ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.57
Committed: Sun Nov 4 16:43:53 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.56: +2 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31 #ifndef EV_STANDALONE
32 # include "config.h"
33 #endif
34
35 #include <math.h>
36 #include <stdlib.h>
37 #include <unistd.h>
38 #include <fcntl.h>
39 #include <signal.h>
40 #include <stddef.h>
41
42 #include <stdio.h>
43
44 #include <assert.h>
45 #include <errno.h>
46 #include <sys/types.h>
47 #ifndef WIN32
48 # include <sys/wait.h>
49 #endif
50 #include <sys/time.h>
51 #include <time.h>
52
53 /**/
54
55 #ifndef EV_USE_MONOTONIC
56 # define EV_USE_MONOTONIC 1
57 #endif
58
59 #ifndef EV_USE_SELECT
60 # define EV_USE_SELECT 1
61 #endif
62
63 #ifndef EV_USEV_POLL
64 # define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65 #endif
66
67 #ifndef EV_USE_EPOLL
68 # define EV_USE_EPOLL 0
69 #endif
70
71 #ifndef EV_USE_KQUEUE
72 # define EV_USE_KQUEUE 0
73 #endif
74
75 #ifndef EV_USE_REALTIME
76 # define EV_USE_REALTIME 1
77 #endif
78
79 /**/
80
81 #ifndef CLOCK_MONOTONIC
82 # undef EV_USE_MONOTONIC
83 # define EV_USE_MONOTONIC 0
84 #endif
85
86 #ifndef CLOCK_REALTIME
87 # undef EV_USE_REALTIME
88 # define EV_USE_REALTIME 0
89 #endif
90
91 /**/
92
93 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97
98 #include "ev.h"
99
100 #if __GNUC__ >= 3
101 # define expect(expr,value) __builtin_expect ((expr),(value))
102 # define inline inline
103 #else
104 # define expect(expr,value) (expr)
105 # define inline static
106 #endif
107
108 #define expect_false(expr) expect ((expr) != 0, 0)
109 #define expect_true(expr) expect ((expr) != 0, 1)
110
111 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112 #define ABSPRI(w) ((w)->priority - EV_MINPRI)
113
114 typedef struct ev_watcher *W;
115 typedef struct ev_watcher_list *WL;
116 typedef struct ev_watcher_time *WT;
117
118 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119
120 /*****************************************************************************/
121
122 typedef struct
123 {
124 struct ev_watcher_list *head;
125 unsigned char events;
126 unsigned char reify;
127 } ANFD;
128
129 typedef struct
130 {
131 W w;
132 int events;
133 } ANPENDING;
134
135 #if EV_MULTIPLICITY
136
137 struct ev_loop
138 {
139 # define VAR(name,decl) decl;
140 # include "ev_vars.h"
141 };
142 # undef VAR
143 # include "ev_wrap.h"
144
145 #else
146
147 # define VAR(name,decl) static decl;
148 # include "ev_vars.h"
149 # undef VAR
150
151 #endif
152
153 /*****************************************************************************/
154
155 inline ev_tstamp
156 ev_time (void)
157 {
158 #if EV_USE_REALTIME
159 struct timespec ts;
160 clock_gettime (CLOCK_REALTIME, &ts);
161 return ts.tv_sec + ts.tv_nsec * 1e-9;
162 #else
163 struct timeval tv;
164 gettimeofday (&tv, 0);
165 return tv.tv_sec + tv.tv_usec * 1e-6;
166 #endif
167 }
168
169 inline ev_tstamp
170 get_clock (void)
171 {
172 #if EV_USE_MONOTONIC
173 if (expect_true (have_monotonic))
174 {
175 struct timespec ts;
176 clock_gettime (CLOCK_MONOTONIC, &ts);
177 return ts.tv_sec + ts.tv_nsec * 1e-9;
178 }
179 #endif
180
181 return ev_time ();
182 }
183
184 ev_tstamp
185 ev_now (EV_P)
186 {
187 return rt_now;
188 }
189
190 #define array_roundsize(base,n) ((n) | 4 & ~3)
191
192 #define array_needsize(base,cur,cnt,init) \
193 if (expect_false ((cnt) > cur)) \
194 { \
195 int newcnt = cur; \
196 do \
197 { \
