ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.63
Committed: Sun Nov 4 22:03:17 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.62: +19 -18 lines
Log Message:
bugfixes

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31 #ifndef EV_STANDALONE
32 # include "config.h"
33
34 # if HAVE_CLOCK_GETTIME
35 # define EV_USE_MONOTONIC 1
36 # define EV_USE_REALTIME 1
37 # endif
38
39 # if HAVE_SELECT && HAVE_SYS_SELECT_H
40 # define EV_USE_SELECT 1
41 # endif
42
43 # if HAVE_POLL && HAVE_POLL_H
44 # define EV_USE_POLL 1
45 # endif
46
47 # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48 # define EV_USE_EPOLL 1
49 # endif
50
51 # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52 # define EV_USE_KQUEUE 1
53 # endif
54
55 #endif
56
57 #include <math.h>
58 #include <stdlib.h>
59 #include <unistd.h>
60 #include <fcntl.h>
61 #include <signal.h>
62 #include <stddef.h>
63
64 #include <stdio.h>
65
66 #include <assert.h>
67 #include <errno.h>
68 #include <sys/types.h>
69 #ifndef WIN32
70 # include <sys/wait.h>
71 #endif
72 #include <sys/time.h>
73 #include <time.h>
74
75 /**/
76
77 #ifndef EV_USE_MONOTONIC
78 # define EV_USE_MONOTONIC 1
79 #endif
80
81 #ifndef EV_USE_SELECT
82 # define EV_USE_SELECT 1
83 #endif
84
85 #ifndef EV_USE_POLL
86 # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87 #endif
88
89 #ifndef EV_USE_EPOLL
90 # define EV_USE_EPOLL 0
91 #endif
92
93 #ifndef EV_USE_KQUEUE
94 # define EV_USE_KQUEUE 0
95 #endif
96
97 #ifndef EV_USE_WIN32
98 # ifdef WIN32
99 # define EV_USE_WIN32 1
100 # else
101 # define EV_USE_WIN32 0
102 # endif
103 #endif
104
105 #ifndef EV_USE_REALTIME
106 # define EV_USE_REALTIME 1
107 #endif
108
109 /**/
110
111 #ifndef CLOCK_MONOTONIC
112 # undef EV_USE_MONOTONIC
113 # define EV_USE_MONOTONIC 0
114 #endif
115
116 #ifndef CLOCK_REALTIME
117 # undef EV_USE_REALTIME
118 # define EV_USE_REALTIME 0
119 #endif
120
121 /**/
122
123 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127
128 #include "ev.h"
129
130 #if __GNUC__ >= 3
131 # define expect(expr,value) __builtin_expect ((expr),(value))
132 # define inline inline
133 #else
134 # define expect(expr,value) (expr)
135 # define inline static
136 #endif
137
138 #define expect_false(expr) expect ((expr) != 0, 0)
139 #define expect_true(expr) expect ((expr) != 0, 1)
140
141 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142 #define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
144 typedef struct ev_watcher *W;
145 typedef struct ev_watcher_list *WL;
146 typedef struct ev_watcher_time *WT;
147
148 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149
150 /*****************************************************************************/
151
152 typedef struct
153 {
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157 } ANFD;
158
159 typedef struct
160 {
161 W w;
162 int events;
163 } ANPENDING;
164
165 #if EV_MULTIPLICITY
166
167 struct ev_loop
168 {
169 # define VAR(name,decl) decl;
170 # include "ev_vars.h"
171 };
172 # undef VAR
173 # include "ev_wrap.h"
174
175 #else
176
177 # define VAR(name,decl) static decl;
178 # include "ev_vars.h"
179 # undef VAR
180
181 #endif
182
183 /*****************************************************************************/
184
185 inline ev_tstamp
186 ev_time (void)
187 {
188 #if EV_USE_REALTIME
189 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts);
191 return ts.tv_sec + ts.tv_nsec * 1e-9;
192 #else
193 struct timeval tv;
194 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6;
196 #endif
197 }
198
199 inline ev_tstamp
200 get_clock (void)
201 {
202 #if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic))
204 {
205 struct timespec ts;
206 clock_gettime (CLOCK_MONOTONIC, &ts);
207 return ts.tv_sec + ts.tv_nsec * 1e-9;
208 }
209 #endif
210
211 return ev_time ();
212 }
213
214 ev_tstamp
215 ev_now (EV_P)
216 {
217 return rt_now;
218 }
219
220 #define array_roundsize(base,n) ((n) | 4 & ~3)
221
