ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.67
Committed: Mon Nov 5 16:42:15 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.66: +22 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31 #ifndef EV_STANDALONE
32 # include "config.h"
33
34 # if HAVE_CLOCK_GETTIME
35 # define EV_USE_MONOTONIC 1
36 # define EV_USE_REALTIME 1
37 # endif
38
39 # if HAVE_SELECT && HAVE_SYS_SELECT_H
40 # define EV_USE_SELECT 1
41 # endif
42
43 # if HAVE_POLL && HAVE_POLL_H
44 # define EV_USE_POLL 1
45 # endif
46
47 # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48 # define EV_USE_EPOLL 1
49 # endif
50
51 # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52 # define EV_USE_KQUEUE 1
53 # endif
54
55 #endif
56
57 #include <math.h>
58 #include <stdlib.h>
59 #include <unistd.h>
60 #include <fcntl.h>
61 #include <signal.h>
62 #include <stddef.h>
63
64 #include <stdio.h>
65
66 #include <assert.h>
67 #include <errno.h>
68 #include <sys/types.h>
69 #ifndef WIN32
70 # include <sys/wait.h>
71 #endif
72 #include <sys/time.h>
73 #include <time.h>
74
75 /**/
76
77 #ifndef EV_USE_MONOTONIC
78 # define EV_USE_MONOTONIC 1
79 #endif
80
81 #ifndef EV_USE_SELECT
82 # define EV_USE_SELECT 1
83 #endif
84
85 #ifndef EV_USE_POLL
86 # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87 #endif
88
89 #ifndef EV_USE_EPOLL
90 # define EV_USE_EPOLL 0
91 #endif
92
93 #ifndef EV_USE_KQUEUE
94 # define EV_USE_KQUEUE 0
95 #endif
96
97 #ifndef EV_USE_WIN32
98 # ifdef WIN32
99 # define EV_USE_WIN32 1
100 # else
101 # define EV_USE_WIN32 0
102 # endif
103 #endif
104
105 #ifndef EV_USE_REALTIME
106 # define EV_USE_REALTIME 1
107 #endif
108
109 /**/
110
111 #ifndef CLOCK_MONOTONIC
112 # undef EV_USE_MONOTONIC
113 # define EV_USE_MONOTONIC 0
114 #endif
115
116 #ifndef CLOCK_REALTIME
117 # undef EV_USE_REALTIME
118 # define EV_USE_REALTIME 0
119 #endif
120
121 /**/
122
123 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127
128 #include "ev.h"
129
130 #if __GNUC__ >= 3
131 # define expect(expr,value) __builtin_expect ((expr),(value))
132 # define inline inline
133 #else
134 # define expect(expr,value) (expr)
135 # define inline static
136 #endif
137
138 #define expect_false(expr) expect ((expr) != 0, 0)
139 #define expect_true(expr) expect ((expr) != 0, 1)
140
141 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142 #define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
144 typedef struct ev_watcher *W;
145 typedef struct ev_watcher_list *WL;
146 typedef struct ev_watcher_time *WT;
147
148 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149
150 #if WIN32
151 /* note: the comment below could not be substantiated, but what would I care */
152 /* MSDN says this is required to handle SIGFPE */
153 volatile double SIGFPE_REQ = 0.0f;
154 #endif
155
156 /*****************************************************************************/
157
158 typedef struct
159 {
160 struct ev_watcher_list *head;
161 unsigned char events;
162 unsigned char reify;
163 } ANFD;
164
165 typedef struct
166 {
167 W w;
168 int events;
169 } ANPENDING;
170
171 #if EV_MULTIPLICITY
172
173 struct ev_loop
174 {
175 # define VAR(name,decl) decl;
176 # include "ev_vars.h"
177 };
178 # undef VAR
179 # include "ev_wrap.h"
180
181 #else
182
183 # define VAR(name,decl) static decl;
184 # include "ev_vars.h"
185 # undef VAR
186
187 #endif
188
189 /*****************************************************************************/
190
191 inline ev_tstamp
192 ev_time (void)
193 {
194 #if EV_USE_REALTIME
195 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts);
197 return ts.tv_sec + ts.tv_nsec * 1e-9;
198 #else
199 struct timeval tv;
200 gettimeofday (&tv, 0);
201 return tv.tv_sec + tv.tv_usec * 1e-6;
202 #endif
203 }
