_t;
553 typedef unsigned short uint16_t;
554 typedef signed int int32_t;
555 typedef unsigned int uint32_t;
556 #if __GNUC__
557 typedef signed long long int64_t;
558 typedef unsigned long long uint64_t;
559 #else /* _MSC_VER || __BORLANDC__ */
560 typedef signed __int64 int64_t;
561 typedef unsigned __int64 uint64_t;
562 #endif
563 #ifdef _WIN64
564 #define ECB_PTRSIZE 8
565 typedef uint64_t uintptr_t;
566 typedef int64_t intptr_t;
567 #else
568 #define ECB_PTRSIZE 4
569 typedef uint32_t uintptr_t;
570 typedef int32_t intptr_t;
571 #endif
572 #else
573 #include <inttypes.h>
574 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
575 #define ECB_PTRSIZE 8
576 #else
577 #define ECB_PTRSIZE 4
578 #endif
579 #endif
580
581 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
582 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
583
584 /* work around x32 idiocy by defining proper macros */
585 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
586 #if _ILP32
587 #define ECB_AMD64_X32 1
588 #else
589 #define ECB_AMD64 1
590 #endif
591 #endif
592
593 /* many compilers define _GNUC_ to some versions but then only implement
594 * what their idiot authors think are the "more important" extensions,
595 * causing enormous grief in return for some better fake benchmark numbers.
596 * or so.
597 * we try to detect these and simply assume they are not gcc - if they have
598 * an issue with that they should have done it right in the first place.
599 */
600 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
601 #define ECB_GCC_VERSION(major,minor) 0
602 #else
603 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
604 #endif
605
606 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
607
608 #if __clang__ && defined __has_builtin
609 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
610 #else
611 #define ECB_CLANG_BUILTIN(x) 0
612 #endif
613
614 #if __clang__ && defined __has_extension
615 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
616 #else
617 #define ECB_CLANG_EXTENSION(x) 0
618 #endif
619
620 #define ECB_CPP (__cplusplus+0)
621 #define ECB_CPP11 (__cplusplus >= 201103L)
622 #define ECB_CPP14 (__cplusplus >= 201402L)
623 #define ECB_CPP17 (__cplusplus >= 201703L)
624
625 #if ECB_CPP
626 #define ECB_C 0
627 #define ECB_STDC_VERSION 0
628 #else
629 #define ECB_C 1
630 #define ECB_STDC_VERSION __STDC_VERSION__
631 #endif
632
633 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
634 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
635 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
636
637 #if ECB_CPP
638 #define ECB_EXTERN_C extern "C"
639 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
640 #define ECB_EXTERN_C_END }
641 #else
642 #define ECB_EXTERN_C extern
643 #define ECB_EXTERN_C_BEG
644 #define ECB_EXTERN_C_END
645 #endif
646
647 /*****************************************************************************/
648
649 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
650 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
651
652 #if ECB_NO_THREADS
653 #define ECB_NO_SMP 1
654 #endif
655
656 #if ECB_NO_SMP
657 #define ECB_MEMORY_FENCE do { } while (0)
658 #endif
659
660 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
661 #if __xlC__ && ECB_CPP
662 #include <builtins.h>
663 #endif
664
665 #if 1400 <= _MSC_VER
666 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
667 #endif
668
669 #ifndef ECB_MEMORY_FENCE
670 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
671 #if __i386 || __i386__
672 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
673 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
674 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
675 #elif ECB_GCC_AMD64
676 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
677 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
678 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
679 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
681 #elif defined __ARM_ARCH_2__ \
682 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
683 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
684 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
685 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
686 || defined __ARM_ARCH_5TEJ__
687 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
688 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
689 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
690 || defined __ARM_ARCH_6T2__
691 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
692 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
693 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
695 #elif __aarch64__
696 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
697 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
698 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
699 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
700 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
701 #elif defined __s390__ || defined __s390x__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
703 #elif defined __mips__
704 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
705 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
707 #elif defined __alpha__
708 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
709 #elif defined __hppa__
710 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
711 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
712 #elif defined __ia64__
713 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
714 #elif defined __m68k__
715 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
716 #elif defined __m88k__
717 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
718 #elif defined __sh__
719 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
720 #endif
721 #endif
722 #endif
723
724 #ifndef ECB_MEMORY_FENCE
725 #if ECB_GCC_VERSION(4,7)
726 /* see comment below (stdatomic.h) about the C11 memory model. */
727 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
728 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
729 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
730
731 #elif ECB_CLANG_EXTENSION(c_atomic)
732 /* see comment below (stdatomic.h) about the C11 memory model. */
733 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
734 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
735 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
736
737 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
738 #define ECB_MEMORY_FENCE __sync_synchronize ()
739 #elif _MSC_VER >= 1500 /* VC++ 2008 */
740 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
741 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
742 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
743 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
744 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
745 #elif _MSC_VER >= 1400 /* VC++ 2005 */
746 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
747 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
748 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
749 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
750 #elif defined _WIN32
751 #include <WinNT.h>
752 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
753 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
754 #include <mbarrier.h>
755 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
756 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
757 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
758 #elif __xlC__
759 #define ECB_MEMORY_FENCE __sync ()
760 #endif
761 #endif
762
763 #ifndef ECB_MEMORY_FENCE
764 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
765 /* we assume that these memory fences work on all variables/all memory accesses, */
766 /* not just C11 atomics and atomic accesses */
767 #include <stdatomic.h>
768 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
769 /* any fence other than seq_cst, which isn't very efficient for us. */
770 /* Why that is, we don't know - either the C11 memory model is quite useless */
771 /* for most usages, or gcc and clang have a bug */
772 /* I *currently* lean towards the latter, and inefficiently implement */
773 /* all three of ecb's fences as a seq_cst fence */
774 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
775 /* for all __atomic_thread_fence's except seq_cst */
776 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
777 #endif
778 #endif
779
780 #ifndef ECB_MEMORY_FENCE
781 #if !ECB_AVOID_PTHREADS
782 /*
783 * if you get undefined symbol references to pthread_mutex_lock,
784 * or failure to find pthread.h, then you should implement
785 * the ECB_MEMORY_FENCE operations for your cpu/compiler
786 * OR provide pthread.h and link against the posix thread library
787 * of your system.
788 */
789 #include <pthread.h>
790 #define ECB_NEEDS_PTHREADS 1
791 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
792
793 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
794 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
795 #endif
796 #endif
797
798 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
799 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
800 #endif
801
802 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
803 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
804 #endif
805
806 /*****************************************************************************/
807
808 #if ECB_CPP
809 #define ecb_inline static inline
810 #elif ECB_GCC_VERSION(2,5)
811 #define ecb_inline static __inline__
812 #elif ECB_C99
813 #define ecb_inline static inline
814 #else
815 #define ecb_inline static
816 #endif
817
818 #if ECB_GCC_VERSION(3,3)
819 #define ecb_restrict __restrict__
820 #elif ECB_C99
821 #define ecb_restrict restrict
822 #else
823 #define ecb_restrict
824 #endif
825
826 typedef int ecb_bool;
827
828 #define ECB_CONCAT_(a, b) a ## b
829 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
830 #define ECB_STRINGIFY_(a) # a
831 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
832 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
833
834 #define ecb_function_ ecb_inline
835
836 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
837 #define ecb_attribute(attrlist) __attribute__ (attrlist)
838 #else
839 #define ecb_attribute(attrlist)
840 #endif
841
842 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
843 #define ecb_is_constant(expr) __builtin_constant_p (expr)
844 #else
845 /* possible C11 impl for integral types
846 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
847 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
848
849 #define ecb_is_constant(expr) 0
850 #endif
851
852 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
853 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
854 #else
855 #define ecb_expect(expr,value) (expr)
856 #endif
857
858 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
859 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
860 #else
861 #define ecb_prefetch(addr,rw,locality)
862 #endif
863
864 /* no emulation for ecb_decltype */
865 #if ECB_CPP11
866 // older implementations might have problems with decltype(x)::type, work around it
867 template<class T> struct ecb_decltype_t { typedef T type; };
868 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
869 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
870 #define ecb_decltype(x) __typeof__ (x)
871 #endif
872
873 #if _MSC_VER >= 1300
874 #define ecb_deprecated __declspec (deprecated)
875 #else
876 #define ecb_deprecated ecb_attribute ((__deprecated__))
877 #endif
878
879 #if _MSC_VER >= 1500
880 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
881 #elif ECB_GCC_VERSION(4,5)
882 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
883 #else
884 #define ecb_deprecated_message(msg) ecb_deprecated
885 #endif
886
887 #if _MSC_VER >= 1400
888 #define ecb_noinline __declspec (noinline)
889 #else
890 #define ecb_noinline ecb_attribute ((__noinline__))
891 #endif
892
893 #define ecb_unused ecb_attribute ((__unused__))
894 #define ecb_const ecb_attribute ((__const__))
895 #define ecb_pure ecb_attribute ((__pure__))
896
897 #if ECB_C11 || __IBMC_NORETURN
898 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
899 #define ecb_noreturn _Noreturn
900 #elif ECB_CPP11
901 #define ecb_noreturn [[noreturn]]
902 #elif _MSC_VER >= 1200
903 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
904 #define ecb_noreturn __declspec (noreturn)
905 #else
906 #define ecb_noreturn ecb_attribute ((__noreturn__))
907 #endif
908
909 #if ECB_GCC_VERSION(4,3)
910 #define ecb_artificial ecb_attribute ((__artificial__))
911 #define ecb_hot ecb_attribute ((__hot__))
912 #define ecb_cold ecb_attribute ((__cold__))
913 #else
914 #define ecb_artificial
915 #define ecb_hot
916 #define ecb_cold
917 #endif
918
919 /* put around conditional expressions if you are very sure that the */
920 /* expression is mostly true or mostly false. note that these return */
921 /* booleans, not the expression. */
922 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
923 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
924 /* for compatibility to the rest of the world */
925 #define ecb_likely(expr) ecb_expect_true (expr)
926 #define ecb_unlikely(expr) ecb_expect_false (expr)
927
928 /* count trailing zero bits and count # of one bits */
929 #if ECB_GCC_VERSION(3,4) \
930 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
931 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
932 && ECB_CLANG_BUILTIN(__builtin_popcount))
933 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
934 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
935 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
936 #define ecb_ctz32(x) __builtin_ctz (x)
937 #define ecb_ctz64(x) __builtin_ctzll (x)
938 #define ecb_popcount32(x) __builtin_popcount (x)
939 /* no popcountll */
940 #else
941 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
942 ecb_function_ ecb_const int
943 ecb_ctz32 (uint32_t x)
944 {
945 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
946 unsigned long r;
947 _BitScanForward (&r, x);
948 return (int)r;
949 #else
950 int r = 0;
951
952 x &= ~x + 1; /* this isolates the lowest bit */
953
954 #if ECB_branchless_on_i386
955 r += !!(x & 0xaaaaaaaa) << 0;
956 r += !!(x & 0xcccccccc) << 1;
957 r += !!(x & 0xf0f0f0f0) << 2;
958 r += !!(x & 0xff00ff00) << 3;
959 r += !!(x & 0xffff0000) << 4;
960 #else
961 if (x & 0xaaaaaaaa) r += 1;
962 if (x & 0xcccccccc) r += 2;
963 if (x & 0xf0f0f0f0) r += 4;
964 if (x & 0xff00ff00) r += 8;
965 if (x & 0xffff0000) r += 16;
966 #endif
967
968 return r;
969 #endif
970 }
971
972 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
973 ecb_function_ ecb_const int
974 ecb_ctz64 (uint64_t x)
975 {
976 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
977 unsigned long r;
978 _BitScanForward64 (&r, x);
979 return (int)r;
980 #else
981 int shift = x & 0xffffffff ? 0 : 32;
982 return ecb_ctz32 (x >> shift) + shift;
983 #endif
984 }
985
986 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
987 ecb_function_ ecb_const int
988 ecb_popcount32 (uint32_t x)
989 {
990 x -= (x >> 1) & 0x55555555;
991 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
992 x = ((x >> 4) + x) & 0x0f0f0f0f;
993 x *= 0x01010101;
994
995 return x >> 24;
996 }
997
998 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
999 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1000 {
1001 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1002 unsigned long r;
1003 _BitScanReverse (&r, x);
1004 return (int)r;
1005 #else
1006 int r = 0;
1007
1008 if (x >> 16) { x >>= 16; r += 16; }
1009 if (x >> 8) { x >>= 8; r += 8; }
1010 if (x >> 4) { x >>= 4; r += 4; }
1011 if (x >> 2) { x >>= 2; r += 2; }
1012 if (x >> 1) { r += 1; }
1013
1014 return r;
1015 #endif
1016 }
1017
1018 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1019 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1020 {
1021 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1022 unsigned long r;
1023 _BitScanReverse64 (&r, x);
1024 return (int)r;
1025 #else
1026 int r = 0;
1027
1028 if (x >> 32) { x >>= 32; r += 32; }
1029
1030 return r + ecb_ld32 (x);
1031 #endif
1032 }
1033 #endif
1034
1035 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1036 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1037 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1038 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1039
1040 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1041 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1042 {
1043 return ( (x * 0x0802U & 0x22110U)
1044 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1045 }
1046
1047 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1048 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1049 {
1050 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1051 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1052 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1053 x = ( x >> 8 ) | ( x << 8);
1054
1055 return x;
1056 }
1057
1058 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1059 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1060 {
1061 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1062 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1063 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1064 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1065 x = ( x >> 16 ) | ( x << 16);
1066
1067 return x;
1068 }
1069
1070 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1071 /* so for this version we are lazy */
1072 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1073 ecb_function_ ecb_const int
1074 ecb_popcount64 (uint64_t x)
1075 {
1076 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1077 }
1078
