ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.495
Committed: Mon Jun 24 21:27:57 2019 UTC (4 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.494: +5 -5 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_LINUX_AIO_ABI_H
121 # ifndef EV_USE_LINUXAIO
122 # define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_LINUXAIO
126 # define EV_USE_LINUXAIO 0
127 # endif
128
129 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130 # ifndef EV_USE_KQUEUE
131 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_KQUEUE
135 # define EV_USE_KQUEUE 0
136 # endif
137
138 # if HAVE_PORT_H && HAVE_PORT_CREATE
139 # ifndef EV_USE_PORT
140 # define EV_USE_PORT EV_FEATURE_BACKENDS
141 # endif
142 # else
143 # undef EV_USE_PORT
144 # define EV_USE_PORT 0
145 # endif
146
147 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148 # ifndef EV_USE_INOTIFY
149 # define EV_USE_INOTIFY EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_INOTIFY
153 # define EV_USE_INOTIFY 0
154 # endif
155
156 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157 # ifndef EV_USE_SIGNALFD
158 # define EV_USE_SIGNALFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_SIGNALFD
162 # define EV_USE_SIGNALFD 0
163 # endif
164
165 # if HAVE_EVENTFD
166 # ifndef EV_USE_EVENTFD
167 # define EV_USE_EVENTFD EV_FEATURE_OS
168 # endif
169 # else
170 # undef EV_USE_EVENTFD
171 # define EV_USE_EVENTFD 0
172 # endif
173
174 #endif
175
176 /* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184 #define _DARWIN_UNLIMITED_SELECT 1
185
186 #include <stdlib.h>
187 #include <string.h>
188 #include <fcntl.h>
189 #include <stddef.h>
190
191 #include <stdio.h>
192
193 #include <assert.h>
194 #include <errno.h>
195 #include <sys/types.h>
196 #include <time.h>
197 #include <limits.h>
198
199 #include <signal.h>
200
201 #ifdef EV_H
202 # include EV_H
203 #else
204 # include "ev.h"
205 #endif
206
207 #if EV_NO_THREADS
208 # undef EV_NO_SMP
209 # define EV_NO_SMP 1
210 # undef ECB_NO_THREADS
211 # define ECB_NO_THREADS 1
212 #endif
213 #if EV_NO_SMP
214 # undef EV_NO_SMP
215 # define ECB_NO_SMP 1
216 #endif
217
218 #ifndef _WIN32
219 # include <sys/time.h>
220 # include <sys/wait.h>
221 # include <unistd.h>
222 #else
223 # include <io.h>
224 # define WIN32_LEAN_AND_MEAN
225 # include <winsock2.h>
226 # include <windows.h>
227 # ifndef EV_SELECT_IS_WINSOCKET
228 # define EV_SELECT_IS_WINSOCKET 1
229 # endif
230 # undef EV_AVOID_STDIO
231 #endif
232
233 /* this block tries to deduce configuration from header-defined symbols and defaults */
234
235 /* try to deduce the maximum number of signals on this platform */
236 #if defined EV_NSIG
237 /* use what's provided */
238 #elif defined NSIG
239 # define EV_NSIG (NSIG)
240 #elif defined _NSIG
241 # define EV_NSIG (_NSIG)
242 #elif defined SIGMAX
243 # define EV_NSIG (SIGMAX+1)
244 #elif defined SIG_MAX
245 # define EV_NSIG (SIG_MAX+1)
246 #elif defined _SIG_MAX
247 # define EV_NSIG (_SIG_MAX+1)
248 #elif defined MAXSIG
249 # define EV_NSIG (MAXSIG+1)
250 #elif defined MAX_SIG
251 # define EV_NSIG (MAX_SIG+1)
252 #elif defined SIGARRAYSIZE
253 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254 #elif defined _sys_nsig
255 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256 #else
257 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
258 #endif
259
260 #ifndef EV_USE_FLOOR
261 # define EV_USE_FLOOR 0
262 #endif
263
264 #ifndef EV_USE_CLOCK_SYSCALL
265 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267 # else
268 # define EV_USE_CLOCK_SYSCALL 0
269 # endif
270 #endif
271
272 #if !(_POSIX_TIMERS > 0)
273 # ifndef EV_USE_MONOTONIC
274 # define EV_USE_MONOTONIC 0
275 # endif
276 # ifndef EV_USE_REALTIME
277 # define EV_USE_REALTIME 0
278 # endif
279 #endif
280
281 #ifndef EV_USE_MONOTONIC
282 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283 # define EV_USE_MONOTONIC EV_FEATURE_OS
284 # else
285 # define EV_USE_MONOTONIC 0
286 # endif
287 #endif
288
289 #ifndef EV_USE_REALTIME
290 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291 #endif
292
293 #ifndef EV_USE_NANOSLEEP
294 # if _POSIX_C_SOURCE >= 199309L
295 # define EV_USE_NANOSLEEP EV_FEATURE_OS
296 # else
297 # define EV_USE_NANOSLEEP 0
298 # endif
299 #endif
300
301 #ifndef EV_USE_SELECT
302 # define EV_USE_SELECT EV_FEATURE_BACKENDS
303 #endif
304
305 #ifndef EV_USE_POLL
306 # ifdef _WIN32
307 # define EV_USE_POLL 0
308 # else
309 # define EV_USE_POLL EV_FEATURE_BACKENDS
310 # endif
311 #endif
312
313 #ifndef EV_USE_EPOLL
314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
316 # else
317 # define EV_USE_EPOLL 0
318 # endif
319 #endif
320
321 #ifndef EV_USE_KQUEUE
322 # define EV_USE_KQUEUE 0
323 #endif
324
325 #ifndef EV_USE_PORT
326 # define EV_USE_PORT 0
327 #endif
328
329 #ifndef EV_USE_LINUXAIO
330 # if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331 # define EV_USE_LINUXAIO 1
332 # else
333 # define EV_USE_LINUXAIO 0
334 # endif
335 #endif
336
337 #ifndef EV_USE_INOTIFY
338 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
339 # define EV_USE_INOTIFY EV_FEATURE_OS
340 # else
341 # define EV_USE_INOTIFY 0
342 # endif
343 #endif
344
345 #ifndef EV_PID_HASHSIZE
346 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
347 #endif
348
349 #ifndef EV_INOTIFY_HASHSIZE
350 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
351 #endif
352
353 #ifndef EV_USE_EVENTFD
354 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
355 # define EV_USE_EVENTFD EV_FEATURE_OS
356 # else
357 # define EV_USE_EVENTFD 0
358 # endif
359 #endif
360
361 #ifndef EV_USE_SIGNALFD
362 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363 # define EV_USE_SIGNALFD EV_FEATURE_OS
364 # else
365 # define EV_USE_SIGNALFD 0
366 # endif
367 #endif
368
369 #if 0 /* debugging */
370 # define EV_VERIFY 3
371 # define EV_USE_4HEAP 1
372 # define EV_HEAP_CACHE_AT 1
373 #endif
374
375 #ifndef EV_VERIFY
376 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
377 #endif
378
379 #ifndef EV_USE_4HEAP
380 # define EV_USE_4HEAP EV_FEATURE_DATA
381 #endif
382
383 #ifndef EV_HEAP_CACHE_AT
384 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
385 #endif
386
387 #ifdef __ANDROID__
388 /* supposedly, android doesn't typedef fd_mask */
389 # undef EV_USE_SELECT
390 # define EV_USE_SELECT 0
391 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
392 # undef EV_USE_CLOCK_SYSCALL
393 # define EV_USE_CLOCK_SYSCALL 0
394 #endif
395
396 /* aix's poll.h seems to cause lots of trouble */
397 #ifdef _AIX
398 /* AIX has a completely broken poll.h header */
399 # undef EV_USE_POLL
400 # define EV_USE_POLL 0
401 #endif
402
403 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404 /* which makes programs even slower. might work on other unices, too. */
405 #if EV_USE_CLOCK_SYSCALL
406 # include <sys/syscall.h>
407 # ifdef SYS_clock_gettime
408 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409 # undef EV_USE_MONOTONIC
410 # define EV_USE_MONOTONIC 1
411 # else
412 # undef EV_USE_CLOCK_SYSCALL
413 # define EV_USE_CLOCK_SYSCALL 0
414 # endif
415 #endif
416
417 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
418
419 #ifndef CLOCK_MONOTONIC
420 # undef EV_USE_MONOTONIC
421 # define EV_USE_MONOTONIC 0
422 #endif
423
424 #ifndef CLOCK_REALTIME
425 # undef EV_USE_REALTIME
426 # define EV_USE_REALTIME 0
427 #endif
428
429 #if !EV_STAT_ENABLE
430 # undef EV_USE_INOTIFY
431 # define EV_USE_INOTIFY 0
432 #endif
433
434 #if !EV_USE_NANOSLEEP
435 /* hp-ux has it in sys/time.h, which we unconditionally include above */
436 # if !defined _WIN32 && !defined __hpux
437 # include <sys/select.h>
438 # endif
439 #endif
440
441 #if EV_USE_LINUXAIO
442 # include <sys/syscall.h>
443 # if !SYS_io_getevents || !EV_USE_EPOLL /* ev_linxaio uses ev_poll.c:ev_epoll_create */
444 # undef EV_USE_LINUXAIO
445 # define EV_USE_LINUXAIO 0
446 # endif
447 #endif
448
449 #if EV_USE_INOTIFY
450 # include <sys/statfs.h>
451 # include <sys/inotify.h>
452 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
453 # ifndef IN_DONT_FOLLOW
454 # undef EV_USE_INOTIFY
455 # define EV_USE_INOTIFY 0
456 # endif
457 #endif
458
459 #if EV_USE_EVENTFD
460 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
461 # include <stdint.h>
462 # ifndef EFD_NONBLOCK
463 # define EFD_NONBLOCK O_NONBLOCK
464 # endif
465 # ifndef EFD_CLOEXEC
466 # ifdef O_CLOEXEC
467 # define EFD_CLOEXEC O_CLOEXEC
468 # else
469 # define EFD_CLOEXEC 02000000
470 # endif
471 # endif
472 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473 #endif
474
475 #if EV_USE_SIGNALFD
476 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477 # include <stdint.h>
478 # ifndef SFD_NONBLOCK
479 # define SFD_NONBLOCK O_NONBLOCK
480 # endif
481 # ifndef SFD_CLOEXEC
482 # ifdef O_CLOEXEC
483 # define SFD_CLOEXEC O_CLOEXEC
484 # else
485 # define SFD_CLOEXEC 02000000
486 # endif
487 # endif
488 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489
490 struct signalfd_siginfo
491 {
492 uint32_t ssi_signo;
493 char pad[128 - sizeof (uint32_t)];
494 };
495 #endif
496
497 /**/
498
499 #if EV_VERIFY >= 3
500 # define EV_FREQUENT_CHECK ev_verify (EV_A)
501 #else
502 # define EV_FREQUENT_CHECK do { } while (0)
503 #endif
504
505 /*
506 * This is used to work around floating point rounding problems.
507 * This value is good at least till the year 4000.
508 */
509 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
511
512 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
513 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
514
515 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
517
518 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
519 /* ECB.H BEGIN */
520 /*
521 * libecb - http://software.schmorp.de/pkg/libecb
522 *
523 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 * Copyright (©) 2011 Emanuele Giaquinta
525 * All rights reserved.
526 *
527 * Redistribution and use in source and binary forms, with or without modifica-
528 * tion, are permitted provided that the following conditions are met:
529 *
530 * 1. Redistributions of source code must retain the above copyright notice,
531 * this list of conditions and the following disclaimer.
532 *
533 * 2. Redistributions in binary form must reproduce the above copyright
534 * notice, this list of conditions and the following disclaimer in the
535 * documentation and/or other materials provided with the distribution.
536 *
537 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546 * OF THE POSSIBILITY OF SUCH DAMAGE.
547 *
548 * Alternatively, the contents of this file may be used under the terms of
549 * the GNU General Public License ("GPL") version 2 or any later version,
550 * in which case the provisions of the GPL are applicable instead of
551 * the above. If you wish to allow the use of your version of this file
552 * only under the terms of the GPL and not to allow others to use your
553 * version of this file under the BSD license, indicate your decision
554 * by deleting the provisions above and replace them with the notice
555 * and other provisions required by the GPL. If you do not delete the
556 * provisions above, a recipient may use your version of this file under
557 * either the BSD or the GPL.
558 */
559
560 #ifndef ECB_H
561 #define ECB_H
562
563 /* 16 bits major, 16 bits minor */
564 #define ECB_VERSION 0x00010005
565
566 #ifdef _WIN32
567 typedef signed char int8_t;
568 typedef unsigned char uint8_t;
569 typedef signed short int16_t;
570 typedef unsigned short uint16_t;
571 typedef signed int int32_t;
572 typedef unsigned int uint32_t;
573 #if __GNUC__
574 typedef signed long long int64_t;
575 typedef unsigned long long uint64_t;
576 #else /* _MSC_VER || __BORLANDC__ */
577 typedef signed __int64 int64_t;
578 typedef unsigned __int64 uint64_t;
579 #endif
580 #ifdef _WIN64
581 #define ECB_PTRSIZE 8
582 typedef uint64_t uintptr_t;
583 typedef int64_t intptr_t;
584 #else
585 #define ECB_PTRSIZE 4
586 typedef uint32_t uintptr_t;
587 typedef int32_t intptr_t;
588 #endif
589 #else
590 #include <inttypes.h>
591 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
592 #define ECB_PTRSIZE 8
593 #else
594 #define ECB_PTRSIZE 4
595 #endif
596 #endif
597
598 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
599 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
600
601 /* work around x32 idiocy by defining proper macros */
602 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
603 #if _ILP32
604 #define ECB_AMD64_X32 1
605 #else
606 #define ECB_AMD64 1
607 #endif
608 #endif
609
610 /* many compilers define _GNUC_ to some versions but then only implement
611 * what their idiot authors think are the "more important" extensions,
612 * causing enormous grief in return for some better fake benchmark numbers.
613 * or so.
614 * we try to detect these and simply assume they are not gcc - if they have
615 * an issue with that they should have done it right in the first place.
616 */
617 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618 #define ECB_GCC_VERSION(major,minor) 0
619 #else
620 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621 #endif
622
623 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
624
625 #if __clang__ && defined __has_builtin
626 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
627 #else
628 #define ECB_CLANG_BUILTIN(x) 0
629 #endif
630
631 #if __clang__ && defined __has_extension
632 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633 #else
634 #define ECB_CLANG_EXTENSION(x) 0
635 #endif
636
637 #define ECB_CPP (__cplusplus+0)
638 #define ECB_CPP11 (__cplusplus >= 201103L)
639 #define ECB_CPP14 (__cplusplus >= 201402L)
640 #define ECB_CPP17 (__cplusplus >= 201703L)
641
642 #if ECB_CPP
643 #define ECB_C 0
644 #define ECB_STDC_VERSION 0
645 #else
646 #define ECB_C 1
647 #define ECB_STDC_VERSION __STDC_VERSION__
648 #endif
649
650 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653
654 #if ECB_CPP
655 #define ECB_EXTERN_C extern "C"
656 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657 #define ECB_EXTERN_C_END }
658 #else
659 #define ECB_EXTERN_C extern
660 #define ECB_EXTERN_C_BEG
661 #define ECB_EXTERN_C_END
662 #endif
663
664 /*****************************************************************************/
665
666 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668
669 #if ECB_NO_THREADS
670 #define ECB_NO_SMP 1
671 #endif
672
673 #if ECB_NO_SMP
674 #define ECB_MEMORY_FENCE do { } while (0)
675 #endif
676
677 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678 #if __xlC__ && ECB_CPP
679 #include <builtins.h>
680 #endif
681
682 #if 1400 <= _MSC_VER
683 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684 #endif
685
686 #ifndef ECB_MEMORY_FENCE
687 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 #if __i386 || __i386__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
690 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
691 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
692 #elif ECB_GCC_AMD64
693 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
694 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
695 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
696 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
698 #elif defined __ARM_ARCH_2__ \
699 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
700 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
701 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
702 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
703 || defined __ARM_ARCH_5TEJ__
704 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
705 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
706 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
707 || defined __ARM_ARCH_6T2__
708 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
709 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
710 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
711 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
712 #elif __aarch64__
713 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
714 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
715 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
716 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
717 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
718 #elif defined __s390__ || defined __s390x__
719 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
720 #elif defined __mips__
721 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
722 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
723 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
724 #elif defined __alpha__
725 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
726 #elif defined __hppa__
727 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
728 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
729 #elif defined __ia64__
730 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
731 #elif defined __m68k__
732 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
733 #elif defined __m88k__
734 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
735 #elif defined __sh__
736 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
737 #endif
738 #endif
739 #endif
740
741 #ifndef ECB_MEMORY_FENCE
742 #if ECB_GCC_VERSION(4,7)
743 /* see comment below (stdatomic.h) about the C11 memory model. */
744 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
745 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
746 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
747
748 #elif ECB_CLANG_EXTENSION(c_atomic)
749 /* see comment below (stdatomic.h) about the C11 memory model. */
750 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
751 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
752 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
753
754 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
755 #define ECB_MEMORY_FENCE __sync_synchronize ()
756 #elif _MSC_VER >= 1500 /* VC++ 2008 */
757 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
758 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
759 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
760 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
761 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
762 #elif _MSC_VER >= 1400 /* VC++ 2005 */
763 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
764 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
765 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
766 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
767 #elif defined _WIN32
768 #include <WinNT.h>
769 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
770 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
771 #include <mbarrier.h>
772 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
773 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
774 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
775 #elif __xlC__
776 #define ECB_MEMORY_FENCE __sync ()
777 #endif
778 #endif
779
780 #ifndef ECB_MEMORY_FENCE
781 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
782 /* we assume that these memory fences work on all variables/all memory accesses, */
783 /* not just C11 atomics and atomic accesses */
784 #include <stdatomic.h>
785 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
786 /* any fence other than seq_cst, which isn't very efficient for us. */
787 /* Why that is, we don't know - either the C11 memory model is quite useless */
788 /* for most usages, or gcc and clang have a bug */
789 /* I *currently* lean towards the latter, and inefficiently implement */
790 /* all three of ecb's fences as a seq_cst fence */
791 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
792 /* for all __atomic_thread_fence's except seq_cst */
793 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
794 #endif
795 #endif
796
797 #ifndef ECB_MEMORY_FENCE
798 #if !ECB_AVOID_PTHREADS
799 /*
800 * if you get undefined symbol references to pthread_mutex_lock,
801 * or failure to find pthread.h, then you should implement
802 * the ECB_MEMORY_FENCE operations for your cpu/compiler
803 * OR provide pthread.h and link against the posix thread library
804 * of your system.