222 #define array_needsize(base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \
224 { \
225 int newcnt = cur; \
226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \
233 init (base + cur, newcnt - cur); \
234 cur = newcnt; \
235 }
236
237 /*****************************************************************************/
238
239 static void
240 anfds_init (ANFD *base, int count)
241 {
242 while (count--)
243 {
244 base->head = 0;
245 base->events = EV_NONE;
246 base->reify = 0;
247
248 ++base;
249 }
250 }
251
252 static void
253 event (EV_P_ W w, int events)
254 {
255 if (w->pending)
256 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
258 return;
259 }
260
261 w->pending = ++pendingcnt [ABSPRI (w)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
263 pendings [ABSPRI (w)][w->pending - 1].w = w;
264 pendings [ABSPRI (w)][w->pending - 1].events = events;
265 }
266
267 static void
268 queue_events (EV_P_ W *events, int eventcnt, int type)
269 {
270 int i;
271
272 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type);
274 }
275
276 static void
277 fd_event (EV_P_ int fd, int events)
278 {
279 ANFD *anfd = anfds + fd;
280 struct ev_io *w;
281
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
283 {
284 int ev = w->events & events;
285
286 if (ev)
287 event (EV_A_ (W)w, ev);
288 }
289 }
290
291 /*****************************************************************************/
292
293 static void
294 fd_reify (EV_P)
295 {
296 int i;
297
298 for (i = 0; i < fdchangecnt; ++i)
299 {
300 int fd = fdchanges [i];
301 ANFD *anfd = anfds + fd;
302 struct ev_io *w;
303
304 int events = 0;
305
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events;
308
309 anfd->reify = 0;
310
311 if (anfd->events != events)
312 {
313 method_modify (EV_A_ fd, anfd->events, events);
314 anfd->events = events;
315 }
316 }
317
318 fdchangecnt = 0;
319 }
320
321 static void
322 fd_change (EV_P_ int fd)
323 {
324 if (anfds [fd].reify || fdchangecnt < 0)
325 return;
326
327 anfds [fd].reify = 1;
328
329 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
331 fdchanges [fdchangecnt - 1] = fd;
332 }
333
334 static void
335 fd_kill (EV_P_ int fd)
336 {
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
344 }
345
346 /* called on EBADF to verify fds */
347 static void
348 fd_ebadf (EV_P)
349 {
350 int fd;
351
352 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd);
356 }
357
358 /* called on ENOMEM in select/poll to kill some fds and retry */
359 static void
360 fd_enomem (EV_P)
361 {
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
366 {
367 close (fd);
368 fd_kill (EV_A_ fd);
369 return;
370 }
371 }
372
373 /* susually called after fork if method needs to re-arm all fds from scratch */
374 static void
375 fd_rearm_all (EV_P)
376 {
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
386 }
387
388 /*****************************************************************************/
389
390 static void
391 upheap (WT *heap, int k)
392 {
393 WT w = heap [k];
394
395 while (k && heap [k >> 1]->at > w->at)
396 {
397 heap [k] = heap [k >> 1];
398 ((W)heap [k])->active = k + 1;
399 k >>= 1;
400 }
401
402 heap [k] = w;
403 ((W)heap [k])->active = k + 1;
404
405 }
406
407 static void
408 downheap (WT *heap, int N, int k)
409 {
410 WT w = heap [k];
411
412 while (k < (N >> 1))
413 {
414 int j = k << 1;
415
416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
417 ++j;
418
419 if (w->at <= heap [j]->at)
420 break;
421
422 heap [k] = heap [j];
423 ((W)heap [k])->active = k + 1;
424 k = j;
425 }
426
427 heap [k] = w;
428 ((W)heap [k])->active = k + 1;
429 }
430
431 /*****************************************************************************/
432
433 typedef struct
434 {
435 struct ev_watcher_list *head;
436 sig_atomic_t volatile gotsig;
437 } ANSIG;
438
439 static ANSIG *signals;
440 static int signalmax;
441
442 static int sigpipe [2];
443 static sig_atomic_t volatile gotsig;
444 static struct ev_io sigev;
445
446 static void