198 newcnt = array_roundsize (base, newcnt << 1); \
199 } \
200 while ((cnt) > newcnt); \
201 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \
203 init (base + cur, newcnt - cur); \
204 cur = newcnt; \
205 }
206
207 /*****************************************************************************/
208
209 static void
210 anfds_init (ANFD *base, int count)
211 {
212 while (count--)
213 {
214 base->head = 0;
215 base->events = EV_NONE;
216 base->reify = 0;
217
218 ++base;
219 }
220 }
221
222 static void
223 event (EV_P_ W w, int events)
224 {
225 if (w->pending)
226 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events;
228 return;
229 }
230
231 w->pending = ++pendingcnt [ABSPRI (w)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233 pendings [ABSPRI (w)][w->pending - 1].w = w;
234 pendings [ABSPRI (w)][w->pending - 1].events = events;
235 }
236
237 static void
238 queue_events (EV_P_ W *events, int eventcnt, int type)
239 {
240 int i;
241
242 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type);
244 }
245
246 static void
247 fd_event (EV_P_ int fd, int events)
248 {
249 ANFD *anfd = anfds + fd;
250 struct ev_io *w;
251
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
253 {
254 int ev = w->events & events;
255
256 if (ev)
257 event (EV_A_ (W)w, ev);
258 }
259 }
260
261 /*****************************************************************************/
262
263 static void
264 fd_reify (EV_P)
265 {
266 int i;
267
268 for (i = 0; i < fdchangecnt; ++i)
269 {
270 int fd = fdchanges [i];
271 ANFD *anfd = anfds + fd;
272 struct ev_io *w;
273
274 int events = 0;
275
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 events |= w->events;
278
279 anfd->reify = 0;
280
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events;
285 }
286 }
287
288 fdchangecnt = 0;
289 }
290
291 static void
292 fd_change (EV_P_ int fd)
293 {
294 if (anfds [fd].reify || fdchangecnt < 0)
295 return;
296
297 anfds [fd].reify = 1;
298
299 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
301 fdchanges [fdchangecnt - 1] = fd;
302 }
303
304 static void
305 fd_kill (EV_P_ int fd)
306 {
307 struct ev_io *w;
308
309 while ((w = (struct ev_io *)anfds [fd].head))
310 {
311 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 }
314 }
315
316 /* called on EBADF to verify fds */
317 static void
318 fd_ebadf (EV_P)
319 {
320 int fd;
321
322 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
325 fd_kill (EV_A_ fd);
326 }
327
328 /* called on ENOMEM in select/poll to kill some fds and retry */
329 static void
330 fd_enomem (EV_P)
331 {
332 int fd = anfdmax;
333
334 while (fd--)
335 if (anfds [fd].events)
336 {
337 close (fd);
338 fd_kill (EV_A_ fd);
339 return;
340 }
341 }
342
343 /* susually called after fork if method needs to re-arm all fds from scratch */
344 static void
345 fd_rearm_all (EV_P)
346 {
347 int fd;
348
349 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events)
352 {
353 anfds [fd].events = 0;
354 fd_change (fd);
355 }
356 }
357
358 /*****************************************************************************/
359
360 static void
361 upheap (WT *heap, int k)
362 {
363 WT w = heap [k];
364
365 while (k && heap [k >> 1]->at > w->at)
366 {
367 heap [k] = heap [k >> 1];
368 heap [k]->active = k + 1;
369 k >>= 1;
370 }
371
372 heap [k] = w;
373 heap [k]->active = k + 1;
374
375 }
376
377 static void
378 downheap (WT *heap, int N, int k)
379 {
380 WT w = heap [k];
381
382 while (k < (N >> 1))
383 {
384 int j = k << 1;
385