805 */
806 #include <pthread.h>
807 #define ECB_NEEDS_PTHREADS 1
808 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
809
810 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
811 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
812 #endif
813 #endif
814
815 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
816 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
817 #endif
818
819 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
820 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
821 #endif
822
823 /*****************************************************************************/
824
825 #if ECB_CPP
826 #define ecb_inline static inline
827 #elif ECB_GCC_VERSION(2,5)
828 #define ecb_inline static __inline__
829 #elif ECB_C99
830 #define ecb_inline static inline
831 #else
832 #define ecb_inline static
833 #endif
834
835 #if ECB_GCC_VERSION(3,3)
836 #define ecb_restrict __restrict__
837 #elif ECB_C99
838 #define ecb_restrict restrict
839 #else
840 #define ecb_restrict
841 #endif
842
843 typedef int ecb_bool;
844
845 #define ECB_CONCAT_(a, b) a ## b
846 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
847 #define ECB_STRINGIFY_(a) # a
848 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
849 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
850
851 #define ecb_function_ ecb_inline
852
853 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
854 #define ecb_attribute(attrlist) __attribute__ (attrlist)
855 #else
856 #define ecb_attribute(attrlist)
857 #endif
858
859 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
860 #define ecb_is_constant(expr) __builtin_constant_p (expr)
861 #else
862 /* possible C11 impl for integral types
863 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
864 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
865
866 #define ecb_is_constant(expr) 0
867 #endif
868
869 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
870 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
871 #else
872 #define ecb_expect(expr,value) (expr)
873 #endif
874
875 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
876 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
877 #else
878 #define ecb_prefetch(addr,rw,locality)
879 #endif
880
881 /* no emulation for ecb_decltype */
882 #if ECB_CPP11
883 // older implementations might have problems with decltype(x)::type, work around it
884 template<class T> struct ecb_decltype_t { typedef T type; };
885 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
886 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
887 #define ecb_decltype(x) __typeof__ (x)
888 #endif
889
890 #if _MSC_VER >= 1300
891 #define ecb_deprecated __declspec (deprecated)
892 #else
893 #define ecb_deprecated ecb_attribute ((__deprecated__))
894 #endif
895
896 #if _MSC_VER >= 1500
897 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
898 #elif ECB_GCC_VERSION(4,5)
899 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
900 #else
901 #define ecb_deprecated_message(msg) ecb_deprecated
902 #endif
903
904 #if _MSC_VER >= 1400
905 #define ecb_noinline __declspec (noinline)
906 #else
907 #define ecb_noinline ecb_attribute ((__noinline__))
908 #endif
909
910 #define ecb_unused ecb_attribute ((__unused__))
911 #define ecb_const ecb_attribute ((__const__))
912 #define ecb_pure ecb_attribute ((__pure__))
913
914 #if ECB_C11 || __IBMC_NORETURN
915 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
916 #define ecb_noreturn _Noreturn
917 #elif ECB_CPP11
918 #define ecb_noreturn [[noreturn]]
919 #elif _MSC_VER >= 1200
920 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
921 #define ecb_noreturn __declspec (noreturn)
922 #else
923 #define ecb_noreturn ecb_attribute ((__noreturn__))
924 #endif
925
926 #if ECB_GCC_VERSION(4,3)
927 #define ecb_artificial ecb_attribute ((__artificial__))
928 #define ecb_hot ecb_attribute ((__hot__))
929 #define ecb_cold ecb_attribute ((__cold__))
930 #else
931 #define ecb_artificial
932 #define ecb_hot
933 #define ecb_cold
934 #endif
935
936 /* put around conditional expressions if you are very sure that the */
937 /* expression is mostly true or mostly false. note that these return */
938 /* booleans, not the expression. */
939 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
940 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
941 /* for compatibility to the rest of the world */
942 #define ecb_likely(expr) ecb_expect_true (expr)
943 #define ecb_unlikely(expr) ecb_expect_false (expr)
944
945 /* count trailing zero bits and count # of one bits */
946 #if ECB_GCC_VERSION(3,4) \
947 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
948 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
949 && ECB_CLANG_BUILTIN(__builtin_popcount))
950 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
951 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
952 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
953 #define ecb_ctz32(x) __builtin_ctz (x)
954 #define ecb_ctz64(x) __builtin_ctzll (x)
955 #define ecb_popcount32(x) __builtin_popcount (x)
956 /* no popcountll */
957 #else
958 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
959 ecb_function_ ecb_const int
960 ecb_ctz32 (uint32_t x)
961 {
962 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
963 unsigned long r;
964 _BitScanForward (&r, x);
965 return (int)r;
966 #else
967 int r = 0;
968
969 x &= ~x + 1; /* this isolates the lowest bit */
970
971 #if ECB_branchless_on_i386
972 r += !!(x & 0xaaaaaaaa) << 0;
973 r += !!(x & 0xcccccccc) << 1;
974 r += !!(x & 0xf0f0f0f0) << 2;
975 r += !!(x & 0xff00ff00) << 3;
976 r += !!(x & 0xffff0000) << 4;
977 #else
978 if (x & 0xaaaaaaaa) r += 1;
979 if (x & 0xcccccccc) r += 2;
980 if (x & 0xf0f0f0f0) r += 4;
981 if (x & 0xff00ff00) r += 8;
982 if (x & 0xffff0000) r += 16;
983 #endif
984
985 return r;
986 #endif
987 }
988
989 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
990 ecb_function_ ecb_const int
991 ecb_ctz64 (uint64_t x)
992 {
993 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
994 unsigned long r;
995 _BitScanForward64 (&r, x);
996 return (int)r;
997 #else
998 int shift = x & 0xffffffff ? 0 : 32;
999 return ecb_ctz32 (x >> shift) + shift;
1000 #endif
1001 }
1002
1003 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1004 ecb_function_ ecb_const int
1005 ecb_popcount32 (uint32_t x)
1006 {
1007 x -= (x >> 1) & 0x55555555;
1008 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1009 x = ((x >> 4) + x) & 0x0f0f0f0f;
1010 x *= 0x01010101;
1011
1012 return x >> 24;
1013 }
1014
1015 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1016 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1017 {
1018 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1019 unsigned long r;
1020 _BitScanReverse (&r, x);
1021 return (int)r;
1022 #else
1023 int r = 0;
1024
1025 if (x >> 16) { x >>= 16; r += 16; }
1026 if (x >> 8) { x >>= 8; r += 8; }
1027 if (x >> 4) { x >>= 4; r += 4; }
1028 if (x >> 2) { x >>= 2; r += 2; }
1029 if (x >> 1) { r += 1; }
1030
1031 return r;
1032 #endif
1033 }
1034
1035 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1036 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1037 {
1038 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1039 unsigned long r;
1040 _BitScanReverse64 (&r, x);
1041 return (int)r;
1042 #else
1043 int r = 0;
1044
1045 if (x >> 32) { x >>= 32; r += 32; }
1046
1047 return r + ecb_ld32 (x);
1048 #endif
1049 }
1050 #endif
1051
1052 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1053 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1054 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1055 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1056
1057 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1058 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1059 {
1060 return ( (x * 0x0802U & 0x22110U)
1061 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1062 }
1063
1064 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1065 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1066 {
1067 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1068 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1069 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1070 x = ( x >> 8 ) | ( x << 8);
1071
1072 return x;
1073 }
1074
1075 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1076 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1077 {
1078 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1079 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1080 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1081 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1082 x = ( x >> 16 ) | ( x << 16);
1083
1084 return x;
1085 }
1086
1087 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1088 /* so for this version we are lazy */
1089 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1090 ecb_function_ ecb_const int
1091 ecb_popcount64 (uint64_t x)
1092 {
1093 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1094 }
1095
1096 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1097 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1098 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1099 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1100 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1101 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1102 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1103 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1104
1105 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1106 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1107 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1108 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1109 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1110 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1111 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1112 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1113
1114 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1115 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1116 #define ecb_bswap16(x) __builtin_bswap16 (x)
1117 #else
1118 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1119 #endif
1120 #define ecb_bswap32(x) __builtin_bswap32 (x)
1121 #define ecb_bswap64(x) __builtin_bswap64 (x)
1122 #elif _MSC_VER
1123 #include <stdlib.h>
1124 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1125 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1126 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1127 #else
1128 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1129 ecb_function_ ecb_const uint16_t
1130 ecb_bswap16 (uint16_t x)
1131 {
1132 return ecb_rotl16 (x, 8);
1133 }
1134
1135 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1136 ecb_function_ ecb_const uint32_t
1137 ecb_bswap32 (uint32_t x)
1138 {
1139 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1140 }
1141
1142 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1143 ecb_function_ ecb_const uint64_t
1144 ecb_bswap64 (uint64_t x)
1145 {
1146 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1147 }
1148 #endif
1149
1150 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1151 #define ecb_unreachable() __builtin_unreachable ()
1152 #else
1153 /* this seems to work fine, but gcc always emits a warning for it :/ */
1154 ecb_inline ecb_noreturn void ecb_unreachable (void);
1155 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1156 #endif
1157
1158 /* try to tell the compiler that some condition is definitely true */
1159 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1160
1161 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1162 ecb_inline ecb_const uint32_t
1163 ecb_byteorder_helper (void)
1164 {
1165 /* the union code still generates code under pressure in gcc, */
1166 /* but less than using pointers, and always seems to */
1167 /* successfully return a constant. */
1168 /* the reason why we have this horrible preprocessor mess */
1169 /* is to avoid it in all cases, at least on common architectures */
1170 /* or when using a recent enough gcc version (>= 4.6) */
1171 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1172 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1173 #define ECB_LITTLE_ENDIAN 1
1174 return 0x44332211;
1175 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1176 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1177 #define ECB_BIG_ENDIAN 1
1178 return 0x11223344;
1179 #else
1180 union
1181 {
1182 uint8_t c[4];
1183 uint32_t u;
1184 } u = { 0x11, 0x22, 0x33, 0x44 };
1185 return u.u;
1186 #endif
1187 }
1188
1189 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1190 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1191 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1192 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1193
1194 #if ECB_GCC_VERSION(3,0) || ECB_C99
1195 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1196 #else
1197 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1198 #endif
1199
1200 #if ECB_CPP
1201 template<typename T>
1202 static inline T ecb_div_rd (T val, T div)
1203 {
1204 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1205 }
1206 template<typename T>
1207 static inline T ecb_div_ru (T val, T div)
1208 {
1209 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1210 }
1211 #else
1212 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1213 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1214 #endif
1215
1216 #if ecb_cplusplus_does_not_suck
1217 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1218 template<typename T, int N>
1219 static inline int ecb_array_length (const T (&arr)[N])
1220 {
1221 return N;
1222 }
1223 #else
1224 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1225 #endif
1226
1227 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1228 ecb_function_ ecb_const uint32_t
1229 ecb_binary16_to_binary32 (uint32_t x)
1230 {
1231 unsigned int s = (x & 0x8000) << (31 - 15);
1232 int e = (x >> 10) & 0x001f;
1233 unsigned int m = x & 0x03ff;
1234
1235 if (ecb_expect_false (e == 31))
1236 /* infinity or NaN */
1237 e = 255 - (127 - 15);
1238 else if (ecb_expect_false (!e))
1239 {
1240 if (ecb_expect_true (!m))
1241 /* zero, handled by code below by forcing e to 0 */
1242 e = 0 - (127 - 15);
1243 else
1244 {
1245 /* subnormal, renormalise */
1246 unsigned int s = 10 - ecb_ld32 (m);
1247
1248 m = (m << s) & 0x3ff; /* mask implicit bit */
1249 e -= s - 1;
1250 }
1251 }
1252
1253 /* e and m now are normalised, or zero, (or inf or nan) */
1254 e += 127 - 15;
1255
1256 return s | (e << 23) | (m << (23 - 10));
1257 }
1258
1259 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1260 ecb_function_ ecb_const uint16_t
1261 ecb_binary32_to_binary16 (uint32_t x)
1262 {
1263 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1264 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1265 unsigned int m = x & 0x007fffff;
1266
1267 x &= 0x7fffffff;
1268
1269 /* if it's within range of binary16 normals, use fast path */
1270 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1271 {
1272 /* mantissa round-to-even */
1273 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1274
1275 /* handle overflow */
1276 if (ecb_expect_false (m >= 0x00800000))
1277 {
1278 m >>= 1;
1279 e += 1;
1280 }
1281
1282 return s | (e << 10) | (m >> (23 - 10));
1283 }
1284
1285 /* handle large numbers and infinity */
1286 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1287 return s | 0x7c00;
1288
1289 /* handle zero, subnormals and small numbers */
1290 if (ecb_expect_true (x < 0x38800000))
1291 {
1292 /* zero */
1293 if (ecb_expect_true (!x))
1294 return s;
1295
1296 /* handle subnormals */
1297
1298 /* too small, will be zero */
1299 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1300 return s;
1301
1302 m |= 0x00800000; /* make implicit bit explicit */
1303
1304 /* very tricky - we need to round to the nearest e (+10) bit value */
1305 {
1306 unsigned int bits = 14 - e;
1307 unsigned int half = (1 << (bits - 1)) - 1;
1308 unsigned int even = (m >> bits) & 1;
1309
1310 /* if this overflows, we will end up with a normalised number */
1311 m = (m + half + even) >> bits;
1312 }
1313
1314 return s | m;
1315 }
1316
1317 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1318 m >>= 13;
1319
1320 return s | 0x7c00 | m | !m;
1321 }
1322
1323 /*******************************************************************************/
1324 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1325
1326 /* basically, everything uses "ieee pure-endian" floating point numbers */
1327 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1328 #if 0 \
1329 || __i386 || __i386__ \
1330 || ECB_GCC_AMD64 \
1331 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1332 || defined __s390__ || defined __s390x__ \
1333 || defined __mips__ \
1334 || defined __alpha__ \
1335 || defined __hppa__ \
1336 || defined __ia64__ \
1337 || defined __m68k__ \
1338 || defined __m88k__ \
1339 || defined __sh__ \
1340 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1341 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1342 || defined __aarch64__
1343 #define ECB_STDFP 1
1344 #include <string.h> /* for memcpy */
1345 #else
1346 #define ECB_STDFP 0
1347 #endif
1348
1349 #ifndef ECB_NO_LIBM
1350
1351 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1352
1353 /* only the oldest of old doesn't have this one. solaris. */
1354 #ifdef INFINITY
1355 #define ECB_INFINITY INFINITY
1356 #else
1357 #define ECB_INFINITY HUGE_VAL
1358 #endif
1359
1360 #ifdef NAN
1361 #define ECB_NAN NAN
1362 #else
1363 #define ECB_NAN ECB_INFINITY
1364 #endif
1365
1366 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1367 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1368 #define ecb_frexpf(x,e) frexpf ((x), (e))
1369 #else
1370 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1371 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1372 #endif
1373
1374 /* convert a float to ieee single/binary32 */
1375 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1376 ecb_function_ ecb_const uint32_t
1377 ecb_float_to_binary32 (float x)
1378 {
1379 uint32_t r;
1380
1381 #if ECB_STDFP
1382 memcpy (&r, &x, 4);
1383 #else
1384 /* slow emulation, works for anything but -0 */
1385 uint32_t m;
1386 int e;
1387
1388 if (x == 0e0f ) return 0x00000000U;
1389 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1390 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1391 if (x != x ) return 0x7fbfffffU;
1392
1393 m = ecb_frexpf (x, &e) * 0x1000000U;
1394
1395 r = m & 0x80000000U;
1396
1397 if (r)
1398 m = -m;
1399
1400 if (e <= -126)
1401 {
1402 m &= 0xffffffU;
1403 m >>= (-125 - e);
1404 e = -126;
1405 }
1406
1407 r |= (e + 126) << 23;
1408 r |= m & 0x7fffffU;
1409 #endif
1410
1411 return r;
1412 }
1413
1414 /* converts an ieee single/binary32 to a float */
1415 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1416 ecb_function_ ecb_const float
1417 ecb_binary32_to_float (uint32_t x)
1418 {
1419 float r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 4);
1423 #else
1424 /* emulation, only works for normals and subnormals and +0 */
1425 int neg = x >> 31;
1426 int e = (x >> 23) & 0xffU;
1427
1428 x &= 0x7fffffU;
1429
1430 if (e)
1431 x |= 0x800000U;
1432 else
1433 e = 1;
1434
1435 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1436 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1437
1438 r = neg ? -r : r;
1439 #endif
1440
1441 return r;
1442 }
1443
1444 /* convert a double to ieee double/binary64 */
1445 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1446 ecb_function_ ecb_const uint64_t
1447 ecb_double_to_binary64 (double x)
1448 {
1449 uint64_t r;
1450
1451 #if ECB_STDFP
1452 memcpy (&r, &x, 8);
1453 #else
1454 /* slow emulation, works for anything but -0 */
1455 uint64_t m;
1456 int e;
1457
1458 if (x == 0e0 ) return 0x0000000000000000U;
1459 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1460 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1461 if (x != x ) return 0X7ff7ffffffffffffU;
1462
1463 m = frexp (x, &e) * 0x20000000000000U;
1464
1465 r = m & 0x8000000000000000;;
1466
1467 if (r)
1468 m = -m;
1469
1470 if (e <= -1022)
1471 {
1472 m &= 0x1fffffffffffffU;
1473 m >>= (-1021 - e);
1474 e = -1022;
1475 }
1476
1477 r |= ((uint64_t)(e + 1022)) << 52;
1478 r |= m & 0xfffffffffffffU;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* converts an ieee double/binary64 to a double */
1485 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1486 ecb_function_ ecb_const double
1487 ecb_binary64_to_double (uint64_t x)
1488 {
1489 double r;
1490
1491 #if ECB_STDFP
1492 memcpy (&r, &x, 8);
1493 #else
1494 /* emulation, only works for normals and subnormals and +0 */
1495 int neg = x >> 63;
1496 int e = (x >> 52) & 0x7ffU;
1497
1498 x &= 0xfffffffffffffU;
1499
1500 if (e)
1501 x |= 0x10000000000000U;
1502 else
1503 e = 1;
1504
1505 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1506 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1507
1508 r = neg ? -r : r;
1509 #endif
1510
1511 return r;
1512 }
1513
1514 /* convert a float to ieee half/binary16 */
1515 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1516 ecb_function_ ecb_const uint16_t
1517 ecb_float_to_binary16 (float x)
1518 {
1519 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1520 }
1521
1522 /* convert an ieee half/binary16 to float */
1523 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1524 ecb_function_ ecb_const float
1525 ecb_binary16_to_float (uint16_t x)
1526 {
1527 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1528 }
1529
1530 #endif
1531
1532 #endif
1533
1534 /* ECB.H END */
1535
1536 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1537 /* if your architecture doesn't need memory fences, e.g. because it is
1538 * single-cpu/core, or if you use libev in a project that doesn't use libev
1539 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1540 * libev, in which cases the memory fences become nops.
