ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.52
Committed: Sat Nov 3 22:10:39 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.51: +2 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31 #ifndef EV_STANDALONE
32 # include "config.h"
33 #endif
34
35 #include <math.h>
36 #include <stdlib.h>
37 #include <unistd.h>
38 #include <fcntl.h>
39 #include <signal.h>
40 #include <stddef.h>
41
42 #include <stdio.h>
43
44 #include <assert.h>
45 #include <errno.h>
46 #include <sys/types.h>
47 #ifndef WIN32
48 # include <sys/wait.h>
49 #endif
50 #include <sys/time.h>
51 #include <time.h>
52
53 /**/
54
55 #ifndef EV_USE_MONOTONIC
56 # define EV_USE_MONOTONIC 1
57 #endif
58
59 #ifndef EV_USE_SELECT
60 # define EV_USE_SELECT 1
61 #endif
62
63 #ifndef EV_USEV_POLL
64 # define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65 #endif
66
67 #ifndef EV_USE_EPOLL
68 # define EV_USE_EPOLL 0
69 #endif
70
71 #ifndef EV_USE_KQUEUE
72 # define EV_USE_KQUEUE 0
73 #endif
74
75 #ifndef EV_USE_REALTIME
76 # define EV_USE_REALTIME 1
77 #endif
78
79 /**/
80
81 #ifndef CLOCK_MONOTONIC
82 # undef EV_USE_MONOTONIC
83 # define EV_USE_MONOTONIC 0
84 #endif
85
86 #ifndef CLOCK_REALTIME
87 # undef EV_USE_REALTIME
88 # define EV_USE_REALTIME 0
89 #endif
90
91 /**/
92
93 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97
98 #include "ev.h"
99
100 #if __GNUC__ >= 3
101 # define expect(expr,value) __builtin_expect ((expr),(value))
102 # define inline inline
103 #else
104 # define expect(expr,value) (expr)
105 # define inline static
106 #endif
107
108 #define expect_false(expr) expect ((expr) != 0, 0)
109 #define expect_true(expr) expect ((expr) != 0, 1)
110
111 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112 #define ABSPRI(w) ((w)->priority - EV_MINPRI)
113
114 typedef struct ev_watcher *W;
115 typedef struct ev_watcher_list *WL;
116 typedef struct ev_watcher_time *WT;
117
118 static ev_tstamp now_floor, mn_now, diff; /* monotonic clock */
119 static ev_tstamp rt_now;
120 static int method;
121
122 static int have_monotonic; /* runtime */
123
124 static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125 static void (*method_modify)(EV_P_ int fd, int oev, int nev);
126 static void (*method_poll)(EV_P_ ev_tstamp timeout);
127
128 static int activecnt; /* number of active events */
129
130 #if EV_USE_SELECT
131 static unsigned char *vec_ri, *vec_ro, *vec_wi, *vec_wo;
132 static int vec_max;
133 #endif
134
135 #if EV_USEV_POLL
136 static struct pollfd *polls;
137 static int pollmax, pollcnt;
138 static int *pollidxs; /* maps fds into structure indices */
139 static int pollidxmax;
140 #endif
141
142 #if EV_USE_EPOLL
143 static int epoll_fd = -1;
144
145 static struct epoll_event *events;
146 static int eventmax;
147 #endif
148
149 #if EV_USE_KQUEUE
150 static int kqueue_fd;
151 static struct kevent *kqueue_changes;
152 static int kqueue_changemax, kqueue_changecnt;
153 static struct kevent *kqueue_events;
154 static int kqueue_eventmax;
155 #endif
156
157 /*****************************************************************************/
158
159 inline ev_tstamp
160 ev_time (void)
161 {
162 #if EV_USE_REALTIME
163 struct timespec ts;
164 clock_gettime (CLOCK_REALTIME, &ts);
165 return ts.tv_sec + ts.tv_nsec * 1e-9;
166 #else
167 struct timeval tv;
168 gettimeofday (&tv, 0);
169 return tv.tv_sec + tv.tv_usec * 1e-6;
170 #endif
171 }
172
173 inline ev_tstamp
174 get_clock (void)
175 {
176 #if EV_USE_MONOTONIC
177 if (expect_true (have_monotonic))
178 {
179 struct timespec ts;
180 clock_gettime (CLOCK_MONOTONIC, &ts);
