ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.500
Committed: Mon Jul 1 20:47:37 2019 UTC (4 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.499: +104 -108 lines
Log Message:
ecbify

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_LINUX_AIO_ABI_H
121 # ifndef EV_USE_LINUXAIO
122 # define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_LINUXAIO
126 # define EV_USE_LINUXAIO 0
127 # endif
128
129 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130 # ifndef EV_USE_KQUEUE
131 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_KQUEUE
135 # define EV_USE_KQUEUE 0
136 # endif
137
138 # if HAVE_PORT_H && HAVE_PORT_CREATE
139 # ifndef EV_USE_PORT
140 # define EV_USE_PORT EV_FEATURE_BACKENDS
141 # endif
142 # else
143 # undef EV_USE_PORT
144 # define EV_USE_PORT 0
145 # endif
146
147 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148 # ifndef EV_USE_INOTIFY
149 # define EV_USE_INOTIFY EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_INOTIFY
153 # define EV_USE_INOTIFY 0
154 # endif
155
156 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157 # ifndef EV_USE_SIGNALFD
158 # define EV_USE_SIGNALFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_SIGNALFD
162 # define EV_USE_SIGNALFD 0
163 # endif
164
165 # if HAVE_EVENTFD
166 # ifndef EV_USE_EVENTFD
167 # define EV_USE_EVENTFD EV_FEATURE_OS
168 # endif
169 # else
170 # undef EV_USE_EVENTFD
171 # define EV_USE_EVENTFD 0
172 # endif
173
174 #endif
175
176 /* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184 #define _DARWIN_UNLIMITED_SELECT 1
185
186 #include <stdlib.h>
187 #include <string.h>
188 #include <fcntl.h>
189 #include <stddef.h>
190
191 #include <stdio.h>
192
193 #include <assert.h>
194 #include <errno.h>
195 #include <sys/types.h>
196 #include <time.h>
197 #include <limits.h>
198
199 #include <signal.h>
200
201 #ifdef EV_H
202 # include EV_H
203 #else
204 # include "ev.h"
205 #endif
206
207 #if EV_NO_THREADS
208 # undef EV_NO_SMP
209 # define EV_NO_SMP 1
210 # undef ECB_NO_THREADS
211 # define ECB_NO_THREADS 1
212 #endif
213 #if EV_NO_SMP
214 # undef EV_NO_SMP
215 # define ECB_NO_SMP 1
216 #endif
217
218 #ifndef _WIN32
219 # include <sys/time.h>
220 # include <sys/wait.h>
221 # include <unistd.h>
222 #else
223 # include <io.h>
224 # define WIN32_LEAN_AND_MEAN
225 # include <winsock2.h>
226 # include <windows.h>
227 # ifndef EV_SELECT_IS_WINSOCKET
228 # define EV_SELECT_IS_WINSOCKET 1
229 # endif
230 # undef EV_AVOID_STDIO
231 #endif
232
233 /* this block tries to deduce configuration from header-defined symbols and defaults */
234
235 /* try to deduce the maximum number of signals on this platform */
236 #if defined EV_NSIG
237 /* use what's provided */
238 #elif defined NSIG
239 # define EV_NSIG (NSIG)
240 #elif defined _NSIG
241 # define EV_NSIG (_NSIG)
242 #elif defined SIGMAX
243 # define EV_NSIG (SIGMAX+1)
244 #elif defined SIG_MAX
245 # define EV_NSIG (SIG_MAX+1)
246 #elif defined _SIG_MAX
247 # define EV_NSIG (_SIG_MAX+1)
248 #elif defined MAXSIG
249 # define EV_NSIG (MAXSIG+1)
250 #elif defined MAX_SIG
251 # define EV_NSIG (MAX_SIG+1)
252 #elif defined SIGARRAYSIZE
253 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254 #elif defined _sys_nsig
255 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256 #else
257 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
258 #endif
259
260 #ifndef EV_USE_FLOOR
261 # define EV_USE_FLOOR 0
262 #endif
263
264 #ifndef EV_USE_CLOCK_SYSCALL
265 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267 # else
268 # define EV_USE_CLOCK_SYSCALL 0
269 # endif
270 #endif
271
272 #if !(_POSIX_TIMERS > 0)
273 # ifndef EV_USE_MONOTONIC
274 # define EV_USE_MONOTONIC 0
275 # endif
276 # ifndef EV_USE_REALTIME
277 # define EV_USE_REALTIME 0
278 # endif
279 #endif
280
281 #ifndef EV_USE_MONOTONIC
282 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283 # define EV_USE_MONOTONIC EV_FEATURE_OS
284 # else
285 # define EV_USE_MONOTONIC 0
286 # endif
287 #endif
288
289 #ifndef EV_USE_REALTIME
290 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291 #endif
292
293 #ifndef EV_USE_NANOSLEEP
294 # if _POSIX_C_SOURCE >= 199309L
295 # define EV_USE_NANOSLEEP EV_FEATURE_OS
296 # else
297 # define EV_USE_NANOSLEEP 0
298 # endif
299 #endif
300
301 #ifndef EV_USE_SELECT
302 # define EV_USE_SELECT EV_FEATURE_BACKENDS
303 #endif
304
305 #ifndef EV_USE_POLL
306 # ifdef _WIN32
307 # define EV_USE_POLL 0
308 # else
309 # define EV_USE_POLL EV_FEATURE_BACKENDS
310 # endif
311 #endif
312
313 #ifndef EV_USE_EPOLL
314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
316 # else
317 # define EV_USE_EPOLL 0
318 # endif
319 #endif
320
321 #ifndef EV_USE_KQUEUE
322 # define EV_USE_KQUEUE 0
323 #endif
324
325 #ifndef EV_USE_PORT
326 # define EV_USE_PORT 0
327 #endif
328
329 #ifndef EV_USE_LINUXAIO
330 # if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331 # define EV_USE_LINUXAIO 1
332 # else
333 # define EV_USE_LINUXAIO 0
334 # endif
335 #endif
336
337 #ifndef EV_USE_INOTIFY
338 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
339 # define EV_USE_INOTIFY EV_FEATURE_OS
340 # else
341 # define EV_USE_INOTIFY 0
342 # endif
343 #endif
344
345 #ifndef EV_PID_HASHSIZE
346 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
347 #endif
348
349 #ifndef EV_INOTIFY_HASHSIZE
350 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
351 #endif
352
353 #ifndef EV_USE_EVENTFD
354 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
355 # define EV_USE_EVENTFD EV_FEATURE_OS
356 # else
357 # define EV_USE_EVENTFD 0
358 # endif
359 #endif
360
361 #ifndef EV_USE_SIGNALFD
362 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363 # define EV_USE_SIGNALFD EV_FEATURE_OS
364 # else
365 # define EV_USE_SIGNALFD 0
366 # endif
367 #endif
368
369 #if 0 /* debugging */
370 # define EV_VERIFY 3
371 # define EV_USE_4HEAP 1
372 # define EV_HEAP_CACHE_AT 1
373 #endif
374
375 #ifndef EV_VERIFY
376 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
377 #endif
378
379 #ifndef EV_USE_4HEAP
380 # define EV_USE_4HEAP EV_FEATURE_DATA
381 #endif
382
383 #ifndef EV_HEAP_CACHE_AT
384 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
385 #endif
386
387 #ifdef __ANDROID__
388 /* supposedly, android doesn't typedef fd_mask */
389 # undef EV_USE_SELECT
390 # define EV_USE_SELECT 0
391 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
392 # undef EV_USE_CLOCK_SYSCALL
393 # define EV_USE_CLOCK_SYSCALL 0
394 #endif
395
396 /* aix's poll.h seems to cause lots of trouble */
397 #ifdef _AIX
398 /* AIX has a completely broken poll.h header */
399 # undef EV_USE_POLL
400 # define EV_USE_POLL 0
401 #endif
402
403 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404 /* which makes programs even slower. might work on other unices, too. */
405 #if EV_USE_CLOCK_SYSCALL
406 # include <sys/syscall.h>
407 # ifdef SYS_clock_gettime
408 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409 # undef EV_USE_MONOTONIC
410 # define EV_USE_MONOTONIC 1
411 # else
412 # undef EV_USE_CLOCK_SYSCALL
413 # define EV_USE_CLOCK_SYSCALL 0
414 # endif
415 #endif
416
417 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
418
419 #ifndef CLOCK_MONOTONIC
420 # undef EV_USE_MONOTONIC
421 # define EV_USE_MONOTONIC 0
422 #endif
423
424 #ifndef CLOCK_REALTIME
425 # undef EV_USE_REALTIME
426 # define EV_USE_REALTIME 0
427 #endif
428
429 #if !EV_STAT_ENABLE
430 # undef EV_USE_INOTIFY
431 # define EV_USE_INOTIFY 0
432 #endif
433
434 #if !EV_USE_NANOSLEEP
435 /* hp-ux has it in sys/time.h, which we unconditionally include above */
436 # if !defined _WIN32 && !defined __hpux
437 # include <sys/select.h>
438 # endif
439 #endif
440
441 #if EV_USE_LINUXAIO
442 # include <sys/syscall.h>
443 # if !SYS_io_getevents || !EV_USE_EPOLL /* ev_linxaio uses ev_poll.c:ev_epoll_create */
444 # undef EV_USE_LINUXAIO
445 # define EV_USE_LINUXAIO 0
446 # endif
447 #endif
448
449 #if EV_USE_INOTIFY
450 # include <sys/statfs.h>
451 # include <sys/inotify.h>
452 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
453 # ifndef IN_DONT_FOLLOW
454 # undef EV_USE_INOTIFY
455 # define EV_USE_INOTIFY 0
456 # endif
457 #endif
458
459 #if EV_USE_EVENTFD
460 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
461 # include <stdint.h>
462 # ifndef EFD_NONBLOCK
463 # define EFD_NONBLOCK O_NONBLOCK
464 # endif
465 # ifndef EFD_CLOEXEC
466 # ifdef O_CLOEXEC
467 # define EFD_CLOEXEC O_CLOEXEC
468 # else
469 # define EFD_CLOEXEC 02000000
470 # endif
471 # endif
472 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473 #endif
474
475 #if EV_USE_SIGNALFD
476 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477 # include <stdint.h>
478 # ifndef SFD_NONBLOCK
479 # define SFD_NONBLOCK O_NONBLOCK
480 # endif
481 # ifndef SFD_CLOEXEC
482 # ifdef O_CLOEXEC
483 # define SFD_CLOEXEC O_CLOEXEC
484 # else
485 # define SFD_CLOEXEC 02000000
486 # endif
487 # endif
488 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489
490 struct signalfd_siginfo
491 {
492 uint32_t ssi_signo;
493 char pad[128 - sizeof (uint32_t)];
494 };
495 #endif
496
497 /**/
498
499 #if EV_VERIFY >= 3
500 # define EV_FREQUENT_CHECK ev_verify (EV_A)
501 #else
502 # define EV_FREQUENT_CHECK do { } while (0)
503 #endif
504
505 /*
506 * This is used to work around floating point rounding problems.
507 * This value is good at least till the year 4000.
508 */
509 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
511
512 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
513 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
514
515 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
517
518 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
519 /* ECB.H BEGIN */
520 /*
521 * libecb - http://software.schmorp.de/pkg/libecb
522 *
523 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 * Copyright (©) 2011 Emanuele Giaquinta
525 * All rights reserved.
526 *
527 * Redistribution and use in source and binary forms, with or without modifica-
528 * tion, are permitted provided that the following conditions are met:
529 *
530 * 1. Redistributions of source code must retain the above copyright notice,
531 * this list of conditions and the following disclaimer.
532 *
533 * 2. Redistributions in binary form must reproduce the above copyright
534 * notice, this list of conditions and the following disclaimer in the
535 * documentation and/or other materials provided with the distribution.
536 *
537 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546 * OF THE POSSIBILITY OF SUCH DAMAGE.
547 *
548 * Alternatively, the contents of this file may be used under the terms of
549 * the GNU General Public License ("GPL") version 2 or any later version,
550 * in which case the provisions of the GPL are applicable instead of
551 * the above. If you wish to allow the use of your version of this file
552 * only under the terms of the GPL and not to allow others to use your
553 * version of this file under the BSD license, indicate your decision
554 * by deleting the provisions above and replace them with the notice
555 * and other provisions required by the GPL. If you do not delete the
556 * provisions above, a recipient may use your version of this file under
557 * either the BSD or the GPL.
558 */
559
560 #ifndef ECB_H
561 #define ECB_H
562
563 /* 16 bits major, 16 bits minor */
564 #define ECB_VERSION 0x00010006
565
566 #ifdef _WIN32
567 typedef signed char int8_t;
568 typedef unsigned char uint8_t;
569 typedef signed short int16_t;
570 typedef unsigned short uint16_t;
571 typedef signed int int32_t;
572 typedef unsigned int uint32_t;
573 #if __GNUC__
574 typedef signed long long int64_t;
575 typedef unsigned long long uint64_t;
576 #else /* _MSC_VER || __BORLANDC__ */
577 typedef signed __int64 int64_t;
578 typedef unsigned __int64 uint64_t;
579 #endif
580 #ifdef _WIN64
581 #define ECB_PTRSIZE 8
582 typedef uint64_t uintptr_t;
583 typedef int64_t intptr_t;
584 #else
585 #define ECB_PTRSIZE 4
586 typedef uint32_t uintptr_t;
587 typedef int32_t intptr_t;
588 #endif
589 #else
590 #include <inttypes.h>
591 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
592 #define ECB_PTRSIZE 8
593 #else
594 #define ECB_PTRSIZE 4
595 #endif
596 #endif
597
598 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
599 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
600
601 /* work around x32 idiocy by defining proper macros */
602 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
603 #if _ILP32
604 #define ECB_AMD64_X32 1
605 #else
606 #define ECB_AMD64 1
607 #endif
608 #endif
609
610 /* many compilers define _GNUC_ to some versions but then only implement
611 * what their idiot authors think are the "more important" extensions,
612 * causing enormous grief in return for some better fake benchmark numbers.
613 * or so.
614 * we try to detect these and simply assume they are not gcc - if they have
615 * an issue with that they should have done it right in the first place.
616 */
617 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618 #define ECB_GCC_VERSION(major,minor) 0
619 #else
620 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621 #endif
622
623 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
624
625 #if __clang__ && defined __has_builtin
626 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
627 #else
628 #define ECB_CLANG_BUILTIN(x) 0
629 #endif
630
631 #if __clang__ && defined __has_extension
632 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633 #else
634 #define ECB_CLANG_EXTENSION(x) 0
635 #endif
636
637 #define ECB_CPP (__cplusplus+0)
638 #define ECB_CPP11 (__cplusplus >= 201103L)
639 #define ECB_CPP14 (__cplusplus >= 201402L)
640 #define ECB_CPP17 (__cplusplus >= 201703L)
641
642 #if ECB_CPP
643 #define ECB_C 0
644 #define ECB_STDC_VERSION 0
645 #else
646 #define ECB_C 1
647 #define ECB_STDC_VERSION __STDC_VERSION__
648 #endif
649
650 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653
654 #if ECB_CPP
655 #define ECB_EXTERN_C extern "C"
656 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657 #define ECB_EXTERN_C_END }
658 #else
659 #define ECB_EXTERN_C extern
660 #define ECB_EXTERN_C_BEG
661 #define ECB_EXTERN_C_END
662 #endif
663
664 /*****************************************************************************/
665
666 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668
669 #if ECB_NO_THREADS
670 #define ECB_NO_SMP 1
671 #endif
672
673 #if ECB_NO_SMP
674 #define ECB_MEMORY_FENCE do { } while (0)
675 #endif
676
677 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678 #if __xlC__ && ECB_CPP
679 #include <builtins.h>
680 #endif
681
682 #if 1400 <= _MSC_VER
683 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684 #endif
685
686 #ifndef ECB_MEMORY_FENCE
687 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
689 #if __i386 || __i386__
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
691 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
692 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
693 #elif ECB_GCC_AMD64
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
695 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
696 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
697 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
698 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
699 #elif defined __ARM_ARCH_2__ \
700 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
701 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
702 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
703 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
704 || defined __ARM_ARCH_5TEJ__
705 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
706 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
707 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
708 || defined __ARM_ARCH_6T2__
709 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
710 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
711 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
712 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
713 #elif __aarch64__
714 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
715 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
716 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
717 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
718 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
719 #elif defined __s390__ || defined __s390x__
720 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
721 #elif defined __mips__
722 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
723 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
724 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
725 #elif defined __alpha__
726 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
727 #elif defined __hppa__
728 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
729 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
730 #elif defined __ia64__
731 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
732 #elif defined __m68k__
733 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
734 #elif defined __m88k__
735 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
736 #elif defined __sh__
737 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
738 #endif
739 #endif
740 #endif
741
742 #ifndef ECB_MEMORY_FENCE
743 #if ECB_GCC_VERSION(4,7)
744 /* see comment below (stdatomic.h) about the C11 memory model. */
745 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
746 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
747 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
748 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
749
750 #elif ECB_CLANG_EXTENSION(c_atomic)
751 /* see comment below (stdatomic.h) about the C11 memory model. */
752 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
753 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
754 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
755 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
756
757 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
758 #define ECB_MEMORY_FENCE __sync_synchronize ()
759 #elif _MSC_VER >= 1500 /* VC++ 2008 */
760 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
761 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
762 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
763 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
764 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
765 #elif _MSC_VER >= 1400 /* VC++ 2005 */
766 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
767 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
768 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
769 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
770 #elif defined _WIN32
771 #include <WinNT.h>
772 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
773 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
774 #include <mbarrier.h>
775 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
776 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
777 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
778 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
779 #elif __xlC__
780 #define ECB_MEMORY_FENCE __sync ()
781 #endif
782 #endif
783
784 #ifndef ECB_MEMORY_FENCE
785 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
786 /* we assume that these memory fences work on all variables/all memory accesses, */
787 /* not just C11 atomics and atomic accesses */
788 #include <stdatomic.h>
789 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
790 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
791 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
792 #endif
793 #endif
794
795 #ifndef ECB_MEMORY_FENCE
796 #if !ECB_AVOID_PTHREADS
797 /*
798 * if you get undefined symbol references to pthread_mutex_lock,
799 * or failure to find pthread.h, then you should implement
800 * the ECB_MEMORY_FENCE operations for your cpu/compiler
801 * OR provide pthread.h and link against the posix thread library
802 * of your system.
