ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.69
Committed: Tue Nov 6 00:10:04 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.68: +66 -19 lines
Log Message:
better error handling

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31 #ifndef EV_STANDALONE
32 # include "config.h"
33
34 # if HAVE_CLOCK_GETTIME
35 # define EV_USE_MONOTONIC 1
36 # define EV_USE_REALTIME 1
37 # endif
38
39 # if HAVE_SELECT && HAVE_SYS_SELECT_H
40 # define EV_USE_SELECT 1
41 # endif
42
43 # if HAVE_POLL && HAVE_POLL_H
44 # define EV_USE_POLL 1
45 # endif
46
47 # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48 # define EV_USE_EPOLL 1
49 # endif
50
51 # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52 # define EV_USE_KQUEUE 1
53 # endif
54
55 #endif
56
57 #include <math.h>
58 #include <stdlib.h>
59 #include <unistd.h>
60 #include <fcntl.h>
61 #include <signal.h>
62 #include <stddef.h>
63
64 #include <stdio.h>
65
66 #include <assert.h>
67 #include <errno.h>
68 #include <sys/types.h>
69 #ifndef WIN32
70 # include <sys/wait.h>
71 #endif
72 #include <sys/time.h>
73 #include <time.h>
74
75 /**/
76
77 #ifndef EV_USE_MONOTONIC
78 # define EV_USE_MONOTONIC 1
79 #endif
80
81 #ifndef EV_USE_SELECT
82 # define EV_USE_SELECT 1
83 #endif
84
85 #ifndef EV_USE_POLL
86 # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87 #endif
88
89 #ifndef EV_USE_EPOLL
90 # define EV_USE_EPOLL 0
91 #endif
92
93 #ifndef EV_USE_KQUEUE
94 # define EV_USE_KQUEUE 0
95 #endif
96
97 #ifndef EV_USE_WIN32
98 # ifdef WIN32
99 # define EV_USE_WIN32 1
100 # else
101 # define EV_USE_WIN32 0
102 # endif
103 #endif
104
105 #ifndef EV_USE_REALTIME
106 # define EV_USE_REALTIME 1
107 #endif
108
109 /**/
110
111 #ifndef CLOCK_MONOTONIC
112 # undef EV_USE_MONOTONIC
113 # define EV_USE_MONOTONIC 0
114 #endif
115
116 #ifndef CLOCK_REALTIME
117 # undef EV_USE_REALTIME
118 # define EV_USE_REALTIME 0
119 #endif
120
121 /**/
122
123 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127
128 #include "ev.h"
129
130 #if __GNUC__ >= 3
131 # define expect(expr,value) __builtin_expect ((expr),(value))
132 # define inline inline
133 #else
134 # define expect(expr,value) (expr)
135 # define inline static
136 #endif
137
138 #define expect_false(expr) expect ((expr) != 0, 0)
139 #define expect_true(expr) expect ((expr) != 0, 1)
140
141 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142 #define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
144 typedef struct ev_watcher *W;
145 typedef struct ev_watcher_list *WL;
146 typedef struct ev_watcher_time *WT;
147
148 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149
150 #if WIN32
151 /* note: the comment below could not be substantiated, but what would I care */
152 /* MSDN says this is required to handle SIGFPE */
153 volatile double SIGFPE_REQ = 0.0f;
154 #endif
155
156 /*****************************************************************************/
157
158 static void (*syserr_cb)(void);
159
160 void ev_set_syserr_cb (void (*cb)(void))
161 {
162 syserr_cb = cb;
163 }
164
165 static void
166 syserr (void)
167 {
168 if (syserr_cb)
169 syserr_cb ();
170 else
171 {
172 perror ("libev");
173 abort ();
174 }
175 }
176
177 static void *(*alloc)(void *ptr, long size);
178
179 void ev_set_allocator (void *(*cb)(void *ptr, long size))
180 {
181 alloc = cb;
182 }
183
184 static void *
185 ev_realloc (void *ptr, long size)
186 {
187 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
188
189 if (!ptr && size)
190 {
191 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
192 abort ();
193 }
194
195 return ptr;
196 }
197
198 #define ev_malloc(size) ev_realloc (0, (size))
199 #define ev_free(ptr) ev_realloc ((ptr), 0)
200
201 /*****************************************************************************/
202
203 typedef struct
204 {
205 WL head;
206 unsigned char events;
207 unsigned char reify;