447 signals_init (ANSIG *base, int count)
448 {
449 while (count--)
450 {
451 base->head = 0;
452 base->gotsig = 0;
453
454 ++base;
455 }
456 }
457
458 static void
459 sighandler (int signum)
460 {
461 signals [signum - 1].gotsig = 1;
462
463 if (!gotsig)
464 {
465 int old_errno = errno;
466 gotsig = 1;
467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
469 }
470 }
471
472 static void
473 sigcb (EV_P_ struct ev_io *iow, int revents)
474 {
475 struct ev_watcher_list *w;
476 int signum;
477
478 read (sigpipe [0], &revents, 1);
479 gotsig = 0;
480
481 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig)
483 {
484 signals [signum].gotsig = 0;
485
486 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL);
488 }
489 }
490
491 static void
492 siginit (EV_P)
493 {
494 #ifndef WIN32
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501 #endif
502
503 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
506 }
507
508 /*****************************************************************************/
509
510 #ifndef WIN32
511
512 static struct ev_child *childs [PID_HASHSIZE];
513 static struct ev_signal childev;
514
515 #ifndef WCONTINUED
516 # define WCONTINUED 0
517 #endif
518
519 static void
520 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521 {
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532 }
533
534 static void
535 childcb (EV_P_ struct ev_signal *sw, int revents)
536 {
537 int pid, status;
538
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 {
541 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL);
543
544 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
547 }
548
549 #endif
550
551 /*****************************************************************************/
552
553 #if EV_USE_KQUEUE
554 # include "ev_kqueue.c"
555 #endif
556 #if EV_USE_EPOLL
557 # include "ev_epoll.c"
558 #endif
559 #if EV_USE_POLL
560 # include "ev_poll.c"
561 #endif
562 #if EV_USE_SELECT
563 # include "ev_select.c"
564 #endif
565
566 int
567 ev_version_major (void)
568 {
569 return EV_VERSION_MAJOR;
570 }
571
572 int
573 ev_version_minor (void)
574 {
575 return EV_VERSION_MINOR;
576 }
577
578 /* return true if we are running with elevated privileges and should ignore env variables */
579 static int
580 enable_secure (void)
581 {
582 #ifdef WIN32
583 return 0;
584 #else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587 #endif
588 }
589
590 int
591 ev_method (EV_P)
592 {
593 return method;
594 }
595
596 static void
597 loop_init (EV_P_ int methods)
598 {
599 if (!method)
600 {
601 #if EV_USE_MONOTONIC
602 {
603 struct timespec ts;
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1;
606 }
607 #endif
608
609 rt_now = ev_time ();
610 mn_now = get_clock ();
611 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now;
613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621 #if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623 #endif
624 #if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626 #endif
627 #if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629 #endif
630 #if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632 #endif
633 #if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635 #endif
636 }
637 }
638
639 void
640 loop_destroy (EV_P)
641 {
642 #if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644 #endif
645 #if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647 #endif
648 #if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
650 #endif
651 #if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
653 #endif
654 #if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656 #endif
657
658 method = 0;
659 /*TODO*/
660 }
661
662 void
663 loop_fork (EV_P)
664 {
665 /*TODO*/
666 #if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668 #endif
669 #if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671 #endif
672 }
673
674 #if EV_MULTIPLICITY
675 struct ev_loop *
676 ev_loop_new (int methods)
677 {
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