803 */
804 #include <pthread.h>
805 #define ECB_NEEDS_PTHREADS 1
806 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
807
808 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
809 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
810 #endif
811 #endif
812
813 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
814 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
815 #endif
816
817 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
818 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
819 #endif
820
821 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
822 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
823 #endif
824
825 /*****************************************************************************/
826
827 #if ECB_CPP
828 #define ecb_inline static inline
829 #elif ECB_GCC_VERSION(2,5)
830 #define ecb_inline static __inline__
831 #elif ECB_C99
832 #define ecb_inline static inline
833 #else
834 #define ecb_inline static
835 #endif
836
837 #if ECB_GCC_VERSION(3,3)
838 #define ecb_restrict __restrict__
839 #elif ECB_C99
840 #define ecb_restrict restrict
841 #else
842 #define ecb_restrict
843 #endif
844
845 typedef int ecb_bool;
846
847 #define ECB_CONCAT_(a, b) a ## b
848 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
849 #define ECB_STRINGIFY_(a) # a
850 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
851 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
852
853 #define ecb_function_ ecb_inline
854
855 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
856 #define ecb_attribute(attrlist) __attribute__ (attrlist)
857 #else
858 #define ecb_attribute(attrlist)
859 #endif
860
861 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
862 #define ecb_is_constant(expr) __builtin_constant_p (expr)
863 #else
864 /* possible C11 impl for integral types
865 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
866 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
867
868 #define ecb_is_constant(expr) 0
869 #endif
870
871 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
872 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
873 #else
874 #define ecb_expect(expr,value) (expr)
875 #endif
876
877 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
878 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
879 #else
880 #define ecb_prefetch(addr,rw,locality)
881 #endif
882
883 /* no emulation for ecb_decltype */
884 #if ECB_CPP11
885 // older implementations might have problems with decltype(x)::type, work around it
886 template<class T> struct ecb_decltype_t { typedef T type; };
887 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
888 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
889 #define ecb_decltype(x) __typeof__ (x)
890 #endif
891
892 #if _MSC_VER >= 1300
893 #define ecb_deprecated __declspec (deprecated)
894 #else
895 #define ecb_deprecated ecb_attribute ((__deprecated__))
896 #endif
897
898 #if _MSC_VER >= 1500
899 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
900 #elif ECB_GCC_VERSION(4,5)
901 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
902 #else
903 #define ecb_deprecated_message(msg) ecb_deprecated
904 #endif
905
906 #if _MSC_VER >= 1400
907 #define ecb_noinline __declspec (noinline)
908 #else
909 #define ecb_noinline ecb_attribute ((__noinline__))
910 #endif
911
912 #define ecb_unused ecb_attribute ((__unused__))
913 #define ecb_const ecb_attribute ((__const__))
914 #define ecb_pure ecb_attribute ((__pure__))
915
916 #if ECB_C11 || __IBMC_NORETURN
917 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
918 #define ecb_noreturn _Noreturn
919 #elif ECB_CPP11
920 #define ecb_noreturn [[noreturn]]
921 #elif _MSC_VER >= 1200
922 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
923 #define ecb_noreturn __declspec (noreturn)
924 #else
925 #define ecb_noreturn ecb_attribute ((__noreturn__))
926 #endif
927
928 #if ECB_GCC_VERSION(4,3)
929 #define ecb_artificial ecb_attribute ((__artificial__))
930 #define ecb_hot ecb_attribute ((__hot__))
931 #define ecb_cold ecb_attribute ((__cold__))
932 #else
933 #define ecb_artificial
934 #define ecb_hot
935 #define ecb_cold
936 #endif
937
938 /* put around conditional expressions if you are very sure that the */
939 /* expression is mostly true or mostly false. note that these return */
940 /* booleans, not the expression. */
941 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
942 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
943 /* for compatibility to the rest of the world */
944 #define ecb_likely(expr) ecb_expect_true (expr)
945 #define ecb_unlikely(expr) ecb_expect_false (expr)
946
947 /* count trailing zero bits and count # of one bits */
948 #if ECB_GCC_VERSION(3,4) \
949 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
950 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
951 && ECB_CLANG_BUILTIN(__builtin_popcount))
952 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
953 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
954 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
955 #define ecb_ctz32(x) __builtin_ctz (x)
956 #define ecb_ctz64(x) __builtin_ctzll (x)
957 #define ecb_popcount32(x) __builtin_popcount (x)
958 /* no popcountll */
959 #else
960 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
961 ecb_function_ ecb_const int
962 ecb_ctz32 (uint32_t x)
963 {
964 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
965 unsigned long r;
966 _BitScanForward (&r, x);
967 return (int)r;
968 #else
969 int r = 0;
970
971 x &= ~x + 1; /* this isolates the lowest bit */
972
973 #if ECB_branchless_on_i386
974 r += !!(x & 0xaaaaaaaa) << 0;
975 r += !!(x & 0xcccccccc) << 1;
976 r += !!(x & 0xf0f0f0f0) << 2;
977 r += !!(x & 0xff00ff00) << 3;
978 r += !!(x & 0xffff0000) << 4;
979 #else
980 if (x & 0xaaaaaaaa) r += 1;
981 if (x & 0xcccccccc) r += 2;
982 if (x & 0xf0f0f0f0) r += 4;
983 if (x & 0xff00ff00) r += 8;
984 if (x & 0xffff0000) r += 16;
985 #endif
986
987 return r;
988 #endif
989 }
990
991 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
992 ecb_function_ ecb_const int
993 ecb_ctz64 (uint64_t x)
994 {
995 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
996 unsigned long r;
997 _BitScanForward64 (&r, x);
998 return (int)r;
999 #else
1000 int shift = x & 0xffffffff ? 0 : 32;
1001 return ecb_ctz32 (x >> shift) + shift;
1002 #endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1006 ecb_function_ ecb_const int
1007 ecb_popcount32 (uint32_t x)
1008 {
1009 x -= (x >> 1) & 0x55555555;
1010 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1011 x = ((x >> 4) + x) & 0x0f0f0f0f;
1012 x *= 0x01010101;
1013
1014 return x >> 24;
1015 }
1016
1017 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1018 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1019 {
1020 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1021 unsigned long r;
1022 _BitScanReverse (&r, x);
1023 return (int)r;
1024 #else
1025 int r = 0;
1026
1027 if (x >> 16) { x >>= 16; r += 16; }
1028 if (x >> 8) { x >>= 8; r += 8; }
1029 if (x >> 4) { x >>= 4; r += 4; }
1030 if (x >> 2) { x >>= 2; r += 2; }
1031 if (x >> 1) { r += 1; }
1032
1033 return r;
1034 #endif
1035 }
1036
1037 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1038 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1039 {
1040 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1041 unsigned long r;
1042 _BitScanReverse64 (&r, x);
1043 return (int)r;
1044 #else
1045 int r = 0;
1046
1047 if (x >> 32) { x >>= 32; r += 32; }
1048
1049 return r + ecb_ld32 (x);
1050 #endif
1051 }
1052 #endif
1053
1054 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1055 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1056 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1057 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1058
1059 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1060 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1061 {
1062 return ( (x * 0x0802U & 0x22110U)
1063 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1064 }
1065
1066 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1067 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1068 {
1069 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1070 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1071 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1072 x = ( x >> 8 ) | ( x << 8);
1073
1074 return x;
1075 }
1076
1077 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1078 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1079 {
1080 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1081 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1082 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1083 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1084 x = ( x >> 16 ) | ( x << 16);
1085
1086 return x;
1087 }
1088
1089 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1090 /* so for this version we are lazy */
1091 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1092 ecb_function_ ecb_const int
1093 ecb_popcount64 (uint64_t x)
1094 {
1095 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1096 }
1097
1098 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1099 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1100 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1101 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1102 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1103 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1104 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1105 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1106
1107 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1108 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1109 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1110 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1111 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1112 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1113 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1114 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1115
1116 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1117 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1118 #define ecb_bswap16(x) __builtin_bswap16 (x)
1119 #else
1120 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1121 #endif
1122 #define ecb_bswap32(x) __builtin_bswap32 (x)
1123 #define ecb_bswap64(x) __builtin_bswap64 (x)
1124 #elif _MSC_VER
1125 #include <stdlib.h>
1126 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1127 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1128 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1129 #else
1130 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1131 ecb_function_ ecb_const uint16_t
1132 ecb_bswap16 (uint16_t x)
1133 {
1134 return ecb_rotl16 (x, 8);
1135 }
1136
1137 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1138 ecb_function_ ecb_const uint32_t
1139 ecb_bswap32 (uint32_t x)
1140 {
1141 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1142 }
1143
1144 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1145 ecb_function_ ecb_const uint64_t
1146 ecb_bswap64 (uint64_t x)
1147 {
1148 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1149 }
1150 #endif
1151
1152 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1153 #define ecb_unreachable() __builtin_unreachable ()
1154 #else
1155 /* this seems to work fine, but gcc always emits a warning for it :/ */
1156 ecb_inline ecb_noreturn void ecb_unreachable (void);
1157 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1158 #endif
1159
1160 /* try to tell the compiler that some condition is definitely true */
1161 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1162
1163 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1164 ecb_inline ecb_const uint32_t
1165 ecb_byteorder_helper (void)
1166 {
1167 /* the union code still generates code under pressure in gcc, */
1168 /* but less than using pointers, and always seems to */
1169 /* successfully return a constant. */
1170 /* the reason why we have this horrible preprocessor mess */
1171 /* is to avoid it in all cases, at least on common architectures */
1172 /* or when using a recent enough gcc version (>= 4.6) */
1173 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1174 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1175 #define ECB_LITTLE_ENDIAN 1
1176 return 0x44332211;
1177 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1178 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1179 #define ECB_BIG_ENDIAN 1
1180 return 0x11223344;
1181 #else
1182 union
1183 {
1184 uint8_t c[4];
1185 uint32_t u;
1186 } u = { 0x11, 0x22, 0x33, 0x44 };
1187 return u.u;
1188 #endif
1189 }
1190
1191 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1192 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1193 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1194 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1195
1196 #if ECB_GCC_VERSION(3,0) || ECB_C99
1197 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1198 #else
1199 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1200 #endif
1201
1202 #if ECB_CPP
1203 template<typename T>
1204 static inline T ecb_div_rd (T val, T div)
1205 {
1206 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1207 }
1208 template<typename T>
1209 static inline T ecb_div_ru (T val, T div)
1210 {
1211 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1212 }
1213 #else
1214 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1215 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1216 #endif
1217
1218 #if ecb_cplusplus_does_not_suck
1219 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1220 template<typename T, int N>
1221 static inline int ecb_array_length (const T (&arr)[N])
1222 {
1223 return N;
1224 }
1225 #else
1226 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1227 #endif
1228
1229 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1230 ecb_function_ ecb_const uint32_t
1231 ecb_binary16_to_binary32 (uint32_t x)
1232 {
1233 unsigned int s = (x & 0x8000) << (31 - 15);
1234 int e = (x >> 10) & 0x001f;
1235 unsigned int m = x & 0x03ff;
1236
1237 if (ecb_expect_false (e == 31))
1238 /* infinity or NaN */
1239 e = 255 - (127 - 15);
1240 else if (ecb_expect_false (!e))
1241 {
1242 if (ecb_expect_true (!m))
1243 /* zero, handled by code below by forcing e to 0 */
1244 e = 0 - (127 - 15);
1245 else
1246 {
1247 /* subnormal, renormalise */
1248 unsigned int s = 10 - ecb_ld32 (m);
1249
1250 m = (m << s) & 0x3ff; /* mask implicit bit */
1251 e -= s - 1;
1252 }
1253 }
1254
1255 /* e and m now are normalised, or zero, (or inf or nan) */
1256 e += 127 - 15;
1257
1258 return s | (e << 23) | (m << (23 - 10));
1259 }
1260
1261 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1262 ecb_function_ ecb_const uint16_t
1263 ecb_binary32_to_binary16 (uint32_t x)
1264 {
1265 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1266 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1267 unsigned int m = x & 0x007fffff;
1268
1269 x &= 0x7fffffff;
1270
1271 /* if it's within range of binary16 normals, use fast path */
1272 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1273 {
1274 /* mantissa round-to-even */
1275 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1276
1277 /* handle overflow */
1278 if (ecb_expect_false (m >= 0x00800000))
1279 {
1280 m >>= 1;
1281 e += 1;
1282 }
1283
1284 return s | (e << 10) | (m >> (23 - 10));
1285 }
1286
1287 /* handle large numbers and infinity */
1288 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1289 return s | 0x7c00;
1290
1291 /* handle zero, subnormals and small numbers */
1292 if (ecb_expect_true (x < 0x38800000))
1293 {
1294 /* zero */
1295 if (ecb_expect_true (!x))
1296 return s;
1297
1298 /* handle subnormals */
1299
1300 /* too small, will be zero */
1301 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1302 return s;
1303
1304 m |= 0x00800000; /* make implicit bit explicit */
1305
1306 /* very tricky - we need to round to the nearest e (+10) bit value */
1307 {
1308 unsigned int bits = 14 - e;
1309 unsigned int half = (1 << (bits - 1)) - 1;
1310 unsigned int even = (m >> bits) & 1;
1311
1312 /* if this overflows, we will end up with a normalised number */
1313 m = (m + half + even) >> bits;
1314 }
1315
1316 return s | m;
1317 }
1318
1319 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1320 m >>= 13;
1321
1322 return s | 0x7c00 | m | !m;
1323 }
1324
1325 /*******************************************************************************/
1326 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1327
1328 /* basically, everything uses "ieee pure-endian" floating point numbers */
1329 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1330 #if 0 \
1331 || __i386 || __i386__ \
1332 || ECB_GCC_AMD64 \
1333 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1334 || defined __s390__ || defined __s390x__ \
1335 || defined __mips__ \
1336 || defined __alpha__ \
1337 || defined __hppa__ \
1338 || defined __ia64__ \
1339 || defined __m68k__ \
1340 || defined __m88k__ \
1341 || defined __sh__ \
1342 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1343 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1344 || defined __aarch64__
1345 #define ECB_STDFP 1
1346 #include <string.h> /* for memcpy */
1347 #else
1348 #define ECB_STDFP 0
1349 #endif
1350
1351 #ifndef ECB_NO_LIBM
1352
1353 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1354
1355 /* only the oldest of old doesn't have this one. solaris. */
1356 #ifdef INFINITY
1357 #define ECB_INFINITY INFINITY
1358 #else
1359 #define ECB_INFINITY HUGE_VAL
1360 #endif
1361
1362 #ifdef NAN
1363 #define ECB_NAN NAN
1364 #else
1365 #define ECB_NAN ECB_INFINITY
1366 #endif
1367
1368 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1369 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1370 #define ecb_frexpf(x,e) frexpf ((x), (e))
1371 #else
1372 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1373 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1374 #endif
1375
1376 /* convert a float to ieee single/binary32 */
1377 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1378 ecb_function_ ecb_const uint32_t
1379 ecb_float_to_binary32 (float x)
1380 {
1381 uint32_t r;
1382
1383 #if ECB_STDFP
1384 memcpy (&r, &x, 4);
1385 #else
1386 /* slow emulation, works for anything but -0 */
1387 uint32_t m;
1388 int e;
1389
1390 if (x == 0e0f ) return 0x00000000U;
1391 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1392 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1393 if (x != x ) return 0x7fbfffffU;
1394
1395 m = ecb_frexpf (x, &e) * 0x1000000U;
1396
1397 r = m & 0x80000000U;
1398
1399 if (r)
1400 m = -m;
1401
1402 if (e <= -126)
1403 {
1404 m &= 0xffffffU;
1405 m >>= (-125 - e);
1406 e = -126;
1407 }
1408
1409 r |= (e + 126) << 23;
1410 r |= m & 0x7fffffU;
1411 #endif
1412
1413 return r;
1414 }
1415
1416 /* converts an ieee single/binary32 to a float */
1417 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1418 ecb_function_ ecb_const float
1419 ecb_binary32_to_float (uint32_t x)
1420 {
1421 float r;
1422
1423 #if ECB_STDFP
1424 memcpy (&r, &x, 4);
1425 #else
1426 /* emulation, only works for normals and subnormals and +0 */
1427 int neg = x >> 31;
1428 int e = (x >> 23) & 0xffU;
1429
1430 x &= 0x7fffffU;
1431
1432 if (e)
1433 x |= 0x800000U;
1434 else
1435 e = 1;
1436
1437 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1438 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1439
1440 r = neg ? -r : r;
1441 #endif
1442
1443 return r;
1444 }
1445
1446 /* convert a double to ieee double/binary64 */
1447 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1448 ecb_function_ ecb_const uint64_t
1449 ecb_double_to_binary64 (double x)
1450 {
1451 uint64_t r;
1452
1453 #if ECB_STDFP
1454 memcpy (&r, &x, 8);
1455 #else
1456 /* slow emulation, works for anything but -0 */
1457 uint64_t m;
1458 int e;
1459
1460 if (x == 0e0 ) return 0x0000000000000000U;
1461 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1462 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1463 if (x != x ) return 0X7ff7ffffffffffffU;
1464
1465 m = frexp (x, &e) * 0x20000000000000U;
1466
1467 r = m & 0x8000000000000000;;
1468
1469 if (r)
1470 m = -m;
1471
1472 if (e <= -1022)
1473 {
1474 m &= 0x1fffffffffffffU;
1475 m >>= (-1021 - e);
1476 e = -1022;
1477 }
1478
1479 r |= ((uint64_t)(e + 1022)) << 52;
1480 r |= m & 0xfffffffffffffU;
1481 #endif
1482
1483 return r;
1484 }
1485
1486 /* converts an ieee double/binary64 to a double */
1487 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1488 ecb_function_ ecb_const double
1489 ecb_binary64_to_double (uint64_t x)
1490 {
1491 double r;
1492
1493 #if ECB_STDFP
1494 memcpy (&r, &x, 8);
1495 #else
1496 /* emulation, only works for normals and subnormals and +0 */
1497 int neg = x >> 63;
1498 int e = (x >> 52) & 0x7ffU;
1499
1500 x &= 0xfffffffffffffU;
1501
1502 if (e)
1503 x |= 0x10000000000000U;
1504 else
1505 e = 1;
1506
1507 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1508 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1509
1510 r = neg ? -r : r;
1511 #endif
1512
1513 return r;
1514 }
1515
1516 /* convert a float to ieee half/binary16 */
1517 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1518 ecb_function_ ecb_const uint16_t
1519 ecb_float_to_binary16 (float x)
1520 {
1521 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1522 }
1523
1524 /* convert an ieee half/binary16 to float */
1525 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1526 ecb_function_ ecb_const float
1527 ecb_binary16_to_float (uint16_t x)
1528 {
1529 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1530 }
1531
1532 #endif
1533
1534 #endif
1535
1536 /* ECB.H END */
1537
1538 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1539 /* if your architecture doesn't need memory fences, e.g. because it is
1540 * single-cpu/core, or if you use libev in a project that doesn't use libev
1541 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1542 * libev, in which cases the memory fences become nops.