208 } ANFD;
209
210 typedef struct
211 {
212 W w;
213 int events;
214 } ANPENDING;
215
216 #if EV_MULTIPLICITY
217
218 struct ev_loop
219 {
220 # define VAR(name,decl) decl;
221 # include "ev_vars.h"
222 };
223 # undef VAR
224 # include "ev_wrap.h"
225
226 #else
227
228 # define VAR(name,decl) static decl;
229 # include "ev_vars.h"
230 # undef VAR
231
232 #endif
233
234 /*****************************************************************************/
235
236 inline ev_tstamp
237 ev_time (void)
238 {
239 #if EV_USE_REALTIME
240 struct timespec ts;
241 clock_gettime (CLOCK_REALTIME, &ts);
242 return ts.tv_sec + ts.tv_nsec * 1e-9;
243 #else
244 struct timeval tv;
245 gettimeofday (&tv, 0);
246 return tv.tv_sec + tv.tv_usec * 1e-6;
247 #endif
248 }
249
250 inline ev_tstamp
251 get_clock (void)
252 {
253 #if EV_USE_MONOTONIC
254 if (expect_true (have_monotonic))
255 {
256 struct timespec ts;
257 clock_gettime (CLOCK_MONOTONIC, &ts);
258 return ts.tv_sec + ts.tv_nsec * 1e-9;
259 }
260 #endif
261
262 return ev_time ();
263 }
264
265 ev_tstamp
266 ev_now (EV_P)
267 {
268 return rt_now;
269 }
270
271 #define array_roundsize(base,n) ((n) | 4 & ~3)
272
273 #define array_needsize(base,cur,cnt,init) \
274 if (expect_false ((cnt) > cur)) \
275 { \
276 int newcnt = cur; \
277 do \
278 { \
279 newcnt = array_roundsize (base, newcnt << 1); \
280 } \
281 while ((cnt) > newcnt); \
282 \
283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
284 init (base + cur, newcnt - cur); \
285 cur = newcnt; \
286 }
287
288 #define array_slim(stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 }
295
296 #define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
298
299 /*****************************************************************************/
300
301 static void
302 anfds_init (ANFD *base, int count)
303 {
304 while (count--)
305 {
306 base->head = 0;
307 base->events = EV_NONE;
308 base->reify = 0;
309
310 ++base;
311 }
312 }
313
314 static void
315 event (EV_P_ W w, int events)
316 {
317 if (w->pending)
318 {
319 pendings [ABSPRI (w)][w->pending - 1].events |= events;
320 return;
321 }
322
323 w->pending = ++pendingcnt [ABSPRI (w)];
324 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
325 pendings [ABSPRI (w)][w->pending - 1].w = w;
326 pendings [ABSPRI (w)][w->pending - 1].events = events;
327 }
328
329 static void
330 queue_events (EV_P_ W *events, int eventcnt, int type)
331 {
332 int i;
333
334 for (i = 0; i < eventcnt; ++i)
335 event (EV_A_ events [i], type);
336 }
337
338 static void
339 fd_event (EV_P_ int fd, int events)
340 {
341 ANFD *anfd = anfds + fd;
342 struct ev_io *w;
343
344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
345 {
346 int ev = w->events & events;
347
348 if (ev)
349 event (EV_A_ (W)w, ev);
350 }
351 }
352
353 /*****************************************************************************/
354
355 static void
356 fd_reify (EV_P)
357 {
358 int i;
359
360 for (i = 0; i < fdchangecnt; ++i)
361 {
362 int fd = fdchanges [i];
363 ANFD *anfd = anfds + fd;
364 struct ev_io *w;
365
366 int events = 0;
367
368 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
369 events |= w->events;
370
371 anfd->reify = 0;
372
373 method_modify (EV_A_ fd, anfd->events, events);
374 anfd->events = events;
375 }
376
377 fdchangecnt = 0;
378 }
379
380 static void
381 fd_change (EV_P_ int fd)
382 {
383 if (anfds [fd].reify || fdchangecnt < 0)
384 return;
385
386 anfds [fd].reify = 1;
387
388 ++fdchangecnt;
389 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
390 fdchanges [fdchangecnt - 1] = fd;
391 }
392
393 static void
394 fd_kill (EV_P_ int fd)
395 {
396 struct ev_io *w;
397
398 while ((w = (struct ev_io *)anfds [fd].head))
399 {
400 ev_io_stop (EV_A_ w);
401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 }
403 }
404
405 /* called on EBADF to verify fds */
406 static void