204
205 inline ev_tstamp
206 get_clock (void)
207 {
208 #if EV_USE_MONOTONIC
209 if (expect_true (have_monotonic))
210 {
211 struct timespec ts;
212 clock_gettime (CLOCK_MONOTONIC, &ts);
213 return ts.tv_sec + ts.tv_nsec * 1e-9;
214 }
215 #endif
216
217 return ev_time ();
218 }
219
220 ev_tstamp
221 ev_now (EV_P)
222 {
223 return rt_now;
224 }
225
226 #define array_roundsize(base,n) ((n) | 4 & ~3)
227
228 #define array_needsize(base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \
230 { \
231 int newcnt = cur; \
232 do \
233 { \
234 newcnt = array_roundsize (base, newcnt << 1); \
235 } \
236 while ((cnt) > newcnt); \
237 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \
239 init (base + cur, newcnt - cur); \
240 cur = newcnt; \
241 }
242
243 #define array_slim(stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
250
251 #define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253
254 /*****************************************************************************/
255
256 static void
257 anfds_init (ANFD *base, int count)
258 {
259 while (count--)
260 {
261 base->head = 0;
262 base->events = EV_NONE;
263 base->reify = 0;
264
265 ++base;
266 }
267 }
268
269 static void
270 event (EV_P_ W w, int events)
271 {
272 if (w->pending)
273 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
275 return;
276 }
277
278 w->pending = ++pendingcnt [ABSPRI (w)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
280 pendings [ABSPRI (w)][w->pending - 1].w = w;
281 pendings [ABSPRI (w)][w->pending - 1].events = events;
282 }
283
284 static void
285 queue_events (EV_P_ W *events, int eventcnt, int type)
286 {
287 int i;
288
289 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type);
291 }
292
293 static void
294 fd_event (EV_P_ int fd, int events)
295 {
296 ANFD *anfd = anfds + fd;
297 struct ev_io *w;
298
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
300 {
301 int ev = w->events & events;
302
303 if (ev)
304 event (EV_A_ (W)w, ev);
305 }
306 }
307
308 /*****************************************************************************/
309
310 static void
311 fd_reify (EV_P)
312 {
313 int i;
314
315 for (i = 0; i < fdchangecnt; ++i)
316 {
317 int fd = fdchanges [i];
318 ANFD *anfd = anfds + fd;
319 struct ev_io *w;
320
321 int events = 0;
322
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
324 events |= w->events;
325
326 anfd->reify = 0;
327
328 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events;
330 }
331
332 fdchangecnt = 0;
333 }
334
335 static void
336 fd_change (EV_P_ int fd)
337 {
338 if (anfds [fd].reify || fdchangecnt < 0)
339 return;
340
341 anfds [fd].reify = 1;
342
343 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
345 fdchanges [fdchangecnt - 1] = fd;
346 }
347
348 static void
349 fd_kill (EV_P_ int fd)
350 {
351 struct ev_io *w;
352
353 while ((w = (struct ev_io *)anfds [fd].head))
354 {
355 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 }
358 }
359
360 /* called on EBADF to verify fds */
361 static void
362 fd_ebadf (EV_P)
363 {
364 int fd;
365
366 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd);
370 }
371
372 /* called on ENOMEM in select/poll to kill some fds and retry */
373 static void
374 fd_enomem (EV_P)
375 {
376 int fd;
377
378 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events)
380 {
381 close (fd);
382 fd_kill (EV_A_ fd);
383 return;
384 }
385 }
386
387 /* susually called after fork if method needs to re-arm all fds from scratch */
388 static void
389 fd_rearm_all (EV_P)
390 {
391 int fd;
392
393 /* this should be highly optimised to not do anything but set a flag */
394 for (fd = 0; fd < anfdmax; ++fd)
395 if (anfds [fd].events)
396 {
397 anfds [fd].events = 0;
398 fd_change (EV_A_ fd);