1543 * alternatively, you can remove this #error and link against libpthread,
1544 * which will then provide the memory fences.
1545 */
1546 # error "memory fences not defined for your architecture, please report"
1547 #endif
1548
1549 #ifndef ECB_MEMORY_FENCE
1550 # define ECB_MEMORY_FENCE do { } while (0)
1551 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1552 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1553 #endif
1554
1555 #define inline_size ecb_inline
1556
1557 #if EV_FEATURE_CODE
1558 # define inline_speed ecb_inline
1559 #else
1560 # define inline_speed ecb_noinline static
1561 #endif
1562
1563 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1564
1565 #if EV_MINPRI == EV_MAXPRI
1566 # define ABSPRI(w) (((W)w), 0)
1567 #else
1568 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1569 #endif
1570
1571 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1572
1573 typedef ev_watcher *W;
1574 typedef ev_watcher_list *WL;
1575 typedef ev_watcher_time *WT;
1576
1577 #define ev_active(w) ((W)(w))->active
1578 #define ev_at(w) ((WT)(w))->at
1579
1580 #if EV_USE_REALTIME
1581 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1582 /* giving it a reasonably high chance of working on typical architectures */
1583 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1584 #endif
1585
1586 #if EV_USE_MONOTONIC
1587 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1588 #endif
1589
1590 #ifndef EV_FD_TO_WIN32_HANDLE
1591 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1592 #endif
1593 #ifndef EV_WIN32_HANDLE_TO_FD
1594 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1595 #endif
1596 #ifndef EV_WIN32_CLOSE_FD
1597 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1598 #endif
1599
1600 #ifdef _WIN32
1601 # include "ev_win32.c"
1602 #endif
1603
1604 /*****************************************************************************/
1605
1606 #if EV_USE_LINUXAIO
1607 # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1608 #endif
1609
1610 /* define a suitable floor function (only used by periodics atm) */
1611
1612 #if EV_USE_FLOOR
1613 # include <math.h>
1614 # define ev_floor(v) floor (v)
1615 #else
1616
1617 #include <float.h>
1618
1619 /* a floor() replacement function, should be independent of ev_tstamp type */
1620 ecb_noinline
1621 static ev_tstamp
1622 ev_floor (ev_tstamp v)
1623 {
1624 /* the choice of shift factor is not terribly important */
1625 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1626 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1627 #else
1628 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1629 #endif
1630
1631 /* argument too large for an unsigned long? */
1632 if (ecb_expect_false (v >= shift))
1633 {
1634 ev_tstamp f;
1635
1636 if (v == v - 1.)
1637 return v; /* very large number */
1638
1639 f = shift * ev_floor (v * (1. / shift));
1640 return f + ev_floor (v - f);
1641 }
1642
1643 /* special treatment for negative args? */
1644 if (ecb_expect_false (v < 0.))
1645 {
1646 ev_tstamp f = -ev_floor (-v);
1647
1648 return f - (f == v ? 0 : 1);
1649 }
1650
1651 /* fits into an unsigned long */
1652 return (unsigned long)v;
1653 }
1654
1655 #endif
1656
1657 /*****************************************************************************/
1658
1659 #ifdef __linux
1660 # include <sys/utsname.h>
1661 #endif
1662
1663 ecb_noinline ecb_cold
1664 static unsigned int
1665 ev_linux_version (void)
1666 {
1667 #ifdef __linux
1668 unsigned int v = 0;
1669 struct utsname buf;
1670 int i;
1671 char *p = buf.release;
1672
1673 if (uname (&buf))
1674 return 0;
1675
1676 for (i = 3+1; --i; )
1677 {
1678 unsigned int c = 0;
1679
1680 for (;;)
1681 {
1682 if (*p >= '0' && *p <= '9')
1683 c = c * 10 + *p++ - '0';
1684 else
1685 {
1686 p += *p == '.';
1687 break;
1688 }
1689 }
1690
1691 v = (v << 8) | c;
1692 }
1693
1694 return v;
1695 #else
1696 return 0;
1697 #endif
1698 }
1699
1700 /*****************************************************************************/
1701
1702 #if EV_AVOID_STDIO
1703 ecb_noinline ecb_cold
1704 static void
1705 ev_printerr (const char *msg)
1706 {
1707 write (STDERR_FILENO, msg, strlen (msg));
1708 }
1709 #endif
1710
1711 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1712
1713 ecb_cold
1714 void
1715 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1716 {
1717 syserr_cb = cb;
1718 }
1719
1720 ecb_noinline ecb_cold
1721 static void
1722 ev_syserr (const char *msg)
1723 {
1724 if (!msg)
1725 msg = "(libev) system error";
1726
1727 if (syserr_cb)
1728 syserr_cb (msg);
1729 else
1730 {
1731 #if EV_AVOID_STDIO
1732 ev_printerr (msg);
1733 ev_printerr (": ");
1734 ev_printerr (strerror (errno));
1735 ev_printerr ("\n");
1736 #else
1737 perror (msg);
1738 #endif
1739 abort ();
1740 }
1741 }
1742
1743 static void *
1744 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1745 {
1746 /* some systems, notably openbsd and darwin, fail to properly
1747 * implement realloc (x, 0) (as required by both ansi c-89 and
1748 * the single unix specification, so work around them here.
1749 * recently, also (at least) fedora and debian started breaking it,
1750 * despite documenting it otherwise.
1751 */
1752
1753 if (size)
1754 return realloc (ptr, size);
1755
1756 free (ptr);
1757 return 0;
1758 }
1759
1760 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1761
1762 ecb_cold
1763 void
1764 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1765 {
1766 alloc = cb;
1767 }
1768
1769 inline_speed void *
1770 ev_realloc (void *ptr, long size)
1771 {
1772 ptr = alloc (ptr, size);
1773
1774 if (!ptr && size)
1775 {
1776 #if EV_AVOID_STDIO
1777 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1778 #else
1779 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1780 #endif
1781 abort ();
1782 }
1783
1784 return ptr;
1785 }
1786
1787 #define ev_malloc(size) ev_realloc (0, (size))
1788 #define ev_free(ptr) ev_realloc ((ptr), 0)
1789
1790 /*****************************************************************************/
1791
1792 /* set in reify when reification needed */
1793 #define EV_ANFD_REIFY 1
1794
1795 /* file descriptor info structure */
1796 typedef struct
1797 {
1798 WL head;
1799 unsigned char events; /* the events watched for */
1800 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1801 unsigned char emask; /* some backends store the actual kernel mask in here */
1802 unsigned char unused;
1803 #if EV_USE_EPOLL
1804 unsigned int egen; /* generation counter to counter epoll bugs */
1805 #endif
1806 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1807 SOCKET handle;
1808 #endif
1809 #if EV_USE_IOCP
1810 OVERLAPPED or, ow;
1811 #endif
1812 } ANFD;
1813
1814 /* stores the pending event set for a given watcher */
1815 typedef struct
1816 {
1817 W w;
1818 int events; /* the pending event set for the given watcher */
1819 } ANPENDING;
1820
1821 #if EV_USE_INOTIFY
1822 /* hash table entry per inotify-id */
1823 typedef struct
1824 {
1825 WL head;
1826 } ANFS;
1827 #endif
1828
1829 /* Heap Entry */
1830 #if EV_HEAP_CACHE_AT
1831 /* a heap element */
1832 typedef struct {
1833 ev_tstamp at;
1834 WT w;
1835 } ANHE;
1836
1837 #define ANHE_w(he) (he).w /* access watcher, read-write */
1838 #define ANHE_at(he) (he).at /* access cached at, read-only */
1839 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1840 #else
1841 /* a heap element */
1842 typedef WT ANHE;
1843
1844 #define ANHE_w(he) (he)
1845 #define ANHE_at(he) (he)->at
1846 #define ANHE_at_cache(he)
1847 #endif
1848
1849 #if EV_MULTIPLICITY
1850
1851 struct ev_loop
1852 {
1853 ev_tstamp ev_rt_now;
1854 #define ev_rt_now ((loop)->ev_rt_now)
1855 #define VAR(name,decl) decl;
1856 #include "ev_vars.h"
1857 #undef VAR
1858 };
1859 #include "ev_wrap.h"
1860
1861 static struct ev_loop default_loop_struct;
1862 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1863
1864 #else
1865
1866 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1867 #define VAR(name,decl) static decl;
1868 #include "ev_vars.h"
1869 #undef VAR
1870
1871 static int ev_default_loop_ptr;
1872
1873 #endif
1874
1875 #if EV_FEATURE_API
1876 # define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
1877 # define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
1878 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1879 #else
1880 # define EV_RELEASE_CB (void)0
1881 # define EV_ACQUIRE_CB (void)0
1882 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1883 #endif
1884
1885 #define EVBREAK_RECURSE 0x80
1886
1887 /*****************************************************************************/
1888
1889 #ifndef EV_HAVE_EV_TIME
1890 ev_tstamp
1891 ev_time (void) EV_NOEXCEPT
1892 {
1893 #if EV_USE_REALTIME
1894 if (ecb_expect_true (have_realtime))
1895 {
1896 struct timespec ts;
1897 clock_gettime (CLOCK_REALTIME, &ts);
1898 return ts.tv_sec + ts.tv_nsec * 1e-9;
1899 }
1900 #endif
1901
1902 struct timeval tv;
1903 gettimeofday (&tv, 0);
1904 return tv.tv_sec + tv.tv_usec * 1e-6;
1905 }
1906 #endif
1907
1908 inline_size ev_tstamp
1909 get_clock (void)
1910 {
1911 #if EV_USE_MONOTONIC
1912 if (ecb_expect_true (have_monotonic))
1913 {
1914 struct timespec ts;
1915 clock_gettime (CLOCK_MONOTONIC, &ts);
1916 return ts.tv_sec + ts.tv_nsec * 1e-9;
1917 }
1918 #endif
1919
1920 return ev_time ();
1921 }
1922
1923 #if EV_MULTIPLICITY
1924 ev_tstamp
1925 ev_now (EV_P) EV_NOEXCEPT
1926 {
1927 return ev_rt_now;
1928 }
1929 #endif
1930
1931 void
1932 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1933 {
1934 if (delay > 0.)