1541 * alternatively, you can remove this #error and link against libpthread,
1542 * which will then provide the memory fences.
1543 */
1544 # error "memory fences not defined for your architecture, please report"
1545 #endif
1546
1547 #ifndef ECB_MEMORY_FENCE
1548 # define ECB_MEMORY_FENCE do { } while (0)
1549 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1550 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1551 #endif
1552
1553 #define expect_false(cond) ecb_expect_false (cond)
1554 #define expect_true(cond) ecb_expect_true (cond)
1555 #define noinline ecb_noinline
1556
1557 #define inline_size ecb_inline
1558
1559 #if EV_FEATURE_CODE
1560 # define inline_speed ecb_inline
1561 #else
1562 # define inline_speed noinline static
1563 #endif
1564
1565 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1566
1567 #if EV_MINPRI == EV_MAXPRI
1568 # define ABSPRI(w) (((W)w), 0)
1569 #else
1570 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1571 #endif
1572
1573 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1574
1575 typedef ev_watcher *W;
1576 typedef ev_watcher_list *WL;
1577 typedef ev_watcher_time *WT;
1578
1579 #define ev_active(w) ((W)(w))->active
1580 #define ev_at(w) ((WT)(w))->at
1581
1582 #if EV_USE_REALTIME
1583 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1584 /* giving it a reasonably high chance of working on typical architectures */
1585 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1586 #endif
1587
1588 #if EV_USE_MONOTONIC
1589 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1590 #endif
1591
1592 #ifndef EV_FD_TO_WIN32_HANDLE
1593 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1594 #endif
1595 #ifndef EV_WIN32_HANDLE_TO_FD
1596 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1597 #endif
1598 #ifndef EV_WIN32_CLOSE_FD
1599 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1600 #endif
1601
1602 #ifdef _WIN32
1603 # include "ev_win32.c"
1604 #endif
1605
1606 /*****************************************************************************/
1607
1608 #if EV_USE_LINUXAIO
1609 # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1610 #endif
1611
1612 /* define a suitable floor function (only used by periodics atm) */
1613
1614 #if EV_USE_FLOOR
1615 # include <math.h>
1616 # define ev_floor(v) floor (v)
1617 #else
1618
1619 #include <float.h>
1620
1621 /* a floor() replacement function, should be independent of ev_tstamp type */
1622 noinline
1623 static ev_tstamp
1624 ev_floor (ev_tstamp v)
1625 {
1626 /* the choice of shift factor is not terribly important */
1627 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1628 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1629 #else
1630 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1631 #endif
1632
1633 /* argument too large for an unsigned long? */
1634 if (expect_false (v >= shift))
1635 {
1636 ev_tstamp f;
1637
1638 if (v == v - 1.)
1639 return v; /* very large number */
1640
1641 f = shift * ev_floor (v * (1. / shift));
1642 return f + ev_floor (v - f);
1643 }
1644
1645 /* special treatment for negative args? */
1646 if (expect_false (v < 0.))
1647 {
1648 ev_tstamp f = -ev_floor (-v);
1649
1650 return f - (f == v ? 0 : 1);
1651 }
1652
1653 /* fits into an unsigned long */
1654 return (unsigned long)v;
1655 }
1656
1657 #endif
1658
1659 /*****************************************************************************/
1660
1661 #ifdef __linux
1662 # include <sys/utsname.h>
1663 #endif
1664
1665 noinline ecb_cold
1666 static unsigned int
1667 ev_linux_version (void)
1668 {
1669 #ifdef __linux
1670 unsigned int v = 0;
1671 struct utsname buf;
1672 int i;
1673 char *p = buf.release;
1674
1675 if (uname (&buf))
1676 return 0;
1677
1678 for (i = 3+1; --i; )
1679 {
1680 unsigned int c = 0;
1681
1682 for (;;)
1683 {
1684 if (*p >= '0' && *p <= '9')
1685 c = c * 10 + *p++ - '0';
1686 else
1687 {
1688 p += *p == '.';
1689 break;
1690 }
1691 }
1692
1693 v = (v << 8) | c;
1694 }
1695
1696 return v;
1697 #else
1698 return 0;
1699 #endif
1700 }
1701
1702 /*****************************************************************************/
1703
1704 #if EV_AVOID_STDIO
1705 noinline ecb_cold
1706 static void
1707 ev_printerr (const char *msg)
1708 {
1709 write (STDERR_FILENO, msg, strlen (msg));
1710 }
1711 #endif
1712
1713 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1714
1715 ecb_cold
1716 void
1717 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1718 {
1719 syserr_cb = cb;
1720 }
1721
1722 noinline ecb_cold
1723 static void
1724 ev_syserr (const char *msg)
1725 {
1726 if (!msg)
1727 msg = "(libev) system error";
1728
1729 if (syserr_cb)
1730 syserr_cb (msg);
1731 else
1732 {
1733 #if EV_AVOID_STDIO
1734 ev_printerr (msg);
1735 ev_printerr (": ");
1736 ev_printerr (strerror (errno));
1737 ev_printerr ("\n");
1738 #else
1739 perror (msg);
1740 #endif
1741 abort ();
1742 }
1743 }
1744
1745 static void *
1746 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1747 {
1748 /* some systems, notably openbsd and darwin, fail to properly
1749 * implement realloc (x, 0) (as required by both ansi c-89 and
1750 * the single unix specification, so work around them here.
1751 * recently, also (at least) fedora and debian started breaking it,
1752 * despite documenting it otherwise.
1753 */
1754
1755 if (size)
1756 return realloc (ptr, size);
1757
1758 free (ptr);
1759 return 0;
1760 }
1761
1762 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1763
1764 ecb_cold
1765 void
1766 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1767 {
1768 alloc = cb;
1769 }
1770
1771 inline_speed void *
1772 ev_realloc (void *ptr, long size)
1773 {
1774 ptr = alloc (ptr, size);
1775
1776 if (!ptr && size)
1777 {
1778 #if EV_AVOID_STDIO
1779 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1780 #else
1781 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1782 #endif
1783 abort ();
1784 }
1785
1786 return ptr;
1787 }
1788
1789 #define ev_malloc(size) ev_realloc (0, (size))
1790 #define ev_free(ptr) ev_realloc ((ptr), 0)
1791
1792 /*****************************************************************************/
1793
1794 /* set in reify when reification needed */
1795 #define EV_ANFD_REIFY 1
1796
1797 /* file descriptor info structure */
1798 typedef struct
1799 {
1800 WL head;
1801 unsigned char events; /* the events watched for */
1802 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1803 unsigned char emask; /* some backends store the actual kernel mask in here */
1804 unsigned char unused;
1805 #if EV_USE_EPOLL
1806 unsigned int egen; /* generation counter to counter epoll bugs */
1807 #endif
1808 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1809 SOCKET handle;
1810 #endif
1811 #if EV_USE_IOCP
1812 OVERLAPPED or, ow;
1813 #endif
1814 } ANFD;
1815
1816 /* stores the pending event set for a given watcher */
1817 typedef struct
1818 {
1819 W w;
1820 int events; /* the pending event set for the given watcher */
1821 } ANPENDING;
1822
1823 #if EV_USE_INOTIFY
1824 /* hash table entry per inotify-id */
1825 typedef struct
1826 {
1827 WL head;
1828 } ANFS;
1829 #endif
1830
1831 /* Heap Entry */
1832 #if EV_HEAP_CACHE_AT
1833 /* a heap element */
1834 typedef struct {
1835 ev_tstamp at;
1836 WT w;
1837 } ANHE;
1838
1839 #define ANHE_w(he) (he).w /* access watcher, read-write */
1840 #define ANHE_at(he) (he).at /* access cached at, read-only */
1841 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1842 #else
1843 /* a heap element */
1844 typedef WT ANHE;
1845
1846 #define ANHE_w(he) (he)
1847 #define ANHE_at(he) (he)->at
1848 #define ANHE_at_cache(he)
1849 #endif
1850
1851 #if EV_MULTIPLICITY
1852
1853 struct ev_loop
1854 {
1855 ev_tstamp ev_rt_now;
1856 #define ev_rt_now ((loop)->ev_rt_now)
1857 #define VAR(name,decl) decl;
1858 #include "ev_vars.h"
1859 #undef VAR
1860 };
1861 #include "ev_wrap.h"
1862
1863 static struct ev_loop default_loop_struct;
1864 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1865
1866 #else
1867
1868 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1869 #define VAR(name,decl) static decl;
1870 #include "ev_vars.h"
1871 #undef VAR
1872
1873 static int ev_default_loop_ptr;
1874
1875 #endif
1876
1877 #if EV_FEATURE_API
1878 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1879 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1880 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1881 #else
1882 # define EV_RELEASE_CB (void)0
1883 # define EV_ACQUIRE_CB (void)0
1884 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1885 #endif
1886
1887 #define EVBREAK_RECURSE 0x80
1888
1889 /*****************************************************************************/
1890
1891 #ifndef EV_HAVE_EV_TIME
1892 ev_tstamp
1893 ev_time (void) EV_NOEXCEPT
1894 {
1895 #if EV_USE_REALTIME
1896 if (expect_true (have_realtime))
1897 {
1898 struct timespec ts;
1899 clock_gettime (CLOCK_REALTIME, &ts);
1900 return ts.tv_sec + ts.tv_nsec * 1e-9;
1901 }
1902 #endif
1903
1904 struct timeval tv;
1905 gettimeofday (&tv, 0);
1906 return tv.tv_sec + tv.tv_usec * 1e-6;
1907 }
1908 #endif
1909
1910 inline_size ev_tstamp
1911 get_clock (void)
1912 {
1913 #if EV_USE_MONOTONIC
1914 if (expect_true (have_monotonic))
1915 {
1916 struct timespec ts;
1917 clock_gettime (CLOCK_MONOTONIC, &ts);
1918 return ts.tv_sec + ts.tv_nsec * 1e-9;
1919 }
1920 #endif
1921
1922 return ev_time ();
1923 }
1924
1925 #if EV_MULTIPLICITY
1926 ev_tstamp
1927 ev_now (EV_P) EV_NOEXCEPT
1928 {
1929 return ev_rt_now;
1930 }
1931 #endif
1932
1933 void
1934 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1935 {
1936 if (delay > 0.)