399 }
400 }
401
402 /*****************************************************************************/
403
404 static void
405 upheap (WT *heap, int k)
406 {
407 WT w = heap [k];
408
409 while (k && heap [k >> 1]->at > w->at)
410 {
411 heap [k] = heap [k >> 1];
412 ((W)heap [k])->active = k + 1;
413 k >>= 1;
414 }
415
416 heap [k] = w;
417 ((W)heap [k])->active = k + 1;
418
419 }
420
421 static void
422 downheap (WT *heap, int N, int k)
423 {
424 WT w = heap [k];
425
426 while (k < (N >> 1))
427 {
428 int j = k << 1;
429
430 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
431 ++j;
432
433 if (w->at <= heap [j]->at)
434 break;
435
436 heap [k] = heap [j];
437 ((W)heap [k])->active = k + 1;
438 k = j;
439 }
440
441 heap [k] = w;
442 ((W)heap [k])->active = k + 1;
443 }
444
445 /*****************************************************************************/
446
447 typedef struct
448 {
449 struct ev_watcher_list *head;
450 sig_atomic_t volatile gotsig;
451 } ANSIG;
452
453 static ANSIG *signals;
454 static int signalmax;
455
456 static int sigpipe [2];
457 static sig_atomic_t volatile gotsig;
458 static struct ev_io sigev;
459
460 static void
461 signals_init (ANSIG *base, int count)
462 {
463 while (count--)
464 {
465 base->head = 0;
466 base->gotsig = 0;
467
468 ++base;
469 }
470 }
471
472 static void
473 sighandler (int signum)
474 {
475 #if WIN32
476 signal (signum, sighandler);
477 #endif
478
479 signals [signum - 1].gotsig = 1;
480
481 if (!gotsig)
482 {
483 int old_errno = errno;
484 gotsig = 1;
485 write (sigpipe [1], &signum, 1);
486 errno = old_errno;
487 }
488 }
489
490 static void
491 sigcb (EV_P_ struct ev_io *iow, int revents)
492 {
493 struct ev_watcher_list *w;
494 int signum;
495
496 read (sigpipe [0], &revents, 1);
497 gotsig = 0;
498
499 for (signum = signalmax; signum--; )
500 if (signals [signum].gotsig)
501 {
502 signals [signum].gotsig = 0;
503
504 for (w = signals [signum].head; w; w = w->next)
505 event (EV_A_ (W)w, EV_SIGNAL);
506 }
507 }
508
509 static void
510 siginit (EV_P)
511 {
512 #ifndef WIN32
513 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
514 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
515
516 /* rather than sort out wether we really need nb, set it */
517 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
518 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
519 #endif
520
521 ev_io_set (&sigev, sigpipe [0], EV_READ);
522 ev_io_start (EV_A_ &sigev);
523 ev_unref (EV_A); /* child watcher should not keep loop alive */
524 }
525
526 /*****************************************************************************/
527
528 #ifndef WIN32
529
530 static struct ev_child *childs [PID_HASHSIZE];
531 static struct ev_signal childev;
532
533 #ifndef WCONTINUED
534 # define WCONTINUED 0
535 #endif
536
537 static void
538 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
539 {
540 struct ev_child *w;
541
542 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
543 if (w->pid == pid || !w->pid)
544 {
545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546 w->rpid = pid;
547 w->rstatus = status;
548 event (EV_A_ (W)w, EV_CHILD);
549 }
550 }
551
552 static void
553 childcb (EV_P_ struct ev_signal *sw, int revents)
554 {
555 int pid, status;
556
557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
558 {
559 /* make sure we are called again until all childs have been reaped */
560 event (EV_A_ (W)sw, EV_SIGNAL);
561
562 child_reap (EV_A_ sw, pid, pid, status);
563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
564 }
565 }
566
567 #endif
568
569 /*****************************************************************************/
570
571 #if EV_USE_KQUEUE
572 # include "ev_kqueue.c"
573 #endif