1935 {
1936 #if EV_USE_NANOSLEEP
1937 struct timespec ts;
1938
1939 EV_TS_SET (ts, delay);
1940 nanosleep (&ts, 0);
1941 #elif defined _WIN32
1942 /* maybe this should round up, as ms is very low resolution */
1943 /* compared to select (µs) or nanosleep (ns) */
1944 Sleep ((unsigned long)(delay * 1e3));
1945 #else
1946 struct timeval tv;
1947
1948 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1949 /* something not guaranteed by newer posix versions, but guaranteed */
1950 /* by older ones */
1951 EV_TV_SET (tv, delay);
1952 select (0, 0, 0, 0, &tv);
1953 #endif
1954 }
1955 }
1956
1957 /*****************************************************************************/
1958
1959 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1960
1961 /* find a suitable new size for the given array, */
1962 /* hopefully by rounding to a nice-to-malloc size */
1963 inline_size int
1964 array_nextsize (int elem, int cur, int cnt)
1965 {
1966 int ncur = cur + 1;
1967
1968 do
1969 ncur <<= 1;
1970 while (cnt > ncur);
1971
1972 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1973 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1974 {
1975 ncur *= elem;
1976 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1977 ncur = ncur - sizeof (void *) * 4;
1978 ncur /= elem;
1979 }
1980
1981 return ncur;
1982 }
1983
1984 ecb_noinline ecb_cold
1985 static void *
1986 array_realloc (int elem, void *base, int *cur, int cnt)
1987 {
1988 *cur = array_nextsize (elem, *cur, cnt);
1989 return ev_realloc (base, elem * *cur);
1990 }
1991
1992 #define array_needsize_noinit(base,offset,count)
1993
1994 #define array_needsize_zerofill(base,offset,count) \
1995 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
1996
1997 #define array_needsize(type,base,cur,cnt,init) \
1998 if (ecb_expect_false ((cnt) > (cur))) \
1999 { \
2000 ecb_unused int ocur_ = (cur); \
2001 (base) = (type *)array_realloc \
2002 (sizeof (type), (base), &(cur), (cnt)); \
2003 init ((base), ocur_, ((cur) - ocur_)); \
2004 }
2005
2006 #if 0
2007 #define array_slim(type,stem) \
2008 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2009 { \
2010 stem ## max = array_roundsize (stem ## cnt >> 1); \
2011 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2012 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2013 }
2014 #endif
2015
2016 #define array_free(stem, idx) \
2017 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2018
2019 /*****************************************************************************/
2020
2021 /* dummy callback for pending events */
2022 ecb_noinline
2023 static void
2024 pendingcb (EV_P_ ev_prepare *w, int revents)
2025 {
2026 }
2027
2028 ecb_noinline
2029 void
2030 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2031 {
2032 W w_ = (W)w;
2033 int pri = ABSPRI (w_);
2034
2035 if (ecb_expect_false (w_->pending))
2036 pendings [pri][w_->pending - 1].events |= revents;
2037 else
2038 {
2039 w_->pending = ++pendingcnt [pri];
2040 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2041 pendings [pri][w_->pending - 1].w = w_;
2042 pendings [pri][w_->pending - 1].events = revents;
2043 }
2044
2045 pendingpri = NUMPRI - 1;
2046 }
2047
2048 inline_speed void
2049 feed_reverse (EV_P_ W w)
2050 {
2051 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2052 rfeeds [rfeedcnt++] = w;
2053 }
2054
2055 inline_size void
2056 feed_reverse_done (EV_P_ int revents)
2057 {
2058 do
2059 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2060 while (rfeedcnt);
2061 }
2062
2063 inline_speed void
2064 queue_events (EV_P_ W *events, int eventcnt, int type)
2065 {
2066 int i;
2067
2068 for (i = 0; i < eventcnt; ++i)
2069 ev_feed_event (EV_A_ events [i], type);
2070 }
2071
2072 /*****************************************************************************/
2073
2074 inline_speed void
2075 fd_event_nocheck (EV_P_ int fd, int revents)
2076 {
2077 ANFD *anfd = anfds + fd;
2078 ev_io *w;
2079
2080 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2081 {
2082 int ev = w->events & revents;
2083
2084 if (ev)
2085 ev_feed_event (EV_A_ (W)w, ev);
2086 }
2087 }
2088
2089 /* do not submit kernel events for fds that have reify set */
2090 /* because that means they changed while we were polling for new events */
2091 inline_speed void
2092 fd_event (EV_P_ int fd, int revents)
2093 {
2094 ANFD *anfd = anfds + fd;
2095
2096 if (ecb_expect_true (!anfd->reify))
2097 fd_event_nocheck (EV_A_ fd, revents);
2098 }
2099
2100 void
2101 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2102 {
2103 if (fd >= 0 && fd < anfdmax)
2104 fd_event_nocheck (EV_A_ fd, revents);
2105 }
2106
2107 /* make sure the external fd watch events are in-sync */
2108 /* with the kernel/libev internal state */
2109 inline_size void
2110 fd_reify (EV_P)
2111 {
2112 int i;
2113
2114 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2115 for (i = 0; i < fdchangecnt; ++i)
2116 {
2117 int fd = fdchanges [i];
2118 ANFD *anfd = anfds + fd;
2119
2120 if (anfd->reify & EV__IOFDSET && anfd->head)
2121 {
2122 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2123
2124 if (handle != anfd->handle)
2125 {
2126 unsigned long arg;
2127
2128 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2129
2130 /* handle changed, but fd didn't - we need to do it in two steps */
2131 backend_modify (EV_A_ fd, anfd->events, 0);
2132 anfd->events = 0;
2133 anfd->handle = handle;
2134 }
2135 }
2136 }
2137 #endif
2138
2139 for (i = 0; i < fdchangecnt; ++i)
2140 {
2141 int fd = fdchanges [i];
2142 ANFD *anfd = anfds + fd;
2143 ev_io *w;
2144
2145 unsigned char o_events = anfd->events;
2146 unsigned char o_reify = anfd->reify;
2147
2148 anfd->reify = 0;
2149
2150 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2151 {
2152 anfd->events = 0;
2153
2154 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2155 anfd->events |= (unsigned char)w->events;
2156
2157 if (o_events != anfd->events)
2158 o_reify = EV__IOFDSET; /* actually |= */
2159 }
2160
2161 if (o_reify & EV__IOFDSET)
2162 backend_modify (EV_A_ fd, o_events, anfd->events);
2163 }
2164
2165 fdchangecnt = 0;
2166 }
2167
2168 /* something about the given fd changed */
2169 inline_size
2170 void
2171 fd_change (EV_P_ int fd, int flags)
2172 {
2173 unsigned char reify = anfds [fd].reify;
2174 anfds [fd].reify |= flags;
2175
2176 if (ecb_expect_true (!reify))
2177 {
2178 ++fdchangecnt;
2179 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2180 fdchanges [fdchangecnt - 1] = fd;
2181 }
2182 }
2183
2184 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2185 inline_speed ecb_cold void
2186 fd_kill (EV_P_ int fd)
2187 {
2188 ev_io *w;
2189
2190 while ((w = (ev_io *)anfds [fd].head))
2191 {
2192 ev_io_stop (EV_A_ w);
2193 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2194 }
2195 }
2196
2197 /* check whether the given fd is actually valid, for error recovery */
2198 inline_size ecb_cold int
2199 fd_valid (int fd)
2200 {
2201 #ifdef _WIN32
2202 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2203 #else
2204 return fcntl (fd, F_GETFD) != -1;
2205 #endif
2206 }
2207
2208 /* called on EBADF to verify fds */
2209 ecb_noinline ecb_cold
2210 static void
2211 fd_ebadf (EV_P)
2212 {
2213 int fd;
2214
2215 for (fd = 0; fd < anfdmax; ++fd)
2216 if (anfds [fd].events)
2217 if (!fd_valid (fd) && errno == EBADF)
2218 fd_kill (EV_A_ fd);
2219 }
2220
2221 /* called on ENOMEM in select/poll to kill some fds and retry */
2222 ecb_noinline ecb_cold
2223 static void
2224 fd_enomem (EV_P)
2225 {
2226 int fd;
2227
2228 for (fd = anfdmax; fd--; )
2229 if (anfds [fd].events)
2230 {
2231 fd_kill (EV_A_ fd);
2232 break;
2233 }
2234 }
2235
2236 /* usually called after fork if backend needs to re-arm all fds from scratch */
2237 ecb_noinline
2238 static void
2239 fd_rearm_all (EV_P)
2240 {
2241 int fd;
2242
2243 for (fd = 0; fd < anfdmax; ++fd)
2244 if (anfds [fd].events)
2245 {
2246 anfds [fd].events = 0;
2247 anfds [fd].emask = 0;
2248 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2249 }
2250 }
2251
2252 /* used to prepare libev internal fd's */
2253 /* this is not fork-safe */
2254 inline_speed void
2255 fd_intern (int fd)
2256 {
2257 #ifdef _WIN32
2258 unsigned long arg = 1;
2259 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2260 #else
2261 fcntl (fd, F_SETFD, FD_CLOEXEC);
2262 fcntl (fd, F_SETFL, O_NONBLOCK);
2263 #endif
2264 }
2265
2266 /*****************************************************************************/
2267
2268 /*
2269 * the heap functions want a real array index. array index 0 is guaranteed to not
2270 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2271 * the branching factor of the d-tree.
2272 */
2273
2274 /*
2275 * at the moment we allow libev the luxury of two heaps,
2276 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2277 * which is more cache-efficient.
2278 * the difference is about 5% with 50000+ watchers.
2279 */
2280 #if EV_USE_4HEAP
2281
2282 #define DHEAP 4
2283 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2284 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2285 #define UPHEAP_DONE(p,k) ((p) == (k))
2286
2287 /* away from the root */
2288 inline_speed void
2289 downheap (ANHE *heap, int N, int k)
2290 {
2291 ANHE he = heap [k];
2292 ANHE *E = heap + N + HEAP0;
2293
2294 for (;;)
2295 {
2296 ev_tstamp minat;
2297 ANHE *minpos;
2298 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2299
2300 /* find minimum child */
2301 if (ecb_expect_true (pos + DHEAP - 1 < E))
2302 {
2303 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2304 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2305 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2306 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2307 }
2308 else if (pos < E)
2309 {
2310 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2311 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2312 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2313 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2314 }
2315 else
2316 break;
2317
2318 if (ANHE_at (he) <= minat)
2319 break;
2320
2321 heap [k] = *minpos;
2322 ev_active (ANHE_w (*minpos)) = k;
2323
2324 k = minpos - heap;
2325 }
2326
2327 heap [k] = he;
2328 ev_active (ANHE_w (he)) = k;
2329 }
2330
2331 #else /* 4HEAP */
2332
2333 #define HEAP0 1
2334 #define HPARENT(k) ((k) >> 1)
2335 #define UPHEAP_DONE(p,k) (!(p))
2336
2337 /* away from the root */
2338 inline_speed void
2339 downheap (ANHE *heap, int N, int k)
2340 {
2341 ANHE he = heap [k];
2342
2343 for (;;)
2344 {
2345 int c = k << 1;
2346
2347 if (c >= N + HEAP0)
2348 break;
2349
2350 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2351 ? 1 : 0;
2352
2353 if (ANHE_at (he) <= ANHE_at (heap [c]))
2354 break;
2355
2356 heap [k] = heap [c];
2357 ev_active (ANHE_w (heap [k])) = k;
2358
2359 k = c;
2360 }
2361
2362 heap [k] = he;
2363 ev_active (ANHE_w (he)) = k;
2364 }
2365 #endif
2366
2367 /* towards the root */
2368 inline_speed void
2369 upheap (ANHE *heap, int k)
2370 {
2371 ANHE he = heap [k];
2372
2373 for (;;)
2374 {
2375 int p = HPARENT (k);
2376
2377 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2378 break;
2379
2380 heap [k] = heap [p];
2381 ev_active (ANHE_w (heap [k])) = k;
2382 k = p;
2383 }
2384
2385 heap [k] = he;
2386 ev_active (ANHE_w (he)) = k;
2387 }
2388
2389 /* move an element suitably so it is in a correct place */
2390 inline_size void
2391 adjustheap (ANHE *heap, int N, int k)
2392 {
2393 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2394 upheap (heap, k);
2395 else
2396 downheap (heap, N, k);
2397 }
2398
2399 /* rebuild the heap: this function is used only once and executed rarely */
2400 inline_size void
2401 reheap (ANHE *heap, int N)
2402 {
2403 int i;
2404
2405 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2406 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2407 for (i = 0; i < N; ++i)
2408 upheap (heap, i + HEAP0);
2409 }
2410
2411 /*****************************************************************************/
2412
2413 /* associate signal watchers to a signal signal */
2414 typedef struct
2415 {
2416 EV_ATOMIC_T pending;
2417 #if EV_MULTIPLICITY
2418 EV_P;
2419 #endif
2420 WL head;
2421 } ANSIG;
2422
2423 static ANSIG signals [EV_NSIG - 1];
2424
2425 /*****************************************************************************/
2426
2427 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2428
2429 ecb_noinline ecb_cold
2430 static void
2431 evpipe_init (EV_P)
2432 {
2433 if (!ev_is_active (&pipe_w))
2434 {
2435 int fds [2];
2436
2437 # if EV_USE_EVENTFD
2438 fds [0] = -1;
2439 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2440 if (fds [1] < 0 && errno == EINVAL)
2441 fds [1] = eventfd (0, 0);
2442
2443 if (fds [1] < 0)
2444 # endif
2445 {
2446 while (pipe (fds))
2447 ev_syserr ("(libev) error creating signal/async pipe");
2448
2449 fd_intern (fds [0]);
2450 }
2451
2452 evpipe [0] = fds [0];
2453
2454 if (evpipe [1] < 0)
2455 evpipe [1] = fds [1]; /* first call, set write fd */
2456 else
2457 {
2458 /* on subsequent calls, do not change evpipe [1] */
2459 /* so that evpipe_write can always rely on its value. */
2460 /* this branch does not do anything sensible on windows, */
2461 /* so must not be executed on windows */
2462
2463 dup2 (fds [1], evpipe [1]);
2464 close (fds [1]);
2465 }
2466
2467 fd_intern (evpipe [1]);
2468
2469 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2470 ev_io_start (EV_A_ &pipe_w);
2471 ev_unref (EV_A); /* watcher should not keep loop alive */
2472 }
2473 }
2474
2475 inline_speed void
2476 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2477 {
2478 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2479
2480 if (ecb_expect_true (*flag))
2481 return;
2482
2483 *flag = 1;
2484 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2485
2486 pipe_write_skipped = 1;
2487
2488 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2489
2490 if (pipe_write_wanted)
2491 {
2492 int old_errno;
2493
2494 pipe_write_skipped = 0;
2495 ECB_MEMORY_FENCE_RELEASE;
2496
2497 old_errno = errno; /* save errno because write will clobber it */
2498
2499 #if EV_USE_EVENTFD
2500 if (evpipe [0] < 0)
2501 {
2502 uint64_t counter = 1;
2503 write (evpipe [1], &counter, sizeof (uint64_t));
2504 }
2505 else
2506 #endif
2507 {
2508 #ifdef _WIN32
2509 WSABUF buf;
2510 DWORD sent;
2511 buf.buf = (char *)&buf;
2512 buf.len = 1;
2513 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2514 #else
2515 write (evpipe [1], &(evpipe [1]), 1);
2516 #endif
2517 }
2518
2519 errno = old_errno;
2520 }
2521 }
2522
2523 /* called whenever the libev signal pipe */
2524 /* got some events (signal, async) */
2525 static void
2526 pipecb (EV_P_ ev_io *iow, int revents)
2527 {
2528 int i;
2529
2530 if (revents & EV_READ)
2531 {
2532 #if EV_USE_EVENTFD
2533 if (evpipe [0] < 0)
2534 {
2535 uint64_t counter;
2536 read (evpipe [1], &counter, sizeof (uint64_t));
2537 }
2538 else
2539 #endif
2540 {
2541 char dummy[4];
2542 #ifdef _WIN32
2543 WSABUF buf;
2544 DWORD recvd;
2545 DWORD flags = 0;
2546 buf.buf = dummy;
2547 buf.len = sizeof (dummy);
2548 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2549 #else
2550 read (evpipe [0], &dummy, sizeof (dummy));
2551 #endif
2552 }
2553 }
2554
2555 pipe_write_skipped = 0;
2556
2557 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2558
2559 #if EV_SIGNAL_ENABLE
2560 if (sig_pending)
2561 {
2562 sig_pending = 0;
2563
2564 ECB_MEMORY_FENCE;
2565