181 return ts.tv_sec + ts.tv_nsec * 1e-9;
182 }
183 #endif
184
185 return ev_time ();
186 }
187
188 ev_tstamp
189 ev_now (EV_P)
190 {
191 return rt_now;
192 }
193
194 #define array_roundsize(base,n) ((n) | 4 & ~3)
195
196 #define array_needsize(base,cur,cnt,init) \
197 if (expect_false ((cnt) > cur)) \
198 { \
199 int newcnt = cur; \
200 do \
201 { \
202 newcnt = array_roundsize (base, newcnt << 1); \
203 } \
204 while ((cnt) > newcnt); \
205 \
206 base = realloc (base, sizeof (*base) * (newcnt)); \
207 init (base + cur, newcnt - cur); \
208 cur = newcnt; \
209 }
210
211 /*****************************************************************************/
212
213 typedef struct
214 {
215 struct ev_watcher_list *head;
216 unsigned char events;
217 unsigned char reify;
218 } ANFD;
219
220 static ANFD *anfds;
221 static int anfdmax;
222
223 static void
224 anfds_init (ANFD *base, int count)
225 {
226 while (count--)
227 {
228 base->head = 0;
229 base->events = EV_NONE;
230 base->reify = 0;
231
232 ++base;
233 }
234 }
235
236 typedef struct
237 {
238 W w;
239 int events;
240 } ANPENDING;
241
242 static ANPENDING *pendings [NUMPRI];
243 static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
244
245 static void
246 event (EV_P_ W w, int events)
247 {
248 if (w->pending)
249 {
250 pendings [ABSPRI (w)][w->pending - 1].events |= events;
251 return;
252 }
253
254 w->pending = ++pendingcnt [ABSPRI (w)];
255 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
256 pendings [ABSPRI (w)][w->pending - 1].w = w;
257 pendings [ABSPRI (w)][w->pending - 1].events = events;
258 }
259
260 static void
261 queue_events (EV_P_ W *events, int eventcnt, int type)
262 {
263 int i;
264
265 for (i = 0; i < eventcnt; ++i)
266 event (EV_A_ events [i], type);
267 }
268
269 static void
270 fd_event (EV_P_ int fd, int events)
271 {
272 ANFD *anfd = anfds + fd;
273 struct ev_io *w;
274
275 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
276 {
277 int ev = w->events & events;
278
279 if (ev)
280 event (EV_A_ (W)w, ev);
281 }
282 }
283
284 /*****************************************************************************/
285
286 static int *fdchanges;
287 static int fdchangemax, fdchangecnt;
288
289 static void
290 fd_reify (EV_P)
291 {
292 int i;
293
294 for (i = 0; i < fdchangecnt; ++i)
295 {
296 int fd = fdchanges [i];
297 ANFD *anfd = anfds + fd;
298 struct ev_io *w;
299
300 int events = 0;
301
302 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
303 events |= w->events;
304
305 anfd->reify = 0;
306
307 if (anfd->events != events)
308 {
309 method_modify (EV_A_ fd, anfd->events, events);
310 anfd->events = events;
311 }
312 }
313
314 fdchangecnt = 0;
315 }
316
317 static void
318 fd_change (EV_P_ int fd)
319 {
320 if (anfds [fd].reify || fdchangecnt < 0)
321 return;
322
323 anfds [fd].reify = 1;
324
325 ++fdchangecnt;
326 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
327 fdchanges [fdchangecnt - 1] = fd;
328 }
329
330 static void
331 fd_kill (EV_P_ int fd)
332 {
333 struct ev_io *w;
334
335 while ((w = (struct ev_io *)anfds [fd].head))
336 {
337 ev_io_stop (EV_A_ w);
338 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
339 }
340 }
341
342 /* called on EBADF to verify fds */
343 static void
344 fd_ebadf (EV_P)
345 {
346 int fd;
347
348 for (fd = 0; fd < anfdmax; ++fd)
349 if (anfds [fd].events)
350 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
351 fd_kill (EV_A_ fd);
352 }
353
354 /* called on ENOMEM in select/poll to kill some fds and retry */
355 static void
356 fd_enomem (EV_P)
357 {
358 int fd = anfdmax;
359
360 while (fd--)