1079 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1080 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1081 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1082 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1083 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1084 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1085 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1086 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1087
1088 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1089 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1090 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1091 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1092 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1093 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1094 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1095 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1096
1097 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1098 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1099 #define ecb_bswap16(x) __builtin_bswap16 (x)
1100 #else
1101 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1102 #endif
1103 #define ecb_bswap32(x) __builtin_bswap32 (x)
1104 #define ecb_bswap64(x) __builtin_bswap64 (x)
1105 #elif _MSC_VER
1106 #include <stdlib.h>
1107 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1108 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1109 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1110 #else
1111 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1112 ecb_function_ ecb_const uint16_t
1113 ecb_bswap16 (uint16_t x)
1114 {
1115 return ecb_rotl16 (x, 8);
1116 }
1117
1118 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1119 ecb_function_ ecb_const uint32_t
1120 ecb_bswap32 (uint32_t x)
1121 {
1122 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1123 }
1124
1125 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1126 ecb_function_ ecb_const uint64_t
1127 ecb_bswap64 (uint64_t x)
1128 {
1129 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1130 }
1131 #endif
1132
1133 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1134 #define ecb_unreachable() __builtin_unreachable ()
1135 #else
1136 /* this seems to work fine, but gcc always emits a warning for it :/ */
1137 ecb_inline ecb_noreturn void ecb_unreachable (void);
1138 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1139 #endif
1140
1141 /* try to tell the compiler that some condition is definitely true */
1142 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1143
1144 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1145 ecb_inline ecb_const uint32_t
1146 ecb_byteorder_helper (void)
1147 {
1148 /* the union code still generates code under pressure in gcc, */
1149 /* but less than using pointers, and always seems to */
1150 /* successfully return a constant. */
1151 /* the reason why we have this horrible preprocessor mess */
1152 /* is to avoid it in all cases, at least on common architectures */
1153 /* or when using a recent enough gcc version (>= 4.6) */
1154 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1155 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1156 #define ECB_LITTLE_ENDIAN 1
1157 return 0x44332211;
1158 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1159 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1160 #define ECB_BIG_ENDIAN 1
1161 return 0x11223344;
1162 #else
1163 union
1164 {
1165 uint8_t c[4];
1166 uint32_t u;
1167 } u = { 0x11, 0x22, 0x33, 0x44 };
1168 return u.u;
1169 #endif
1170 }
1171
1172 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1173 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1174 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1175 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1176
1177 #if ECB_GCC_VERSION(3,0) || ECB_C99
1178 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1179 #else
1180 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1181 #endif
1182
1183 #if ECB_CPP
1184 template<typename T>
1185 static inline T ecb_div_rd (T val, T div)
1186 {
1187 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1188 }
1189 template<typename T>
1190 static inline T ecb_div_ru (T val, T div)
1191 {
1192 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1193 }
1194 #else
1195 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1196 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1197 #endif
1198
1199 #if ecb_cplusplus_does_not_suck
1200 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1201 template<typename T, int N>
1202 static inline int ecb_array_length (const T (&arr)[N])
1203 {
1204 return N;
1205 }
1206 #else
1207 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1208 #endif
1209
1210 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1211 ecb_function_ ecb_const uint32_t
1212 ecb_binary16_to_binary32 (uint32_t x)
1213 {
1214 unsigned int s = (x & 0x8000) << (31 - 15);
1215 int e = (x >> 10) & 0x001f;
1216 unsigned int m = x & 0x03ff;
1217
1218 if (ecb_expect_false (e == 31))
1219 /* infinity or NaN */
1220 e = 255 - (127 - 15);
1221 else if (ecb_expect_false (!e))
1222 {
1223 if (ecb_expect_true (!m))
1224 /* zero, handled by code below by forcing e to 0 */
1225 e = 0 - (127 - 15);
1226 else
1227 {
1228 /* subnormal, renormalise */
1229 unsigned int s = 10 - ecb_ld32 (m);
1230
1231 m = (m << s) & 0x3ff; /* mask implicit bit */
1232 e -= s - 1;
1233 }
1234 }
1235
1236 /* e and m now are normalised, or zero, (or inf or nan) */
1237 e += 127 - 15;
1238
1239 return s | (e << 23) | (m << (23 - 10));
1240 }
1241
1242 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1243 ecb_function_ ecb_const uint16_t
1244 ecb_binary32_to_binary16 (uint32_t x)
1245 {
1246 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1247 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1248 unsigned int m = x & 0x007fffff;
1249
1250 x &= 0x7fffffff;
1251
1252 /* if it's within range of binary16 normals, use fast path */
1253 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1254 {
1255 /* mantissa round-to-even */
1256 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1257
1258 /* handle overflow */
1259 if (ecb_expect_false (m >= 0x00800000))
1260 {
1261 m >>= 1;
1262 e += 1;
1263 }
1264
1265 return s | (e << 10) | (m >> (23 - 10));
1266 }
1267
1268 /* handle large numbers and infinity */
1269 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1270 return s | 0x7c00;
1271
1272 /* handle zero, subnormals and small numbers */
1273 if (ecb_expect_true (x < 0x38800000))
1274 {
1275 /* zero */
1276 if (ecb_expect_true (!x))
1277 return s;
1278
1279 /* handle subnormals */
1280
1281 /* too small, will be zero */
1282 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1283 return s;
1284
1285 m |= 0x00800000; /* make implicit bit explicit */
1286
1287 /* very tricky - we need to round to the nearest e (+10) bit value */
1288 {
1289 unsigned int bits = 14 - e;
1290 unsigned int half = (1 << (bits - 1)) - 1;
1291 unsigned int even = (m >> bits) & 1;
1292
1293 /* if this overflows, we will end up with a normalised number */
1294 m = (m + half + even) >> bits;
1295 }
1296
1297 return s | m;
1298 }
1299
1300 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1301 m >>= 13;
1302
1303 return s | 0x7c00 | m | !m;
1304 }
1305
1306 /*******************************************************************************/
1307 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1308
1309 /* basically, everything uses "ieee pure-endian" floating point numbers */
1310 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1311 #if 0 \
1312 || __i386 || __i386__ \
1313 || ECB_GCC_AMD64 \
1314 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1315 || defined __s390__ || defined __s390x__ \
1316 || defined __mips__ \
1317 || defined __alpha__ \
1318 || defined __hppa__ \
1319 || defined __ia64__ \
1320 || defined __m68k__ \
1321 || defined __m88k__ \
1322 || defined __sh__ \
1323 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1324 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1325 || defined __aarch64__
1326 #define ECB_STDFP 1
1327 #include <string.h> /* for memcpy */
1328 #else
1329 #define ECB_STDFP 0
1330 #endif
1331
1332 #ifndef ECB_NO_LIBM
1333
1334 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1335
1336 /* only the oldest of old doesn't have this one. solaris. */
1337 #ifdef INFINITY
1338 #define ECB_INFINITY INFINITY
1339 #else
1340 #define ECB_INFINITY HUGE_VAL
1341 #endif
1342
1343 #ifdef NAN
1344 #define ECB_NAN NAN
1345 #else
1346 #define ECB_NAN ECB_INFINITY
1347 #endif
1348
1349 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1350 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1351 #define ecb_frexpf(x,e) frexpf ((x), (e))
1352 #else
1353 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1354 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1355 #endif
1356
1357 /* convert a float to ieee single/binary32 */
1358 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1359 ecb_function_ ecb_const uint32_t
1360 ecb_float_to_binary32 (float x)
1361 {
1362 uint32_t r;
1363
1364 #if ECB_STDFP
1365 memcpy (&r, &x, 4);
1366 #else
1367 /* slow emulation, works for anything but -0 */
1368 uint32_t m;
1369 int e;
1370
1371 if (x == 0e0f ) return 0x00000000U;
1372 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1373 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1374 if (x != x ) return 0x7fbfffffU;
1375
1376 m = ecb_frexpf (x, &e) * 0x1000000U;
1377
1378 r = m & 0x80000000U;
1379
1380 if (r)
1381 m = -m;
1382
1383 if (e <= -126)
1384 {
1385 m &= 0xffffffU;
1386 m >>= (-125 - e);
1387 e = -126;
1388 }
1389
1390 r |= (e + 126) << 23;
1391 r |= m & 0x7fffffU;
1392 #endif
1393
1394 return r;
1395 }
1396
1397 /* converts an ieee single/binary32 to a float */
1398 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1399 ecb_function_ ecb_const float
1400 ecb_binary32_to_float (uint32_t x)
1401 {
1402 float r;
1403
1404 #if ECB_STDFP
1405 memcpy (&r, &x, 4);
1406 #else
1407 /* emulation, only works for normals and subnormals and +0 */
1408 int neg = x >> 31;
1409 int e = (x >> 23) & 0xffU;
1410
1411 x &= 0x7fffffU;
1412
1413 if (e)
1414 x |= 0x800000U;
1415 else
1416 e = 1;
1417
1418 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1419 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1420
1421 r = neg ? -r : r;
1422 #endif
1423
1424 return r;
1425 }
1426
1427 /* convert a double to ieee double/binary64 */
1428 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1429 ecb_function_ ecb_const uint64_t
1430 ecb_double_to_binary64 (double x)
1431 {
1432 uint64_t r;
1433
1434 #if ECB_STDFP
1435 memcpy (&r, &x, 8);
1436 #else
1437 /* slow emulation, works for anything but -0 */
1438 uint64_t m;
1439 int e;
1440
1441 if (x == 0e0 ) return 0x0000000000000000U;
1442 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1443 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1444 if (x != x ) return 0X7ff7ffffffffffffU;
1445
1446 m = frexp (x, &e) * 0x20000000000000U;
1447
1448 r = m & 0x8000000000000000;;
1449
1450 if (r)
1451 m = -m;
1452
1453 if (e <= -1022)
1454 {
1455 m &= 0x1fffffffffffffU;
1456 m >>= (-1021 - e);
1457 e = -1022;
1458 }
1459
1460 r |= ((uint64_t)(e + 1022)) << 52;
1461 r |= m & 0xfffffffffffffU;
1462 #endif
1463
1464 return r;
1465 }
1466
1467 /* converts an ieee double/binary64 to a double */
1468 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1469 ecb_function_ ecb_const double
1470 ecb_binary64_to_double (uint64_t x)
1471 {
1472 double r;
1473
1474 #if ECB_STDFP
1475 memcpy (&r, &x, 8);
1476 #else
1477 /* emulation, only works for normals and subnormals and +0 */
1478 int neg = x >> 63;
1479 int e = (x >> 52) & 0x7ffU;
1480
1481 x &= 0xfffffffffffffU;
1482
1483 if (e)
1484 x |= 0x10000000000000U;
1485 else
1486 e = 1;
1487
1488 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1489 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1490
1491 r = neg ? -r : r;
1492 #endif
1493
1494 return r;
1495 }
1496
1497 /* convert a float to ieee half/binary16 */
1498 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1499 ecb_function_ ecb_const uint16_t
1500 ecb_float_to_binary16 (float x)
1501 {
1502 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1503 }
1504
1505 /* convert an ieee half/binary16 to float */
1506 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1507 ecb_function_ ecb_const float
1508 ecb_binary16_to_float (uint16_t x)
1509 {
1510 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1511 }
1512
1513 #endif
1514
1515 #endif
1516
1517 /* ECB.H END */
1518
1519 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1520 /* if your architecture doesn't need memory fences, e.g. because it is
1521 * single-cpu/core, or if you use libev in a project that doesn't use libev
1522 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1523 * libev, in which cases the memory fences become nops.
1524 * alternatively, you can remove this #error and link against libpthread,
1525 * which will then provide the memory fences.
1526 */
1527 # error "memory fences not defined for your architecture, please report"
1528 #endif
1529
1530 #ifndef ECB_MEMORY_FENCE
1531 # define ECB_MEMORY_FENCE do { } while (0)
1532 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1533 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1534 #endif
1535
1536 #define expect_false(cond) ecb_expect_false (cond)
1537 #define expect_true(cond) ecb_expect_true (cond)
1538 #define noinline ecb_noinline
1539
1540 #define inline_size ecb_inline
1541
1542 #if EV_FEATURE_CODE
1543 # define inline_speed ecb_inline
1544 #else
1545 # define inline_speed noinline static
1546 #endif
1547
1548 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1549
1550 #if EV_MINPRI == EV_MAXPRI
1551 # define ABSPRI(w) (((W)w), 0)
1552 #else
1553 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1554 #endif
1555
1556 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1557
1558 typedef ev_watcher *W;
1559 typedef ev_watcher_list *WL;
1560 typedef ev_watcher_time *WT;
1561
1562 #define ev_active(w) ((W)(w))->active
1563 #define ev_at(w) ((WT)(w))->at
1564
1565 #if EV_USE_REALTIME
1566 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1567 /* giving it a reasonably high chance of working on typical architectures */
1568 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1569 #endif
1570
1571 #if EV_USE_MONOTONIC
1572 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1573 #endif
1574
1575 #ifndef EV_FD_TO_WIN32_HANDLE
1576 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1577 #endif
1578 #ifndef EV_WIN32_HANDLE_TO_FD
1579 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1580 #endif
1581 #ifndef EV_WIN32_CLOSE_FD
1582 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1583 #endif
1584
1585 #ifdef _WIN32
1586 # include "ev_win32.c"
1587 #endif
1588
1589 /*****************************************************************************/
1590
1591 /* define a suitable floor function (only used by periodics atm) */
1592
1593 #if EV_USE_FLOOR
1594 # include <math.h>
1595 # define ev_floor(v) floor (v)
1596 #else
1597
1598 #include <float.h>
1599
1600 /* a floor() replacement function, should be independent of ev_tstamp type */
1601 noinline
1602 static ev_tstamp
1603 ev_floor (ev_tstamp v)
1604 {
1605 /* the choice of shift factor is not terribly important */
1606 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1607 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1608 #else
1609 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1610 #endif
1611
1612 /* argument too large for an unsigned long? */
1613 if (expect_false (v >= shift))
1614 {
1615 ev_tstamp f;
1616
1617 if (v == v - 1.)
1618 return v; /* very large number */
1619
1620 f = shift * ev_floor (v * (1. / shift));
1621 return f + ev_floor (v - f);
1622 }
1623
1624 /* special treatment for negative args? */
1625 if (expect_false (v < 0.))
1626 {
1627 ev_tstamp f = -ev_floor (-v);
1628
1629 return f - (f == v ? 0 : 1);
1630 }
1631
1632 /* fits into an unsigned long */
1633 return (unsigned long)v;
1634 }
1635
1636 #endif
1637
1638 /*****************************************************************************/
1639
1640 #ifdef __linux
1641 # include <sys/utsname.h>
1642 #endif
1643
1644 noinline ecb_cold
1645 static unsigned int
1646 ev_linux_version (void)
1647 {
1648 #ifdef __linux
1649 unsigned int v = 0;
1650 struct utsname buf;
1651 int i;
1652 char *p = buf.release;
1653
1654 if (uname (&buf))
1655 return 0;
1656
1657 for (i = 3+1; --i; )
1658 {
1659 unsigned int c = 0;
1660
1661 for (;;)
1662 {
1663 if (*p >= '0' && *p <= '9')
1664 c = c * 10 + *p++ - '0';
1665 else
1666 {
1667 p += *p == '.';
1668 break;
1669 }
1670 }
1671
1672 v = (v << 8) | c;
1673 }
1674
1675 return v;
1676 #else
1677 return 0;
1678 #endif
1679 }
1680
1681 /*****************************************************************************/
1682
1683 #if EV_AVOID_STDIO
1684 noinline ecb_cold
1685 static void
1686 ev_printerr (const char *msg)
1687 {
1688 write (STDERR_FILENO, msg, strlen (msg));
1689 }
1690 #endif
1691
1692 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1693
1694 ecb_cold
1695 void
1696 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1697 {
1698 syserr_cb = cb;
1699 }
1700
1701 noinline ecb_cold
1702 static void
1703 ev_syserr (const char *msg)
1704 {
1705 if (!msg)
1706 msg = "(libev) system error";
1707
1708 if (syserr_cb)
1709 syserr_cb (msg);
1710 else
1711 {
1712 #if EV_AVOID_STDIO
1713 ev_printerr (msg);
1714 ev_printerr (": ");
1715 ev_printerr (strerror (errno));
1716 ev_printerr ("\n");
1717 #else
1718 perror (msg);
1719 #endif
1720 abort ();
1721 }
1722 }
1723
1724 static void *
1725 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1726 {
1727 /* some systems, notably openbsd and darwin, fail to properly
1728 * implement realloc (x, 0) (as required by both ansi c-89 and
1729 * the single unix specification, so work around them here.