2566 for (i = EV_NSIG - 1; i--; )
2567 if (ecb_expect_false (signals [i].pending))
2568 ev_feed_signal_event (EV_A_ i + 1);
2569 }
2570 #endif
2571
2572 #if EV_ASYNC_ENABLE
2573 if (async_pending)
2574 {
2575 async_pending = 0;
2576
2577 ECB_MEMORY_FENCE;
2578
2579 for (i = asynccnt; i--; )
2580 if (asyncs [i]->sent)
2581 {
2582 asyncs [i]->sent = 0;
2583 ECB_MEMORY_FENCE_RELEASE;
2584 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2585 }
2586 }
2587 #endif
2588 }
2589
2590 /*****************************************************************************/
2591
2592 void
2593 ev_feed_signal (int signum) EV_NOEXCEPT
2594 {
2595 #if EV_MULTIPLICITY
2596 EV_P;
2597 ECB_MEMORY_FENCE_ACQUIRE;
2598 EV_A = signals [signum - 1].loop;
2599
2600 if (!EV_A)
2601 return;
2602 #endif
2603
2604 signals [signum - 1].pending = 1;
2605 evpipe_write (EV_A_ &sig_pending);
2606 }
2607
2608 static void
2609 ev_sighandler (int signum)
2610 {
2611 #ifdef _WIN32
2612 signal (signum, ev_sighandler);
2613 #endif
2614
2615 ev_feed_signal (signum);
2616 }
2617
2618 ecb_noinline
2619 void
2620 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2621 {
2622 WL w;
2623
2624 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2625 return;
2626
2627 --signum;
2628
2629 #if EV_MULTIPLICITY
2630 /* it is permissible to try to feed a signal to the wrong loop */
2631 /* or, likely more useful, feeding a signal nobody is waiting for */
2632
2633 if (ecb_expect_false (signals [signum].loop != EV_A))
2634 return;
2635 #endif
2636
2637 signals [signum].pending = 0;
2638 ECB_MEMORY_FENCE_RELEASE;
2639
2640 for (w = signals [signum].head; w; w = w->next)
2641 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2642 }
2643
2644 #if EV_USE_SIGNALFD
2645 static void
2646 sigfdcb (EV_P_ ev_io *iow, int revents)
2647 {
2648 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2649
2650 for (;;)
2651 {
2652 ssize_t res = read (sigfd, si, sizeof (si));
2653
2654 /* not ISO-C, as res might be -1, but works with SuS */
2655 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2656 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2657
2658 if (res < (ssize_t)sizeof (si))
2659 break;
2660 }
2661 }
2662 #endif
2663
2664 #endif
2665
2666 /*****************************************************************************/
2667
2668 #if EV_CHILD_ENABLE
2669 static WL childs [EV_PID_HASHSIZE];
2670
2671 static ev_signal childev;
2672
2673 #ifndef WIFCONTINUED
2674 # define WIFCONTINUED(status) 0
2675 #endif
2676
2677 /* handle a single child status event */
2678 inline_speed void
2679 child_reap (EV_P_ int chain, int pid, int status)
2680 {
2681 ev_child *w;
2682 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2683
2684 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2685 {
2686 if ((w->pid == pid || !w->pid)
2687 && (!traced || (w->flags & 1)))
2688 {
2689 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2690 w->rpid = pid;
2691 w->rstatus = status;
2692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2693 }
2694 }
2695 }
2696
2697 #ifndef WCONTINUED
2698 # define WCONTINUED 0
2699 #endif
2700
2701 /* called on sigchld etc., calls waitpid */
2702 static void
2703 childcb (EV_P_ ev_signal *sw, int revents)
2704 {
2705 int pid, status;
2706
2707 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2708 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2709 if (!WCONTINUED
2710 || errno != EINVAL
2711 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2712 return;
2713
2714 /* make sure we are called again until all children have been reaped */
2715 /* we need to do it this way so that the callback gets called before we continue */
2716 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2717
2718 child_reap (EV_A_ pid, pid, status);
2719 if ((EV_PID_HASHSIZE) > 1)
2720 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2721 }
2722
2723 #endif
2724
2725 /*****************************************************************************/
2726
2727 #if EV_USE_IOCP
2728 # include "ev_iocp.c"
2729 #endif
2730 #if EV_USE_PORT
2731 # include "ev_port.c"
2732 #endif
2733 #if EV_USE_KQUEUE
2734 # include "ev_kqueue.c"
2735 #endif
2736 #if EV_USE_EPOLL
2737 # include "ev_epoll.c"
2738 #endif
2739 #if EV_USE_LINUXAIO
2740 # include "ev_linuxaio.c"
2741 #endif
2742 #if EV_USE_POLL
2743 # include "ev_poll.c"
2744 #endif
2745 #if EV_USE_SELECT
2746 # include "ev_select.c"
2747 #endif
2748
2749 ecb_cold int
2750 ev_version_major (void) EV_NOEXCEPT
2751 {
2752 return EV_VERSION_MAJOR;
2753 }
2754
2755 ecb_cold int
2756 ev_version_minor (void) EV_NOEXCEPT
2757 {
2758 return EV_VERSION_MINOR;
2759 }
2760
2761 /* return true if we are running with elevated privileges and should ignore env variables */
2762 inline_size ecb_cold int
2763 enable_secure (void)
2764 {
2765 #ifdef _WIN32
2766 return 0;
2767 #else
2768 return getuid () != geteuid ()
2769 || getgid () != getegid ();
2770 #endif
2771 }
2772
2773 ecb_cold
2774 unsigned int
2775 ev_supported_backends (void) EV_NOEXCEPT
2776 {
2777 unsigned int flags = 0;
2778
2779 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2780 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2781 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2782 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2783 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2784 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2785
2786 return flags;
2787 }
2788
2789 ecb_cold
2790 unsigned int
2791 ev_recommended_backends (void) EV_NOEXCEPT
2792 {
2793 unsigned int flags = ev_supported_backends ();
2794
2795 #ifndef __NetBSD__
2796 /* kqueue is borked on everything but netbsd apparently */
2797 /* it usually doesn't work correctly on anything but sockets and pipes */
2798 flags &= ~EVBACKEND_KQUEUE;
2799 #endif
2800 #ifdef __APPLE__
2801 /* only select works correctly on that "unix-certified" platform */
2802 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2803 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2804 #endif
2805 #ifdef __FreeBSD__
2806 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2807 #endif
2808
2809 /* TODO: linuxaio is very experimental */
2810 #if !EV_RECOMMEND_LINUXAIO
2811 flags &= ~EVBACKEND_LINUXAIO;
2812 #endif
2813
2814 return flags;
2815 }
2816
2817 ecb_cold
2818 unsigned int
2819 ev_embeddable_backends (void) EV_NOEXCEPT
2820 {
2821 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2822
2823 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2824 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2825 flags &= ~EVBACKEND_EPOLL;
2826
2827 return flags;
2828 }
2829
2830 unsigned int
2831 ev_backend (EV_P) EV_NOEXCEPT
2832 {
2833 return backend;
2834 }
2835
2836 #if EV_FEATURE_API
2837 unsigned int
2838 ev_iteration (EV_P) EV_NOEXCEPT
2839 {
2840 return loop_count;
2841 }
2842
2843 unsigned int
2844 ev_depth (EV_P) EV_NOEXCEPT
2845 {
2846 return loop_depth;
2847 }
2848
2849 void
2850 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2851 {
2852 io_blocktime = interval;
2853 }
2854
2855 void
2856 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2857 {
2858 timeout_blocktime = interval;
2859 }
2860
2861 void
2862 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2863 {
2864 userdata = data;
2865 }
2866
2867 void *
2868 ev_userdata (EV_P) EV_NOEXCEPT
2869 {
2870 return userdata;
2871 }
2872
2873 void
2874 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2875 {
2876 invoke_cb = invoke_pending_cb;
2877 }
2878
2879 void
2880 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2881 {
2882 release_cb = release;
2883 acquire_cb = acquire;
2884 }
2885 #endif
2886
2887 /* initialise a loop structure, must be zero-initialised */
2888 ecb_noinline ecb_cold
2889 static void
2890 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
2891 {
2892 if (!backend)
2893 {
2894 origflags = flags;
2895
2896 #if EV_USE_REALTIME
2897 if (!have_realtime)
2898 {
2899 struct timespec ts;
2900
2901 if (!clock_gettime (CLOCK_REALTIME, &ts))
2902 have_realtime = 1;
2903 }
2904 #endif
2905
2906 #if EV_USE_MONOTONIC
2907 if (!have_monotonic)
2908 {
2909 struct timespec ts;
2910
2911 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2912 have_monotonic = 1;
2913 }
2914 #endif
2915
2916 /* pid check not overridable via env */
2917 #ifndef _WIN32
2918 if (flags & EVFLAG_FORKCHECK)
2919 curpid = getpid ();
2920 #endif
2921
2922 if (!(flags & EVFLAG_NOENV)
2923 && !enable_secure ()
2924 && getenv ("LIBEV_FLAGS"))
2925 flags = atoi (getenv ("LIBEV_FLAGS"));
2926
2927 ev_rt_now = ev_time ();
2928 mn_now = get_clock ();
2929 now_floor = mn_now;
2930 rtmn_diff = ev_rt_now - mn_now;
2931 #if EV_FEATURE_API
2932 invoke_cb = ev_invoke_pending;
2933 #endif
2934
2935 io_blocktime = 0.;
2936 timeout_blocktime = 0.;
2937 backend = 0;
2938 backend_fd = -1;
2939 sig_pending = 0;
2940 #if EV_ASYNC_ENABLE
2941 async_pending = 0;
2942 #endif
2943 pipe_write_skipped = 0;
2944 pipe_write_wanted = 0;
2945 evpipe [0] = -1;
2946 evpipe [1] = -1;
2947 #if EV_USE_INOTIFY
2948 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2949 #endif
2950 #if EV_USE_SIGNALFD
2951 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2952 #endif
2953
2954 if (!(flags & EVBACKEND_MASK))
2955 flags |= ev_recommended_backends ();
2956
2957 #if EV_USE_IOCP
2958 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2959 #endif
2960 #if EV_USE_PORT
2961 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2962 #endif
2963 #if EV_USE_KQUEUE
2964 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2965 #endif
2966 #if EV_USE_LINUXAIO
2967 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
2968 #endif
2969 #if EV_USE_EPOLL
2970 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2971 #endif
2972 #if EV_USE_POLL
2973 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2974 #endif
2975 #if EV_USE_SELECT
2976 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
2977 #endif
2978
2979 ev_prepare_init (&pending_w, pendingcb);
2980
2981 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2982 ev_init (&pipe_w, pipecb);
2983 ev_set_priority (&pipe_w, EV_MAXPRI);
2984 #endif
2985 }
2986 }
2987
2988 /* free up a loop structure */
2989 ecb_cold
2990 void
2991 ev_loop_destroy (EV_P)
2992 {
2993 int i;
2994
2995 #if EV_MULTIPLICITY
2996 /* mimic free (0) */
2997 if (!EV_A)
2998 return;
2999 #endif
3000
3001 #if EV_CLEANUP_ENABLE
3002 /* queue cleanup watchers (and execute them) */
3003 if (ecb_expect_false (cleanupcnt))
3004 {
3005 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3006 EV_INVOKE_PENDING;
3007 }
3008 #endif
3009
3010 #if EV_CHILD_ENABLE
3011 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3012 {
3013 ev_ref (EV_A); /* child watcher */
3014 ev_signal_stop (EV_A_ &childev);
3015 }
3016 #endif
3017
3018 if (ev_is_active (&pipe_w))
3019 {
3020 /*ev_ref (EV_A);*/
3021 /*ev_io_stop (EV_A_ &pipe_w);*/
3022
3023 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3024 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3025 }
3026
3027 #if EV_USE_SIGNALFD
3028 if (ev_is_active (&sigfd_w))
3029 close (sigfd);
3030 #endif
3031
3032 #if EV_USE_INOTIFY
3033 if (fs_fd >= 0)
3034 close (fs_fd);
3035 #endif
3036
3037 if (backend_fd >= 0)
3038 close (backend_fd);
3039
3040 #if EV_USE_IOCP
3041 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3042 #endif
3043 #if EV_USE_PORT
3044 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3045 #endif
3046 #if EV_USE_KQUEUE
3047 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3048 #endif
3049 #if EV_USE_LINUXAIO
3050 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3051 #endif
3052 #if EV_USE_EPOLL
3053 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3054 #endif
3055 #if EV_USE_POLL
3056 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3057 #endif
3058 #if EV_USE_SELECT
3059 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3060 #endif
3061
3062 for (i = NUMPRI; i--; )
3063 {
3064 array_free (pending, [i]);
3065 #if EV_IDLE_ENABLE
3066 array_free (idle, [i]);
3067 #endif
3068 }
3069
3070 ev_free (anfds); anfds = 0; anfdmax = 0;
3071
3072 /* have to use the microsoft-never-gets-it-right macro */
3073 array_free (rfeed, EMPTY);
3074 array_free (fdchange, EMPTY);
3075 array_free (timer, EMPTY);
3076 #if EV_PERIODIC_ENABLE
3077 array_free (periodic, EMPTY);
3078 #endif
3079 #if EV_FORK_ENABLE
3080 array_free (fork, EMPTY);
3081 #endif
3082 #if EV_CLEANUP_ENABLE
3083 array_free (cleanup, EMPTY);
3084 #endif
3085 array_free (prepare, EMPTY);
3086 array_free (check, EMPTY);
3087 #if EV_ASYNC_ENABLE
3088 array_free (async, EMPTY);
3089 #endif
3090
3091 backend = 0;
3092
3093 #if EV_MULTIPLICITY
3094 if (ev_is_default_loop (EV_A))
3095 #endif
3096 ev_default_loop_ptr = 0;
3097 #if EV_MULTIPLICITY
3098 else
3099 ev_free (EV_A);
3100 #endif
3101 }
3102
3103 #if EV_USE_INOTIFY
3104 inline_size void infy_fork (EV_P);
3105 #endif
3106
3107 inline_size void
3108 loop_fork (EV_P)
3109 {
3110 #if EV_USE_PORT
3111 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3112 #endif
3113 #if EV_USE_KQUEUE
3114 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3115 #endif
3116 #if EV_USE_LINUXAIO
3117 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3118 #endif
3119 #if EV_USE_EPOLL
3120 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3121 #endif
3122 #if EV_USE_INOTIFY
3123 infy_fork (EV_A);
3124 #endif
3125
3126 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3127 if (ev_is_active (&pipe_w) && postfork != 2)
3128 {
3129 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3130
3131 ev_ref (EV_A);
3132 ev_io_stop (EV_A_ &pipe_w);
3133
3134 if (evpipe [0] >= 0)
3135 EV_WIN32_CLOSE_FD (evpipe [0]);
3136
3137 evpipe_init (EV_A);
3138 /* iterate over everything, in case we missed something before */
3139 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3140 }
3141 #endif
3142
3143 postfork = 0;
3144 }
3145
3146 #if EV_MULTIPLICITY
3147
3148 ecb_cold
3149 struct ev_loop *
3150 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3151 {
3152 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3153
3154 memset (EV_A, 0, sizeof (struct ev_loop));
3155 loop_init (EV_A_ flags);
3156
3157 if (ev_backend (EV_A))
3158 return EV_A;
3159
3160 ev_free (EV_A);
3161 return 0;
3162 }
3163
3164 #endif /* multiplicity */
3165
3166 #if EV_VERIFY
3167 ecb_noinline ecb_cold
3168 static void
3169 verify_watcher (EV_P_ W w)
3170 {
3171 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3172
3173 if (w->pending)
3174 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3175 }
3176
3177 ecb_noinline ecb_cold
3178 static void
3179 verify_heap (EV_P_ ANHE *heap, int N)
3180 {
3181 int i;
3182
3183 for (i = HEAP0; i < N + HEAP0; ++i)
3184 {
3185 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3186 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3187 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3188
3189 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3190 }
3191 }
3192
3193 ecb_noinline ecb_cold
3194 static void
3195 array_verify (EV_P_ W *ws, int cnt)
3196 {
3197 while (cnt--)
3198 {
3199 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3200 verify_watcher (EV_A_ ws [cnt]);
3201 }
3202 }
3203 #endif
3204
3205 #if EV_FEATURE_API
3206 void ecb_cold
3207 ev_verify (EV_P) EV_NOEXCEPT
3208 {
3209 #if EV_VERIFY
3210 int i;
3211 WL w, w2;
3212
3213 assert (activecnt >= -1);
3214
3215 assert (fdchangemax >= fdchangecnt);