361 if (anfds [fd].events)
362 {
363 close (fd);
364 fd_kill (EV_A_ fd);
365 return;
366 }
367 }
368
369 /*****************************************************************************/
370
371 static struct ev_timer **timers;
372 static int timermax, timercnt;
373
374 static struct ev_periodic **periodics;
375 static int periodicmax, periodiccnt;
376
377 static void
378 upheap (WT *timers, int k)
379 {
380 WT w = timers [k];
381
382 while (k && timers [k >> 1]->at > w->at)
383 {
384 timers [k] = timers [k >> 1];
385 timers [k]->active = k + 1;
386 k >>= 1;
387 }
388
389 timers [k] = w;
390 timers [k]->active = k + 1;
391
392 }
393
394 static void
395 downheap (WT *timers, int N, int k)
396 {
397 WT w = timers [k];
398
399 while (k < (N >> 1))
400 {
401 int j = k << 1;
402
403 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
404 ++j;
405
406 if (w->at <= timers [j]->at)
407 break;
408
409 timers [k] = timers [j];
410 timers [k]->active = k + 1;
411 k = j;
412 }
413
414 timers [k] = w;
415 timers [k]->active = k + 1;
416 }
417
418 /*****************************************************************************/
419
420 typedef struct
421 {
422 struct ev_watcher_list *head;
423 sig_atomic_t volatile gotsig;
424 } ANSIG;
425
426 static ANSIG *signals;
427 static int signalmax;
428
429 static int sigpipe [2];
430 static sig_atomic_t volatile gotsig;
431 static struct ev_io sigev;
432
433 static void
434 signals_init (ANSIG *base, int count)
435 {
436 while (count--)
437 {
438 base->head = 0;
439 base->gotsig = 0;
440
441 ++base;
442 }
443 }
444
445 static void
446 sighandler (int signum)
447 {
448 signals [signum - 1].gotsig = 1;
449
450 if (!gotsig)
451 {
452 int old_errno = errno;
453 gotsig = 1;
454 write (sigpipe [1], &signum, 1);
455 errno = old_errno;
456 }
457 }
458
459 static void
460 sigcb (EV_P_ struct ev_io *iow, int revents)
461 {
462 struct ev_watcher_list *w;
463 int signum;
464
465 read (sigpipe [0], &revents, 1);
466 gotsig = 0;
467
468 for (signum = signalmax; signum--; )
469 if (signals [signum].gotsig)
470 {
471 signals [signum].gotsig = 0;
472
473 for (w = signals [signum].head; w; w = w->next)
474 event (EV_A_ (W)w, EV_SIGNAL);
475 }
476 }
477
478 static void
479 siginit (EV_P)
480 {
481 #ifndef WIN32
482 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
483 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
484
485 /* rather than sort out wether we really need nb, set it */
486 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
487 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
488 #endif
489
490 ev_io_set (&sigev, sigpipe [0], EV_READ);
491 ev_io_start (&sigev);
492 ev_unref (EV_A); /* child watcher should not keep loop alive */
493 }
494
495 /*****************************************************************************/
496
497 static struct ev_idle **idles;
498 static int idlemax, idlecnt;
499
500 static struct ev_prepare **prepares;
501 static int preparemax, preparecnt;
502
503 static struct ev_check **checks;
504 static int checkmax, checkcnt;
505
506 /*****************************************************************************/
507
508 static struct ev_child *childs [PID_HASHSIZE];
509 static struct ev_signal childev;
510
511 #ifndef WIN32
512
513 #ifndef WCONTINUED
514 # define WCONTINUED 0
515 #endif
516
517 static void
518 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
519 {
520 struct ev_child *w;
521
522 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
523 if (w->pid == pid || !w->pid)
524 {
525 w->priority = sw->priority; /* need to do it *now* */
526 w->rpid = pid;