407 fd_ebadf (EV_P)
408 {
409 int fd;
410
411 for (fd = 0; fd < anfdmax; ++fd)
412 if (anfds [fd].events)
413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
414 fd_kill (EV_A_ fd);
415 }
416
417 /* called on ENOMEM in select/poll to kill some fds and retry */
418 static void
419 fd_enomem (EV_P)
420 {
421 int fd;
422
423 for (fd = anfdmax; fd--; )
424 if (anfds [fd].events)
425 {
426 fd_kill (EV_A_ fd);
427 return;
428 }
429 }
430
431 /* susually called after fork if method needs to re-arm all fds from scratch */
432 static void
433 fd_rearm_all (EV_P)
434 {
435 int fd;
436
437 /* this should be highly optimised to not do anything but set a flag */
438 for (fd = 0; fd < anfdmax; ++fd)
439 if (anfds [fd].events)
440 {
441 anfds [fd].events = 0;
442 fd_change (EV_A_ fd);
443 }
444 }
445
446 /*****************************************************************************/
447
448 static void
449 upheap (WT *heap, int k)
450 {
451 WT w = heap [k];
452
453 while (k && heap [k >> 1]->at > w->at)
454 {
455 heap [k] = heap [k >> 1];
456 ((W)heap [k])->active = k + 1;
457 k >>= 1;
458 }
459
460 heap [k] = w;
461 ((W)heap [k])->active = k + 1;
462
463 }
464
465 static void
466 downheap (WT *heap, int N, int k)
467 {
468 WT w = heap [k];
469
470 while (k < (N >> 1))
471 {
472 int j = k << 1;
473
474 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
475 ++j;
476
477 if (w->at <= heap [j]->at)
478 break;
479
480 heap [k] = heap [j];
481 ((W)heap [k])->active = k + 1;
482 k = j;
483 }
484
485 heap [k] = w;
486 ((W)heap [k])->active = k + 1;
487 }
488
489 /*****************************************************************************/
490
491 typedef struct
492 {
493 WL head;
494 sig_atomic_t volatile gotsig;
495 } ANSIG;
496
497 static ANSIG *signals;
498 static int signalmax;
499
500 static int sigpipe [2];
501 static sig_atomic_t volatile gotsig;
502 static struct ev_io sigev;
503
504 static void
505 signals_init (ANSIG *base, int count)
506 {
507 while (count--)
508 {
509 base->head = 0;
510 base->gotsig = 0;
511
512 ++base;
513 }
514 }
515
516 static void
517 sighandler (int signum)
518 {
519 #if WIN32
520 signal (signum, sighandler);
521 #endif
522
523 signals [signum - 1].gotsig = 1;
524
525 if (!gotsig)
526 {
527 int old_errno = errno;
528 gotsig = 1;
529 write (sigpipe [1], &signum, 1);
530 errno = old_errno;
531 }
532 }
533
534 static void
535 sigcb (EV_P_ struct ev_io *iow, int revents)
536 {
537 WL w;
538 int signum;
539
540 read (sigpipe [0], &revents, 1);
541 gotsig = 0;
542
543 for (signum = signalmax; signum--; )
544 if (signals [signum].gotsig)
545 {
546 signals [signum].gotsig = 0;
547
548 for (w = signals [signum].head; w; w = w->next)
549 event (EV_A_ (W)w, EV_SIGNAL);
550 }
551 }
552
553 static void
554 siginit (EV_P)
555 {
556 #ifndef WIN32
557 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
558 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
559
560 /* rather than sort out wether we really need nb, set it */
561 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
562 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
563 #endif
564
565 ev_io_set (&sigev, sigpipe [0], EV_READ);
566 ev_io_start (EV_A_ &sigev);
567 ev_unref (EV_A); /* child watcher should not keep loop alive */
568 }
569
570 /*****************************************************************************/
571
572 #ifndef WIN32
573
574 static struct ev_child *childs [PID_HASHSIZE];
575 static struct ev_signal childev;
576
577 #ifndef WCONTINUED
578 # define WCONTINUED 0
579 #endif
580
581 static void
582 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
583 {
584 struct ev_child *w;
585
586 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
587 if (w->pid == pid || !w->pid)
588 {
589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590 w->rpid = pid;
591 w->rstatus = status;