574 #if EV_USE_EPOLL
575 # include "ev_epoll.c"
576 #endif
577 #if EV_USE_POLL
578 # include "ev_poll.c"
579 #endif
580 #if EV_USE_SELECT
581 # include "ev_select.c"
582 #endif
583
584 int
585 ev_version_major (void)
586 {
587 return EV_VERSION_MAJOR;
588 }
589
590 int
591 ev_version_minor (void)
592 {
593 return EV_VERSION_MINOR;
594 }
595
596 /* return true if we are running with elevated privileges and should ignore env variables */
597 static int
598 enable_secure (void)
599 {
600 #ifdef WIN32
601 return 0;
602 #else
603 return getuid () != geteuid ()
604 || getgid () != getegid ();
605 #endif
606 }
607
608 int
609 ev_method (EV_P)
610 {
611 return method;
612 }
613
614 static void
615 loop_init (EV_P_ int methods)
616 {
617 if (!method)
618 {
619 #if EV_USE_MONOTONIC
620 {
621 struct timespec ts;
622 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
623 have_monotonic = 1;
624 }
625 #endif
626
627 rt_now = ev_time ();
628 mn_now = get_clock ();
629 now_floor = mn_now;
630 rtmn_diff = rt_now - mn_now;
631
632 if (methods == EVMETHOD_AUTO)
633 if (!enable_secure () && getenv ("LIBEV_METHODS"))
634 methods = atoi (getenv ("LIBEV_METHODS"));
635 else
636 methods = EVMETHOD_ANY;
637
638 method = 0;
639 #if EV_USE_WIN32
640 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
641 #endif
642 #if EV_USE_KQUEUE
643 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
644 #endif
645 #if EV_USE_EPOLL
646 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
647 #endif
648 #if EV_USE_POLL
649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
650 #endif
651 #if EV_USE_SELECT
652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
653 #endif
654 }
655 }
656
657 void
658 loop_destroy (EV_P)
659 {
660 int i;
661
662 #if EV_USE_WIN32
663 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
664 #endif
665 #if EV_USE_KQUEUE
666 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
667 #endif
668 #if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
670 #endif
671 #if EV_USE_POLL
672 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
673 #endif
674 #if EV_USE_SELECT
675 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
676 #endif
677
678 for (i = NUMPRI; i--; )
679 array_free (pending, [i]);
680
681 array_free (fdchange, );
682 array_free (timer, );
683 array_free (periodic, );
684 array_free (idle, );
685 array_free (prepare, );
686 array_free (check, );
687
688 method = 0;
689 /*TODO*/
690 }
691
692 void
693 loop_fork (EV_P)
694 {
695 /*TODO*/
696 #if EV_USE_EPOLL
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
698 #endif
699 #if EV_USE_KQUEUE
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
701 #endif
702 }
703
704 #if EV_MULTIPLICITY
705 struct ev_loop *
706 ev_loop_new (int methods)
707 {
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
709
710 loop_init (EV_A_ methods);
711
712 if (ev_method (EV_A))
713 return loop;
714
715 return 0;
716 }
717
718 void
719 ev_loop_destroy (EV_P)
720 {
721 loop_destroy (EV_A);
722 free (loop);
723 }
724
725 void
726 ev_loop_fork (EV_P)
727 {
728 loop_fork (EV_A);
729 }
730
731 #endif
732
733 #if EV_MULTIPLICITY
734 struct ev_loop default_loop_struct;
735 static struct ev_loop *default_loop;
736
737 struct ev_loop *
738 #else
739 static int default_loop;
740
741 int
742 #endif
743 ev_default_loop (int methods)
744 {
745 if (sigpipe [0] == sigpipe [1])
746 if (pipe (sigpipe))
747 return 0;
748
749 if (!default_loop)
750 {
751 #if EV_MULTIPLICITY
752 struct ev_loop *loop = default_loop = &default_loop_struct;
753 #else
754 default_loop = 1;
755 #endif
756
757 loop_init (EV_A_ methods);
758
759 if (ev_method (EV_A))
760 {
761 ev_watcher_init (&sigev, sigcb);
762 ev_set_priority (&sigev, EV_MAXPRI);