527 w->rstatus = status;
528 event (EV_A_ (W)w, EV_CHILD);
529 }
530 }
531
532 static void
533 childcb (EV_P_ struct ev_signal *sw, int revents)
534 {
535 int pid, status;
536
537 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
538 {
539 /* make sure we are called again until all childs have been reaped */
540 event (EV_A_ (W)sw, EV_SIGNAL);
541
542 child_reap (EV_A_ sw, pid, pid, status);
543 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
544 }
545 }
546
547 #endif
548
549 /*****************************************************************************/
550
551 #if EV_USE_KQUEUE
552 # include "ev_kqueue.c"
553 #endif
554 #if EV_USE_EPOLL
555 # include "ev_epoll.c"
556 #endif
557 #if EV_USEV_POLL
558 # include "ev_poll.c"
559 #endif
560 #if EV_USE_SELECT
561 # include "ev_select.c"
562 #endif
563
564 int
565 ev_version_major (void)
566 {
567 return EV_VERSION_MAJOR;
568 }
569
570 int
571 ev_version_minor (void)
572 {
573 return EV_VERSION_MINOR;
574 }
575
576 /* return true if we are running with elevated privileges and should ignore env variables */
577 static int
578 enable_secure (void)
579 {
580 #ifdef WIN32
581 return 0;
582 #else
583 return getuid () != geteuid ()
584 || getgid () != getegid ();
585 #endif
586 }
587
588 int
589 ev_method (EV_P)
590 {
591 return method;
592 }
593
594 int
595 ev_init (EV_P_ int methods)
596 {
597 if (!method)
598 {
599 #if EV_USE_MONOTONIC
600 {
601 struct timespec ts;
602 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
603 have_monotonic = 1;
604 }
605 #endif
606
607 rt_now = ev_time ();
608 mn_now = get_clock ();
609 now_floor = mn_now;
610 diff = rt_now - mn_now;
611
612 if (pipe (sigpipe))
613 return 0;
614
615 if (methods == EVMETHOD_AUTO)
616 if (!enable_secure () && getenv ("LIBmethodS"))
617 methods = atoi (getenv ("LIBmethodS"));
618 else
619 methods = EVMETHOD_ANY;
620
621 method = 0;
622 #if EV_USE_KQUEUE
623 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
624 #endif
625 #if EV_USE_EPOLL
626 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
627 #endif
628 #if EV_USEV_POLL
629 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
630 #endif
631 #if EV_USE_SELECT
632 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
633 #endif
634
635 if (method)
636 {
637 ev_watcher_init (&sigev, sigcb);
638 ev_set_priority (&sigev, EV_MAXPRI);
639 siginit (EV_A);
640
641 #ifndef WIN32
642 ev_signal_init (&childev, childcb, SIGCHLD);
643 ev_set_priority (&childev, EV_MAXPRI);
644 ev_signal_start (EV_A_ &childev);
645 ev_unref (EV_A); /* child watcher should not keep loop alive */
646 #endif
647 }
648 }
649
650 return method;
651 }
652
653 /*****************************************************************************/
654
655 void
656 ev_fork_prepare (void)
657 {
658 /* nop */
659 }
660
661 void
662 ev_fork_parent (void)
663 {
664 /* nop */
665 }
666
667 void
668 ev_fork_child (void)
669 {
670 #if EV_USE_EPOLL
671 if (method == EVMETHOD_EPOLL)
672 epoll_postfork_child ();
673 #endif
674
675 ev_io_stop (&sigev);
676 close (sigpipe [0]);
677 close (sigpipe [1]);
678 pipe (sigpipe);
679 siginit ();
680 }
681
682 /*****************************************************************************/
683
684 static void
685 call_pending (EV_P)
686 {
687 int pri;
688
689 for (pri = NUMPRI; pri--; )
690 while (pendingcnt [pri])
691 {
692 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
693
694 if (p->w)
695 {
696 p->w->pending = 0;
697 p->w->cb (EV_A_ p->w, p->events);
698 }
699 }
700 }
701
702 static void
703 timers_reify (EV_P)
704 {
705 while (timercnt && timers [0]->at <= mn_now)