592 event (EV_A_ (W)w, EV_CHILD);
593 }
594 }
595
596 static void
597 childcb (EV_P_ struct ev_signal *sw, int revents)
598 {
599 int pid, status;
600
601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
602 {
603 /* make sure we are called again until all childs have been reaped */
604 event (EV_A_ (W)sw, EV_SIGNAL);
605
606 child_reap (EV_A_ sw, pid, pid, status);
607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
608 }
609 }
610
611 #endif
612
613 /*****************************************************************************/
614
615 #if EV_USE_KQUEUE
616 # include "ev_kqueue.c"
617 #endif
618 #if EV_USE_EPOLL
619 # include "ev_epoll.c"
620 #endif
621 #if EV_USE_POLL
622 # include "ev_poll.c"
623 #endif
624 #if EV_USE_SELECT
625 # include "ev_select.c"
626 #endif
627
628 int
629 ev_version_major (void)
630 {
631 return EV_VERSION_MAJOR;
632 }
633
634 int
635 ev_version_minor (void)
636 {
637 return EV_VERSION_MINOR;
638 }
639
640 /* return true if we are running with elevated privileges and should ignore env variables */
641 static int
642 enable_secure (void)
643 {
644 #ifdef WIN32
645 return 0;
646 #else
647 return getuid () != geteuid ()
648 || getgid () != getegid ();
649 #endif
650 }
651
652 int
653 ev_method (EV_P)
654 {
655 return method;
656 }
657
658 static void
659 loop_init (EV_P_ int methods)
660 {
661 if (!method)
662 {
663 #if EV_USE_MONOTONIC
664 {
665 struct timespec ts;
666 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
667 have_monotonic = 1;
668 }
669 #endif
670
671 rt_now = ev_time ();
672 mn_now = get_clock ();
673 now_floor = mn_now;
674 rtmn_diff = rt_now - mn_now;
675
676 if (methods == EVMETHOD_AUTO)
677 if (!enable_secure () && getenv ("LIBEV_METHODS"))
678 methods = atoi (getenv ("LIBEV_METHODS"));
679 else
680 methods = EVMETHOD_ANY;
681
682 method = 0;
683 #if EV_USE_WIN32
684 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
685 #endif
686 #if EV_USE_KQUEUE
687 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
688 #endif
689 #if EV_USE_EPOLL
690 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
691 #endif
692 #if EV_USE_POLL
693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
694 #endif
695 #if EV_USE_SELECT
696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
697 #endif
698 }
699 }
700
701 void
702 loop_destroy (EV_P)
703 {
704 int i;
705
706 #if EV_USE_WIN32
707 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
708 #endif
709 #if EV_USE_KQUEUE
710 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
711 #endif
712 #if EV_USE_EPOLL
713 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
714 #endif
715 #if EV_USE_POLL
716 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
717 #endif
718 #if EV_USE_SELECT
719 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
720 #endif
721
722 for (i = NUMPRI; i--; )
723 array_free (pending, [i]);
724
725 array_free (fdchange, );
726 array_free (timer, );
727 array_free (periodic, );
728 array_free (idle, );
729 array_free (prepare, );
730 array_free (check, );
731
732 method = 0;
733 /*TODO*/
734 }
735
736 void
737 loop_fork (EV_P)
738 {
739 /*TODO*/
740 #if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742 #endif
743 #if EV_USE_KQUEUE
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745 #endif
746 }
747
748 #if EV_MULTIPLICITY
749 struct ev_loop *
750 ev_loop_new (int methods)
751 {
752 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
753
754 memset (loop, 0, sizeof (struct ev_loop));
755
756 loop_init (EV_A_ methods);
757
758 if (ev_method (EV_A))
759 return loop;
760
761 return 0;
762 }
763
764 void
765 ev_loop_destroy (EV_P)
766 {
767 loop_destroy (EV_A);
768 ev_free (loop);
769 }
770
771 void
772 ev_loop_fork (EV_P)
773 {
774 loop_fork (EV_A);
775 }
776
777 #endif
778
779 #if EV_MULTIPLICITY
780 struct ev_loop default_loop_struct;
781 static struct ev_loop *default_loop;