1730 * recently, also (at least) fedora and debian started breaking it,
1731 * despite documenting it otherwise.
1732 */
1733
1734 if (size)
1735 return realloc (ptr, size);
1736
1737 free (ptr);
1738 return 0;
1739 }
1740
1741 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1742
1743 ecb_cold
1744 void
1745 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1746 {
1747 alloc = cb;
1748 }
1749
1750 inline_speed void *
1751 ev_realloc (void *ptr, long size)
1752 {
1753 ptr = alloc (ptr, size);
1754
1755 if (!ptr && size)
1756 {
1757 #if EV_AVOID_STDIO
1758 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1759 #else
1760 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1761 #endif
1762 abort ();
1763 }
1764
1765 return ptr;
1766 }
1767
1768 #define ev_malloc(size) ev_realloc (0, (size))
1769 #define ev_free(ptr) ev_realloc ((ptr), 0)
1770
1771 /*****************************************************************************/
1772
1773 /* set in reify when reification needed */
1774 #define EV_ANFD_REIFY 1
1775
1776 /* file descriptor info structure */
1777 typedef struct
1778 {
1779 WL head;
1780 unsigned char events; /* the events watched for */
1781 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1782 unsigned char emask; /* some backends store the actual kernel mask in here */
1783 unsigned char unused;
1784 #if EV_USE_EPOLL
1785 unsigned int egen; /* generation counter to counter epoll bugs */
1786 #endif
1787 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1788 SOCKET handle;
1789 #endif
1790 #if EV_USE_IOCP
1791 OVERLAPPED or, ow;
1792 #endif
1793 } ANFD;
1794
1795 /* stores the pending event set for a given watcher */
1796 typedef struct
1797 {
1798 W w;
1799 int events; /* the pending event set for the given watcher */
1800 } ANPENDING;
1801
1802 #if EV_USE_INOTIFY
1803 /* hash table entry per inotify-id */
1804 typedef struct
1805 {
1806 WL head;
1807 } ANFS;
1808 #endif
1809
1810 /* Heap Entry */
1811 #if EV_HEAP_CACHE_AT
1812 /* a heap element */
1813 typedef struct {
1814 ev_tstamp at;
1815 WT w;
1816 } ANHE;
1817
1818 #define ANHE_w(he) (he).w /* access watcher, read-write */
1819 #define ANHE_at(he) (he).at /* access cached at, read-only */
1820 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1821 #else
1822 /* a heap element */
1823 typedef WT ANHE;
1824
1825 #define ANHE_w(he) (he)
1826 #define ANHE_at(he) (he)->at
1827 #define ANHE_at_cache(he)
1828 #endif
1829
1830 #if EV_MULTIPLICITY
1831
1832 struct ev_loop
1833 {
1834 ev_tstamp ev_rt_now;
1835 #define ev_rt_now ((loop)->ev_rt_now)
1836 #define VAR(name,decl) decl;
1837 #include "ev_vars.h"
1838 #undef VAR
1839 };
1840 #include "ev_wrap.h"
1841
1842 static struct ev_loop default_loop_struct;
1843 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1844
1845 #else
1846
1847 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1848 #define VAR(name,decl) static decl;
1849 #include "ev_vars.h"
1850 #undef VAR
1851
1852 static int ev_default_loop_ptr;
1853
1854 #endif
1855
1856 #if EV_FEATURE_API
1857 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1858 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1859 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1860 #else
1861 # define EV_RELEASE_CB (void)0
1862 # define EV_ACQUIRE_CB (void)0
1863 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1864 #endif
1865
1866 #define EVBREAK_RECURSE 0x80
1867
1868 /*****************************************************************************/
1869
1870 #ifndef EV_HAVE_EV_TIME
1871 ev_tstamp
1872 ev_time (void) EV_NOEXCEPT
1873 {
1874 #if EV_USE_REALTIME
1875 if (expect_true (have_realtime))
1876 {
1877 struct timespec ts;
1878 clock_gettime (CLOCK_REALTIME, &ts);
1879 return ts.tv_sec + ts.tv_nsec * 1e-9;
1880 }
1881 #endif
1882
1883 struct timeval tv;
1884 gettimeofday (&tv, 0);
1885 return tv.tv_sec + tv.tv_usec * 1e-6;
1886 }
1887 #endif
1888
1889 inline_size ev_tstamp
1890 get_clock (void)
1891 {
1892 #if EV_USE_MONOTONIC
1893 if (expect_true (have_monotonic))
1894 {
1895 struct timespec ts;
1896 clock_gettime (CLOCK_MONOTONIC, &ts);
1897 return ts.tv_sec + ts.tv_nsec * 1e-9;
1898 }
1899 #endif
1900
1901 return ev_time ();
1902 }
1903
1904 #if EV_MULTIPLICITY
1905 ev_tstamp
1906 ev_now (EV_P) EV_NOEXCEPT
1907 {
1908 return ev_rt_now;
1909 }
1910 #endif
1911
1912 void
1913 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1914 {
1915 if (delay > 0.)
1916 {
1917 #if EV_USE_NANOSLEEP
1918 struct timespec ts;
1919
1920 EV_TS_SET (ts, delay);
1921 nanosleep (&ts, 0);
1922 #elif defined _WIN32
1923 /* maybe this should round up, as ms is very low resolution */
1924 /* compared to select (µs) or nanosleep (ns) */
1925 Sleep ((unsigned long)(delay * 1e3));
1926 #else
1927 struct timeval tv;
1928
1929 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1930 /* something not guaranteed by newer posix versions, but guaranteed */
1931 /* by older ones */
1932 EV_TV_SET (tv, delay);
1933 select (0, 0, 0, 0, &tv);
1934 #endif
1935 }
1936 }
1937
1938 /*****************************************************************************/
1939
1940 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1941
1942 /* find a suitable new size for the given array, */
1943 /* hopefully by rounding to a nice-to-malloc size */
1944 inline_size int
1945 array_nextsize (int elem, int cur, int cnt)
1946 {
1947 int ncur = cur + 1;
1948
1949 do
1950 ncur <<= 1;
1951 while (cnt > ncur);
1952
1953 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1954 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1955 {
1956 ncur *= elem;
1957 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1958 ncur = ncur - sizeof (void *) * 4;
1959 ncur /= elem;
1960 }
1961
1962 return ncur;
1963 }
1964
1965 noinline ecb_cold
1966 static void *
1967 array_realloc (int elem, void *base, int *cur, int cnt)
1968 {
1969 *cur = array_nextsize (elem, *cur, cnt);
1970 return ev_realloc (base, elem * *cur);
1971 }
1972
1973 #define array_needsize_noinit(base,count)
1974
1975 #define array_needsize_zerofill(base,count) \
1976 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1977
1978 #define array_needsize(type,base,cur,cnt,init) \
1979 if (expect_false ((cnt) > (cur))) \
1980 { \
1981 ecb_unused int ocur_ = (cur); \
1982 (base) = (type *)array_realloc \
1983 (sizeof (type), (base), &(cur), (cnt)); \
1984 init ((base) + (ocur_), (cur) - ocur_); \
1985 }
1986
1987 #if 0
1988 #define array_slim(type,stem) \
1989 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1990 { \
1991 stem ## max = array_roundsize (stem ## cnt >> 1); \
1992 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1993 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1994 }
1995 #endif
1996
1997 #define array_free(stem, idx) \
1998 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1999
2000 /*****************************************************************************/
2001
2002 /* dummy callback for pending events */
2003 noinline
2004 static void
2005 pendingcb (EV_P_ ev_prepare *w, int revents)
2006 {
2007 }
2008
2009 noinline
2010 void
2011 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2012 {
2013 W w_ = (W)w;
2014 int pri = ABSPRI (w_);
2015
2016 if (expect_false (w_->pending))
2017 pendings [pri][w_->pending - 1].events |= revents;
2018 else
2019 {
2020 w_->pending = ++pendingcnt [pri];
2021 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2022 pendings [pri][w_->pending - 1].w = w_;
2023 pendings [pri][w_->pending - 1].events = revents;
2024 }
2025
2026 pendingpri = NUMPRI - 1;
2027 }
2028
2029 inline_speed void
2030 feed_reverse (EV_P_ W w)
2031 {
2032 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2033 rfeeds [rfeedcnt++] = w;
2034 }
2035
2036 inline_size void
2037 feed_reverse_done (EV_P_ int revents)
2038 {
2039 do
2040 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2041 while (rfeedcnt);
2042 }
2043
2044 inline_speed void
2045 queue_events (EV_P_ W *events, int eventcnt, int type)
2046 {
2047 int i;
2048
2049 for (i = 0; i < eventcnt; ++i)
2050 ev_feed_event (EV_A_ events [i], type);
2051 }
2052
2053 /*****************************************************************************/
2054
2055 inline_speed void
2056 fd_event_nocheck (EV_P_ int fd, int revents)
2057 {
2058 ANFD *anfd = anfds + fd;
2059 ev_io *w;
2060
2061 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2062 {
2063 int ev = w->events & revents;
2064
2065 if (ev)
2066 ev_feed_event (EV_A_ (W)w, ev);
2067 }
2068 }
2069
2070 /* do not submit kernel events for fds that have reify set */
2071 /* because that means they changed while we were polling for new events */
2072 inline_speed void
2073 fd_event (EV_P_ int fd, int revents)
2074 {
2075 ANFD *anfd = anfds + fd;
2076
2077 if (expect_true (!anfd->reify))
2078 fd_event_nocheck (EV_A_ fd, revents);
2079 }
2080
2081 void
2082 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2083 {
2084 if (fd >= 0 && fd < anfdmax)
2085 fd_event_nocheck (EV_A_ fd, revents);
2086 }
2087
2088 /* make sure the external fd watch events are in-sync */
2089 /* with the kernel/libev internal state */
2090 inline_size void
2091 fd_reify (EV_P)
2092 {
2093 int i;
2094
2095 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2096 for (i = 0; i < fdchangecnt; ++i)
2097 {
2098 int fd = fdchanges [i];
2099 ANFD *anfd = anfds + fd;
2100
2101 if (anfd->reify & EV__IOFDSET && anfd->head)
2102 {
2103 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2104
2105 if (handle != anfd->handle)
2106 {
2107 unsigned long arg;
2108
2109 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2110
2111 /* handle changed, but fd didn't - we need to do it in two steps */
2112 backend_modify (EV_A_ fd, anfd->events, 0);
2113 anfd->events = 0;
2114 anfd->handle = handle;
2115 }
2116 }
2117 }
2118 #endif
2119
2120 for (i = 0; i < fdchangecnt; ++i)
2121 {
2122 int fd = fdchanges [i];
2123 ANFD *anfd = anfds + fd;
2124 ev_io *w;
2125
2126 unsigned char o_events = anfd->events;
2127 unsigned char o_reify = anfd->reify;
2128
2129 anfd->reify = 0;
2130
2131 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2132 {
2133 anfd->events = 0;
2134
2135 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2136 anfd->events |= (unsigned char)w->events;
2137
2138 if (o_events != anfd->events)
2139 o_reify = EV__IOFDSET; /* actually |= */
2140 }
2141
2142 if (o_reify & EV__IOFDSET)
2143 backend_modify (EV_A_ fd, o_events, anfd->events);
2144 }
2145
2146 fdchangecnt = 0;
2147 }
2148
2149 /* something about the given fd changed */
2150 inline_size
2151 void
2152 fd_change (EV_P_ int fd, int flags)
2153 {
2154 unsigned char reify = anfds [fd].reify;
2155 anfds [fd].reify |= flags;
2156
2157 if (expect_true (!reify))
2158 {
2159 ++fdchangecnt;
2160 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2161 fdchanges [fdchangecnt - 1] = fd;
2162 }
2163 }
2164
2165 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2166 inline_speed ecb_cold void
2167 fd_kill (EV_P_ int fd)
2168 {
2169 ev_io *w;
2170
2171 while ((w = (ev_io *)anfds [fd].head))
2172 {
2173 ev_io_stop (EV_A_ w);
2174 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2175 }
2176 }
2177
2178 /* check whether the given fd is actually valid, for error recovery */
2179 inline_size ecb_cold int
2180 fd_valid (int fd)
2181 {
2182 #ifdef _WIN32
2183 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2184 #else
2185 return fcntl (fd, F_GETFD) != -1;
2186 #endif
2187 }
2188
2189 /* called on EBADF to verify fds */
2190 noinline ecb_cold
2191 static void
2192 fd_ebadf (EV_P)
2193 {
2194 int fd;
2195
2196 for (fd = 0; fd < anfdmax; ++fd)
2197 if (anfds [fd].events)
2198 if (!fd_valid (fd) && errno == EBADF)
2199 fd_kill (EV_A_ fd);
2200 }
2201
2202 /* called on ENOMEM in select/poll to kill some fds and retry */
2203 noinline ecb_cold
2204 static void
2205 fd_enomem (EV_P)
2206 {
2207 int fd;
2208
2209 for (fd = anfdmax; fd--; )
2210 if (anfds [fd].events)
2211 {
2212 fd_kill (EV_A_ fd);
2213 break;
2214 }
2215 }
2216
2217 /* usually called after fork if backend needs to re-arm all fds from scratch */
2218 noinline
2219 static void
2220 fd_rearm_all (EV_P)
2221 {
2222 int fd;
2223
2224 for (fd = 0; fd < anfdmax; ++fd)
2225 if (anfds [fd].events)
2226 {
2227 anfds [fd].events = 0;
2228 anfds [fd].emask = 0;
2229 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2230 }
2231 }
2232
2233 /* used to prepare libev internal fd's */
2234 /* this is not fork-safe */
2235 inline_speed void
2236 fd_intern (int fd)
2237 {
2238 #ifdef _WIN32
2239 unsigned long arg = 1;
2240 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2241 #else
2242 fcntl (fd, F_SETFD, FD_CLOEXEC);
2243 fcntl (fd, F_SETFL, O_NONBLOCK);
2244 #endif
2245 }
2246
2247 /*****************************************************************************/
2248
2249 /*
2250 * the heap functions want a real array index. array index 0 is guaranteed to not
2251 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2252 * the branching factor of the d-tree.
2253 */
2254
2255 /*
2256 * at the moment we allow libev the luxury of two heaps,
2257 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2258 * which is more cache-efficient.
2259 * the difference is about 5% with 50000+ watchers.