706 {
707 struct ev_timer *w = timers [0];
708
709 /* first reschedule or stop timer */
710 if (w->repeat)
711 {
712 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
713 w->at = mn_now + w->repeat;
714 downheap ((WT *)timers, timercnt, 0);
715 }
716 else
717 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
718
719 event ((W)w, EV_TIMEOUT);
720 }
721 }
722
723 static void
724 periodics_reify (EV_P)
725 {
726 while (periodiccnt && periodics [0]->at <= rt_now)
727 {
728 struct ev_periodic *w = periodics [0];
729
730 /* first reschedule or stop timer */
731 if (w->interval)
732 {
733 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
734 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
735 downheap ((WT *)periodics, periodiccnt, 0);
736 }
737 else
738 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
739
740 event (EV_A_ (W)w, EV_PERIODIC);
741 }
742 }
743
744 static void
745 periodics_reschedule (EV_P_ ev_tstamp diff)
746 {
747 int i;
748
749 /* adjust periodics after time jump */
750 for (i = 0; i < periodiccnt; ++i)
751 {
752 struct ev_periodic *w = periodics [i];
753
754 if (w->interval)
755 {
756 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
757
758 if (fabs (diff) >= 1e-4)
759 {
760 ev_periodic_stop (EV_A_ w);
761 ev_periodic_start (EV_A_ w);
762
763 i = 0; /* restart loop, inefficient, but time jumps should be rare */
764 }
765 }
766 }
767 }
768
769 inline int
770 time_update_monotonic (EV_P)
771 {
772 mn_now = get_clock ();
773
774 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
775 {
776 rt_now = mn_now + diff;
777 return 0;
778 }
779 else
780 {
781 now_floor = mn_now;
782 rt_now = ev_time ();
783 return 1;
784 }
785 }
786
787 static void
788 time_update (EV_P)
789 {
790 int i;
791
792 #if EV_USE_MONOTONIC
793 if (expect_true (have_monotonic))
794 {
795 if (time_update_monotonic (EV_A))
796 {
797 ev_tstamp odiff = diff;
798
799 for (i = 4; --i; ) /* loop a few times, before making important decisions */
800 {
801 diff = rt_now - mn_now;
802
803 if (fabs (odiff - diff) < MIN_TIMEJUMP)
804 return; /* all is well */
805
806 rt_now = ev_time ();
807 mn_now = get_clock ();
808 now_floor = mn_now;
809 }
810
811 periodics_reschedule (EV_A_ diff - odiff);
812 /* no timer adjustment, as the monotonic clock doesn't jump */
813 }
814 }
815 else
816 #endif
817 {
818 rt_now = ev_time ();
819
820 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
821 {
822 periodics_reschedule (EV_A_ rt_now - mn_now);
823
824 /* adjust timers. this is easy, as the offset is the same for all */
825 for (i = 0; i < timercnt; ++i)
826 timers [i]->at += diff;
827 }
828
829 mn_now = rt_now;
830 }
831 }
832
833 void
834 ev_ref (EV_P)
835 {
836 ++activecnt;
837 }
838
839 void
840 ev_unref (EV_P)
841 {
842 --activecnt;
843 }
844
845 static int loop_done;
846
847 void
848 ev_loop (EV_P_ int flags)
849 {
850 double block;
851 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
852
853 do
854 {
855 /* queue check watchers (and execute them) */
856 if (expect_false (preparecnt))
857 {
858 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
859 call_pending (EV_A);
860 }
861
862 /* update fd-related kernel structures */
863 fd_reify (EV_A);
864
865 /* calculate blocking time */
866
867 /* we only need this for !monotonic clockor timers, but as we basically
868 always have timers, we just calculate it always */
869 #if EV_USE_MONOTONIC
870 if (expect_true (have_monotonic))
871 time_update_monotonic (EV_A);
872 else
873 #endif
874 {
875 rt_now = ev_time ();
876 mn_now = rt_now;
877 }
878