679
680 loop_init (EV_A_ methods);
681
682 if (ev_method (EV_A))
683 return loop;
684
685 return 0;
686 }
687
688 void
689 ev_loop_destroy (EV_P)
690 {
691 loop_destroy (EV_A);
692 free (loop);
693 }
694
695 void
696 ev_loop_fork (EV_P)
697 {
698 loop_fork (EV_A);
699 }
700
701 #endif
702
703 #if EV_MULTIPLICITY
704 struct ev_loop default_loop_struct;
705 static struct ev_loop *default_loop;
706
707 struct ev_loop *
708 #else
709 static int default_loop;
710
711 int
712 #endif
713 ev_default_loop (int methods)
714 {
715 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe))
717 return 0;
718
719 if (!default_loop)
720 {
721 #if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct;
723 #else
724 default_loop = 1;
725 #endif
726
727 loop_init (EV_A_ methods);
728
729 if (ev_method (EV_A))
730 {
731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
733 siginit (EV_A);
734
735 #ifndef WIN32
736 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI);
738 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */
740 #endif
741 }
742 else
743 default_loop = 0;
744 }
745
746 return default_loop;
747 }
748
749 void
750 ev_default_destroy (void)
751 {
752 #if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop;
754 #endif
755
756 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev);
758
759 ev_ref (EV_A); /* signal watcher */
760 ev_io_stop (EV_A_ &sigev);
761
762 close (sigpipe [0]); sigpipe [0] = 0;
763 close (sigpipe [1]); sigpipe [1] = 0;
764
765 loop_destroy (EV_A);
766 }
767
768 void
769 ev_default_fork (void)
770 {
771 #if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop;
773 #endif
774
775 loop_fork (EV_A);
776
777 ev_io_stop (EV_A_ &sigev);
778 close (sigpipe [0]);
779 close (sigpipe [1]);
780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
783 siginit (EV_A);
784 }
785
786 /*****************************************************************************/
787
788 static void
789 call_pending (EV_P)
790 {
791 int pri;
792
793 for (pri = NUMPRI; pri--; )
794 while (pendingcnt [pri])
795 {
796 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
797
798 if (p->w)
799 {
800 p->w->pending = 0;
801
802 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
803 }
804 }
805 }
806
807 static void
808 timers_reify (EV_P)
809 {
810 while (timercnt && ((WT)timers [0])->at <= mn_now)
811 {
812 struct ev_timer *w = timers [0];
813
814 assert (("inactive timer on timer heap detected", ev_is_active (w)));
815
816 /* first reschedule or stop timer */
817 if (w->repeat)
818 {
819 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
820 ((WT)w)->at = mn_now + w->repeat;
821 downheap ((WT *)timers, timercnt, 0);
822 }
823 else
824 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
825
826 event (EV_A_ (W)w, EV_TIMEOUT);
827 }
828 }
829
830 static void
831 periodics_reify (EV_P)
832 {
833 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
834 {
835 struct ev_periodic *w = periodics [0];
836
837 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
838
839 /* first reschedule or stop timer */
840 if (w->interval)
841 {
842 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
843 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
844 downheap ((WT *)periodics, periodiccnt, 0);
845 }
846 else
847 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
848
849 event (EV_A_ (W)w, EV_PERIODIC);
850 }
851 }
852
853 static void
854 periodics_reschedule (EV_P)
855 {
856 int i;
857
858 /* adjust periodics after time jump */
859 for (i = 0; i < periodiccnt; ++i)
860 {
861 struct ev_periodic *w = periodics [i];
862
863 if (w->interval)
864 {
865 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
866
867 if (fabs (diff) >= 1e-4)
868 {
869 ev_periodic_stop (EV_A_ w);
870 ev_periodic_start (EV_A_ w);
871
872 i = 0; /* restart loop, inefficient, but time jumps should be rare */
873 }
874 }
875 }
876 }
877
878 inline int
879 time_update_monotonic (EV_P)
880 {
881 mn_now = get_clock ();
882