386 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
387 ++j;
388
389 if (w->at <= heap [j]->at)
390 break;
391
392 heap [k] = heap [j];
393 heap [k]->active = k + 1;
394 k = j;
395 }
396
397 heap [k] = w;
398 heap [k]->active = k + 1;
399 }
400
401 /*****************************************************************************/
402
403 typedef struct
404 {
405 struct ev_watcher_list *head;
406 sig_atomic_t volatile gotsig;
407 } ANSIG;
408
409 static ANSIG *signals;
410 static int signalmax;
411
412 static int sigpipe [2];
413 static sig_atomic_t volatile gotsig;
414
415 static void
416 signals_init (ANSIG *base, int count)
417 {
418 while (count--)
419 {
420 base->head = 0;
421 base->gotsig = 0;
422
423 ++base;
424 }
425 }
426
427 static void
428 sighandler (int signum)
429 {
430 signals [signum - 1].gotsig = 1;
431
432 if (!gotsig)
433 {
434 int old_errno = errno;
435 gotsig = 1;
436 write (sigpipe [1], &signum, 1);
437 errno = old_errno;
438 }
439 }
440
441 static void
442 sigcb (EV_P_ struct ev_io *iow, int revents)
443 {
444 struct ev_watcher_list *w;
445 int signum;
446
447 read (sigpipe [0], &revents, 1);
448 gotsig = 0;
449
450 for (signum = signalmax; signum--; )
451 if (signals [signum].gotsig)
452 {
453 signals [signum].gotsig = 0;
454
455 for (w = signals [signum].head; w; w = w->next)
456 event (EV_A_ (W)w, EV_SIGNAL);
457 }
458 }
459
460 static void
461 siginit (EV_P)
462 {
463 #ifndef WIN32
464 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
465 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
466
467 /* rather than sort out wether we really need nb, set it */
468 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
469 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
470 #endif
471
472 ev_io_set (&sigev, sigpipe [0], EV_READ);
473 ev_io_start (EV_A_ &sigev);
474 ev_unref (EV_A); /* child watcher should not keep loop alive */
475 }
476
477 /*****************************************************************************/
478
479 #ifndef WIN32
480
481 #ifndef WCONTINUED
482 # define WCONTINUED 0
483 #endif
484
485 static void
486 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
487 {
488 struct ev_child *w;
489
490 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
491 if (w->pid == pid || !w->pid)
492 {
493 w->priority = sw->priority; /* need to do it *now* */
494 w->rpid = pid;
495 w->rstatus = status;
496 event (EV_A_ (W)w, EV_CHILD);
497 }
498 }
499
500 static void
501 childcb (EV_P_ struct ev_signal *sw, int revents)
502 {
503 int pid, status;
504
505 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
506 {
507 /* make sure we are called again until all childs have been reaped */
508 event (EV_A_ (W)sw, EV_SIGNAL);
509
510 child_reap (EV_A_ sw, pid, pid, status);
511 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
512 }
513 }
514
515 #endif
516
517 /*****************************************************************************/
518
519 #if EV_USE_KQUEUE
520 # include "ev_kqueue.c"
521 #endif
522 #if EV_USE_EPOLL
523 # include "ev_epoll.c"
524 #endif
525 #if EV_USEV_POLL
526 # include "ev_poll.c"
527 #endif
528 #if EV_USE_SELECT
529 # include "ev_select.c"
530 #endif
531
532 int
533 ev_version_major (void)
534 {
535 return EV_VERSION_MAJOR;
536 }
537
538 int
539 ev_version_minor (void)
540 {
541 return EV_VERSION_MINOR;
542 }
543
544 /* return true if we are running with elevated privileges and should ignore env variables */
545 static int