879 if (flags & EVLOOP_NONBLOCK || idlecnt)
880 block = 0.;
881 else
882 {
883 block = MAX_BLOCKTIME;
884
885 if (timercnt)
886 {
887 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
888 if (block > to) block = to;
889 }
890
891 if (periodiccnt)
892 {
893 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
894 if (block > to) block = to;
895 }
896
897 if (block < 0.) block = 0.;
898 }
899
900 method_poll (EV_A_ block);
901
902 /* update rt_now, do magic */
903 time_update (EV_A);
904
905 /* queue pending timers and reschedule them */
906 timers_reify (EV_A); /* relative timers called last */
907 periodics_reify (EV_A); /* absolute timers called first */
908
909 /* queue idle watchers unless io or timers are pending */
910 if (!pendingcnt)
911 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
912
913 /* queue check watchers, to be executed first */
914 if (checkcnt)
915 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
916
917 call_pending (EV_A);
918 }
919 while (activecnt && !loop_done);
920
921 if (loop_done != 2)
922 loop_done = 0;
923 }
924
925 void
926 ev_unloop (EV_P_ int how)
927 {
928 loop_done = how;
929 }
930
931 /*****************************************************************************/
932
933 inline void
934 wlist_add (WL *head, WL elem)
935 {
936 elem->next = *head;
937 *head = elem;
938 }
939
940 inline void
941 wlist_del (WL *head, WL elem)
942 {
943 while (*head)
944 {
945 if (*head == elem)
946 {
947 *head = elem->next;
948 return;
949 }
950
951 head = &(*head)->next;
952 }
953 }
954
955 inline void
956 ev_clear_pending (EV_P_ W w)
957 {
958 if (w->pending)
959 {
960 pendings [ABSPRI (w)][w->pending - 1].w = 0;
961 w->pending = 0;
962 }
963 }
964
965 inline void
966 ev_start (EV_P_ W w, int active)
967 {
968 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
969 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
970
971 w->active = active;
972 ev_ref (EV_A);
973 }
974
975 inline void
976 ev_stop (EV_P_ W w)
977 {
978 ev_unref (EV_A);
979 w->active = 0;
980 }
981
982 /*****************************************************************************/
983
984 void
985 ev_io_start (EV_P_ struct ev_io *w)
986 {
987 int fd = w->fd;
988
989 if (ev_is_active (w))
990 return;
991
992 assert (("ev_io_start called with negative fd", fd >= 0));
993
994 ev_start (EV_A_ (W)w, 1);
995 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
996 wlist_add ((WL *)&anfds[fd].head, (WL)w);
997
998 fd_change (EV_A_ fd);
999 }
1000
1001 void
1002 ev_io_stop (EV_P_ struct ev_io *w)
1003 {
1004 ev_clear_pending (EV_A_ (W)w);
1005 if (!ev_is_active (w))
1006 return;
1007
1008 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1009 ev_stop (EV_A_ (W)w);
1010
1011 fd_change (EV_A_ w->fd);
1012 }
1013
1014 void
1015 ev_timer_start (EV_P_ struct ev_timer *w)
1016 {
1017 if (ev_is_active (w))
1018 return;
1019
1020 w->at += mn_now;
1021
1022 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1023
1024 ev_start (EV_A_ (W)w, ++timercnt);
1025 array_needsize (timers, timermax, timercnt, );
1026 timers [timercnt - 1] = w;
1027 upheap ((WT *)timers, timercnt - 1);
1028 }
1029
1030 void
1031 ev_timer_stop (EV_P_ struct ev_timer *w)
1032 {
1033 ev_clear_pending (EV_A_ (W)w);
1034 if (!ev_is_active (w))
1035 return;
1036
1037 if (w->active < timercnt--)
1038 {
1039 timers [w->active - 1] = timers [timercnt];
1040 downheap ((WT *)timers, timercnt, w->active - 1);
1041 }
1042
1043 w->at = w->repeat;
1044
1045 ev_stop (EV_A_ (W)w);
1046 }
1047
1048 void
1049 ev_timer_again (EV_P_ struct ev_timer *w)
1050 {
1051 if (ev_is_active (w))