883 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
884 {
885 rt_now = rtmn_diff + mn_now;
886 return 0;
887 }
888 else
889 {
890 now_floor = mn_now;
891 rt_now = ev_time ();
892 return 1;
893 }
894 }
895
896 static void
897 time_update (EV_P)
898 {
899 int i;
900
901 #if EV_USE_MONOTONIC
902 if (expect_true (have_monotonic))
903 {
904 if (time_update_monotonic (EV_A))
905 {
906 ev_tstamp odiff = rtmn_diff;
907
908 for (i = 4; --i; ) /* loop a few times, before making important decisions */
909 {
910 rtmn_diff = rt_now - mn_now;
911
912 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
913 return; /* all is well */
914
915 rt_now = ev_time ();
916 mn_now = get_clock ();
917 now_floor = mn_now;
918 }
919
920 periodics_reschedule (EV_A);
921 /* no timer adjustment, as the monotonic clock doesn't jump */
922 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
923 }
924 }
925 else
926 #endif
927 {
928 rt_now = ev_time ();
929
930 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
931 {
932 periodics_reschedule (EV_A);
933
934 /* adjust timers. this is easy, as the offset is the same for all */
935 for (i = 0; i < timercnt; ++i)
936 ((WT)timers [i])->at += rt_now - mn_now;
937 }
938
939 mn_now = rt_now;
940 }
941 }
942
943 void
944 ev_ref (EV_P)
945 {
946 ++activecnt;
947 }
948
949 void
950 ev_unref (EV_P)
951 {
952 --activecnt;
953 }
954
955 static int loop_done;
956
957 void
958 ev_loop (EV_P_ int flags)
959 {
960 double block;
961 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
962
963 do
964 {
965 /* queue check watchers (and execute them) */
966 if (expect_false (preparecnt))
967 {
968 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
969 call_pending (EV_A);
970 }
971
972 /* update fd-related kernel structures */
973 fd_reify (EV_A);
974
975 /* calculate blocking time */
976
977 /* we only need this for !monotonic clockor timers, but as we basically
978 always have timers, we just calculate it always */
979 #if EV_USE_MONOTONIC
980 if (expect_true (have_monotonic))
981 time_update_monotonic (EV_A);
982 else
983 #endif
984 {
985 rt_now = ev_time ();
986 mn_now = rt_now;
987 }
988
989 if (flags & EVLOOP_NONBLOCK || idlecnt)
990 block = 0.;
991 else
992 {
993 block = MAX_BLOCKTIME;
994
995 if (timercnt)
996 {
997 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
998 if (block > to) block = to;
999 }
1000
1001 if (periodiccnt)
1002 {
1003 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1004 if (block > to) block = to;
1005 }
1006
1007 if (block < 0.) block = 0.;
1008 }
1009
1010 method_poll (EV_A_ block);
1011
1012 /* update rt_now, do magic */
1013 time_update (EV_A);
1014
1015 /* queue pending timers and reschedule them */
1016 timers_reify (EV_A); /* relative timers called last */
1017 periodics_reify (EV_A); /* absolute timers called first */
1018
1019 /* queue idle watchers unless io or timers are pending */
1020 if (!pendingcnt)
1021 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1022
1023 /* queue check watchers, to be executed first */
1024 if (checkcnt)
1025 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1026
1027 call_pending (EV_A);
1028 }
1029 while (activecnt && !loop_done);
1030
1031 if (loop_done != 2)
1032 loop_done = 0;
1033 }
1034
1035 void
1036 ev_unloop (EV_P_ int how)
1037 {
1038 loop_done = how;
1039 }
1040
1041 /*****************************************************************************/
1042
1043 inline void
1044 wlist_add (WL *head, WL elem)
1045 {
1046 elem->next = *head;
1047 *head = elem;
1048 }
1049
1050 inline void
1051 wlist_del (WL *head, WL elem)
1052 {
1053 while (*head)
1054 {
1055 if (*head == elem)
1056 {
1057 *head = elem->next;
1058 return;
1059 }
1060
1061 head = &(*head)->next;
1062 }
1063 }
1064
1065 inline void
1066 ev_clear_pending (EV_P_ W w)
1067 {
1068 if (w->pending)
1069 {
1070 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1071 w->pending = 0;
1072 }
1073 }
1074
1075 inline void