763 siginit (EV_A);
764
765 #ifndef WIN32
766 ev_signal_init (&childev, childcb, SIGCHLD);
767 ev_set_priority (&childev, EV_MAXPRI);
768 ev_signal_start (EV_A_ &childev);
769 ev_unref (EV_A); /* child watcher should not keep loop alive */
770 #endif
771 }
772 else
773 default_loop = 0;
774 }
775
776 return default_loop;
777 }
778
779 void
780 ev_default_destroy (void)
781 {
782 #if EV_MULTIPLICITY
783 struct ev_loop *loop = default_loop;
784 #endif
785
786 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev);
788
789 ev_ref (EV_A); /* signal watcher */
790 ev_io_stop (EV_A_ &sigev);
791
792 close (sigpipe [0]); sigpipe [0] = 0;
793 close (sigpipe [1]); sigpipe [1] = 0;
794
795 loop_destroy (EV_A);
796 }
797
798 void
799 ev_default_fork (void)
800 {
801 #if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop;
803 #endif
804
805 loop_fork (EV_A);
806
807 ev_io_stop (EV_A_ &sigev);
808 close (sigpipe [0]);
809 close (sigpipe [1]);
810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
813 siginit (EV_A);
814 }
815
816 /*****************************************************************************/
817
818 static void
819 call_pending (EV_P)
820 {
821 int pri;
822
823 for (pri = NUMPRI; pri--; )
824 while (pendingcnt [pri])
825 {
826 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
827
828 if (p->w)
829 {
830 p->w->pending = 0;
831 p->w->cb (EV_A_ p->w, p->events);
832 }
833 }
834 }
835
836 static void
837 timers_reify (EV_P)
838 {
839 while (timercnt && ((WT)timers [0])->at <= mn_now)
840 {
841 struct ev_timer *w = timers [0];
842
843 assert (("inactive timer on timer heap detected", ev_is_active (w)));
844
845 /* first reschedule or stop timer */
846 if (w->repeat)
847 {
848 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
849 ((WT)w)->at = mn_now + w->repeat;
850 downheap ((WT *)timers, timercnt, 0);
851 }
852 else
853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
854
855 event (EV_A_ (W)w, EV_TIMEOUT);
856 }
857 }
858
859 static void
860 periodics_reify (EV_P)
861 {
862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
863 {
864 struct ev_periodic *w = periodics [0];
865
866 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
867
868 /* first reschedule or stop timer */
869 if (w->interval)
870 {
871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
873 downheap ((WT *)periodics, periodiccnt, 0);
874 }
875 else
876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
877
878 event (EV_A_ (W)w, EV_PERIODIC);
879 }
880 }
881
882 static void
883 periodics_reschedule (EV_P)
884 {
885 int i;
886
887 /* adjust periodics after time jump */
888 for (i = 0; i < periodiccnt; ++i)
889 {
890 struct ev_periodic *w = periodics [i];
891
892 if (w->interval)
893 {
894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
895
896 if (fabs (diff) >= 1e-4)
897 {
898 ev_periodic_stop (EV_A_ w);
899 ev_periodic_start (EV_A_ w);
900
901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
902 }
903 }
904 }
905 }
906
907 inline int
908 time_update_monotonic (EV_P)
909 {
910 mn_now = get_clock ();
911
912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
913 {
914 rt_now = rtmn_diff + mn_now;
915 return 0;
916 }
917 else
918 {
919 now_floor = mn_now;
920 rt_now = ev_time ();
921 return 1;
922 }
923 }
924
925 static void
926 time_update (EV_P)
927 {
928 int i;
929
930 #if EV_USE_MONOTONIC
931 if (expect_true (have_monotonic))
932 {
933 if (time_update_monotonic (EV_A))
934 {
935 ev_tstamp odiff = rtmn_diff;
936
937 for (i = 4; --i; ) /* loop a few times, before making important decisions */
938 {
939 rtmn_diff = rt_now - mn_now;
940
941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
942 return; /* all is well */
943
944 rt_now = ev_time ();