1937 {
1938 #if EV_USE_NANOSLEEP
1939 struct timespec ts;
1940
1941 EV_TS_SET (ts, delay);
1942 nanosleep (&ts, 0);
1943 #elif defined _WIN32
1944 /* maybe this should round up, as ms is very low resolution */
1945 /* compared to select (µs) or nanosleep (ns) */
1946 Sleep ((unsigned long)(delay * 1e3));
1947 #else
1948 struct timeval tv;
1949
1950 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1951 /* something not guaranteed by newer posix versions, but guaranteed */
1952 /* by older ones */
1953 EV_TV_SET (tv, delay);
1954 select (0, 0, 0, 0, &tv);
1955 #endif
1956 }
1957 }
1958
1959 /*****************************************************************************/
1960
1961 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1962
1963 /* find a suitable new size for the given array, */
1964 /* hopefully by rounding to a nice-to-malloc size */
1965 inline_size int
1966 array_nextsize (int elem, int cur, int cnt)
1967 {
1968 int ncur = cur + 1;
1969
1970 do
1971 ncur <<= 1;
1972 while (cnt > ncur);
1973
1974 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1975 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1976 {
1977 ncur *= elem;
1978 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1979 ncur = ncur - sizeof (void *) * 4;
1980 ncur /= elem;
1981 }
1982
1983 return ncur;
1984 }
1985
1986 noinline ecb_cold
1987 static void *
1988 array_realloc (int elem, void *base, int *cur, int cnt)
1989 {
1990 *cur = array_nextsize (elem, *cur, cnt);
1991 return ev_realloc (base, elem * *cur);
1992 }
1993
1994 #define array_needsize_noinit(base,offset,count)
1995
1996 #define array_needsize_zerofill(base,offset,count) \
1997 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
1998
1999 #define array_needsize(type,base,cur,cnt,init) \
2000 if (expect_false ((cnt) > (cur))) \
2001 { \
2002 ecb_unused int ocur_ = (cur); \
2003 (base) = (type *)array_realloc \
2004 (sizeof (type), (base), &(cur), (cnt)); \
2005 init ((base), ocur_, ((cur) - ocur_)); \
2006 }
2007
2008 #if 0
2009 #define array_slim(type,stem) \
2010 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2011 { \
2012 stem ## max = array_roundsize (stem ## cnt >> 1); \
2013 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2014 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2015 }
2016 #endif
2017
2018 #define array_free(stem, idx) \
2019 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2020
2021 /*****************************************************************************/
2022
2023 /* dummy callback for pending events */
2024 noinline
2025 static void
2026 pendingcb (EV_P_ ev_prepare *w, int revents)
2027 {
2028 }
2029
2030 noinline
2031 void
2032 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2033 {
2034 W w_ = (W)w;
2035 int pri = ABSPRI (w_);
2036
2037 if (expect_false (w_->pending))
2038 pendings [pri][w_->pending - 1].events |= revents;
2039 else
2040 {
2041 w_->pending = ++pendingcnt [pri];
2042 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2043 pendings [pri][w_->pending - 1].w = w_;
2044 pendings [pri][w_->pending - 1].events = revents;
2045 }
2046
2047 pendingpri = NUMPRI - 1;
2048 }
2049
2050 inline_speed void
2051 feed_reverse (EV_P_ W w)
2052 {
2053 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2054 rfeeds [rfeedcnt++] = w;
2055 }
2056
2057 inline_size void
2058 feed_reverse_done (EV_P_ int revents)
2059 {
2060 do
2061 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2062 while (rfeedcnt);
2063 }
2064
2065 inline_speed void
2066 queue_events (EV_P_ W *events, int eventcnt, int type)
2067 {
2068 int i;
2069
2070 for (i = 0; i < eventcnt; ++i)
2071 ev_feed_event (EV_A_ events [i], type);
2072 }
2073
2074 /*****************************************************************************/
2075
2076 inline_speed void
2077 fd_event_nocheck (EV_P_ int fd, int revents)
2078 {
2079 ANFD *anfd = anfds + fd;
2080 ev_io *w;
2081
2082 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2083 {
2084 int ev = w->events & revents;
2085
2086 if (ev)
2087 ev_feed_event (EV_A_ (W)w, ev);
2088 }
2089 }
2090
2091 /* do not submit kernel events for fds that have reify set */
2092 /* because that means they changed while we were polling for new events */
2093 inline_speed void
2094 fd_event (EV_P_ int fd, int revents)
2095 {
2096 ANFD *anfd = anfds + fd;
2097
2098 if (expect_true (!anfd->reify))
2099 fd_event_nocheck (EV_A_ fd, revents);
2100 }
2101
2102 void
2103 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2104 {
2105 if (fd >= 0 && fd < anfdmax)
2106 fd_event_nocheck (EV_A_ fd, revents);
2107 }
2108
2109 /* make sure the external fd watch events are in-sync */
2110 /* with the kernel/libev internal state */
2111 inline_size void
2112 fd_reify (EV_P)
2113 {
2114 int i;
2115
2116 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2117 for (i = 0; i < fdchangecnt; ++i)
2118 {
2119 int fd = fdchanges [i];
2120 ANFD *anfd = anfds + fd;
2121
2122 if (anfd->reify & EV__IOFDSET && anfd->head)
2123 {
2124 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2125
2126 if (handle != anfd->handle)
2127 {
2128 unsigned long arg;
2129
2130 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2131
2132 /* handle changed, but fd didn't - we need to do it in two steps */
2133 backend_modify (EV_A_ fd, anfd->events, 0);
2134 anfd->events = 0;
2135 anfd->handle = handle;
2136 }
2137 }
2138 }
2139 #endif
2140
2141 for (i = 0; i < fdchangecnt; ++i)
2142 {
2143 int fd = fdchanges [i];
2144 ANFD *anfd = anfds + fd;
2145 ev_io *w;
2146
2147 unsigned char o_events = anfd->events;
2148 unsigned char o_reify = anfd->reify;
2149
2150 anfd->reify = 0;
2151
2152 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2153 {
2154 anfd->events = 0;
2155
2156 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2157 anfd->events |= (unsigned char)w->events;
2158
2159 if (o_events != anfd->events)
2160 o_reify = EV__IOFDSET; /* actually |= */
2161 }
2162
2163 if (o_reify & EV__IOFDSET)
2164 backend_modify (EV_A_ fd, o_events, anfd->events);
2165 }
2166
2167 fdchangecnt = 0;
2168 }
2169
2170 /* something about the given fd changed */
2171 inline_size
2172 void
2173 fd_change (EV_P_ int fd, int flags)
2174 {
2175 unsigned char reify = anfds [fd].reify;
2176 anfds [fd].reify |= flags;
2177
2178 if (expect_true (!reify))
2179 {
2180 ++fdchangecnt;
2181 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2182 fdchanges [fdchangecnt - 1] = fd;
2183 }
2184 }
2185
2186 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2187 inline_speed ecb_cold void
2188 fd_kill (EV_P_ int fd)
2189 {
2190 ev_io *w;
2191
2192 while ((w = (ev_io *)anfds [fd].head))
2193 {
2194 ev_io_stop (EV_A_ w);
2195 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2196 }
2197 }
2198
2199 /* check whether the given fd is actually valid, for error recovery */
2200 inline_size ecb_cold int
2201 fd_valid (int fd)
2202 {
2203 #ifdef _WIN32
2204 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2205 #else
2206 return fcntl (fd, F_GETFD) != -1;
2207 #endif
2208 }
2209
2210 /* called on EBADF to verify fds */
2211 noinline ecb_cold
2212 static void
2213 fd_ebadf (EV_P)
2214 {
2215 int fd;
2216
2217 for (fd = 0; fd < anfdmax; ++fd)
2218 if (anfds [fd].events)
2219 if (!fd_valid (fd) && errno == EBADF)
2220 fd_kill (EV_A_ fd);
2221 }
2222
2223 /* called on ENOMEM in select/poll to kill some fds and retry */
2224 noinline ecb_cold
2225 static void
2226 fd_enomem (EV_P)
2227 {
2228 int fd;
2229
2230 for (fd = anfdmax; fd--; )
2231 if (anfds [fd].events)
2232 {
2233 fd_kill (EV_A_ fd);
2234 break;
2235 }
2236 }
2237
2238 /* usually called after fork if backend needs to re-arm all fds from scratch */
2239 noinline
2240 static void
2241 fd_rearm_all (EV_P)
2242 {
2243 int fd;
2244
2245 for (fd = 0; fd < anfdmax; ++fd)
2246 if (anfds [fd].events)
2247 {
2248 anfds [fd].events = 0;
2249 anfds [fd].emask = 0;
2250 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2251 }
2252 }
2253
2254 /* used to prepare libev internal fd's */
2255 /* this is not fork-safe */
2256 inline_speed void
2257 fd_intern (int fd)
2258 {
2259 #ifdef _WIN32
2260 unsigned long arg = 1;
2261 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2262 #else
2263 fcntl (fd, F_SETFD, FD_CLOEXEC);
2264 fcntl (fd, F_SETFL, O_NONBLOCK);
2265 #endif
2266 }
2267
2268 /*****************************************************************************/
2269
2270 /*
2271 * the heap functions want a real array index. array index 0 is guaranteed to not
2272 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2273 * the branching factor of the d-tree.
2274 */
2275
2276 /*
2277 * at the moment we allow libev the luxury of two heaps,
2278 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2279 * which is more cache-efficient.
2280 * the difference is about 5% with 50000+ watchers.
2281 */
2282 #if EV_USE_4HEAP
2283
2284 #define DHEAP 4
2285 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2286 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2287 #define UPHEAP_DONE(p,k) ((p) == (k))
2288
2289 /* away from the root */
2290 inline_speed void
2291 downheap (ANHE *heap, int N, int k)
2292 {
2293 ANHE he = heap [k];
2294 ANHE *E = heap + N + HEAP0;
2295
2296 for (;;)
2297 {
2298 ev_tstamp minat;
2299 ANHE *minpos;
2300 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2301
2302 /* find minimum child */
2303 if (expect_true (pos + DHEAP - 1 < E))
2304 {
2305 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2306 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2307 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2308 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2309 }
2310 else if (pos < E)
2311 {
2312 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2313 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2314 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2315 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2316 }
2317 else
2318 break;
2319
2320 if (ANHE_at (he) <= minat)
2321 break;
2322
2323 heap [k] = *minpos;
2324 ev_active (ANHE_w (*minpos)) = k;
2325
2326 k = minpos - heap;
2327 }
2328
2329 heap [k] = he;
2330 ev_active (ANHE_w (he)) = k;
2331 }
2332
2333 #else /* 4HEAP */
2334
2335 #define HEAP0 1
2336 #define HPARENT(k) ((k) >> 1)
2337 #define UPHEAP_DONE(p,k) (!(p))
2338
2339 /* away from the root */
2340 inline_speed void
2341 downheap (ANHE *heap, int N, int k)
2342 {
2343 ANHE he = heap [k];
2344
2345 for (;;)
2346 {
2347 int c = k << 1;
2348
2349 if (c >= N + HEAP0)
2350 break;
2351
2352 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2353 ? 1 : 0;
2354
2355 if (ANHE_at (he) <= ANHE_at (heap [c]))
2356 break;
2357
2358 heap [k] = heap [c];
2359 ev_active (ANHE_w (heap [k])) = k;
2360
2361 k = c;
2362 }
2363
2364 heap [k] = he;
2365 ev_active (ANHE_w (he)) = k;
2366 }
2367 #endif
2368
2369 /* towards the root */
2370 inline_speed void
2371 upheap (ANHE *heap, int k)
2372 {
2373 ANHE he = heap [k];
2374
2375 for (;;)
2376 {
2377 int p = HPARENT (k);
2378
2379 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2380 break;
2381
2382 heap [k] = heap [p];
2383 ev_active (ANHE_w (heap [k])) = k;
2384 k = p;
2385 }
2386
2387 heap [k] = he;
2388 ev_active (ANHE_w (he)) = k;
2389 }
2390
2391 /* move an element suitably so it is in a correct place */
2392 inline_size void
2393 adjustheap (ANHE *heap, int N, int k)
2394 {
2395 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2396 upheap (heap, k);
2397 else
2398 downheap (heap, N, k);
2399 }
2400
2401 /* rebuild the heap: this function is used only once and executed rarely */
2402 inline_size void
2403 reheap (ANHE *heap, int N)
2404 {
2405 int i;
2406
2407 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2408 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2409 for (i = 0; i < N; ++i)
2410 upheap (heap, i + HEAP0);
2411 }
2412
2413 /*****************************************************************************/
2414
2415 /* associate signal watchers to a signal signal */
2416 typedef struct
2417 {
2418 EV_ATOMIC_T pending;
2419 #if EV_MULTIPLICITY
2420 EV_P;
2421 #endif
2422 WL head;
2423 } ANSIG;
2424
2425 static ANSIG signals [EV_NSIG - 1];
2426
2427 /*****************************************************************************/
2428
2429 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2430
2431 noinline ecb_cold
2432 static void
2433 evpipe_init (EV_P)
2434 {
2435 if (!ev_is_active (&pipe_w))
2436 {
2437 int fds [2];
2438
2439 # if EV_USE_EVENTFD
2440 fds [0] = -1;
2441 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2442 if (fds [1] < 0 && errno == EINVAL)
2443 fds [1] = eventfd (0, 0);
2444
2445 if (fds [1] < 0)
2446 # endif
2447 {
2448 while (pipe (fds))
2449 ev_syserr ("(libev) error creating signal/async pipe");
2450
2451 fd_intern (fds [0]);
2452 }
2453
2454 evpipe [0] = fds [0];
2455
2456 if (evpipe [1] < 0)
2457 evpipe [1] = fds [1]; /* first call, set write fd */
2458 else
2459 {
2460 /* on subsequent calls, do not change evpipe [1] */
2461 /* so that evpipe_write can always rely on its value. */
2462 /* this branch does not do anything sensible on windows, */
2463 /* so must not be executed on windows */
2464
2465 dup2 (fds [1], evpipe [1]);
2466 close (fds [1]);
2467 }
2468
2469 fd_intern (evpipe [1]);
2470
2471 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2472 ev_io_start (EV_A_ &pipe_w);
2473 ev_unref (EV_A); /* watcher should not keep loop alive */
2474 }
2475 }
2476
2477 inline_speed void
2478 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2479 {
2480 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2481
2482 if (expect_true (*flag))
2483 return;
2484
2485 *flag = 1;
2486 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2487
2488 pipe_write_skipped = 1;
2489
2490 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2491
2492 if (pipe_write_wanted)
2493 {
2494 int old_errno;
2495
2496 pipe_write_skipped = 0;
2497 ECB_MEMORY_FENCE_RELEASE;
2498
2499 old_errno = errno; /* save errno because write will clobber it */
2500
2501 #if EV_USE_EVENTFD
2502 if (evpipe [0] < 0)
2503 {
2504 uint64_t counter = 1;
2505 write (evpipe [1], &counter, sizeof (uint64_t));
2506 }
2507 else
2508 #endif
2509 {
2510 #ifdef _WIN32
2511 WSABUF buf;
2512 DWORD sent;
2513 buf.buf = (char *)&buf;
2514 buf.len = 1;
2515 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2516 #else