1052 {
1053 if (w->repeat)
1054 {
1055 w->at = mn_now + w->repeat;
1056 downheap ((WT *)timers, timercnt, w->active - 1);
1057 }
1058 else
1059 ev_timer_stop (EV_A_ w);
1060 }
1061 else if (w->repeat)
1062 ev_timer_start (EV_A_ w);
1063 }
1064
1065 void
1066 ev_periodic_start (EV_P_ struct ev_periodic *w)
1067 {
1068 if (ev_is_active (w))
1069 return;
1070
1071 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1072
1073 /* this formula differs from the one in periodic_reify because we do not always round up */
1074 if (w->interval)
1075 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1076
1077 ev_start (EV_A_ (W)w, ++periodiccnt);
1078 array_needsize (periodics, periodicmax, periodiccnt, );
1079 periodics [periodiccnt - 1] = w;
1080 upheap ((WT *)periodics, periodiccnt - 1);
1081 }
1082
1083 void
1084 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1085 {
1086 ev_clear_pending (EV_A_ (W)w);
1087 if (!ev_is_active (w))
1088 return;
1089
1090 if (w->active < periodiccnt--)
1091 {
1092 periodics [w->active - 1] = periodics [periodiccnt];
1093 downheap ((WT *)periodics, periodiccnt, w->active - 1);
1094 }
1095
1096 ev_stop (EV_A_ (W)w);
1097 }
1098
1099 #ifndef SA_RESTART
1100 # define SA_RESTART 0
1101 #endif
1102
1103 void
1104 ev_signal_start (EV_P_ struct ev_signal *w)
1105 {
1106 if (ev_is_active (w))
1107 return;
1108
1109 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1110
1111 ev_start (EV_A_ (W)w, 1);
1112 array_needsize (signals, signalmax, w->signum, signals_init);
1113 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1114
1115 if (!w->next)
1116 {
1117 struct sigaction sa;
1118 sa.sa_handler = sighandler;
1119 sigfillset (&sa.sa_mask);
1120 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1121 sigaction (w->signum, &sa, 0);
1122 }
1123 }
1124
1125 void
1126 ev_signal_stop (EV_P_ struct ev_signal *w)
1127 {
1128 ev_clear_pending (EV_A_ (W)w);
1129 if (!ev_is_active (w))
1130 return;
1131
1132 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1133 ev_stop (EV_A_ (W)w);
1134
1135 if (!signals [w->signum - 1].head)
1136 signal (w->signum, SIG_DFL);
1137 }
1138
1139 void
1140 ev_idle_start (EV_P_ struct ev_idle *w)
1141 {
1142 if (ev_is_active (w))
1143 return;
1144
1145 ev_start (EV_A_ (W)w, ++idlecnt);
1146 array_needsize (idles, idlemax, idlecnt, );
1147 idles [idlecnt - 1] = w;
1148 }
1149
1150 void
1151 ev_idle_stop (EV_P_ struct ev_idle *w)
1152 {
1153 ev_clear_pending (EV_A_ (W)w);
1154 if (ev_is_active (w))
1155 return;
1156
1157 idles [w->active - 1] = idles [--idlecnt];
1158 ev_stop (EV_A_ (W)w);
1159 }
1160
1161 void
1162 ev_prepare_start (EV_P_ struct ev_prepare *w)
1163 {
1164 if (ev_is_active (w))
1165 return;
1166
1167 ev_start (EV_A_ (W)w, ++preparecnt);
1168 array_needsize (prepares, preparemax, preparecnt, );
1169 prepares [preparecnt - 1] = w;
1170 }
1171
1172 void
1173 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1174 {
1175 ev_clear_pending (EV_A_ (W)w);
1176 if (ev_is_active (w))
1177 return;
1178
1179 prepares [w->active - 1] = prepares [--preparecnt];
1180 ev_stop (EV_A_ (W)w);
1181 }
1182
1183 void
1184 ev_check_start (EV_P_ struct ev_check *w)
1185 {
1186 if (ev_is_active (w))
1187 return;
1188
1189 ev_start (EV_A_ (W)w, ++checkcnt);
1190 array_needsize (checks, checkmax, checkcnt, );
1191 checks [checkcnt - 1] = w;
1192 }
1193
1194 void
1195 ev_check_stop (EV_P_ struct ev_check *w)
1196 {
1197 ev_clear_pending (EV_A_ (W)w);
1198 if (ev_is_active (w))
1199 return;
1200
1201 checks [w->active - 1] = checks [--checkcnt];
1202 ev_stop (EV_A_ (W)w);
1203 }
1204