945 mn_now = get_clock ();
946 now_floor = mn_now;
947 }
948
949 periodics_reschedule (EV_A);
950 /* no timer adjustment, as the monotonic clock doesn't jump */
951 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
952 }
953 }
954 else
955 #endif
956 {
957 rt_now = ev_time ();
958
959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
960 {
961 periodics_reschedule (EV_A);
962
963 /* adjust timers. this is easy, as the offset is the same for all */
964 for (i = 0; i < timercnt; ++i)
965 ((WT)timers [i])->at += rt_now - mn_now;
966 }
967
968 mn_now = rt_now;
969 }
970 }
971
972 void
973 ev_ref (EV_P)
974 {
975 ++activecnt;
976 }
977
978 void
979 ev_unref (EV_P)
980 {
981 --activecnt;
982 }
983
984 static int loop_done;
985
986 void
987 ev_loop (EV_P_ int flags)
988 {
989 double block;
990 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
991
992 do
993 {
994 /* queue check watchers (and execute them) */
995 if (expect_false (preparecnt))
996 {
997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
998 call_pending (EV_A);
999 }
1000
1001 /* update fd-related kernel structures */
1002 fd_reify (EV_A);
1003
1004 /* calculate blocking time */
1005
1006 /* we only need this for !monotonic clockor timers, but as we basically
1007 always have timers, we just calculate it always */
1008 #if EV_USE_MONOTONIC
1009 if (expect_true (have_monotonic))
1010 time_update_monotonic (EV_A);
1011 else
1012 #endif
1013 {
1014 rt_now = ev_time ();
1015 mn_now = rt_now;
1016 }
1017
1018 if (flags & EVLOOP_NONBLOCK || idlecnt)
1019 block = 0.;
1020 else
1021 {
1022 block = MAX_BLOCKTIME;
1023
1024 if (timercnt)
1025 {
1026 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1027 if (block > to) block = to;
1028 }
1029
1030 if (periodiccnt)
1031 {
1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1033 if (block > to) block = to;
1034 }
1035
1036 if (block < 0.) block = 0.;
1037 }
1038
1039 method_poll (EV_A_ block);
1040
1041 /* update rt_now, do magic */
1042 time_update (EV_A);
1043
1044 /* queue pending timers and reschedule them */
1045 timers_reify (EV_A); /* relative timers called last */
1046 periodics_reify (EV_A); /* absolute timers called first */
1047
1048 /* queue idle watchers unless io or timers are pending */
1049 if (!pendingcnt)
1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1051
1052 /* queue check watchers, to be executed first */
1053 if (checkcnt)
1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1055
1056 call_pending (EV_A);
1057 }
1058 while (activecnt && !loop_done);
1059
1060 if (loop_done != 2)
1061 loop_done = 0;
1062 }
1063
1064 void
1065 ev_unloop (EV_P_ int how)
1066 {
1067 loop_done = how;
1068 }
1069
1070 /*****************************************************************************/
1071
1072 inline void
1073 wlist_add (WL *head, WL elem)
1074 {
1075 elem->next = *head;
1076 *head = elem;
1077 }
1078
1079 inline void
1080 wlist_del (WL *head, WL elem)
1081 {
1082 while (*head)
1083 {
1084 if (*head == elem)
1085 {
1086 *head = elem->next;
1087 return;
1088 }
1089
1090 head = &(*head)->next;
1091 }
1092 }
1093
1094 inline void
1095 ev_clear_pending (EV_P_ W w)
1096 {
1097 if (w->pending)
1098 {
1099 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1100 w->pending = 0;
1101 }
1102 }
1103
1104 inline void
1105 ev_start (EV_P_ W w, int active)
1106 {
1107 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1108 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1109
1110 w->active = active;
1111 ev_ref (EV_A);
1112 }
1113
1114 inline void
1115 ev_stop (EV_P_ W w)
1116 {
1117 ev_unref (EV_A);
1118 w->active = 0;
1119 }
1120
1121 /*****************************************************************************/
1122
1123 void