2517 write (evpipe [1], &(evpipe [1]), 1);
2518 #endif
2519 }
2520
2521 errno = old_errno;
2522 }
2523 }
2524
2525 /* called whenever the libev signal pipe */
2526 /* got some events (signal, async) */
2527 static void
2528 pipecb (EV_P_ ev_io *iow, int revents)
2529 {
2530 int i;
2531
2532 if (revents & EV_READ)
2533 {
2534 #if EV_USE_EVENTFD
2535 if (evpipe [0] < 0)
2536 {
2537 uint64_t counter;
2538 read (evpipe [1], &counter, sizeof (uint64_t));
2539 }
2540 else
2541 #endif
2542 {
2543 char dummy[4];
2544 #ifdef _WIN32
2545 WSABUF buf;
2546 DWORD recvd;
2547 DWORD flags = 0;
2548 buf.buf = dummy;
2549 buf.len = sizeof (dummy);
2550 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2551 #else
2552 read (evpipe [0], &dummy, sizeof (dummy));
2553 #endif
2554 }
2555 }
2556
2557 pipe_write_skipped = 0;
2558
2559 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2560
2561 #if EV_SIGNAL_ENABLE
2562 if (sig_pending)
2563 {
2564 sig_pending = 0;
2565
2566 ECB_MEMORY_FENCE;
2567
2568 for (i = EV_NSIG - 1; i--; )
2569 if (expect_false (signals [i].pending))
2570 ev_feed_signal_event (EV_A_ i + 1);
2571 }
2572 #endif
2573
2574 #if EV_ASYNC_ENABLE
2575 if (async_pending)
2576 {
2577 async_pending = 0;
2578
2579 ECB_MEMORY_FENCE;
2580
2581 for (i = asynccnt; i--; )
2582 if (asyncs [i]->sent)
2583 {
2584 asyncs [i]->sent = 0;
2585 ECB_MEMORY_FENCE_RELEASE;
2586 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2587 }
2588 }
2589 #endif
2590 }
2591
2592 /*****************************************************************************/
2593
2594 void
2595 ev_feed_signal (int signum) EV_NOEXCEPT
2596 {
2597 #if EV_MULTIPLICITY
2598 EV_P;
2599 ECB_MEMORY_FENCE_ACQUIRE;
2600 EV_A = signals [signum - 1].loop;
2601
2602 if (!EV_A)
2603 return;
2604 #endif
2605
2606 signals [signum - 1].pending = 1;
2607 evpipe_write (EV_A_ &sig_pending);
2608 }
2609
2610 static void
2611 ev_sighandler (int signum)
2612 {
2613 #ifdef _WIN32
2614 signal (signum, ev_sighandler);
2615 #endif
2616
2617 ev_feed_signal (signum);
2618 }
2619
2620 noinline
2621 void
2622 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2623 {
2624 WL w;
2625
2626 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2627 return;
2628
2629 --signum;
2630
2631 #if EV_MULTIPLICITY
2632 /* it is permissible to try to feed a signal to the wrong loop */
2633 /* or, likely more useful, feeding a signal nobody is waiting for */
2634
2635 if (expect_false (signals [signum].loop != EV_A))
2636 return;
2637 #endif
2638
2639 signals [signum].pending = 0;
2640 ECB_MEMORY_FENCE_RELEASE;
2641
2642 for (w = signals [signum].head; w; w = w->next)
2643 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2644 }
2645
2646 #if EV_USE_SIGNALFD
2647 static void
2648 sigfdcb (EV_P_ ev_io *iow, int revents)
2649 {
2650 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2651
2652 for (;;)
2653 {
2654 ssize_t res = read (sigfd, si, sizeof (si));
2655
2656 /* not ISO-C, as res might be -1, but works with SuS */
2657 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2658 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2659
2660 if (res < (ssize_t)sizeof (si))
2661 break;
2662 }
2663 }
2664 #endif
2665
2666 #endif
2667
2668 /*****************************************************************************/
2669
2670 #if EV_CHILD_ENABLE
2671 static WL childs [EV_PID_HASHSIZE];
2672
2673 static ev_signal childev;
2674
2675 #ifndef WIFCONTINUED
2676 # define WIFCONTINUED(status) 0
2677 #endif
2678
2679 /* handle a single child status event */
2680 inline_speed void
2681 child_reap (EV_P_ int chain, int pid, int status)
2682 {
2683 ev_child *w;
2684 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2685
2686 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2687 {
2688 if ((w->pid == pid || !w->pid)
2689 && (!traced || (w->flags & 1)))
2690 {
2691 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2692 w->rpid = pid;
2693 w->rstatus = status;
2694 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2695 }
2696 }
2697 }
2698
2699 #ifndef WCONTINUED
2700 # define WCONTINUED 0
2701 #endif
2702
2703 /* called on sigchld etc., calls waitpid */
2704 static void
2705 childcb (EV_P_ ev_signal *sw, int revents)
2706 {
2707 int pid, status;
2708
2709 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2710 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2711 if (!WCONTINUED
2712 || errno != EINVAL
2713 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2714 return;
2715
2716 /* make sure we are called again until all children have been reaped */
2717 /* we need to do it this way so that the callback gets called before we continue */
2718 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2719
2720 child_reap (EV_A_ pid, pid, status);
2721 if ((EV_PID_HASHSIZE) > 1)
2722 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2723 }
2724
2725 #endif
2726
2727 /*****************************************************************************/
2728
2729 #if EV_USE_IOCP
2730 # include "ev_iocp.c"
2731 #endif
2732 #if EV_USE_PORT
2733 # include "ev_port.c"
2734 #endif
2735 #if EV_USE_KQUEUE
2736 # include "ev_kqueue.c"
2737 #endif
2738 #if EV_USE_EPOLL
2739 # include "ev_epoll.c"
2740 #endif
2741 #if EV_USE_LINUXAIO
2742 # include "ev_linuxaio.c"
2743 #endif
2744 #if EV_USE_POLL
2745 # include "ev_poll.c"
2746 #endif
2747 #if EV_USE_SELECT
2748 # include "ev_select.c"
2749 #endif
2750
2751 ecb_cold int
2752 ev_version_major (void) EV_NOEXCEPT
2753 {
2754 return EV_VERSION_MAJOR;
2755 }
2756
2757 ecb_cold int
2758 ev_version_minor (void) EV_NOEXCEPT
2759 {
2760 return EV_VERSION_MINOR;
2761 }
2762
2763 /* return true if we are running with elevated privileges and should ignore env variables */
2764 inline_size ecb_cold int
2765 enable_secure (void)
2766 {
2767 #ifdef _WIN32
2768 return 0;
2769 #else
2770 return getuid () != geteuid ()
2771 || getgid () != getegid ();
2772 #endif
2773 }
2774
2775 ecb_cold
2776 unsigned int
2777 ev_supported_backends (void) EV_NOEXCEPT
2778 {
2779 unsigned int flags = 0;
2780
2781 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2782 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2783 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2784 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2785 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2786 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2787
2788 return flags;
2789 }
2790
2791 ecb_cold
2792 unsigned int
2793 ev_recommended_backends (void) EV_NOEXCEPT
2794 {
2795 unsigned int flags = ev_supported_backends ();
2796
2797 #ifndef __NetBSD__
2798 /* kqueue is borked on everything but netbsd apparently */
2799 /* it usually doesn't work correctly on anything but sockets and pipes */
2800 flags &= ~EVBACKEND_KQUEUE;
2801 #endif
2802 #ifdef __APPLE__
2803 /* only select works correctly on that "unix-certified" platform */
2804 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2805 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2806 #endif
2807 #ifdef __FreeBSD__
2808 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2809 #endif
2810
2811 /* TODO: linuxaio is very experimental */
2812 #if !EV_RECOMMEND_LINUXAIO
2813 flags &= ~EVBACKEND_LINUXAIO;
2814 #endif
2815
2816 return flags;
2817 }
2818
2819 ecb_cold
2820 unsigned int
2821 ev_embeddable_backends (void) EV_NOEXCEPT
2822 {
2823 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2824
2825 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2826 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2827 flags &= ~EVBACKEND_EPOLL;
2828
2829 return flags;
2830 }
2831
2832 unsigned int
2833 ev_backend (EV_P) EV_NOEXCEPT
2834 {
2835 return backend;
2836 }
2837
2838 #if EV_FEATURE_API
2839 unsigned int
2840 ev_iteration (EV_P) EV_NOEXCEPT
2841 {
2842 return loop_count;
2843 }
2844
2845 unsigned int
2846 ev_depth (EV_P) EV_NOEXCEPT
2847 {
2848 return loop_depth;
2849 }
2850
2851 void
2852 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2853 {
2854 io_blocktime = interval;
2855 }
2856
2857 void
2858 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2859 {
2860 timeout_blocktime = interval;
2861 }
2862
2863 void
2864 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2865 {
2866 userdata = data;
2867 }
2868
2869 void *
2870 ev_userdata (EV_P) EV_NOEXCEPT
2871 {
2872 return userdata;
2873 }
2874
2875 void
2876 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2877 {
2878 invoke_cb = invoke_pending_cb;
2879 }
2880
2881 void
2882 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2883 {
2884 release_cb = release;
2885 acquire_cb = acquire;
2886 }
2887 #endif
2888
2889 /* initialise a loop structure, must be zero-initialised */
2890 noinline ecb_cold
2891 static void
2892 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
2893 {
2894 if (!backend)
2895 {
2896 origflags = flags;
2897
2898 #if EV_USE_REALTIME
2899 if (!have_realtime)
2900 {
2901 struct timespec ts;
2902
2903 if (!clock_gettime (CLOCK_REALTIME, &ts))
2904 have_realtime = 1;
2905 }
2906 #endif
2907
2908 #if EV_USE_MONOTONIC
2909 if (!have_monotonic)
2910 {
2911 struct timespec ts;
2912
2913 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2914 have_monotonic = 1;
2915 }
2916 #endif
2917
2918 /* pid check not overridable via env */
2919 #ifndef _WIN32
2920 if (flags & EVFLAG_FORKCHECK)
2921 curpid = getpid ();
2922 #endif
2923
2924 if (!(flags & EVFLAG_NOENV)
2925 && !enable_secure ()
2926 && getenv ("LIBEV_FLAGS"))
2927 flags = atoi (getenv ("LIBEV_FLAGS"));
2928
2929 ev_rt_now = ev_time ();
2930 mn_now = get_clock ();
2931 now_floor = mn_now;
2932 rtmn_diff = ev_rt_now - mn_now;
2933 #if EV_FEATURE_API
2934 invoke_cb = ev_invoke_pending;
2935 #endif
2936
2937 io_blocktime = 0.;
2938 timeout_blocktime = 0.;
2939 backend = 0;
2940 backend_fd = -1;
2941 sig_pending = 0;
2942 #if EV_ASYNC_ENABLE
2943 async_pending = 0;
2944 #endif
2945 pipe_write_skipped = 0;
2946 pipe_write_wanted = 0;
2947 evpipe [0] = -1;
2948 evpipe [1] = -1;
2949 #if EV_USE_INOTIFY
2950 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2951 #endif
2952 #if EV_USE_SIGNALFD
2953 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2954 #endif
2955
2956 if (!(flags & EVBACKEND_MASK))
2957 flags |= ev_recommended_backends ();
2958
2959 #if EV_USE_IOCP
2960 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2961 #endif
2962 #if EV_USE_PORT
2963 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2964 #endif
2965 #if EV_USE_KQUEUE
2966 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2967 #endif
2968 #if EV_USE_LINUXAIO
2969 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
2970 #endif
2971 #if EV_USE_EPOLL
2972 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2973 #endif
2974 #if EV_USE_POLL
2975 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2976 #endif
2977 #if EV_USE_SELECT
2978 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
2979 #endif
2980
2981 ev_prepare_init (&pending_w, pendingcb);
2982
2983 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2984 ev_init (&pipe_w, pipecb);
2985 ev_set_priority (&pipe_w, EV_MAXPRI);
2986 #endif
2987 }
2988 }
2989
2990 /* free up a loop structure */
2991 ecb_cold
2992 void
2993 ev_loop_destroy (EV_P)
2994 {
2995 int i;
2996
2997 #if EV_MULTIPLICITY
2998 /* mimic free (0) */
2999 if (!EV_A)
3000 return;
3001 #endif
3002
3003 #if EV_CLEANUP_ENABLE
3004 /* queue cleanup watchers (and execute them) */
3005 if (expect_false (cleanupcnt))
3006 {
3007 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3008 EV_INVOKE_PENDING;
3009 }
3010 #endif
3011
3012 #if EV_CHILD_ENABLE
3013 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3014 {
3015 ev_ref (EV_A); /* child watcher */
3016 ev_signal_stop (EV_A_ &childev);
3017 }
3018 #endif
3019
3020 if (ev_is_active (&pipe_w))
3021 {
3022 /*ev_ref (EV_A);*/
3023 /*ev_io_stop (EV_A_ &pipe_w);*/
3024
3025 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3026 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3027 }
3028
3029 #if EV_USE_SIGNALFD
3030 if (ev_is_active (&sigfd_w))
3031 close (sigfd);
3032 #endif
3033
3034 #if EV_USE_INOTIFY
3035 if (fs_fd >= 0)
3036 close (fs_fd);
3037 #endif
3038
3039 if (backend_fd >= 0)
3040 close (backend_fd);
3041
3042 #if EV_USE_IOCP
3043 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3044 #endif
3045 #if EV_USE_PORT
3046 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3047 #endif
3048 #if EV_USE_KQUEUE
3049 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3050 #endif
3051 #if EV_USE_LINUXAIO
3052 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3053 #endif
3054 #if EV_USE_EPOLL
3055 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3056 #endif
3057 #if EV_USE_POLL
3058 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3059 #endif
3060 #if EV_USE_SELECT
3061 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3062 #endif
3063
3064 for (i = NUMPRI; i--; )
3065 {
3066 array_free (pending, [i]);
3067 #if EV_IDLE_ENABLE
3068 array_free (idle, [i]);
3069 #endif
3070 }
3071
3072 ev_free (anfds); anfds = 0; anfdmax = 0;
3073
3074 /* have to use the microsoft-never-gets-it-right macro */
3075 array_free (rfeed, EMPTY);
3076 array_free (fdchange, EMPTY);
3077 array_free (timer, EMPTY);
3078 #if EV_PERIODIC_ENABLE
3079 array_free (periodic, EMPTY);
3080 #endif
3081 #if EV_FORK_ENABLE
3082 array_free (fork, EMPTY);
3083 #endif
3084 #if EV_CLEANUP_ENABLE
3085 array_free (cleanup, EMPTY);
3086 #endif
3087 array_free (prepare, EMPTY);
3088 array_free (check, EMPTY);
3089 #if EV_ASYNC_ENABLE
3090 array_free (async, EMPTY);
3091 #endif
3092
3093 backend = 0;
3094
3095 #if EV_MULTIPLICITY
3096 if (ev_is_default_loop (EV_A))
3097 #endif
3098 ev_default_loop_ptr = 0;
3099 #if EV_MULTIPLICITY
3100 else
3101 ev_free (EV_A);
3102 #endif
3103 }
3104
3105 #if EV_USE_INOTIFY
3106 inline_size void infy_fork (EV_P);
3107 #endif
3108
3109 inline_size void
3110 loop_fork (EV_P)
3111 {
3112 #if EV_USE_PORT
3113 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3114 #endif
3115 #if EV_USE_KQUEUE
3116 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3117 #endif
3118 #if EV_USE_LINUXAIO
3119 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3120 #endif
3121 #if EV_USE_EPOLL
3122 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3123 #endif
3124 #if EV_USE_INOTIFY
3125 infy_fork (EV_A);
3126 #endif
3127