782
783 struct ev_loop *
784 #else
785 static int default_loop;
786
787 int
788 #endif
789 ev_default_loop (int methods)
790 {
791 if (sigpipe [0] == sigpipe [1])
792 if (pipe (sigpipe))
793 return 0;
794
795 if (!default_loop)
796 {
797 #if EV_MULTIPLICITY
798 struct ev_loop *loop = default_loop = &default_loop_struct;
799 #else
800 default_loop = 1;
801 #endif
802
803 loop_init (EV_A_ methods);
804
805 if (ev_method (EV_A))
806 {
807 ev_watcher_init (&sigev, sigcb);
808 ev_set_priority (&sigev, EV_MAXPRI);
809 siginit (EV_A);
810
811 #ifndef WIN32
812 ev_signal_init (&childev, childcb, SIGCHLD);
813 ev_set_priority (&childev, EV_MAXPRI);
814 ev_signal_start (EV_A_ &childev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */
816 #endif
817 }
818 else
819 default_loop = 0;
820 }
821
822 return default_loop;
823 }
824
825 void
826 ev_default_destroy (void)
827 {
828 #if EV_MULTIPLICITY
829 struct ev_loop *loop = default_loop;
830 #endif
831
832 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev);
834
835 ev_ref (EV_A); /* signal watcher */
836 ev_io_stop (EV_A_ &sigev);
837
838 close (sigpipe [0]); sigpipe [0] = 0;
839 close (sigpipe [1]); sigpipe [1] = 0;
840
841 loop_destroy (EV_A);
842 }
843
844 void
845 ev_default_fork (void)
846 {
847 #if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop;
849 #endif
850
851 loop_fork (EV_A);
852
853 ev_io_stop (EV_A_ &sigev);
854 close (sigpipe [0]);
855 close (sigpipe [1]);
856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
859 siginit (EV_A);
860 }
861
862 /*****************************************************************************/
863
864 static void
865 call_pending (EV_P)
866 {
867 int pri;
868
869 for (pri = NUMPRI; pri--; )
870 while (pendingcnt [pri])
871 {
872 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
873
874 if (p->w)
875 {
876 p->w->pending = 0;
877 p->w->cb (EV_A_ p->w, p->events);
878 }
879 }
880 }
881
882 static void
883 timers_reify (EV_P)
884 {
885 while (timercnt && ((WT)timers [0])->at <= mn_now)
886 {
887 struct ev_timer *w = timers [0];
888
889 assert (("inactive timer on timer heap detected", ev_is_active (w)));
890
891 /* first reschedule or stop timer */
892 if (w->repeat)
893 {
894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
895 ((WT)w)->at = mn_now + w->repeat;
896 downheap ((WT *)timers, timercnt, 0);
897 }
898 else
899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
900
901 event (EV_A_ (W)w, EV_TIMEOUT);
902 }
903 }
904
905 static void
906 periodics_reify (EV_P)
907 {
908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
909 {
910 struct ev_periodic *w = periodics [0];
911
912 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
913
914 /* first reschedule or stop timer */
915 if (w->interval)
916 {
917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
919 downheap ((WT *)periodics, periodiccnt, 0);
920 }
921 else
922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
923
924 event (EV_A_ (W)w, EV_PERIODIC);
925 }
926 }
927
928 static void
929 periodics_reschedule (EV_P)
930 {
931 int i;
932
933 /* adjust periodics after time jump */
934 for (i = 0; i < periodiccnt; ++i)
935 {
936 struct ev_periodic *w = periodics [i];
937
938 if (w->interval)
939 {
940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
941
942 if (fabs (diff) >= 1e-4)
943 {
944 ev_periodic_stop (EV_A_ w);
945 ev_periodic_start (EV_A_ w);
946
947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
948 }
949 }
950 }
951 }
952
953 inline int
954 time_update_monotonic (EV_P)
955 {
956 mn_now = get_clock ();
957
958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
959 {
960 rt_now = rtmn_diff + mn_now;
961 return 0;
962 }
963 else
964 {
965 now_floor = mn_now;
966 rt_now = ev_time ();
967 return 1;
968 }
969 }
970
971 static void
972 time_update (EV_P)
973 {
974 int i;
975
976 #if EV_USE_MONOTONIC