2260 */
2261 #if EV_USE_4HEAP
2262
2263 #define DHEAP 4
2264 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2265 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2266 #define UPHEAP_DONE(p,k) ((p) == (k))
2267
2268 /* away from the root */
2269 inline_speed void
2270 downheap (ANHE *heap, int N, int k)
2271 {
2272 ANHE he = heap [k];
2273 ANHE *E = heap + N + HEAP0;
2274
2275 for (;;)
2276 {
2277 ev_tstamp minat;
2278 ANHE *minpos;
2279 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2280
2281 /* find minimum child */
2282 if (expect_true (pos + DHEAP - 1 < E))
2283 {
2284 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2285 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2286 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2287 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2288 }
2289 else if (pos < E)
2290 {
2291 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2292 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2293 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2294 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2295 }
2296 else
2297 break;
2298
2299 if (ANHE_at (he) <= minat)
2300 break;
2301
2302 heap [k] = *minpos;
2303 ev_active (ANHE_w (*minpos)) = k;
2304
2305 k = minpos - heap;
2306 }
2307
2308 heap [k] = he;
2309 ev_active (ANHE_w (he)) = k;
2310 }
2311
2312 #else /* 4HEAP */
2313
2314 #define HEAP0 1
2315 #define HPARENT(k) ((k) >> 1)
2316 #define UPHEAP_DONE(p,k) (!(p))
2317
2318 /* away from the root */
2319 inline_speed void
2320 downheap (ANHE *heap, int N, int k)
2321 {
2322 ANHE he = heap [k];
2323
2324 for (;;)
2325 {
2326 int c = k << 1;
2327
2328 if (c >= N + HEAP0)
2329 break;
2330
2331 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2332 ? 1 : 0;
2333
2334 if (ANHE_at (he) <= ANHE_at (heap [c]))
2335 break;
2336
2337 heap [k] = heap [c];
2338 ev_active (ANHE_w (heap [k])) = k;
2339
2340 k = c;
2341 }
2342
2343 heap [k] = he;
2344 ev_active (ANHE_w (he)) = k;
2345 }
2346 #endif
2347
2348 /* towards the root */
2349 inline_speed void
2350 upheap (ANHE *heap, int k)
2351 {
2352 ANHE he = heap [k];
2353
2354 for (;;)
2355 {
2356 int p = HPARENT (k);
2357
2358 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2359 break;
2360
2361 heap [k] = heap [p];
2362 ev_active (ANHE_w (heap [k])) = k;
2363 k = p;
2364 }
2365
2366 heap [k] = he;
2367 ev_active (ANHE_w (he)) = k;
2368 }
2369
2370 /* move an element suitably so it is in a correct place */
2371 inline_size void
2372 adjustheap (ANHE *heap, int N, int k)
2373 {
2374 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2375 upheap (heap, k);
2376 else
2377 downheap (heap, N, k);
2378 }
2379
2380 /* rebuild the heap: this function is used only once and executed rarely */
2381 inline_size void
2382 reheap (ANHE *heap, int N)
2383 {
2384 int i;
2385
2386 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2387 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2388 for (i = 0; i < N; ++i)
2389 upheap (heap, i + HEAP0);
2390 }
2391
2392 /*****************************************************************************/
2393
2394 /* associate signal watchers to a signal signal */
2395 typedef struct
2396 {
2397 EV_ATOMIC_T pending;
2398 #if EV_MULTIPLICITY
2399 EV_P;
2400 #endif
2401 WL head;
2402 } ANSIG;
2403
2404 static ANSIG signals [EV_NSIG - 1];
2405
2406 /*****************************************************************************/
2407
2408 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2409
2410 noinline ecb_cold
2411 static void
2412 evpipe_init (EV_P)
2413 {
2414 if (!ev_is_active (&pipe_w))
2415 {
2416 int fds [2];
2417
2418 # if EV_USE_EVENTFD
2419 fds [0] = -1;
2420 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2421 if (fds [1] < 0 && errno == EINVAL)
2422 fds [1] = eventfd (0, 0);
2423
2424 if (fds [1] < 0)
2425 # endif
2426 {
2427 while (pipe (fds))
2428 ev_syserr ("(libev) error creating signal/async pipe");
2429
2430 fd_intern (fds [0]);
2431 }
2432
2433 evpipe [0] = fds [0];
2434
2435 if (evpipe [1] < 0)
2436 evpipe [1] = fds [1]; /* first call, set write fd */
2437 else
2438 {
2439 /* on subsequent calls, do not change evpipe [1] */
2440 /* so that evpipe_write can always rely on its value. */
2441 /* this branch does not do anything sensible on windows, */
2442 /* so must not be executed on windows */
2443
2444 dup2 (fds [1], evpipe [1]);
2445 close (fds [1]);
2446 }
2447
2448 fd_intern (evpipe [1]);
2449
2450 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2451 ev_io_start (EV_A_ &pipe_w);
2452 ev_unref (EV_A); /* watcher should not keep loop alive */
2453 }
2454 }
2455
2456 inline_speed void
2457 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2458 {
2459 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2460
2461 if (expect_true (*flag))
2462 return;
2463
2464 *flag = 1;
2465 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2466
2467 pipe_write_skipped = 1;
2468
2469 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2470
2471 if (pipe_write_wanted)
2472 {
2473 int old_errno;
2474
2475 pipe_write_skipped = 0;
2476 ECB_MEMORY_FENCE_RELEASE;
2477
2478 old_errno = errno; /* save errno because write will clobber it */
2479
2480 #if EV_USE_EVENTFD
2481 if (evpipe [0] < 0)
2482 {
2483 uint64_t counter = 1;
2484 write (evpipe [1], &counter, sizeof (uint64_t));
2485 }
2486 else
2487 #endif
2488 {
2489 #ifdef _WIN32
2490 WSABUF buf;
2491 DWORD sent;
2492 buf.buf = (char *)&buf;
2493 buf.len = 1;
2494 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2495 #else
2496 write (evpipe [1], &(evpipe [1]), 1);
2497 #endif
2498 }
2499
2500 errno = old_errno;
2501 }
2502 }
2503
2504 /* called whenever the libev signal pipe */
2505 /* got some events (signal, async) */
2506 static void
2507 pipecb (EV_P_ ev_io *iow, int revents)
2508 {
2509 int i;
2510
2511 if (revents & EV_READ)
2512 {
2513 #if EV_USE_EVENTFD
2514 if (evpipe [0] < 0)
2515 {
2516 uint64_t counter;
2517 read (evpipe [1], &counter, sizeof (uint64_t));
2518 }
2519 else
2520 #endif
2521 {
2522 char dummy[4];
2523 #ifdef _WIN32
2524 WSABUF buf;
2525 DWORD recvd;
2526 DWORD flags = 0;
2527 buf.buf = dummy;
2528 buf.len = sizeof (dummy);
2529 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2530 #else
2531 read (evpipe [0], &dummy, sizeof (dummy));
2532 #endif
2533 }
2534 }
2535
2536 pipe_write_skipped = 0;
2537
2538 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2539
2540 #if EV_SIGNAL_ENABLE
2541 if (sig_pending)
2542 {
2543 sig_pending = 0;
2544
2545 ECB_MEMORY_FENCE;
2546
2547 for (i = EV_NSIG - 1; i--; )
2548 if (expect_false (signals [i].pending))
2549 ev_feed_signal_event (EV_A_ i + 1);
2550 }
2551 #endif
2552
2553 #if EV_ASYNC_ENABLE
2554 if (async_pending)
2555 {
2556 async_pending = 0;
2557
2558 ECB_MEMORY_FENCE;
2559
2560 for (i = asynccnt; i--; )
2561 if (asyncs [i]->sent)
2562 {
2563 asyncs [i]->sent = 0;
2564 ECB_MEMORY_FENCE_RELEASE;
2565 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2566 }
2567 }
2568 #endif
2569 }
2570
2571 /*****************************************************************************/
2572
2573 void
2574 ev_feed_signal (int signum) EV_NOEXCEPT
2575 {
2576 #if EV_MULTIPLICITY
2577 EV_P;
2578 ECB_MEMORY_FENCE_ACQUIRE;
2579 EV_A = signals [signum - 1].loop;
2580
2581 if (!EV_A)
2582 return;
2583 #endif
2584
2585 signals [signum - 1].pending = 1;
2586 evpipe_write (EV_A_ &sig_pending);
2587 }
2588
2589 static void
2590 ev_sighandler (int signum)
2591 {
2592 #ifdef _WIN32
2593 signal (signum, ev_sighandler);
2594 #endif
2595
2596 ev_feed_signal (signum);
2597 }
2598
2599 noinline
2600 void
2601 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2602 {
2603 WL w;
2604
2605 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2606 return;
2607
2608 --signum;
2609
2610 #if EV_MULTIPLICITY
2611 /* it is permissible to try to feed a signal to the wrong loop */
2612 /* or, likely more useful, feeding a signal nobody is waiting for */
2613
2614 if (expect_false (signals [signum].loop != EV_A))
2615 return;
2616 #endif
2617
2618 signals [signum].pending = 0;
2619 ECB_MEMORY_FENCE_RELEASE;
2620
2621 for (w = signals [signum].head; w; w = w->next)
2622 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2623 }
2624
2625 #if EV_USE_SIGNALFD
2626 static void
2627 sigfdcb (EV_P_ ev_io *iow, int revents)
2628 {
2629 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2630
2631 for (;;)
2632 {
2633 ssize_t res = read (sigfd, si, sizeof (si));
2634
2635 /* not ISO-C, as res might be -1, but works with SuS */
2636 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2637 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2638
2639 if (res < (ssize_t)sizeof (si))
2640 break;
2641 }
2642 }
2643 #endif
2644
2645 #endif
2646
2647 /*****************************************************************************/
2648
2649 #if EV_CHILD_ENABLE
2650 static WL childs [EV_PID_HASHSIZE];
2651
2652 static ev_signal childev;
2653
2654 #ifndef WIFCONTINUED
2655 # define WIFCONTINUED(status) 0
2656 #endif
2657
2658 /* handle a single child status event */
2659 inline_speed void
2660 child_reap (EV_P_ int chain, int pid, int status)
2661 {
2662 ev_child *w;
2663 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2664
2665 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2666 {
2667 if ((w->pid == pid || !w->pid)
2668 && (!traced || (w->flags & 1)))
2669 {
2670 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2671 w->rpid = pid;
2672 w->rstatus = status;
2673 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2674 }
2675 }
2676 }
2677
2678 #ifndef WCONTINUED
2679 # define WCONTINUED 0
2680 #endif
2681
2682 /* called on sigchld etc., calls waitpid */
2683 static void
2684 childcb (EV_P_ ev_signal *sw, int revents)
2685 {
2686 int pid, status;
2687
2688 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2689 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2690 if (!WCONTINUED
2691 || errno != EINVAL
2692 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2693 return;
2694
2695 /* make sure we are called again until all children have been reaped */
2696 /* we need to do it this way so that the callback gets called before we continue */
2697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2698
2699 child_reap (EV_A_ pid, pid, status);
2700 if ((EV_PID_HASHSIZE) > 1)
2701 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2702 }
2703
2704 #endif
2705
2706 /*****************************************************************************/
2707
2708 #if EV_USE_IOCP
2709 # include "ev_iocp.c"
2710 #endif
2711 #if EV_USE_PORT
2712 # include "ev_port.c"
2713 #endif
2714 #if EV_USE_KQUEUE
2715 # include "ev_kqueue.c"
2716 #endif
2717 #if EV_USE_LINUXAIO
2718 # include "ev_linuxaio.c"
2719 #endif
2720 #if EV_USE_EPOLL
2721 # include "ev_epoll.c"
2722 #endif
2723 #if EV_USE_POLL
2724 # include "ev_poll.c"
2725 #endif
2726 #if EV_USE_SELECT
2727 # include "ev_select.c"
2728 #endif
2729
2730 ecb_cold int
2731 ev_version_major (void) EV_NOEXCEPT
2732 {
2733 return EV_VERSION_MAJOR;
2734 }
2735
2736 ecb_cold int
2737 ev_version_minor (void) EV_NOEXCEPT
2738 {
2739 return EV_VERSION_MINOR;
2740 }
2741
2742 /* return true if we are running with elevated privileges and should ignore env variables */
2743 inline_size ecb_cold int
2744 enable_secure (void)
2745 {
2746 #ifdef _WIN32
2747 return 0;
2748 #else
2749 return getuid () != geteuid ()
2750 || getgid () != getegid ();
2751 #endif
2752 }
2753
2754 ecb_cold
2755 unsigned int
2756 ev_supported_backends (void) EV_NOEXCEPT
2757 {
2758 unsigned int flags = 0;
2759
2760 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2761 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2762 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2763 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2764 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2765 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2766
2767 return flags;
2768 }
2769
2770 ecb_cold
2771 unsigned int
2772 ev_recommended_backends (void) EV_NOEXCEPT
2773 {
2774 unsigned int flags = ev_supported_backends ();
2775
2776 #ifndef __NetBSD__
2777 /* kqueue is borked on everything but netbsd apparently */
2778 /* it usually doesn't work correctly on anything but sockets and pipes */
2779 flags &= ~EVBACKEND_KQUEUE;
2780 #endif
2781 #ifdef __APPLE__
2782 /* only select works correctly on that "unix-certified" platform */
2783 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2784 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2785 #endif
2786 #ifdef __FreeBSD__
2787 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2788 #endif
2789
2790 return flags;
2791 }
2792
2793 ecb_cold
2794 unsigned int
2795 ev_embeddable_backends (void) EV_NOEXCEPT
2796 {
2797 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2798
2799 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2800 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2801 flags &= ~EVBACKEND_EPOLL;
2802
2803 return flags;
2804 }
2805
2806 unsigned int
2807 ev_backend (EV_P) EV_NOEXCEPT
2808 {
2809 return backend;
2810 }
2811
2812 #if EV_FEATURE_API
2813 unsigned int
2814 ev_iteration (EV_P) EV_NOEXCEPT
2815 {
2816 return loop_count;
2817 }
2818
2819 unsigned int
2820 ev_depth (EV_P) EV_NOEXCEPT
2821 {
2822 return loop_depth;
2823 }
2824
2825 void
2826 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2827 {
2828 io_blocktime = interval;
2829 }
2830
2831 void
2832 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2833 {
2834 timeout_blocktime = interval;
2835 }
2836
2837 void
2838 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2839 {
2840 userdata = data;
2841 }
2842
2843 void *
2844 ev_userdata (EV_P) EV_NOEXCEPT
2845 {
2846 return userdata;
2847 }
2848
2849 void
2850 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2851 {
2852 invoke_cb = invoke_pending_cb;
2853 }
2854
2855 void
2856 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2857 {
2858 release_cb = release;
2859 acquire_cb = acquire;
2860 }
2861 #endif
2862
2863 /* initialise a loop structure, must be zero-initialised */
2864 noinline ecb_cold
2865 static void
2866 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
2867 {
2868 if (!backend)
2869 {
2870 origflags = flags;
2871
2872 #if EV_USE_REALTIME
2873 if (!have_realtime)
2874 {
2875 struct timespec ts;
2876
2877 if (!clock_gettime (CLOCK_REALTIME, &ts))
2878 have_realtime = 1;
2879 }
2880 #endif
2881
2882 #if EV_USE_MONOTONIC
2883 if (!have_monotonic)
2884 {
2885 struct timespec ts;
2886
2887 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2888 have_monotonic = 1;
2889 }
2890 #endif
2891
2892 /* pid check not overridable via env */
2893 #ifndef _WIN32
2894 if (flags & EVFLAG_FORKCHECK)
2895 curpid = getpid ();
2896 #endif
2897
2898 if (!(flags & EVFLAG_NOENV)
2899 && !enable_secure ()
2900 && getenv ("LIBEV_FLAGS"))
2901 flags = atoi (getenv ("LIBEV_FLAGS"));
2902
2903 ev_rt_now = ev_time ();
2904 mn_now = get_clock ();
2905 now_floor = mn_now;
2906 rtmn_diff = ev_rt_now - mn_now;