1076 ev_start (EV_P_ W w, int active)
1077 {
1078 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1079 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1080
1081 w->active = active;
1082 ev_ref (EV_A);
1083 }
1084
1085 inline void
1086 ev_stop (EV_P_ W w)
1087 {
1088 ev_unref (EV_A);
1089 w->active = 0;
1090 }
1091
1092 /*****************************************************************************/
1093
1094 void
1095 ev_io_start (EV_P_ struct ev_io *w)
1096 {
1097 int fd = w->fd;
1098
1099 if (ev_is_active (w))
1100 return;
1101
1102 assert (("ev_io_start called with negative fd", fd >= 0));
1103
1104 ev_start (EV_A_ (W)w, 1);
1105 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1106 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1107
1108 fd_change (EV_A_ fd);
1109 }
1110
1111 void
1112 ev_io_stop (EV_P_ struct ev_io *w)
1113 {
1114 ev_clear_pending (EV_A_ (W)w);
1115 if (!ev_is_active (w))
1116 return;
1117
1118 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1119 ev_stop (EV_A_ (W)w);
1120
1121 fd_change (EV_A_ w->fd);
1122 }
1123
1124 void
1125 ev_timer_start (EV_P_ struct ev_timer *w)
1126 {
1127 if (ev_is_active (w))
1128 return;
1129
1130 ((WT)w)->at += mn_now;
1131
1132 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1133
1134 ev_start (EV_A_ (W)w, ++timercnt);
1135 array_needsize (timers, timermax, timercnt, );
1136 timers [timercnt - 1] = w;
1137 upheap ((WT *)timers, timercnt - 1);
1138
1139 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1140 }
1141
1142 void
1143 ev_timer_stop (EV_P_ struct ev_timer *w)
1144 {
1145 ev_clear_pending (EV_A_ (W)w);
1146 if (!ev_is_active (w))
1147 return;
1148
1149 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1150
1151 if (((W)w)->active < timercnt--)
1152 {
1153 timers [((W)w)->active - 1] = timers [timercnt];
1154 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1155 }
1156
1157 ((WT)w)->at = w->repeat;
1158
1159 ev_stop (EV_A_ (W)w);
1160 }
1161
1162 void
1163 ev_timer_again (EV_P_ struct ev_timer *w)
1164 {
1165 if (ev_is_active (w))
1166 {
1167 if (w->repeat)
1168 {
1169 ((WT)w)->at = mn_now + w->repeat;
1170 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1171 }
1172 else
1173 ev_timer_stop (EV_A_ w);
1174 }
1175 else if (w->repeat)
1176 ev_timer_start (EV_A_ w);
1177 }
1178
1179 void
1180 ev_periodic_start (EV_P_ struct ev_periodic *w)
1181 {
1182 if (ev_is_active (w))
1183 return;
1184
1185 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1186
1187 /* this formula differs from the one in periodic_reify because we do not always round up */
1188 if (w->interval)
1189 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1190
1191 ev_start (EV_A_ (W)w, ++periodiccnt);
1192 array_needsize (periodics, periodicmax, periodiccnt, );
1193 periodics [periodiccnt - 1] = w;
1194 upheap ((WT *)periodics, periodiccnt - 1);
1195
1196 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1197 }
1198
1199 void
1200 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1201 {
1202 ev_clear_pending (EV_A_ (W)w);
1203 if (!ev_is_active (w))
1204 return;
1205
1206 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1207
1208 if (((W)w)->active < periodiccnt--)
1209 {
1210 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1211 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1212 }
1213
1214 ev_stop (EV_A_ (W)w);
1215 }
1216
1217 void
1218 ev_idle_start (EV_P_ struct ev_idle *w)
1219 {
1220 if (ev_is_active (w))
1221 return;
1222
1223 ev_start (EV_A_ (W)w, ++idlecnt);
1224 array_needsize (idles, idlemax, idlecnt, );
1225 idles [idlecnt - 1] = w;
1226 }
1227
1228 void
1229 ev_idle_stop (EV_P_ struct ev_idle *w)
1230 {
1231 ev_clear_pending (EV_A_ (W)w);
1232 if (ev_is_active (w))
1233 return;
1234
1235 idles [((W)w)->active - 1] = idles [--idlecnt];
1236 ev_stop (EV_A_ (W)w);
1237 }
1238
1239 void
1240 ev_prepare_start (EV_P_ struct ev_prepare *w)
1241 {
1242 if (ev_is_active (w))
1243 return;
1244