977 if (expect_true (have_monotonic))
978 {
979 if (time_update_monotonic (EV_A))
980 {
981 ev_tstamp odiff = rtmn_diff;
982
983 for (i = 4; --i; ) /* loop a few times, before making important decisions */
984 {
985 rtmn_diff = rt_now - mn_now;
986
987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
988 return; /* all is well */
989
990 rt_now = ev_time ();
991 mn_now = get_clock ();
992 now_floor = mn_now;
993 }
994
995 periodics_reschedule (EV_A);
996 /* no timer adjustment, as the monotonic clock doesn't jump */
997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
998 }
999 }
1000 else
1001 #endif
1002 {
1003 rt_now = ev_time ();
1004
1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1006 {
1007 periodics_reschedule (EV_A);
1008
1009 /* adjust timers. this is easy, as the offset is the same for all */
1010 for (i = 0; i < timercnt; ++i)
1011 ((WT)timers [i])->at += rt_now - mn_now;
1012 }
1013
1014 mn_now = rt_now;
1015 }
1016 }
1017
1018 void
1019 ev_ref (EV_P)
1020 {
1021 ++activecnt;
1022 }
1023
1024 void
1025 ev_unref (EV_P)
1026 {
1027 --activecnt;
1028 }
1029
1030 static int loop_done;
1031
1032 void
1033 ev_loop (EV_P_ int flags)
1034 {
1035 double block;
1036 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1037
1038 do
1039 {
1040 /* queue check watchers (and execute them) */
1041 if (expect_false (preparecnt))
1042 {
1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1044 call_pending (EV_A);
1045 }
1046
1047 /* update fd-related kernel structures */
1048 fd_reify (EV_A);
1049
1050 /* calculate blocking time */
1051
1052 /* we only need this for !monotonic clockor timers, but as we basically
1053 always have timers, we just calculate it always */
1054 #if EV_USE_MONOTONIC
1055 if (expect_true (have_monotonic))
1056 time_update_monotonic (EV_A);
1057 else
1058 #endif
1059 {
1060 rt_now = ev_time ();
1061 mn_now = rt_now;
1062 }
1063
1064 if (flags & EVLOOP_NONBLOCK || idlecnt)
1065 block = 0.;
1066 else
1067 {
1068 block = MAX_BLOCKTIME;
1069
1070 if (timercnt)
1071 {
1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1073 if (block > to) block = to;
1074 }
1075
1076 if (periodiccnt)
1077 {
1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1079 if (block > to) block = to;
1080 }
1081
1082 if (block < 0.) block = 0.;
1083 }
1084
1085 method_poll (EV_A_ block);
1086
1087 /* update rt_now, do magic */
1088 time_update (EV_A);
1089
1090 /* queue pending timers and reschedule them */
1091 timers_reify (EV_A); /* relative timers called last */
1092 periodics_reify (EV_A); /* absolute timers called first */
1093
1094 /* queue idle watchers unless io or timers are pending */
1095 if (!pendingcnt)
1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1097
1098 /* queue check watchers, to be executed first */
1099 if (checkcnt)
1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1101
1102 call_pending (EV_A);
1103 }
1104 while (activecnt && !loop_done);
1105
1106 if (loop_done != 2)
1107 loop_done = 0;
1108 }
1109
1110 void
1111 ev_unloop (EV_P_ int how)
1112 {
1113 loop_done = how;
1114 }
1115
1116 /*****************************************************************************/
1117
1118 inline void
1119 wlist_add (WL *head, WL elem)
1120 {
1121 elem->next = *head;
1122 *head = elem;
1123 }
1124
1125 inline void
1126 wlist_del (WL *head, WL elem)
1127 {
1128 while (*head)
1129 {
1130 if (*head == elem)
1131 {
1132 *head = elem->next;
1133 return;
1134 }
1135
1136 head = &(*head)->next;
1137 }
1138 }
1139
1140 inline void
1141 ev_clear_pending (EV_P_ W w)
1142 {
1143 if (w->pending)
1144 {
1145 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1146 w->pending = 0;
1147 }
1148 }
1149
1150 inline void
1151 ev_start (EV_P_ W w, int active)
1152 {
1153 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1154 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1155