3128 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3129 if (ev_is_active (&pipe_w) && postfork != 2)
3130 {
3131 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3132
3133 ev_ref (EV_A);
3134 ev_io_stop (EV_A_ &pipe_w);
3135
3136 if (evpipe [0] >= 0)
3137 EV_WIN32_CLOSE_FD (evpipe [0]);
3138
3139 evpipe_init (EV_A);
3140 /* iterate over everything, in case we missed something before */
3141 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3142 }
3143 #endif
3144
3145 postfork = 0;
3146 }
3147
3148 #if EV_MULTIPLICITY
3149
3150 ecb_cold
3151 struct ev_loop *
3152 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3153 {
3154 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3155
3156 memset (EV_A, 0, sizeof (struct ev_loop));
3157 loop_init (EV_A_ flags);
3158
3159 if (ev_backend (EV_A))
3160 return EV_A;
3161
3162 ev_free (EV_A);
3163 return 0;
3164 }
3165
3166 #endif /* multiplicity */
3167
3168 #if EV_VERIFY
3169 noinline ecb_cold
3170 static void
3171 verify_watcher (EV_P_ W w)
3172 {
3173 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3174
3175 if (w->pending)
3176 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3177 }
3178
3179 noinline ecb_cold
3180 static void
3181 verify_heap (EV_P_ ANHE *heap, int N)
3182 {
3183 int i;
3184
3185 for (i = HEAP0; i < N + HEAP0; ++i)
3186 {
3187 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3188 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3189 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3190
3191 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3192 }
3193 }
3194
3195 noinline ecb_cold
3196 static void
3197 array_verify (EV_P_ W *ws, int cnt)
3198 {
3199 while (cnt--)
3200 {
3201 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3202 verify_watcher (EV_A_ ws [cnt]);
3203 }
3204 }
3205 #endif
3206
3207 #if EV_FEATURE_API
3208 void ecb_cold
3209 ev_verify (EV_P) EV_NOEXCEPT
3210 {
3211 #if EV_VERIFY
3212 int i;
3213 WL w, w2;
3214
3215 assert (activecnt >= -1);
3216
3217 assert (fdchangemax >= fdchangecnt);
3218 for (i = 0; i < fdchangecnt; ++i)
3219 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3220
3221 assert (anfdmax >= 0);
3222 for (i = 0; i < anfdmax; ++i)
3223 {
3224 int j = 0;
3225
3226 for (w = w2 = anfds [i].head; w; w = w->next)
3227 {
3228 verify_watcher (EV_A_ (W)w);
3229
3230 if (j++ & 1)
3231 {
3232 assert (("libev: io watcher list contains a loop", w != w2));
3233 w2 = w2->next;
3234 }
3235
3236 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3237 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3238 }
3239 }
3240
3241 assert (timermax >= timercnt);
3242 verify_heap (EV_A_ timers, timercnt);
3243
3244 #if EV_PERIODIC_ENABLE
3245 assert (periodicmax >= periodiccnt);
3246 verify_heap (EV_A_ periodics, periodiccnt);
3247 #endif
3248
3249 for (i = NUMPRI; i--; )
3250 {
3251 assert (pendingmax [i] >= pendingcnt [i]);
3252 #if EV_IDLE_ENABLE
3253 assert (idleall >= 0);
3254 assert (idlemax [i] >= idlecnt [i]);
3255 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3256 #endif
3257 }
3258
3259 #if EV_FORK_ENABLE
3260 assert (forkmax >= forkcnt);
3261 array_verify (EV_A_ (W *)forks, forkcnt);
3262 #endif
3263
3264 #if EV_CLEANUP_ENABLE
3265 assert (cleanupmax >= cleanupcnt);
3266 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3267 #endif
3268
3269 #if EV_ASYNC_ENABLE
3270 assert (asyncmax >= asynccnt);
3271 array_verify (EV_A_ (W *)asyncs, asynccnt);
3272 #endif
3273
3274 #if EV_PREPARE_ENABLE
3275 assert (preparemax >= preparecnt);
3276 array_verify (EV_A_ (W *)prepares, preparecnt);
3277 #endif
3278
3279 #if EV_CHECK_ENABLE
3280 assert (checkmax >= checkcnt);
3281 array_verify (EV_A_ (W *)checks, checkcnt);
3282 #endif
3283
3284 # if 0
3285 #if EV_CHILD_ENABLE
3286 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3287 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3288 #endif
3289 # endif
3290 #endif
3291 }
3292 #endif
3293
3294 #if EV_MULTIPLICITY
3295 ecb_cold
3296 struct ev_loop *
3297 #else
3298 int
3299 #endif
3300 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3301 {
3302 if (!ev_default_loop_ptr)
3303 {
3304 #if EV_MULTIPLICITY
3305 EV_P = ev_default_loop_ptr = &default_loop_struct;
3306 #else
3307 ev_default_loop_ptr = 1;
3308 #endif
3309
3310 loop_init (EV_A_ flags);
3311
3312 if (ev_backend (EV_A))
3313 {
3314 #if EV_CHILD_ENABLE
3315 ev_signal_init (&childev, childcb, SIGCHLD);
3316 ev_set_priority (&childev, EV_MAXPRI);
3317 ev_signal_start (EV_A_ &childev);
3318 ev_unref (EV_A); /* child watcher should not keep loop alive */
3319 #endif
3320 }
3321 else
3322 ev_default_loop_ptr = 0;
3323 }
3324
3325 return ev_default_loop_ptr;
3326 }
3327
3328 void
3329 ev_loop_fork (EV_P) EV_NOEXCEPT
3330 {
3331 postfork = 1;
3332 }
3333
3334 /*****************************************************************************/
3335
3336 void
3337 ev_invoke (EV_P_ void *w, int revents)
3338 {
3339 EV_CB_INVOKE ((W)w, revents);
3340 }
3341
3342 unsigned int
3343 ev_pending_count (EV_P) EV_NOEXCEPT
3344 {
3345 int pri;
3346 unsigned int count = 0;
3347
3348 for (pri = NUMPRI; pri--; )
3349 count += pendingcnt [pri];
3350
3351 return count;
3352 }
3353
3354 noinline
3355 void
3356 ev_invoke_pending (EV_P)
3357 {
3358 pendingpri = NUMPRI;
3359
3360 do
3361 {
3362 --pendingpri;
3363
3364 /* pendingpri possibly gets modified in the inner loop */
3365 while (pendingcnt [pendingpri])
3366 {
3367 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3368
3369 p->w->pending = 0;
3370 EV_CB_INVOKE (p->w, p->events);
3371 EV_FREQUENT_CHECK;
3372 }
3373 }
3374 while (pendingpri);
3375 }
3376
3377 #if EV_IDLE_ENABLE
3378 /* make idle watchers pending. this handles the "call-idle */
3379 /* only when higher priorities are idle" logic */
3380 inline_size void
3381 idle_reify (EV_P)
3382 {
3383 if (expect_false (idleall))
3384 {
3385 int pri;
3386
3387 for (pri = NUMPRI; pri--; )
3388 {
3389 if (pendingcnt [pri])
3390 break;
3391
3392 if (idlecnt [pri])
3393 {
3394 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3395 break;
3396 }
3397 }
3398 }
3399 }
3400 #endif
3401
3402 /* make timers pending */
3403 inline_size void
3404 timers_reify (EV_P)
3405 {
3406 EV_FREQUENT_CHECK;
3407
3408 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3409 {
3410 do
3411 {
3412 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3413
3414 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3415
3416 /* first reschedule or stop timer */
3417 if (w->repeat)
3418 {
3419 ev_at (w) += w->repeat;
3420 if (ev_at (w) < mn_now)
3421 ev_at (w) = mn_now;
3422
3423 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3424
3425 ANHE_at_cache (timers [HEAP0]);
3426 downheap (timers, timercnt, HEAP0);
3427 }
3428 else
3429 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3430
3431 EV_FREQUENT_CHECK;
3432 feed_reverse (EV_A_ (W)w);
3433 }
3434 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3435
3436 feed_reverse_done (EV_A_ EV_TIMER);
3437 }
3438 }
3439
3440 #if EV_PERIODIC_ENABLE
3441
3442 noinline
3443 static void
3444 periodic_recalc (EV_P_ ev_periodic *w)
3445 {
3446 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3447 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3448
3449 /* the above almost always errs on the low side */
3450 while (at <= ev_rt_now)
3451 {
3452 ev_tstamp nat = at + w->interval;
3453
3454 /* when resolution fails us, we use ev_rt_now */
3455 if (expect_false (nat == at))
3456 {
3457 at = ev_rt_now;
3458 break;
3459 }
3460
3461 at = nat;
3462 }
3463
3464 ev_at (w) = at;
3465 }
3466
3467 /* make periodics pending */
3468 inline_size void
3469 periodics_reify (EV_P)
3470 {
3471 EV_FREQUENT_CHECK;
3472
3473 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3474 {
3475 do
3476 {
3477 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3478
3479 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3480
3481 /* first reschedule or stop timer */
3482 if (w->reschedule_cb)
3483 {
3484 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3485
3486 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3487
3488 ANHE_at_cache (periodics [HEAP0]);
3489 downheap (periodics, periodiccnt, HEAP0);
3490 }
3491 else if (w->interval)
3492 {
3493 periodic_recalc (EV_A_ w);
3494 ANHE_at_cache (periodics [HEAP0]);
3495 downheap (periodics, periodiccnt, HEAP0);
3496 }
3497 else
3498 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3499
3500 EV_FREQUENT_CHECK;
3501 feed_reverse (EV_A_ (W)w);
3502 }
3503 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3504
3505 feed_reverse_done (EV_A_ EV_PERIODIC);
3506 }
3507 }
3508
3509 /* simply recalculate all periodics */
3510 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3511 noinline ecb_cold
3512 static void
3513 periodics_reschedule (EV_P)
3514 {
3515 int i;
3516
3517 /* adjust periodics after time jump */
3518 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3519 {
3520 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3521
3522 if (w->reschedule_cb)
3523 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3524 else if (w->interval)
3525 periodic_recalc (EV_A_ w);
3526
3527 ANHE_at_cache (periodics [i]);
3528 }
3529
3530 reheap (periodics, periodiccnt);
3531 }
3532 #endif
3533
3534 /* adjust all timers by a given offset */
3535 noinline ecb_cold
3536 static void
3537 timers_reschedule (EV_P_ ev_tstamp adjust)
3538 {
3539 int i;
3540
3541 for (i = 0; i < timercnt; ++i)
3542 {
3543 ANHE *he = timers + i + HEAP0;
3544 ANHE_w (*he)->at += adjust;
3545 ANHE_at_cache (*he);
3546 }
3547 }
3548
3549 /* fetch new monotonic and realtime times from the kernel */
3550 /* also detect if there was a timejump, and act accordingly */
3551 inline_speed void
3552 time_update (EV_P_ ev_tstamp max_block)
3553 {
3554 #if EV_USE_MONOTONIC
3555 if (expect_true (have_monotonic))
3556 {
3557 int i;
3558 ev_tstamp odiff = rtmn_diff;
3559
3560 mn_now = get_clock ();
3561
3562 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3563 /* interpolate in the meantime */
3564 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3565 {
3566 ev_rt_now = rtmn_diff + mn_now;
3567 return;
3568 }
3569
3570 now_floor = mn_now;
3571 ev_rt_now = ev_time ();
3572
3573 /* loop a few times, before making important decisions.
3574 * on the choice of "4": one iteration isn't enough,
3575 * in case we get preempted during the calls to
3576 * ev_time and get_clock. a second call is almost guaranteed
3577 * to succeed in that case, though. and looping a few more times
3578 * doesn't hurt either as we only do this on time-jumps or
3579 * in the unlikely event of having been preempted here.
3580 */
3581 for (i = 4; --i; )
3582 {
3583 ev_tstamp diff;
3584 rtmn_diff = ev_rt_now - mn_now;
3585
3586 diff = odiff - rtmn_diff;
3587
3588 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3589 return; /* all is well */
3590
3591 ev_rt_now = ev_time ();
3592 mn_now = get_clock ();
3593 now_floor = mn_now;
3594 }
3595
3596 /* no timer adjustment, as the monotonic clock doesn't jump */
3597 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3598 # if EV_PERIODIC_ENABLE
3599 periodics_reschedule (EV_A);
3600 # endif
3601 }
3602 else
3603 #endif
3604 {
3605 ev_rt_now = ev_time ();
3606
3607 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3608 {
3609 /* adjust timers. this is easy, as the offset is the same for all of them */
3610 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3611 #if EV_PERIODIC_ENABLE
3612 periodics_reschedule (EV_A);
3613 #endif
3614 }
3615
3616 mn_now = ev_rt_now;
3617 }
3618 }
3619
3620 int
3621 ev_run (EV_P_ int flags)
3622 {
3623 #if EV_FEATURE_API
3624 ++loop_depth;
3625 #endif
3626
3627 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3628
3629 loop_done = EVBREAK_CANCEL;
3630
3631 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3632
3633 do
3634 {
3635 #if EV_VERIFY >= 2
3636 ev_verify (EV_A);
3637 #endif
3638
3639 #ifndef _WIN32
3640 if (expect_false (curpid)) /* penalise the forking check even more */
3641 if (expect_false (getpid () != curpid))
3642 {
3643 curpid = getpid ();
3644 postfork = 1;
3645 }
3646 #endif
3647
3648 #if EV_FORK_ENABLE
3649 /* we might have forked, so queue fork handlers */
3650 if (expect_false (postfork))
3651 if (forkcnt)
3652 {
3653 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3654 EV_INVOKE_PENDING;
3655 }
3656 #endif
3657
3658 #if EV_PREPARE_ENABLE
3659 /* queue prepare watchers (and execute them) */
3660 if (expect_false (preparecnt))
3661 {
3662 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3663 EV_INVOKE_PENDING;
3664 }
3665 #endif
3666
3667 if (expect_false (loop_done))
3668 break;
3669
3670 /* we might have forked, so reify kernel state if necessary */
3671 if (expect_false (postfork))
3672 loop_fork (EV_A);
3673
3674 /* update fd-related kernel structures */
3675 fd_reify (EV_A);
3676
3677 /* calculate blocking time */
3678 {
3679 ev_tstamp waittime = 0.;
3680 ev_tstamp sleeptime = 0.;
3681
3682 /* remember old timestamp for io_blocktime calculation */
3683 ev_tstamp prev_mn_now = mn_now;
3684
3685 /* update time to cancel out callback processing overhead */
3686 time_update (EV_A_ 1e100);
3687
3688 /* from now on, we want a pipe-wake-up */
3689 pipe_write_wanted = 1;
3690
3691 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3692
3693 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3694 {
3695 waittime = MAX_BLOCKTIME;
3696
3697 if (timercnt)
3698 {
3699 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3700 if (waittime > to) waittime = to;
3701 }
3702
3703 #if EV_PERIODIC_ENABLE
3704 if (periodiccnt)
3705 {
3706 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3707 if (waittime > to) waittime = to;
3708 }
3709 #endif
3710
3711 /* don't let timeouts decrease the waittime below timeout_blocktime */
3712 if (expect_false (waittime < timeout_blocktime))
3713 waittime = timeout_blocktime;
3714
3715 /* at this point, we NEED to wait, so we have to ensure */
3716 /* to pass a minimum nonzero value to the backend */
3717 if (expect_false (waittime < backend_mintime))
3718 waittime = backend_mintime;
3719
3720 /* extra check because io_blocktime is commonly 0 */
3721 if (expect_false (io_blocktime))
3722 {
3723 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3724
3725 if (sleeptime > waittime - backend_mintime)
3726 sleeptime = waittime - backend_mintime;
3727
3728 if (expect_true (sleeptime > 0.))