2907 #if EV_FEATURE_API
2908 invoke_cb = ev_invoke_pending;
2909 #endif
2910
2911 io_blocktime = 0.;
2912 timeout_blocktime = 0.;
2913 backend = 0;
2914 backend_fd = -1;
2915 sig_pending = 0;
2916 #if EV_ASYNC_ENABLE
2917 async_pending = 0;
2918 #endif
2919 pipe_write_skipped = 0;
2920 pipe_write_wanted = 0;
2921 evpipe [0] = -1;
2922 evpipe [1] = -1;
2923 #if EV_USE_INOTIFY
2924 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2925 #endif
2926 #if EV_USE_SIGNALFD
2927 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2928 #endif
2929
2930 if (!(flags & EVBACKEND_MASK))
2931 flags |= ev_recommended_backends ();
2932
2933 #if EV_USE_IOCP
2934 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2935 #endif
2936 #if EV_USE_PORT
2937 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2938 #endif
2939 #if EV_USE_KQUEUE
2940 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2941 #endif
2942 #if EV_USE_LINUXAIO
2943 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
2944 #endif
2945 #if EV_USE_EPOLL
2946 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2947 #endif
2948 #if EV_USE_POLL
2949 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2950 #endif
2951 #if EV_USE_SELECT
2952 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
2953 #endif
2954
2955 ev_prepare_init (&pending_w, pendingcb);
2956
2957 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2958 ev_init (&pipe_w, pipecb);
2959 ev_set_priority (&pipe_w, EV_MAXPRI);
2960 #endif
2961 }
2962 }
2963
2964 /* free up a loop structure */
2965 ecb_cold
2966 void
2967 ev_loop_destroy (EV_P)
2968 {
2969 int i;
2970
2971 #if EV_MULTIPLICITY
2972 /* mimic free (0) */
2973 if (!EV_A)
2974 return;
2975 #endif
2976
2977 #if EV_CLEANUP_ENABLE
2978 /* queue cleanup watchers (and execute them) */
2979 if (expect_false (cleanupcnt))
2980 {
2981 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2982 EV_INVOKE_PENDING;
2983 }
2984 #endif
2985
2986 #if EV_CHILD_ENABLE
2987 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2988 {
2989 ev_ref (EV_A); /* child watcher */
2990 ev_signal_stop (EV_A_ &childev);
2991 }
2992 #endif
2993
2994 if (ev_is_active (&pipe_w))
2995 {
2996 /*ev_ref (EV_A);*/
2997 /*ev_io_stop (EV_A_ &pipe_w);*/
2998
2999 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3000 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3001 }
3002
3003 #if EV_USE_SIGNALFD
3004 if (ev_is_active (&sigfd_w))
3005 close (sigfd);
3006 #endif
3007
3008 #if EV_USE_INOTIFY
3009 if (fs_fd >= 0)
3010 close (fs_fd);
3011 #endif
3012
3013 if (backend_fd >= 0)
3014 close (backend_fd);
3015
3016 #if EV_USE_IOCP
3017 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3018 #endif
3019 #if EV_USE_PORT
3020 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3021 #endif
3022 #if EV_USE_KQUEUE
3023 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3024 #endif
3025 #if EV_USE_LINUXAIO
3026 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3027 #endif
3028 #if EV_USE_EPOLL
3029 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3030 #endif
3031 #if EV_USE_POLL
3032 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3033 #endif
3034 #if EV_USE_SELECT
3035 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3036 #endif
3037
3038 for (i = NUMPRI; i--; )
3039 {
3040 array_free (pending, [i]);
3041 #if EV_IDLE_ENABLE
3042 array_free (idle, [i]);
3043 #endif
3044 }
3045
3046 ev_free (anfds); anfds = 0; anfdmax = 0;
3047
3048 /* have to use the microsoft-never-gets-it-right macro */
3049 array_free (rfeed, EMPTY);
3050 array_free (fdchange, EMPTY);
3051 array_free (timer, EMPTY);
3052 #if EV_PERIODIC_ENABLE
3053 array_free (periodic, EMPTY);
3054 #endif
3055 #if EV_FORK_ENABLE
3056 array_free (fork, EMPTY);
3057 #endif
3058 #if EV_CLEANUP_ENABLE
3059 array_free (cleanup, EMPTY);
3060 #endif
3061 array_free (prepare, EMPTY);
3062 array_free (check, EMPTY);
3063 #if EV_ASYNC_ENABLE
3064 array_free (async, EMPTY);
3065 #endif
3066
3067 backend = 0;
3068
3069 #if EV_MULTIPLICITY
3070 if (ev_is_default_loop (EV_A))
3071 #endif
3072 ev_default_loop_ptr = 0;
3073 #if EV_MULTIPLICITY
3074 else
3075 ev_free (EV_A);
3076 #endif
3077 }
3078
3079 #if EV_USE_INOTIFY
3080 inline_size void infy_fork (EV_P);
3081 #endif
3082
3083 inline_size void
3084 loop_fork (EV_P)
3085 {
3086 #if EV_USE_PORT
3087 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3088 #endif
3089 #if EV_USE_KQUEUE
3090 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3091 #endif
3092 #if EV_USE_LINUXAIO
3093 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3094 #endif
3095 #if EV_USE_EPOLL
3096 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3097 #endif
3098 #if EV_USE_INOTIFY
3099 infy_fork (EV_A);
3100 #endif
3101
3102 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3103 if (ev_is_active (&pipe_w) && postfork != 2)
3104 {
3105 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3106
3107 ev_ref (EV_A);
3108 ev_io_stop (EV_A_ &pipe_w);
3109
3110 if (evpipe [0] >= 0)
3111 EV_WIN32_CLOSE_FD (evpipe [0]);
3112
3113 evpipe_init (EV_A);
3114 /* iterate over everything, in case we missed something before */
3115 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3116 }
3117 #endif
3118
3119 postfork = 0;
3120 }
3121
3122 #if EV_MULTIPLICITY
3123
3124 ecb_cold
3125 struct ev_loop *
3126 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3127 {
3128 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3129
3130 memset (EV_A, 0, sizeof (struct ev_loop));
3131 loop_init (EV_A_ flags);
3132
3133 if (ev_backend (EV_A))
3134 return EV_A;
3135
3136 ev_free (EV_A);
3137 return 0;
3138 }
3139
3140 #endif /* multiplicity */
3141
3142 #if EV_VERIFY
3143 noinline ecb_cold
3144 static void
3145 verify_watcher (EV_P_ W w)
3146 {
3147 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3148
3149 if (w->pending)
3150 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3151 }
3152
3153 noinline ecb_cold
3154 static void
3155 verify_heap (EV_P_ ANHE *heap, int N)
3156 {
3157 int i;
3158
3159 for (i = HEAP0; i < N + HEAP0; ++i)
3160 {
3161 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3162 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3163 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3164
3165 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3166 }
3167 }
3168
3169 noinline ecb_cold
3170 static void
3171 array_verify (EV_P_ W *ws, int cnt)
3172 {
3173 while (cnt--)
3174 {
3175 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3176 verify_watcher (EV_A_ ws [cnt]);
3177 }
3178 }
3179 #endif
3180
3181 #if EV_FEATURE_API
3182 void ecb_cold
3183 ev_verify (EV_P) EV_NOEXCEPT
3184 {
3185 #if EV_VERIFY
3186 int i;
3187 WL w, w2;
3188
3189 assert (activecnt >= -1);
3190
3191 assert (fdchangemax >= fdchangecnt);
3192 for (i = 0; i < fdchangecnt; ++i)
3193 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3194
3195 assert (anfdmax >= 0);
3196 for (i = 0; i < anfdmax; ++i)
3197 {
3198 int j = 0;
3199
3200 for (w = w2 = anfds [i].head; w; w = w->next)
3201 {
3202 verify_watcher (EV_A_ (W)w);
3203
3204 if (j++ & 1)
3205 {
3206 assert (("libev: io watcher list contains a loop", w != w2));
3207 w2 = w2->next;
3208 }
3209
3210 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3211 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3212 }
3213 }
3214
3215 assert (timermax >= timercnt);
3216 verify_heap (EV_A_ timers, timercnt);
3217
3218 #if EV_PERIODIC_ENABLE
3219 assert (periodicmax >= periodiccnt);
3220 verify_heap (EV_A_ periodics, periodiccnt);
3221 #endif
3222
3223 for (i = NUMPRI; i--; )
3224 {
3225 assert (pendingmax [i] >= pendingcnt [i]);
3226 #if EV_IDLE_ENABLE
3227 assert (idleall >= 0);
3228 assert (idlemax [i] >= idlecnt [i]);
3229 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3230 #endif
3231 }
3232
3233 #if EV_FORK_ENABLE
3234 assert (forkmax >= forkcnt);
3235 array_verify (EV_A_ (W *)forks, forkcnt);
3236 #endif
3237
3238 #if EV_CLEANUP_ENABLE
3239 assert (cleanupmax >= cleanupcnt);
3240 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3241 #endif
3242
3243 #if EV_ASYNC_ENABLE
3244 assert (asyncmax >= asynccnt);
3245 array_verify (EV_A_ (W *)asyncs, asynccnt);
3246 #endif
3247
3248 #if EV_PREPARE_ENABLE
3249 assert (preparemax >= preparecnt);
3250 array_verify (EV_A_ (W *)prepares, preparecnt);
3251 #endif
3252
3253 #if EV_CHECK_ENABLE
3254 assert (checkmax >= checkcnt);
3255 array_verify (EV_A_ (W *)checks, checkcnt);
3256 #endif
3257
3258 # if 0
3259 #if EV_CHILD_ENABLE
3260 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3261 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3262 #endif
3263 # endif
3264 #endif
3265 }
3266 #endif
3267
3268 #if EV_MULTIPLICITY
3269 ecb_cold
3270 struct ev_loop *
3271 #else
3272 int
3273 #endif
3274 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3275 {
3276 if (!ev_default_loop_ptr)
3277 {
3278 #if EV_MULTIPLICITY
3279 EV_P = ev_default_loop_ptr = &default_loop_struct;
3280 #else
3281 ev_default_loop_ptr = 1;
3282 #endif
3283
3284 loop_init (EV_A_ flags);
3285
3286 if (ev_backend (EV_A))
3287 {
3288 #if EV_CHILD_ENABLE
3289 ev_signal_init (&childev, childcb, SIGCHLD);
3290 ev_set_priority (&childev, EV_MAXPRI);
3291 ev_signal_start (EV_A_ &childev);
3292 ev_unref (EV_A); /* child watcher should not keep loop alive */
3293 #endif
3294 }
3295 else
3296 ev_default_loop_ptr = 0;
3297 }
3298
3299 return ev_default_loop_ptr;
3300 }
3301
3302 void
3303 ev_loop_fork (EV_P) EV_NOEXCEPT
3304 {
3305 postfork = 1;
3306 }
3307
3308 /*****************************************************************************/
3309
3310 void
3311 ev_invoke (EV_P_ void *w, int revents)
3312 {
3313 EV_CB_INVOKE ((W)w, revents);
3314 }
3315
3316 unsigned int
3317 ev_pending_count (EV_P) EV_NOEXCEPT
3318 {
3319 int pri;
3320 unsigned int count = 0;
3321
3322 for (pri = NUMPRI; pri--; )
3323 count += pendingcnt [pri];
3324
3325 return count;
3326 }
3327
3328 noinline
3329 void
3330 ev_invoke_pending (EV_P)
3331 {
3332 pendingpri = NUMPRI;
3333
3334 do
3335 {
3336 --pendingpri;
3337
3338 /* pendingpri possibly gets modified in the inner loop */
3339 while (pendingcnt [pendingpri])
3340 {
3341 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3342
3343 p->w->pending = 0;
3344 EV_CB_INVOKE (p->w, p->events);
3345 EV_FREQUENT_CHECK;
3346 }
3347 }
3348 while (pendingpri);
3349 }
3350
3351 #if EV_IDLE_ENABLE
3352 /* make idle watchers pending. this handles the "call-idle */
3353 /* only when higher priorities are idle" logic */
3354 inline_size void
3355 idle_reify (EV_P)
3356 {
3357 if (expect_false (idleall))
3358 {
3359 int pri;
3360
3361 for (pri = NUMPRI; pri--; )
3362 {
3363 if (pendingcnt [pri])
3364 break;
3365
3366 if (idlecnt [pri])
3367 {
3368 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3369 break;
3370 }
3371 }
3372 }
3373 }
3374 #endif
3375
3376 /* make timers pending */
3377 inline_size void
3378 timers_reify (EV_P)
3379 {
3380 EV_FREQUENT_CHECK;
3381
3382 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3383 {
3384 do
3385 {
3386 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3387
3388 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3389
3390 /* first reschedule or stop timer */
3391 if (w->repeat)
3392 {
3393 ev_at (w) += w->repeat;
3394 if (ev_at (w) < mn_now)
3395 ev_at (w) = mn_now;
3396
3397 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3398
3399 ANHE_at_cache (timers [HEAP0]);
3400 downheap (timers, timercnt, HEAP0);
3401 }
3402 else
3403 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3404
3405 EV_FREQUENT_CHECK;
3406 feed_reverse (EV_A_ (W)w);
3407 }
3408 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3409
3410 feed_reverse_done (EV_A_ EV_TIMER);
3411 }
3412 }
3413
3414 #if EV_PERIODIC_ENABLE
3415
3416 noinline
3417 static void
3418 periodic_recalc (EV_P_ ev_periodic *w)
3419 {
3420 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3421 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3422
3423 /* the above almost always errs on the low side */
3424 while (at <= ev_rt_now)
3425 {
3426 ev_tstamp nat = at + w->interval;
3427
3428 /* when resolution fails us, we use ev_rt_now */
3429 if (expect_false (nat == at))
3430 {
3431 at = ev_rt_now;
3432 break;
3433 }
3434
3435 at = nat;
3436 }
3437
3438 ev_at (w) = at;
3439 }
3440
3441 /* make periodics pending */
3442 inline_size void
3443 periodics_reify (EV_P)
3444 {
3445 EV_FREQUENT_CHECK;
3446
3447 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3448 {
3449 do
3450 {
3451 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3452
3453 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3454
3455 /* first reschedule or stop timer */
3456 if (w->reschedule_cb)
3457 {
3458 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3459
3460 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3461
3462 ANHE_at_cache (periodics [HEAP0]);
3463 downheap (periodics, periodiccnt, HEAP0);
3464 }
3465 else if (w->interval)
3466 {
3467 periodic_recalc (EV_A_ w);
3468 ANHE_at_cache (periodics [HEAP0]);
3469 downheap (periodics, periodiccnt, HEAP0);
3470 }
3471 else
3472 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3473
3474 EV_FREQUENT_CHECK;
3475 feed_reverse (EV_A_ (W)w);
3476 }
3477 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3478
3479 feed_reverse_done (EV_A_ EV_PERIODIC);
3480 }
3481 }
3482
3483 /* simply recalculate all periodics */
3484 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3485 noinline ecb_cold
3486 static void
3487 periodics_reschedule (EV_P)
3488 {
3489 int i;
3490
3491 /* adjust periodics after time jump */
3492 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3493 {
3494 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3495
3496 if (w->reschedule_cb)
3497 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3498 else if (w->interval)
3499 periodic_recalc (EV_A_ w);
3500
3501 ANHE_at_cache (periodics [i]);
3502 }
3503
3504 reheap (periodics, periodiccnt);
3505 }
3506 #endif
3507
3508 /* adjust all timers by a given offset */
3509 noinline ecb_cold
3510 static void
3511 timers_reschedule (EV_P_ ev_tstamp adjust)
3512 {
3513 int i;
3514
3515 for (i = 0; i < timercnt; ++i)
3516 {
3517 ANHE *he = timers + i + HEAP0;
3518 ANHE_w (*he)->at += adjust;
3519 ANHE_at_cache (*he);
3520 }
3521 }
3522
3523 /* fetch new monotonic and realtime times from the kernel */
3524 /* also detect if there was a timejump, and act accordingly */
3525 inline_speed void
3526 time_update (EV_P_ ev_tstamp max_block)
3527 {
3528 #if EV_USE_MONOTONIC
3529 if (expect_true (have_monotonic))
3530 {
3531 int i;
3532 ev_tstamp odiff = rtmn_diff;
3533
3534 mn_now = get_clock ();
3535
3536 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3537 /* interpolate in the meantime */
3538 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3539 {
3540 ev_rt_now = rtmn_diff + mn_now;
3541 return;
3542 }
3543
3544 now_floor = mn_now;
3545 ev_rt_now = ev_time ();
3546
3547 /* loop a few times, before making important decisions.