3216 for (i = 0; i < fdchangecnt; ++i)
3217 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3218
3219 assert (anfdmax >= 0);
3220 for (i = 0; i < anfdmax; ++i)
3221 {
3222 int j = 0;
3223
3224 for (w = w2 = anfds [i].head; w; w = w->next)
3225 {
3226 verify_watcher (EV_A_ (W)w);
3227
3228 if (j++ & 1)
3229 {
3230 assert (("libev: io watcher list contains a loop", w != w2));
3231 w2 = w2->next;
3232 }
3233
3234 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3235 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3236 }
3237 }
3238
3239 assert (timermax >= timercnt);
3240 verify_heap (EV_A_ timers, timercnt);
3241
3242 #if EV_PERIODIC_ENABLE
3243 assert (periodicmax >= periodiccnt);
3244 verify_heap (EV_A_ periodics, periodiccnt);
3245 #endif
3246
3247 for (i = NUMPRI; i--; )
3248 {
3249 assert (pendingmax [i] >= pendingcnt [i]);
3250 #if EV_IDLE_ENABLE
3251 assert (idleall >= 0);
3252 assert (idlemax [i] >= idlecnt [i]);
3253 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3254 #endif
3255 }
3256
3257 #if EV_FORK_ENABLE
3258 assert (forkmax >= forkcnt);
3259 array_verify (EV_A_ (W *)forks, forkcnt);
3260 #endif
3261
3262 #if EV_CLEANUP_ENABLE
3263 assert (cleanupmax >= cleanupcnt);
3264 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3265 #endif
3266
3267 #if EV_ASYNC_ENABLE
3268 assert (asyncmax >= asynccnt);
3269 array_verify (EV_A_ (W *)asyncs, asynccnt);
3270 #endif
3271
3272 #if EV_PREPARE_ENABLE
3273 assert (preparemax >= preparecnt);
3274 array_verify (EV_A_ (W *)prepares, preparecnt);
3275 #endif
3276
3277 #if EV_CHECK_ENABLE
3278 assert (checkmax >= checkcnt);
3279 array_verify (EV_A_ (W *)checks, checkcnt);
3280 #endif
3281
3282 # if 0
3283 #if EV_CHILD_ENABLE
3284 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3285 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3286 #endif
3287 # endif
3288 #endif
3289 }
3290 #endif
3291
3292 #if EV_MULTIPLICITY
3293 ecb_cold
3294 struct ev_loop *
3295 #else
3296 int
3297 #endif
3298 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3299 {
3300 if (!ev_default_loop_ptr)
3301 {
3302 #if EV_MULTIPLICITY
3303 EV_P = ev_default_loop_ptr = &default_loop_struct;
3304 #else
3305 ev_default_loop_ptr = 1;
3306 #endif
3307
3308 loop_init (EV_A_ flags);
3309
3310 if (ev_backend (EV_A))
3311 {
3312 #if EV_CHILD_ENABLE
3313 ev_signal_init (&childev, childcb, SIGCHLD);
3314 ev_set_priority (&childev, EV_MAXPRI);
3315 ev_signal_start (EV_A_ &childev);
3316 ev_unref (EV_A); /* child watcher should not keep loop alive */
3317 #endif
3318 }
3319 else
3320 ev_default_loop_ptr = 0;
3321 }
3322
3323 return ev_default_loop_ptr;
3324 }
3325
3326 void
3327 ev_loop_fork (EV_P) EV_NOEXCEPT
3328 {
3329 postfork = 1;
3330 }
3331
3332 /*****************************************************************************/
3333
3334 void
3335 ev_invoke (EV_P_ void *w, int revents)
3336 {
3337 EV_CB_INVOKE ((W)w, revents);
3338 }
3339
3340 unsigned int
3341 ev_pending_count (EV_P) EV_NOEXCEPT
3342 {
3343 int pri;
3344 unsigned int count = 0;
3345
3346 for (pri = NUMPRI; pri--; )
3347 count += pendingcnt [pri];
3348
3349 return count;
3350 }
3351
3352 ecb_noinline
3353 void
3354 ev_invoke_pending (EV_P)
3355 {
3356 pendingpri = NUMPRI;
3357
3358 do
3359 {
3360 --pendingpri;
3361
3362 /* pendingpri possibly gets modified in the inner loop */
3363 while (pendingcnt [pendingpri])
3364 {
3365 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3366
3367 p->w->pending = 0;
3368 EV_CB_INVOKE (p->w, p->events);
3369 EV_FREQUENT_CHECK;
3370 }
3371 }
3372 while (pendingpri);
3373 }
3374
3375 #if EV_IDLE_ENABLE
3376 /* make idle watchers pending. this handles the "call-idle */
3377 /* only when higher priorities are idle" logic */
3378 inline_size void
3379 idle_reify (EV_P)
3380 {
3381 if (ecb_expect_false (idleall))
3382 {
3383 int pri;
3384
3385 for (pri = NUMPRI; pri--; )
3386 {
3387 if (pendingcnt [pri])
3388 break;
3389
3390 if (idlecnt [pri])
3391 {
3392 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3393 break;
3394 }
3395 }
3396 }
3397 }
3398 #endif
3399
3400 /* make timers pending */
3401 inline_size void
3402 timers_reify (EV_P)
3403 {
3404 EV_FREQUENT_CHECK;
3405
3406 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3407 {
3408 do
3409 {
3410 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3411
3412 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3413
3414 /* first reschedule or stop timer */
3415 if (w->repeat)
3416 {
3417 ev_at (w) += w->repeat;
3418 if (ev_at (w) < mn_now)
3419 ev_at (w) = mn_now;
3420
3421 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3422
3423 ANHE_at_cache (timers [HEAP0]);
3424 downheap (timers, timercnt, HEAP0);
3425 }
3426 else
3427 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3428
3429 EV_FREQUENT_CHECK;
3430 feed_reverse (EV_A_ (W)w);
3431 }
3432 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3433
3434 feed_reverse_done (EV_A_ EV_TIMER);
3435 }
3436 }
3437
3438 #if EV_PERIODIC_ENABLE
3439
3440 ecb_noinline
3441 static void
3442 periodic_recalc (EV_P_ ev_periodic *w)
3443 {
3444 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3445 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3446
3447 /* the above almost always errs on the low side */
3448 while (at <= ev_rt_now)
3449 {
3450 ev_tstamp nat = at + w->interval;
3451
3452 /* when resolution fails us, we use ev_rt_now */
3453 if (ecb_expect_false (nat == at))
3454 {
3455 at = ev_rt_now;
3456 break;
3457 }
3458
3459 at = nat;
3460 }
3461
3462 ev_at (w) = at;
3463 }
3464
3465 /* make periodics pending */
3466 inline_size void
3467 periodics_reify (EV_P)
3468 {
3469 EV_FREQUENT_CHECK;
3470
3471 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3472 {
3473 do
3474 {
3475 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3476
3477 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3478
3479 /* first reschedule or stop timer */
3480 if (w->reschedule_cb)
3481 {
3482 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3483
3484 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3485
3486 ANHE_at_cache (periodics [HEAP0]);
3487 downheap (periodics, periodiccnt, HEAP0);
3488 }
3489 else if (w->interval)
3490 {
3491 periodic_recalc (EV_A_ w);
3492 ANHE_at_cache (periodics [HEAP0]);
3493 downheap (periodics, periodiccnt, HEAP0);
3494 }
3495 else
3496 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3497
3498 EV_FREQUENT_CHECK;
3499 feed_reverse (EV_A_ (W)w);
3500 }
3501 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3502
3503 feed_reverse_done (EV_A_ EV_PERIODIC);
3504 }
3505 }
3506
3507 /* simply recalculate all periodics */
3508 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3509 ecb_noinline ecb_cold
3510 static void
3511 periodics_reschedule (EV_P)
3512 {
3513 int i;
3514
3515 /* adjust periodics after time jump */
3516 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3517 {
3518 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3519
3520 if (w->reschedule_cb)
3521 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3522 else if (w->interval)
3523 periodic_recalc (EV_A_ w);
3524
3525 ANHE_at_cache (periodics [i]);
3526 }
3527
3528 reheap (periodics, periodiccnt);
3529 }
3530 #endif
3531
3532 /* adjust all timers by a given offset */
3533 ecb_noinline ecb_cold
3534 static void
3535 timers_reschedule (EV_P_ ev_tstamp adjust)
3536 {
3537 int i;
3538
3539 for (i = 0; i < timercnt; ++i)
3540 {
3541 ANHE *he = timers + i + HEAP0;
3542 ANHE_w (*he)->at += adjust;
3543 ANHE_at_cache (*he);
3544 }
3545 }
3546
3547 /* fetch new monotonic and realtime times from the kernel */
3548 /* also detect if there was a timejump, and act accordingly */
3549 inline_speed void
3550 time_update (EV_P_ ev_tstamp max_block)
3551 {
3552 #if EV_USE_MONOTONIC
3553 if (ecb_expect_true (have_monotonic))
3554 {
3555 int i;
3556 ev_tstamp odiff = rtmn_diff;
3557
3558 mn_now = get_clock ();
3559
3560 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3561 /* interpolate in the meantime */
3562 if (ecb_expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3563 {
3564 ev_rt_now = rtmn_diff + mn_now;
3565 return;
3566 }
3567
3568 now_floor = mn_now;
3569 ev_rt_now = ev_time ();
3570
3571 /* loop a few times, before making important decisions.
3572 * on the choice of "4": one iteration isn't enough,
3573 * in case we get preempted during the calls to
3574 * ev_time and get_clock. a second call is almost guaranteed
3575 * to succeed in that case, though. and looping a few more times
3576 * doesn't hurt either as we only do this on time-jumps or
3577 * in the unlikely event of having been preempted here.
3578 */
3579 for (i = 4; --i; )
3580 {
3581 ev_tstamp diff;
3582 rtmn_diff = ev_rt_now - mn_now;
3583
3584 diff = odiff - rtmn_diff;
3585
3586 if (ecb_expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3587 return; /* all is well */
3588
3589 ev_rt_now = ev_time ();
3590 mn_now = get_clock ();
3591 now_floor = mn_now;
3592 }
3593
3594 /* no timer adjustment, as the monotonic clock doesn't jump */
3595 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3596 # if EV_PERIODIC_ENABLE
3597 periodics_reschedule (EV_A);
3598 # endif
3599 }
3600 else
3601 #endif
3602 {
3603 ev_rt_now = ev_time ();
3604
3605 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3606 {
3607 /* adjust timers. this is easy, as the offset is the same for all of them */
3608 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3609 #if EV_PERIODIC_ENABLE
3610 periodics_reschedule (EV_A);
3611 #endif
3612 }
3613
3614 mn_now = ev_rt_now;
3615 }
3616 }
3617
3618 int
3619 ev_run (EV_P_ int flags)
3620 {
3621 #if EV_FEATURE_API
3622 ++loop_depth;
3623 #endif
3624
3625 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3626
3627 loop_done = EVBREAK_CANCEL;
3628
3629 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3630
3631 do
3632 {
3633 #if EV_VERIFY >= 2
3634 ev_verify (EV_A);
3635 #endif
3636
3637 #ifndef _WIN32
3638 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
3639 if (ecb_expect_false (getpid () != curpid))
3640 {
3641 curpid = getpid ();
3642 postfork = 1;
3643 }
3644 #endif
3645
3646 #if EV_FORK_ENABLE
3647 /* we might have forked, so queue fork handlers */
3648 if (ecb_expect_false (postfork))
3649 if (forkcnt)
3650 {
3651 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3652 EV_INVOKE_PENDING;
3653 }
3654 #endif
3655
3656 #if EV_PREPARE_ENABLE
3657 /* queue prepare watchers (and execute them) */
3658 if (ecb_expect_false (preparecnt))
3659 {
3660 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3661 EV_INVOKE_PENDING;
3662 }
3663 #endif
3664
3665 if (ecb_expect_false (loop_done))
3666 break;
3667
3668 /* we might have forked, so reify kernel state if necessary */
3669 if (ecb_expect_false (postfork))
3670 loop_fork (EV_A);
3671
3672 /* update fd-related kernel structures */
3673 fd_reify (EV_A);
3674
3675 /* calculate blocking time */
3676 {
3677 ev_tstamp waittime = 0.;
3678 ev_tstamp sleeptime = 0.;
3679
3680 /* remember old timestamp for io_blocktime calculation */
3681 ev_tstamp prev_mn_now = mn_now;
3682
3683 /* update time to cancel out callback processing overhead */
3684 time_update (EV_A_ 1e100);
3685
3686 /* from now on, we want a pipe-wake-up */
3687 pipe_write_wanted = 1;
3688
3689 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3690
3691 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3692 {
3693 waittime = MAX_BLOCKTIME;
3694
3695 if (timercnt)
3696 {
3697 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3698 if (waittime > to) waittime = to;
3699 }
3700
3701 #if EV_PERIODIC_ENABLE
3702 if (periodiccnt)
3703 {
3704 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3705 if (waittime > to) waittime = to;
3706 }
3707 #endif
3708
3709 /* don't let timeouts decrease the waittime below timeout_blocktime */
3710 if (ecb_expect_false (waittime < timeout_blocktime))
3711 waittime = timeout_blocktime;
3712
3713 /* at this point, we NEED to wait, so we have to ensure */
3714 /* to pass a minimum nonzero value to the backend */
3715 if (ecb_expect_false (waittime < backend_mintime))
3716 waittime = backend_mintime;
3717
3718 /* extra check because io_blocktime is commonly 0 */
3719 if (ecb_expect_false (io_blocktime))
3720 {
3721 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3722
3723 if (sleeptime > waittime - backend_mintime)
3724 sleeptime = waittime - backend_mintime;
3725
3726 if (ecb_expect_true (sleeptime > 0.))
3727 {
3728 ev_sleep (sleeptime);
3729 waittime -= sleeptime;
3730 }
3731 }
3732 }
3733
3734 #if EV_FEATURE_API
3735 ++loop_count;
3736 #endif
3737 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3738 backend_poll (EV_A_ waittime);
3739 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3740
3741 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3742
3743 ECB_MEMORY_FENCE_ACQUIRE;
3744 if (pipe_write_skipped)
3745 {
3746 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3747 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3748 }
3749
3750 /* update ev_rt_now, do magic */
3751 time_update (EV_A_ waittime + sleeptime);
3752 }
3753
3754 /* queue pending timers and reschedule them */
3755 timers_reify (EV_A); /* relative timers called last */
3756 #if EV_PERIODIC_ENABLE
3757 periodics_reify (EV_A); /* absolute timers called first */
3758 #endif
3759
3760 #if EV_IDLE_ENABLE
3761 /* queue idle watchers unless other events are pending */
3762 idle_reify (EV_A);
3763 #endif
3764
3765 #if EV_CHECK_ENABLE
3766 /* queue check watchers, to be executed first */
3767 if (ecb_expect_false (checkcnt))
3768 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3769 #endif
3770
3771 EV_INVOKE_PENDING;
3772 }
3773 while (ecb_expect_true (
3774 activecnt
3775 && !loop_done
3776 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3777 ));
3778
3779 if (loop_done == EVBREAK_ONE)
3780 loop_done = EVBREAK_CANCEL;
3781
3782 #if EV_FEATURE_API
3783 --loop_depth;
3784 #endif
3785
3786 return activecnt;
3787 }
3788
3789 void
3790 ev_break (EV_P_ int how) EV_NOEXCEPT
3791 {
3792 loop_done = how;
3793 }
3794
3795 void
3796 ev_ref (EV_P) EV_NOEXCEPT
3797 {
3798 ++activecnt;
3799 }
3800
3801 void
3802 ev_unref (EV_P) EV_NOEXCEPT
3803 {
3804 --activecnt;
3805 }
3806
3807 void
3808 ev_now_update (EV_P) EV_NOEXCEPT
3809 {
3810 time_update (EV_A_ 1e100);
3811 }
3812
3813 void
3814 ev_suspend (EV_P) EV_NOEXCEPT
3815 {
3816 ev_now_update (EV_A);
3817 }
3818
3819 void
3820 ev_resume (EV_P) EV_NOEXCEPT
3821 {
3822 ev_tstamp mn_prev = mn_now;
3823
3824 ev_now_update (EV_A);
3825 timers_reschedule (EV_A_ mn_now - mn_prev);
3826 #if EV_PERIODIC_ENABLE
3827 /* TODO: really do this? */
3828 periodics_reschedule (EV_A);
3829 #endif
3830 }
3831
3832 /*****************************************************************************/
3833 /* singly-linked list management, used when the expected list length is short */
3834
3835 inline_size void
3836 wlist_add (WL *head, WL elem)
3837 {
3838 elem->next = *head;
3839 *head = elem;
3840 }
3841
3842 inline_size void
3843 wlist_del (WL *head, WL elem)
3844 {
3845 while (*head)
3846 {
3847 if (ecb_expect_true (*head == elem))
3848 {
3849 *head = elem->next;
3850 break;
3851 }
3852
3853 head = &(*head)->next;
3854 }
3855 }
3856
3857 /* internal, faster, version of ev_clear_pending */
3858 inline_speed void
3859 clear_pending (EV_P_ W w)
3860 {
3861 if (w->pending)
3862 {
3863 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3864 w->pending = 0;