546 enable_secure (void)
547 {
548 #ifdef WIN32
549 return 0;
550 #else
551 return getuid () != geteuid ()
552 || getgid () != getegid ();
553 #endif
554 }
555
556 int
557 ev_method (EV_P)
558 {
559 return method;
560 }
561
562 static void
563 loop_init (EV_P_ int methods)
564 {
565 if (!method)
566 {
567 #if EV_USE_MONOTONIC
568 {
569 struct timespec ts;
570 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
571 have_monotonic = 1;
572 }
573 #endif
574
575 rt_now = ev_time ();
576 mn_now = get_clock ();
577 now_floor = mn_now;
578 rtmn_diff = rt_now - mn_now;
579
580 if (methods == EVMETHOD_AUTO)
581 if (!enable_secure () && getenv ("LIBEV_METHODS"))
582 methods = atoi (getenv ("LIBEV_METHODS"));
583 else
584 methods = EVMETHOD_ANY;
585
586 method = 0;
587 #if EV_USE_KQUEUE
588 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
589 #endif
590 #if EV_USE_EPOLL
591 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
592 #endif
593 #if EV_USEV_POLL
594 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
595 #endif
596 #if EV_USE_SELECT
597 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
598 #endif
599 }
600 }
601
602 void
603 loop_destroy (EV_P)
604 {
605 #if EV_USE_KQUEUE
606 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
607 #endif
608 #if EV_USE_EPOLL
609 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
610 #endif
611 #if EV_USEV_POLL
612 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
613 #endif
614 #if EV_USE_SELECT
615 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
616 #endif
617
618 method = 0;
619 /*TODO*/
620 }
621
622 void
623 loop_fork (EV_P)
624 {
625 /*TODO*/
626 #if EV_USE_EPOLL
627 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
628 #endif
629 #if EV_USE_KQUEUE
630 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
631 #endif
632 }
633
634 #if EV_MULTIPLICITY
635 struct ev_loop *
636 ev_loop_new (int methods)
637 {
638 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
639
640 loop_init (EV_A_ methods);
641
642 if (ev_methods (EV_A))
643 return loop;
644
645 return 0;
646 }
647
648 void
649 ev_loop_destroy (EV_P)
650 {
651 loop_destroy (EV_A);
652 free (loop);
653 }
654
655 void
656 ev_loop_fork (EV_P)
657 {
658 loop_fork (EV_A);
659 }
660
661 #endif
662
663 #if EV_MULTIPLICITY
664 struct ev_loop default_loop_struct;
665 static struct ev_loop *default_loop;
666
667 struct ev_loop *
668 #else
669 static int default_loop;
670
671 int
672 #endif
673 ev_default_loop (int methods)
674 {
675 if (sigpipe [0] == sigpipe [1])
676 if (pipe (sigpipe))
677 return 0;
678
679 if (!default_loop)
680 {
681 #if EV_MULTIPLICITY
682 struct ev_loop *loop = default_loop = &default_loop_struct;
683 #else
684 default_loop = 1;
685 #endif
686
687 loop_init (EV_A_ methods);
688
689 if (ev_method (EV_A))
690 {
691 ev_watcher_init (&sigev, sigcb);
692 ev_set_priority (&sigev, EV_MAXPRI);
693 siginit (EV_A);
694
695 #ifndef WIN32
696 ev_signal_init (&childev, childcb, SIGCHLD);
697 ev_set_priority (&childev, EV_MAXPRI);
698 ev_signal_start (EV_A_ &childev);
699 ev_unref (EV_A); /* child watcher should not keep loop alive */
700 #endif
701 }
702 else
703 default_loop = 0;
704 }
705
706 return default_loop;
707 }
708
709 void
710 ev_default_destroy (void)
711 {
712 #if EV_MULTIPLICITY
713 struct ev_loop *loop = default_loop;
714 #endif
715
716 ev_ref (EV_A); /* child watcher */
717 ev_signal_stop (EV_A_ &childev);
718
719 ev_ref (EV_A); /* signal watcher */
720 ev_io_stop (EV_A_ &sigev);