1156 w->active = active;
1157 ev_ref (EV_A);
1158 }
1159
1160 inline void
1161 ev_stop (EV_P_ W w)
1162 {
1163 ev_unref (EV_A);
1164 w->active = 0;
1165 }
1166
1167 /*****************************************************************************/
1168
1169 void
1170 ev_io_start (EV_P_ struct ev_io *w)
1171 {
1172 int fd = w->fd;
1173
1174 if (ev_is_active (w))
1175 return;
1176
1177 assert (("ev_io_start called with negative fd", fd >= 0));
1178
1179 ev_start (EV_A_ (W)w, 1);
1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1181 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1182
1183 fd_change (EV_A_ fd);
1184 }
1185
1186 void
1187 ev_io_stop (EV_P_ struct ev_io *w)
1188 {
1189 ev_clear_pending (EV_A_ (W)w);
1190 if (!ev_is_active (w))
1191 return;
1192
1193 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1194 ev_stop (EV_A_ (W)w);
1195
1196 fd_change (EV_A_ w->fd);
1197 }
1198
1199 void
1200 ev_timer_start (EV_P_ struct ev_timer *w)
1201 {
1202 if (ev_is_active (w))
1203 return;
1204
1205 ((WT)w)->at += mn_now;
1206
1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1208
1209 ev_start (EV_A_ (W)w, ++timercnt);
1210 array_needsize (timers, timermax, timercnt, );
1211 timers [timercnt - 1] = w;
1212 upheap ((WT *)timers, timercnt - 1);
1213
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215 }
1216
1217 void
1218 ev_timer_stop (EV_P_ struct ev_timer *w)
1219 {
1220 ev_clear_pending (EV_A_ (W)w);
1221 if (!ev_is_active (w))
1222 return;
1223
1224 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1225
1226 if (((W)w)->active < timercnt--)
1227 {
1228 timers [((W)w)->active - 1] = timers [timercnt];
1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1230 }
1231
1232 ((WT)w)->at = w->repeat;
1233
1234 ev_stop (EV_A_ (W)w);
1235 }
1236
1237 void
1238 ev_timer_again (EV_P_ struct ev_timer *w)
1239 {
1240 if (ev_is_active (w))
1241 {
1242 if (w->repeat)
1243 {
1244 ((WT)w)->at = mn_now + w->repeat;
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1246 }
1247 else
1248 ev_timer_stop (EV_A_ w);
1249 }
1250 else if (w->repeat)
1251 ev_timer_start (EV_A_ w);
1252 }
1253
1254 void
1255 ev_periodic_start (EV_P_ struct ev_periodic *w)
1256 {
1257 if (ev_is_active (w))
1258 return;
1259
1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1261
1262 /* this formula differs from the one in periodic_reify because we do not always round up */
1263 if (w->interval)
1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1265
1266 ev_start (EV_A_ (W)w, ++periodiccnt);
1267 array_needsize (periodics, periodicmax, periodiccnt, );
1268 periodics [periodiccnt - 1] = w;
1269 upheap ((WT *)periodics, periodiccnt - 1);
1270
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272 }
1273
1274 void
1275 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1276 {
1277 ev_clear_pending (EV_A_ (W)w);
1278 if (!ev_is_active (w))
1279 return;
1280
1281 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1282
1283 if (((W)w)->active < periodiccnt--)
1284 {
1285 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1286 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1287 }
1288
1289 ev_stop (EV_A_ (W)w);
1290 }
1291
1292 void
1293 ev_idle_start (EV_P_ struct ev_idle *w)
1294 {
1295 if (ev_is_active (w))
1296 return;
1297
1298 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, );
1300 idles [idlecnt - 1] = w;
1301 }
1302
1303 void
1304 ev_idle_stop (EV_P_ struct ev_idle *w)
1305 {
1306 ev_clear_pending (EV_A_ (W)w);
1307 if (ev_is_active (w))
1308 return;
1309
1310 idles [((W)w)->active - 1] = idles [--idlecnt];
1311 ev_stop (EV_A_ (W)w);
1312 }
1313
1314 void
1315 ev_prepare_start (EV_P_ struct ev_prepare *w)
1316 {
1317 if (ev_is_active (w))
1318 return;
1319
1320 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, );
1322 prepares [preparecnt - 1] = w;
1323 }
1324