1124 ev_io_start (EV_P_ struct ev_io *w)
1125 {
1126 int fd = w->fd;
1127
1128 if (ev_is_active (w))
1129 return;
1130
1131 assert (("ev_io_start called with negative fd", fd >= 0));
1132
1133 ev_start (EV_A_ (W)w, 1);
1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1135 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1136
1137 fd_change (EV_A_ fd);
1138 }
1139
1140 void
1141 ev_io_stop (EV_P_ struct ev_io *w)
1142 {
1143 ev_clear_pending (EV_A_ (W)w);
1144 if (!ev_is_active (w))
1145 return;
1146
1147 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1148 ev_stop (EV_A_ (W)w);
1149
1150 fd_change (EV_A_ w->fd);
1151 }
1152
1153 void
1154 ev_timer_start (EV_P_ struct ev_timer *w)
1155 {
1156 if (ev_is_active (w))
1157 return;
1158
1159 ((WT)w)->at += mn_now;
1160
1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1162
1163 ev_start (EV_A_ (W)w, ++timercnt);
1164 array_needsize (timers, timermax, timercnt, );
1165 timers [timercnt - 1] = w;
1166 upheap ((WT *)timers, timercnt - 1);
1167
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1169 }
1170
1171 void
1172 ev_timer_stop (EV_P_ struct ev_timer *w)
1173 {
1174 ev_clear_pending (EV_A_ (W)w);
1175 if (!ev_is_active (w))
1176 return;
1177
1178 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1179
1180 if (((W)w)->active < timercnt--)
1181 {
1182 timers [((W)w)->active - 1] = timers [timercnt];
1183 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1184 }
1185
1186 ((WT)w)->at = w->repeat;
1187
1188 ev_stop (EV_A_ (W)w);
1189 }
1190
1191 void
1192 ev_timer_again (EV_P_ struct ev_timer *w)
1193 {
1194 if (ev_is_active (w))
1195 {
1196 if (w->repeat)
1197 {
1198 ((WT)w)->at = mn_now + w->repeat;
1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1200 }
1201 else
1202 ev_timer_stop (EV_A_ w);
1203 }
1204 else if (w->repeat)
1205 ev_timer_start (EV_A_ w);
1206 }
1207
1208 void
1209 ev_periodic_start (EV_P_ struct ev_periodic *w)
1210 {
1211 if (ev_is_active (w))
1212 return;
1213
1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1215
1216 /* this formula differs from the one in periodic_reify because we do not always round up */
1217 if (w->interval)
1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1219
1220 ev_start (EV_A_ (W)w, ++periodiccnt);
1221 array_needsize (periodics, periodicmax, periodiccnt, );
1222 periodics [periodiccnt - 1] = w;
1223 upheap ((WT *)periodics, periodiccnt - 1);
1224
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1226 }
1227
1228 void
1229 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1230 {
1231 ev_clear_pending (EV_A_ (W)w);
1232 if (!ev_is_active (w))
1233 return;
1234
1235 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1236
1237 if (((W)w)->active < periodiccnt--)
1238 {
1239 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1240 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1241 }
1242
1243 ev_stop (EV_A_ (W)w);
1244 }
1245
1246 void
1247 ev_idle_start (EV_P_ struct ev_idle *w)
1248 {
1249 if (ev_is_active (w))
1250 return;
1251
1252 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, );
1254 idles [idlecnt - 1] = w;
1255 }
1256
1257 void
1258 ev_idle_stop (EV_P_ struct ev_idle *w)
1259 {
1260 ev_clear_pending (EV_A_ (W)w);
1261 if (ev_is_active (w))
1262 return;
1263
1264 idles [((W)w)->active - 1] = idles [--idlecnt];
1265 ev_stop (EV_A_ (W)w);
1266 }
1267
1268 void
1269 ev_prepare_start (EV_P_ struct ev_prepare *w)
1270 {
1271 if (ev_is_active (w))
1272 return;
1273
1274 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, );
1276 prepares [preparecnt - 1] = w;
1277 }
1278
1279 void
1280 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1281 {
1282 ev_clear_pending (EV_A_ (W)w);
1283 if (ev_is_active (w))