721
722 close (sigpipe [0]); sigpipe [0] = 0;
723 close (sigpipe [1]); sigpipe [1] = 0;
724
725 loop_destroy (EV_A);
726 }
727
728 void
729 ev_default_fork (EV_P)
730 {
731 loop_fork (EV_A);
732
733 ev_io_stop (EV_A_ &sigev);
734 close (sigpipe [0]);
735 close (sigpipe [1]);
736 pipe (sigpipe);
737
738 ev_ref (EV_A); /* signal watcher */
739 siginit (EV_A);
740 }
741
742 /*****************************************************************************/
743
744 static void
745 call_pending (EV_P)
746 {
747 int pri;
748
749 for (pri = NUMPRI; pri--; )
750 while (pendingcnt [pri])
751 {
752 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
753
754 if (p->w)
755 {
756 p->w->pending = 0;
757 p->w->cb (EV_A_ p->w, p->events);
758 }
759 }
760 }
761
762 static void
763 timers_reify (EV_P)
764 {
765 while (timercnt && timers [0]->at <= mn_now)
766 {
767 struct ev_timer *w = timers [0];
768
769 /* first reschedule or stop timer */
770 if (w->repeat)
771 {
772 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
773 w->at = mn_now + w->repeat;
774 downheap ((WT *)timers, timercnt, 0);
775 }
776 else
777 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
778
779 event (EV_A_ (W)w, EV_TIMEOUT);
780 }
781 }
782
783 static void
784 periodics_reify (EV_P)
785 {
786 while (periodiccnt && periodics [0]->at <= rt_now)
787 {
788 struct ev_periodic *w = periodics [0];
789
790 /* first reschedule or stop timer */
791 if (w->interval)
792 {
793 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
794 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
795 downheap ((WT *)periodics, periodiccnt, 0);
796 }
797 else
798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
799
800 event (EV_A_ (W)w, EV_PERIODIC);
801 }
802 }
803
804 static void
805 periodics_reschedule (EV_P)
806 {
807 int i;
808
809 /* adjust periodics after time jump */
810 for (i = 0; i < periodiccnt; ++i)
811 {
812 struct ev_periodic *w = periodics [i];
813
814 if (w->interval)
815 {
816 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
817
818 if (fabs (diff) >= 1e-4)
819 {
820 ev_periodic_stop (EV_A_ w);
821 ev_periodic_start (EV_A_ w);
822
823 i = 0; /* restart loop, inefficient, but time jumps should be rare */
824 }
825 }
826 }
827 }
828
829 inline int
830 time_update_monotonic (EV_P)
831 {
832 mn_now = get_clock ();
833
834 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
835 {
836 rt_now = rtmn_diff + mn_now;
837 return 0;
838 }
839 else
840 {
841 now_floor = mn_now;
842 rt_now = ev_time ();
843 return 1;
844 }
845 }
846
847 static void
848 time_update (EV_P)
849 {
850 int i;
851
852 #if EV_USE_MONOTONIC
853 if (expect_true (have_monotonic))
854 {
855 if (time_update_monotonic (EV_A))
856 {
857 ev_tstamp odiff = rtmn_diff;
858
859 for (i = 4; --i; ) /* loop a few times, before making important decisions */
860 {
861 rtmn_diff = rt_now - mn_now;
862
863 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
864 return; /* all is well */
865
866 rt_now = ev_time ();
867 mn_now = get_clock ();
868 now_floor = mn_now;
869 }
870
871 periodics_reschedule (EV_A);
872 /* no timer adjustment, as the monotonic clock doesn't jump */
873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
874 }
875 }
876 else
877 #endif
878 {
879 rt_now = ev_time ();
880
881 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
882 {
883 periodics_reschedule (EV_A);
884
885 /* adjust timers. this is easy, as the offset is the same for all */