3865 }
3866 }
3867
3868 int
3869 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3870 {
3871 W w_ = (W)w;
3872 int pending = w_->pending;
3873
3874 if (ecb_expect_true (pending))
3875 {
3876 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3877 p->w = (W)&pending_w;
3878 w_->pending = 0;
3879 return p->events;
3880 }
3881 else
3882 return 0;
3883 }
3884
3885 inline_size void
3886 pri_adjust (EV_P_ W w)
3887 {
3888 int pri = ev_priority (w);
3889 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3890 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3891 ev_set_priority (w, pri);
3892 }
3893
3894 inline_speed void
3895 ev_start (EV_P_ W w, int active)
3896 {
3897 pri_adjust (EV_A_ w);
3898 w->active = active;
3899 ev_ref (EV_A);
3900 }
3901
3902 inline_size void
3903 ev_stop (EV_P_ W w)
3904 {
3905 ev_unref (EV_A);
3906 w->active = 0;
3907 }
3908
3909 /*****************************************************************************/
3910
3911 ecb_noinline
3912 void
3913 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
3914 {
3915 int fd = w->fd;
3916
3917 if (ecb_expect_false (ev_is_active (w)))
3918 return;
3919
3920 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3921 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3922
3923 #if EV_VERIFY >= 2
3924 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
3925 #endif
3926 EV_FREQUENT_CHECK;
3927
3928 ev_start (EV_A_ (W)w, 1);
3929 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
3930 wlist_add (&anfds[fd].head, (WL)w);
3931
3932 /* common bug, apparently */
3933 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3934
3935 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3936 w->events &= ~EV__IOFDSET;
3937
3938 EV_FREQUENT_CHECK;
3939 }
3940
3941 ecb_noinline
3942 void
3943 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
3944 {
3945 clear_pending (EV_A_ (W)w);
3946 if (ecb_expect_false (!ev_is_active (w)))
3947 return;
3948
3949 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3950
3951 #if EV_VERIFY >= 2
3952 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
3953 #endif
3954 EV_FREQUENT_CHECK;
3955
3956 wlist_del (&anfds[w->fd].head, (WL)w);
3957 ev_stop (EV_A_ (W)w);
3958
3959 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3960
3961 EV_FREQUENT_CHECK;
3962 }
3963
3964 ecb_noinline
3965 void
3966 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
3967 {
3968 if (ecb_expect_false (ev_is_active (w)))
3969 return;
3970
3971 ev_at (w) += mn_now;
3972
3973 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3974
3975 EV_FREQUENT_CHECK;
3976
3977 ++timercnt;
3978 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3979 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
3980 ANHE_w (timers [ev_active (w)]) = (WT)w;
3981 ANHE_at_cache (timers [ev_active (w)]);
3982 upheap (timers, ev_active (w));
3983
3984 EV_FREQUENT_CHECK;
3985
3986 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3987 }
3988
3989 ecb_noinline
3990 void
3991 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
3992 {
3993 clear_pending (EV_A_ (W)w);
3994 if (ecb_expect_false (!ev_is_active (w)))
3995 return;
3996
3997 EV_FREQUENT_CHECK;
3998
3999 {
4000 int active = ev_active (w);
4001
4002 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4003
4004 --timercnt;
4005
4006 if (ecb_expect_true (active < timercnt + HEAP0))
4007 {
4008 timers [active] = timers [timercnt + HEAP0];
4009 adjustheap (timers, timercnt, active);
4010 }
4011 }
4012
4013 ev_at (w) -= mn_now;
4014
4015 ev_stop (EV_A_ (W)w);
4016
4017 EV_FREQUENT_CHECK;
4018 }
4019
4020 ecb_noinline
4021 void
4022 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4023 {
4024 EV_FREQUENT_CHECK;
4025
4026 clear_pending (EV_A_ (W)w);
4027
4028 if (ev_is_active (w))
4029 {
4030 if (w->repeat)
4031 {
4032 ev_at (w) = mn_now + w->repeat;
4033 ANHE_at_cache (timers [ev_active (w)]);
4034 adjustheap (timers, timercnt, ev_active (w));
4035 }
4036 else
4037 ev_timer_stop (EV_A_ w);
4038 }
4039 else if (w->repeat)
4040 {
4041 ev_at (w) = w->repeat;
4042 ev_timer_start (EV_A_ w);
4043 }
4044
4045 EV_FREQUENT_CHECK;
4046 }
4047
4048 ev_tstamp
4049 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4050 {
4051 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4052 }
4053
4054 #if EV_PERIODIC_ENABLE
4055 ecb_noinline
4056 void
4057 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4058 {
4059 if (ecb_expect_false (ev_is_active (w)))
4060 return;
4061
4062 if (w->reschedule_cb)
4063 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4064 else if (w->interval)
4065 {
4066 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4067 periodic_recalc (EV_A_ w);
4068 }
4069 else
4070 ev_at (w) = w->offset;
4071
4072 EV_FREQUENT_CHECK;
4073
4074 ++periodiccnt;
4075 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4076 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4077 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4078 ANHE_at_cache (periodics [ev_active (w)]);
4079 upheap (periodics, ev_active (w));
4080
4081 EV_FREQUENT_CHECK;
4082
4083 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4084 }
4085
4086 ecb_noinline
4087 void
4088 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4089 {
4090 clear_pending (EV_A_ (W)w);
4091 if (ecb_expect_false (!ev_is_active (w)))
4092 return;
4093
4094 EV_FREQUENT_CHECK;
4095
4096 {
4097 int active = ev_active (w);
4098
4099 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4100
4101 --periodiccnt;
4102
4103 if (ecb_expect_true (active < periodiccnt + HEAP0))
4104 {
4105 periodics [active] = periodics [periodiccnt + HEAP0];
4106 adjustheap (periodics, periodiccnt, active);
4107 }
4108 }
4109
4110 ev_stop (EV_A_ (W)w);
4111
4112 EV_FREQUENT_CHECK;
4113 }
4114
4115 ecb_noinline
4116 void
4117 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4118 {
4119 /* TODO: use adjustheap and recalculation */
4120 ev_periodic_stop (EV_A_ w);
4121 ev_periodic_start (EV_A_ w);
4122 }
4123 #endif
4124
4125 #ifndef SA_RESTART
4126 # define SA_RESTART 0
4127 #endif
4128
4129 #if EV_SIGNAL_ENABLE
4130
4131 ecb_noinline
4132 void
4133 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4134 {
4135 if (ecb_expect_false (ev_is_active (w)))
4136 return;
4137
4138 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4139
4140 #if EV_MULTIPLICITY
4141 assert (("libev: a signal must not be attached to two different loops",
4142 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4143
4144 signals [w->signum - 1].loop = EV_A;
4145 ECB_MEMORY_FENCE_RELEASE;
4146 #endif
4147
4148 EV_FREQUENT_CHECK;
4149
4150 #if EV_USE_SIGNALFD
4151 if (sigfd == -2)
4152 {
4153 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4154 if (sigfd < 0 && errno == EINVAL)
4155 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4156
4157 if (sigfd >= 0)
4158 {
4159 fd_intern (sigfd); /* doing it twice will not hurt */
4160
4161 sigemptyset (&sigfd_set);
4162
4163 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4164 ev_set_priority (&sigfd_w, EV_MAXPRI);
4165 ev_io_start (EV_A_ &sigfd_w);
4166 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4167 }
4168 }
4169
4170 if (sigfd >= 0)
4171 {
4172 /* TODO: check .head */
4173 sigaddset (&sigfd_set, w->signum);
4174 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4175
4176 signalfd (sigfd, &sigfd_set, 0);
4177 }
4178 #endif
4179
4180 ev_start (EV_A_ (W)w, 1);
4181 wlist_add (&signals [w->signum - 1].head, (WL)w);
4182
4183 if (!((WL)w)->next)
4184 # if EV_USE_SIGNALFD
4185 if (sigfd < 0) /*TODO*/
4186 # endif
4187 {
4188 # ifdef _WIN32
4189 evpipe_init (EV_A);
4190
4191 signal (w->signum, ev_sighandler);
4192 # else
4193 struct sigaction sa;
4194
4195 evpipe_init (EV_A);
4196
4197 sa.sa_handler = ev_sighandler;
4198 sigfillset (&sa.sa_mask);
4199 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4200 sigaction (w->signum, &sa, 0);
4201
4202 if (origflags & EVFLAG_NOSIGMASK)
4203 {
4204 sigemptyset (&sa.sa_mask);
4205 sigaddset (&sa.sa_mask, w->signum);
4206 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4207 }
4208 #endif
4209 }
4210
4211 EV_FREQUENT_CHECK;
4212 }
4213
4214 ecb_noinline
4215 void
4216 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4217 {
4218 clear_pending (EV_A_ (W)w);
4219 if (ecb_expect_false (!ev_is_active (w)))
4220 return;
4221
4222 EV_FREQUENT_CHECK;
4223
4224 wlist_del (&signals [w->signum - 1].head, (WL)w);
4225 ev_stop (EV_A_ (W)w);
4226
4227 if (!signals [w->signum - 1].head)
4228 {
4229 #if EV_MULTIPLICITY
4230 signals [w->signum - 1].loop = 0; /* unattach from signal */
4231 #endif
4232 #if EV_USE_SIGNALFD
4233 if (sigfd >= 0)
4234 {
4235 sigset_t ss;
4236
4237 sigemptyset (&ss);
4238 sigaddset (&ss, w->signum);
4239 sigdelset (&sigfd_set, w->signum);
4240
4241 signalfd (sigfd, &sigfd_set, 0);
4242 sigprocmask (SIG_UNBLOCK, &ss, 0);
4243 }
4244 else
4245 #endif
4246 signal (w->signum, SIG_DFL);
4247 }
4248
4249 EV_FREQUENT_CHECK;
4250 }
4251
4252 #endif
4253
4254 #if EV_CHILD_ENABLE
4255
4256 void
4257 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4258 {
4259 #if EV_MULTIPLICITY
4260 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4261 #endif
4262 if (ecb_expect_false (ev_is_active (w)))
4263 return;
4264
4265 EV_FREQUENT_CHECK;
4266
4267 ev_start (EV_A_ (W)w, 1);
4268 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4269
4270 EV_FREQUENT_CHECK;
4271 }
4272
4273 void
4274 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4275 {
4276 clear_pending (EV_A_ (W)w);
4277 if (ecb_expect_false (!ev_is_active (w)))
4278 return;
4279
4280 EV_FREQUENT_CHECK;
4281
4282 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4283 ev_stop (EV_A_ (W)w);
4284
4285 EV_FREQUENT_CHECK;
4286 }
4287
4288 #endif
4289
4290 #if EV_STAT_ENABLE
4291
4292 # ifdef _WIN32
4293 # undef lstat
4294 # define lstat(a,b) _stati64 (a,b)
4295 # endif
4296
4297 #define DEF_STAT_INTERVAL 5.0074891
4298 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4299 #define MIN_STAT_INTERVAL 0.1074891
4300
4301 ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4302
4303 #if EV_USE_INOTIFY
4304
4305 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4306 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4307
4308 ecb_noinline
4309 static void
4310 infy_add (EV_P_ ev_stat *w)
4311 {
4312 w->wd = inotify_add_watch (fs_fd, w->path,
4313 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4314 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4315 | IN_DONT_FOLLOW | IN_MASK_ADD);
4316
4317 if (w->wd >= 0)
4318 {
4319 struct statfs sfs;
4320
4321 /* now local changes will be tracked by inotify, but remote changes won't */
4322 /* unless the filesystem is known to be local, we therefore still poll */
4323 /* also do poll on <2.6.25, but with normal frequency */
4324
4325 if (!fs_2625)
4326 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4327 else if (!statfs (w->path, &sfs)
4328 && (sfs.f_type == 0x1373 /* devfs */
4329 || sfs.f_type == 0x4006 /* fat */
4330 || sfs.f_type == 0x4d44 /* msdos */
4331 || sfs.f_type == 0xEF53 /* ext2/3 */
4332 || sfs.f_type == 0x72b6 /* jffs2 */
4333 || sfs.f_type == 0x858458f6 /* ramfs */
4334 || sfs.f_type == 0x5346544e /* ntfs */
4335 || sfs.f_type == 0x3153464a /* jfs */
4336 || sfs.f_type == 0x9123683e /* btrfs */
4337 || sfs.f_type == 0x52654973 /* reiser3 */
4338 || sfs.f_type == 0x01021994 /* tmpfs */
4339 || sfs.f_type == 0x58465342 /* xfs */))
4340 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4341 else
4342 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4343 }
4344 else
4345 {
4346 /* can't use inotify, continue to stat */
4347 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4348
4349 /* if path is not there, monitor some parent directory for speedup hints */
4350 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4351 /* but an efficiency issue only */
4352 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4353 {
4354 char path [4096];
4355 strcpy (path, w->path);
4356
4357 do
4358 {
4359 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4360 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4361
4362 char *pend = strrchr (path, '/');
4363
4364 if (!pend || pend == path)
4365 break;
4366
4367 *pend = 0;
4368 w->wd = inotify_add_watch (fs_fd, path, mask);
4369 }
4370 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4371 }
4372 }
4373
4374 if (w->wd >= 0)
4375 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4376
4377 /* now re-arm timer, if required */
4378 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4379 ev_timer_again (EV_A_ &w->timer);
4380 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4381 }
4382
4383 ecb_noinline
4384 static void
4385 infy_del (EV_P_ ev_stat *w)
4386 {
4387 int slot;
4388 int wd = w->wd;
4389
4390 if (wd < 0)
4391 return;
4392
4393 w->wd = -2;
4394 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4395 wlist_del (&fs_hash [slot].head, (WL)w);
4396
4397 /* remove this watcher, if others are watching it, they will rearm */
4398 inotify_rm_watch (fs_fd, wd);
4399 }
4400
4401 ecb_noinline
4402 static void
4403 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4404 {
4405 if (slot < 0)
4406 /* overflow, need to check for all hash slots */
4407 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4408 infy_wd (EV_A_ slot, wd, ev);
4409 else
4410 {
4411 WL w_;
4412
4413 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4414 {
4415 ev_stat *w = (ev_stat *)w_;
4416 w_ = w_->next; /* lets us remove this watcher and all before it */
4417
4418 if (w->wd == wd || wd == -1)
4419 {
4420 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4421 {
4422 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4423 w->wd = -1;
4424 infy_add (EV_A_ w); /* re-add, no matter what */
4425 }
4426
4427 stat_timer_cb (EV_A_ &w->timer, 0);
4428 }
4429 }
4430 }
4431 }
4432
4433 static void
4434 infy_cb (EV_P_ ev_io *w, int revents)
4435 {
4436 char buf [EV_INOTIFY_BUFSIZE];
4437 int ofs;
4438 int len = read (fs_fd, buf, sizeof (buf));
4439
4440 for (ofs = 0; ofs < len; )
4441 {
4442 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4443 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4444 ofs += sizeof (struct inotify_event) + ev->len;
4445 }
4446 }
4447
4448 inline_size ecb_cold
4449 void
4450 ev_check_2625 (EV_P)
4451 {
4452 /* kernels < 2.6.25 are borked
4453 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4454 */
4455 if (ev_linux_version () < 0x020619)
4456 return;
4457
4458 fs_2625 = 1;
4459 }
4460
4461 inline_size int
4462 infy_newfd (void)
4463 {
4464 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4465 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4466 if (fd >= 0)
4467 return fd;
4468 #endif
4469 return inotify_init ();
4470 }
4471
4472 inline_size void
4473 infy_init (EV_P)
4474 {
4475 if (fs_fd != -2)
4476 return;
4477
4478 fs_fd = -1;
4479
4480 ev_check_2625 (EV_A);
4481
4482 fs_fd = infy_newfd ();
4483
4484 if (fs_fd >= 0)
4485 {
4486 fd_intern (fs_fd);
4487 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4488 ev_set_priority (&fs_w, EV_MAXPRI);
4489 ev_io_start (EV_A_ &fs_w);
4490 ev_unref (EV_A);
4491 }
4492 }
4493
4494 inline_size void
4495 infy_fork (EV_P)
4496 {
4497 int slot;
4498
4499 if (fs_fd < 0)
4500 return;
4501
4502 ev_ref (EV_A);
4503 ev_io_stop (EV_A_ &fs_w);
4504 close (fs_fd);
4505 fs_fd = infy_newfd ();
4506
4507 if (fs_fd >= 0)
4508 {