1325 void
1326 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1327 {
1328 ev_clear_pending (EV_A_ (W)w);
1329 if (ev_is_active (w))
1330 return;
1331
1332 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1333 ev_stop (EV_A_ (W)w);
1334 }
1335
1336 void
1337 ev_check_start (EV_P_ struct ev_check *w)
1338 {
1339 if (ev_is_active (w))
1340 return;
1341
1342 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, );
1344 checks [checkcnt - 1] = w;
1345 }
1346
1347 void
1348 ev_check_stop (EV_P_ struct ev_check *w)
1349 {
1350 ev_clear_pending (EV_A_ (W)w);
1351 if (ev_is_active (w))
1352 return;
1353
1354 checks [((W)w)->active - 1] = checks [--checkcnt];
1355 ev_stop (EV_A_ (W)w);
1356 }
1357
1358 #ifndef SA_RESTART
1359 # define SA_RESTART 0
1360 #endif
1361
1362 void
1363 ev_signal_start (EV_P_ struct ev_signal *w)
1364 {
1365 #if EV_MULTIPLICITY
1366 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1367 #endif
1368 if (ev_is_active (w))
1369 return;
1370
1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1372
1373 ev_start (EV_A_ (W)w, 1);
1374 array_needsize (signals, signalmax, w->signum, signals_init);
1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1376
1377 if (!((WL)w)->next)
1378 {
1379 #if WIN32
1380 signal (w->signum, sighandler);
1381 #else
1382 struct sigaction sa;
1383 sa.sa_handler = sighandler;
1384 sigfillset (&sa.sa_mask);
1385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1386 sigaction (w->signum, &sa, 0);
1387 #endif
1388 }
1389 }
1390
1391 void
1392 ev_signal_stop (EV_P_ struct ev_signal *w)
1393 {
1394 ev_clear_pending (EV_A_ (W)w);
1395 if (!ev_is_active (w))
1396 return;
1397
1398 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1399 ev_stop (EV_A_ (W)w);
1400
1401 if (!signals [w->signum - 1].head)
1402 signal (w->signum, SIG_DFL);
1403 }
1404
1405 void
1406 ev_child_start (EV_P_ struct ev_child *w)
1407 {
1408 #if EV_MULTIPLICITY
1409 assert (("child watchers are only supported in the default loop", loop == default_loop));
1410 #endif
1411 if (ev_is_active (w))
1412 return;
1413
1414 ev_start (EV_A_ (W)w, 1);
1415 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1416 }
1417
1418 void
1419 ev_child_stop (EV_P_ struct ev_child *w)
1420 {
1421 ev_clear_pending (EV_A_ (W)w);
1422 if (ev_is_active (w))
1423 return;
1424
1425 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1426 ev_stop (EV_A_ (W)w);
1427 }
1428
1429 /*****************************************************************************/
1430
1431 struct ev_once
1432 {
1433 struct ev_io io;
1434 struct ev_timer to;
1435 void (*cb)(int revents, void *arg);
1436 void *arg;
1437 };
1438
1439 static void
1440 once_cb (EV_P_ struct ev_once *once, int revents)
1441 {
1442 void (*cb)(int revents, void *arg) = once->cb;
1443 void *arg = once->arg;
1444
1445 ev_io_stop (EV_A_ &once->io);
1446 ev_timer_stop (EV_A_ &once->to);
1447 ev_free (once);
1448
1449 cb (revents, arg);
1450 }
1451
1452 static void
1453 once_cb_io (EV_P_ struct ev_io *w, int revents)
1454 {
1455 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1456 }
1457
1458 static void
1459 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1460 {
1461 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1462 }
1463
1464 void
1465 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1466 {
1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1468
1469 if (!once)
1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1471 else
1472 {
1473 once->cb = cb;
1474 once->arg = arg;
1475
1476 ev_watcher_init (&once->io, once_cb_io);
1477 if (fd >= 0)
1478 {
1479 ev_io_set (&once->io, fd, events);
1480 ev_io_start (EV_A_ &once->io);
1481 }
1482
1483 ev_watcher_init (&once->to, once_cb_to);
1484 if (timeout >= 0.)
1485 {
1486 ev_timer_set (&once->to, timeout, 0.);
1487 ev_timer_start (EV_A_ &once->to);
1488 }
1489 }
1490 }
1491