886 for (i = 0; i < timercnt; ++i)
887 timers [i]->at += rt_now - mn_now;
888 }
889
890 mn_now = rt_now;
891 }
892 }
893
894 void
895 ev_ref (EV_P)
896 {
897 ++activecnt;
898 }
899
900 void
901 ev_unref (EV_P)
902 {
903 --activecnt;
904 }
905
906 static int loop_done;
907
908 void
909 ev_loop (EV_P_ int flags)
910 {
911 double block;
912 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
913
914 do
915 {
916 /* queue check watchers (and execute them) */
917 if (expect_false (preparecnt))
918 {
919 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
920 call_pending (EV_A);
921 }
922
923 /* update fd-related kernel structures */
924 fd_reify (EV_A);
925
926 /* calculate blocking time */
927
928 /* we only need this for !monotonic clockor timers, but as we basically
929 always have timers, we just calculate it always */
930 #if EV_USE_MONOTONIC
931 if (expect_true (have_monotonic))
932 time_update_monotonic (EV_A);
933 else
934 #endif
935 {
936 rt_now = ev_time ();
937 mn_now = rt_now;
938 }
939
940 if (flags & EVLOOP_NONBLOCK || idlecnt)
941 block = 0.;
942 else
943 {
944 block = MAX_BLOCKTIME;
945
946 if (timercnt)
947 {
948 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
949 if (block > to) block = to;
950 }
951
952 if (periodiccnt)
953 {
954 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
955 if (block > to) block = to;
956 }
957
958 if (block < 0.) block = 0.;
959 }
960
961 method_poll (EV_A_ block);
962
963 /* update rt_now, do magic */
964 time_update (EV_A);
965
966 /* queue pending timers and reschedule them */
967 timers_reify (EV_A); /* relative timers called last */
968 periodics_reify (EV_A); /* absolute timers called first */
969
970 /* queue idle watchers unless io or timers are pending */
971 if (!pendingcnt)
972 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
973
974 /* queue check watchers, to be executed first */
975 if (checkcnt)
976 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
977
978 call_pending (EV_A);
979 }
980 while (activecnt && !loop_done);
981
982 if (loop_done != 2)
983 loop_done = 0;
984 }
985
986 void
987 ev_unloop (EV_P_ int how)
988 {
989 loop_done = how;
990 }
991
992 /*****************************************************************************/
993
994 inline void
995 wlist_add (WL *head, WL elem)
996 {
997 elem->next = *head;
998 *head = elem;
999 }
1000
1001 inline void
1002 wlist_del (WL *head, WL elem)
1003 {
1004 while (*head)
1005 {
1006 if (*head == elem)
1007 {
1008 *head = elem->next;
1009 return;
1010 }
1011
1012 head = &(*head)->next;
1013 }
1014 }
1015
1016 inline void
1017 ev_clear_pending (EV_P_ W w)
1018 {
1019 if (w->pending)
1020 {
1021 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1022 w->pending = 0;
1023 }
1024 }
1025
1026 inline void
1027 ev_start (EV_P_ W w, int active)
1028 {
1029 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1030 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1031
1032 w->active = active;
1033 ev_ref (EV_A);
1034 }
1035
1036 inline void
1037 ev_stop (EV_P_ W w)
1038 {
1039 ev_unref (EV_A);
1040 w->active = 0;
1041 }
1042
1043 /*****************************************************************************/
1044
1045 void
1046 ev_io_start (EV_P_ struct ev_io *w)
1047 {
1048 int fd = w->fd;
1049
1050 if (ev_is_active (w))
1051 return;
1052
1053 assert (("ev_io_start called with negative fd", fd >= 0));
1054
1055 ev_start (EV_A_ (W)w, 1);