4509 fd_intern (fs_fd);
4510 ev_io_set (&fs_w, fs_fd, EV_READ);
4511 ev_io_start (EV_A_ &fs_w);
4512 ev_unref (EV_A);
4513 }
4514
4515 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4516 {
4517 WL w_ = fs_hash [slot].head;
4518 fs_hash [slot].head = 0;
4519
4520 while (w_)
4521 {
4522 ev_stat *w = (ev_stat *)w_;
4523 w_ = w_->next; /* lets us add this watcher */
4524
4525 w->wd = -1;
4526
4527 if (fs_fd >= 0)
4528 infy_add (EV_A_ w); /* re-add, no matter what */
4529 else
4530 {
4531 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4532 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4533 ev_timer_again (EV_A_ &w->timer);
4534 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4535 }
4536 }
4537 }
4538 }
4539
4540 #endif
4541
4542 #ifdef _WIN32
4543 # define EV_LSTAT(p,b) _stati64 (p, b)
4544 #else
4545 # define EV_LSTAT(p,b) lstat (p, b)
4546 #endif
4547
4548 void
4549 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4550 {
4551 if (lstat (w->path, &w->attr) < 0)
4552 w->attr.st_nlink = 0;
4553 else if (!w->attr.st_nlink)
4554 w->attr.st_nlink = 1;
4555 }
4556
4557 ecb_noinline
4558 static void
4559 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4560 {
4561 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4562
4563 ev_statdata prev = w->attr;
4564 ev_stat_stat (EV_A_ w);
4565
4566 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4567 if (
4568 prev.st_dev != w->attr.st_dev
4569 || prev.st_ino != w->attr.st_ino
4570 || prev.st_mode != w->attr.st_mode
4571 || prev.st_nlink != w->attr.st_nlink
4572 || prev.st_uid != w->attr.st_uid
4573 || prev.st_gid != w->attr.st_gid
4574 || prev.st_rdev != w->attr.st_rdev
4575 || prev.st_size != w->attr.st_size
4576 || prev.st_atime != w->attr.st_atime
4577 || prev.st_mtime != w->attr.st_mtime
4578 || prev.st_ctime != w->attr.st_ctime
4579 ) {
4580 /* we only update w->prev on actual differences */
4581 /* in case we test more often than invoke the callback, */
4582 /* to ensure that prev is always different to attr */
4583 w->prev = prev;
4584
4585 #if EV_USE_INOTIFY
4586 if (fs_fd >= 0)
4587 {
4588 infy_del (EV_A_ w);
4589 infy_add (EV_A_ w);
4590 ev_stat_stat (EV_A_ w); /* avoid race... */
4591 }
4592 #endif
4593
4594 ev_feed_event (EV_A_ w, EV_STAT);
4595 }
4596 }
4597
4598 void
4599 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4600 {
4601 if (ecb_expect_false (ev_is_active (w)))
4602 return;
4603
4604 ev_stat_stat (EV_A_ w);
4605
4606 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4607 w->interval = MIN_STAT_INTERVAL;
4608
4609 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4610 ev_set_priority (&w->timer, ev_priority (w));
4611
4612 #if EV_USE_INOTIFY
4613 infy_init (EV_A);
4614
4615 if (fs_fd >= 0)
4616 infy_add (EV_A_ w);
4617 else
4618 #endif
4619 {
4620 ev_timer_again (EV_A_ &w->timer);
4621 ev_unref (EV_A);
4622 }
4623
4624 ev_start (EV_A_ (W)w, 1);
4625
4626 EV_FREQUENT_CHECK;
4627 }
4628
4629 void
4630 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4631 {
4632 clear_pending (EV_A_ (W)w);
4633 if (ecb_expect_false (!ev_is_active (w)))
4634 return;
4635
4636 EV_FREQUENT_CHECK;
4637
4638 #if EV_USE_INOTIFY
4639 infy_del (EV_A_ w);
4640 #endif
4641
4642 if (ev_is_active (&w->timer))
4643 {
4644 ev_ref (EV_A);
4645 ev_timer_stop (EV_A_ &w->timer);
4646 }
4647
4648 ev_stop (EV_A_ (W)w);
4649
4650 EV_FREQUENT_CHECK;
4651 }
4652 #endif
4653
4654 #if EV_IDLE_ENABLE
4655 void
4656 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4657 {
4658 if (ecb_expect_false (ev_is_active (w)))
4659 return;
4660
4661 pri_adjust (EV_A_ (W)w);
4662
4663 EV_FREQUENT_CHECK;
4664
4665 {
4666 int active = ++idlecnt [ABSPRI (w)];
4667
4668 ++idleall;
4669 ev_start (EV_A_ (W)w, active);
4670
4671 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4672 idles [ABSPRI (w)][active - 1] = w;
4673 }
4674
4675 EV_FREQUENT_CHECK;
4676 }
4677
4678 void
4679 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4680 {
4681 clear_pending (EV_A_ (W)w);
4682 if (ecb_expect_false (!ev_is_active (w)))
4683 return;
4684
4685 EV_FREQUENT_CHECK;
4686
4687 {
4688 int active = ev_active (w);
4689
4690 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4691 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4692
4693 ev_stop (EV_A_ (W)w);
4694 --idleall;
4695 }
4696
4697 EV_FREQUENT_CHECK;
4698 }
4699 #endif
4700
4701 #if EV_PREPARE_ENABLE
4702 void
4703 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4704 {
4705 if (ecb_expect_false (ev_is_active (w)))
4706 return;
4707
4708 EV_FREQUENT_CHECK;
4709
4710 ev_start (EV_A_ (W)w, ++preparecnt);
4711 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4712 prepares [preparecnt - 1] = w;
4713
4714 EV_FREQUENT_CHECK;
4715 }
4716
4717 void
4718 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4719 {
4720 clear_pending (EV_A_ (W)w);
4721 if (ecb_expect_false (!ev_is_active (w)))
4722 return;
4723
4724 EV_FREQUENT_CHECK;
4725
4726 {
4727 int active = ev_active (w);
4728
4729 prepares [active - 1] = prepares [--preparecnt];
4730 ev_active (prepares [active - 1]) = active;
4731 }
4732
4733 ev_stop (EV_A_ (W)w);
4734
4735 EV_FREQUENT_CHECK;
4736 }
4737 #endif
4738
4739 #if EV_CHECK_ENABLE
4740 void
4741 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4742 {
4743 if (ecb_expect_false (ev_is_active (w)))
4744 return;
4745
4746 EV_FREQUENT_CHECK;
4747
4748 ev_start (EV_A_ (W)w, ++checkcnt);
4749 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4750 checks [checkcnt - 1] = w;
4751
4752 EV_FREQUENT_CHECK;
4753 }
4754
4755 void
4756 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4757 {
4758 clear_pending (EV_A_ (W)w);
4759 if (ecb_expect_false (!ev_is_active (w)))
4760 return;
4761
4762 EV_FREQUENT_CHECK;
4763
4764 {
4765 int active = ev_active (w);
4766
4767 checks [active - 1] = checks [--checkcnt];
4768 ev_active (checks [active - 1]) = active;
4769 }
4770
4771 ev_stop (EV_A_ (W)w);
4772
4773 EV_FREQUENT_CHECK;
4774 }
4775 #endif
4776
4777 #if EV_EMBED_ENABLE
4778 ecb_noinline
4779 void
4780 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4781 {
4782 ev_run (w->other, EVRUN_NOWAIT);
4783 }
4784
4785 static void
4786 embed_io_cb (EV_P_ ev_io *io, int revents)
4787 {
4788 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4789
4790 if (ev_cb (w))
4791 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4792 else
4793 ev_run (w->other, EVRUN_NOWAIT);
4794 }
4795
4796 static void
4797 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4798 {
4799 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4800
4801 {
4802 EV_P = w->other;
4803
4804 while (fdchangecnt)
4805 {
4806 fd_reify (EV_A);
4807 ev_run (EV_A_ EVRUN_NOWAIT);
4808 }
4809 }
4810 }
4811
4812 static void
4813 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4814 {
4815 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4816
4817 ev_embed_stop (EV_A_ w);
4818
4819 {
4820 EV_P = w->other;
4821
4822 ev_loop_fork (EV_A);
4823 ev_run (EV_A_ EVRUN_NOWAIT);
4824 }
4825
4826 ev_embed_start (EV_A_ w);
4827 }
4828
4829 #if 0
4830 static void
4831 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4832 {
4833 ev_idle_stop (EV_A_ idle);
4834 }
4835 #endif
4836
4837 void
4838 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4839 {
4840 if (ecb_expect_false (ev_is_active (w)))
4841 return;
4842
4843 {
4844 EV_P = w->other;
4845 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4846 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4847 }
4848
4849 EV_FREQUENT_CHECK;
4850
4851 ev_set_priority (&w->io, ev_priority (w));
4852 ev_io_start (EV_A_ &w->io);
4853
4854 ev_prepare_init (&w->prepare, embed_prepare_cb);
4855 ev_set_priority (&w->prepare, EV_MINPRI);
4856 ev_prepare_start (EV_A_ &w->prepare);
4857
4858 ev_fork_init (&w->fork, embed_fork_cb);
4859 ev_fork_start (EV_A_ &w->fork);
4860
4861 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4862
4863 ev_start (EV_A_ (W)w, 1);
4864
4865 EV_FREQUENT_CHECK;
4866 }
4867
4868 void
4869 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4870 {
4871 clear_pending (EV_A_ (W)w);
4872 if (ecb_expect_false (!ev_is_active (w)))
4873 return;
4874
4875 EV_FREQUENT_CHECK;
4876
4877 ev_io_stop (EV_A_ &w->io);
4878 ev_prepare_stop (EV_A_ &w->prepare);
4879 ev_fork_stop (EV_A_ &w->fork);
4880
4881 ev_stop (EV_A_ (W)w);
4882
4883 EV_FREQUENT_CHECK;
4884 }
4885 #endif
4886
4887 #if EV_FORK_ENABLE
4888 void
4889 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4890 {
4891 if (ecb_expect_false (ev_is_active (w)))
4892 return;
4893
4894 EV_FREQUENT_CHECK;
4895
4896 ev_start (EV_A_ (W)w, ++forkcnt);
4897 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
4898 forks [forkcnt - 1] = w;
4899
4900 EV_FREQUENT_CHECK;
4901 }
4902
4903 void
4904 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4905 {
4906 clear_pending (EV_A_ (W)w);
4907 if (ecb_expect_false (!ev_is_active (w)))
4908 return;
4909
4910 EV_FREQUENT_CHECK;
4911
4912 {
4913 int active = ev_active (w);
4914
4915 forks [active - 1] = forks [--forkcnt];
4916 ev_active (forks [active - 1]) = active;
4917 }
4918
4919 ev_stop (EV_A_ (W)w);
4920
4921 EV_FREQUENT_CHECK;
4922 }
4923 #endif
4924
4925 #if EV_CLEANUP_ENABLE
4926 void
4927 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4928 {
4929 if (ecb_expect_false (ev_is_active (w)))
4930 return;
4931
4932 EV_FREQUENT_CHECK;
4933
4934 ev_start (EV_A_ (W)w, ++cleanupcnt);
4935 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4936 cleanups [cleanupcnt - 1] = w;
4937
4938 /* cleanup watchers should never keep a refcount on the loop */
4939 ev_unref (EV_A);
4940 EV_FREQUENT_CHECK;
4941 }
4942
4943 void
4944 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4945 {
4946 clear_pending (EV_A_ (W)w);
4947 if (ecb_expect_false (!ev_is_active (w)))
4948 return;
4949
4950 EV_FREQUENT_CHECK;
4951 ev_ref (EV_A);
4952
4953 {
4954 int active = ev_active (w);
4955
4956 cleanups [active - 1] = cleanups [--cleanupcnt];
4957 ev_active (cleanups [active - 1]) = active;
4958 }
4959
4960 ev_stop (EV_A_ (W)w);
4961
4962 EV_FREQUENT_CHECK;
4963 }
4964 #endif
4965
4966 #if EV_ASYNC_ENABLE
4967 void
4968 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4969 {
4970 if (ecb_expect_false (ev_is_active (w)))
4971 return;
4972
4973 w->sent = 0;
4974
4975 evpipe_init (EV_A);
4976
4977 EV_FREQUENT_CHECK;
4978
4979 ev_start (EV_A_ (W)w, ++asynccnt);
4980 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4981 asyncs [asynccnt - 1] = w;
4982
4983 EV_FREQUENT_CHECK;
4984 }
4985
4986 void
4987 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4988 {
4989 clear_pending (EV_A_ (W)w);
4990 if (ecb_expect_false (!ev_is_active (w)))
4991 return;
4992
4993 EV_FREQUENT_CHECK;
4994
4995 {
4996 int active = ev_active (w);
4997
4998 asyncs [active - 1] = asyncs [--asynccnt];
4999 ev_active (asyncs [active - 1]) = active;
5000 }
5001
5002 ev_stop (EV_A_ (W)w);
5003
5004 EV_FREQUENT_CHECK;
5005 }
5006
5007 void
5008 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5009 {
5010 w->sent = 1;
5011 evpipe_write (EV_A_ &async_pending);
5012 }
5013 #endif
5014
5015 /*****************************************************************************/
5016
5017 struct ev_once
5018 {
5019 ev_io io;
5020 ev_timer to;
5021 void (*cb)(int revents, void *arg);
5022 void *arg;
5023 };
5024
5025 static void
5026 once_cb (EV_P_ struct ev_once *once, int revents)
5027 {
5028 void (*cb)(int revents, void *arg) = once->cb;
5029 void *arg = once->arg;
5030
5031 ev_io_stop (EV_A_ &once->io);
5032 ev_timer_stop (EV_A_ &once->to);
5033 ev_free (once);
5034
5035 cb (revents, arg);
5036 }
5037
5038 static void
5039 once_cb_io (EV_P_ ev_io *w, int revents)
5040 {
5041 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5042
5043 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5044 }
5045
5046 static void
5047 once_cb_to (EV_P_ ev_timer *w, int revents)
5048 {
5049 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5050
5051 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5052 }
5053
5054 void
5055 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5056 {
5057 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5058
5059 once->cb = cb;
5060 once->arg = arg;
5061
5062 ev_init (&once->io, once_cb_io);
5063 if (fd >= 0)
5064 {
5065 ev_io_set (&once->io, fd, events);
5066 ev_io_start (EV_A_ &once->io);
5067 }
5068
5069 ev_init (&once->to, once_cb_to);
5070 if (timeout >= 0.)
5071 {
5072 ev_timer_set (&once->to, timeout, 0.);
5073 ev_timer_start (EV_A_ &once->to);
5074 }
5075 }
5076
5077 /*****************************************************************************/
5078
5079 #if EV_WALK_ENABLE
5080 ecb_cold
5081 void
5082 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5083 {
5084 int i, j;
5085 ev_watcher_list *wl, *wn;
5086
5087 if (types & (EV_IO | EV_EMBED))
5088 for (i = 0; i < anfdmax; ++i)
5089 for (wl = anfds [i].head; wl; )
5090 {
5091 wn = wl->next;
5092
5093 #if EV_EMBED_ENABLE
5094 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5095 {
5096 if (types & EV_EMBED)
5097 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5098 }
5099 else
5100 #endif
5101 #if EV_USE_INOTIFY
5102 if (ev_cb ((ev_io *)wl) == infy_cb)
5103 ;
5104 else
5105 #endif
5106 if ((ev_io *)wl != &pipe_w)
5107 if (types & EV_IO)
5108 cb (EV_A_ EV_IO, wl);
5109
5110 wl = wn;
5111 }
5112
5113 if (types & (EV_TIMER | EV_STAT))
5114 for (i = timercnt + HEAP0; i-- > HEAP0; )
5115 #if EV_STAT_ENABLE
5116 /*TODO: timer is not always active*/
5117 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5118 {
5119 if (types & EV_STAT)
5120 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5121 }
5122 else
5123 #endif
5124 if (types & EV_TIMER)
5125 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5126
5127 #if EV_PERIODIC_ENABLE
5128 if (types & EV_PERIODIC)
5129 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5130 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5131 #endif
5132
5133 #if EV_IDLE_ENABLE
5134 if (types & EV_IDLE)
5135 for (j = NUMPRI; j--; )
5136 for (i = idlecnt [j]; i--; )
5137 cb (EV_A_ EV_IDLE, idles [j][i]);
5138 #endif
5139
5140 #if EV_FORK_ENABLE
5141 if (types & EV_FORK)
5142 for (i = forkcnt; i--; )
5143 if (ev_cb (forks [i]) != embed_fork_cb)
5144 cb (EV_A_ EV_FORK, forks [i]);
5145 #endif
5146
5147 #if EV_ASYNC_ENABLE
5148 if (types & EV_ASYNC)
5149 for (i = asynccnt; i--; )
5150 cb (EV_A_ EV_ASYNC, asyncs [i]);
5151 #endif
5152
5153 #if EV_PREPARE_ENABLE
5154 if (types & EV_PREPARE)
5155 for (i = preparecnt; i--; )
5156 # if EV_EMBED_ENABLE
5157 if (ev_cb (prepares [i]) != embed_prepare_cb)
5158 # endif
5159 cb (EV_A_ EV_PREPARE, prepares [i]);
5160 #endif
5161
5162 #if EV_CHECK_ENABLE
5163 if (types & EV_CHECK)
5164 for (i = checkcnt; i--; )
5165 cb (EV_A_ EV_CHECK, checks [i]);
5166 #endif
5167
5168 #if EV_SIGNAL_ENABLE
5169 if (types & EV_SIGNAL)
5170 for (i = 0; i < EV_NSIG - 1; ++i)
5171 for (wl = signals [i].head; wl; )
5172 {
5173 wn = wl->next;
5174 cb (EV_A_ EV_SIGNAL, wl);
5175 wl = wn;
5176 }
5177 #endif
5178
5179 #if EV_CHILD_ENABLE
5180 if (types & EV_CHILD)
5181 for (i = (EV_PID_HASHSIZE); i--; )
5182 for (wl = childs [i]; wl; )
5183 {
5184 wn = wl->next;
5185 cb (EV_A_ EV_CHILD, wl);
5186 wl = wn;
5187 }
5188 #endif
5189 /* EV_STAT 0x00001000 /* stat data changed */
5190 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5191 }
5192 #endif
5193
5194 #if EV_MULTIPLICITY
5195 #include "ev_wrap.h"
5196 #endif
5197