3548 * on the choice of "4": one iteration isn't enough,
3549 * in case we get preempted during the calls to
3550 * ev_time and get_clock. a second call is almost guaranteed
3551 * to succeed in that case, though. and looping a few more times
3552 * doesn't hurt either as we only do this on time-jumps or
3553 * in the unlikely event of having been preempted here.
3554 */
3555 for (i = 4; --i; )
3556 {
3557 ev_tstamp diff;
3558 rtmn_diff = ev_rt_now - mn_now;
3559
3560 diff = odiff - rtmn_diff;
3561
3562 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3563 return; /* all is well */
3564
3565 ev_rt_now = ev_time ();
3566 mn_now = get_clock ();
3567 now_floor = mn_now;
3568 }
3569
3570 /* no timer adjustment, as the monotonic clock doesn't jump */
3571 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3572 # if EV_PERIODIC_ENABLE
3573 periodics_reschedule (EV_A);
3574 # endif
3575 }
3576 else
3577 #endif
3578 {
3579 ev_rt_now = ev_time ();
3580
3581 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3582 {
3583 /* adjust timers. this is easy, as the offset is the same for all of them */
3584 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3585 #if EV_PERIODIC_ENABLE
3586 periodics_reschedule (EV_A);
3587 #endif
3588 }
3589
3590 mn_now = ev_rt_now;
3591 }
3592 }
3593
3594 int
3595 ev_run (EV_P_ int flags)
3596 {
3597 #if EV_FEATURE_API
3598 ++loop_depth;
3599 #endif
3600
3601 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3602
3603 loop_done = EVBREAK_CANCEL;
3604
3605 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3606
3607 do
3608 {
3609 #if EV_VERIFY >= 2
3610 ev_verify (EV_A);
3611 #endif
3612
3613 #ifndef _WIN32
3614 if (expect_false (curpid)) /* penalise the forking check even more */
3615 if (expect_false (getpid () != curpid))
3616 {
3617 curpid = getpid ();
3618 postfork = 1;
3619 }
3620 #endif
3621
3622 #if EV_FORK_ENABLE
3623 /* we might have forked, so queue fork handlers */
3624 if (expect_false (postfork))
3625 if (forkcnt)
3626 {
3627 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3628 EV_INVOKE_PENDING;
3629 }
3630 #endif
3631
3632 #if EV_PREPARE_ENABLE
3633 /* queue prepare watchers (and execute them) */
3634 if (expect_false (preparecnt))
3635 {
3636 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3637 EV_INVOKE_PENDING;
3638 }
3639 #endif
3640
3641 if (expect_false (loop_done))
3642 break;
3643
3644 /* we might have forked, so reify kernel state if necessary */
3645 if (expect_false (postfork))
3646 loop_fork (EV_A);
3647
3648 /* update fd-related kernel structures */
3649 fd_reify (EV_A);
3650
3651 /* calculate blocking time */
3652 {
3653 ev_tstamp waittime = 0.;
3654 ev_tstamp sleeptime = 0.;
3655
3656 /* remember old timestamp for io_blocktime calculation */
3657 ev_tstamp prev_mn_now = mn_now;
3658
3659 /* update time to cancel out callback processing overhead */
3660 time_update (EV_A_ 1e100);
3661
3662 /* from now on, we want a pipe-wake-up */
3663 pipe_write_wanted = 1;
3664
3665 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3666
3667 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3668 {
3669 waittime = MAX_BLOCKTIME;
3670
3671 if (timercnt)
3672 {
3673 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3674 if (waittime > to) waittime = to;
3675 }
3676
3677 #if EV_PERIODIC_ENABLE
3678 if (periodiccnt)
3679 {
3680 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3681 if (waittime > to) waittime = to;
3682 }
3683 #endif
3684
3685 /* don't let timeouts decrease the waittime below timeout_blocktime */
3686 if (expect_false (waittime < timeout_blocktime))
3687 waittime = timeout_blocktime;
3688
3689 /* at this point, we NEED to wait, so we have to ensure */
3690 /* to pass a minimum nonzero value to the backend */
3691 if (expect_false (waittime < backend_mintime))
3692 waittime = backend_mintime;
3693
3694 /* extra check because io_blocktime is commonly 0 */
3695 if (expect_false (io_blocktime))
3696 {
3697 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3698
3699 if (sleeptime > waittime - backend_mintime)
3700 sleeptime = waittime - backend_mintime;
3701
3702 if (expect_true (sleeptime > 0.))
3703 {
3704 ev_sleep (sleeptime);
3705 waittime -= sleeptime;
3706 }
3707 }
3708 }
3709
3710 #if EV_FEATURE_API
3711 ++loop_count;
3712 #endif
3713 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3714 backend_poll (EV_A_ waittime);
3715 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3716
3717 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3718
3719 ECB_MEMORY_FENCE_ACQUIRE;
3720 if (pipe_write_skipped)
3721 {
3722 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3723 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3724 }
3725
3726
3727 /* update ev_rt_now, do magic */
3728 time_update (EV_A_ waittime + sleeptime);
3729 }
3730
3731 /* queue pending timers and reschedule them */
3732 timers_reify (EV_A); /* relative timers called last */
3733 #if EV_PERIODIC_ENABLE
3734 periodics_reify (EV_A); /* absolute timers called first */
3735 #endif
3736
3737 #if EV_IDLE_ENABLE
3738 /* queue idle watchers unless other events are pending */
3739 idle_reify (EV_A);
3740 #endif
3741
3742 #if EV_CHECK_ENABLE
3743 /* queue check watchers, to be executed first */
3744 if (expect_false (checkcnt))
3745 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3746 #endif
3747
3748 EV_INVOKE_PENDING;
3749 }
3750 while (expect_true (
3751 activecnt
3752 && !loop_done
3753 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3754 ));
3755
3756 if (loop_done == EVBREAK_ONE)
3757 loop_done = EVBREAK_CANCEL;
3758
3759 #if EV_FEATURE_API
3760 --loop_depth;
3761 #endif
3762
3763 return activecnt;
3764 }
3765
3766 void
3767 ev_break (EV_P_ int how) EV_NOEXCEPT
3768 {
3769 loop_done = how;
3770 }
3771
3772 void
3773 ev_ref (EV_P) EV_NOEXCEPT
3774 {
3775 ++activecnt;
3776 }
3777
3778 void
3779 ev_unref (EV_P) EV_NOEXCEPT
3780 {
3781 --activecnt;
3782 }
3783
3784 void
3785 ev_now_update (EV_P) EV_NOEXCEPT
3786 {
3787 time_update (EV_A_ 1e100);
3788 }
3789
3790 void
3791 ev_suspend (EV_P) EV_NOEXCEPT
3792 {
3793 ev_now_update (EV_A);
3794 }
3795
3796 void
3797 ev_resume (EV_P) EV_NOEXCEPT
3798 {
3799 ev_tstamp mn_prev = mn_now;
3800
3801 ev_now_update (EV_A);
3802 timers_reschedule (EV_A_ mn_now - mn_prev);
3803 #if EV_PERIODIC_ENABLE
3804 /* TODO: really do this? */
3805 periodics_reschedule (EV_A);
3806 #endif
3807 }
3808
3809 /*****************************************************************************/
3810 /* singly-linked list management, used when the expected list length is short */
3811
3812 inline_size void
3813 wlist_add (WL *head, WL elem)
3814 {
3815 elem->next = *head;
3816 *head = elem;
3817 }
3818
3819 inline_size void
3820 wlist_del (WL *head, WL elem)
3821 {
3822 while (*head)
3823 {
3824 if (expect_true (*head == elem))
3825 {
3826 *head = elem->next;
3827 break;
3828 }
3829
3830 head = &(*head)->next;
3831 }
3832 }
3833
3834 /* internal, faster, version of ev_clear_pending */
3835 inline_speed void
3836 clear_pending (EV_P_ W w)
3837 {
3838 if (w->pending)
3839 {
3840 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3841 w->pending = 0;
3842 }
3843 }
3844
3845 int
3846 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3847 {
3848 W w_ = (W)w;
3849 int pending = w_->pending;
3850
3851 if (expect_true (pending))
3852 {
3853 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3854 p->w = (W)&pending_w;
3855 w_->pending = 0;
3856 return p->events;
3857 }
3858 else
3859 return 0;
3860 }
3861
3862 inline_size void
3863 pri_adjust (EV_P_ W w)
3864 {
3865 int pri = ev_priority (w);
3866 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3867 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3868 ev_set_priority (w, pri);
3869 }
3870
3871 inline_speed void
3872 ev_start (EV_P_ W w, int active)
3873 {
3874 pri_adjust (EV_A_ w);
3875 w->active = active;
3876 ev_ref (EV_A);
3877 }
3878
3879 inline_size void
3880 ev_stop (EV_P_ W w)
3881 {
3882 ev_unref (EV_A);
3883 w->active = 0;
3884 }
3885
3886 /*****************************************************************************/
3887
3888 noinline
3889 void
3890 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
3891 {
3892 int fd = w->fd;
3893
3894 if (expect_false (ev_is_active (w)))
3895 return;
3896
3897 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3898 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3899
3900 EV_FREQUENT_CHECK;
3901
3902 ev_start (EV_A_ (W)w, 1);
3903 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
3904 wlist_add (&anfds[fd].head, (WL)w);
3905
3906 /* common bug, apparently */
3907 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3908
3909 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3910 w->events &= ~EV__IOFDSET;
3911
3912 EV_FREQUENT_CHECK;
3913 }
3914
3915 noinline
3916 void
3917 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
3918 {
3919 clear_pending (EV_A_ (W)w);
3920 if (expect_false (!ev_is_active (w)))
3921 return;
3922
3923 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3924
3925 EV_FREQUENT_CHECK;
3926
3927 wlist_del (&anfds[w->fd].head, (WL)w);
3928 ev_stop (EV_A_ (W)w);
3929
3930 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3931
3932 EV_FREQUENT_CHECK;
3933 }
3934
3935 noinline
3936 void
3937 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
3938 {
3939 if (expect_false (ev_is_active (w)))
3940 return;
3941
3942 ev_at (w) += mn_now;
3943
3944 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3945
3946 EV_FREQUENT_CHECK;
3947
3948 ++timercnt;
3949 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3950 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
3951 ANHE_w (timers [ev_active (w)]) = (WT)w;
3952 ANHE_at_cache (timers [ev_active (w)]);
3953 upheap (timers, ev_active (w));
3954
3955 EV_FREQUENT_CHECK;
3956
3957 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3958 }
3959
3960 noinline
3961 void
3962 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
3963 {
3964 clear_pending (EV_A_ (W)w);
3965 if (expect_false (!ev_is_active (w)))
3966 return;
3967
3968 EV_FREQUENT_CHECK;
3969
3970 {
3971 int active = ev_active (w);
3972
3973 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3974
3975 --timercnt;
3976
3977 if (expect_true (active < timercnt + HEAP0))
3978 {
3979 timers [active] = timers [timercnt + HEAP0];
3980 adjustheap (timers, timercnt, active);
3981 }
3982 }
3983
3984 ev_at (w) -= mn_now;
3985
3986 ev_stop (EV_A_ (W)w);
3987
3988 EV_FREQUENT_CHECK;
3989 }
3990
3991 noinline
3992 void
3993 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
3994 {
3995 EV_FREQUENT_CHECK;
3996
3997 clear_pending (EV_A_ (W)w);
3998
3999 if (ev_is_active (w))
4000 {
4001 if (w->repeat)
4002 {
4003 ev_at (w) = mn_now + w->repeat;
4004 ANHE_at_cache (timers [ev_active (w)]);
4005 adjustheap (timers, timercnt, ev_active (w));
4006 }
4007 else
4008 ev_timer_stop (EV_A_ w);
4009 }
4010 else if (w->repeat)
4011 {
4012 ev_at (w) = w->repeat;
4013 ev_timer_start (EV_A_ w);
4014 }
4015
4016 EV_FREQUENT_CHECK;
4017 }
4018
4019 ev_tstamp
4020 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4021 {
4022 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4023 }
4024
4025 #if EV_PERIODIC_ENABLE
4026 noinline
4027 void
4028 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4029 {
4030 if (expect_false (ev_is_active (w)))
4031 return;
4032
4033 if (w->reschedule_cb)
4034 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4035 else if (w->interval)
4036 {
4037 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4038 periodic_recalc (EV_A_ w);
4039 }
4040 else
4041 ev_at (w) = w->offset;
4042
4043 EV_FREQUENT_CHECK;
4044
4045 ++periodiccnt;
4046 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4047 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4048 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4049 ANHE_at_cache (periodics [ev_active (w)]);
4050 upheap (periodics, ev_active (w));
4051
4052 EV_FREQUENT_CHECK;
4053
4054 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4055 }
4056
4057 noinline
4058 void
4059 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4060 {
4061 clear_pending (EV_A_ (W)w);
4062 if (expect_false (!ev_is_active (w)))
4063 return;
4064
4065 EV_FREQUENT_CHECK;
4066
4067 {
4068 int active = ev_active (w);
4069
4070 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4071
4072 --periodiccnt;
4073
4074 if (expect_true (active < periodiccnt + HEAP0))
4075 {
4076 periodics [active] = periodics [periodiccnt + HEAP0];
4077 adjustheap (periodics, periodiccnt, active);