1284 return;
1285
1286 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1287 ev_stop (EV_A_ (W)w);
1288 }
1289
1290 void
1291 ev_check_start (EV_P_ struct ev_check *w)
1292 {
1293 if (ev_is_active (w))
1294 return;
1295
1296 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, );
1298 checks [checkcnt - 1] = w;
1299 }
1300
1301 void
1302 ev_check_stop (EV_P_ struct ev_check *w)
1303 {
1304 ev_clear_pending (EV_A_ (W)w);
1305 if (ev_is_active (w))
1306 return;
1307
1308 checks [((W)w)->active - 1] = checks [--checkcnt];
1309 ev_stop (EV_A_ (W)w);
1310 }
1311
1312 #ifndef SA_RESTART
1313 # define SA_RESTART 0
1314 #endif
1315
1316 void
1317 ev_signal_start (EV_P_ struct ev_signal *w)
1318 {
1319 #if EV_MULTIPLICITY
1320 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1321 #endif
1322 if (ev_is_active (w))
1323 return;
1324
1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1326
1327 ev_start (EV_A_ (W)w, 1);
1328 array_needsize (signals, signalmax, w->signum, signals_init);
1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1330
1331 if (!((WL)w)->next)
1332 {
1333 #if WIN32
1334 signal (w->signum, sighandler);
1335 #else
1336 struct sigaction sa;
1337 sa.sa_handler = sighandler;
1338 sigfillset (&sa.sa_mask);
1339 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1340 sigaction (w->signum, &sa, 0);
1341 #endif
1342 }
1343 }
1344
1345 void
1346 ev_signal_stop (EV_P_ struct ev_signal *w)
1347 {
1348 ev_clear_pending (EV_A_ (W)w);
1349 if (!ev_is_active (w))
1350 return;
1351
1352 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1353 ev_stop (EV_A_ (W)w);
1354
1355 if (!signals [w->signum - 1].head)
1356 signal (w->signum, SIG_DFL);
1357 }
1358
1359 void
1360 ev_child_start (EV_P_ struct ev_child *w)
1361 {
1362 #if EV_MULTIPLICITY
1363 assert (("child watchers are only supported in the default loop", loop == default_loop));
1364 #endif
1365 if (ev_is_active (w))
1366 return;
1367
1368 ev_start (EV_A_ (W)w, 1);
1369 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1370 }
1371
1372 void
1373 ev_child_stop (EV_P_ struct ev_child *w)
1374 {
1375 ev_clear_pending (EV_A_ (W)w);
1376 if (ev_is_active (w))
1377 return;
1378
1379 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1380 ev_stop (EV_A_ (W)w);
1381 }
1382
1383 /*****************************************************************************/
1384
1385 struct ev_once
1386 {
1387 struct ev_io io;
1388 struct ev_timer to;
1389 void (*cb)(int revents, void *arg);
1390 void *arg;
1391 };
1392
1393 static void
1394 once_cb (EV_P_ struct ev_once *once, int revents)
1395 {
1396 void (*cb)(int revents, void *arg) = once->cb;
1397 void *arg = once->arg;
1398
1399 ev_io_stop (EV_A_ &once->io);
1400 ev_timer_stop (EV_A_ &once->to);
1401 free (once);
1402
1403 cb (revents, arg);
1404 }
1405
1406 static void
1407 once_cb_io (EV_P_ struct ev_io *w, int revents)
1408 {
1409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1410 }
1411
1412 static void
1413 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1414 {
1415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1416 }
1417
1418 void
1419 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1420 {
1421 struct ev_once *once = malloc (sizeof (struct ev_once));
1422
1423 if (!once)
1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1425 else
1426 {
1427 once->cb = cb;
1428 once->arg = arg;
1429
1430 ev_watcher_init (&once->io, once_cb_io);
1431 if (fd >= 0)
1432 {
1433 ev_io_set (&once->io, fd, events);
1434 ev_io_start (EV_A_ &once->io);
1435 }
1436
1437 ev_watcher_init (&once->to, once_cb_to);
1438 if (timeout >= 0.)
1439 {
1440 ev_timer_set (&once->to, timeout, 0.);
1441 ev_timer_start (EV_A_ &once->to);
1442 }
1443 }
1444 }
1445