3729 {
3730 ev_sleep (sleeptime);
3731 waittime -= sleeptime;
3732 }
3733 }
3734 }
3735
3736 #if EV_FEATURE_API
3737 ++loop_count;
3738 #endif
3739 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3740 backend_poll (EV_A_ waittime);
3741 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3742
3743 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3744
3745 ECB_MEMORY_FENCE_ACQUIRE;
3746 if (pipe_write_skipped)
3747 {
3748 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3749 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3750 }
3751
3752
3753 /* update ev_rt_now, do magic */
3754 time_update (EV_A_ waittime + sleeptime);
3755 }
3756
3757 /* queue pending timers and reschedule them */
3758 timers_reify (EV_A); /* relative timers called last */
3759 #if EV_PERIODIC_ENABLE
3760 periodics_reify (EV_A); /* absolute timers called first */
3761 #endif
3762
3763 #if EV_IDLE_ENABLE
3764 /* queue idle watchers unless other events are pending */
3765 idle_reify (EV_A);
3766 #endif
3767
3768 #if EV_CHECK_ENABLE
3769 /* queue check watchers, to be executed first */
3770 if (expect_false (checkcnt))
3771 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3772 #endif
3773
3774 EV_INVOKE_PENDING;
3775 }
3776 while (expect_true (
3777 activecnt
3778 && !loop_done
3779 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3780 ));
3781
3782 if (loop_done == EVBREAK_ONE)
3783 loop_done = EVBREAK_CANCEL;
3784
3785 #if EV_FEATURE_API
3786 --loop_depth;
3787 #endif
3788
3789 return activecnt;
3790 }
3791
3792 void
3793 ev_break (EV_P_ int how) EV_NOEXCEPT
3794 {
3795 loop_done = how;
3796 }
3797
3798 void
3799 ev_ref (EV_P) EV_NOEXCEPT
3800 {
3801 ++activecnt;
3802 }
3803
3804 void
3805 ev_unref (EV_P) EV_NOEXCEPT
3806 {
3807 --activecnt;
3808 }
3809
3810 void
3811 ev_now_update (EV_P) EV_NOEXCEPT
3812 {
3813 time_update (EV_A_ 1e100);
3814 }
3815
3816 void
3817 ev_suspend (EV_P) EV_NOEXCEPT
3818 {
3819 ev_now_update (EV_A);
3820 }
3821
3822 void
3823 ev_resume (EV_P) EV_NOEXCEPT
3824 {
3825 ev_tstamp mn_prev = mn_now;
3826
3827 ev_now_update (EV_A);
3828 timers_reschedule (EV_A_ mn_now - mn_prev);
3829 #if EV_PERIODIC_ENABLE
3830 /* TODO: really do this? */
3831 periodics_reschedule (EV_A);
3832 #endif
3833 }
3834
3835 /*****************************************************************************/
3836 /* singly-linked list management, used when the expected list length is short */
3837
3838 inline_size void
3839 wlist_add (WL *head, WL elem)
3840 {
3841 elem->next = *head;
3842 *head = elem;
3843 }
3844
3845 inline_size void
3846 wlist_del (WL *head, WL elem)
3847 {
3848 while (*head)
3849 {
3850 if (expect_true (*head == elem))
3851 {
3852 *head = elem->next;
3853 break;
3854 }
3855
3856 head = &(*head)->next;
3857 }
3858 }
3859
3860 /* internal, faster, version of ev_clear_pending */
3861 inline_speed void
3862 clear_pending (EV_P_ W w)
3863 {
3864 if (w->pending)
3865 {
3866 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3867 w->pending = 0;
3868 }
3869 }
3870
3871 int
3872 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3873 {
3874 W w_ = (W)w;
3875 int pending = w_->pending;
3876
3877 if (expect_true (pending))
3878 {
3879 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3880 p->w = (W)&pending_w;
3881 w_->pending = 0;
3882 return p->events;
3883 }
3884 else
3885 return 0;
3886 }
3887
3888 inline_size void
3889 pri_adjust (EV_P_ W w)
3890 {
3891 int pri = ev_priority (w);
3892 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3893 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3894 ev_set_priority (w, pri);
3895 }
3896
3897 inline_speed void
3898 ev_start (EV_P_ W w, int active)
3899 {
3900 pri_adjust (EV_A_ w);
3901 w->active = active;
3902 ev_ref (EV_A);
3903 }
3904
3905 inline_size void
3906 ev_stop (EV_P_ W w)
3907 {
3908 ev_unref (EV_A);
3909 w->active = 0;
3910 }
3911
3912 /*****************************************************************************/
3913
3914 noinline
3915 void
3916 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
3917 {
3918 int fd = w->fd;
3919
3920 if (expect_false (ev_is_active (w)))
3921 return;
3922
3923 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3924 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3925
3926 EV_FREQUENT_CHECK;
3927
3928 ev_start (EV_A_ (W)w, 1);
3929 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
3930 wlist_add (&anfds[fd].head, (WL)w);
3931
3932 /* common bug, apparently */
3933 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3934
3935 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3936 w->events &= ~EV__IOFDSET;
3937
3938 EV_FREQUENT_CHECK;
3939 }
3940
3941 noinline
3942 void
3943 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
3944 {
3945 clear_pending (EV_A_ (W)w);
3946 if (expect_false (!ev_is_active (w)))
3947 return;
3948
3949 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3950
3951 EV_FREQUENT_CHECK;
3952
3953 wlist_del (&anfds[w->fd].head, (WL)w);
3954 ev_stop (EV_A_ (W)w);
3955
3956 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3957
3958 EV_FREQUENT_CHECK;
3959 }
3960
3961 noinline
3962 void
3963 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
3964 {
3965 if (expect_false (ev_is_active (w)))
3966 return;
3967
3968 ev_at (w) += mn_now;
3969
3970 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3971
3972 EV_FREQUENT_CHECK;
3973
3974 ++timercnt;
3975 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3976 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
3977 ANHE_w (timers [ev_active (w)]) = (WT)w;
3978 ANHE_at_cache (timers [ev_active (w)]);
3979 upheap (timers, ev_active (w));
3980
3981 EV_FREQUENT_CHECK;
3982
3983 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3984 }
3985
3986 noinline
3987 void
3988 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
3989 {
3990 clear_pending (EV_A_ (W)w);
3991 if (expect_false (!ev_is_active (w)))
3992 return;
3993
3994 EV_FREQUENT_CHECK;
3995
3996 {
3997 int active = ev_active (w);
3998
3999 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4000
4001 --timercnt;
4002
4003 if (expect_true (active < timercnt + HEAP0))
4004 {
4005 timers [active] = timers [timercnt + HEAP0];
4006 adjustheap (timers, timercnt, active);
4007 }
4008 }
4009
4010 ev_at (w) -= mn_now;
4011
4012 ev_stop (EV_A_ (W)w);
4013
4014 EV_FREQUENT_CHECK;
4015 }
4016
4017 noinline
4018 void
4019 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4020 {
4021 EV_FREQUENT_CHECK;
4022
4023 clear_pending (EV_A_ (W)w);
4024
4025 if (ev_is_active (w))
4026 {
4027 if (w->repeat)
4028 {
4029 ev_at (w) = mn_now + w->repeat;
4030 ANHE_at_cache (timers [ev_active (w)]);
4031 adjustheap (timers, timercnt, ev_active (w));
4032 }
4033 else
4034 ev_timer_stop (EV_A_ w);
4035 }
4036 else if (w->repeat)
4037 {
4038 ev_at (w) = w->repeat;
4039 ev_timer_start (EV_A_ w);
4040 }
4041
4042 EV_FREQUENT_CHECK;
4043 }
4044
4045 ev_tstamp
4046 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4047 {
4048 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4049 }
4050
4051 #if EV_PERIODIC_ENABLE
4052 noinline
4053 void
4054 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4055 {
4056 if (expect_false (ev_is_active (w)))
4057 return;
4058
4059 if (w->reschedule_cb)
4060 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4061 else if (w->interval)
4062 {
4063 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4064 periodic_recalc (EV_A_ w);
4065 }
4066 else
4067 ev_at (w) = w->offset;
4068
4069 EV_FREQUENT_CHECK;
4070
4071 ++periodiccnt;
4072 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4073 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4074 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4075 ANHE_at_cache (periodics [ev_active (w)]);
4076 upheap (periodics, ev_active (w));
4077
4078 EV_FREQUENT_CHECK;
4079
4080 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4081 }
4082
4083 noinline
4084 void
4085 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4086 {
4087 clear_pending (EV_A_ (W)w);
4088 if (expect_false (!ev_is_active (w)))
4089 return;
4090
4091 EV_FREQUENT_CHECK;
4092
4093 {
4094 int active = ev_active (w);
4095
4096 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4097
4098 --periodiccnt;
4099
4100 if (expect_true (active < periodiccnt + HEAP0))
4101 {
4102 periodics [active] = periodics [periodiccnt + HEAP0];
4103 adjustheap (periodics, periodiccnt, active);
4104 }
4105 }
4106
4107 ev_stop (EV_A_ (W)w);
4108
4109 EV_FREQUENT_CHECK;
4110 }
4111
4112 noinline
4113 void
4114 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4115 {
4116 /* TODO: use adjustheap and recalculation */
4117 ev_periodic_stop (EV_A_ w);
4118 ev_periodic_start (EV_A_ w);
4119 }
4120 #endif
4121
4122 #ifndef SA_RESTART
4123 # define SA_RESTART 0
4124 #endif
4125
4126 #if EV_SIGNAL_ENABLE
4127
4128 noinline
4129 void
4130 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4131 {
4132 if (expect_false (ev_is_active (w)))
4133 return;
4134
4135 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4136
4137 #if EV_MULTIPLICITY
4138 assert (("libev: a signal must not be attached to two different loops",
4139 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4140
4141 signals [w->signum - 1].loop = EV_A;
4142 ECB_MEMORY_FENCE_RELEASE;
4143 #endif
4144
4145 EV_FREQUENT_CHECK;
4146
4147 #if EV_USE_SIGNALFD
4148 if (sigfd == -2)
4149 {
4150 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4151 if (sigfd < 0 && errno == EINVAL)
4152 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4153
4154 if (sigfd >= 0)
4155 {
4156 fd_intern (sigfd); /* doing it twice will not hurt */
4157
4158 sigemptyset (&sigfd_set);
4159
4160 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4161 ev_set_priority (&sigfd_w, EV_MAXPRI);
4162 ev_io_start (EV_A_ &sigfd_w);
4163 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4164 }
4165 }
4166
4167 if (sigfd >= 0)
4168 {
4169 /* TODO: check .head */
4170 sigaddset (&sigfd_set, w->signum);
4171 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4172
4173 signalfd (sigfd, &sigfd_set, 0);
4174 }
4175 #endif
4176
4177 ev_start (EV_A_ (W)w, 1);
4178 wlist_add (&signals [w->signum - 1].head, (WL)w);
4179
4180 if (!((WL)w)->next)
4181 # if EV_USE_SIGNALFD
4182 if (sigfd < 0) /*TODO*/
4183 # endif
4184 {
4185 # ifdef _WIN32
4186 evpipe_init (EV_A);
4187
4188 signal (w->signum, ev_sighandler);
4189 # else
4190 struct sigaction sa;
4191
4192 evpipe_init (EV_A);
4193
4194 sa.sa_handler = ev_sighandler;
4195 sigfillset (&sa.sa_mask);
4196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4197 sigaction (w->signum, &sa, 0);
4198
4199 if (origflags & EVFLAG_NOSIGMASK)
4200 {
4201 sigemptyset (&sa.sa_mask);
4202 sigaddset (&sa.sa_mask, w->signum);
4203 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4204 }
4205 #endif
4206 }
4207
4208 EV_FREQUENT_CHECK;
4209 }
4210
4211 noinline
4212 void
4213 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4214 {
4215 clear_pending (EV_A_ (W)w);
4216 if (expect_false (!ev_is_active (w)))
4217 return;
4218
4219 EV_FREQUENT_CHECK;
4220
4221 wlist_del (&signals [w->signum - 1].head, (WL)w);
4222 ev_stop (EV_A_ (W)w);
4223
4224 if (!signals [w->signum - 1].head)
4225 {
4226 #if EV_MULTIPLICITY
4227 signals [w->signum - 1].loop = 0; /* unattach from signal */
4228 #endif
4229 #if EV_USE_SIGNALFD
4230 if (sigfd >= 0)
4231 {
4232 sigset_t ss;
4233
4234 sigemptyset (&ss);
4235 sigaddset (&ss, w->signum);
4236 sigdelset (&sigfd_set, w->signum);
4237
4238 signalfd (sigfd, &sigfd_set, 0);
4239 sigprocmask (SIG_UNBLOCK, &ss, 0);
4240 }
4241 else
4242 #endif
4243 signal (w->signum, SIG_DFL);
4244 }
4245
4246 EV_FREQUENT_CHECK;
4247 }
4248
4249 #endif
4250
4251 #if EV_CHILD_ENABLE
4252
4253 void
4254 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4255 {
4256 #if EV_MULTIPLICITY
4257 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4258 #endif
4259 if (expect_false (ev_is_active (w)))
4260 return;
4261
4262 EV_FREQUENT_CHECK;
4263
4264 ev_start (EV_A_ (W)w, 1);
4265 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4266
4267 EV_FREQUENT_CHECK;
4268 }
4269
4270 void
4271 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4272 {
4273 clear_pending (EV_A_ (W)w);
4274 if (expect_false (!ev_is_active (w)))
4275 return;
4276
4277 EV_FREQUENT_CHECK;
4278
4279 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4280 ev_stop (EV_A_ (W)w);
4281
4282 EV_FREQUENT_CHECK;
4283 }
4284
4285 #endif
4286
4287 #if EV_STAT_ENABLE
4288
4289 # ifdef _WIN32
4290 # undef lstat
4291 # define lstat(a,b) _stati64 (a,b)
4292 # endif
4293
4294 #define DEF_STAT_INTERVAL 5.0074891
4295 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4296 #define MIN_STAT_INTERVAL 0.1074891
4297
4298 noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4299
4300 #if EV_USE_INOTIFY
4301
4302 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4303 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4304
4305 noinline
4306 static void
4307 infy_add (EV_P_ ev_stat *w)
4308 {
4309 w->wd = inotify_add_watch (fs_fd, w->path,
4310 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4311 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4312 | IN_DONT_FOLLOW | IN_MASK_ADD);
4313
4314 if (w->wd >= 0)
4315 {
4316 struct statfs sfs;
4317
4318 /* now local changes will be tracked by inotify, but remote changes won't */
4319 /* unless the filesystem is known to be local, we therefore still poll */
4320 /* also do poll on <2.6.25, but with normal frequency */
4321
4322 if (!fs_2625)
4323 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4324 else if (!statfs (w->path, &sfs)
4325 && (sfs.f_type == 0x1373 /* devfs */
4326 || sfs.f_type == 0x4006 /* fat */
4327 || sfs.f_type == 0x4d44 /* msdos */
4328 || sfs.f_type == 0xEF53 /* ext2/3 */
4329 || sfs.f_type == 0x72b6 /* jffs2 */
4330 || sfs.f_type == 0x858458f6 /* ramfs */
4331 || sfs.f_type == 0x5346544e /* ntfs */
4332 || sfs.f_type == 0x3153464a /* jfs */
4333 || sfs.f_type == 0x9123683e /* btrfs */
4334 || sfs.f_type == 0x52654973 /* reiser3 */
4335 || sfs.f_type == 0x01021994 /* tmpfs */
4336 || sfs.f_type == 0x58465342 /* xfs */))
4337 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4338 else
4339 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4340 }
4341 else
4342 {
4343 /* can't use inotify, continue to stat */
4344 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4345
4346 /* if path is not there, monitor some parent directory for speedup hints */
4347 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4348 /* but an efficiency issue only */
4349 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4350 {
4351 char path [4096];
4352 strcpy (path, w->path);
4353
4354 do
4355 {
4356 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4357 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4358
4359 char *pend = strrchr (path, '/');
4360
4361 if (!pend || pend == path)
4362 break;
4363
4364 *pend = 0;
4365 w->wd = inotify_add_watch (fs_fd, path, mask);
4366 }
4367 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4368 }
4369 }
4370
4371 if (w->wd >= 0)
4372 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4373
4374 /* now re-arm timer, if required */
4375 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4376 ev_timer_again (EV_A_ &w->timer);
4377 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4378 }
4379
4380 noinline
4381 static void
4382 infy_del (EV_P_ ev_stat *w)
4383 {
4384 int slot;
4385 int wd = w->wd;
4386
4387 if (wd < 0)
4388 return;
4389
4390 w->wd = -2;
4391 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4392 wlist_del (&fs_hash [slot].head, (WL)w);
4393
4394 /* remove this watcher, if others are watching it, they will rearm */
4395 inotify_rm_watch (fs_fd, wd);
4396 }
4397
4398 noinline
4399 static void
4400 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4401 {
4402 if (slot < 0)
4403 /* overflow, need to check for all hash slots */
4404 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4405 infy_wd (EV_A_ slot, wd, ev);
4406 else
4407 {
4408 WL w_;
4409
4410 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4411 {
4412 ev_stat *w = (ev_stat *)w_;
4413 w_ = w_->next; /* lets us remove this watcher and all before it */
4414
4415 if (w->wd == wd || wd == -1)
4416 {
4417 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4418 {
4419 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4420 w->wd = -1;
4421 infy_add (EV_A_ w); /* re-add, no matter what */
4422 }
4423
4424 stat_timer_cb (EV_A_ &w->timer, 0);
4425 }
4426 }
4427 }
4428 }
4429
4430 static void
4431 infy_cb (EV_P_ ev_io *w, int revents)
4432 {
4433 char buf [EV_INOTIFY_BUFSIZE];
4434 int ofs;
4435 int len = read (fs_fd, buf, sizeof (buf));
4436