1056 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1057 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1058
1059 fd_change (EV_A_ fd);
1060 }
1061
1062 void
1063 ev_io_stop (EV_P_ struct ev_io *w)
1064 {
1065 ev_clear_pending (EV_A_ (W)w);
1066 if (!ev_is_active (w))
1067 return;
1068
1069 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1070 ev_stop (EV_A_ (W)w);
1071
1072 fd_change (EV_A_ w->fd);
1073 }
1074
1075 void
1076 ev_timer_start (EV_P_ struct ev_timer *w)
1077 {
1078 if (ev_is_active (w))
1079 return;
1080
1081 w->at += mn_now;
1082
1083 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1084
1085 ev_start (EV_A_ (W)w, ++timercnt);
1086 array_needsize (timers, timermax, timercnt, );
1087 timers [timercnt - 1] = w;
1088 upheap ((WT *)timers, timercnt - 1);
1089 }
1090
1091 void
1092 ev_timer_stop (EV_P_ struct ev_timer *w)
1093 {
1094 ev_clear_pending (EV_A_ (W)w);
1095 if (!ev_is_active (w))
1096 return;
1097
1098 if (w->active < timercnt--)
1099 {
1100 timers [w->active - 1] = timers [timercnt];
1101 downheap ((WT *)timers, timercnt, w->active - 1);
1102 }
1103
1104 w->at = w->repeat;
1105
1106 ev_stop (EV_A_ (W)w);
1107 }
1108
1109 void
1110 ev_timer_again (EV_P_ struct ev_timer *w)
1111 {
1112 if (ev_is_active (w))
1113 {
1114 if (w->repeat)
1115 {
1116 w->at = mn_now + w->repeat;
1117 downheap ((WT *)timers, timercnt, w->active - 1);
1118 }
1119 else
1120 ev_timer_stop (EV_A_ w);
1121 }
1122 else if (w->repeat)
1123 ev_timer_start (EV_A_ w);
1124 }
1125
1126 void
1127 ev_periodic_start (EV_P_ struct ev_periodic *w)
1128 {
1129 if (ev_is_active (w))
1130 return;
1131
1132 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1133
1134 /* this formula differs from the one in periodic_reify because we do not always round up */
1135 if (w->interval)
1136 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1137
1138 ev_start (EV_A_ (W)w, ++periodiccnt);
1139 array_needsize (periodics, periodicmax, periodiccnt, );
1140 periodics [periodiccnt - 1] = w;
1141 upheap ((WT *)periodics, periodiccnt - 1);
1142 }
1143
1144 void
1145 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1146 {
1147 ev_clear_pending (EV_A_ (W)w);
1148 if (!ev_is_active (w))
1149 return;
1150
1151 if (w->active < periodiccnt--)
1152 {
1153 periodics [w->active - 1] = periodics [periodiccnt];
1154 downheap ((WT *)periodics, periodiccnt, w->active - 1);
1155 }
1156
1157 ev_stop (EV_A_ (W)w);
1158 }
1159
1160 void
1161 ev_idle_start (EV_P_ struct ev_idle *w)
1162 {
1163 if (ev_is_active (w))
1164 return;
1165
1166 ev_start (EV_A_ (W)w, ++idlecnt);
1167 array_needsize (idles, idlemax, idlecnt, );
1168 idles [idlecnt - 1] = w;
1169 }
1170
1171 void
1172 ev_idle_stop (EV_P_ struct ev_idle *w)
1173 {
1174 ev_clear_pending (EV_A_ (W)w);
1175 if (ev_is_active (w))
1176 return;
1177
1178 idles [w->active - 1] = idles [--idlecnt];
1179 ev_stop (EV_A_ (W)w);
1180 }
1181
1182 void
1183 ev_prepare_start (EV_P_ struct ev_prepare *w)
1184 {
1185 if (ev_is_active (w))
1186 return;
1187
1188 ev_start (EV_A_ (W)w, ++preparecnt);
1189 array_needsize (prepares, preparemax, preparecnt, );
1190 prepares [preparecnt - 1] = w;
1191 }
1192
1193 void
1194 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1195 {
1196 ev_clear_pending (EV_A_ (W)w);
1197 if (ev_is_active (w))
1198 return;
1199
1200 prepares [w->active - 1] = prepares [--preparecnt];
1201 ev_stop (EV_A_ (W)w);
1202 }
1203
1204 void
1205 ev_check_start (EV_P_ struct ev_check *w)
1206 {
1207 if (ev_is_active (w))
1208 return;