1205 void
1206 ev_child_start (EV_P_ struct ev_child *w)
1207 {
1208 if (ev_is_active (w))
1209 return;
1210
1211 ev_start (EV_A_ (W)w, 1);
1212 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1213 }
1214
1215 void
1216 ev_child_stop (EV_P_ struct ev_child *w)
1217 {
1218 ev_clear_pending (EV_A_ (W)w);
1219 if (ev_is_active (w))
1220 return;
1221
1222 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1223 ev_stop (EV_A_ (W)w);
1224 }
1225
1226 /*****************************************************************************/
1227
1228 struct ev_once
1229 {
1230 struct ev_io io;
1231 struct ev_timer to;
1232 void (*cb)(int revents, void *arg);
1233 void *arg;
1234 };
1235
1236 static void
1237 once_cb (EV_P_ struct ev_once *once, int revents)
1238 {
1239 void (*cb)(int revents, void *arg) = once->cb;
1240 void *arg = once->arg;
1241
1242 ev_io_stop (EV_A_ &once->io);
1243 ev_timer_stop (EV_A_ &once->to);
1244 free (once);
1245
1246 cb (revents, arg);
1247 }
1248
1249 static void
1250 once_cb_io (EV_P_ struct ev_io *w, int revents)
1251 {
1252 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1253 }
1254
1255 static void
1256 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1257 {
1258 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1259 }
1260
1261 void
1262 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1263 {
1264 struct ev_once *once = malloc (sizeof (struct ev_once));
1265
1266 if (!once)
1267 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1268 else
1269 {
1270 once->cb = cb;
1271 once->arg = arg;
1272
1273 ev_watcher_init (&once->io, once_cb_io);
1274 if (fd >= 0)
1275 {
1276 ev_io_set (&once->io, fd, events);
1277 ev_io_start (EV_A_ &once->io);
1278 }
1279
1280 ev_watcher_init (&once->to, once_cb_to);
1281 if (timeout >= 0.)
1282 {
1283 ev_timer_set (&once->to, timeout, 0.);
1284 ev_timer_start (EV_A_ &once->to);
1285 }
1286 }
1287 }
1288
1289 /*****************************************************************************/
1290
1291 #if 0
1292
1293 struct ev_io wio;
1294
1295 static void
1296 sin_cb (struct ev_io *w, int revents)
1297 {
1298 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1299 }
1300
1301 static void
1302 ocb (struct ev_timer *w, int revents)
1303 {
1304 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1305 ev_timer_stop (w);
1306 ev_timer_start (w);
1307 }
1308
1309 static void
1310 scb (struct ev_signal *w, int revents)
1311 {
1312 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1313 ev_io_stop (&wio);
1314 ev_io_start (&wio);
1315 }
1316
1317 static void
1318 gcb (struct ev_signal *w, int revents)
1319 {
1320 fprintf (stderr, "generic %x\n", revents);
1321
1322 }
1323
1324 int main (void)
1325 {
1326 ev_init (0);
1327
1328 ev_io_init (&wio, sin_cb, 0, EV_READ);
1329 ev_io_start (&wio);
1330
1331 struct ev_timer t[10000];
1332
1333 #if 0
1334 int i;
1335 for (i = 0; i < 10000; ++i)
1336 {
1337 struct ev_timer *w = t + i;
1338 ev_watcher_init (w, ocb, i);
1339 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1340 ev_timer_start (w);
1341 if (drand48 () < 0.5)
1342 ev_timer_stop (w);
1343 }
1344 #endif
1345
1346 struct ev_timer t1;
1347 ev_timer_init (&t1, ocb, 5, 10);
1348 ev_timer_start (&t1);
1349
1350 struct ev_signal sig;
1351 ev_signal_init (&sig, scb, SIGQUIT);
1352 ev_signal_start (&sig);
1353
1354 struct ev_check cw;
1355 ev_check_init (&cw, gcb);
1356 ev_check_start (&cw);
1357
1358 struct ev_idle iw;
1359 ev_idle_init (&iw, gcb);
1360 ev_idle_start (&iw);
1361
1362 ev_loop (0);
1363
1364 return 0;
1365 }
1366
1367 #endif
1368
1369
1370
1371