1245 ev_start (EV_A_ (W)w, ++preparecnt);
1246 array_needsize (prepares, preparemax, preparecnt, );
1247 prepares [preparecnt - 1] = w;
1248 }
1249
1250 void
1251 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1252 {
1253 ev_clear_pending (EV_A_ (W)w);
1254 if (ev_is_active (w))
1255 return;
1256
1257 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1258 ev_stop (EV_A_ (W)w);
1259 }
1260
1261 void
1262 ev_check_start (EV_P_ struct ev_check *w)
1263 {
1264 if (ev_is_active (w))
1265 return;
1266
1267 ev_start (EV_A_ (W)w, ++checkcnt);
1268 array_needsize (checks, checkmax, checkcnt, );
1269 checks [checkcnt - 1] = w;
1270 }
1271
1272 void
1273 ev_check_stop (EV_P_ struct ev_check *w)
1274 {
1275 ev_clear_pending (EV_A_ (W)w);
1276 if (ev_is_active (w))
1277 return;
1278
1279 checks [((W)w)->active - 1] = checks [--checkcnt];
1280 ev_stop (EV_A_ (W)w);
1281 }
1282
1283 #ifndef SA_RESTART
1284 # define SA_RESTART 0
1285 #endif
1286
1287 void
1288 ev_signal_start (EV_P_ struct ev_signal *w)
1289 {
1290 #if EV_MULTIPLICITY
1291 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1292 #endif
1293 if (ev_is_active (w))
1294 return;
1295
1296 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1297
1298 ev_start (EV_A_ (W)w, 1);
1299 array_needsize (signals, signalmax, w->signum, signals_init);
1300 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1301
1302 if (!((WL)w)->next)
1303 {
1304 struct sigaction sa;
1305 sa.sa_handler = sighandler;
1306 sigfillset (&sa.sa_mask);
1307 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1308 sigaction (w->signum, &sa, 0);
1309 }
1310 }
1311
1312 void
1313 ev_signal_stop (EV_P_ struct ev_signal *w)
1314 {
1315 ev_clear_pending (EV_A_ (W)w);
1316 if (!ev_is_active (w))
1317 return;
1318
1319 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1320 ev_stop (EV_A_ (W)w);
1321
1322 if (!signals [w->signum - 1].head)
1323 signal (w->signum, SIG_DFL);
1324 }
1325
1326 void
1327 ev_child_start (EV_P_ struct ev_child *w)
1328 {
1329 #if EV_MULTIPLICITY
1330 assert (("child watchers are only supported in the default loop", loop == default_loop));
1331 #endif
1332 if (ev_is_active (w))
1333 return;
1334
1335 ev_start (EV_A_ (W)w, 1);
1336 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1337 }
1338
1339 void
1340 ev_child_stop (EV_P_ struct ev_child *w)
1341 {
1342 ev_clear_pending (EV_A_ (W)w);
1343 if (ev_is_active (w))
1344 return;
1345
1346 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1347 ev_stop (EV_A_ (W)w);
1348 }
1349
1350 /*****************************************************************************/
1351
1352 struct ev_once
1353 {
1354 struct ev_io io;
1355 struct ev_timer to;
1356 void (*cb)(int revents, void *arg);
1357 void *arg;
1358 };
1359
1360 static void
1361 once_cb (EV_P_ struct ev_once *once, int revents)
1362 {
1363 void (*cb)(int revents, void *arg) = once->cb;
1364 void *arg = once->arg;
1365
1366 ev_io_stop (EV_A_ &once->io);
1367 ev_timer_stop (EV_A_ &once->to);
1368 free (once);
1369
1370 cb (revents, arg);
1371 }
1372
1373 static void
1374 once_cb_io (EV_P_ struct ev_io *w, int revents)
1375 {
1376 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1377 }
1378
1379 static void
1380 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1381 {
1382 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1383 }
1384
1385 void
1386 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1387 {
1388 struct ev_once *once = malloc (sizeof (struct ev_once));
1389
1390 if (!once)
1391 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1392 else
1393 {
1394 once->cb = cb;
1395 once->arg = arg;
1396
1397 ev_watcher_init (&once->io, once_cb_io);
1398 if (fd >= 0)
1399 {
1400 ev_io_set (&once->io, fd, events);
1401 ev_io_start (EV_A_ &once->io);
1402 }
1403
1404 ev_watcher_init (&once->to, once_cb_to);
1405 if (timeout >= 0.)
1406 {
1407 ev_timer_set (&once->to, timeout, 0.);
1408 ev_timer_start (EV_A_ &once->to);
1409 }
1410 }
1411 }
1412