4078 }
4079 }
4080
4081 ev_stop (EV_A_ (W)w);
4082
4083 EV_FREQUENT_CHECK;
4084 }
4085
4086 noinline
4087 void
4088 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4089 {
4090 /* TODO: use adjustheap and recalculation */
4091 ev_periodic_stop (EV_A_ w);
4092 ev_periodic_start (EV_A_ w);
4093 }
4094 #endif
4095
4096 #ifndef SA_RESTART
4097 # define SA_RESTART 0
4098 #endif
4099
4100 #if EV_SIGNAL_ENABLE
4101
4102 noinline
4103 void
4104 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4105 {
4106 if (expect_false (ev_is_active (w)))
4107 return;
4108
4109 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4110
4111 #if EV_MULTIPLICITY
4112 assert (("libev: a signal must not be attached to two different loops",
4113 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4114
4115 signals [w->signum - 1].loop = EV_A;
4116 ECB_MEMORY_FENCE_RELEASE;
4117 #endif
4118
4119 EV_FREQUENT_CHECK;
4120
4121 #if EV_USE_SIGNALFD
4122 if (sigfd == -2)
4123 {
4124 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4125 if (sigfd < 0 && errno == EINVAL)
4126 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4127
4128 if (sigfd >= 0)
4129 {
4130 fd_intern (sigfd); /* doing it twice will not hurt */
4131
4132 sigemptyset (&sigfd_set);
4133
4134 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4135 ev_set_priority (&sigfd_w, EV_MAXPRI);
4136 ev_io_start (EV_A_ &sigfd_w);
4137 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4138 }
4139 }
4140
4141 if (sigfd >= 0)
4142 {
4143 /* TODO: check .head */
4144 sigaddset (&sigfd_set, w->signum);
4145 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4146
4147 signalfd (sigfd, &sigfd_set, 0);
4148 }
4149 #endif
4150
4151 ev_start (EV_A_ (W)w, 1);
4152 wlist_add (&signals [w->signum - 1].head, (WL)w);
4153
4154 if (!((WL)w)->next)
4155 # if EV_USE_SIGNALFD
4156 if (sigfd < 0) /*TODO*/
4157 # endif
4158 {
4159 # ifdef _WIN32
4160 evpipe_init (EV_A);
4161
4162 signal (w->signum, ev_sighandler);
4163 # else
4164 struct sigaction sa;
4165
4166 evpipe_init (EV_A);
4167
4168 sa.sa_handler = ev_sighandler;
4169 sigfillset (&sa.sa_mask);
4170 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4171 sigaction (w->signum, &sa, 0);
4172
4173 if (origflags & EVFLAG_NOSIGMASK)
4174 {
4175 sigemptyset (&sa.sa_mask);
4176 sigaddset (&sa.sa_mask, w->signum);
4177 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4178 }
4179 #endif
4180 }
4181
4182 EV_FREQUENT_CHECK;
4183 }
4184
4185 noinline
4186 void
4187 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4188 {
4189 clear_pending (EV_A_ (W)w);
4190 if (expect_false (!ev_is_active (w)))
4191 return;
4192
4193 EV_FREQUENT_CHECK;
4194
4195 wlist_del (&signals [w->signum - 1].head, (WL)w);
4196 ev_stop (EV_A_ (W)w);
4197
4198 if (!signals [w->signum - 1].head)
4199 {
4200 #if EV_MULTIPLICITY
4201 signals [w->signum - 1].loop = 0; /* unattach from signal */
4202 #endif
4203 #if EV_USE_SIGNALFD
4204 if (sigfd >= 0)
4205 {
4206 sigset_t ss;
4207
4208 sigemptyset (&ss);
4209 sigaddset (&ss, w->signum);
4210 sigdelset (&sigfd_set, w->signum);
4211
4212 signalfd (sigfd, &sigfd_set, 0);
4213 sigprocmask (SIG_UNBLOCK, &ss, 0);
4214 }
4215 else
4216 #endif
4217 signal (w->signum, SIG_DFL);
4218 }
4219
4220 EV_FREQUENT_CHECK;
4221 }
4222
4223 #endif
4224
4225 #if EV_CHILD_ENABLE
4226
4227 void
4228 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4229 {
4230 #if EV_MULTIPLICITY
4231 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4232 #endif
4233 if (expect_false (ev_is_active (w)))
4234 return;
4235
4236 EV_FREQUENT_CHECK;
4237
4238 ev_start (EV_A_ (W)w, 1);
4239 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4240
4241 EV_FREQUENT_CHECK;
4242 }
4243
4244 void
4245 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4246 {
4247 clear_pending (EV_A_ (W)w);
4248 if (expect_false (!ev_is_active (w)))
4249 return;
4250
4251 EV_FREQUENT_CHECK;
4252
4253 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4254 ev_stop (EV_A_ (W)w);
4255
4256 EV_FREQUENT_CHECK;
4257 }
4258
4259 #endif
4260
4261 #if EV_STAT_ENABLE
4262
4263 # ifdef _WIN32
4264 # undef lstat
4265 # define lstat(a,b) _stati64 (a,b)
4266 # endif
4267
4268 #define DEF_STAT_INTERVAL 5.0074891
4269 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4270 #define MIN_STAT_INTERVAL 0.1074891
4271
4272 noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4273
4274 #if EV_USE_INOTIFY
4275
4276 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4277 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4278
4279 noinline
4280 static void
4281 infy_add (EV_P_ ev_stat *w)
4282 {
4283 w->wd = inotify_add_watch (fs_fd, w->path,
4284 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4285 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4286 | IN_DONT_FOLLOW | IN_MASK_ADD);
4287
4288 if (w->wd >= 0)
4289 {
4290 struct statfs sfs;
4291
4292 /* now local changes will be tracked by inotify, but remote changes won't */
4293 /* unless the filesystem is known to be local, we therefore still poll */
4294 /* also do poll on <2.6.25, but with normal frequency */
4295
4296 if (!fs_2625)
4297 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4298 else if (!statfs (w->path, &sfs)
4299 && (sfs.f_type == 0x1373 /* devfs */
4300 || sfs.f_type == 0x4006 /* fat */
4301 || sfs.f_type == 0x4d44 /* msdos */
4302 || sfs.f_type == 0xEF53 /* ext2/3 */
4303 || sfs.f_type == 0x72b6 /* jffs2 */
4304 || sfs.f_type == 0x858458f6 /* ramfs */
4305 || sfs.f_type == 0x5346544e /* ntfs */
4306 || sfs.f_type == 0x3153464a /* jfs */
4307 || sfs.f_type == 0x9123683e /* btrfs */
4308 || sfs.f_type == 0x52654973 /* reiser3 */
4309 || sfs.f_type == 0x01021994 /* tmpfs */
4310 || sfs.f_type == 0x58465342 /* xfs */))
4311 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4312 else
4313 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4314 }
4315 else
4316 {
4317 /* can't use inotify, continue to stat */
4318 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4319
4320 /* if path is not there, monitor some parent directory for speedup hints */
4321 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4322 /* but an efficiency issue only */
4323 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4324 {
4325 char path [4096];
4326 strcpy (path, w->path);
4327
4328 do
4329 {
4330 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4331 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4332
4333 char *pend = strrchr (path, '/');
4334
4335 if (!pend || pend == path)
4336 break;
4337
4338 *pend = 0;
4339 w->wd = inotify_add_watch (fs_fd, path, mask);
4340 }
4341 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4342 }
4343 }
4344
4345 if (w->wd >= 0)
4346 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4347
4348 /* now re-arm timer, if required */
4349 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4350 ev_timer_again (EV_A_ &w->timer);
4351 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4352 }
4353
4354 noinline
4355 static void
4356 infy_del (EV_P_ ev_stat *w)
4357 {
4358 int slot;
4359 int wd = w->wd;
4360
4361 if (wd < 0)
4362 return;
4363
4364 w->wd = -2;
4365 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4366 wlist_del (&fs_hash [slot].head, (WL)w);
4367
4368 /* remove this watcher, if others are watching it, they will rearm */
4369 inotify_rm_watch (fs_fd, wd);
4370 }
4371
4372 noinline
4373 static void
4374 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4375 {
4376 if (slot < 0)
4377 /* overflow, need to check for all hash slots */
4378 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4379 infy_wd (EV_A_ slot, wd, ev);
4380 else
4381 {
4382 WL w_;
4383
4384 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4385 {
4386 ev_stat *w = (ev_stat *)w_;
4387 w_ = w_->next; /* lets us remove this watcher and all before it */
4388
4389 if (w->wd == wd || wd == -1)
4390 {
4391 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4392 {
4393 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4394 w->wd = -1;
4395 infy_add (EV_A_ w); /* re-add, no matter what */
4396 }
4397
4398 stat_timer_cb (EV_A_ &w->timer, 0);
4399 }
4400 }
4401 }
4402 }
4403
4404 static void
4405 infy_cb (EV_P_ ev_io *w, int revents)
4406 {
4407 char buf [EV_INOTIFY_BUFSIZE];
4408 int ofs;
4409 int len = read (fs_fd, buf, sizeof (buf));
4410
4411 for (ofs = 0; ofs < len; )
4412 {
4413 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4414 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4415 ofs += sizeof (struct inotify_event) + ev->len;
4416 }
4417 }
4418
4419 inline_size ecb_cold
4420 void
4421 ev_check_2625 (EV_P)
4422 {
4423 /* kernels < 2.6.25 are borked
4424 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4425 */
4426 if (ev_linux_version () < 0x020619)
4427 return;
4428
4429 fs_2625 = 1;
4430 }
4431
4432 inline_size int
4433 infy_newfd (void)
4434 {
4435 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4436 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4437 if (fd >= 0)
4438 return fd;
4439 #endif
4440 return inotify_init ();
4441 }
4442
4443 inline_size void
4444 infy_init (EV_P)
4445 {
4446 if (fs_fd != -2)
4447 return;
4448
4449 fs_fd = -1;
4450
4451 ev_check_2625 (EV_A);
4452
4453 fs_fd = infy_newfd ();
4454
4455 if (fs_fd >= 0)
4456 {
4457 fd_intern (fs_fd);
4458 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4459 ev_set_priority (&fs_w, EV_MAXPRI);
4460 ev_io_start (EV_A_ &fs_w);
4461 ev_unref (EV_A);
4462 }
4463 }
4464
4465 inline_size void
4466 infy_fork (EV_P)
4467 {
4468 int slot;
4469
4470 if (fs_fd < 0)
4471 return;
4472
4473 ev_ref (EV_A);
4474 ev_io_stop (EV_A_ &fs_w);
4475 close (fs_fd);
4476 fs_fd = infy_newfd ();
4477
4478 if (fs_fd >= 0)
4479 {
4480 fd_intern (fs_fd);
4481 ev_io_set (&fs_w, fs_fd, EV_READ);
4482 ev_io_start (EV_A_ &fs_w);
4483 ev_unref (EV_A);
4484 }
4485
4486 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4487 {
4488 WL w_ = fs_hash [slot].head;
4489 fs_hash [slot].head = 0;
4490
4491 while (w_)
4492 {
4493 ev_stat *w = (ev_stat *)w_;
4494 w_ = w_->next; /* lets us add this watcher */
4495
4496 w->wd = -1;
4497
4498 if (fs_fd >= 0)
4499 infy_add (EV_A_ w); /* re-add, no matter what */
4500 else
4501 {
4502 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4503 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4504 ev_timer_again (EV_A_ &w->timer);
4505 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4506 }
4507 }
4508 }
4509 }
4510
4511 #endif
4512
4513 #ifdef _WIN32
4514 # define EV_LSTAT(p,b) _stati64 (p, b)
4515 #else
4516 # define EV_LSTAT(p,b) lstat (p, b)
4517 #endif
4518
4519 void
4520 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4521 {
4522 if (lstat (w->path, &w->attr) < 0)
4523 w->attr.st_nlink = 0;
4524 else if (!w->attr.st_nlink)
4525 w->attr.st_nlink = 1;
4526 }
4527
4528 noinline
4529 static void
4530 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4531 {
4532 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4533
4534 ev_statdata prev = w->attr;
4535 ev_stat_stat (EV_A_ w);
4536
4537 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4538 if (
4539 prev.st_dev != w->attr.st_dev
4540 || prev.st_ino != w->attr.st_ino
4541 || prev.st_mode != w->attr.st_mode
4542 || prev.st_nlink != w->attr.st_nlink
4543 || prev.st_uid != w->attr.st_uid
4544 || prev.st_gid != w->attr.st_gid
4545 || prev.st_rdev != w->attr.st_rdev
4546 || prev.st_size != w->attr.st_size
4547 || prev.st_atime != w->attr.st_atime
4548 || prev.st_mtime != w->attr.st_mtime
4549 || prev.st_ctime != w->attr.st_ctime
4550 ) {
4551 /* we only update w->prev on actual differences */
4552 /* in case we test more often than invoke the callback, */
4553 /* to ensure that prev is always different to attr */
4554 w->prev = prev;
4555
4556 #if EV_USE_INOTIFY
4557 if (fs_fd >= 0)
4558 {
4559 infy_del (EV_A_ w);
4560 infy_add (EV_A_ w);
4561 ev_stat_stat (EV_A_ w); /* avoid race... */
4562 }
4563 #endif
4564
4565 ev_feed_event (EV_A_ w, EV_STAT);
4566 }
4567 }
4568
4569 void
4570 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4571 {
4572 if (expect_false (ev_is_active (w)))
4573 return;
4574
4575 ev_stat_stat (EV_A_ w);
4576
4577 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4578 w->interval = MIN_STAT_INTERVAL;
4579
4580 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4581 ev_set_priority (&w->timer, ev_priority (w));
4582
4583 #if EV_USE_INOTIFY
4584 infy_init (EV_A);
4585
4586 if (fs_fd >= 0)
4587 infy_add (EV_A_ w);
4588 else
4589 #endif
4590 {
4591 ev_timer_again (EV_A_ &w->timer);