4437 for (ofs = 0; ofs < len; )
4438 {
4439 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4440 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4441 ofs += sizeof (struct inotify_event) + ev->len;
4442 }
4443 }
4444
4445 inline_size ecb_cold
4446 void
4447 ev_check_2625 (EV_P)
4448 {
4449 /* kernels < 2.6.25 are borked
4450 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4451 */
4452 if (ev_linux_version () < 0x020619)
4453 return;
4454
4455 fs_2625 = 1;
4456 }
4457
4458 inline_size int
4459 infy_newfd (void)
4460 {
4461 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4462 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4463 if (fd >= 0)
4464 return fd;
4465 #endif
4466 return inotify_init ();
4467 }
4468
4469 inline_size void
4470 infy_init (EV_P)
4471 {
4472 if (fs_fd != -2)
4473 return;
4474
4475 fs_fd = -1;
4476
4477 ev_check_2625 (EV_A);
4478
4479 fs_fd = infy_newfd ();
4480
4481 if (fs_fd >= 0)
4482 {
4483 fd_intern (fs_fd);
4484 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4485 ev_set_priority (&fs_w, EV_MAXPRI);
4486 ev_io_start (EV_A_ &fs_w);
4487 ev_unref (EV_A);
4488 }
4489 }
4490
4491 inline_size void
4492 infy_fork (EV_P)
4493 {
4494 int slot;
4495
4496 if (fs_fd < 0)
4497 return;
4498
4499 ev_ref (EV_A);
4500 ev_io_stop (EV_A_ &fs_w);
4501 close (fs_fd);
4502 fs_fd = infy_newfd ();
4503
4504 if (fs_fd >= 0)
4505 {
4506 fd_intern (fs_fd);
4507 ev_io_set (&fs_w, fs_fd, EV_READ);
4508 ev_io_start (EV_A_ &fs_w);
4509 ev_unref (EV_A);
4510 }
4511
4512 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4513 {
4514 WL w_ = fs_hash [slot].head;
4515 fs_hash [slot].head = 0;
4516
4517 while (w_)
4518 {
4519 ev_stat *w = (ev_stat *)w_;
4520 w_ = w_->next; /* lets us add this watcher */
4521
4522 w->wd = -1;
4523
4524 if (fs_fd >= 0)
4525 infy_add (EV_A_ w); /* re-add, no matter what */
4526 else
4527 {
4528 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4529 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4530 ev_timer_again (EV_A_ &w->timer);
4531 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4532 }
4533 }
4534 }
4535 }
4536
4537 #endif
4538
4539 #ifdef _WIN32
4540 # define EV_LSTAT(p,b) _stati64 (p, b)
4541 #else
4542 # define EV_LSTAT(p,b) lstat (p, b)
4543 #endif
4544
4545 void
4546 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4547 {
4548 if (lstat (w->path, &w->attr) < 0)
4549 w->attr.st_nlink = 0;
4550 else if (!w->attr.st_nlink)
4551 w->attr.st_nlink = 1;
4552 }
4553
4554 noinline
4555 static void
4556 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4557 {
4558 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4559
4560 ev_statdata prev = w->attr;
4561 ev_stat_stat (EV_A_ w);
4562
4563 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4564 if (
4565 prev.st_dev != w->attr.st_dev
4566 || prev.st_ino != w->attr.st_ino
4567 || prev.st_mode != w->attr.st_mode
4568 || prev.st_nlink != w->attr.st_nlink
4569 || prev.st_uid != w->attr.st_uid
4570 || prev.st_gid != w->attr.st_gid
4571 || prev.st_rdev != w->attr.st_rdev
4572 || prev.st_size != w->attr.st_size
4573 || prev.st_atime != w->attr.st_atime
4574 || prev.st_mtime != w->attr.st_mtime
4575 || prev.st_ctime != w->attr.st_ctime
4576 ) {
4577 /* we only update w->prev on actual differences */
4578 /* in case we test more often than invoke the callback, */
4579 /* to ensure that prev is always different to attr */
4580 w->prev = prev;
4581
4582 #if EV_USE_INOTIFY
4583 if (fs_fd >= 0)
4584 {
4585 infy_del (EV_A_ w);
4586 infy_add (EV_A_ w);
4587 ev_stat_stat (EV_A_ w); /* avoid race... */
4588 }
4589 #endif
4590
4591 ev_feed_event (EV_A_ w, EV_STAT);
4592 }
4593 }
4594
4595 void
4596 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4597 {
4598 if (expect_false (ev_is_active (w)))
4599 return;
4600
4601 ev_stat_stat (EV_A_ w);
4602
4603 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4604 w->interval = MIN_STAT_INTERVAL;
4605
4606 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4607 ev_set_priority (&w->timer, ev_priority (w));
4608
4609 #if EV_USE_INOTIFY
4610 infy_init (EV_A);
4611
4612 if (fs_fd >= 0)
4613 infy_add (EV_A_ w);
4614 else
4615 #endif
4616 {
4617 ev_timer_again (EV_A_ &w->timer);
4618 ev_unref (EV_A);
4619 }
4620
4621 ev_start (EV_A_ (W)w, 1);
4622
4623 EV_FREQUENT_CHECK;
4624 }
4625
4626 void
4627 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4628 {
4629 clear_pending (EV_A_ (W)w);
4630 if (expect_false (!ev_is_active (w)))
4631 return;
4632
4633 EV_FREQUENT_CHECK;
4634
4635 #if EV_USE_INOTIFY
4636 infy_del (EV_A_ w);
4637 #endif
4638
4639 if (ev_is_active (&w->timer))
4640 {
4641 ev_ref (EV_A);
4642 ev_timer_stop (EV_A_ &w->timer);
4643 }
4644
4645 ev_stop (EV_A_ (W)w);
4646
4647 EV_FREQUENT_CHECK;
4648 }
4649 #endif
4650
4651 #if EV_IDLE_ENABLE
4652 void
4653 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4654 {
4655 if (expect_false (ev_is_active (w)))
4656 return;
4657
4658 pri_adjust (EV_A_ (W)w);
4659
4660 EV_FREQUENT_CHECK;
4661
4662 {
4663 int active = ++idlecnt [ABSPRI (w)];
4664
4665 ++idleall;
4666 ev_start (EV_A_ (W)w, active);
4667
4668 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4669 idles [ABSPRI (w)][active - 1] = w;
4670 }
4671
4672 EV_FREQUENT_CHECK;
4673 }
4674
4675 void
4676 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4677 {
4678 clear_pending (EV_A_ (W)w);
4679 if (expect_false (!ev_is_active (w)))
4680 return;
4681
4682 EV_FREQUENT_CHECK;
4683
4684 {
4685 int active = ev_active (w);
4686
4687 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4688 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4689
4690 ev_stop (EV_A_ (W)w);
4691 --idleall;
4692 }
4693
4694 EV_FREQUENT_CHECK;
4695 }
4696 #endif
4697
4698 #if EV_PREPARE_ENABLE
4699 void
4700 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4701 {
4702 if (expect_false (ev_is_active (w)))
4703 return;
4704
4705 EV_FREQUENT_CHECK;
4706
4707 ev_start (EV_A_ (W)w, ++preparecnt);
4708 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4709 prepares [preparecnt - 1] = w;
4710
4711 EV_FREQUENT_CHECK;
4712 }
4713
4714 void
4715 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4716 {
4717 clear_pending (EV_A_ (W)w);
4718 if (expect_false (!ev_is_active (w)))
4719 return;
4720
4721 EV_FREQUENT_CHECK;
4722
4723 {
4724 int active = ev_active (w);
4725
4726 prepares [active - 1] = prepares [--preparecnt];
4727 ev_active (prepares [active - 1]) = active;
4728 }
4729
4730 ev_stop (EV_A_ (W)w);
4731
4732 EV_FREQUENT_CHECK;
4733 }
4734 #endif
4735
4736 #if EV_CHECK_ENABLE
4737 void
4738 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4739 {
4740 if (expect_false (ev_is_active (w)))
4741 return;
4742
4743 EV_FREQUENT_CHECK;
4744
4745 ev_start (EV_A_ (W)w, ++checkcnt);
4746 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4747 checks [checkcnt - 1] = w;
4748
4749 EV_FREQUENT_CHECK;
4750 }
4751
4752 void
4753 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4754 {
4755 clear_pending (EV_A_ (W)w);
4756 if (expect_false (!ev_is_active (w)))
4757 return;
4758
4759 EV_FREQUENT_CHECK;
4760
4761 {
4762 int active = ev_active (w);
4763
4764 checks [active - 1] = checks [--checkcnt];
4765 ev_active (checks [active - 1]) = active;
4766 }
4767
4768 ev_stop (EV_A_ (W)w);
4769
4770 EV_FREQUENT_CHECK;
4771 }
4772 #endif
4773
4774 #if EV_EMBED_ENABLE
4775 noinline
4776 void
4777 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4778 {
4779 ev_run (w->other, EVRUN_NOWAIT);
4780 }
4781
4782 static void
4783 embed_io_cb (EV_P_ ev_io *io, int revents)
4784 {
4785 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4786
4787 if (ev_cb (w))
4788 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4789 else
4790 ev_run (w->other, EVRUN_NOWAIT);
4791 }
4792
4793 static void
4794 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4795 {
4796 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4797
4798 {
4799 EV_P = w->other;
4800
4801 while (fdchangecnt)
4802 {
4803 fd_reify (EV_A);
4804 ev_run (EV_A_ EVRUN_NOWAIT);
4805 }
4806 }
4807 }
4808
4809 static void
4810 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4811 {
4812 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4813
4814 ev_embed_stop (EV_A_ w);
4815
4816 {
4817 EV_P = w->other;
4818
4819 ev_loop_fork (EV_A);
4820 ev_run (EV_A_ EVRUN_NOWAIT);
4821 }
4822
4823 ev_embed_start (EV_A_ w);
4824 }
4825
4826 #if 0
4827 static void
4828 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4829 {
4830 ev_idle_stop (EV_A_ idle);
4831 }
4832 #endif
4833
4834 void
4835 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4836 {
4837 if (expect_false (ev_is_active (w)))
4838 return;
4839
4840 {
4841 EV_P = w->other;
4842 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4843 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4844 }
4845
4846 EV_FREQUENT_CHECK;
4847
4848 ev_set_priority (&w->io, ev_priority (w));
4849 ev_io_start (EV_A_ &w->io);
4850
4851 ev_prepare_init (&w->prepare, embed_prepare_cb);
4852 ev_set_priority (&w->prepare, EV_MINPRI);
4853 ev_prepare_start (EV_A_ &w->prepare);
4854
4855 ev_fork_init (&w->fork, embed_fork_cb);
4856 ev_fork_start (EV_A_ &w->fork);
4857
4858 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4859
4860 ev_start (EV_A_ (W)w, 1);
4861
4862 EV_FREQUENT_CHECK;
4863 }
4864
4865 void
4866 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4867 {
4868 clear_pending (EV_A_ (W)w);
4869 if (expect_false (!ev_is_active (w)))
4870 return;
4871
4872 EV_FREQUENT_CHECK;
4873
4874 ev_io_stop (EV_A_ &w->io);
4875 ev_prepare_stop (EV_A_ &w->prepare);
4876 ev_fork_stop (EV_A_ &w->fork);
4877
4878 ev_stop (EV_A_ (W)w);
4879
4880 EV_FREQUENT_CHECK;
4881 }
4882 #endif
4883
4884 #if EV_FORK_ENABLE
4885 void
4886 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4887 {
4888 if (expect_false (ev_is_active (w)))
4889 return;
4890
4891 EV_FREQUENT_CHECK;
4892
4893 ev_start (EV_A_ (W)w, ++forkcnt);
4894 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
4895 forks [forkcnt - 1] = w;
4896
4897 EV_FREQUENT_CHECK;
4898 }
4899
4900 void
4901 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4902 {
4903 clear_pending (EV_A_ (W)w);
4904 if (expect_false (!ev_is_active (w)))
4905 return;
4906
4907 EV_FREQUENT_CHECK;
4908
4909 {
4910 int active = ev_active (w);
4911
4912 forks [active - 1] = forks [--forkcnt];
4913 ev_active (forks [active - 1]) = active;
4914 }
4915
4916 ev_stop (EV_A_ (W)w);
4917
4918 EV_FREQUENT_CHECK;
4919 }
4920 #endif
4921
4922 #if EV_CLEANUP_ENABLE
4923 void
4924 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4925 {
4926 if (expect_false (ev_is_active (w)))
4927 return;
4928
4929 EV_FREQUENT_CHECK;
4930
4931 ev_start (EV_A_ (W)w, ++cleanupcnt);
4932 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4933 cleanups [cleanupcnt - 1] = w;
4934
4935 /* cleanup watchers should never keep a refcount on the loop */
4936 ev_unref (EV_A);
4937 EV_FREQUENT_CHECK;
4938 }
4939
4940 void
4941 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4942 {
4943 clear_pending (EV_A_ (W)w);
4944 if (expect_false (!ev_is_active (w)))
4945 return;
4946
4947 EV_FREQUENT_CHECK;
4948 ev_ref (EV_A);
4949
4950 {
4951 int active = ev_active (w);
4952
4953 cleanups [active - 1] = cleanups [--cleanupcnt];
4954 ev_active (cleanups [active - 1]) = active;
4955 }
4956
4957 ev_stop (EV_A_ (W)w);
4958
4959 EV_FREQUENT_CHECK;
4960 }
4961 #endif
4962
4963 #if EV_ASYNC_ENABLE
4964 void
4965 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4966 {
4967 if (expect_false (ev_is_active (w)))
4968 return;
4969
4970 w->sent = 0;
4971
4972 evpipe_init (EV_A);
4973
4974 EV_FREQUENT_CHECK;
4975
4976 ev_start (EV_A_ (W)w, ++asynccnt);
4977 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4978 asyncs [asynccnt - 1] = w;
4979
4980 EV_FREQUENT_CHECK;
4981 }
4982
4983 void
4984 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4985 {
4986 clear_pending (EV_A_ (W)w);
4987 if (expect_false (!ev_is_active (w)))
4988 return;
4989
4990 EV_FREQUENT_CHECK;
4991
4992 {
4993 int active = ev_active (w);
4994
4995 asyncs [active - 1] = asyncs [--asynccnt];
4996 ev_active (asyncs [active - 1]) = active;
4997 }
4998
4999 ev_stop (EV_A_ (W)w);
5000
5001 EV_FREQUENT_CHECK;
5002 }
5003
5004 void
5005 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5006 {
5007 w->sent = 1;
5008 evpipe_write (EV_A_ &async_pending);
5009 }
5010 #endif
5011
5012 /*****************************************************************************/
5013
5014 struct ev_once
5015 {
5016 ev_io io;
5017 ev_timer to;
5018 void (*cb)(int revents, void *arg);
5019 void *arg;
5020 };
5021
5022 static void
5023 once_cb (EV_P_ struct ev_once *once, int revents)
5024 {
5025 void (*cb)(int revents, void *arg) = once->cb;
5026 void *arg = once->arg;
5027
5028 ev_io_stop (EV_A_ &once->io);
5029 ev_timer_stop (EV_A_ &once->to);
5030 ev_free (once);
5031
5032 cb (revents, arg);
5033 }
5034
5035 static void
5036 once_cb_io (EV_P_ ev_io *w, int revents)
5037 {
5038 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5039
5040 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5041 }
5042
5043 static void
5044 once_cb_to (EV_P_ ev_timer *w, int revents)
5045 {
5046 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5047
5048 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5049 }
5050
5051 void
5052 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5053 {
5054 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5055
5056 once->cb = cb;
5057 once->arg = arg;
5058
5059 ev_init (&once->io, once_cb_io);
5060 if (fd >= 0)
5061 {
5062 ev_io_set (&once->io, fd, events);
5063 ev_io_start (EV_A_ &once->io);
5064 }
5065
5066 ev_init (&once->to, once_cb_to);
5067 if (timeout >= 0.)
5068 {
5069 ev_timer_set (&once->to, timeout, 0.);
5070 ev_timer_start (EV_A_ &once->to);
5071 }
5072 }
5073
5074 /*****************************************************************************/
5075
5076 #if EV_WALK_ENABLE
5077 ecb_cold
5078 void
5079 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5080 {
5081 int i, j;
5082 ev_watcher_list *wl, *wn;
5083
5084 if (types & (EV_IO | EV_EMBED))
5085 for (i = 0; i < anfdmax; ++i)
5086 for (wl = anfds [i].head; wl; )
5087 {
5088 wn = wl->next;
5089
5090 #if EV_EMBED_ENABLE
5091 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5092 {
5093 if (types & EV_EMBED)
5094 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5095 }
5096 else
5097 #endif
5098 #if EV_USE_INOTIFY
5099 if (ev_cb ((ev_io *)wl) == infy_cb)
5100 ;
5101 else
5102 #endif
5103 if ((ev_io *)wl != &pipe_w)
5104 if (types & EV_IO)
5105 cb (EV_A_ EV_IO, wl);
5106
5107 wl = wn;
5108 }
5109
5110 if (types & (EV_TIMER | EV_STAT))
5111 for (i = timercnt + HEAP0; i-- > HEAP0; )
5112 #if EV_STAT_ENABLE
5113 /*TODO: timer is not always active*/
5114 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5115 {
5116 if (types & EV_STAT)
5117 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5118 }
5119 else
5120 #endif
5121 if (types & EV_TIMER)
5122 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5123
5124 #if EV_PERIODIC_ENABLE
5125 if (types & EV_PERIODIC)
5126 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5127 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5128 #endif
5129
5130 #if EV_IDLE_ENABLE
5131 if (types & EV_IDLE)
5132 for (j = NUMPRI; j--; )
5133 for (i = idlecnt [j]; i--; )
5134 cb (EV_A_ EV_IDLE, idles [j][i]);
5135 #endif
5136
5137 #if EV_FORK_ENABLE
5138 if (types & EV_FORK)
5139 for (i = forkcnt; i--; )
5140 if (ev_cb (forks [i]) != embed_fork_cb)
5141 cb (EV_A_ EV_FORK, forks [i]);
5142 #endif
5143
5144 #if EV_ASYNC_ENABLE
5145 if (types & EV_ASYNC)
5146 for (i = asynccnt; i--; )
5147 cb (EV_A_ EV_ASYNC, asyncs [i]);
5148 #endif
5149
5150 #if EV_PREPARE_ENABLE
5151 if (types & EV_PREPARE)
5152 for (i = preparecnt; i--; )
5153 # if EV_EMBED_ENABLE
5154 if (ev_cb (prepares [i]) != embed_prepare_cb)
5155 # endif
5156 cb (EV_A_ EV_PREPARE, prepares [i]);
5157 #endif
5158
5159 #if EV_CHECK_ENABLE
5160 if (types & EV_CHECK)
5161 for (i = checkcnt; i--; )
5162 cb (EV_A_ EV_CHECK, checks [i]);
5163 #endif
5164
5165 #if EV_SIGNAL_ENABLE
5166 if (types & EV_SIGNAL)
5167 for (i = 0; i < EV_NSIG - 1; ++i)
5168 for (wl = signals [i].head; wl; )
5169 {
5170 wn = wl->next;
5171 cb (EV_A_ EV_SIGNAL, wl);
5172 wl = wn;
5173 }
5174 #endif
5175
5176 #if EV_CHILD_ENABLE
5177 if (types & EV_CHILD)
5178 for (i = (EV_PID_HASHSIZE); i--; )
5179 for (wl = childs [i]; wl; )
5180 {
5181 wn = wl->next;
5182 cb (EV_A_ EV_CHILD, wl);
5183 wl = wn;
5184 }
5185 #endif
5186 /* EV_STAT 0x00001000 /* stat data changed */
5187 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5188 }
5189 #endif
5190
5191 #if EV_MULTIPLICITY
5192 #include "ev_wrap.h"
5193 #endif
5194