1209
1210 ev_start (EV_A_ (W)w, ++checkcnt);
1211 array_needsize (checks, checkmax, checkcnt, );
1212 checks [checkcnt - 1] = w;
1213 }
1214
1215 void
1216 ev_check_stop (EV_P_ struct ev_check *w)
1217 {
1218 ev_clear_pending (EV_A_ (W)w);
1219 if (ev_is_active (w))
1220 return;
1221
1222 checks [w->active - 1] = checks [--checkcnt];
1223 ev_stop (EV_A_ (W)w);
1224 }
1225
1226 #ifndef SA_RESTART
1227 # define SA_RESTART 0
1228 #endif
1229
1230 void
1231 ev_signal_start (EV_P_ struct ev_signal *w)
1232 {
1233 #if EV_MULTIPLICITY
1234 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1235 #endif
1236 if (ev_is_active (w))
1237 return;
1238
1239 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1240
1241 ev_start (EV_A_ (W)w, 1);
1242 array_needsize (signals, signalmax, w->signum, signals_init);
1243 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1244
1245 if (!w->next)
1246 {
1247 struct sigaction sa;
1248 sa.sa_handler = sighandler;
1249 sigfillset (&sa.sa_mask);
1250 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1251 sigaction (w->signum, &sa, 0);
1252 }
1253 }
1254
1255 void
1256 ev_signal_stop (EV_P_ struct ev_signal *w)
1257 {
1258 ev_clear_pending (EV_A_ (W)w);
1259 if (!ev_is_active (w))
1260 return;
1261
1262 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1263 ev_stop (EV_A_ (W)w);
1264
1265 if (!signals [w->signum - 1].head)
1266 signal (w->signum, SIG_DFL);
1267 }
1268
1269 void
1270 ev_child_start (EV_P_ struct ev_child *w)
1271 {
1272 #if EV_MULTIPLICITY
1273 assert (("child watchers are only supported in the default loop", loop == default_loop));
1274 #endif
1275 if (ev_is_active (w))
1276 return;
1277
1278 ev_start (EV_A_ (W)w, 1);
1279 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1280 }
1281
1282 void
1283 ev_child_stop (EV_P_ struct ev_child *w)
1284 {
1285 ev_clear_pending (EV_A_ (W)w);
1286 if (ev_is_active (w))
1287 return;
1288
1289 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1290 ev_stop (EV_A_ (W)w);
1291 }
1292
1293 /*****************************************************************************/
1294
1295 struct ev_once
1296 {
1297 struct ev_io io;
1298 struct ev_timer to;
1299 void (*cb)(int revents, void *arg);
1300 void *arg;
1301 };
1302
1303 static void
1304 once_cb (EV_P_ struct ev_once *once, int revents)
1305 {
1306 void (*cb)(int revents, void *arg) = once->cb;
1307 void *arg = once->arg;
1308
1309 ev_io_stop (EV_A_ &once->io);
1310 ev_timer_stop (EV_A_ &once->to);
1311 free (once);
1312
1313 cb (revents, arg);
1314 }
1315
1316 static void
1317 once_cb_io (EV_P_ struct ev_io *w, int revents)
1318 {
1319 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1320 }
1321
1322 static void
1323 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1324 {
1325 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1326 }
1327
1328 void
1329 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1330 {
1331 struct ev_once *once = malloc (sizeof (struct ev_once));
1332
1333 if (!once)
1334 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1335 else
1336 {
1337 once->cb = cb;
1338 once->arg = arg;
1339
1340 ev_watcher_init (&once->io, once_cb_io);
1341 if (fd >= 0)
1342 {
1343 ev_io_set (&once->io, fd, events);
1344 ev_io_start (EV_A_ &once->io);
1345 }
1346
1347 ev_watcher_init (&once->to, once_cb_to);
1348 if (timeout >= 0.)
1349 {
1350 ev_timer_set (&once->to, timeout, 0.);
1351 ev_timer_start (EV_A_ &once->to);
1352 }
1353 }
1354 }
1355