4592 ev_unref (EV_A);
4593 }
4594
4595 ev_start (EV_A_ (W)w, 1);
4596
4597 EV_FREQUENT_CHECK;
4598 }
4599
4600 void
4601 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4602 {
4603 clear_pending (EV_A_ (W)w);
4604 if (expect_false (!ev_is_active (w)))
4605 return;
4606
4607 EV_FREQUENT_CHECK;
4608
4609 #if EV_USE_INOTIFY
4610 infy_del (EV_A_ w);
4611 #endif
4612
4613 if (ev_is_active (&w->timer))
4614 {
4615 ev_ref (EV_A);
4616 ev_timer_stop (EV_A_ &w->timer);
4617 }
4618
4619 ev_stop (EV_A_ (W)w);
4620
4621 EV_FREQUENT_CHECK;
4622 }
4623 #endif
4624
4625 #if EV_IDLE_ENABLE
4626 void
4627 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4628 {
4629 if (expect_false (ev_is_active (w)))
4630 return;
4631
4632 pri_adjust (EV_A_ (W)w);
4633
4634 EV_FREQUENT_CHECK;
4635
4636 {
4637 int active = ++idlecnt [ABSPRI (w)];
4638
4639 ++idleall;
4640 ev_start (EV_A_ (W)w, active);
4641
4642 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4643 idles [ABSPRI (w)][active - 1] = w;
4644 }
4645
4646 EV_FREQUENT_CHECK;
4647 }
4648
4649 void
4650 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4651 {
4652 clear_pending (EV_A_ (W)w);
4653 if (expect_false (!ev_is_active (w)))
4654 return;
4655
4656 EV_FREQUENT_CHECK;
4657
4658 {
4659 int active = ev_active (w);
4660
4661 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4662 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4663
4664 ev_stop (EV_A_ (W)w);
4665 --idleall;
4666 }
4667
4668 EV_FREQUENT_CHECK;
4669 }
4670 #endif
4671
4672 #if EV_PREPARE_ENABLE
4673 void
4674 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4675 {
4676 if (expect_false (ev_is_active (w)))
4677 return;
4678
4679 EV_FREQUENT_CHECK;
4680
4681 ev_start (EV_A_ (W)w, ++preparecnt);
4682 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4683 prepares [preparecnt - 1] = w;
4684
4685 EV_FREQUENT_CHECK;
4686 }
4687
4688 void
4689 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4690 {
4691 clear_pending (EV_A_ (W)w);
4692 if (expect_false (!ev_is_active (w)))
4693 return;
4694
4695 EV_FREQUENT_CHECK;
4696
4697 {
4698 int active = ev_active (w);
4699
4700 prepares [active - 1] = prepares [--preparecnt];
4701 ev_active (prepares [active - 1]) = active;
4702 }
4703
4704 ev_stop (EV_A_ (W)w);
4705
4706 EV_FREQUENT_CHECK;
4707 }
4708 #endif
4709
4710 #if EV_CHECK_ENABLE
4711 void
4712 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4713 {
4714 if (expect_false (ev_is_active (w)))
4715 return;
4716
4717 EV_FREQUENT_CHECK;
4718
4719 ev_start (EV_A_ (W)w, ++checkcnt);
4720 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4721 checks [checkcnt - 1] = w;
4722
4723 EV_FREQUENT_CHECK;
4724 }
4725
4726 void
4727 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4728 {
4729 clear_pending (EV_A_ (W)w);
4730 if (expect_false (!ev_is_active (w)))
4731 return;
4732
4733 EV_FREQUENT_CHECK;
4734
4735 {
4736 int active = ev_active (w);
4737
4738 checks [active - 1] = checks [--checkcnt];
4739 ev_active (checks [active - 1]) = active;
4740 }
4741
4742 ev_stop (EV_A_ (W)w);
4743
4744 EV_FREQUENT_CHECK;
4745 }
4746 #endif
4747
4748 #if EV_EMBED_ENABLE
4749 noinline
4750 void
4751 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4752 {
4753 ev_run (w->other, EVRUN_NOWAIT);
4754 }
4755
4756 static void
4757 embed_io_cb (EV_P_ ev_io *io, int revents)
4758 {
4759 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4760
4761 if (ev_cb (w))
4762 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4763 else
4764 ev_run (w->other, EVRUN_NOWAIT);
4765 }
4766
4767 static void
4768 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4769 {
4770 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4771
4772 {
4773 EV_P = w->other;
4774
4775 while (fdchangecnt)
4776 {
4777 fd_reify (EV_A);
4778 ev_run (EV_A_ EVRUN_NOWAIT);
4779 }
4780 }
4781 }
4782
4783 static void
4784 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4785 {
4786 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4787
4788 ev_embed_stop (EV_A_ w);
4789
4790 {
4791 EV_P = w->other;
4792
4793 ev_loop_fork (EV_A);
4794 ev_run (EV_A_ EVRUN_NOWAIT);
4795 }
4796
4797 ev_embed_start (EV_A_ w);
4798 }
4799
4800 #if 0
4801 static void
4802 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4803 {
4804 ev_idle_stop (EV_A_ idle);
4805 }
4806 #endif
4807
4808 void
4809 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4810 {
4811 if (expect_false (ev_is_active (w)))
4812 return;
4813
4814 {
4815 EV_P = w->other;
4816 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4817 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4818 }
4819
4820 EV_FREQUENT_CHECK;
4821
4822 ev_set_priority (&w->io, ev_priority (w));
4823 ev_io_start (EV_A_ &w->io);
4824
4825 ev_prepare_init (&w->prepare, embed_prepare_cb);
4826 ev_set_priority (&w->prepare, EV_MINPRI);
4827 ev_prepare_start (EV_A_ &w->prepare);
4828
4829 ev_fork_init (&w->fork, embed_fork_cb);
4830 ev_fork_start (EV_A_ &w->fork);
4831
4832 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4833
4834 ev_start (EV_A_ (W)w, 1);
4835
4836 EV_FREQUENT_CHECK;
4837 }
4838
4839 void
4840 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4841 {
4842 clear_pending (EV_A_ (W)w);
4843 if (expect_false (!ev_is_active (w)))
4844 return;
4845
4846 EV_FREQUENT_CHECK;
4847
4848 ev_io_stop (EV_A_ &w->io);
4849 ev_prepare_stop (EV_A_ &w->prepare);
4850 ev_fork_stop (EV_A_ &w->fork);
4851
4852 ev_stop (EV_A_ (W)w);
4853
4854 EV_FREQUENT_CHECK;
4855 }
4856 #endif
4857
4858 #if EV_FORK_ENABLE
4859 void
4860 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4861 {
4862 if (expect_false (ev_is_active (w)))
4863 return;
4864
4865 EV_FREQUENT_CHECK;
4866
4867 ev_start (EV_A_ (W)w, ++forkcnt);
4868 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
4869 forks [forkcnt - 1] = w;
4870
4871 EV_FREQUENT_CHECK;
4872 }
4873
4874 void
4875 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4876 {
4877 clear_pending (EV_A_ (W)w);
4878 if (expect_false (!ev_is_active (w)))
4879 return;
4880
4881 EV_FREQUENT_CHECK;
4882
4883 {
4884 int active = ev_active (w);
4885
4886 forks [active - 1] = forks [--forkcnt];
4887 ev_active (forks [active - 1]) = active;
4888 }
4889
4890 ev_stop (EV_A_ (W)w);
4891
4892 EV_FREQUENT_CHECK;
4893 }
4894 #endif
4895
4896 #if EV_CLEANUP_ENABLE
4897 void
4898 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4899 {
4900 if (expect_false (ev_is_active (w)))
4901 return;
4902
4903 EV_FREQUENT_CHECK;
4904
4905 ev_start (EV_A_ (W)w, ++cleanupcnt);
4906 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4907 cleanups [cleanupcnt - 1] = w;
4908
4909 /* cleanup watchers should never keep a refcount on the loop */
4910 ev_unref (EV_A);
4911 EV_FREQUENT_CHECK;
4912 }
4913
4914 void
4915 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4916 {
4917 clear_pending (EV_A_ (W)w);
4918 if (expect_false (!ev_is_active (w)))
4919 return;
4920
4921 EV_FREQUENT_CHECK;
4922 ev_ref (EV_A);
4923
4924 {
4925 int active = ev_active (w);
4926
4927 cleanups [active - 1] = cleanups [--cleanupcnt];
4928 ev_active (cleanups [active - 1]) = active;
4929 }
4930
4931 ev_stop (EV_A_ (W)w);
4932
4933 EV_FREQUENT_CHECK;
4934 }
4935 #endif
4936
4937 #if EV_ASYNC_ENABLE
4938 void
4939 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4940 {
4941 if (expect_false (ev_is_active (w)))
4942 return;
4943
4944 w->sent = 0;
4945
4946 evpipe_init (EV_A);
4947
4948 EV_FREQUENT_CHECK;
4949
4950 ev_start (EV_A_ (W)w, ++asynccnt);
4951 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4952 asyncs [asynccnt - 1] = w;
4953
4954 EV_FREQUENT_CHECK;
4955 }
4956
4957 void
4958 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4959 {
4960 clear_pending (EV_A_ (W)w);
4961 if (expect_false (!ev_is_active (w)))
4962 return;
4963
4964 EV_FREQUENT_CHECK;
4965
4966 {
4967 int active = ev_active (w);
4968
4969 asyncs [active - 1] = asyncs [--asynccnt];
4970 ev_active (asyncs [active - 1]) = active;
4971 }
4972
4973 ev_stop (EV_A_ (W)w);
4974
4975 EV_FREQUENT_CHECK;
4976 }
4977
4978 void
4979 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
4980 {
4981 w->sent = 1;
4982 evpipe_write (EV_A_ &async_pending);
4983 }
4984 #endif
4985
4986 /*****************************************************************************/
4987
4988 struct ev_once
4989 {
4990 ev_io io;
4991 ev_timer to;
4992 void (*cb)(int revents, void *arg);
4993 void *arg;
4994 };
4995
4996 static void
4997 once_cb (EV_P_ struct ev_once *once, int revents)
4998 {
4999 void (*cb)(int revents, void *arg) = once->cb;
5000 void *arg = once->arg;
5001
5002 ev_io_stop (EV_A_ &once->io);
5003 ev_timer_stop (EV_A_ &once->to);
5004 ev_free (once);
5005
5006 cb (revents, arg);
5007 }
5008
5009 static void
5010 once_cb_io (EV_P_ ev_io *w, int revents)
5011 {
5012 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5013
5014 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5015 }
5016
5017 static void
5018 once_cb_to (EV_P_ ev_timer *w, int revents)
5019 {
5020 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5021
5022 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5023 }
5024
5025 void
5026 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5027 {
5028 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5029
5030 once->cb = cb;
5031 once->arg = arg;
5032
5033 ev_init (&once->io, once_cb_io);
5034 if (fd >= 0)
5035 {
5036 ev_io_set (&once->io, fd, events);
5037 ev_io_start (EV_A_ &once->io);
5038 }
5039
5040 ev_init (&once->to, once_cb_to);
5041 if (timeout >= 0.)
5042 {
5043 ev_timer_set (&once->to, timeout, 0.);
5044 ev_timer_start (EV_A_ &once->to);
5045 }
5046 }
5047
5048 /*****************************************************************************/
5049
5050 #if EV_WALK_ENABLE
5051 ecb_cold
5052 void
5053 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5054 {
5055 int i, j;
5056 ev_watcher_list *wl, *wn;
5057
5058 if (types & (EV_IO | EV_EMBED))
5059 for (i = 0; i < anfdmax; ++i)
5060 for (wl = anfds [i].head; wl; )
5061 {
5062 wn = wl->next;
5063
5064 #if EV_EMBED_ENABLE
5065 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5066 {
5067 if (types & EV_EMBED)
5068 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5069 }
5070 else
5071 #endif
5072 #if EV_USE_INOTIFY
5073 if (ev_cb ((ev_io *)wl) == infy_cb)
5074 ;
5075 else
5076 #endif
5077 if ((ev_io *)wl != &pipe_w)
5078 if (types & EV_IO)
5079 cb (EV_A_ EV_IO, wl);
5080
5081 wl = wn;
5082 }
5083
5084 if (types & (EV_TIMER | EV_STAT))
5085 for (i = timercnt + HEAP0; i-- > HEAP0; )
5086 #if EV_STAT_ENABLE
5087 /*TODO: timer is not always active*/
5088 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5089 {
5090 if (types & EV_STAT)
5091 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5092 }
5093 else
5094 #endif
5095 if (types & EV_TIMER)
5096 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5097
5098 #if EV_PERIODIC_ENABLE
5099 if (types & EV_PERIODIC)
5100 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5101 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5102 #endif
5103
5104 #if EV_IDLE_ENABLE
5105 if (types & EV_IDLE)
5106 for (j = NUMPRI; j--; )
5107 for (i = idlecnt [j]; i--; )
5108 cb (EV_A_ EV_IDLE, idles [j][i]);
5109 #endif
5110
5111 #if EV_FORK_ENABLE
5112 if (types & EV_FORK)
5113 for (i = forkcnt; i--; )
5114 if (ev_cb (forks [i]) != embed_fork_cb)
5115 cb (EV_A_ EV_FORK, forks [i]);
5116 #endif
5117
5118 #if EV_ASYNC_ENABLE
5119 if (types & EV_ASYNC)
5120 for (i = asynccnt; i--; )
5121 cb (EV_A_ EV_ASYNC, asyncs [i]);
5122 #endif
5123
5124 #if EV_PREPARE_ENABLE
5125 if (types & EV_PREPARE)
5126 for (i = preparecnt; i--; )
5127 # if EV_EMBED_ENABLE
5128 if (ev_cb (prepares [i]) != embed_prepare_cb)
5129 # endif
5130 cb (EV_A_ EV_PREPARE, prepares [i]);
5131 #endif
5132
5133 #if EV_CHECK_ENABLE
5134 if (types & EV_CHECK)
5135 for (i = checkcnt; i--; )
5136 cb (EV_A_ EV_CHECK, checks [i]);
5137 #endif
5138
5139 #if EV_SIGNAL_ENABLE
5140 if (types & EV_SIGNAL)
5141 for (i = 0; i < EV_NSIG - 1; ++i)
5142 for (wl = signals [i].head; wl; )
5143 {
5144 wn = wl->next;
5145 cb (EV_A_ EV_SIGNAL, wl);
5146 wl = wn;
5147 }
5148 #endif
5149
5150 #if EV_CHILD_ENABLE
5151 if (types & EV_CHILD)
5152 for (i = (EV_PID_HASHSIZE); i--; )
5153 for (wl = childs [i]; wl; )
5154 {
5155 wn = wl->next;
5156 cb (EV_A_ EV_CHILD, wl);
5157 wl = wn;
5158 }
5159 #endif
5160 /* EV_STAT 0x00001000 /* stat data changed */
5161 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5162 }
5163 #endif
5164
5165 #if EV_MULTIPLICITY
5166 #include "ev_wrap.h"
5167 #endif
5168